
A Bit-Vector Differential Model for the Modular
Addition by a Constant and its Applications to

Differential and Impossible-Differential
Cryptanalysis

Seyyed Arash Azimi1, Adrián Ranea2, Mahmoud Salmasizadeh3, Javad
Mohajeri3, Mohammad Reza Aref1, and Vincent Rijmen2,4

1 Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
arash azimi@ee.sharif.edu, aref@sharif.edu

2 imec-COSIC, KU Leuven, Belgium
{adrian.ranea,vincent.rijmen}@esat.kuleuven.be

3 Electronic Research Institute, Sharif University of Technology, Tehran, Iran
{salmasi,mohajer}@sharif.edu

4 Department of Informatics, UiB, Norway

Abstract. ARX algorithms are a class of symmetric-key algorithms con-
structed by Addition, Rotation, and XOR. To evaluate the resistance of
an ARX cipher against differential and impossible-differential cryptanaly-
sis, the recent automated methods employ constraint satisfaction solvers
to search for optimal characteristics or impossible differentials. The main
difficulty in formulating this search is finding the differential models of the
non-linear operations. While an efficient bit-vector differential model was
obtained for the modular addition with two variable inputs, no differential
model for the modular addition by a constant has been proposed so far,
preventing ARX ciphers including this operation from being evaluated
with automated methods.
In this paper, we present the first bit-vector differential model for the n-
bit modular addition by a constant input. Our model contains O(log2(n))
basic bit-vector constraints and describes the binary logarithm of the
differential probability. We describe an SMT-based automated method
that includes our model to search for differential characteristics of ARX
ciphers including constant additions. We also introduce a new automated
method for obtaining impossible differentials where we do not search over
a small pre-defined set of differences, such as low-weight differences, but
let the SMT solver search through the space of differences. Moreover, we
implement both methods in our open-source tool ArxPy to find character-
istics and impossible differentials of ARX ciphers with constant additions
in a fully automated way. As some examples, we provide related-key
impossible differentials and differential characteristics of TEA, XTEA,
HIGHT, LEA, SHACAL-1, and SHACAL-2, which achieve better results
compared to previous works.

Keywords: modular addition, ARX, SMT, automated tool, differential crypt-
analysis, impossible differential

Parts of this paper were presented at the Asiacrypt 2020 conference [4].

1 Introduction

Low-end devices such as RFID tags, sensor networks, and the Internet of Things
(IoT) are becoming ubiquitous. In 2018, Gartner, Inc. forecasted that there
would be more than 25 billion connected devices forming the IoT by 2021
[1], and following the COVID-19 lockdowns Gartner also revealed that the
unprecedented event led IoT implementers to increase IoT investments to reduce
costs [2]. Traditional cryptographic algorithms are not suitable for these resource-
constrained devices, and several lightweight cryptographic algorithms have been
recently proposed to meet this growing demand. In this regard, the National
Institute of Standards and Technology (NIST) has started a process to evaluate
and standardize lightweight cryptographic algorithms [3].

ARX primitives, composed exclusively of modular Additions, cyclic Rotations,
and XORs, are a promising class of lightweight cryptographic algorithms with the
most efficient software implementations on low-end microcontrollers [5]. There
are many noteworthy ARX algorithms, such as the hash function BLAKE [6],
the stream cipher Salsa20 [7], the MAC algorithm Chaskey [8] and notable block
ciphers like HIGHT [9], LEA [10], SPECK [11], SPARX [12] or CHAM [13].
Usually, ciphers that are exclusively composed of ARX operations and other
common bit-vector operations (e.g., modular multiplication or logical shifts) are
also considered in the class of ARX ciphers, such as IDEA [14], TEA [15], or
XTEA [16].

The security of ARX ciphers is evaluated by analysing their robustness
against various attacks. Some of the most successful attacks applied to ARX
algorithms are differential cryptanalysis and their variants, such as boomerang or
related-key differential attacks [10, 13]. These attacks exploit differences in the
inputs that propagate through the cipher with high probability. Another powerful
attack based on non-random propagation of differences is impossible-differential
cryptanalysis [17, 18], which exploits input differences propagating to differences
in the outputs with zero probability.

The standard approach to show an ARX cipher is secure against differential
and impossible-differential attacks is by finding the optimal characteristics (i.e.,
trails of differences with the highest probabilities) and the longest impossible
differentials and checking that no high-probability characteristic and no impossible
differential cover most rounds of the cipher [9, 10]. When the best attack in
the design stage is a differential or an impossible-differential attack, the number
of rounds of the cipher is determined by the longest observed high-probability
characteristic or impossible differential. Thus, searching for optimal characteristics
and impossible differentials is a crucial step in the design and security analysis
of a cipher.

Two main techniques have been applied to search for optimal characteristics
of ARX algorithms: branch-and-bound algorithms [19, 20] based on Matsui’s al-
gorithm [21], and the recent automated methods based on Constraint Satisfaction
Problems (CSP), such as SMT (Satisfiability Modulo Theories) or MILP (Mixed
Integer Linear Programming) problems [22, 23]. CSP-based methods have also
been recently applied to find impossible differentials [24, 25, 26]. These automated

2

methods formulate the characteristic or impossible-differential search problem
as a CSP and delegate the solving task to one of the powerful off-the-shelf CSP
solvers available nowadays [27, 28]. While some CSP-based open-source tools au-
tomate the search of ARX characteristics (e.g., CryptoSMT [29]), no CSP-based
open-source tool has been published to search for impossible differentials of ARX
ciphers.

The main difficulty in formulating a CSP-based search problem lies in the
differential models of the non-linear operations, that is, the constraints describing
the differential probability of the non-linear operations of the cipher. ARX ciphers
can be efficiently described using the bit-vector theory of SMT, and several bit-
vector differential models have been proposed so far [30, 31, 32]. For the modular
addition with two n-bit operands, the foremost non-linear operation in ARX
primitives, Lipmaa and Moriai found a bit-vector algorithm for computing the
differential probability with complexity O(log2 n) [30]. This algorithm can be
straightforwardly translated to a bit-vector differential model, and it has been
used in several SMT-based methods to search for characteristics [22, 33, 32] and
impossible differentials [25] of ARX ciphers.

However, no CSP-based differential model has been proposed for the modular
addition with a constant input, preventing from searching for characteristics or
impossible differentials of ARX ciphers that contain constant additions. Lipmaa’s
algorithm is restricted to the modular addition with two operands, and it cannot
be applied when one of the inputs is fixed to a constant, as we will discuss
later. Machado proposed an algorithm to compute the differential probability
of the constant addition [34], but it cannot be translated to an efficient bit-
vector differential model due to its recursive nature and the use of floating-point
arithmetic.

Contributions. We propose an efficient bit-vector differential model for the
modular addition by an n-bit constant. Our model contains O(log2 n) basic
bit-vector constraints and it is composed of a bit-vector formula that determines
whether a differential over the constant addition has non-zero probability, and
a bit-vector function that computes the binary logarithm of the differential
probability. Our bit-vector model exploits the properties of the carry chain of
the modular addition and relies on efficient well-known bit-vector functions, such
as the hamming weight or the bit-reversal, and new bit-vector functions that we
have developed for the binary logarithm.

Furthermore, we describe an SMT-based automated method to search for
characteristics of ARX ciphers, including constant additions. Our method is
composed of an iterated search of optimal characteristics of round-reduced
versions of the cipher and an automated encoding technique that formulates the
SMT problems from the cipher’s Single Static Assignment (SSA) form. Moreover,
we describe a new automated method to search for impossible differentials of
ARX ciphers which does not depend on any pre-defined sets of input and output
differences.

3

We have implemented our methods in an SMT-based open-source tool ArxPy5,
which fully automated the search of ARX characteristics and impossible differen-
tials. ArxPy is the first open-source tool that can search for the characteristics of
ARX ciphers with constant additions, and it is also the first CSP-based open-
source tool that automates the search of ARX impossible differentials. ArxPy offers
a simple interface to represent any ARX cipher, different types of characteristics
and impossible differentials to search, and a complete documentation.

We have applied our characteristic and impossible-differential search methods
to several ARX ciphers containing constant additions to provide some examples.
In particular, we have searched for different types of related-key characteristics
alongside related-key impossible differentials of TEA, XTEA, HIGHT, LEA,
SHACAL-1, and SHACAL-2. With our automated approach, we have revisited
results previously found with manual and ad-hoc techniques. We have obtained
better characteristics in terms of probability and number of rounds, and longer
impossible differentials.

With our bit-vector model for the constant addition, the SMT-based auto-
mated methods, and our open-source tool ArxPy, we provide cipher designers
with the resources to design ARX ciphers, including constant additions that
are secure against differential and impossible-differential attacks. Thus, cipher
designers can choose the best constants for the modular additions and optimize
the number of rounds to balance security and efficiency.

Differences to the conference version This paper is an extended full version of
the conference paper [4]. Thus, the content of the conference paper is included in
this paper, namely the bit-vector differential model for the constant addition, the
SMT-based method and tool to search for ARX differential characteristics and
the related-key differential characteristics found for TEA, XTEA, HIGHT, and
LEA. Apart from this content, the rest of this paper is new material. This new
content includes the SMT-based method to search for impossible differentials of
ARX ciphers, the tool to search for ARX impossible differentials, the related-key
differential characteristics found for SHACAL-1 and SHACAL-2 and the related-
key impossible differentials found for TEA, XTEA, HIGHT, LEA, SHACAL-1
and SHACAL-2. Furthermore, this paper enhances the description of the bit-
vector differential model of the constant addition with improved proofs and new
examples.

Outline. The notations and preliminaries are introduced in Section 2, and the
bit-vector model for the modular addition by a constant is described in Section 3.
Section 4 illustrates the formulation of the search of characteristics and impossible
differentials as sequences of SMT problems. Section 5 presents the characteristics
and impossible differentials found for TEA, XTEA, HIGHT, LEA, SHACAL-1,
and SHACAL-2 using our automated approaches. Finally, Section 6 concludes
the paper and addresses future works.

5 https://github.com/ranea/ArxPy

4

https://github.com/ranea/ArxPy

2 Preliminaries

2.1 Notations

Let x be an integer such that its n-bit vector representation when 0 ≤ x < 2n

is x = (x[n− 1], . . . , x[0]), where x[0] and x[n− 1] denote respectively the least
and the most significant bit. For ease of notation, we define x[i] = 0 when i < 0
and the symbol ∗ stands for an undetermined bit. The usual integer operations
are denoted by (+,−,×, /) and the basic bit-vector operations are gathered in
Table 1.

A mathematical expression only involving bit-vector variables and basic bit-
vector operations is called a bit-vector expression. A bit-vector formula is a
bit-vector expression returning True or False, such as Equals, whereas an n-bit
vector function is a bit-vector expression returning an n-bit vector. In order to
measure the complexity of the bit-vector differential model that we propose in
this paper, we define the bit-vector complexity of a bit-vector expression as the
number of basic bit-vector operations that the expression is composed of.

Table 1. Basic bit-vector operations for n-bit vectors.

x[i, j] the bit-vector (x[i], . . . , x[j]), n > i ≥ j ≥ 0
¬x bit-wise NOT of x
x ∥ y concatenation of x and y
x ∧ y bit-wise AND of x and y
x ∨ y bit-wise OR of x and y
x⊕ y bit-wise XOR of x and y
x≪ i (logical) left shift of x by i bits
x≫ i right shift of x by i bits
x ≪ i left cyclic rotation of x by i bits
x ≫ i right cyclic rotation of x by i bits
x⊞ y modular addition of x and y
x⊟ y modular subtraction of x and y
Equals(x, y) bit-vector equality of x and y, returning True

if x and y are the same, otherwise False

In the literature of the bit-vector theory, the set of basic bit-vector operations
usually includes the operations gathered in Table 1 and few additional operations,
such as modular multiplication or modular division [35]. However, modular multi-
plication and modular division are much more costly than the other operations in
practice, and we have excluded them from our set of basic bit-vector operations,
which resembles the unit-cost RAM model used in [30].

Apart from the basic bit-vector operations listed in Table 1, we will also
employ the following well-known bit-vector functions: Carry,Rev,RevCarry,HW
and LZ. The carry function c = Carry(x, y) returns the n-bit carry chain of

5

the n-bit modular addition x ⊞ y. It is defined iteratively as c[0] = 0 and
c[i + 1] = (x[i] ∧ y[i]) ⊕ (x[i] ∧ c[i]) ⊕ (y[i] ∧ c[i]) for 0 < i < n − 1. Note that
the carry has bit-vector complexity O(1), since Carry(x, y) = x ⊕ y ⊕ (x ⊞ y).
The carry function is an efficient function that allows propagating information
from the least significant bits to the most significant bits, a property that we will
exploit for our bit-vector differential model.

The bit-reversal function Rev(x) reverses the order of bits of x, i.e., Rev(x) =
(x[0], x[1], . . . , x[n−1]). This function can be computed using a divide and conquer
method with bit-vector complexity O(log2 n) [36, Figure 7-1]. We will use this
function to define the reverse carry, RevCarry(x, y) = Rev(Carry(Rev(x),Rev(y))),
which allows to propagate information from right to left and also has bit-vector
complexity O(log2 n).

The hamming weight HW(x) returns an n-bit vector denoting the number
of non-zero bits of the n-bit input x. Similar to the bit-reversal, the hamming
weight can be computed using a divide and conquer approach with bit-vector
complexity O(log2 n) [36, Figure 5-2]. The hamming weight will be one of the
main building blocks to obtain an efficient bit-vector representation of the binary
logarithm.

The last bit-vector function we will consider is the leading zeros function
LZ(x). This function marks the leading zeros of an n-bit input x, that is, for
0 ≤ i < n, LZ(x)[i] = 1 ⇐⇒ x[n−1, i] = 0. This function is used as a subroutine
for the well-known function to compute the number of leading zeros. Similar to
the previous bit-vector functions, LZ can be computed with bit-vector complexity
O(log2 n) [36, Figure 5-16].

2.2 Differential and Impossible-Differential Cryptanalysis

A block cipher is a family of permutations parametrized by a κ-bit key k, mapping
n-bit plaintexts p to n-bit ciphertexts c. Most block ciphers consist of a key
scheduling algorithm KS, which derives round keys k1, . . . , kr from the master key
k, and an encryption algorithm Ek, which processes the plaintext by iterating a
round function f and injecting a round key at each round, i.e., Ek = fkr

◦ · · ·◦fk1
.

Block ciphers are shown to be secure by analysing their resistance against all
known attacks. One of the most potent attacks, especially to ARX primitives,
is differential cryptanalysis [37]. It exploits the non-random propagation of
differences in the input to recover the secret key.

Let F be an n-bit to n-bit function and (∆p, ∆c) be the XOR of a pair
of inputs (p, p′) and their corresponding outputs (c, c′), i.e., ∆p = p ⊕ p′ and
∆c = c⊕c′. The pair (∆p, ∆c) is called a differential and its probability is defined
as

Pr[∆p
F−→ ∆c] =

#{p : F (p)⊕ F (p⊕∆p) = ∆c}
2n

.

A differential is valid if it has non-zero probability. In this case, its weight is
defined as

weightF (∆p, ∆c) = − log2(Pr[∆p
F−→ ∆c]) .

6

The differential 0
F−→ 0 has probability 1 for any function F , and a differential

with non-zero input difference over a random n-bit permutation has probability
2−n. Differential cryptanalysis [37] exploits a differential over the n-bit block
cipher with probability p > 2−n to recover the secret key with roughly O(p−1)
encryption calls.

Related-key differential cryptanalysis [38] extends differential cryptanalysis
by considering key differences. A related-key differential is given by a pair of
differentials over the key schedule and the encryption function respectively,

(∆k
KS−−→ (∆k1 , . . . ,∆kr)), (∆p

E−→ ∆c) ,

where the ciphertext difference is computed using the related round-key pairs,

∆c = (fkr ◦ · · · ◦ fk1)(p)⊕ (fkr⊕∆kr
◦ · · · ◦ fk1⊕∆k1

)(p⊕∆p) .

The probability of a related-key differential is the product of the probability of
key schedule differential pKS and the probability of encryption differential pE .

A related-key attack exploits a related-key differential with pKS > 2−κ and
pE > 2−n to recover the secret key with complexity O((pKS × pE)

−1). The
attacker takes about p−1

KS key pairs to find one key, on average, that satisfies
the key schedule differential. Next and for each key pair, the attacker runs a
differential attack over the encryption using O(p−1

E) encryption calls.

Related-key differential cryptanalysis requires a very powerful attacker that
can query the encryption function Ek⊕∆k

for many keys k ⊕ ∆k. In fact, if
an adversary can query Ek⊕∆k

for 2m key differences ∆k, any block cipher is
vulnerable to a related-key attack with complexity O(2m + 2n−m) [39]. Thus,
we distinguish between weak related-key differentials (i.e., pKS < 1) and strong
related-key differentials (i.e., pKS = 1), which can be exploited in practice with a
single related-key pair. Furthermore, we call equivalent keys as pairs of related
keys (k, k⊕∆k) such that ∀p, Ek(p) = Ek⊕∆k

(p⊕∆p)⊕∆c, for some (∆p, ∆c).
Note that a related-key differential with pE = 1 leads to 2κpKS pairs of equivalent
keys.

Lastly, we consider (related-key) impossible differentials. A differential (∆p, ∆c)
over a function F is called impossible if its probability is zero, and a related-key
differential (∆k, ∆p → ∆c) over a block cipher is called impossible if its probabil-
ity is zero for all keys. Impossible-differential cryptanalysis [17] is an attack on
block ciphers that exploits an impossible differential over the block cipher holding
for every key. Related-key impossible-differential cryptanalysis is a combination
of impossible-differential cryptanalysis and related-key cryptanalysis. Using the
known difference of the key pairs and the input and the output of the impossible
differential, the attacker discards the wrong keys to obtain the correct key.

Searching for characteristics and impossible differentials. The most
challenging step to launch a differential attack is finding a differential with high
probability. The main approach is to analyse how differences traverse through

7

the round function and search for a characteristic, that is, a trail of differences

Ω = (∆p = ∆x0

fk1−−→ ∆x1 → · · · → ∆xr−1

fkr−−→ ∆xr = ∆c) .

Similar to differentials, a characteristic Ω is valid if it has non-zero probability
and its weight is defined as − log2(Pr[Ω]). Furthermore, we denote a related-
key characteristic by a pair of characteristics (ΩKS, ΩE), where ΩKS is the key
schedule characteristic containing the trail of differences from the master key to
the round keys and ΩE is the encryption characteristic containing the trail of
differences through the encryption.

Obtaining the exact probability of a characteristic is computationally infeasi-
ble. Thus, two assumptions are commonly made. First, it is assumed that the
differential probabilities over each round are independent, which allows computing
the weight of a characteristic by summing the round weights, i.e.,

weight(Ω) =

r∑
i=0

weight(∆xi → ∆xi+1) .

Second, it is assumed that the probability of a characteristic does not strongly
depend on the choice of the secret key, also known as the hypothesis of stochas-
tic equivalence [40], which allows computing the weight of a characteristic by
averaging over all keys.

On top of that, designers also assume that the probability of a differential
(∆p, ∆c) is close to the probability of the best characteristic (∆p → · · · → ∆c),
and they prove a cipher is secure against differential cryptanalysis by showing
that characteristics with high probability cannot cover most rounds of the cipher.
While these assumptions do not always hold, currently this is the best systematic
approach to argue security against differential cryptanalysis, and this heuristic
approach is widely used for ARX ciphers in practice [22, 41, 31, 23, 33, 42].

Searching for characteristics is usually dependent on some assumptions, as
mentioned earlier. In contrast, the process of obtaining an impossible differential
typically results in a sound proof, guaranteeing that the probability of the achieved
differential is equal to zero. Therefore, most of the impossible-differential search
methods are sound but not complete. In other words, any differential found
by these methods is assuredly impossible, yet there may be many impossible
differentials that the search methods cannot detect.

SMT solvers. A recent approach to search for characteristics and impossible
differentials of ARX ciphers is by formulating the search problem as an SMT
problem in the bit-vector theory [22, 43, 31, 33, 32, 25]. Satisfiability Modulo
Theories (SMT) refers to the problem of determining whether a first order
formula is satisfiable with respect to some logical theory. SMT problems are
a generalization of SAT problems; while the latter problems are expressed in
propositional logic, SMT formulas can be expressed in richer logics, such as the
theory of bit-vectors or the theory of integers.

8

SMT has grown in recent years into a very active research field, and several
off-the-shelf SMT solvers are available nowadays [27]. Most SMT solvers can
determine the satisfiability of a problem and obtain an assignment of the variables
that satisfies the problem. This feature allows SMT solvers to be applied in search
problems.

An SMT problem in the bit-vector theory is given by a set of bit-vector
variables and a set of bit-vector formulas or constraints. The constraints can
be defined with the usual logical operations (e.g., Equals,NotEquals, Implies, etc.)
and the usual bit-vector operations (e.g., ⊕,⊞,≪, etc.).

For example, a bit-vector SMT problem to find an 8-bit preimage of y =
f(x) = x⊕ ((x⊞x)∨1), given the 8-bit image y = 3 = 00000011, is the following:

∃x ∈ {0, 1}8 : Equals(00000011, x⊕ ((x⊞ x) ∨ 1) .

This problem is satisfiable and the only assignment that satisfies the problem is
x = 11111110.

2.3 Differential Models

To represent a characteristic in a constraint satisfaction problem, it is necessary
to find a differential model of the round function f . For an SMT problem in
the bit-vector theory, a differential model of a function y = f(x) is given by
a bit-vector formula validf (∆x, ∆y) and a bit-vector function weightf (∆x, ∆y).
The formula validf (∆x, ∆y) is True if and only if the differential (∆x → ∆y)
over f is valid, and the function weightf (∆x, ∆y) returns the weight of a valid
differential (∆x → ∆y).

Characteristics over ARX ciphers are usually defined by considering the
difference after each ARX operation. The differential models of the XOR and
the cyclic rotations are very simple since these operations propagate differences
deterministically, that is,

∆x1
, ∆x2

f(x1,x2)=x1⊕x2−−−−−−−−−−−→ ∆x1
⊕∆x2

,

∆x
fa(x)=x≪a−−−−−−−−−−→ ∆x ≪ a ,

∆x
fa(x)=x⊕a−−−−−−−−→ ∆x ,

∆x
fa(x)=x≫a−−−−−−−−→ ∆x ≫ a .

For the modular addition with two n-bit inputs, y = f(x1, x2) = x1 ⊞ x2,
the algorithm by Lipmaa and Moriai [30] can be translated into the following
differential model with bit-vector complexity O(log2 n).

Theorem 1. Let ((∆x1 , ∆x2), ∆y) be a differential over the modular addition
y = x1 ⊞ x2 and denote ←−x = x≪ 1 and eq(a, b, c) = (¬a⊕ b) ∧ (¬a⊕ c). Then,
the differential is valid if and only if the bit-vector formula

valid⊞((∆x1
, ∆x2

), ∆y) = Equals(0, eq(
←−−
∆x1

,
←−−
∆x2

,
←−
∆y)∧ (∆x1

⊕∆x2
⊕∆y ⊕

←−−
∆x2

))

is True. In this case, the differential weight is given by the bit-vector function

weight⊞((∆x1
, ∆x2

), ∆y) = HW(¬eq(∆x1
, ∆x2

, ∆y)≪ 1) .

9

For the modular addition with a constant input ⊞a(x) = x ⊞ a, Machado
obtained the following algorithm to compute the differential probability [34].

Theorem 2. Let (u, v) be a differential over the n-bit constant addition ⊞a.
Then, the differential probability is given by

Pr[u
⊞a−−→ v] = φ0 × · · · × φn−1 ,

where φi depends on the δi−1 and Si, each one defined for 0 ≤ i < n by

Si = (u[i− 1], v[i− 1], u[i]⊕ v[i]) ,

δi =

(a[i− 1] + δi−1)/2, Si = 000

0, Si = 001

a[i− 1], Si ∈ {010, 100, 110}
δi−1, Si ∈ {011, 101}
1/2, Si = 111

φi =

1, Si = 000

0, Si = 001

1/2, Si ∈ {010, 011, 100, 101}
1− (a[i− 1] + δi−1 − 2a[i− 1]δi−1), Si = 110

(a[i− 1] + δi−1 − 2a[i− 1]δi−1), Si = 111,

For i = −1, Si and δi are defined by S−1 = ⊥ and δ−1 = 0.

Unfortunately, the algorithm illustrated in Theorem 2 is not suitable for constraint
satisfaction problems due to its recursive nature and the use of floating-point
arithmetic.

Some authors [44, Corollary 2] [45] have adapted the differential model of the
2-input addition (i.e., the modular addition with two independent inputs) for the
constant addition by setting the difference of the second operand to zero, that is,

valid⊞a
(∆x, ∆y)← valid⊞((∆x, 0), ∆y) ,

weight⊞a
(∆x, ∆y)← weight⊞((∆x, 0), ∆y) .

(1)

The approximation given by Equation (1) models the differential (∆x
⊞a−−→ ∆y)

by averaging over all a. While this approach can be used to model the constant
addition by a round key, since the characteristic probability is also computed by
averaging over all keys, for a fixed constant this approach is rather inaccurate.

Surprisingly, the differential properties of the 2-input addition and the constant
addition are very different. The 2-input addition was shown to be CCZ-equivalent
to a quadratic function [46], that is, the differential properties of the 2-input
addition are the same as some quadratic functions. In particular, the set of inputs
(x1, x2) satisfying a differential ((∆x1

, ∆x2
) → ∆y) over the 2-input addition

forms a subspace of Fn
2 , which allows to describe its differential model using few

basic operations.

10

On the other hand, the constant addition is not CCZ-equivalent to a quadratic
function, since the set of inputs (x1, x2) satisfying a differential (∆x, ∆y) over
⊞a does not form a subspace for many a. In other words, the probability of a
differential over the constant addition is not necessarily of the form 2−α for a
positive integer α, and finding a differential model for the constant input addition
is a much harder problem.

We experimentally checked the accuracy of the approximation given by
Equation (1) for 8-bit constants a. For most values of a, validity formulas differ
roughly in 213 out of all 216 differentials. For those differentials where they did
not differ, the difference between their weights was significantly high on average.

Consequently, no differential model of the constant addition suitable for
constraint satisfaction problems has been proposed so far. In the next section,
we present the first differential model of the constant addition for SMT problems
in the bit-vector theory.

3 Bit-Vector Differential Model of the Constant Addition

We present a bit-vector differential model of the constant addition, composed
of a bit-vector formula to determine whether a given differential is valid and a
bit-vector function that computes the weight of the valid differential. Our model
takes benefit from Theorem 2 [34]; however, we avoid bit iterations, floating-
point arithmetic, multiplications and look-up tables, in order to obtain efficient
bit-vector constraints to be used in bit-vector SMT problems.

Before we illustrate our model, we remark an essential property of Theorem 2.
When the state Si is not 110 or 111, the probability of the step i, φi, depends
exclusively on Si; otherwise, φi depends on Si and δi−1. When Si = 11*, Si−1 ∈
{010, 100, 110, 000} and for the first three cases, δi−1 is equal to a[i−2]. However,
considering the forth case, i.e., Si−1 = 000, δi−1 depends on δi−2 and this
dependency will proceed until we obtain a state Si−ℓi ̸= 000 for some positive
integer ℓi. Thus, δi−1 has the following expression when Si = 11*,

δi−1 =
a[i− ℓi − 1]

2ℓi−1
+

ℓi∑
j=2

a[i− j]

2j−1
. (2)

Therefore, when Si = 11*, φi also depends on the previous states Si−1, · · · , Si−ℓi ,
which motivates the following definition.

Definition 1. Let Si = 11*. The chain Γi is defined as the smallest set of
previous states {Si−1, Si−2, · · · , Si−ℓi} that completely determine φi, and the
positive integer ℓi is called the length of Γi.

Given a chain Γi = {Si−1, Si−2, · · · , Si−ℓi}, note that Si−ℓi ̸= 000 and the
remaining states in the chain (if any) are all equal to 000.

In the next example, we illustrate how to calculate the differential probability
using the iterative method of Theorem 2 and we learn more about the intermediate
variables used for obtaining the probability.

11

Example 1. Consider the differential (u, v) = (1000101110, 1010001110) over
the modular addition by the 10-bit constant a = 1000101110. According to
Theorem 2, the differential probability of (u, v) is given by

Pr[u
⊞a−−→ v] =

#{x : (x⊞a)⊕ ((x⊕ u)⊞a) = v}
210

=

9∏
i=0

φi .

Table 2 displays the variables we need to compute to obtain the differential
probability. As we mentioned earlier, if Si = (ui−1, vi−1, ui ⊕ vi) ̸= 11*, each φi

can be computed in a straightforward way without any further dependencies of
previous states.

For the remaining states equal to 110 or 111, we first obtain their associated
chains as

S2 = 111, Γ2 = {S1 = 000, S0 = 000, S−1 = ⊥}, ℓ2 = 3 ,

S4 = 110, Γ4 = {S3 = 100}, ℓ4 = 1 ,

S8 = 110, Γ8 = {S7 = 000, S6 = 000, S5 = 000, S4 = 110}, ℓ8 = 4 .

Then, we compute the associated δi−1 using Equation (2), and finally we obtain
φi from the values of a[i− 1] and the computed δi−1.

Table 2. The intermediate variables for finding the differential probability of Example 1.

i 9 8 7 6 5 4 3 2 1 0 −1

a[i] 1 0 0 0 1 0 1 1 1 0 0

u[i] 1 0 1 0 0 0 1 1 1 0 0

v[i] 1 0 1 0 0 0 1 0 1 0 0

Si 000 110 000 000 000 110 100 111 000 000 ⊥
δi 0 0 3

8
3
4

1
2

1 1 1
2

0 0 0

φi 1 5
8

1 1 1 1 1
2

1 1 1

Multiplying each φi listed in Table 2 leads to the differential probability,

Pr[u
⊞a−−→ v] =

9∏
i=0

φi =
5

16
.

3.1 Validity

Let (u, v) be a differential over ⊞a, the modular addition by n-bit constant a.
According to Theorem 2, the differential probability of (u, v) can be expressed as
φ0× · · · ×φn−1. Thus, (u, v) is a valid differential, i.e., with non-zero probability,
if and only if all φi are non-zero. If φi = 0, note that Si must be 001, 110 or
111. While Si = 001 always implies φi = 0, the other two cases require an extra
condition to result in φi = 0, as shown in the next lemma.

12

Lemma 1. Let the state Si be 11b, for b ∈ {0, 1}. Then, φi is equal to 0 if and
only if ¬b⊕ a[i− 1] = a[i− 2] = · · · = a[i− ℓi − 1] .

Proof. Having Si = 11b, φi = 0 if and only if ¬b = δi−1 ⊕ a[i − 1]. Let ℓi be
the chain length of Si. The case for ℓi = 1 is trivial, since δi−1 = a[i − 2]. To
achieve δi−1 = a[i− 1]⊕ ¬b when ℓi > 1, the non-negative rational number δi−1

must be equal to 0 or 1. Since δi−1 is a monotonically increasing function of
(a[i − 2], . . . , a[i − ℓi − 1]) regarding Equation (2), δi−1 reaches its extrema in
(0, . . . , 0) and (1, . . . , 1), that is,

δi−1 = c ⇐⇒ a[i− 2] = a[i− 3] = · · · = a[i− ℓi − 1] = c , ∀c ∈ {0, 1} ,

Thus, δi−1 = a[i− 1]⊕ ¬b ⇐⇒ δi−1 = a[i− 2] = · · · = a[i− ℓi]. ⊓⊔
The next lemma provides a bit-vector expression to check Lemma 1 by

exploiting the fact that the carry chain allows a bit to affect the bits to its left.

Lemma 2. Consider the following n-bit values,

s00* = ¬(u≪ 1) ∧ ¬(v ≪ 1), s**1 = u⊕ v, a′ = (a⊕ (a≪ 1))≪ 1,

c = Carry
(
s00* ∧ ¬a′,¬(s00* ≪ 1)

)
, g = (s**1 ⊕ a′) ∧ (c ∨ ¬(s00* ≪ 1)) .

Then, for all states Si = 11*, we have φi = 0 if and only if g[i] = 1.

Proof. Let Si = 11b with chain length ℓi. Note that a′[i] = a[i− 1]⊕ a[i− 2] and
that s00*[i] = 1 (resp. s**1[i] = 1) if and only if Si = 00* (resp. Si = **1).

The first operand of g[i], i.e., (s**1 ⊕ a′)[i], is equal to one if and only if
b = ¬(a[i− 1]⊕ a[i− 2]). For ℓi = 1 it is easy to see that Si−1 ≠ 00*; therefore,
the second operand of g[i] is 1, and by Lemma 1 g[i] = 1 if and only if φi = 0.

When ℓi > 1, Si−1 = 000 and the second major operand of g[i] reduces to c.
In particular, the two major operands of the Carry function of c are given by

(s00* ∧ ¬a′)[i, i− ℓi] = (¬(a[i− 1]⊕ a[i− 2]), . . . ,¬(a[i− ℓi]⊕ a[i− ℓi − 1]), 0) ,

¬(s00* ≪ 1)[i, i− ℓi] = (0, . . . , 0, 1, ∗) .

Thus, c[i] = c[i− 1]∧¬a′[i− 1] and c[i− ℓi + 1] = c[i− ℓi]∧¬s00*[i− ℓi − 1] = 0;
otherwise, for 0 ≤ j ≤ i − ℓi − 1 we will obtain s00*[j] = 0 which does not
conform to S0 = 00*. By unrolling the recursive definition of c[i], we see that
c[i] = ¬a′[i − 1] ∧ · · · ∧ ¬a′[i − ℓi + 1]. In other words, c[i] = 1 if and only if
a[i− 2] = · · · = a[i− ℓi − 1]. Together with the condition for (s**1 ⊕ a′)[i] = 1,
we have that g[i] = 1 exactly when φi = 0, regarding Lemma 1. ⊓⊔

Lemma 2 provides a bit-vector variable g that detects the states Si = 11*

leading to invalidity. The next theorem presents the final bit-vector formula for
the validity by taking into account the states Si = 001 as well.

Theorem 3. Let (u, v) be a differential over the n-bit constant addition ⊞a.
Consider the n-bit value g defined in Lemma 2 and the following n-bit values

s001 = ¬(u≪ 1) ∧ ¬(v ≪ 1) ∧ (u⊕ v) , s11* = (u≪ 1) ∧ (v ≪ 1) .

Then, the bit-vector formula valid⊞a
(u, v) = Equals(s001 ∨ (s11* ∧ g), 0) is True if

and only if the differential (u, v) is valid.

13

Proof. By the definition of s001 and s11*, s001[i] = 1 (respectively s11*[i] = 1) if
and only if Si = 001 (respectively Si = 11*). Moreover, φi = 0 exactly when
Si = 001, or when Si = 11∗ and g[i] = 1 (Lemma 2). Thus, φi = 0 if and only if
s001 ∨ (s11* ∧ g)[i] = 1. ⊓⊔

Since the number of basic bit-vector operations of our bit-vector validity
formula is independent of the bit-size of the inputs, the bit-vector complexity of
valid⊞a

is O(1).

Example 2. Consider the valid differential of Example 1, i.e. a = 1000101110,
u = 1010001110, and v = 1010001010. Previously, we showed that its differential
probability is non-zero and equal to 5/16. In this example, we will illustrate our
bit-vector validity formula step by step.

Table 3 provides some of the essential bit-vector values used in Theorem 3.
Since there is no state equal to 001, s001 is the all-zero bit-vector. As we have
shown in Example 1, there are three states equal to 11*, and the associated bit of
s11* is equal to one in the corresponding bits. In this example, no state 11* leads to
invalidity, and g is equal to the all-zero bit-vector. Thus, s001[i]∨(s11∗[i]∧g[i]) = 0
for all i, and our validity formula

valid⊞a
(u, v) = Equals(s001 ∨ (s11∗ ∧ g), 0)

evaluates to True.

Table 3. The intermediate variables for evaluating the bit-vector validity formula of
Example 2.

i 9 8 7 6 5 4 3 2 1 0

a[i] 1 0 0 0 1 0 1 1 1 0

u[i] 1 0 1 0 0 0 1 1 1 0

v[i] 1 0 1 0 0 0 1 0 1 0

g[i] 0 0 0 0 0 0 0 0 0 0

s11*[i] 0 1 0 0 0 1 0 1 0 0

s001[i] 0 0 0 0 0 0 0 0 0 0

3.2 Weight of a Valid Differential

In this section, we propose a bit-vector function that computes the weight of a
valid differential over the constant addition. Working with differential weights
has the advantage that multiple differential weights can be combined by adding
them up, while probabilities need to be multiplied, a very costly operation in a
bit-vector SMT problem.

14

The weight of a valid differential over the constant addition is an irrational
value in general, and it cannot be represented as a fixed-sized bit-vector. Thus,
our bit-vector function computes a close approximation of the weight, and we
provide almost tight bounds for the approximation error.

Through the rest of the section, let (u, v) be a valid differential over the n-bit
constant addition ⊞a. According to Theorem 2, the weight can be obtained by

weight⊞a
(u, v) = − log2

(
n−1∏
i=0

φi

)
= −

n−1∑
i=0

log2(φi) . (3)

Let I denote the set of indices corresponding to the states 11* with chain
length bigger than one, i.e., I = {1 ≤ i ≤ n− 1 | Si = 11*, ℓi > 1}. For i /∈ I,
the probability φi only depends on the current state Si and φi is either 1 or 1/2.
Based on the aforementioned fact, we show how to acquire the summation of all
log2(φi) when i /∈ I using bit-vector expressions.

Lemma 3. Let I = {1 ≤ i ≤ n− 1 | Si = 11*, ℓi > 1}. Then,

−
∑
i/∈I

log2(φi) = HW((u⊕ v)≪ 1) .

Proof. To prove the lemma, we divide the set {i | i /∈ I} into two parts as
{i | Si ̸= 11*} and {i | Si = 11*, ℓi = 1}. For each state Si ≠ 11∗, there are two
possible cases. If Si is equal to 000, the corresponding step probability is φi = 1.
Otherwise, Si ∈ {010, 011, 100, 101} and we obtain φi = 1/2. Considering these
two cases leads to∑

i
Si ̸=11∗

log2(φi) =
∑
i

Si=000

log2(1) +
∑
i

Si∈{010,011,100,101}

log2(1/2) ,

= − #{Si ∈ {010, 011, 100, 101} : 0 ≤ i < n} .

Since the second case Si ∈ {010, 011, 100, 101} occurs when u[i− 1]⊕ v[i− 1] = 1,
we can use HW((u⊕ v)≪ 1) to compute the number of times this case happens.

Now for Si = 11* when ℓi = 1, we know that δi−1 = a[i− 2] ∈ {0, 1}. Since
the probability is not equal to zero, we obtain φi = 1. Thus we get∑

i
Si=11∗
ℓi=1

log2(φi) = 0 .

By and large, the sum of log2(φi) when i /∈ I is∑
i/∈I

log2(φi) =
∑
i

Si ̸=11∗

log2(φi) +
∑
i

Si=11∗
ℓi=1

log2(φi) = −HW((u⊕ v)≪ 1) . ⊓⊔

Lemma 3 describes the sum of log2(φi) when i ̸∈ I as a bit-vector expression
with complexity O(log2 n). To describe the logarithmic summation when i ∈ I
as a bit-vector, we will first show how to split φi as the quotient of two integers.

15

Lemma 4. Let i ∈ I and let pi be the positive integer defined by

pi =

{
a[i− 2, i− ℓi] + a[i− ℓi − 1], u[i]⊕ v[i]⊕ a[i− 1] = 1

2ℓi−1 − (a[i− 2, i− ℓi] + a[i− ℓi − 1]), u[i]⊕ v[i]⊕ a[i− 1] = 0

where ℓi > 1 is the chain length of the state Si = 11*. Then, φi =
pi

2ℓi−1
.

Proof. Considering the definition of φi when Si = 11*,

φi =

{
δi−1, u[i]⊕ v[i]⊕ a[i− 1] = 1

1− δi−1, u[i]⊕ v[i]⊕ a[i− 1] = 0

and following the definition of δi−1 given by Equation (2),

2ℓi−1δi =

ℓi−2∑
j=0

2ja[i− ℓi + j] + a[i− ℓi − 1] = a[i− 2, i− ℓi] + a[i− ℓi − 1] ,

we obtain that φi = pi/2
ℓi−1. Moreover, having 0 < φi ≤ 1 and ℓi > 1 results in

0 < pi ≤ 2ℓi−1. Thus, pi is always a positive integer. ⊓⊔

Due to Lemma 4, we can decompose the logarithmic summation over I as∑
i∈I

log2(φi) =
∑
i∈I

log2(pi) −
∑
i∈I

(ℓi − 1) .

The next lemma shows how to describe the summation involving the chain lengths
with basic bit-vector operations.

Lemma 5. Consider the n-bit vector s000 = ¬(u≪ 1) ∧ ¬(v ≪ 1). Then,∑
i∈I

(ℓi − 1) = HW
(
s000 ∧ ¬ LZ(¬s000)

)
.

Proof. Recall that there are exactly (ℓi − 1) states in each chain Γi such that

Si−1 = Si−2 = · · · = Si−(ℓi−1) = 000.

Therefore, we have
∑

i∈I(ℓi − 1) = #{Sj |Sj = 000 and ∃i ∈ I s.t. Sj ∈ Γi} .
When Sj = 000, the next state Sj+1 will be a member of the set {000, 11*}. As
a result, it is easy to see that for an arbitrary j, if Sj is equal to 000, then either
Sj is included in some chain Γi, i ∈ I, or Sj belongs to the set Γ ′ defined by

Γ ′ = {Sn−1 = 000, · · · , Sn−k = 000} ,

for some k > 0, where Sn−k−1 ≠ 000. Concerning Definition 1, one can observe
that Γ ′ is not a chain. Therefore,

∑
i∈I(ℓi − 1) = #{Sj |Sj = 000 and Sj ̸∈ Γ ′}.

Since we are assuming that the differential is valid, there are no states
Sj = 001, and s000[j] = 1 if and only if Sj = 000. On the other hand, the
function LZ can be used to detect the states from the set Γ ′. In particular,
LZ(¬s000)[i] is equal to 1 if and only if Si ∈ Γ ′. Therefore, we obtain∑

i∈I
(ℓi − 1) = HW

(
s000 ∧ (¬ LZ(¬s000))

)
. ⊓⊔

16

Representing the sum of log2(pi) by a bit-vector expression is the most
complex and challenging part of our differential model. Thus, we will proceed in
several steps. First, we will show how to obtain a bit-vector w that contains all
the pi as some sub-vectors.

Lemma 6. Consider the following n-bit values,

s000 = ¬(u≪ 1) ∧ ¬(v ≪ 1) , s′000 = s000 ∧ ¬ LZ(¬s000) ,
t = ¬s′000 ∧ (s′000 ≫ 1) , t′ = s′000 ∧ (¬(s′000 ≫ 1)) ,

s = ((a≪ 1) ∧ t)⊞ (a ∧ (s′000 ≫ 1)) , q =
(
(¬((a≪ 1)⊕ u⊕ v))≫ 1

)
∧ t′ ,

d = RevCarry(s′000, q) ∨ q , w = (q ⊟ (s ∧ d)) ∨ (s ∧ ¬d) .

Then, for all states Si = 11* with i ∈ I, w[i− 1, i− ℓi] = pi.

Proof. For each i ∈ I and 0 ≤ j < n, note that s′000[j] = 1 exactly when
Sj = 000 and Sj ∈ Γi, and t[j] = 1 (resp. t′[j] = 1) if and only if Sj = Si−ℓi (resp.
Sj = Si−1). Denoting s = s1⊞s2, where s1 = (a≪ 1)∧ t and s2 = a∧ (s′000 ≫ 1),
when i ∈ I the sub-vectors

s1[i− 1, i− ℓi − 1] = (0, 0, . . . , 0, a[i− ℓi − 1], 0) ,
s2[i− 1, i− ℓi − 1] = (0, a[i− 2], . . . , a[i− ℓi + 1], a[i− ℓi], 0) ,

result in s[i−1, i−ℓi] = a[i−2, i−ℓi]+a[i−ℓi−1]. In particular, s[i−1, i−ℓi] ≤ 2ℓi−1

and the equality holds when s[i− 1, i− ℓi] = 10...0.
It is easy to see that q[i − 1] = ¬(a[i − 2] ⊕ u[i − 1] ⊕ v[i − 1]) when i ∈ I

and q is zero elsewhere. Then, the sub-vectors d[i − 1, i − ℓi] are composed of
repeated copies of q[i− 1] when i ∈ I, as shown by the following sub-vectors

s′000[i, i− ℓi − 1] = (0, 1, 1, . . . , 1, 0, ∗) ,
q[i, i− ℓi − 1] = (0, q[i− 1], 0, . . . , 0, 0, ∗) ,

RevCarry(s′000, q)[i, i− ℓi − 1] = (∗, 0, q[i− 1], . . . , q[i− 1], q[i− 1], 0) ,
d[i, i− ℓi − 1] = (∗, q[i− 1], q[i− 1], . . . , q[i− 1], q[i− 1], ∗) .

The only exception for the above equations is when i− ℓi = −1, where the two
least significant bits of the above sub-vectors will be equal to zero.

Let w = w1 ∧ w2, where w1 = q ⊟ (s ∧ d) and w2 = s ∧ ¬d. Regarding the
acquired patterns for q and d, we prove the following inequalities for i ∈ I

(s ∧ d)[i− 1, i− ℓi] ≤ q[i− 1, i− ℓi] ,

(s ∧ d)[i− ℓi − 1, 0] ≤ q[i− ℓi − 1, 0] ,

which imply the identity w1[i− 1, i− ℓi] = q[i− 1, i− ℓi]⊟ (s ∧ d)[i− 1, i− ℓi].
The first inequality can be derived from the fact that s[i− 1, i− ℓi] ≤ 10...0.

For the second inequality, consider the index set J = {j|∀i ∈ I, Sj /∈ Γi}. Then,
the second inequality holds since for j ∈ J and c ∈ {0, 1} we can see that

s′000[j + 1− c] = 0 =⇒ s1[j − c] = s2[j − c] = 0 .

17

We are now ready to evaluate w[i − 1, i − ℓi] when i ∈ I. If q[i − 1] = 0, then
d[i− 1, i− ℓi] = (0, . . . , 0), w1[i− 1, i− ℓi] reduces to 0, and

w[i− 1, i− ℓi] = w2[i− 1, i− ℓi] = a[i− 2, i− ℓi] + a[i− ℓi − 1] .

If q[i− 1] = 1, then d[i− 1, i− ℓi] = (1, . . . , 1), w2[i− 1, i− ℓi] reduces to 0, and

w[i− 1, i− ℓi] = w1[i− 1, i− ℓi] = (1, 0, . . . , 0)⊟ s[i− 1, i− ℓi]

= 2ℓi−1 − (a[i− 2, i− ℓi] + a[i− ℓi − 1]) .

Hence, for q[i−1] = ¬(a[i−1]⊕u[i]⊕v[i]) and regarding Lemma 4, we obtain
that w[i− 1, i− ℓi] = pi. ⊓⊔

Recall that both LZ and RevCarry have bit-vector complexity O(log2 n). There-
fore, w can be described with O(log2 n) basic bit-vector operations.

Since pi is not always a power of two, log2(pi) cannot be represented by
a fixed-sized bit-vector. Thus, we will use the following approximation for the
binary logarithm of a positive integer x,

apxlog2(x) ≜ m+
Truncate(x[m− 1, 0])

24
, (4)

where m = ⌊log2(x)⌋ and Truncate(z) for an m-bit vector z is defined by

Truncate(z) =

z[m− 1,m− 4], m ≥ 4

z[m− 1, 0] ∥ (
4−m︷ ︸︸ ︷

0, . . . , 0), m < 4

In other words, apxlog2 includes the integer part of the logarithm and takes the
four bits right after the most significant one as the “fraction” bits. While Truncate
can be generalized to consider more fraction bits, we will show later that four
fraction bits are enough to minimize the bounds of our approximation error.

To describe
∑

i∈I apxlog2(pi) with basic bit-vector operations, we will in-
troduce in the next proposition two new bit-vector functions ParallelLog and
ParallelTrunc. Given a bit-vector x with sub-vectors delimited by a bit-vector y,
ParallelLog(x, y) computes the sum of the integer part of the logarithm of the
delimited sub-vectors, whereas ParallelTrunc(x, y) calculates the sum of the four
most significant bits of the delimited sub-vectors.

Proposition 1. Let x and y be n-bit vectors such that y has r sub-vectors

y[it, jt] = (1, 1, . . . , 1, 0), t = 1, . . . , r

where i1 > j1 > i2 > j2 > · · · > ir > jr ≥ 0, and y is equal to zero elsewhere.
We define the bit-vector functions ParallelLog and ParallelTrunc by

ParallelLog(x, y) = HW(RevCarry(x ∧ y, y))

ParallelTrunc(x, y) = (HW(z0)≪ 3)⊞ (HW(z1)≪ 2)⊞ (HW(z2)≪ 1)⊞ HW(z3)

where zλ = x ∧ (y ≫ 0) ∧ · · · ∧ (y ≫ λ) ∧ ¬(y ≫ (λ+ 1)).

18

a) If x[it, jt] > 0 for t = 1, . . . , r, then

r∑
t=1

⌊log2(x[it, jt])⌋ = ParallelLog(x, y) .

b) If at least ⌊log2(n)⌋+ 4 bits are dedicated to ParallelTrunc(x, y), then

r∑
t=1

Truncate(x[it, jt + 1]) = ParallelTrunc(x, y) .

Proof. Case a) Let m = ⌊log2(x[i1, j1])⌋ and c = RevCarry(x ∧ y, y). Note that
c[n− 1, i1] = 0, since y[n− 1, i1 + 1] = 0. For m ≥ 1, we obtain the sub-vectors

i1, . . . , j1+m+ 1, j1+m, j1+m− 1, . . . , j1+ 1, j1, j1− 1
y[i1, j1− 1] = (1, . . . , 1, 1, 1, . . . , 1, 0, ∗) ,

(x ∧ y)[i1, j1− 1] = (0, . . . , 0, 1, ∗, . . . , ∗, 0, ∗) ,
c[i1, j1− 1] = (0, . . . , 0, 0, 1, . . . , 1, 1, 0) .

In particular, c[i1, j1] has m bits set to one. If m = 0, x[i1, j1 + 1] = 0 and
y[j1] = 0, which implies that there is no carry chain, i.e., c[i1, j1] = 0. Therefore,
in both cases HW(c)[i1, j1]) = m = ⌊log2(x[i1, j1])⌋.

Note that the reversed carry chain stops at j1, and c[j1 − 1, i2] = 0 · · · 0.
Therefore, the same argument can be applied for t = 2, . . . , r, obtaining

HW(c[it, jt]) = ⌊log2(x[it, jt])⌋ , c[jt − 1, it+1] = 0 .

Finally, it is easy to see that c[jr − 1, 0] = 0, concluding the proof for this case.

Case b) First note that for λ = 0, . . . , 3 and t = 1, . . . , r, the variable zλ is

zλ[i] =

{
x[i], if i = it − λ > jt

0, otherwise

Therefore, the hamming weight of zλ computes the following summation:

HW(zλ) =
∑
t

it−λ>jt

x[it − λ] .

While we define HW as a bit-vector function returning an n-bit output given
an n-bit input, ⌊log2(n)⌋+ 1 bits are sufficient to represent the output of HW.
Therefore, by representing each HW(zλ)≪ (3−λ) in a (⌊log2(n)⌋+4)-bit variable
hλ, the bit-vector expression h0 ⊞ h1 ⊞ h2 ⊞ h3 does not overflow, and we obtain

r∑
t=1

Truncate(x[it, jt + 1]) =

r∑
t=1

3∑
λ=0

it−λ>jt

x[it − λ]× 23−λ = h0 ⊞ h1 ⊞ h2 ⊞ h3 ,

which concludes the proof. ⊓⊔

19

Since both HW and Rev have O(log2 n) bit-vector complexities, so do the
functions ParallelLog and ParallelTrunc. The next lemma applies ParallelLog and
ParallelTrunc to provide a bit-vector expression of the sum of apxlog2(pi).

Lemma 7. Let r and f be the bit-vectors given by

r = ParallelLog((w ∧ s′000)≪ 1, s′000 ≪ 1) ,

f = ParallelTrunc(w ≪ 1,RevCarry((w ∧ s′000)≪ 1, s′000 ≪ 1)) .

If at least ⌊log2(n)⌋+ 5 bits are dedicated to r and f , then

24
∑
i∈I

apxlog2(pi) = (r ≪ 4)⊞ f .

Proof. Regarding Lemma 6, w[i− 1, i− ℓi] represents the ℓi-bit vector of pi and
s′000[i− 1, i− ℓi] conforms to the pattern (1, · · · , 1, 0) for any i ∈ I. Therefore,∑

i∈I
⌊log2(pi)⌋ = HW

(
RevCarry((w ∧ s′000)≪ 1, s′000 ≪ 1)

)
,

following Proposition 1. For the second case, let c be the n-bit vector given by
c = RevCarry((w∧s′000)≪ 1, s′000 ≪ 1). Denoting by j = i−li and m = ⌊log2(pi)⌋
for a given i ∈ I, note that pi[m] is the most significant active bit of pi and

i+1, . . . , j+m+2, j+m+1, j+m, . . . , j+2, j+1, j
(w ≪ 1)[i+1, j] = (0, . . . , 0 pi[m], pi[m−1], . . . , pi[1], pi[0] 0) ,

c[i+1, j] = (0, . . . , 0 0, 1, . . . , 1, 1 0) .

Thus c[j +m, j] conforms to the pattern (1, · · · , 1, 0) and Proposition 1 leads to∑
i∈I

m=⌊log2(pi)⌋

Truncate(pi[m− 1, 0]) = ParallelTrunc(w ≪ 1, c) .

For any n-bit variables x and y, it is easy to see that ParallelLog(x, y) < n.
Thus, ⌊log2(n)⌋+ 4 bits are sufficient to represent (r ≪ 4), and f can also be
represented with the same number of bits following Proposition 1. Therefore,
by representing (r ≪ 4) and f in (⌊log2(n)⌋ + 5)-bit variables, the bit-vector
expression (r ≪ 4)⊞ f does not overflow. ⊓⊔

Recall that the differential weight of constant addition can be decomposed as

weight⊞a
(u, v) = −

∑
i/∈I

log2(φi)−
∑
i∈I

log2

(
1

2ℓi−1

)
−
∑
i∈I

log2(pi) .

If the binary logarithm of pi is replaced by our approximation of the binary
logarithm apxlog2(pi), we obtain the following approximation of the weight,

apxweight⊞a
(u, v) ≜ −

∑
i/∈I

log2(φi)−
∑
i∈I

log2

(
1

2ℓi−1

)
−
∑
i∈I

apxlog2(pi) . (5)

Our weight approximation can be computed with the bit-vector function BvWeight
described in Algorithm 1, as shown in the lemma.

20

Algorithm 1 Bit-vector function BvWeight(u, v, a).

Input: (u, v, a)
Output: BvWeight(u, v, a)
s000 ← ¬(u≪ 1) ∧ ¬(v ≪ 1)
s′000 ← s000 ∧ ¬ LZ(¬s000)
t← ¬s′000 ∧ (s′000 ≫ 1)
t′ ← s′000 ∧ (¬(s′000 ≫ 1))
s← ((a≪ 1) ∧ t)⊞ (a ∧ (s′000 ≫ 1))
q ←

(
(¬((a≪ 1)⊕ u⊕ v))≫ 1

)
∧ t′

d← RevCarry(s′000, q) ∨ q
w ← (q ⊟ (s ∧ d)) ∨ (s ∧ ¬d)
int← HW((u⊕ v)≪ 1)⊞ HW(s′000)⊟ ParallelLog((w ∧ s′000)≪ 1, s′000 ≪ 1)
frac← ParallelTrunc(w ≪ 1,RevCarry((w ∧ s′000)≪ 1, s′000 ≪ 1))
return (int≪ 4)⊟ frac

Lemma 8. If at least ⌊log2(n)⌋+ 5 bits are dedicated to BvWeight(u, v, a), then

24 apxweight⊞a
(u, v) = BvWeight(u, v, a) .

Proof. Regarding Lemma 3 and Lemmas 5 and 7 we respectively obtain

−
∑
i/∈I

log2(φi) = HW((u⊕ v)≪ 1) , −
∑
i∈I

log2

(
1

2ℓi−1

)
= HW(s′000) ,

24
∑
i∈I

apxlog2(pi) = (ParallelLog((w ∧ s′000)≪ 1, s′000 ≪ 1)≪ 4)⊞ frac .

All in all, we get the following identities,

24 apxweight⊞a
(u, v) = 24((int≪ 4)⊟ frac) = BvWeight(u, v, a) . ⊓⊔

Note that the four least significant bits of BvWeight(u, v, a) correspond to
the fraction bits of the approximate weight. In other words, the output of
BvWeight(u, v, a) represents the rational value

⌊log2(n)⌋+4∑
i=0

2i−4 BvWeight(u, v, a)[i] .

The bit-vector complexity of BvWeight is dominated by the complexity of LZ,
Rev, HW, ParallelLog, and ParallelTrunc. Since these operations can be computed
with O(log2 n) basic bit-vector operations, so does BvWeight.

Theorem 4 shows that BvWeight leads to a close approximation of the differ-
ential weight and provides explicit bounds for the approximation error.

Theorem 4. Let (u, v) be a valid differential over the n-bit constant addition
⊞a, let weight⊞a

(u, v) be the differential weight of (u, v), and let BvWeight be the
bit-vector function defined by Algorithm 1. Then, the approximation error,

E = weight⊞a
(u, v)− apxweight⊞a

(u, v) = weight⊞a
(u, v)− 2−4 BvWeight(u, v, a)

21

is bounded by −0.029(n− 1) ≤ E ≤ 0 .

Section 3.3 is devoted to the proof of Theorem 4, where we will also analyse the
error caused by our approximated binary logarithm. Before proving Theorem 4,
we will describe an example to understand this theorem and Algorithm 1.

Example 3. Consider the same conditions as defined in Example 1, i.e., (u, v) =
(1010001110, 1010001010) and the constant input a = 1000101110. The weight
for our differential is

weight⊞a
(u, v) = − log2(Pr[u

⊞a−−→ v]) = − log2(
5

16
) ≈ 1.678 .

Let’s find the approximate weight apxweight⊞a
based on Algorithm 1. Ta-

ble 4 presents some of the variables we obtain to compute the aforementioned
approximate weight.

Table 4. Intermediate variables for computing apxweight⊞a
(u, v) of Example 3.

i 9 8 7 6 5 4 3 2 1 0

a[i] 1 0 0 0 1 0 1 1 1 0

u[i] 1 0 1 0 0 0 1 1 1 0

v[i] 1 0 1 0 0 0 1 0 1 0

s000[i] 1 0 1 1 1 0 0 0 1 1

s′000[i] 0 0 1 1 1 0 0 0 1 1

w[i] 0 0 0 1 0 1 0 0 1 0

BvWeight(u, v, a)[i] 0 0 0 0 0 1 1 1 0 0

The set I = {1 ≤ i ≤ n− 1 | Si = 11*, ℓi > 1} in this example is equal to
I = {2, 8}. The variable int in Algorithm 1 consists of three parts. The first part
of the variable int calculated in Algorithm 1 is

HW((u⊕ v)≪ 1) = 0000000001 = 1 ,

which is equal to −
∑

i/∈I log2(φi) = −
∑

i∈{0,1,3,4,5,6,7,9} log2(φi) = − log2(φ3).

The second part uses the variable s′000 which is the same as s000 except that the
leading one bits of s000 are replaced in s′000 by zeros. In other words, s′000[9] = 0
but the remaining bits of these two bit-vectors are exactly equal. Computing the
second part results in

HW(s′000) = 0000000101 = 5 ,

and it is equal to
∑

i∈I(ℓi − 1) = (ℓ2 − 1) + (ℓ8 − 1).

22

For the third and last part of int, we compute w, obtaining w = 0001010010.
We remark that the bit-vector w for i ∈ I in fact includes pi as some subvectors,
i.e.

i = 2 : w[2− 1, 2− ℓ2] = w[1,−1] = 100 = 4 = p2 ,

i = 8 : w[8− 1, 8− ℓ8] = w[7, 4] = 0101 = 5 = p8 .

Hence, the third part of int is computed as

ParallelLog((w ∧ s′000)≪ 1, s′000 ≪ 1) = 0000000100 = 4 ,

which is equal to
∑

i∈I⌊log2(pi)⌋ = ⌊log2(p2)⌋+ ⌊log2(p8)⌋. Considering all three
parts, the bit-vector int is obtained by

int = 0000000001⊞ 0000000101⊟ 0000000100 = 0000000010 = 2 .

Moreover, the frac bit-vector in Algorithm 1 is calculated by

frac = ParallelTrunc(w ≪ 1,RevCarry((w ∧ s′000)≪ 1, s′000 ≪ 1)) ,

= HW(0000100000)≪ 2 = 4 .

Considering the third major operand of int and the bit-vector frac, we can
obtain the summation of all approximate logarithms∑

i∈I
apxlog2(pi) = apxlog2(p2) + apxlog2(p8) = 4 +

4

24
= 4.25 .

To summarize, the output of Algorithm 1 is

BvWeight(u, v, a) = (int≪ 4)⊟ frac ,

= 0000100000⊟ 0000000100 = 0000011100 = 28 .

Therefore, the approximate weight will be equal to

apxweight⊞a
(u, v) = 2−4 BvWeight(u, v, a) =

28

24
= 1.75 .

The total error of our approximation is

E = weight⊞a
(u, v)− apxweight⊞a

(u, v) ≈ 1.678− 1.75 = −0.072 ,

which is a negative value and lower bounded by −0.029(n − 1) = −0.261 as
suggested by Theorem 4.

3.3 Error Analysis - Proof of Theorem 4

In this subsection, we will prove Theorem 4 by gradually analysing the error
produced by our approximation of the binary logarithm. As we can see from
Equations (3) and (5), the gap between weight⊞a

(u, v) and apxweight⊞a
(u, v) is

weight⊞a
(u, v)− apxweight⊞a

(u, v) = −
∑
i∈I

(
log2(pi)− apxlog2(pi)

)
.

23

Note that the integer part of apxlog2 is equal to the integer part of log2 and the
error is caused by the fraction part of the logarithm.

Given a positive integer x and the corresponding m = ⌊log2(x)⌋, we define
apxlogκ2 as

apxlogκ2 (x) =

{
m+ x[m− 1, 0]/2m, m ≤ κ

m+ x[m− 1, x− κ]/2κ, m > κ

The non-negative integer κ is called the precision of the fraction part. Note that
apxlogκ2 is the generalization of apxlog2, which considers κ = 4 bits for the fraction
part. While Theorem 4 only focuses on κ = 4, we will use apxlogκ2 in this section
to additionally prove that our error bound also applies to κ ≥ 4.

The following lemma bounds the approximation error of apxlog2 when κ ≥
⌊log2(x)⌋, with a similar proof as [47] for the sake of completeness. The main idea
is that after extracting integer part of the logarithm in base 2, one can estimate
log2(1 + γ) by γ when 0 ≤ γ < 1.

Lemma 9. Consider a positive integer x and the binary logarithm approximation
log2(x) ≈ m+ x[m− 1, 0]/2m , where m = ⌊log2(x)⌋. Then, the approximation
error e = log2(x)− (m+ x[m− 1, 0]/2m) is bounded by 0 ≤ e ≤ B, where B is
given by

B = 1−
(
1 + ln(ln(2))

)
/ ln(2) ≈ 0.086 .

Proof. Let x = 2m + b, where b is a non-negative integer such that 0 ≤ b < 2m.
Therefore, x[m− 1, 0] = x− 2m = b and the error is given by

e = log2(x)−(m+
x[m− 1, 0]

2m
) = log2(2

m+b)−(m+
b

2m
) = log2(1+

b

2m
)− b

2m
.

For γ = b/2m, we obtain 0 ≤ γ < 1 and e = log2(1 + γ) − γ. Note that e is a
concave function of γ where e ≥ 0 if and only if 0 ≤ γ ≤ 1. By deriving e = e(γ),
one can see that max(e) = B = 1−

(
1+ ln(ln(2))

)
/ ln(2) ≈ 0.086 is reached when

γ = 1/ ln(2)− 1 ≈ 0.44. ⊓⊔

The bound B is an almost tight bound, e.g., when x = 3, the obtained error is
log2(3)− (1 + 1

2) ≊ 0.085. The following example sheds more light on our binary
logarithm approximation.

Example 4. Consider the positive integer x = 11101. Note that log2(x) ≊ 4.85798
and m = ⌊(log2(x))⌋ = 4. In order to obtain the approximation defined in
Lemma 9, we first find and omit the greatest ”one” in binary representation of x,
and we get x[m− 1, 0] = 1101. By interpreting the remaining bits as a binary
fraction, we have x[m− 1, 0]

/
2m = 0.1101. Therefore, the approximated binary

logarithm of x = 11101 in binary representation is

m+
x[m− 1, 0]

2m
= 100.1101 ,

which is equal to 4.8125. In addition, the corresponding error of such approxima-
tion is e ≈ 0.04548, which is a positive value and upper bounded by B ≈ 0.086.

24

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

·10−2 (0.44, 0.086)

γ

e

Fig. 1. The error e = log2(1 + γ)− γ, over 0 ≤ γ < 1.

Finally, we can now prove Theorem 4, which basically states that if we
dedicate 4 bits to the fraction precision κ, the approximation error E is bounded
by −0.029 · (n− 1) ≤ E ≤ 0. While Theorem 4 focuses on κ = 4, we will show in
the proof that we can also bound the error for κ ≥ 4. To this end, we generalize
the approximated weight apxweight⊞a

and the approximated weight error Eκ as
follows

apxweightκ⊞a
(u, v) = −

(∑
i∈I

apxlogκ2 (pi) +
∑
i∈I

log2(
1

2ℓi−1
) +

∑
i/∈I

log2(φi)
)

Eκ = weight⊞a
(u, v)− apxweightκ⊞a

(u, v) ,

where apxweight4⊞a
(u, v) = apxweight⊞a

(u, v) is defined by Equation (5) and
E4 = E is defined in Theorem 4.

Proof (Proof (Theorem 4)). First, we mention that log2(φi) is an integer number
when Si ̸= 11* or for Si = 11* we see ℓi < 3. For these cases, log2(φi) =
⌊log2(φi)⌋ and the approximation error is equal to zero.

Next, for each i ∈ I when ℓi ≥ 3, let pi = 2mi + bi such that mi and bi are
two non-negative integers, mi ≤ ℓi − 2 and 0 ≤ bi < 2mi . If ℓi ≤ κ+ 2, we obtain
mi ≤ κ and apxlogκ2 (pi) = mi + bi · 2−mi . Thus, the resulting error

ei = log2(pi)− apxlogκ2 (pi) = log2(pi)− (mi + bi · 2−mi)

is exactly the same as the error defined in Lemma 9, and 0 ≤ ei ≤ B ≈ 0.086.
On the other hand, for mi > κ, i.e., ℓi ≥ κ+ 3, let pi = 2mi + ti · 2mi−κ + ζi,

where ti and ζi are two non-negative integers such that 0 ≤ ti < 2κ as well as

25

0 ≤ ζi < 2mi−κ. In this case, the approximated binary logarithm is apxlogκ2 (pi) =
mi + ti · 2−κ. We now define a new error e′i as

e′i = log2(pi)− apxlogκ2 (pi) = log2(1 + ti · 2−κ + ζi · 2−mi)− ti · 2−κ .

Due to the fact that ζi ≥ 0, we can see that

e′i = log2(pi)− (mi + ti · 2−κ) ≥ log2(pi)− (mi + ti · 2−κ + ζi · 2−mi) = ei ≥ 0 .

Since ζi < 2mi−κ and by reforming the error, we obtain the upper bound of e′i

e′i ≤ log2(1 + ti · 2−κ + 2−κ)− ti · 2−κ = (log2(1 + γ′
i)− γ′

i) + 2−κ ,

where γ′
i = (ti + 1) · 2−κ and 2−κ ≤ γ′

i < 1. Regarding Lemma 9, the new error
e′i is bounded by 0 ≤ e′i ≤ B + 2−κ.

Note that for a valid differential (u, v) over the constant addition ⊞a we can
see that S0 = 000 which for some i∗ belongs to the chain

Γi∗ = {Si∗−1, · · · , S0, S−1 = ⊥}, ℓi∗ = i∗ + 1 .

Hence, we obtain

δi∗−1 =
a[i∗ − ℓi∗ − 1]

2ℓi∗−1
+

ℓi∗∑
j=2

a[i∗ − j]

2j−1
=

ℓi∗−1∑
j=2

a[i∗ − j]

2j−1
.

Similar to the proof of Lemma 4 we have

φi∗ =
pi∗

2ℓi∗−1
=

p∗i∗

2ℓi∗−2
,

where p∗i∗ = pi∗/2 is an integer. Therefore, by replacing ℓi∗ with ℓ∗i∗ = ℓi∗ − 1,
the previous statements considering the error bounds of our approximation for
the state Si∗ = 11* and its new ℓ∗i∗ are still correct. We now define two bits b
and b′ as

b =

{
1, 3 ≤ ℓ∗i∗ ≤ κ+ 2

0, o.w.
, b′ =

{
1, ℓ∗i∗ > κ+ 2

0, o.w.

Finally, by defining the conditional index set Iβα = {i ∈ I − {i∗} | α ≤ ℓi ≤ β}
we obtain

Eκ = weight⊞a
(u, v)− apxweightκ⊞a

(u, v)

= −
∑
i∈I

(log2(pi)− apxlogκ2 (pi))

= −
(∑
i∈Iκ+2

3

ei +
∑

i∈In
κ+3

e′i + bei∗ + b′e′i∗
)

≥ −
(
B
∑

i∈Iκ+2
3

1 + (B + 2−κ)
∑

i∈In
κ+3

1 + bB + b′(B + 2−κ)
)

≥ −
(B
3

∑
i∈Iκ+2

3

ℓi + (
B + 2−κ

κ+ 3
)
∑

i∈In
κ+3

ℓi + b
B

3
ℓ∗i∗ + b′(

B + 2−κ

κ+ 3
)ℓ∗i∗

)
.

26

For κ ≥ 4, we can see that
B + 2−κ

κ+ 3
≤ B

3
, resulting in

0 ≥ Eκ ≥ −
(B
3

∑
i∈In

3

ℓi +
B

3
ℓ∗i∗
)
= −

(B
3

∑
i∈In

3

ℓi +
B

3
(ℓi∗ − 1)

)
≥ −B

3
(n− 1) ≈ −0.029(n− 1) .

Since for κ = 4, we have E4 = E = weight⊞a
(u, v) − apxweight⊞a

(u, v), the
above inequalities hold for the approximation error E as well. ⊓⊔

While dedicating κ = 4 bits as the fraction precision is enough to obtain the
same error bounds as κ > 4, considering κ < 4 creates a trade-off between the
lower bound of the error and the complexity of Algorithm 1. As an example,
choosing κ = 3 removes one HW call in Algorithm 1. However, by following the
proof of Theorem 4 for κ = 3, the error will be lower bounded by −0.035(n− 1),
which potentially is an acceptable trade-off.

The differential model of the constant addition as well as the approximation
error will be used in the automated method that we will present in the next
section to search for characteristics and impossible differentials of ARX ciphers.

4 SMT-based Search of Characteristics and Impossible
Differentials

In this section, we describe how to formulate the search of optimal characteristics
and impossible differentials as a sequence of SMT problems, which can be solved
by an off-the-shelf SMT solver such as Boolector [48] or STP [49]. Our methods
are inspired by the approach of Mouha and Preneel to search for single-key
characteristics of Salsa20 [22] and the approach by Sasaki and Todo to search for
impossible differentials using Mixed Integer Linear Programming (MILP) [24].

4.1 Searching for Characteristics

To search for characteristics up to probability 2−n, the probability space is
decomposed into n intervals Iw =

(
2−w−1, 2−w

]
, where w = 0, 1, . . . , n− 1, and

for each interval, the decision problem of whether there exists a characteristic
with probability p ∈ Iw is encoded as an SMT problem. Note that a characteristic
Ω has probability p ∈ Iw if and only if its integer weight ⌊weight(Ω)⌋ is equal to
w. Section 4.2 describes the encoding process for an ARX cipher.

The SMT problems are provided to the SMT solver, which checks their satisfi-
ability in increasing weight order. When the SMT solver finds the first satisfiable
problem, an assignment of the variables that makes the problem satisfiable is
obtained, and the search finishes. The assignment contains a characteristic with
integer weight ŵ, and it is optimal in the sense that there are no characteristics
with integer weight strictly smaller than ŵ. If the n SMT problems are found to

27

be unsatisfiable, then it is proved there are no characteristics with probability
higher than 2−n.

To speed up the search, we perform the search iteratively on round-reduced
versions of the cipher. First, we search for an optimal characteristic for a small
number of rounds r; let ŵ denote its integer weight. Then, we search for an
optimal (r+1)-round characteristic, but skipping the SMT problems with weight
strictly less than ŵ. Since these SMT problems were found to be unsatisfiable
for r rounds, they will also be unsatisfiable for r + 1 rounds. This procedure is
repeated until the total number of rounds is reached. Algorithm 2 describes in
pseudo-code this search strategy. Our strategy prioritises SMT problems with
low weight and small number of rounds, which are faster to solve. In addition,
our search also finds optimal characteristics of round-reduced versions, which can
be used in other differential-based attacks, such as rectangle or rebound attacks
[50, 51].

Algorithm 2 SMT-based optimal characteristic search

Ω ← ∅
ŵ ← 0
for r = 1, . . . , max rounds do

for w = ŵ, ŵ + 1, . . . , n− 1 do
P ← CreateSMTProblem(rounds = r, target weight = w)
if SMTSolver.IsSatisfiable(SMT problem = P) then

ŵ ← w
Ω ← SMTSolver.GetAssignment(SMT problem = P)
Print(Ω) ▷ optimal r-round characteristic
break

return Ω, ŵ

This automated method can be used to search for either single-key or related-
key characteristics. Furthermore, additional SMT constraints can be added to the
SMT problems in order to search for different types of characteristics. For related-
key characteristics and by default, this method searches characteristics minimizing
the total weight weight(Ω) = weight(ΩKS) + weight(ΩE). Strong related-key
characteristics can be searched by adding the constraint weight(ΩKS) = 0 in the
SMT problems. Similarly, equivalent keys can be found by adding the constraint
weight(ΩE) = 0.

Algorithm 2 returns the characteristic with the minimum SMT integer weight,
obtained from the bit-vector differential models used within the SMT problems.
When some of these models compute approximations of the intermediate weights,
the SMT integer weight and the actual integer weight of the characteristic might
differ, and the returned characteristic might not be optimal. However, if we have
alternative models that compute the exact intermediate weights (that cannot be
represented in the SMT problems) and a bound for the error of the SMT integer
weight, Algorithm 2 can be adapted to obtain the optimal characteristic as follows.

28

First, Algorithm 2 is used to obtain the characteristic Ω with the minimum SMT
integer weight ŵ. Then, one finds all6 characteristics with SMT integer weights
{ŵ, ŵ + 1, . . . , ŵ + ⌊ϵ⌋}, where ϵ is the absolute bound for the error of the SMT
integer weight. Finally, the weights of the found characteristics are recomputed
with the alternative models, and the characteristic with the minimum integer
weight is returned. This adaptation can be used for ARX ciphers with constant
additions, as the error bound can be computed from Theorem 4 and Machado’s
algorithm [34] can be used to compute the exact weights of the constant additions.

This method only ensures optimality if the differential probabilities over each
round are independent and the characteristic probability does not strongly depend
on the choice of the secret key. When these assumptions do not hold for a cipher,
we empirically compute the weight of each characteristic found by sampling
many input pairs satisfying the input difference and counting those satisfying
the difference trail. In this case, this method provides a practical heuristic to
find characteristics with high probability, and it is one of the best systematic
approaches for some families of ciphers, such as ARX.

4.2 Encoding the SMT problems

In this section, we explain how to formulate the decision problem of determining
whether a characteristic Ω exists with integer weight W of an ARX cipher as an
SMT problem in the bit-vector theory.

First, the ARX cipher is represented in Static Single Assignment (SSA) form,
that is, as an ordered list of instructions y ← f(x) such that each variable is
assigned exactly once and each instruction is a modular addition, a rotation, or
an XOR.

For each variable x in the SSA representation, a bit-vector variable ∆x

denoting the difference of x is defined in the SMT problem. Then, for every
instruction y ← f(x), the weight and the differential model of f are added to the
SMT problem as a bit-vector variable w and bit-vector constraints validfi(∆x, ∆y)
and Equals(w,weightfi(∆x, ∆y)), following Table 5.

Table 5. Bit-vector differential models of ARX operations.

y = fa(x) Validity Weight

y = x1 ⊕ x2 Equals(∆y,∆x1 ⊕∆x2) 0
y = x⊕ a Equals(∆y,∆x) 0
y = x ≪ a Equals(∆y,∆x ≪ a) 0
y = x ≫ a Equals(∆y,∆x ≫ a) 0
y = x1 ⊞ x2 Theorem 1 Theorem 1
y = x⊞ a Theorem 3 Theorem 4

6 It is possible to get another solution of an SMT problem by solving it again with an
additional constraint that excludes the first solution. By repeating this process, one
can find all the solutions.

29

Finally, the following bit-vector constraints are added to the SMT problem,

NotEquals(∆p, 0) , Equals(W,w1 ⊞ · · ·⊞ wr) ,

where ∆p denotes the input difference and (w1, . . . , wr) denote the weight of each
operation. The first constraint excludes the trivial characteristic with zero input
difference, while the second constraint fixes the weight of the characteristic to the
target weight. Note that the bit-size of the weights might need to be increased to
prevent an overflow in the modular addition of the last constraint.

Example 5. Consider the keyed function fk with key k and input p = (p1, p2),

fk(p1, p2) = (((p2 ⊞ 1)⊕ k)⊞ p1, p1 ≪ 1) .

This function can be written as a list of simple instructions (SSA form) as

x1 ← p2 ⊞ 1 ,

x2 ← x1 ⊕ k ,

x3 ← x2 ⊞ p1 ,

x4 ← p1 ≪ 1 ,

where the output is the pair (x3, x4). Figure 2 depicts the function fk together
with its intermediate variables.

p1

⊞

p2

⋘ 1

⊕ k

x3 x4

x1

1⊞

x2

Fig. 2. The function fk.

30

An SMT problem in the bit-vector theory denoting whether fk has a charac-
teristic with integer weight W is as follows:

∃∆p1
,∆p2

, ∆x1
, ∆x2

, ∆x3
, ∆x4

, w1, w2, w3, w4 :

valid⊞1
(∆p2

, ∆x1
) ,

Equals(w1,BvWeight(∆p2
, ∆x1

, 1)) ,

Equals(∆x2
, ∆x1

) ,

Equals(w2, 0) ,

valid⊞((∆x2
, ∆p1

), ∆x3
) ,

Equals(w3,weight⊞((∆x2
, ∆p1

), ∆x3
)) ,

Equals(∆x4
, ∆dp1

≪ 1) ,

Equals(w4, 0) ,

NotEquals((∆p1 , ∆p2), 0) ,

Equals(W, (w1 ⊞ ((w2 ⊞ w3 ⊞ w4)≪ 4)≫ 4)) .

The shifts in the last constraint are due to the fact that the last four bits of w1

denote fraction bits. Furthermore, depending on the bit-size of fk, it might be
necessary to extend the bit-size of the weights in order to prevent an overflow in
the last modular additions.

4.3 Searching of Impossible Differentials

In [24], Sasaki and Todo propose an MILP-based method to search for impossible
differentials that employs the MILP problems used to search for characteristics.
Since this method can also be adapted to SMT problems, we will explain the
method within the SMT context.

The method’s main idea is that one can check whether a particular differential
(∆p, ∆c) is impossible by querying a simple SMT problem. While it is unfeasible
to check all differentials, one can check those with a low number of active bits
since most of the known impossible differentials have this property.

The subroutine to check whether a particular differential (∆p0
, ∆c0) is im-

possible can be done as follows. First, the SMT problem of whether there exists
a characteristic over the cipher is encoded as in Section 4.2. However, only the
validity constraints are added; the weight constraints and the target weight W
are ignored. Second, the constraints that fix the input and output differences
(∆p, ∆c) to (∆p0 , ∆c0) are added to the SMT problem, that is,

Equals(∆p, ∆p0
), Equals(∆c, ∆c0) .

Then, the SMT solver checks the satisfiability of the SMT problem. If the problem
is found to be unsatisfiable, the differential is impossible.

This method can be used to search for single-key and related-key impossible
differentials. For the former case, the validity constraints of the key schedule are
ignored, while for the latter case they are included in the SMT problems.

31

As opposed to the previous SMT-based characteristic search method, the
impossible check subroutine is a sound method. In other words, a characteristic
found by Algorithm 2 could be invalid due to the independence assumptions,
but a differential found impossible by the check subroutine is always impossible.
While the check subroutine is a sound method, it is not complete; there are some
impossible differentials that cannot be detected by the check subroutine.

While the check subroutine is fast, checking all differentials is unfeasible and
only a small subset can be checked with the method by [24]. Thus, we propose a
new automated method to search for impossible differentials that does not restrict
the search over any pre-defined small subset and let the SMT solver efficiently
search through the space of differentials. Our automated method proceeds as
follows.

First, we split the cipher E = E2 ◦ E1 ◦ E0 into three parts E2, E1 and E0.
Let Ω = (∆x0

, ∆x1
, ∆x2

, ∆x3
) denote a partial characteristic over E, that is, any

characteristic verifying

Pr(∆x0

E0−−→ ∆x1) = 1, Pr(∆x2

E2−−→ ∆x3
) = 1 .

Note that no relation is imposed between ∆x1
and ∆x2

.

Then, we search for all partial characteristics using our SMT-based method
from Section 4.1. For each partial characteristic Ω = (∆x0

, ∆x1
, ∆x2

, ∆x3
), we

apply the check subroutine to the differential (∆x1 , ∆x2) over E1. If (∆x1 , ∆x2)
is found to be impossible over E1, then (∆x0 , ∆x3) is an impossible differential
over E, since (∆x0 , ∆x1) and (∆x2 , ∆x3) are differentials with probability one
(see Figure 3).

Fig. 3. The partial characteristic Ω = (∆x0 ,∆x1 ,∆x2 ,∆x3) over E = E2 ◦ E1 ◦
E0, alongside the condition that the inner part (∆x1 ,∆x2) over E1 is an impossible
differential.

Like the characteristic search method, we start searching for impossible
differentials over a round-reduced version of the cipher and keep increasing
the number of rounds iteratively. This procedure is described in Algorithm
3. Impossible differentials starting after a few rounds are useful in practice,
and our method can easily be adapted by splitting the cipher into four parts,
E = E2 ◦ E1 ◦ E0 ◦ E−1, where E−1 denotes the skipped rounds.

32

Algorithm 3 SMT-based impossible-differential search

for r = 1, . . . , max rounds do
for r1 = 1, . . . , r − 2 do

for r0 = 1, . . . , r − r1 − 1 do
r2 = r − r0 − r1
for Ω ∈ FindPartialCh(roundsE0 =r0, roundsE1 =r1, roundsE2 =r2) do

(∆x0 ,∆x1 ,∆x2 ,∆x3)← Ω
if IsImpossible(input∆ = ∆x1 , output∆ = ∆x2 , roundsE1 = r1) then

Print(∆x0 ,∆x3) ▷ impossible differential over r rounds
break ▷ break three inner loops and increase r

return (∆x0 ,∆x3)

The main advantage of our method is that the subset of differentials to check
does not need to be specified. Thus, it can find impossible differentials that other
methods cannot. Moreover, the search of partial characteristics is quite fast, as
for many operations f (including the modular addition and the constant addition)
the constraint Equals(0,weightf (∆x, ∆y)) is much simpler than the constraint for
the general case Equals(w,weightf (∆x, ∆y)).

As opposed to the search of characteristics, the search of r+ 1-round impossi-
ble differentials cannot reuse information obtained from the search of r-round
impossible differentials. In other words, Algorithm 2 exploits the fact that if no
r-round characteristics were found with weight w, then no r + 1-round charac-
teristics can be found with the same weight. However, for some key schedules,
Algorithm 2 might find r + 1-round impossible differentials even if no r-round
impossible differentials were found.

4.4 Implementation

We have developed an open-source tool ArxPy7 to find characteristics and impos-
sible differentials of ARX ciphers implementing the methods described earlier.
Originally, ArxPy was a tool to search for rotational-XOR characteristics using
SMT solvers [52]. However, we have extended it to support (related-key) differen-
tial characteristics and impossible differentials containing the constant addition.
ArxPy provides high-level functions that automate the search, a simple interface
to represent ARX ciphers, and complete documentation in HTML format, among
other features.

ArxPy workflow is represented in Figure 4. The user first defines the ARX
cipher using the interface provided by ArxPy and chooses the parameters of the
search (e.g., the type of the characteristic to search, the SMT solver to use,
etc.). Then, ArxPy automatically translates the python implementation of the
ARX cipher into SSA form, encodes the SMT problems associated to the type
of search selected by the user, and solves the SMT problems by querying the
SMT solver. When searching for characteristics, for each satisfiable SMT problem

7 https://github.com/ranea/ArxPy

33

https://github.com/ranea/ArxPy

found, ArxPy reconstructs the characteristic from the assignment of the variables
that satisfies the problem and empirically verifies the weight of the characteristic.
Finally, ArxPy returns the results of the search to the user.

SMT solver

Translation to SSA form

SMT encoding

Solving SMT problems

Verification

arx
cipher

PY

ArxPy

results
TXT

search
parameters

Fig. 4. Workflow of ArxPy

Internally, ArxPy is implemented in Python 3 and uses the libraries SymPy
[53] to obtain the SSA representation through symbolic execution and PySMT

[54] for the communication with the SMT solvers. Thus, all the SMT solvers
supported by PySMT can be directly used for ArxPy.

5 Experiments

We have applied our methods for finding characteristics and impossible differen-
tials to some ARX ciphers that include constant additions. In particular, we have
searched for related-key characteristics and related-key impossible differentials of
TEA, XTEA, HIGHT, LEA, SHACAL-1, and SHACAL-2.

Due to the difficulty of searching for characteristics of ciphers with constant
additions this far, cipher designers have avoided constant additions in the encryp-
tion functions so that they could search for single-key characteristics, the most
threatening ones. Only a few ciphers include constant additions in the encryption
function, and their ad-hoc structures make them more suitable to be analysed
with other types of differences, such as additive differences in the case of TEA
[19]. As a result, we have focused on searching related-key characteristics and
impossible differentials of some well-known ciphers.

Regarding the search for characteristics, we used Algorithm 2 to find related-
key characteristics starting from the first round of each cipher. For the case

34

of impossible differentials, we applied Algorithm 3 to search for related-key
impossible differentials but skipping the first rounds of the cipher. To this end,
we repeatedly call Algorithm 3 while increasing the number of skipped rounds in
each call.

For related-key characteristics, the usual assumptions (i.e., round indepen-
dence and the hypothesis of stochastic equivalence) do not always hold. Thus,
we empirically verify each characteristic and stopped each round-reduced search
after the first valid characteristic is found.

To verify a related-key characteristic Ω, we split Ω in smaller characteristics
Ωi = (∆xi → · · · → ∆yi) with weight wi lower than 20, and empirically compute
the probability of each differential (∆xi , ∆yi) by sampling a small multiple of
2wi input pairs for 210 related-key pairs. After combining the probability of each
differential, we obtain 210 characteristic probabilities, one for each related-key
pair. If the characteristic probability is non-zero for several key pairs, we consider
the characteristic valid and we define its empirical probability (resp. weight) as
the arithmetic mean of the 210 characteristic probabilities (resp. weights), but
excluding those key pairs with zero probability.

Thus, for each characteristic that we have found, Table 6 provides: (1) the
theoretical key schedule and encryption weights (wKS, wE), computed by summing
the weight of each ARX operation; (2) the empirical key schedule and encryption
weights (wKS, wE), computed by sampling input pairs as explained before; and
(3) the percentage of key pairs that lead to non-zero probability in the weight
verification. In the appendix, we provide the round weights and the round
differences for the characteristics covering the most rounds.

When searching for impossible differentials with skipped rounds, Algorithm 3
splits the cipher into four parts. More specifically, the cipher E is represented
as E = E2 ◦ E1 ◦ E0 ◦ E−1, where E−1 denotes the skipped rounds, E1 stands
for the rounds of the inner impossible differential, and E0 and E2 respectively
denote the backward and the forward rounds of the partial characteristics. In
Table 7 we provide the number of rounds of each part for the best related-key
impossible differentials that we found, and in Table 8 we provide the input and
output differences of our longest impossible differentials.

We also implemented and searched impossible differentials using the auto-
mated method of Sasaki and Todo [24] to compare the results with the ones
observed by Algorithm 3. While for XTEA, LEA, and HIGHT, both methods
find impossible differentials with the same number of rounds, for SHACAL-1 and
SHACAL-2 Algorithm 3 achieves impossible differentials covering more rounds.
For XTEA and HIGHT, the longest impossible differentials found by Algorithm 3
include a few active bits, and thus they could also be found by the other method.
However, for SHACAL-1 and SHACAL-2, our algorithm found impossible dif-
ferentials containing multiple active bits, which cannot be obtained by other
methods that restrict to predefined differential subsets with a low number of
active bits.

For the experiments, we have used ArxPy equipped with the SMT solver
Boolector [48], winner of the SMT competition SMT-COMP 2019 in the bit-

35

vector track [55]. We run the characteristic search for one week on a single core of
an Intel Xeon 6244 at 3.60GHz. The search of impossible differentials was done
on similar hardware during one week as well. Note that better characteristics
and impossible differentials could be found if the round-reduced searches are not
stopped after the first valid characteristic or if more time is employed.

Table 6. Best related-key differential characteristics of XTEA, HIGHT, LEA, SHACAL-
1, and SHACAL-2.

Cipher Ch. Type Rounds (wKS, wKS) (wE , wE)
% valid

Reference
keys

XTEA

Strong
16 0 32 - [56]
16 (0,0) (37, 32.02) 46% This paper
18 (0,0) (57, 49.79) 48% This paper

Weak
18 17 19 - [57, 56]
18 (4.83, 3.15) (16, 14.46) 100% This paper
27 (6.89, 5.74) (40, 39.39) 7% This paper

HIGHT

Strong
10 0 12 - [58]
10 (0, 0) (12, 9.97) 34% This paper
15 (0, 0) (45, 42.59) 8% This paper

Weak
12 2 19 - [59]
12 (2.48, 3.19) (19, 17.65) 40% This paper
14 (13.09, 9.85) (14, 11.46) 17% This paper

LEA Weak
11 - - - [10]
6 (1.56, 1.22) (24, 22.50) 100% This paper
7 (2.56, 4.68) (36, 34.35) 100% This paper

SHACAL-1
Strong

27 0 29 - [60]
30 (0, 0) (63, 47.36) 97% This paper

Weak
35 10 29 - [61, 62]
25 (1, 0.87) (22, 13.31) 47% This paper

SHACAL-2
Strong

24 0 38† - [63]
23 (0, 0) (58, 48.06) 100% This paper

Weak
24 - 52 - [64]
22 (6.67, 2.38) (29, 24.03) 100% This paper

†: Imposes extra conditions on plaintext values or intermediate values.

TEA. Designed by Wheeler and Needham, TEA [15] is a block cipher with 64-bit
block size and 128-bit key size. It iterates 64 times an ARX round function,
including constant additions and logical shifts, depicted in Figure 5. Since the
logical shifts propagate XOR differences deterministically, the encoding method
presented in Section 4.2 can be easily extended to include these operations.

36

Table 7. Best related-key impossible differentials of XTEA, HIGHT, LEA, SHACAL-1,
and SHACAL-2.

Cipher Rounds Start Backward Inner ID Forward Reference

XTEA
25(19 ∼ 43) 19 - - - [65]

25(0 ∼ 24) 0 7 13 5 This paper

HIGHT
22(6 ∼ 27) 6 - - - [66]

22(0 ∼ 21) 0 4 14 4 This paper

LEA 4(0 ∼ 3) 0 0 4 0 This paper

SHACAL-1 30(20 ∼ 49) 20 2 16 12 This paper

SHACAL-2
18(0 ∼ 17) 0 - - - [67]

24(0 ∼ 23) 0 1 12 11 This paper

Table 8. Input, output, and key differences of our longest related-key impossible
differentials.

Cipher Differences

XTEA
∆mk (0x80000000, 0x00000000, 0x00000000, 0x00000000)
∆p (0x80000000, 0x00000000)
∆c (0x00000000, 0x80000000)

HIGHT

∆mk (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00)

∆p (0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00)
∆c (0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)

LEA
∆mk (0x00000001, 0x00000000, 0x00000000, 0x00000000)
∆p (0x00000000, 0x00000000, 0x00000000, 0x00000000)
∆c (0x00000000, 0x00000000, 0x00000000, 0x00000000)

SHACAL-1

∆mk (0xa0000000, 0x80000000, 0xa0000000, 0x00000000,
0x80000000, 0x00000000, 0xc0000000, 0x00000000,
0x80000000, 0x80000000, 0x40000000, 0x00000000,
0x80000000, 0x80000000, 0x40000000, 0x00000000)

∆p (0x00000000, 0x00000000, 0x00000000, 0x80000000, 0x00000000)
∆c (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000)

SHACAL-2

∆mk (0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x94857ee6, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000)

∆p (0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000)

∆c (0x80000000, 0x00000000, 0x00000000, 0x00000000,
0x80000000, 0x00000000, 0x00000000, 0x00000000)

37

≪ 4

≫ 5

∆i

ki,0

ki,1

Fig. 5. The i-th round of TEA, i = 0, 1 . . . , 63. The master key mk is split into four
32-bit words (mk0,mk1,mk2,mk3) and the i-th round key is defined as (ki,0, ki,1) =
(mk0,mk1) if i is even and (ki,0, ki,1) = (mk2,mk3) if i is odd. The i-th round constant
is defined as ∆i = ∆i−2 ⊞∆0, where ∆−1 = ∆0 = 2654435769.

Kelsey, Schneier, and Wagner presented the best related-key characteristics
in [68]. They found a 2-round iterative strong related-key characteristic Ω with
weight (wk, we) = (0, 1), which they extended to a 60-round characteristic with
weight (0, 30). They also discovered in [38] that each TEA key has three other
equivalent keys.

Using ArxPy, we revisited the results by Kelsey, Schneier, and Wagner, but in
a fully automated way. We found three related-key characteristics with weight zero
over the full cipher, confirming that each key is equivalent to exactly three other
keys. Excluding these three characteristics, we also obtained a 60-round strong
related-key characteristic with weight (0, 30), and all the 60-round SMT problems
with smaller weights were found to be unsatisfiable. Since a 60-round related-key
characteristic is sufficient to mount the related-key differential cryptanalysis on
full-round TEA [68], there is no need to search for characteristics containing
more rounds of TEA, and we stop at 60 rounds.

There is also no need to search for related-key impossible differentials of
TEA, as each of the three full-round zero-weight related-key characteristics
induces roughly 2× 264 full-round related-key impossible differentials, simply by
alternating either the plaintext or the ciphertext difference.

XTEA. The block cipher XTEA [16] is designed by the same authors of TEA to
fix the weakness of the former cipher (in the related-key setting). XTEA has a
64-bit block size and 128-bit key size, and it iterates 64 times the round function
depicted in Figure 6. Like TEA, the round function also includes logical shifts,
but the constant additions are included in the key schedule.

The longest related-key characteristics found so far are the 16-round strong
related-key differential with weight 32, manually found by Lu in [56], and the

38

ki

≪ 4

≫ 5

Fig. 6. The i-th round of XTEA, i = 0, 1 . . . , 63.. The master key mk is split into four
32-bit words (mk0,mk1,mk2,mk3) and the i-th round key is defined as ki = si⊞mksi∧3

if i is even and ki = si ⊞ mk(si≪11)∧3 if i is odd. The i-th constant si is defined as
si = si−2 ⊞ s0, where s−1 = s0 = 2654435769.

18-round weak related-key characteristic with weights (wKS, wE) = (19, 19),
manually found by Lee, Hong, Chang, Hong, and Lim [57] but later improved to
(17, 19) by Lu [56].

The results of our automated search for related-key characteristics are listed
in Table 6. In the strong related-key search, we found an 18-round characteristic
with weight 57; all the SMT problems for 19 rounds were found to be unsatisfiable.
In the weak related-key search, we found characteristics up to 27 rounds, where
the 27-round characteristic has total weight 6 + 40 = 46. No equivalent keys were
found for XTEA.

In our automated search for related-key impossible differentials of XTEA,
we observed impossible differentials spanning 25 rounds, similar to the best
impossible differential found this far by Darbuka [65]. Denoting the cipher XTEA
with 25 rounds by E = E2◦E1◦E0, our related-key impossible differential contains
a 13-round inner impossible differential over E1, extended by a deterministic
7-round backward trail over E0 and a deterministic 5-round forward trail over
E2 as depicted in Table 7. Our automated tool was also able to complete the
search of related-key impossible differentials up to 31 rounds, but no impossible
differentials spanning more than 25 rounds were found.

HIGHT. Adopted as an international standard by ISO/IEC [69], HIGHT [9] is
a lightweight cipher with a block size of 64 bits and a key size of 128 bits. The
encryption function performs initial and final key whitening transformations,
and iterates 32 times a round function including XORs, 2-input additions and
rotations; the constant additions are performed in the key schedule.

The longest related-key characteristics found for HIGHT are a 10-round strong
characteristic with weight 12 found by Lu [58], and a 12-round weak characteristic

39

Fig. 7. The i-th round function of HIGHT, i = 0, 1 . . . , 31 [9]. The i-th round key is
denoted by ki = (SK4i−1, SK4i−2, SK4i−3, SK4i−4) and the functions F0 and F1 are
defined as F0(x) = (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 7) and F1(x) = (x ≪ 3) ⊕ (x ≪
4)⊕ (x ≪ 6).

Fig. 8. The key schedule of HIGHT [9]. The round key words are denoted by SKi and
the key schedule constants are denoted by δj .

with weights (wKS, wE) = (2, 19) found by Koo, Hong, and Kwon [59]. In our
automated search, we found related-key characteristics up to 15 rounds, listed
in Table 6. The longest strong related-key characteristic we found covered 15
rounds with weights (0, 45), whereas the longest weak related-key characteristic
covered 14 rounds with total weight 13 + 14 = 27.

Özen, Varıcı, Tezcan, and Kocair introduced the best-known 22-round related-
key impossible differential for HIGHT [66]. Using ArxPy, we found a new impos-
sible differential covering the same number of rounds, as shown in Table 7. Our
impossible differential consists of a 14-round inner impossible differential, ex-
tended by two zero-weight 4-round backward and forward related-key trails. The
mentioned 22-round impossible differential is the longest related-key impossible

40

differential that ArxPy could obtain in one week by checking up to 32 rounds of
HIGHT.

LEA. Among the family of ARX ciphers LEA [10], we analysed LEA-128, the
version with 128-bit block size, 24 rounds, and 128-bit key size. The encryption
round function of LEA performs 2-input additions, rotations, and XORs, whereas
the key schedule contains constant additions and rotations.

⊕ ⊕

⊕

ki,0

ki,1

⊞

⋘ 9

⊕

⊕

ki,2

ki,3

⊞

⋙ 5

⊕

ki,3

ki,1

⊞

⋙ 3

⊞

⋘ i

⋘ 1

⊞

⋘ i + 1

⋘ 3

⊞

⋘ i + 2

⋘ 6

⊞

⋘ i + 3

⋘ 11

δi

Fig. 9. The i-th round function of the encryption (left) and the key schedule (right) of
LEA-128, i = 0, 1 . . . , 23. The tuple (ki,0, . . . , ki,3) denotes the i-th round key and δi
denotes the i-th key schedule constant.

The designers of LEA found related-key characteristics up to 11 rounds, but
only specifying that the 11-round characteristics are valid for a small part of the
key space and without providing the weights of such characteristics [10]. Excluding
these characteristics, there are no others examples of related-key characteristics
of LEA. Our automated search found weak related-key characteristics up to 7
rounds valid for the full key space, listed in Table 6. Strong characteristics with
weight smaller than 128 were found up to 4 rounds, and all the strong related-key
SMT problems for 5 rounds were found unsatisfiable. No equivalent keys were
found for LEA.

We applied ArxPy on LEA to automatically search for related-key impossible
differentials. While our method completed the search for a large number of rounds,
only impossible differentials with non-zero key difference spanning up to four
rounds were found. The lack of related-key impossible differentials, with low
hamming weight or with key schedule transitions with probability 1, seems to be
due to the heavy and robust key schedule of LEA. By and large, ciphers with
lightweight key schedule algorithms tend to have longer related-key impossible
differentials in comparison to their single-key counterparts. However, the key
schedule and the round function of LEA are of the same complexity. Thus, finding
an impossible differential that covers more rounds in related-key setting instead
of single-key setting seems unfeasible. We confirmed this by applying our tool to
LEA in the single-key setting, obtaining multiple 10-round single-key impossible
differentials within a few hours.

41

SHACAL-1. Based on the compression function of the NIST standard hash
function SHA-1 [70], the block cipher SHACAL-1 was initially suggested in
[71] and submitted by Handschuh and Naccache to the NESSIE project [72].
SHACAL-1 uses 160-bit block size and 80 rounds, where its round function is
similar to the SHA-1 compression function. The key size can be variable from 0
to 512 bits, although a minimum of 128-bit key size is required in [73] and we
analysed SHACAL-1 for 512-bit keys.

There are some ad-hoc differential characteristics presented in [60, 74, 61].
However, Wang, Keller, and Dunkelman [62] indicated that many of the previous
characteristics are invalid. The longest valid XOR differential characteristic is
a 35-round weak related-key characteristic that appeared in [61] and was later
corrected in [62] to obtain the corrected weights (wKS, wE) = (10, 29). Moreover,
the longest strong related-key XOR differential characteristic that is not found to
be invalid by [62] spans 27 rounds of SHACAL-1 with the corresponding weights
(wKS, wE) = (0, 29) [60].

These characteristics do not necessarily start from the first round of SHACAL-
1 since they are not used for a differential attack but rather for a rectangle attack
[51]. Note that the round function of SHACAL-1 changes in different rounds (see
Figure 10), and these characteristics could take advantage of the variable definition
of the round function. However, we are only looking for the characteristics starting
from the first round and for the particular case of SHACAL-1 with variable round
functions, we do not necessarily obtain the best possible characteristics.

Our automated tool ArxPy obtained a weak-key 25-round characteristic with
(wKS, wE) = (1, 22). Moreover, the tool could also find a 30-round characteristic
in the strong-key setting with the corresponding weights (wKS, wE) = (0, 63).
In our search, a large amount of SHACAL-1 characteristics found by the SMT
solver did not pass our empirical validation test, which significantly increased
the running time for finding each valid characteristic. More specifically and in
the weak-key setting, we found more than 100 empirically invalid characteristics
until we detected a valid 25-round one; we also obtained multiple 26-round weak
characteristics within a week, but they were found invalid by our empirical test.
We discarded more than 900 empirically invalid characteristics for the strong-key
setting before finding a valid 30-round characteristic, and none of the 31-round
trails obtained in a week could pass the test.

One of the main reasons for the large number of empirically invalid character-
istics is the 5-input modular addition within the round function of SHACAL-1.
Since the differential model of the modular addition with three or more inputs is
unknown, we had to approximate the differential model of the 5-input addition
with a chain of 2-input addition models. In other words, to model the 5-input
addition y = x1 ⊞ x2 ⊞ x3 ⊞ x4 ⊞ x5, we split it into four 2-input additions

z1 = x1 ⊞ x2, z2 = z1 ⊞ x3, z3 = z2 ⊞ x4, y = z3 ⊞ x5 ,

and we model the four 2-input additions independently. Thus, we are approxi-
mating the differential probability of the 5-input addition

Pr[(∆x1
, . . . ,∆x5

)
⊞−→ ∆y]

42

with the multiplication of the differential probabilities of the four 2-input additions

Pr[(∆x1
, ∆x2

)
⊞−→ ∆z1] × Pr[(∆z1 , ∆x3

)
⊞−→ ∆z2] ×

Pr[(∆z2 , ∆x4)
⊞−→ ∆z3]× Pr[(∆z3 , ∆x5)

⊞−→ ∆y] .

For many differentials, this approximation is not accurate, and this caused the
appearance of many empirically invalid characteristics in our search.

As depicted in Table 7, our automated tool found the first known related-key
impossible differential of SHACAL-1, extending to 30 rounds of the cipher from
rounds 20 to 49. The backward and forward trails respectively traverse 2 and 12
rounds of SHACAL-1, delimiting the inner 16-round impossible differential. The
search for 31-round impossible differentials did not finish after one week, and we
stopped the search. Thus, we expect that dedicating more time to the search
may result in obtaining longer impossible differentials.

SHACAL-2. Similar to SHACAL-1, the block cipher SHACAL-2 [73] was designed
based on the compression function of the NIST standard hash function SHA-256
[75]. The cipher was submitted to the NESSIE project [72] and was approved as
one of the NESSIE final selections. SHACAL-2 is a 256-bit block cipher, has 64
rounds, and supports a variable key size up to 512 bits. We analysed SHACAL-2
for 512-bit keys.

The longest ad-hoc related-key XOR differential characteristic in the strong-
key setting is a 24-round characteristic presented in [63] with (wKS, wE) =
(0, 38), which relies on some additional conditions on specific values alongside the
differences to improve the weights. Moreover, in the weak-key setting, Biryukov,
Lamberger, Mendel, and Nikolić [64] provided two 24-round related-key XOR
differential characteristics of SHACAL-2, each has encryption weight wE = 52.
However, they did not explicitly mention the key schedule weight wKS for each
characteristic.

Our automated search resulted in a 23-round characteristic in the strong-key
setting with encryption weight wE = 58 and a 22-round characteristic in the
weak-key setting with total weight wKS + wE = 6 + 29 = 35. Like SHACAL-1,
our automated search could not find longer characteristics of SHACAL-2 within
a week due to the large number of empirically invalid characteristics found. The
round function of SHACAL-2 also contains a modular addition with multiple
inputs (i.e., seven operands), and modelling it with 2-input additions is one of the
main reasons for the inaccurate differential behaviour for some special differences.

Table 7 lists the results of the best related-key impossible differentials of
SHACAL-2. The 18-round impossible differential presented by Yang, Hu, and
Zhong in [67] has been the longest known related-key impossible differential for
SHACAL-2 so far. Our automated tool ArxPy obtained a 24-round impossible
differential, improving the previous best result by 6 rounds. This impossible
differential includes a 12-round inner impossible differential, extended by two
deterministic 1-round backward and 11-round forward trails. We checked up to
28-rounds of SHACAL-2 in one week, and the longest impossible differential we
observed was the 24-round related-key impossible differential.

43

Ai Bi Ci Di Ei

≪ 5

≪ 30

fi

Ei+1Di+1Ci+1Bi+1Ai+1

Ki

(X ∧ Y) ∨ (¬Y ∧ Z), 0 ≤ i ≤ 19 ;

X ⊕ Y ⊕ Z, 20 ≤ i ≤ 39, 60 ≤ i ≤ 79 ;

(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), 40 ≤ i ≤ 59 ;

fi(X,Y, Z) =

Mi ⊞Wi, 0 ≤ i ≤ 15 ;(
(Ki−3 ⊕Ki−8 ⊕Ki−14 ⊕Ki−16) ≪ 1

)
⊞Wi, 16 ≤ i ≤ 79 .

Ki =

Fig. 10. The i-th round of SHACAL-1, i = 0, 1 . . . , 79. The 160-bit input is divided
into five 32-bit words Ai, Bi, Ci, Di, and Ei. The function fi significantly changes
regarding the round number. For a given 512-bit master key mk = (M0,M1, · · · ,M15),
the round keys Ki are computed as described above, where Wi is the round constant.

6 Conclusion

In this paper, we proposed the first bit-vector differential model of the n-bit
modular addition with a constant. We described a bit-vector formula, with bit-
vector complexity O(1), that determines whether a differential is valid and a bit-
vector function, with complexity O(log2 n), that provides a close approximation
of the differential weight. In this regard, we carefully studied our approximation
error and obtained almost tight bounds. Moreover, we described two new SMT-
based automated methods to search for characteristics and impossible differentials
of ARX ciphers including constant additions, respectively.

Each of our methods formulates the search problem as a sequence of bit-vector
SMT problems, encoded from the cipher’s SSA representation and the bit-vector
differential models of each operation. We have implemented our methods in ArxPy,
an open-source tool to find characteristics and impossible differentials of ARX

44

Ai Bi Ci Di Ei Fi Gi Hi

If

Σ1

Maj

Σ0

Hi+1Gi+1Fi+1Ei+1Di+1Ci+1Bi+1Ai+1

Ki

If(X,Y, Z) = (X ∧ Y)⊕ (¬X ∧ Z) ;

Maj(X,Y, Z) = (X ∧ Y)⊕ (Y ∧ Z)⊕ (X ∧ Z) ;

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22) ;

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25) ;

Mi ⊞Wi, 0 ≤ i ≤ 15 ;

σ1(Ki−2)⊞Ki−7 ⊞ σ0(Ki−15)⊞Ki−16 ⊞Wi, 16 ≤ i ≤ 79 ;

Ki =

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ≫ 3) ;

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ≫ 10) .

Fig. 11. The i-th round of SHACAL-2, i = 0, 1 . . . , 63. The 256-bit input is divided
into eight 32-bit words Ai, Bi, Ci, Di, Ei, Fi, Gi, and Hi. The special operators used
in the round function of SHACAL-2 are If, Maj, Σ0, and Σ1 that are defined as above.
For a given 512-bit master key mk = (M0,M1, · · · ,M15), the key schedule generates
round keys Ki as described in above, where Wi is the round constant.

ciphers in a fully automated way. To show some examples, we have applied our
automated methods to search for equivalent keys, related-key characteristics, and
related-key impossible differentials of TEA, XTEA, HIGHT, LEA, SHACAL-1,
and SHACAL-2.

Regarding the characteristic results, for TEA we revisited previous results
obtained in a manual approach. In contrast, for XTEA, HIGHT, and LEA,
we improved the previous best-known related-key characteristics in both the
strong-key and the weak-key settings. Our characteristic results of SHACAL-1

45

and SHACAL-2 did not outperform previous works in all settings due to the
presence of modular additions with more than two inputs, for which no efficient
differental model has been proposed yet.

Concerning the impossible differentials, our results for TEA, XTEA, and
HIGHT are of the same length, compared to the best-known related-key impossible
differentials. On the other hand, we obtained the longest related-key impossible
differentials for LEA, SHACAL-1, and SHACAL-2.

Our differential model relies on a bit-vector-friendly approximation on the
binary logarithm. Thus, future works could explore other approximations improv-
ing the bit-vector complexity or the approximation error, which could also be
applied to other SMT problems involving the binary logarithm. While we have
focused on the modular addition by a constant, there are other simple operations
for which no differential model has been proposed so far, such as the modular
multiplication, and the modular addition with more than two inputs. Obtaining
differential models for more operations will allow designing ciphers with more
flexibility, leading to new designs that potentially are more efficient.

Acknowledgments Seyyed Arash Azimi and Mohammad Reza Aref were partially
supported by Iran National Science Foundation (INSF) under contract No.
96/53979. Adrián Ranea is supported by a PhD Fellowship from the Research
Foundation – Flanders (FWO).

References

[1] Gartner. Gartner Identifies Top 10 Strategic IoT Technologies and Trends.
2018. url: https://www.gartner.com/en/newsroom/press-releases/
2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-

and-trends.
[2] Gartner. Gartner Survey Reveals 47 percent of Organizations Will In-

crease Investments in IoT Despite the Impact of COVID-19. 2020. url:
https://www.gartner.com/en/newsroom/press-releases/2020-10-

29-gartner-survey-reveals-47-percent-of-organizations-will-

increase-investments-in-iot-despite-the-impact-of-covid-19-.
[3] National Institute of Standards and Technology. Lightweight Cryptogra-

phy Project. url: https://csrc.nist.gov/Projects/Lightweight-
Cryptography.

[4] Seyyed Arash Azimi, Adrián Ranea, Mahmoud Salmasizadeh, Javad Moha-
jeri, Mohammad Reza Aref, and Vincent Rijmen. “A bit-vector differential
model for the modular addition by a constant”. In: International Confer-
ence on the Theory and Application of Cryptology and Information Security.
Springer. 2020, pp. 385–414.

[5] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann
Großschädl, and Alex Biryukov. “Triathlon of lightweight block ciphers for
the Internet of things”. In: J. Cryptographic Engineering 9.3 (2019).

46

https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2020-10-29-gartner-survey-reveals-47-percent-of-organizations-will-increase-investments-in-iot-despite-the-impact-of-covid-19-
https://www.gartner.com/en/newsroom/press-releases/2020-10-29-gartner-survey-reveals-47-percent-of-organizations-will-increase-investments-in-iot-despite-the-impact-of-covid-19-
https://www.gartner.com/en/newsroom/press-releases/2020-10-29-gartner-survey-reveals-47-percent-of-organizations-will-increase-investments-in-iot-despite-the-impact-of-covid-19-
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography

[6] Jean Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C W
Phan. “SHA-3 proposal BLAKE”. In: Submission to NIST (round 3) 92
(2008).

[7] Daniel J Bernstein. “The Salsa20 family of stream ciphers”. In: New stream
cipher designs. Springer, 2008.

[8] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. “Chaskey: an efficient MAC algorithm
for 32-bit microcontrollers”. In: International Conference on Selected Areas
in Cryptography. Springer. 2014.

[9] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-
seok Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong,
Hyun Kim, Jongsung Kim, and Seongtaek Chee. “HIGHT: A New Block
Cipher Suitable for Low-Resource Device”. In: Cryptographic Hardware and
Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings. 2006.

[10] Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho
Ryu, and Donggeon Lee. “LEA: A 128-Bit Block Cipher for Fast Encryption
on Common Processors”. In: WISA. Vol. 8267. Lecture Notes in Computer
Science. Springer, 2013.

[11] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. “The SIMON and SPECK Families of Lightweight
Block Ciphers”. In: IACR Cryptol. ePrint Arch. 2013 (2013), p. 404.

[12] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann
Großschädl, and Alex Biryukov. “Design Strategies for ARX with Provable
Bounds: Sparx and LAX”. In: ASIACRYPT (1). Vol. 10031. Lecture Notes
in Computer Science. 2016.

[13] Bonwook Koo, Dongyoung Roh, Hyeonjin Kim, Younghoon Jung, Donggeon
Lee, and Daesung Kwon. “CHAM: A Family of Lightweight Block Ciphers
for Resource-Constrained Devices”. In: Information Security and Cryp-
tology - ICISC 2017 - 20th International Conference, Seoul, South Korea,
November 29 - December 1, 2017, Revised Selected Papers. 2017.

[14] Xuejia Lai and James L. Massey. “A Proposal for a New Block Encryption
Standard”. In: EUROCRYPT. Vol. 473. Lecture Notes in Computer Science.
Springer, 1990.

[15] David J. Wheeler and Roger M. Needham. “TEA, a Tiny Encryption Algo-
rithm”. In: FSE. Vol. 1008. Lecture Notes in Computer Science. Springer,
1994.

[16] Roger Needham and David Wheeler. Tea extensions. Tech. rep. Computer
Laboratory, University of Cambridge, 1997.

[17] Eli Biham, Alex Biryukov, and Adi Shamir. “Cryptanalysis of Skipjack
Reduced to 31 Rounds Using Impossible Differentials”. In: EUROCRYPT.
Vol. 1592. Lecture Notes in Computer Science. Springer, 1999.

[18] Lars Knudsen. “DEAL-a 128-bit block cipher”. In: complexity 258.2 (1998),
p. 216.

47

[19] Alex Biryukov and Vesselin Velichkov. “Automatic search for differential
trails in ARX ciphers”. In: Cryptographers’ Track at the RSA Conference.
Springer. 2014.

[20] Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. “Automatic search
for the best trails in ARX: application to block cipher speck”. In: Interna-
tional Conference on Fast Software Encryption. Springer. 2016, pp. 289–
310.

[21] Mitsuru Matsui. “On correlation between the order of S-boxes and the
strength of DES”. In: Workshop on the Theory and Application of of
Cryptographic Techniques. Springer. 1994.

[22] Nicky Mouha and Bart Preneel. “Towards Finding Optimal Differential
Characteristics for ARX: Application to Salsa20”. In: IACR Cryptology
ePrint Archive 2013 (2013), p. 328.

[23] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. “MILP-Based
Automatic Search Algorithms for Differential and Linear Trails for Speck”.
In: Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers. 2016.

[24] Yu Sasaki and Yosuke Todo. “New Impossible Differential Search Tool
from Design and Cryptanalysis Aspects - Revealing Structural Properties
of Several Ciphers”. In: EUROCRYPT (3). Vol. 10212. Lecture Notes in
Computer Science. 2017.

[25] Jiongjiong Ren and Shaozhen Chen. “Cryptanalysis of reduced-round
SPECK”. In: IEEE Access 7 (2019), pp. 63045–63056.

[26] Tingting Cui, Shiyao Chen, Kai Fu, Meiqin Wang, and Keting Jia. “New
automatic tool for finding impossible differentials and zero-correlation linear
approximations”. In: SCIENCE CHINA-INFORMATION SCIENCES 64.2
(2021).

[27] Clark Barrett and Cesare Tinelli. “Satisfiability Modulo Theories”. In:
Handbook of Model Checking. Springer, 2018, pp. 305–343.

[28] Andrea Lodi. “Mixed Integer Programming Computation”. In: 50 Years of
Integer Programming. Springer, 2010.

[29] Stefan Kölbl and Hosein Hadipour. CryptoSMT: An easy to use tool for
cryptanalysis of symmetric primitives based on SMT/SAT solvers. url:
https://github.com/kste/cryptosmt.

[30] Helger Lipmaa and Shiho Moriai. “Efficient Algorithms for Computing
Differential Properties of Addition”. In: Fast Software Encryption, 8th
International Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001,
Revised Papers. 2001.

[31] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. “Observations on the
SIMON Block Cipher Family”. In: Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I. 2015.

[32] Yunwen Liu, Glenn De Witte, Adrián Ranea, and Tomer Ashur. “Rotational-
XOR Cryptanalysis of Reduced-round SPECK”. In: IACR Trans. Symmet-
ric Cryptol. 2017.3 (2017).

48

https://github.com/kste/cryptosmt

[33] Ling Song, Zhangjie Huang, and Qianqian Yang. “Automatic Differential
Analysis of ARX Block Ciphers with Application to SPECK and LEA”. In:
Information Security and Privacy - 21st Australasian Conference, ACISP
2016, Melbourne, VIC, Australia, July 4-6, 2016, Proceedings, Part II.
2016.

[34] Alexis Warner Machado. “Differential Probability of Modular Addition with
a Constant Operand”. In: IACR Cryptology ePrint Archive 2001 (2001),
p. 52.

[35] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. “Complexity of
Fixed-Size Bit-Vector Logics”. In: Theory Comput. Syst. 59.2 (2016).

[36] Jr. Henry S. Warren. Hacker’s delight. Addison-Wesley, 2003.
[37] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryp-

tosystems”. In: J. Cryptology 4.1 (1991).
[38] John Kelsey, Bruce Schneier, and David A. Wagner. “Key-Schedule Crypt-

analysis of IDEA, G-DES, GOST, SAFER, and Triple-DES”. In: CRYPTO.
Vol. 1109. Lecture Notes in Computer Science. Springer, 1996.

[39] Robert S. Winternitz and Martin E. Hellman. “Chosen-Key Attacks on a
Block Cipher”. In: Cryptologia 11.1 (1987).

[40] Xuejia Lai, James L. Massey, and Sean Murphy. “Markov Ciphers and
Differential Cryptanalysis”. In: EUROCRYPT. Vol. 547. Lecture Notes in
Computer Science. Springer, 1991.

[41] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
“Automatic Security Evaluation and (Related-key) Differential Characteris-
tic Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other
Bit-Oriented Block Ciphers”. In: Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of
Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., Decem-
ber 7-11, 2014. Proceedings, Part I. 2014.

[42] Siwei Sun, David Gerault, Pascal Lafourcade, Qianqian Yang, Yosuke Todo,
Kexin Qiao, and Lei Hu. “Analysis of AES, SKINNY, and Others with
Constraint Programming”. In: IACR Trans. Symmetric Cryptol. 2017.1
(2017).

[43] Jean Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. “Anal-
ysis of NORX: Investigating Differential and Rotational Properties”. In:
LATINCRYPT. Vol. 8895. Lecture Notes in Computer Science. Springer,
2014.

[44] Helger Lipmaa. “On Differential Properties of Pseudo-Hadamard Transform
and Related Mappings”. In: Progress in Cryptology - INDOCRYPT 2002,
Third International Conference on Cryptology in India, Hyderabad, India,
December 16-18, 2002. Ed. by Alfred Menezes and Palash Sarkar. Vol. 2551.
Lecture Notes in Computer Science. Springer, 2002.

[45] Elnaz Bagherzadeh and Zahra Ahmadian. “MILP-Based Automatic Dif-
ferential Searches for LEA and HIGHT”. In: IACR Cryptol. ePrint Arch.
2018 (2018), p. 948.

49

[46] Ernst Schulte-Geers. “On CCZ-equivalence of addition mod 2n”. In: Designs,
Codes and Cryptography 66.1-3 (2013).

[47] John N Mitchell. “Computer multiplication and division using binary
logarithms”. In: IRE Transactions on Electronic Computers 4 (1962).

[48] Aina Niemetz, Mathias Preiner, and Armin Biere. “Boolector 2.0 system de-
scription”. In: Journal on Satisfiability, Boolean Modeling and Computation
9 (2015), pp. 53–58.

[49] Vijay Ganesh and David L. Dill. “A Decision Procedure for Bit-Vectors and
Arrays”. In: CAV. Vol. 4590. Lecture Notes in Computer Science. Springer,
2007.

[50] David A. Wagner. “The Boomerang Attack”. In: Fast Software Encryption,
6th International Workshop, FSE ’99, Rome, Italy, March 24-26, 1999,
Proceedings. 1999.

[51] Eli Biham, Orr Dunkelman, and Nathan Keller. “The Rectangle Attack -
Rectangling the Serpent”. In: Advances in Cryptology - EUROCRYPT 2001,
International Conference on the Theory and Application of Cryptographic
Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding. 2001.

[52] Adrián Ranea, Yunwen Liu, and Tomer Ashur. “An Easy-to-Use Tool for
Rotational-XOR Cryptanalysis of ARX Block Ciphers”. In: Proceedings of
the Romanian Academy, Series A 18.3 (2017).

[53] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık,
Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason
K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger,
Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik
Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán
Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman,
and Anthony Scopatz. “SymPy: symbolic computing in Python”. In: PeerJ
Computer Science 3 (Jan. 2017), e103. issn: 2376-5992.

[54] Marco Gario and Andrea Micheli. “PySMT: a solver-agnostic library for
fast prototyping of SMT-based algorithms”. In: SMT Workshop 2015. 2015.

[55] Liana Hadarean, Antti Hyvarinen, Aina Niemetz, and Giles Reger. 14th
International Satisfiability Modulo Theories Competition (SMT-COMP
2019). 2019. url: https://smt-comp.github.io/2019/.

[56] Jiqiang Lu. “Related-key rectangle attack on 36 rounds of the XTEA block
cipher”. In: Int. J. Inf. Sec. 8.1 (2009).

[57] Eunjin Lee, Deukjo Hong, Donghoon Chang, Seokhie Hong, and Jongin
Lim. “A Weak Key Class of XTEA for a Related-Key Rectangle Attack”.
In: VIETCRYPT. Vol. 4341. Lecture Notes in Computer Science. Springer,
2006.

[58] Jiqiang Lu. “Cryptanalysis of Reduced Versions of the HIGHT Block
Cipher from CHES 2006”. In: Information Security and Cryptology - ICISC
2007, 10th International Conference, Seoul, Korea, November 29-30, 2007,
Proceedings. 2007.

[59] Bonwook Koo, Deukjo Hong, and Daesung Kwon. “Related-Key Attack on
the Full HIGHT”. In: Information Security and Cryptology - ICISC 2010 -

50

https://smt-comp.github.io/2019/

13th International Conference, Seoul, Korea, December 1-3, 2010, Revised
Selected Papers. 2010.

[60] Jongsung Kim, Guil Kim, Seokhie Hong, Sangjin Lee, and Dowon Hong.
“The related-key rectangle attack, application to SHACAL-1”. In: Aus-
tralasian Conference on Information Security and Privacy. Springer. 2004.

[61] Orr Dunkelman, Nathan Keller, and Jongsung Kim. “Related-key rectangle
attack on the full SHACAL-1”. In: International Workshop on Selected
Areas in Cryptography. Springer. 2006.

[62] Gaoli Wang, Nathan Keller, and Orr Dunkelman. “The delicate issues of
addition with respect to XOR differences”. In: International Workshop on
Selected Areas in Cryptography. Springer. 2007.

[63] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. “Related-
key rectangle attack on 42-round SHACAL-2”. In: International Conference
on Information Security. Springer. 2006.

[64] Alex Biryukov, Mario Lamberger, Florian Mendel, and Ivica Nikolić.
“Second-order differential collisions for reduced SHA-256”. In: International
Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2011.

[65] Asli Darbuka. “Related-key attacks on block ciphers. Master’s Thesis”.
MA thesis. Middle East Technical University, 2009.

[66] Onur Özen, Kerem Varıcı, Cihangir Tezcan, and Çelebi Kocair. “Lightweight
block ciphers revisited: Cryptanalysis of reduced round PRESENT and
HIGHT”. In: Australasian Conference on Information Security and Privacy.
Springer. 2009.

[67] Shao Ping Yang, Yu Pu Hu, and Ming Fu Zhong. “Related-key impossible
differential attacks on 31-round SHACAL-2”. In: Journal on Communica-
tions 28.11A (2006), pp. 54–58.

[68] John Kelsey, Bruce Schneier, and David A. Wagner. “Related-key crypt-
analysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA”.
In: ICICS. Vol. 1334. Lecture Notes in Computer Science. Springer, 1997.

[69] Information technology, Security techniques, Encryption algorithms, Part
3: Block ciphers. Standard. International Organization for Standardization,
Mar. 2010.

[70] FIPS. “Secure Hash Standard”. In: Federal Information Processing Stan-
dards Publication 180-1 (1995).

[71] Helena Handschuh, Lars R Knudsen, and Matthew J Robshaw. “Analysis
of SHA-1 in encryption mode”. In: Cryptographers’ Track at the RSA
Conference. Springer. 2001.

[72] NESSIE. New European Schemes for Signatures, Integrity and Encryption.
url: https://www.cosic.esat.kuleuven.be/nessie/index.html.

[73] Helena Handschuh and David Naccache. “SHACAL: a family of block
ciphers”. In: Submission to the NESSIE project (2002).

[74] Seokhie Hong, Jongsung Kim, Sangjin Lee, and Bart Preneel. “Related-key
rectangle attacks on reduced versions of SHACAL-1 and AES-192”. In:
International Workshop on Fast Software Encryption. Springer. 2005.

51

https://www.cosic.esat.kuleuven.be/nessie/index.html

[75] FIPS. “Secure Hash Standard”. In: Federal Information Processing Stan-
dards Publication 180-4 (2015).

52

A Characteristics

We describe the characteristics covering most rounds that we obtained in Section 5.
For each characteristic, we provide the difference of the master key words ∆mk,
the difference of the plaintext words ∆p and the difference of the ciphertext
words ∆c. Furthermore, for each round i = 0, 1, . . . of the cipher, we provide
the difference of the i-th round key words, the output difference of the i-th
round function ∆xi

, the (cumulative) weight of the operations that compute the
i-th round key words wki and the weight of the i-th round function wxi . The
differences are given in hexadecimal values.

53

Table 9. The 60-round strong related-key characteristic of TEA.

i-th round ∆xi
wxi

0 (0x00000000, 0x80000000) 0
1 (0x80000000, 0x00000000) 1
2 (0x00000000, 0x80000000) 0
3 (0x80000000, 0x00000000) 1
4 (0x00000000, 0x80000000) 0
5 (0x80000000, 0x00000000) 1
6 (0x00000000, 0x80000000) 0
7 (0x80000000, 0x00000000) 1
8 (0x00000000, 0x80000000) 0
9 (0x80000000, 0x00000000) 1
10 (0x00000000, 0x80000000) 0
11 (0x80000000, 0x00000000) 1
12 (0x00000000, 0x80000000) 0
13 (0x80000000, 0x00000000) 1
14 (0x00000000, 0x80000000) 0
15 (0x80000000, 0x00000000) 1
16 (0x00000000, 0x80000000) 0
17 (0x80000000, 0x00000000) 1
18 (0x00000000, 0x80000000) 0
19 (0x80000000, 0x00000000) 1
20 (0x00000000, 0x80000000) 0
21 (0x80000000, 0x00000000) 1
22 (0x00000000, 0x80000000) 0
23 (0x80000000, 0x00000000) 1
24 (0x00000000, 0x80000000) 0
25 (0x80000000, 0x00000000) 1
26 (0x00000000, 0x80000000) 0
27 (0x80000000, 0x00000000) 1
28 (0x00000000, 0x80000000) 0
29 (0x80000000, 0x00000000) 1
30 (0x00000000, 0x80000000) 0
31 (0x80000000, 0x00000000) 1
32 (0x00000000, 0x80000000) 0
33 (0x80000000, 0x00000000) 1
34 (0x00000000, 0x80000000) 0
35 (0x80000000, 0x00000000) 1
36 (0x00000000, 0x80000000) 0
37 (0x80000000, 0x00000000) 1
38 (0x00000000, 0x80000000) 0
39 (0x80000000, 0x00000000) 1
40 (0x00000000, 0x80000000) 0
41 (0x80000000, 0x00000000) 1
42 (0x00000000, 0x80000000) 0
43 (0x80000000, 0x00000000) 1
44 (0x00000000, 0x80000000) 0
45 (0x80000000, 0x00000000) 1
46 (0x00000000, 0x80000000) 0
47 (0x80000000, 0x00000000) 1
48 (0x00000000, 0x80000000) 0
49 (0x80000000, 0x00000000) 1
50 (0x00000000, 0x80000000) 0
51 (0x80000000, 0x00000000) 1
52 (0x00000000, 0x80000000) 0
53 (0x80000000, 0x00000000) 1
54 (0x00000000, 0x80000000) 0
55 (0x80000000, 0x00000000) 1
56 (0x00000000, 0x80000000) 0
57 (0x80000000, 0x00000000) 1
58 (0x00000000, 0x80000000) 0
59 (0x80000000, 0x00000000) 1

Total 30

∆p (0x80000000, 0x00000000)
∆c (0x80000000, 0x00000000)
∆mk (0x00000000, 0x00000000, 0x00000000, 0x84000000)

Table 10. The three full-round related-key characteristics with total weight 0 of TEA.

∆mk ∆p ∆c

(0x80000000, 0x80000000, 0x80000000, 0x80000000) (0x00000000, 0x00000000) (0x00000000, 0x00000000)
(0x00000000, 0x00000000, 0x80000000, 0x80000000) (0x00000000, 0x00000000) (0x00000000, 0x00000000)
(0x80000000, 0x80000000, 0x00000000, 0x00000000) (0x00000000, 0x00000000) (0x00000000, 0x00000000)

54

Table 11. The 18-round strong related-key characteristic of XTEA.

i-th round ∆ki
wki

∆xi
wxi

0 0x00000000 0 (0x00010000, 0x44200000) 9
1 0x00000000 0 (0x44200000, 0x04000000) 6
2 0x00000000 0 (0x04000000, 0x80000000) 6
3 0x80000000 0 (0x80000000, 0x00000000) 2
4 0x80000000 0 (0x00000000, 0x00000000) 0
5 0x00000000 0 (0x00000000, 0x00000000) 0
6 0x00000000 0 (0x00000000, 0x00000000) 0
7 0x00000000 0 (0x00000000, 0x00000000) 0
8 0x00000000 0 (0x00000000, 0x00000000) 0
9 0x00000000 0 (0x00000000, 0x00000000) 0
10 0x00000000 0 (0x00000000, 0x00000000) 0
11 0x00000000 0 (0x00000000, 0x00000000) 0
12 0x80000000 0 (0x00000000, 0x80000000) 0
13 0x80000000 0 (0x80000000, 0x04000000) 2
14 0x00000000 0 (0x04000000, 0x44200000) 6
15 0x00000000 0 (0x44200000, 0x00010000) 6
16 0x00000000 0 (0x00010000, 0xc4310800) 9
17 0x00000000 0 (0xc4310800, 0x01010040) 11

Total 0 57

∆p (0xc4310800, 0x00010000)
∆c (0xc4310800, 0x01010040)
∆mk (0x00000000, 0x00000000, 0x80000000, 0x00000000)

Table 12. The 27-round weak related-key characteristic of XTEA.

i-th round ∆ki
wki

∆xi
wxi

0 0x00000000 0 (0x00000000, 0x00000000) 0
1 0x80000000 0 (0x00000000, 0x80000000) 0
2 0x80000000 0 (0x80000000, 0x04000000) 2
3 0x40200000 1.179 (0x04000000, 0x04000000) 4
4 0x40200000 0 (0x04000000, 0x80000000) 4
5 0x80000000 0 (0x80000000, 0x00000000) 2
6 0x80000000 0 (0x00000000, 0x00000000) 0
7 0x00000000 0 (0x00000000, 0x00000000) 0
8 0x00000000 0 (0x00000000, 0x00000000) 0
9 0x00000000 0 (0x00000000, 0x00000000) 0
10 0x80000000 0 (0x00000000, 0x80000000) 0
11 0x80000000 0 (0x80000000, 0x04000000) 2
12 0x40200000 1.006 (0x04000000, 0x04000000) 4
13 0x40200000 0.734 (0x04000000, 0x80000000) 4
14 0x80000000 0 (0x80000000, 0x00000000) 2
15 0x80000000 0 (0x00000000, 0x00000000) 0
16 0x00000000 0 (0x00000000, 0x00000000) 0
17 0x00000000 0 (0x00000000, 0x00000000) 0
18 0x80000000 0 (0x00000000, 0x80000000) 0
19 0x00000000 0 (0x80000000, 0x84000000) 2
20 0x40600000 2.067 (0x84000000, 0x80000000) 4
21 0x80000000 0 (0x80000000, 0x80000000) 2
22 0x80000000 0 (0x80000000, 0x84000000) 2
23 0xc0600000 1.907 (0x84000000, 0x80000000) 4
24 0x00000000 0 (0x80000000, 0x00000000) 2
25 0x80000000 0 (0x00000000, 0x00000000) 0
26 0x80000000 0 (0x00000000, 0x80000000) 0

Total 6.893 40

∆p (0x00000000, 0x00000000)
∆c (0x80000000, 0x00000000)
∆mk (0x00000000, 0x80000000, 0xc0200000, 0x80000000)

55

Table 13. The 15-round strong related-key characteristic of HIGHT. The round -1
corresponds to the initial key whitening.

i-th round ∆ki
wki

∆xi
wxi

-1 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x09, 0x20, 0xb8, 0xe9, 0x80, 0x00) 1
0 (0x00, 0x00, 0x80, 0x00) 0 (0x00, 0x00, 0x20, 0xb8, 0xe9, 0x80, 0x00, 0x00) 3
1 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0xb8, 0x2c, 0x80, 0x00, 0x00, 0x00) 6
2 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x2c, 0x80, 0x00, 0x00, 0x00, 0x00) 3
3 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00) 3
4 (0x00, 0x80, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
5 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
6 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
7 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
8 (0x80, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80) 0
9 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x80, 0x00) 5
10 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x90, 0xd4, 0x80, 0x00, 0x00) 1
11 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0xe9, 0x90, 0x95, 0x80, 0x00, 0x00, 0x00) 7
12 (0x00, 0x00, 0x00, 0x00) 0 (0xe9, 0x00, 0x95, 0x80, 0x00, 0x00, 0x00, 0x80) 1
13 (0x00, 0x00, 0x00, 0x80) 0 (0x00, 0xe9, 0x80, 0x00, 0x00, 0xa4, 0x80, 0xe9) 9
14 (0x00, 0x00, 0x00, 0x00) 0 (0x80, 0xe9, 0x80, 0x00, 0x89, 0xa4, 0x2b, 0xe9) 6

Total 0 45

∆p (0x00, 0x00, 0x09, 0x20, 0xb8, 0xe9, 0x80, 0x00)
∆c (0x80, 0xe9, 0x80, 0x00, 0x89, 0xa4, 0x2b, 0xe9)
∆mk (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00)

Table 14. The 14-round weak related-key characteristic of HIGHT. The round -1
corresponds to the initial key whitening.

i-th round ∆ki
wki

∆xi
wxi

-1 (0x00, 0x00, 0x00, 0x40) 0 (0x62, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 1
0 (0x40, 0x00, 0x00, 0x00) 0.791 (0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 2
1 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0) 0
2 (0x00, 0x00, 0x00, 0x3a) 1.0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00) 0
3 (0x00, 0x00, 0x00, 0x40) 0.752 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 1
4 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
5 (0x00, 0x00, 0x00, 0x40) 0.791 (0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00) 1
6 (0x00, 0x00, 0x2e, 0x00) 4.0 (0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00, 0x00) 5
7 (0x00, 0x00, 0x40, 0x00) 1.093 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 1
8 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
9 (0x00, 0x00, 0xc0, 0x00) 0.046 (0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00) 1
10 (0x00, 0x16, 0x00, 0x00) 4.0 (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00) 0
11 (0x00, 0x40, 0x00, 0x00) 0.142 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 1
12 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) 0
13 (0x00, 0x00, 0xc0, 0x00) 0.476 (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00) 1

Total 13.091 14

∆p (0x62, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40)
∆c (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00)
∆mk (0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x7a, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00)

Table 15. The 7-round weak related-key characteristic of LEA.

i-th round ∆ki wki ∆xi wxi

0 (0x20000000, 0x00000000, 0x00000000, 0x00000000) 0.408 (0x80000000, 0x40000000, 0xc0000010, 0x4000000c) 14
1 (0x40000000, 0x00000000, 0x00000000, 0x00000000) 0.462 (0x00000000, 0x80000000, 0x80000000, 0x80000000) 7
2 (0x80000000, 0x00000000, 0x00000000, 0x00000000) 0.695 (0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
3 (0x00000001, 0x00000000, 0x00000000, 0x00000000) 0 (0x00000200, 0x00000000, 0x00000000, 0x00000000) 1
4 (0x00000002, 0x00000000, 0x00000000, 0x00000000) 0 (0x00040400, 0x00000000, 0x00000000, 0x00000200) 2
5 (0x00000004, 0x00000000, 0x00000000, 0x00000000) 0 (0x08080800, 0x00000000, 0x00000040, 0x00040400) 4
6 (0x00000008, 0x00000000, 0x00000000, 0x00000000) 1.0 (0x10101010, 0x00000002, 0x00008088, 0x08080800) 8

Total 2.565 36

∆p (0x4000000c, 0x2040000c, 0x20400004, 0x20400082)
∆c (0x10101010, 0x00000002, 0x00008088, 0x08080800)
∆mk (0x10000000, 0x00000000, 0x00000000, 0x00000000)

56

Table 16. The 30-round strong related-key characteristic of SHACAL-1.

i-th
∆ki

wki
∆xi

wxiround

0 0x80000000 0 (0x00000000, 0x00000002, 0x00000000, 0x80100008, 0x00008000) 7
1 0x80000000 0 (0x00008000, 0x00000000, 0x80000000, 0x00000000, 0x80100008) 5
2 0x00000000 0 (0x00000008, 0x00008000, 0x00000000, 0x80000000, 0x00000000) 5
3 0x00000000 0 (0x00000100, 0x00000008, 0x00002000, 0x00000000, 0x80000000) 5
4 0x80000000 0 (0x00000008, 0x00000100, 0x00000002, 0x00002000, 0x00000000) 6
5 0x00000000 0 (0x00000102, 0x00000008, 0x00000040, 0x00000002, 0x00002000) 8
6 0x00000000 0 (0x00000000, 0x00000102, 0x00000002, 0x00000040, 0x00000002) 8
7 0x00000000 0 (0x00000000, 0x00000000, 0x80000040, 0x00000002, 0x00000040) 5
8 0x80000000 0 (0x00000000, 0x00000000, 0x00000000, 0x80000040, 0x00000002) 5
9 0x00000000 0 (0x00000002, 0x00000000, 0x00000000, 0x00000000, 0x80000040) 3
10 0x80000000 0 (0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000) 3
11 0x00000000 0 (0x00000000, 0x00000000, 0x80000000, 0x00000000, 0x00000000) 1
12 0x80000000 0 (0x00000000, 0x00000000, 0x00000000, 0x80000000, 0x00000000) 1
13 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000) 1
14 0x80000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
15 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
16 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
17 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
18 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
19 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
20 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
21 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
22 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
23 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
24 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
25 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
26 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
27 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
28 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
29 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0

Total 0 63

∆p (0x00000002, 0x00000000, 0x80100008, 0x00008000, 0x80000040)

∆c (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000)

∆mk (0x80000000, 0x80000000, 0x00000000, 0x00000000,

0x80000000, 0x00000000, 0x00000000, 0x00000000,

0x80000000, 0x00000000, 0x80000000, 0x00000000,

0x80000000, 0x00000000, 0x80000000, 0x00000000)

57

Table 17. The 25-round weak related-key characteristic of SHACAL-1.

i-th
∆ki

wki
∆xi

wxiround

0 0x00000000 0 (0x00000000, 0x00000000, 0x80000040, 0x00000002, 0x80000000) 3
1 0x80000000 0 (0x00000000, 0x00000000, 0x00000000, 0x80000040, 0x00000002) 3
2 0x00000000 0 (0x00000002, 0x00000000, 0x00000000, 0x00000000, 0x80000040) 3
3 0x80000000 0 (0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000) 3
4 0x00000000 0 (0x00000000, 0x00000000, 0x80000000, 0x00000000, 0x00000000) 1
5 0x80000000 0 (0x00000000, 0x00000000, 0x00000000, 0x80000000, 0x00000000) 1
6 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000) 1
7 0x80000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
8 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
9 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
10 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
11 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
12 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
13 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
14 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
15 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
16 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
17 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
18 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
19 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
20 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
21 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
22 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 0
23 0x00000003 1 (0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000) 4
24 0x00000000 0 (0x00000020, 0x00000001, 0x00000000, 0x00000000, 0x00000000) 3

Total 1 22

∆p (0x00000000, 0x00000102, 0x00000002, 0x80000000, 0x80000000)

∆c (0x00000020, 0x00000001, 0x00000000, 0x00000000, 0x00000000)

∆mk (0x00000000, 0x80000000, 0x00000000, 0x80000000,

0x00000000, 0x80000000, 0x00000000, 0x80000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000)

58

Table 18. The 23-round strong related-key characteristic of SHACAL-2.

i-th
∆ki wki ∆xi wxiround

0 0x00000000 0
(0x00000000, 0x00000000, 0x221c0240, 0x80000000,

12
0x00000000, 0x00082200, 0x20040000, 0x80000000)

1 0x00000000 0
(0x80000000, 0x00000000, 0x00000000, 0x221c0240,

26
0x00000000, 0x00000000, 0x00082200, 0x20040000)

2 0x00000000 0
(0x00000000, 0x80000000, 0x00000000, 0x00000000,

7
0x02100040, 0x00000000, 0x00000000, 0x00082200)

3 0x00000000 0
(0x00000000, 0x00000000, 0x80000000, 0x00000000,

4
0x00000000, 0x02100040, 0x00000000, 0x00000000)

4 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x80000000,

3
0x00000000, 0x00000000, 0x02100040, 0x00000000)

5 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

4
0x80000000, 0x00000000, 0x00000000, 0x02100040)

6 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

1
0x00000000, 0x80000000, 0x00000000, 0x00000000)

7 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

1
0x00000000, 0x00000000, 0x80000000, 0x00000000)

8 0x80000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x80000000)

9 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

10 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

3
0x00000000, 0x00000000, 0x00000000, 0x00000000)

11 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

12 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

13 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

14 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

15 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

16 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

17 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

18 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

19 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

20 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

21 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

22 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

Total 0 58

∆p (0x00000000, 0x00000000, 0x221c0240, 0x80000000,

0x00000000, 0x00082200, 0x20040000, 0x80000000)

∆c (0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000)

∆mk (0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x80000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000)

59

Table 19. The 22-round weak related-key characteristic of SHACAL-2.

i-th
∆ki wki ∆xi wxiround

0 0x00000000 0
(0x00000000, 0x00020000, 0x00000000, 0x00000000,

6
0x01000840, 0x00000000, 0x00000000, 0x88000020)

1 0x00000000 0
(0x00000000, 0x00000000, 0x00020000, 0x00000000,

4
0x00000000, 0x01000840, 0x00000000, 0x00000000)

2 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00020000,

4
0x00000000, 0x00000000, 0x01000840, 0x00000000)

3 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

4
0x00020000, 0x00000000, 0x00000000, 0x01000840)

4 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

1
0x00000000, 0x00020000, 0x00000000, 0x00000000)

5 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

1
0x00000000, 0x00000000, 0x00020000, 0x00000000)

6 0x00020000 0.405
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

3
0x00000000, 0x00000000, 0x00000000, 0x00020000)

7 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

8 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

9 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

10 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

11 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

12 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

3
0x00000000, 0x00000000, 0x00000000, 0x00000000)

13 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

14 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

15 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

16 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

17 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

18 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

19 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

20 0x00000000 0
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

0
0x00000000, 0x00000000, 0x00000000, 0x00000000)

21 0x80004400 6.262
(0x00000000, 0x00000000, 0x00000000, 0x00000000,

6
0x00000000, 0x00000000, 0x00000000, 0x00000000)

Total 6.67 29

∆p (0x00000000, 0x00020000, 0x00000000, 0x00000000,

0x01000840, 0x00000000, 0x00000000, 0x88000020)

∆c (0x80004400, 0x00000000, 0x00000000, 0x00000000,

0x80004400, 0x00000000, 0x00000000, 0x00000000)

∆mk (0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00020000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000)

60

	A Bit-Vector Differential Model for the Modular Addition by a Constant and its Applications to Differential and Impossible-Differential Cryptanalysis

