
Characteristic Automated Search
of Cryptographic Algorithms
for Distinguishing Attacks

(CASCADA)

Adrián Ranea1 and Vincent Rijmen1

imec-COSIC, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

Abstract Automated search methods based on Satisfiability Modulo
Theories (SMT) problems are being widely used to evaluate the security
of block ciphers against distinguishing attacks. While these methods
provide a systematic and generic methodology, most of their software
implementations are limited to a small set of ciphers and attacks, and
extending these implementations requires significant effort and expertise.
In this work we present CASCADA, an open-source Python library to eval-
uate the security of cryptographic primitives, specially block ciphers,
against distinguishing attacks with bit-vector SMT solvers. The tool
CASCADA implements the bit-vector property framework herein proposed
and several SMT-based automated search methods to evaluate the secur-
ity of ciphers against differential, related-key differential, rotational-XOR,
impossible-differential, impossible-rotational-XOR, related-key impossible-
differential, linear and zero-correlation cryptanalysis. The library CASCADA

is the result of a huge engineering effort, and it provides many functional-
ities, a modular design, an extensive documentation and a complete suite
of tests.

Keywords: cryptanalysis · automated search · SMT · bit-vector theory

1 Introduction

Automated tools have gained significant traction in the last decade in the security
evaluation of cryptographic algorithms, specially block ciphers. In the design and
cryptanalysis of a block cipher, the security is evaluated by verifying that no
known attacks cannot efficiently recover the secret key of the cipher. Most cipher
attacks include an initial distinguishing attack, where a non-random property of
the cipher is exploited to distinguish the cipher from a random permutation. The
distinguishing step is followed by a key-recovery step, but finding the exploitable
property of the cipher is the hardest part to mount the attack.

Well-known examples of powerful cipher attacks including a distinguish-
ing step are differential [BS93], related-key differential [Bih94], impossible-
differential [BBS99a] and rotational-XOR (RX) [AL16] cryptanalysis, and also

linear [Mat93] and zero-correlation cryptanalysis [BR14]. The properties exploited
by (related-key) differential and (related-key) impossible-differential cryptana-
lysts are (related-key) differential objects, by RX cryptanalysis are RX difference
pairs, and by linear and zero-correlation cryptanalysis are linear approximations.
In the next section we will introduce these properties in more detail.

While these properties were traditionally searched for ad-hoc and manually,
recent works proposed the use of automated tools based on constraint satisfac-
tion problems, such as SMT (Satisfiability Modulo Theories) or MILP (Mixed
Integer Linear Programming) [MP13; Mou+11]. Automated methods model
these searches as constraint satisfaction problems and solve them with powerful
off-the-shelf solvers available nowadays [ÁK16; BT18; Lod10], freeing designers
and cryptanalysts from the effort of implementing and optimizing the search.

Unfortunately, most automated methods published in the literature do not
provide software implementations [SHY16; LWR16; Abd+17; ST17; Yin+17;
Wan+18; Roh+19] or provide narrow implementations that are specific to a cipher
and a distinguishing attack [Mou+11; MP13; Sun+14; Lu+20], and extending
these implementations to other ciphers or attacks require significant effort and
expertise.

The notable exceptions are the SMT-based tools CryptoSMT [Ste] and ArxPy

[Ran]. Both libraries support many block ciphers and several distinguishing
attacks, namely differential and linear cryptanalysis in CryptoSMT and (related-
key) differential, RX, and (related-key) impossible-differential in ArxPy, and they
have been used in multiple works, e.g., [KLT15; AK18; AL18; Had+19] or [RLA17;
KPR20; Azi+20; Azi+22]. However, these two libraries present severe limitations.
For example, CryptoSMT lacks code documentation and tests, and adding a new
cipher in CryptoSMT requires significant expertise and effort as one needs to
implement the differential and linear SMT models of the cipher. The tool ArxPy
does not suffer from these limitations, but only supports Addition-Rotation-XOR
(ARX) ciphers and does not support linear or zero-correlation cryptanalysis.

Contributions. In this work we present CASCADA [Ran22] (Characteristic Auto-
mated Search of Cryptographic Algorithms for Distinguishing Attacks), an
open-source Python library to evaluate the security of block ciphers and other
cryptographic primitives against several distinguishing attacks by searching for
exploitable properties using bit-vector SMT solvers. CASCADA is available at
https://github.com/ranea/CASCADA.

The library CASCADA is based on ArxPy, but only a third of CASCADA’s source
code derives from ArxPy and CASCADA implements more automated methods and
distinguishing attacks, supports a wider class of block ciphers and primitives,
and improves the code, documentation and tests.

The tool CASCADA implements the search for differentials, RX difference pairs
and linear approximations to be used in differential, related-key differential,
impossible-differential, related-key impossible-differential, RX, impossible-RX,
linear, and zero-correlation cryptanalysis. The automated search for these prop-
erties is implemented in CASCADA following the bit-vector property framework
herein proposed, so that other distinguishing attacks can be easily added.

https://github.com/ranea/CASCADA

Four automated search methods based on bit-vector SMT problems are
implemented in CASCADA. Three of these methods are the generalization of
previous work [MP13; ST17; Azi+22] to the bit-vector property framework, and
the fourth method is a new automated search method based on quantified SMT
problems.

The open-source library CASCADA is the result of a huge engineering effort
aiming to provide a state-of-the-art tool to evaluate a wide class of cryptographic
algorithms against many distinguishing attacks. To this end, CASCADA features
a modular design, an extensive documentation and a complete suite of tests
so that CASCADA is not only easy to use but also to extend by designers and
cryptanalysts.

Outline. In Sect. 2 the preliminaries are introduced, and in Sect. 3 the bit-vector
property framework is presented. Automated methods based on bit-vector SMT
problems are explained in Sect. 4, and Sect. 5 describes the functionality and
implementation of CASCADA.

2 Preliminaries

2.1 Bit-vector SMT Problems

A bit-vector expression is a bit-vector constant, a bit-vector variable or a bit-
vector operation with bit-vector expressions as inputs. Bit-vector constants are
interpreted as unsigned integers in base 2; the n-bit vector x = bn−1 · · · b1b0
denotes the non-negative integer b0 + 2b1 + · · · + 2n−1bn−1. The i-th bit of x, bi,
is also denoted by x[i], where x[0] = b0 denotes the Least Significant Bit (LSB)
and x[n− 1] = bn−1 denotes the Most Significant Bit (MSB). We consider here
the following bit-vector operations and notations:

– The concatenation and extraction of bit-vectors.
– The bit-wise logical operations: negation ¬, conjunction ∧, disjunction ∨,

and exclusive-or (XOR) ⊕.
– The shift operations: left shift ≪, (logical) right shift ≫, circular left rotation

≪ and circular right rotation ≫.
– The arithmetical operations: modular addition ⊞, modular subtraction ⊟,

modular multiplication, ⊠ unsigned truncated division operation ÷ and
unsigned remainder (modulus) operation %.

– The relational operations: =, <,>,≤ and ≥.
– The if-then-else operator Ite(b, x, y), returning x if b is equal to the bit 0 and

otherwise returning y.

A bit-vector formula or constraint is a bit-vector expression returning a single
bit, where the bit 0 denotes the truth value False and the bit 1 denotes True.
A bit-vector formula is satisfiable if there is an assignment of the variables that
makes the formula True.

Satisfiability Modulo Theories (SMT) refers to the problem of determining
whether a first order formula is satisfiable with respect to some logical theory

[ÁK16; BT18]. SMT problems can be seen as a generalization of SAT problems;
the latter problems are expressed in propositional logic, and SMT problems are
given in richer logics such as the theory of integers or the theory of bit-vectors.

An SMT problem defined in the bit-vector theory, or simply a bit-vector SMT
problem, is given by a list of bit-vector variables, each one associated with the
existential ∃ or for-all ∀ quantifier, and a list of bit-vector constraints including
these variables. An SMT problem where the quantifiers are not specified is called
a quantifier-free problem, and it is equisatisfiable to the same SMT problem with
existential quantifiers. On the other hand, SMT problems combining existential
and for-all quantifiers are called quantified problems, and these are much harder
to solve [Rey16].

For example, given the function fk(x, y) =
(
((x ≫ 7) ⊞ y) ⊕ k, (y ≪

2) ⊕ (((x ≫ 7) ⊞ y) ⊕ k)
)

with x, y, k ∈ {0, 1}16, the decision problem of
determining whether there exists an assignment of k such that fk(0, 0) = (0, 0)
can be written as the following bit-vector SMT problem

∃x, y,k, x′, y′ ∈ {0, 1}16 :

x′ = ((x ≫ 7) ⊞ y) ⊕ k

y′ = (y ≪ 2) ⊕ x′

0 = x ∨ y ∨ x′ ∨ y′ .

Software tools that determine the satisfiability of SMT problems are called
SMT solvers. In the past two decades, SMT solvers have grown in popularity
due to technological advances and industrial applications in software engineering,
optimization, and many other areas [MB11]. On top of that, many state-of-the-art
and open-source SMT solvers are available nowadays such as Boolector [NPB14]
or STP [GD07], among others.

SMT solvers not only can determine the satisfiability of an SMT problem
but also find an assignment of the variables that satisfies the problem. This
feature allows SMT solvers to be used in search problems. Following our previous
bit-vector SMT example, by using an SMT solver supporting the bit-vector
theory, we could first check whether the problem is satisfiable, and in that case,
find a value of k that makes fk(0, 0) = (0, 0).

Most SMT solvers supporting the bit-vector theory support the bit-vector
core theory of the SMT-LIB Standard 2.0 [BST10]. This standard includes most
of the bit-vector operations herein considered, and the ones that are not included
(e.g., Ite) can be easily defined from the operations in the standard. Thus, we
consider here bit-vector SMT problems built from our list of bit-vector operations,
and these SMT problems can be given to any SMT solver supporting SMT-LIB
Standard 2.0, such as Boolector or STP.

2.2 Distinguishing Attacks on Block Ciphers

A block cipher is a family of permutations {Ek}k parametrized by a key k ∈ K,
where Ek maps n-bit plaintexts to n-bit ciphertexts, and both Ek and E−1

k can

be efficiently computed. In an iterated block cipher, the encryption function Ek

is built as the composition of round functions, i.e., Ek = fr−1 ◦ fr−2 ◦ · · · ◦ f0,
where a list of round keys are derived from a key-scheduling algorithm KS(k) =
(k0, k1, . . . , kr−1) and the i-th round key ki is injected in the i-th round function
fi.

Informally, the security of a block cipher is argued by showing that known
attacks cannot efficiently recover the key. Most of the powerful attacks against
block ciphers contain a distinguishing attack, where a non-random property of
the cipher is exploited to distinguish the cipher from a random permutation. The
distinguishing attack is usually followed by a key-recovery attack, but finding
the exploitable property for the distinguishing attack is the crucial part and the
focus of this work.

The properties exploited in differential cryptanalysis are differentials (α, β)
over the encryption function Ek with high expected differential probability. Given
a differential (α, β) over f , its differential probability is given by

#{x : f(x△α)▽ f(x) = β}/2n , (1)

where usually △ = ⊕ = ▽. The operator ▽ computes the difference of a pair of
values (x, x′), and the operator △ takes as inputs a value x and a difference α
and outputs the value x′ such that the pair (x, x′) has difference α.

The expected differential probability p is the differential probability averaged
over the key space K,

p =
1

|K|
∑
k∈K

#{x : f(x△α)▽ f(x) = β}/2n ,

and the complexity of differential cryptanalysis is O(1/p) [BS93]. Related-key
differential cryptanalysis is a variant of differential cryptanalysis that exploits
related-key differentials (α, κ, β) with high expected related-key differential prob-
ability, where the related-key differential probability is given by

#{x : Ek△κ(x△α)▽Ek(x) = β}/2n . (2)

We refer the reader to [DR07] for a formal introduction to the notions of differential
and differential probability.

Impossible-differential cryptanalysis exploits differentials with zero differ-
ential probability for all keys, and similarly related-key impossible-differential
cryptanalysis exploits related-key differentials with zero probability. While the
complexity of (related-key) impossible-differential cryptanalysis is roughly the
cardinality of the input space, this can be significantly reduced by using multiple
zero-probability (related-key) differentials [Bou+18].

In RX cryptanalysis, the properties exploited are RX difference pairs
((α, γ), (β, γ′)) with high expected RX probability, where the RX probability over
an n-bit function f is defined as

#{x : f((x ≪ γ) ⊕ α) ⊕ (f(x) ≪ γ′) = β}/2n .

The rotational offset γ is usually fixed to 1, and in this case the RX difference
pair ((α, 1), (β, 1)) is equivalent to the differential (α, β) with {▽,△} defined as

x′ ▽x = x′ ⊕ (x ≪ 1), x △ α = (x ≪ 1) ⊕ α . (3)

In this paper, we will call RX difference pairs RX differentials, and differentials
with △= ⊕ = ▽ will be called XOR differentials.

On the other hand, linear cryptanalysis exploit linear approximations (α, β)
over the encryption function Ek with high expected linear probability or potential.
Let Cf (α, β) be the correlation of (α, β) over an n-bit function f defined as

Cf (α, β) = 2 × (#{x : ⟨α, x⟩ = ⟨β, f(x)⟩} / 2n) − 1 , (4)

where ⟨·, ·⟩ denotes the inner product. The potential p is the linear probability
(square of the correlation) averaged over the key space K,

p =
1

|K|
∑
k∈K

CEk
(α, β)2 ,

and the complexity of linear cryptanalysis is O(1/p) [Mat93].1 We refer the
reader to [DR07; ABR20] for a formal introduction to the notions of linear
approximations and correlations.

Lastly, zero-correlation cryptanalysis exploit linear approximations with zero
correlation for all keys. Similar to impossible-differential cryptanalysis, the com-
plexity of zero-correlation cryptanalysis is roughly the cardinality of the plaintext
space, and it can be reduced by using multiple zero-correlation linear approxima-
tions [BW12].

3 Bit-vector Property Framework

To model systematically the search for (related-key) XOR differentials, RX
differentials and linear approximations with bit-vector SMT problems, we will
introduce the bit-vector property framework containing the notions of bit-vector
property, bit-vector characteristic, bit-vector property model and bit-vector
characteristic model. Other frameworks unifying block cipher cryptanalysis have
also been proposed [Wag04; PS06], but our simple framework (implemented
in CASCADA) easily models the search for exploitable properties as bit-vector
automated methods.

3.1 Bit-vector Properties and Characteristics

A (bit-vector) property over a function f is a pair of bit-vectors (α, β) with
an associated propagation probability PPf (α, β) ∈ [0, 1] ⊆ R. In this case, we

1 Follow-up studies of [Mat93] (e.g., [BT13; ABR20]) provide a more accurate estimation
of the complexity of linear cryptanalysis.

also say that the input property α propagates to the output property β with
probability PPf (α, β).

For a function fk depending on external values k = (k1, k2, . . .), non-input
but unknown fixed values such as round keys, a bit-vector property over fk
can include an additional bit-vector value κ so that the propagation probability
depends not only on the input and output properties (α, β) but also on the
external property κ.

We consider here three types of properties2: the XOR difference property,
the RX difference property and the linear mask property. A difference property
(α, β) over a function f is defined as the bit-vector property (α, β) over f where
the propagation probability is given by Eqn. (1), or by Eqn. (2) and averaged
over K if f contains external values k ∈ K. XOR difference properties consider
△= ⊕ = ▽ and RX difference properties consider △ and ▽ given by Eqn. (3).

A linear mask property (α, β) over f is a bit-vector property (α, β) over f
where the propagation probability is given by the absolute value of the correlation
Cf (α, β) given by Eqn. (4) (averaged over K if f contains external values k ∈ K).

While distinguishing attacks only require the global property (α, β) and its
propagation probability, computing the propagation probability is a hard problem
for complex functions such as block ciphers. The main approach of distinguishing
attacks is to analyse the local propagation probabilities of the round functions,
to obtain a trail of local properties and to estimate the global propagation
probability as the product of the local propagation probabilities.

A (bit-vector) characteristic Γ over f = fr−1 ◦ fr−2 ◦ · · · ◦ f0 is a trail of
properties (γ0, γ1, . . . , γr) where (γi, γi+1) is a bit-vector property over fi. The
bit-vectors (γ0, γr) are also called the input and output property respectively of
Γ . The propagation probability of Γ is defined as

PPf (Γ) = PPf0(γ0, γ1) × PPf1(γ1, γ2) × · · · × PPfr−1
(γr−1, γr) .

A characteristic with XOR (resp. RX) properties is called an XOR (RX)
differential characteristic, and a characteristic with linear mask properties is
called a linear characteristic. A related-key differential characteristic over a block
cipher is a pair of differential characteristics (ΓKS, ΓEk

) with ΓKS defined over
the key-scheduling function KS and ΓEk

over the encryption function Ek such
that the (external) round key properties of ΓEk

are set to the properties of ΓKS.
Depending on the function and the property, the propagation probability

of a characteristic Γ = (γ0, γ1, . . . , γr) might not accurately approximate the
propagation probability of the global property (γ0, γr), see for example [AK18].
Nevertheless, this approximation is widely used in the design and cryptanalysis
of block ciphers (particularly ARX ciphers) due to the lack of other systematic
approaches.

2 The tool CASCADA also implements a fourth property type, the value property, where
the propagation probability of the value property (α, β) over f is 1 if β = f(α)
and 0 otherwise. The value property is not exploited by the distinguishing attacks
herein considered; it is implemented by CASCADA to mount straightforward SMT-based
key-recovery attacks.

In practice block ciphers are claimed secure against distinguishing attacks
by showing that no high-probability characteristics and zero-probability global
properties can be found, and most of the successful attacks against block ciphers
have exploited these objects as well. Thus, systematic methods searching for
these objects are crucial for the design and analysis of block ciphers.

To search for high-probability characteristics and zero-probability global
properties using bit-vector SMT problems, the propagation probabilities of
characteristics and properties need to be encoded as bit-vector constraints. To
this end, we will introduce the notions of bit-vector property model and bit-vector
characteristic model.

3.2 Bit-vector Property Model

We say a property (α, β) over a function f is valid if its propagation probability is
non-zero. In this case, we define the propagation weight of (α, β) as the negative
binary logarithm of its propagation probability, that is,

PWf (α, β) = − log2(PPf (α, β)) .

A (bit-vector) property model of f is a set of bit-vector constraints that
models the propagation weight of properties over f . A property model of f is
given by three bit-vector constraints: the validity constraint, the probability-one
constraint and the weight constraint.

– The validity constraint with inputs (α, β) is True if and only if the property
(α, β) is valid.

– The probability-one constraint with inputs (α, β) is True if and only if the
propagation probability of the property (α, β) is 1.

– The weight constraint with inputs (w,α, β) is True if and only if the bit-vector
w is equal to the propagation weight of the property (α, β).

The weight constraint is only defined for inputs (α, β) with non-zero propaga-
tion probability; the truth value of the weight constraint for invalid (α, β) does
not matter. While the probability-one constraint is equivalent to the logical AND
of the validity constraint and the weight constraint with input w = 0, for many
functions it is possible to specifically model the probability-one constraint with
a simpler formula rather than with the combination of the validity and weight
constraint.

In bit-vector SMT problems, the multiplication ⊠ is more expensive than
the addition ⊞. To avoid modelling the propagation probability of g ◦ f as the
multiplication of the local probabilities of f and g, a property model includes the
weight constraint rather than a probability constraint (a constraint with inputs
(p, α, β) being True if p is equal to the propagation probability of (α, β))). Thus,
the propagation weight of g ◦ f can be efficiently modelled as the sum of the local
propagation weights of f and g.

By default, the nw-bit input w of the weight constraint is interpreted as the
non-negative integer w[0] + 2w[1] + · · · + 2nw−1w[nw − 1]. However, since the

propagation weight can be a non-integer value for some properties and functions,
we consider weight constraints where the input w is interpreted as the rational
value 2−ℓ(w[0] + 2w[1] + · · · + 2nw−1w[nw − 1]) for a given fixed number ℓ of
fractional bits. Moreover, we also consider weight constraints that are True if
and only if |w − PWf (α, β)| < ϵ for a fixed error bound ϵ.

A property model with respect to the XOR difference, RX difference or
linear mask property is called an XOR differential, RX differential or linear
model, respectively. To the best of our knowledge, the models for these properties
published this far are the following:

– XOR differential models. Given a ⊕-linear bit-vector function f , an XOR
differential model of f is given by the validity and probability-one constraint
β = f(α) and the weight constraint w = 0. XOR differential models of the
modular addition f(x, x′) = x⊞x′ were implicitly obtained in [LM01; Sch13],
and an XOR differential model of the modular addition with a constant
⊞c(x) = x⊞ c was proposed in [Azi+20]. For the round function of the block
cipher Simon [Bea+15], fa,b,c(x) = (x ≪ a) ∧ (x ≪ b) ∧ (x ≪ c), an XOR
differential model was obtained in [KLT15].

– RX differential models. Given a ⊕-linear bit-vector function f that commutes
with ≪1, an RX differential model of f is given by the validity and probability-
one constraint β = f(α) and the weight constraint w = 0. An RX differential
model of the modular addition was proposed in [AL16], and an RX differential
of the Simon round function in [Lu+20].

– Linear models. For a ⊕-linear function f given by the binary matrix M ,
a linear model of f is given by the validity and probability-one constraint
α = M t(β) and the weight constraint w = 0. Linear models of the modular
addition were implicitly obtained in [Sch13; LWR16], and a linear model of
the Simon round function was proposed in [KLT15].

For a bit-vector function f with small input and output bitsize, one can
store the propagation weights of all properties (α, β) in a table and derive the
property model of f from this table. This approach has been originally used for
XOR differential models [Sun+14; Abd+17; SWW18; AK18], and it can easily
be generalized for any bit-vector property.

Given a function with no efficient property model, one can also model with
simple and efficient constraints a simplified variant of its propagation probability,
where the truth value of the simple constraints is not accurate for some inputs
(α, β). We consider here two types of simplified models: weak and branch-based
models.

A weak model simplifies the propagation probability by considering only four
possible propagation probabilities depending on whether α or β are zero or non-
zero. A branch-based model is similar to a weak model but with the additional
rule that a non-zero property (α, β) is considered invalid if the number of non-zero
words in α and β is strictly lower than a given fixed number B. Usually, B is
chosen as the branch number of f , that is, the minimum number of active words
among all non-zero properties over f . These simplified models were originally

used in [Mou+11] for the XOR difference and the linear mask properties, where
weak models were used for the S-boxes and branch-based models were used for
the linear layers.

3.3 Bit-vector Characteristic Model

We say a characteristic Γ = (γ0, γ1, . . . , γr) of a function f = fr−1 ◦ fr−2 ◦ · · · ◦ f0
is valid if the propagation probability of Γ is non-zero, and in this case we define
the propagation weight of Γ as

PWf (Γ) = − log2(PPf (Γ)) = PWf0(γ0, γ1) + · · · + PWfr−1
(γr−1, γr) .

A (bit-vector) characteristic model of f = fr−1 ◦ fr−2 ◦ · · · ◦ f0 is a set of
bit-vector constraints that models the propagation weight of characteristics over
f = fr−1 ◦ fr−2 ◦ · · · ◦ f0. A characteristic model is given by three bit-vector
constraints: the validity constraint, the probability-one constraint and the weight
constraint.

– The validity constraint with inputs (γ0, γ1, . . . , γr) is True if and only if the
characteristic Γ = (γ0, γ1 . . . , γr) is valid.

– The probability-one constraint with inputs (γ0, γ1, . . . , γr) is True if and only
if the propagation probability of the characteristic Γ = (γ0, γ1 . . . , γr) is 1.

– The weight constraint with inputs (w, γ0, γ1, . . . , γr) is True if and only if
the bit-vector w is equal to the propagation weight of the valid characteristic
Γ = (γ0, γ1 . . . , γr).

Given property models of the functions f0, f1, . . . and fr−1, the constraints of
the characteristic model are obtained as follows. Let VCi,POCi and WCi denote
the validity, probability-one and weight constraint, respectively, of the property
model of fi. Then, the constraints VC,POC and WC of the characteristic model
are given by

VC(γ0, . . . , γr) = VC0(γ0, γ1) ∧ · · · ∧ VCr−1(γr−1, γr)

POC(γ0, . . . , γr) = POC0(γ0, γ1) ∧ · · · ∧ POCr−1(γr−1, γr)

WC(w, γ0, . . . , γr) = ∃w0, . . . , wr−1 : (w = w0 ⊞ · · ·⊞ wr−1) ∧
WC0(w0, γ0, γ1) ∧ · · · ∧ WCr−1(wr, γr−1, γr)

Moreover, ℓ = max(ℓ0, . . . , ℓr−1) is the number of fractional bits and ϵ =
ϵ0 + · · ·+ ϵr−1 is the error bound of WC, where ℓi is the number of fractional bits
and ϵi the error bound of WCi. Note also that the bitsize of the weight variables
in WC might need to be increased (by left concatenating with zeros) to avoid
overflows in w = w0 ⊞ · · ·⊞ wr−1.

4 Bit-vector Automated Methods

In this section we describe several systematic and automated methods to search
for high-probability characteristics and zero-probability global properties by

solving a sequence of bit-vector SMT problems. Our methods generalize the
SMT-based search for differential characteristics of ARX ciphers by Mouha and
Preneel [MP13], the automated search for impossible differentials of ciphers
with small S-boxes by Sasaki and Todo [ST17], and the SMT-based miss-in-the-
middle search for related-key impossible differentials of ARX ciphers by Azimi
et al. [Azi+22]. Moreover, we propose a new automated method to search for
zero-probability global properties based of quantified bit-vector SMT problems.

These systematic methods can be applied for an arbitrary bit-vector property.
In particular, for the properties previously defined (XOR difference, RX difference
and linear mask properties), these systematic methods can be used to mount the
following cipher attacks: (related-key) differential, RX, (related-key) impossible-
differential, impossible-RX, linear and zero-correlation cryptanalysis.

While we focus here on block ciphers, it is worth to mention that these
systematic methods can also be used to search for exploitable properties over
other cryptographic primitives, as some of these distinguishing attacks have
a counterpart for Message Authentication Code (MAC) algorithms or hash
functions [BS93].

4.1 Search for Low-weight Characteristics

In this section we describe an automated method to search for low-weight
characteristics for an arbitrary bit-vector property by solving a sequence of
bit-vector SMT problems. This method generalizes the SMT-based method to
search for differential characteristic of ARX ciphers by [MP13].

Let (VC,POC,WC) be the constraints of a characteristic model of a function
f = fr−1 ◦ fr−2 ◦ · · · ◦ f0. Finding a characteristic with integer weight w can be
done by solving with a bit-vector SMT solver the bit-vector SMT problem

∃γ0,γ1, . . . , γr, w, w′ :

VC(γ0, γ1, . . . , γr)

WC(w′, γ0, γ1, . . . , γr)

w = Truncate(w′, ℓ)

(5)

where Truncate(w′, ℓ) ignores the ℓ least significant bits by extracting the n′
w − ℓ

most significant bits.
To search for a characteristic with the lowest integer weight, the previous

subroutine is simply repeated starting with integer weight w = 0 and incrementing
the integer weight if the current SMT problem is unsatisfiable. If the error bound
ϵ of the characteristic model is zero, the first satisfiable problem leads to an
optimal characteristic, in the sense that there are no characteristics with integer
weight strictly smaller, and the search finishes.

Otherwise, let ŵ be the integer weight of the first characteristic obtained. The
search finishes after all characteristics with integer weights in the interval [ŵ, ŵ+ϵ]
are obtained, and the one with the lowest weight (an optimal characteristic)
is returned. Note that given a characteristic Γ ′ = (γ′

0, γ
′
1, . . . , γ

′
r) with integer

weight w, obtaining another characteristic with integer weight w can be done
by solving the SMT problem given by Eqn. (5) with the additional constraint
(γ0 ̸= γ′

0) ∨ (γ1 ≠ γ′
1) ∨ · · · ∨ (γr ̸= γ′

r), and this can be repeated to obtain all
characteristics with integer weight w.

In practice, the search can be speeded up by first searching for an optimal
characteristic Γ0 over the simple function f0 and then using the integer weight
of Γ0 as the starting weight of the search over f1 ◦ f0; this process is iteratively
repeated until f = fr−1 ◦ fr−2 ◦ · · · ◦ f0. This iterative process exploits the fact
that if all SMT problems for fi ◦fi−1 ◦· · ·◦f0 and for integer weights {0, 1, . . . , w}
were found unsatisfiable, then all SMT problems for fi+1 ◦fi ◦fi−1 · · · ◦f0 and for
integer weights {0, 1, . . . , w} are also unsatisfiable, as the characteristic weight is
defined as the sum of the non-negative local propagation weights.

This automated method can be used to search for differential or linear
characteristics of a block cipher simply by setting f as the encryption function
Ek. Related-key differential characteristics can also be searched for simply by
extending Eqn. (5) for a pair of characteristic models (ΓKS, ΓEk

), and constraining
the sum of the propagation weight of ΓKS and the propagation weight of ΓEk

to the target integer weight w. Moreover, additional constraints can be added
to the SMT problems. For example, the constraint γ0 ̸= 0 ̸= γr can be added
to exclude trivial characteristics, or the probability-one constraint of KS can be
used (rather than the weight constraint) to search for related-key differential
characteristics with key-scheduling zero weight faster.

For some properties such as the difference properties, the propagation prob-
ability of a global property (α, β) can be estimated by summing the propagation
probabilities of all characteristics with input property α and output property
β. In this case, the probability of (α, β) can be estimated with this automated
method by adding additional constraints fixing the input and output property of
the characteristic and searching for all characteristics.

4.2 Search for Invalid Properties

In this section we explain how to search for zero-probability global properties
by describing three bit-vector SMT-based methods: (1) the brute-force method
generalizes the automated search for impossible differentials of ciphers with small
S-boxes by [ST17], (2) the miss-in-the-middle method generalizes the search for
related-key impossible differentials of ARX ciphers by [Azi+22], and (3) the
quantified method is a new automated method based of quantified bit-vector
SMT problems.

Brute-force method. Let VC be the validity constraint of a characteristic model
of a function f = fr−1 ◦ fr−2 ◦ · · · ◦ f0, and let (α, β) be a property of f for some
bit-vector constants α and β. The brute-force and miss-in-the-middle methods
are based on the fact that if the bit-vector SMT problem

∃γ0, γ1, . . . , γr : VC(γ0, γ1, . . . , γr) ∧ (α = γ0) ∧ (β = γr) (6)

is unsatisfiable, then (α, β) has zero propagation probability. The difference
between these two methods is the choice of the properties (α, β). The brute-force
method simply chooses a subset of properties with many zero bits and checks
whether the SMT problem given by Eqn. (6) is unsatisfiable for each property.
This choice is due to the fact that for some functions most of the impossible
differentials found this far have many zero bits [ST17].

Miss-in-the-middle method. The idea of the miss-in-the-middle technique [BBS99a;
BBS99b] is to find an impossible differential built from two probability-one char-
acteristics Γ0 and Γ2, where the characteristic Γ0 (resp. Γ2) covers the first (resp.
second) half of cipher, such that the output difference α of Γ0 does not match the
input difference β of Γ2 in the middle of the cipher. For simplicity, our automated
miss-in-the-middle method is explained for f = f2 ◦ f1 ◦ f0; the generalization
for r ≥ 3 is straightforward.

Let VCi(γi, γi+1) and POCi(γi, γi+1) be the validity and probability-one con-
straints, respectively, of the characteristic model of fi. First, a pair of probability-
one characteristics (Γ0, Γ2) of f0 and f2 is found by solving the bit-vector SMT
problem

∃γ0, γ1, γ2, γ3 : POC0(γ0, γ1) ∧ POC2(γ2, γ3) . (7)

Let (α′, α) be the input and output properties of Γ0 and (β, β′) the input and
output properties of Γ2. Then, a similar problem than Eqn. (6) is built for the
property (α, β) of f1. If the problem is unsatisfiable, (α, β) is a zero-probability
property of f1, and by construction (α′, β′) is a zero-probability property of f .
Otherwise, this process is repeated by finding another pair of probability-one
characteristics of f0 and f2.

As the brute-force method, the miss-in-the-middle method is based on the
unsatisfiability of SMT problems in the form of Eqn. (6), but where the properties
(α, β) are chosen as the outputs and inputs of probability-one characteristics
covering the initial and last part of the cipher respectively.

Quantified method. As opposed to the brute-force and the miss-in-the-middle
methods, the quantified method is based on solving a satisfiable bit-vector SMT
problem that combines existential and for-all quantifiers. Given the validity
constraint VC of a characteristic model of f = fr−1 ◦ fr−2 ◦ · · · ◦ f0, consider the
quantified bit-vector SMT problem

∃γ0, γr,∀γ1, γ2 . . . , γr−1 : VC(γ0, γ1, . . . , γr) = False . (8)

If satisfiable, a solution of this problem is an assignment of the variables (γ0, γr)
such that the characteristic Γ = (γ0, γ1, . . . , γr) is invalid for all intermediate
properties (γ1, γ2, . . . , γr−1). In other words, a solution of this problem is a
property (γ0, γr) of f with zero propagation probability.

Thus, zero-probability properties of f can be obtained by solving the problem
given by Eqn. (8) with an SMT solver supporting quantified bit-vector formulas
such as Boolector or Z3 [MB08; WHM13].

Although quantifier-free problems, used by the brute-force and miss-in-the-
middle methods, can be solved much faster than quantified problems, any zero-
probability property found by the brute-force or the miss-in-the-middle method
can be found by the quantified method, and the latter method can find zero-
probability properties unreachable by the brute-force and the miss-in-the-middle
methods.

These three automated methods can be used to search for impossible differen-
tials or zero-correlation linear approximations of a block cipher simply by setting
f as the encryption function Ek. Related-key impossible differentials can also be
searched for with these three automated methods simply by extending the SMT
problems given by Eqns. (6) to (8) to related-key differential characteristics.

Note that these three methods are sound but not complete methods; any
property found by these methods has zero propagation probability, but some
zero-probability properties might not be found by these methods. In other words,
if the SMT problem given by Eqn. (6) is unsatisfiable, then (α, β) has zero
propagation probability, but the other way around does not hold in general (and
similarly for the SMT problem given by Eqn. (8)). In the single-key setting, these
methods are complete if assuming that the round keys are independent, chosen
uniformly at random, and XORed to the whole state before each non-linear
operation [ST17].

5 The Tool CASCADA

In this section we describe the tool CASCADA [Ran22], an open-source Python
library that implements the bit-vector property framework described in Sect. 3
and the bit-vector automated methods described in Sect. 4.

The tool CASCADA is based on ArxPy [Ran], a tool to search for differen-
tial characteristics and impossible differentials of ARX ciphers. However, while
ArxPy restricts to (related-key) differential, RX, and (related-key) impossible-
differential cryptanalysis, CASCADA implements the bit-vector property framework,
new automated methods, and many new functionalities and improvements.

In particular, CASCADA implements the XOR difference, RX difference and
linear mask, and new bit-vector properties can be easily added. Moreover, CASCADA
implements the XOR differential, RX differential and linear models of many
bit-vector operations, and it implements the weak and branch-based models and
the property model based on weight tables3. As a result, CASCADA can search
for (related-key) XOR differential, RX differential, and linear characteristics,
and CASCADA can also search for (related-key) XOR impossible differentials, RX
impossible differentials and zero-correlation linear approximations.

Compared to ArxPy, the cipher interface in CASCADA has been improved
to support not only ARX ciphers but also other ciphers and primitives, and

3 For example, for ciphers with S-boxes, CASCADA can find the minimum number of
active S-boxes by using the weak model for the S-boxes, but can also find full
characteristics by using the model based on weight tables for the S-boxes.

the documentation has been extended so that each Python function and class
contains a detailed docstring with usage examples as doctests. On top of that,
CASCADA includes a complete test suite for each functionality, and many unit tests
follow the property-based testing technique [CH00] to test program properties
on random inputs.

The user workflow to run one of the automated search methods with CASCADA

for a given primitive is the following. First, the user implements the primitive
following the interface provided by CASCADA; the user can also choose one of the
many primitives already implemented. Then, if the property model of an operation
of the primitive is not provided by CASCADA, the user can either implement the
property model or simply use a weak, branch-based or table-based model. Finally,
the user chooses the search method and its parameters (e.g., the bit-vector
property, the SMT solver, additional constraints, etc.), and starts the search.

In the search, CASCADA generates the characteristic model from the Python
implementation of the primitive, encodes the SMT problems, and solves the SMT
problems by querying an external SMT solver. These steps, depicted in Figure 1,
are performed by CASCADA internally. Thus, using CASCADA does not require any
knowledge about SMT problems or SMT solvers as this is automatically handled
by CASCADA. Note that the running time of the search is dominated by the time
the SMT solver takes to solve the SMT problems, and the steps performed by
CASCADA introduce negligible overhead.

Figure 1. Main steps performed by CASCADA in an automated search method.

The library CASCADA has a modular and loose-coupling design split in several
modules, namely the bit-vector module, the primitive module, the property
modules and the SMT module, so that each module can be used and extended
independently. The rest of this section explains a high-level overview of the

implementation and functionality of each module, and a full description of each
module can be found in the documentation of CASCADA.

5.1 Bit-Vector Module

The bit-vector module handles the creation, evaluation, symbolic manipulation
and representation of bit-vector expressions and functions. To this end, it provides
data types to create bit-vector constants, variables, operations, expressions
and functions, it relies on SymPy [Meu+17] (an open-source Python library for
symbolic computation) for the bit-vector symbolic manipulation, and it provides
several representations of the bit-vector data types including an executable string
representation, a C code representation or a DOT (a graph description language)
representation.

To create bit-vector expressions, the bit-vector operations described in Sect. 2.1,
which are also the bit-vector operations supported by the SMT-LIB Standard
2.0 [BST10], are implemented in the bit-vector module and called the primary
operations. This module also implements other bit-vector operations such as
the bit-wise majority, the bit-wise conditional, the bit-reversal or the hamming
weight, and it supports bit-vector operations given by look-up tables or binary
matrices. All non-primary operations are implemented as bit-vector expressions
of primary operations so that they can be easily represented in bit-vector SMT
problems; the hamming weight and bit-reversal are efficiently implemented as
bit-vector expressions by using a divide-and-conquer approach from [HSW03].

The bit-vector module also provides several context managers to modify the
creation, evaluation and manipulation of bit-vector expressions. For example,
the simplification context controls whether to simplify expressions by applying
Boolean algebra rules, and the memoization context is a space-time trade-off also
known as tabling where intermediate results are stored in a table so that they
can be retrieved when the same inputs occur again.

Inspired by the representation of mathematical functions in SymPy, the bit-
vector module provides a similar interface to represent bit-vector functions with
or without external values; round-based functions are also supported and even
non-bit-vector functions by using undefined bit-vector operations. A bit-vector
function can be converted into a (bit-vector) Static Single Assignment (SSA)
[RWZ88] object, that is, a list of assignments where each instruction is a bit-vector
operation and each variable is assigned exactly once and defined before used. The
bit-vector module also implements decomposing an SSA object of a round-based
function into the SSA objects of its rounds, representing the graph of an SSA
object in the DOT language, and translating, compiling and evaluating an SSA
object into a C executable.

It is worth to mention that the bit-vector module does not depend on other
modules of CASCADA, and thus it can be used independently in applications
requiring the symbolic manipulation of bit-vector expressions or functions.

5.2 Primitive Module

The primitive module provides data types to represent encryption functions and
block ciphers. While key schedules can be implemented directly as bit-vector
functions, the encryption function type specifies a bit-vector function and a list
of round keys, and the block cipher type specifies a key-scheduling function and
an encryption function.

The primitive module implements many cryptographic primitives, namely
AES [Dwo+01], a masked AES [Bey+21], CHAM [Koo+17], Chaskey [Mou+14],
FEAL [Miy90], HIGHT [Hon+06], LEA [Hon+13], MULTI2 [ISO94], π-cipher
[Gli+14], SHACAL-1 [HKR01], SHACAL-2 [HN02], Simeck [Yan+15], Simon
[Bea+15], Speck [Bea+15], SKINNY [Bei+16], TEA [WN94], and XTEA [NW97].

5.3 Property Modules

The property modules of CASCADA consist of the abstract property module,
providing the interface to implement bit-vector properties, and the differential and
linear modules, which instantiate the abstract property module for the difference
and linear mask properties respectively.4 Most of the logic and functionality is
implemented in the abstract property module so that new bit-vector properties
can be easily added.

The abstract property module provides the data types to represent bit-
vector properties, property models, characteristics and characteristic models.
In particular, it implements the weak model, the branch-based model, and the
property model based on weight tables, and it provides three characteristic data
types to represent (1) characteristics over bit-vector functions, (2) characteristics
over encryption functions, and (3) pairs of characteristics over key-scheduling
and encryption functions.

The abstract property module also implements the generation of characteristic
models, the decomposition of characteristics and characteristic models of round-
based functions, the DOT representation of characteristics and characteristic
models and the computation of empirical weights.

Given a characteristic Γ = (γ0, γ1, . . . , γr−1) of a bit-vector function f , the
empirical weight is defined in CASCADA as an estimation of the propagation weight
of (γ0, γr−1) computed by evaluating f for many inputs satisfying γ0. Since for
some properties the number of inputs required to obtain a meaningful estimation
is exponential in the propagation weight of the characteristic, the computation
of the empirical weight automatically splits a high-weight characteristic into
low-weight characteristics and evaluates f by translating and compiling the SSA
of f to a C executable.

The differential module instantiates the abstract property module for the
XOR difference and RX difference properties. It implements the XOR and RX

4 An additional property module, the algebraic module, is also implemented in CASCADA

instantiating the abstract property module for another bit-vector property, the value
property.

trivial models of many ⊕-linear and propagation-deterministic operations, that
is, operations that propagate an input property to a unique output property with
probability one.

For the XOR difference property, the differential module implements the
non-trivial models of the following operations: the unary operators ⊞c(x) = x⊞ c
and ⊟c(x) = x⊟ c, the binary operators ∧,∨,⊞,⊟, and the ternary operators
bit-wise majority, bit-wise conditional and the Simon round function fa,b,c. We
implemented the models of ⊞c,⊞ and fa,b,c from previous work [Azi+20; LM01;
KLT15], we derived the models for ⊟c and ⊟ from the models of the modular
addition by using the identity ¬(x⊟ y) = ¬x⊞ y [HSW03], and we derived the
models of the bit-wise operations (∧,∨, bit-wise majority and bit-wise conditional)
by extrapolating the constraints for 1-bit inputs.

For the RX difference property, the differential module implements the non-
trivial models of the unary operators ≪c (x) = x ≪ c and ≫c (x) = x ≫ c, the
binary operators ∧,∨,⊞,⊟, and the ternary operators bit-wise majority, bit-wise
conditional and the Simon round function fa,b,c. The models of ≪c and ≫c were
based on the rotational analysis from [Sok16], and the model of ⊟ was derived
from the model of ⊞ [AL16] and the identity ¬(x⊟ y) = ¬x⊞ y. The rest of the
models are derived from their XOR models since an XOR model of a function f
commuting with ≪1 is also an RX model of f .

The linear module instantiates the abstract property module for the linear
mask property. Apart from the trivial models of ⊕-linear and propagation-
deterministic operations, it implements the non-trivial models of ⊞ [Sch13], ⊟
(from the ⊞ model and the identity ¬(x ⊟ y) = ¬x ⊞ y), and of ∧ and ∨ by
extrapolating the constraints for 1-bit inputs.

The generation of linear characteristic models automatically handles the
branches in SSA objects. An input linear mask α can propagate through a branch
x 7→ (x, x) to multiple output masks (i.e., to any output mask (β0, β1) such that
α⊕β0⊕β1 = 0), and branches are automatically detected and handled whenever
a variable x is used multiple times in an SSA object.

For any property, the generation of a characteristic model of a bit-vector
function f in CASCADA is performed as described in Sect. 3.3, where the property
models of the bit-vector operations in the SSA of f are used to build the
constraints of the characteristic model. Thus, characteristic models can be directly
generated for any function f composed of bit-vector operations with property
models implemented in CASCADA. For functions including operations without
models in CASCADA, one can fully implement their models (if their property
models are known) or use weak, branch-based or table-based models which can
be easily obtained for any function in CASCADA.

5.4 SMT Module

The SMT module implements the automated methods described in Sect. 4. To
solve the underlying SMT problems, the SMT module relies on PySMT [GM15], an
open-source Python API for SMT solvers. As a result, the SMT module supports
any of the bit-vector SMT solvers natively supported by PySMT (i.e, Boolector,

CVC4 [Bar+11], MathSAT [Cim+13], Z3, and Yices [Dut14]), and it can also
use other solvers through the interface of PySMT.

Apart from the choice of the bit-vector SMT solver, many options in the
automated methods implemented in the SMT module can be configured, including
the type of constraints (e.g., validity and weight constraints or only probability-
one constraints), additional constraints, the verbose level, or whether to filter
characteristics using the empirical weight. If this last option is enabled, after a
characteristic is obtained as a solution of an SMT problem, the empirical weight of
the characteristic is computed, and characteristics with large approximation errors
between their propagation weights and their empirical weights are discarded.

Most of the automated methods of Sect. 4 require solving a sequence of SMT
problems built incrementally from a base SMT problem. For example, this occurs
when multiple solutions are required from an SMT problem, or in the search
for characteristics of round-based functions. This type of incremental queries
are common to SMT solvers, and many of them support an incremental mode
[BT18], where computations from previous problems are reused to solve the next
query. The SMT module implements this type of sequences of SMT problems as
incremental queries, leveraging the incrementality feature of SMT solvers.

As in the other modules, we implemented an extensive suite of tests in the
SMT module. In particular, we tested the search for low-weight characteristics in
the primitives implemented in CASCADA by revisiting the following previous work
listing the weights of optimal characteristics covering small number of rounds.
This includes XOR differential and linear characteristics of AES [Mou+11, Table
4], XOR differential and linear characteristics of CHAM, [Roh+19, Table 10, Table
11], linear characteristics of Chaskey [LWR16, Table 4], XOR differential and
linear characteristics of HIGHT [Yin+17, Table 4, Table 7], XOR [KLT15, Table
1], related-key XOR [Wan+18, Table 5] and RX [Lu+20, Table 5] differential
characteristics of Simeck, XOR [LLW17, Table 1] related-key XOR [Wan+18,
Table 5] and RX [Lu+20, Table 5] differential characteristics of Simon, XOR
differential and linear characteristics of SKINNY [Bei+16, Table 7] and XOR
differential [BVC16, Table 4] and linear [LWR16, Table 2] characteristics of Speck.

6 Conclusion and Future Work

In this work we presented the tool CASCADA, and we described the bit-vector
property framework and the automated methods implemented in CASCADA, in-
cluding the new automated method based on quantified problems. Moreover, we
provided a high-level overview of the functionality and implementation of the
modules in CASCADA. This overview is not exhaustive and a complete description
of the functionality and features of CASCADA can be found in its documentation.

The tool CASCADA not only aims to facilitate designers and cryptanalysts the
security evaluation of cryptographic primitives but also to assist further research
in automated methods. For example, no property models have been researched
for many operations, such as a linear model of the modular addition by a constant
x 7→ x⊞ c or a differential model of the rotation by a variable (x, y) 7→ x ≪ y,

and if new models are researched, they can be easily implemented and tested
in CASCADA. Similarly, no bit-vector automated method has been proposed for
several distinguishing attacks, such as truncated differential [Knu94] or linear
cryptanalysis in the related-key setting [Bog+13], and new bit-vector properties
can also be easily implemented and tested in CASCADA.

Acknowledgements. Adrián Ranea is supported by a PhD Fellowship from
the Research Foundation – Flanders (FWO) with grant number 11E1921N. The
authors would like to thank the anonymous reviewers for their comments and
suggestions.

References

[Abd+17] Ahmed Abdelkhalek et al. ‘MILP Modeling for (Large) S-boxes to
Optimize Probability of Differential Characteristics’. In: IACR Trans.
Symmetric Cryptol. 2017.4 (2017), pp. 99–129.

[ABR20] Tomer Ashur, Tim Beyne and Vincent Rijmen. ‘Revisiting the Wrong-
Key-Randomization Hypothesis’. In: J. Cryptol. 33.2 (2020), pp. 567–
594.

[ÁK16] Erika Ábrahám and Gereon Kremer. ‘Satisfiability Checking: Theory
and Applications’. In: SEFM. Vol. 9763. Lecture Notes in Computer
Science. Springer, 2016, pp. 9–23.

[AK18] Ralph Ankele and Stefan Kölbl. ‘Mind the Gap - A Closer Look at
the Security of Block Ciphers against Differential Cryptanalysis’. In:
SAC. Vol. 11349. Lecture Notes in Computer Science. Springer, 2018,
pp. 163–190.

[AL16] Tomer Ashur and Yunwen Liu. ‘Rotational Cryptanalysis in the
Presence of Constants’. In: IACR Trans. Symmetric Cryptol. 2016.1
(2016), pp. 57–70.

[AL18] Ralph Ankele and Eik List. ‘Differential Cryptanalysis of Round-
Reduced Sparx-64/128’. In: ACNS. Vol. 10892. Lecture Notes in
Computer Science. Springer, 2018, pp. 459–475.

[Azi+20] Seyyed Arash Azimi et al. ‘A Bit-Vector Differential Model for the
Modular Addition by a Constant’. In: ASIACRYPT (1). Vol. 12491.
Lecture Notes in Computer Science. Springer, 2020, pp. 385–414.

[Azi+22] Seyyed Arash Azimi et al. ‘A Bit-Vector Differential Model for the
Modular Addition by a Constant and its Applications to Differential
and Impossible-Differential Cryptanalysis’. In: IACR Cryptol. ePrint
Arch. (2022).

[Bar+11] Clark W. Barrett et al. ‘CVC4’. In: CAV. Vol. 6806. Lecture Notes
in Computer Science. Springer, 2011, pp. 171–177.

[BBS99a] Eli Biham, Alex Biryukov and Adi Shamir. ‘Cryptanalysis of Skipjack
Reduced to 31 Rounds Using Impossible Differentials’. In: EURO-
CRYPT. Vol. 1592. Lecture Notes in Computer Science. Springer,
1999, pp. 12–23.

[BBS99b] Eli Biham, Alex Biryukov and Adi Shamir. ‘Miss in the Middle
Attacks on IDEA and Khufu’. In: FSE. Vol. 1636. Lecture Notes in
Computer Science. Springer, 1999, pp. 124–138.

[Bea+15] Ray Beaulieu et al. ‘The SIMON and SPECK lightweight block
ciphers’. In: DAC. ACM, 2015, 175:1–175:6.

[Bei+16] Christof Beierle et al. ‘The SKINNY Family of Block Ciphers and
Its Low-Latency Variant MANTIS’. In: CRYPTO (2). Vol. 9815.
Lecture Notes in Computer Science. Springer, 2016, pp. 123–153.

[Bey+21] Tim Beyne et al. ‘A Low-Randomness Second-Order Masked AES’.
In: SAC. Vol. 13203. Lecture Notes in Computer Science. Springer,
2021, pp. 87–110.

[Bih94] Eli Biham. ‘New Types of Cryptanalytic Attacks Using Related
Keys’. In: J. Cryptol. 7.4 (1994), pp. 229–246.

[Bog+13] Andrey Bogdanov et al. ‘Key Difference Invariant Bias in Block
Ciphers’. In: ASIACRYPT (1). Vol. 8269. Lecture Notes in Computer
Science. Springer, 2013, pp. 357–376.

[Bou+18] Christina Boura et al. ‘Making the Impossible Possible’. In: J. Cryptol.
31.1 (2018), pp. 101–133.

[BR14] Andrey Bogdanov and Vincent Rijmen. ‘Linear hulls with correla-
tion zero and linear cryptanalysis of block ciphers’. In: Des. Codes
Cryptogr. 70.3 (2014), pp. 369–383.

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data
Encryption Standard. Springer, 1993.

[BST10] Clark Barrett, Aaron Stump and Cesare Tinelli. ‘The SMT-LIB
Standard: Version 2.0’. In: Proceedings of the 8th International Work-
shop on Satisfiability Modulo Theories (Edinburgh, UK). Ed. by A.
Gupta and D. Kroening. 2010.

[BT13] Andrey Bogdanov and Elmar Tischhauser. ‘On the Wrong Key Ran-
domisation and Key Equivalence Hypotheses in Matsui’s Algorithm
2’. In: FSE. Vol. 8424. Lecture Notes in Computer Science. Springer,
2013, pp. 19–38.

[BT18] Clark Barrett and Cesare Tinelli. ‘Satisfiability Modulo Theories’.
In: Handbook of Model Checking. Springer, 2018, pp. 305–343.

[BVC16] Alex Biryukov, Vesselin Velichkov and Yann Le Corre. ‘Automatic
Search for the Best Trails in ARX: Application to Block Cipher
Speck’. In: FSE. Vol. 9783. Lecture Notes in Computer Science.
Springer, 2016, pp. 289–310.

[BW12] Andrey Bogdanov and Meiqin Wang. ‘Zero Correlation Linear Crypt-
analysis with Reduced Data Complexity’. In: FSE. Vol. 7549. Lecture
Notes in Computer Science. Springer, 2012, pp. 29–48.

[CH00] Koen Claessen and John Hughes. ‘QuickCheck: a lightweight tool for
random testing of Haskell programs’. In: ICFP. ACM, 2000, pp. 268–
279.

[Cim+13] Alessandro Cimatti et al. ‘The MathSAT5 SMT Solver’. In: TACAS.
Vol. 7795. Lecture Notes in Computer Science. Springer, 2013, pp. 93–
107.

[DR07] Joan Daemen and Vincent Rijmen. ‘Probability distributions of
correlation and differentials in block ciphers’. In: J. Math. Cryptol.
1.3 (2007), pp. 221–242.

[Dut14] Bruno Dutertre. ‘Yices 2.2’. In: CAV. Vol. 8559. Lecture Notes in
Computer Science. Springer, 2014, pp. 737–744.

[Dwo+01] Morris Dworkin et al. Advanced Encryption Standard (AES). en.
2001.

[GD07] Vijay Ganesh and David L. Dill. ‘A Decision Procedure for Bit-
Vectors and Arrays’. In: CAV. Vol. 4590. Lecture Notes in Computer
Science. Springer, 2007, pp. 519–531.

[Gli+14] Danilo Gligoroski et al. ‘π-Cipher: Authenticated Encryption for Big
Data’. In: NordSec. Vol. 8788. Lecture Notes in Computer Science.
Springer, 2014, pp. 110–128.

[GM15] Marco Gario and Andrea Micheli. ‘PySMT: a solver-agnostic library
for fast prototyping of SMT-based algorithms’. In: SMT Workshop
2015. 2015.

[Had+19] Hosein Hadipour et al. ‘Comprehensive security analysis of CRAFT’.
In: IACR Trans. Symmetric Cryptol. 2019.4 (2019), pp. 290–317.

[HKR01] Helena Handschuh, Lars R. Knudsen and Matthew J. B. Robshaw.
‘Analysis of SHA-1 in Encryption Mode’. In: CT-RSA. Vol. 2020.
Lecture Notes in Computer Science. Springer, 2001, pp. 70–83.

[HN02] Helena Handschuh and David Naccache. ‘SHACAL: a family of block
ciphers’. In: Submission to the NESSIE project (2002).

[Hon+06] Deukjo Hong et al. ‘HIGHT: A New Block Cipher Suitable for Low-
Resource Device’. In: CHES. Vol. 4249. Lecture Notes in Computer
Science. Springer, 2006, pp. 46–59.

[Hon+13] Deukjo Hong et al. ‘LEA: A 128-Bit Block Cipher for Fast Encryption
on Common Processors’. In: WISA. Vol. 8267. Lecture Notes in
Computer Science. Springer, 2013, pp. 3–27.

[HSW03] Jr. Henry S. Warren. Hacker’s delight. Addison-Wesley, 2003.
[ISO94] ISO. Algorithm Registry Entry 9979/0009. 1994.
[KLT15] Stefan Kölbl, Gregor Leander and Tyge Tiessen. ‘Observations on the

SIMON Block Cipher Family’. In: CRYPTO (1). Vol. 9215. Lecture
Notes in Computer Science. Springer, 2015, pp. 161–185.

[Knu94] Lars R. Knudsen. ‘Truncated and Higher Order Differentials’. In:
FSE. Vol. 1008. Lecture Notes in Computer Science. Springer, 1994,
pp. 196–211.

[Koo+17] Bonwook Koo et al. ‘CHAM: A Family of Lightweight Block Ciphers
for Resource-Constrained Devices’. In: ICISC. Vol. 10779. Lecture
Notes in Computer Science. Springer, 2017, pp. 3–25.

[KPR20] Liliya Kraleva, Raluca Posteuca and Vincent Rijmen. ‘Cryptana-
lysis of the Permutation Based Algorithm SpoC’. In: INDOCRYPT.

Vol. 12578. Lecture Notes in Computer Science. Springer, 2020,
pp. 273–293.

[LLW17] Zhengbin Liu, Yongqiang Li and Mingsheng Wang. ‘Optimal Differ-
ential Trails in SIMON-like Ciphers’. In: IACR Trans. Symmetric
Cryptol. 2017.1 (2017), pp. 358–379.

[LM01] Helger Lipmaa and Shiho Moriai. ‘Efficient Algorithms for Computing
Differential Properties of Addition’. In: FSE. Vol. 2355. Lecture Notes
in Computer Science. Springer, 2001, pp. 336–350.

[Lod10] Andrea Lodi. ‘Mixed Integer Programming Computation’. In: 50
Years of Integer Programming. Springer, 2010, pp. 619–645.

[Lu+20] Jinyu Lu et al. ‘Rotational-XOR Cryptanalysis of Simon-Like Block
Ciphers’. In: ACISP. Vol. 12248. Lecture Notes in Computer Science.
Springer, 2020, pp. 105–124.

[LWR16] Yunwen Liu, Qingju Wang and Vincent Rijmen. ‘Automatic Search
of Linear Trails in ARX with Applications to SPECK and Chaskey’.
In: ACNS. Vol. 9696. Lecture Notes in Computer Science. Springer,
2016, pp. 485–499.

[Mat93] Mitsuru Matsui. ‘Linear Cryptanalysis Method for DES Cipher’.
In: EUROCRYPT. Vol. 765. Lecture Notes in Computer Science.
Springer, 1993, pp. 386–397.

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. ‘Z3: An Efficient
SMT Solver’. In: TACAS. Vol. 4963. Lecture Notes in Computer
Science. Springer, 2008, pp. 337–340.

[MB11] Leonardo Mendonça de Moura and Nikolaj Bjørner. ‘Satisfiability
modulo theories: introduction and applications’. In: Commun. ACM
54.9 (2011), pp. 69–77.

[Meu+17] Aaron Meurer et al. ‘SymPy: symbolic computing in Python’. In:
PeerJ Comput. Sci. 3 (2017), e103.

[Miy90] Shoji Miyaguchi. ‘The FEAL Cipher Family’. In: CRYPTO. Vol. 537.
Lecture Notes in Computer Science. Springer, 1990, pp. 627–638.

[Mou+11] Nicky Mouha et al. ‘Differential and Linear Cryptanalysis Using
Mixed-Integer Linear Programming’. In: Inscrypt. Vol. 7537. Lecture
Notes in Computer Science. Springer, 2011, pp. 57–76.

[Mou+14] Nicky Mouha et al. ‘Chaskey: An Efficient MAC Algorithm for 32-
bit Microcontrollers’. In: Selected Areas in Cryptography. Vol. 8781.
Lecture Notes in Computer Science. Springer, 2014, pp. 306–323.

[MP13] Nicky Mouha and Bart Preneel. ‘A Proof that the ARX Cipher
Salsa20 is Secure against Differential Cryptanalysis’. In: IACR Cryptol.
ePrint Arch. (2013), p. 328.

[NPB14] Aina Niemetz, Mathias Preiner and Armin Biere. ‘Boolector 2.0’. In:
J. Satisf. Boolean Model. Comput. 9.1 (2014), pp. 53–58.

[NW97] Roger Needham and David Wheeler. Tea extensions. Tech. rep. Com-
puter Laboratory, University of Cambridge, 1997.

[PS06] Raphael C.-W. Phan and Mohammad Umar Siddiqi. ‘A Framework
for Describing Block Cipher Cryptanalysis’. In: IEEE Trans. Com-
puters 55.11 (2006), pp. 1402–1409.

[Ran] Adrián Ranea. ArxPy: Tool to find XOR differential and rotational-
XOR characteristics of ARX primitives. https://github.com/
ranea/ArxPy.

[Ran22] Adrián Ranea. CASCADA. Version v1.0.0. Apr. 2022. doi: 10.5281/
zenodo.6504337. url: https://github.com/ranea/CASCADA.

[Rey16] Andrew Reynolds. ‘Conflicts, Models and Heuristics for Quantifier
Instantiation in SMT’. In: Vampire@IJCAR. Vol. 44. EPiC Series in
Computing. EasyChair, 2016, pp. 1–15.

[RLA17] Adrián Ranea, Yunwen Liu and Tomer Ashur. ‘An Easy-to-Use
Tool for Rotational-XOR Cryptanalysis of ARX Block Ciphers’. In:
Proceedings of the Romanian Academy, Series A 18.3 (2017).

[Roh+19] Dongyoung Roh et al. ‘Revised Version of Block Cipher CHAM’. In:
ICISC. Vol. 11975. Lecture Notes in Computer Science. Springer,
2019, pp. 1–19.

[RWZ88] Barry K. Rosen, Mark N. Wegman and F. Kenneth Zadeck. ‘Global
Value Numbers and Redundant Computations’. In: POPL. ACM
Press, 1988, pp. 12–27.

[Sch13] Ernst Schulte-Geers. ‘On CCZ-equivalence of addition mod 2 n’. In:
Des. Codes Cryptogr. 66.1-3 (2013), pp. 111–127.

[SHY16] Ling Song, Zhangjie Huang and Qianqian Yang. ‘Automatic Differ-
ential Analysis of ARX Block Ciphers with Application to SPECK
and LEA’. In: ACISP (2). Vol. 9723. Lecture Notes in Computer
Science. Springer, 2016, pp. 379–394.

[Sok16] Przemys law Soko lowski. ‘Design and Analysis of Cryptographic Hash
Functions’. PhD thesis. Adam Mickiewicz University, Poland, 2016.

[ST17] Yu Sasaki and Yosuke Todo. ‘New Impossible Differential Search
Tool from Design and Cryptanalysis Aspects - Revealing Structural
Properties of Several Ciphers’. In: EUROCRYPT (3). Vol. 10212.
Lecture Notes in Computer Science. 2017, pp. 185–215.

[Ste] Stefan Kölbl. CryptoSMT: An easy to use tool for cryptanalysis of
symmetric primitives. https://github.com/kste/cryptosmt.

[Sun+14] Siwei Sun et al. ‘Automatic Security Evaluation and (Related-key)
Differential Characteristic Search: Application to SIMON, PRESENT,
LBlock, DES(L) and Other Bit-Oriented Block Ciphers’. In: ASIAC-
RYPT (1). Vol. 8873. Lecture Notes in Computer Science. Springer,
2014, pp. 158–178.

[SWW18] Ling Sun, Wei Wang and Meiqin Wang. ‘More Accurate Differential
Properties of LED64 and Midori64’. In: IACR Trans. Symmetric
Cryptol. 2018.3 (2018), pp. 93–123.

[Wag04] David A. Wagner. ‘Towards a Unifying View of Block Cipher Crypt-
analysis’. In: FSE. Vol. 3017. Lecture Notes in Computer Science.
Springer, 2004, pp. 16–33.

https://github.com/ranea/ArxPy
https://github.com/ranea/ArxPy
https://doi.org/10.5281/zenodo.6504337
https://doi.org/10.5281/zenodo.6504337
https://github.com/ranea/CASCADA
https://github.com/kste/cryptosmt

[Wan+18] Xuzi Wang et al. ‘Automatic Search for Related-Key Differential
Trails in SIMON-like Block Ciphers Based on MILP’. In: ISC.
Vol. 11060. Lecture Notes in Computer Science. Springer, 2018,
pp. 116–131.

[WHM13] Christoph M. Wintersteiger, Youssef Hamadi and Leonardo Men-
donça de Moura. ‘Efficiently solving quantified bit-vector formulas’.
In: Formal Methods Syst. Des. 42.1 (2013), pp. 3–23.

[WN94] David J. Wheeler and Roger M. Needham. ‘TEA, a Tiny Encryption
Algorithm’. In: FSE. Vol. 1008. Lecture Notes in Computer Science.
Springer, 1994, pp. 363–366.

[Yan+15] Gangqiang Yang et al. ‘The Simeck Family of Lightweight Block
Ciphers’. In: CHES. Vol. 9293. Lecture Notes in Computer Science.
Springer, 2015, pp. 307–329.

[Yin+17] Jun Yin et al. ‘Improved Cryptanalysis of an ISO Standard Light-
weight Block Cipher with Refined MILP Modelling’. In: Inscrypt.
Vol. 10726. Lecture Notes in Computer Science. Springer, 2017,
pp. 404–426.

	Introduction
	Preliminaries
	Bit-vector SMT Problems
	Distinguishing Attacks on Block Ciphers

	Bit-vector Property Framework
	Bit-vector Properties and Characteristics
	Bit-vector Property Model
	Bit-vector Characteristic Model

	Bit-vector Automated Methods
	Search for Low-weight Characteristics
	Search for Invalid Properties

	The Tool CASCADA
	Bit-Vector Module
	Primitive Module
	Property Modules
	SMT Module

	Conclusion and Future Work

