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Abstract. This paper proposes a new block cipher called HARPOCRA-
TES, which is different from traditional SPN, Feistel, or ARX designs.
The new design structure that we use is called the substitution convo-
lution network. The novelty of the approach lies in that the substitu-
tion function does not use fixed S-boxes. Instead, it uses a key-driven
lookup table storing a permutation of all 8-bit values. If the lookup ta-
ble is sufficiently randomly shuffled, the round sub-operations achieve
good confusion and diffusion to the cipher. While designing the cipher,
the security, cost, and performances are balanced, keeping the require-
ments of encryption of data-at-rest in mind. The round sub-operations
are massively parallelizable and designed such that a single active bit
may make the entire state (an 8×16 binary matrix) active in one round.
We analyze the security of the cipher against linear, differential, and im-
possible differential cryptanalysis. The cipher’s resistance against many
other attacks like algebraic attacks, structural attacks, and weak keys
are also shown. We implemented the cipher in software and hardware;
found that the software implementation of the cipher results in better
throughput than many well-known ciphers. Although HARPOCRATES
is appropriate for the encryption of data-at-rest, it is also well-suited in
data-in-transit environments.

Keywords: Block cipher · substitution convolution network · statistical
attacks

1 Introduction

The design principles of modern block ciphers depend on how we achieve con-
fusion and diffusion properties. Diffusion is the distribution of plaintext over
ciphertext such that each plaintext bit effectively acts on many ciphertext bits.
It is usually a linear operation and can be achieved through permutation or
linear transformation. Confusion [34] obscures the relationship between the key
and the ciphertext and makes each ciphertext bit dependent on many key bits.
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The security of a one-time pad relies only on confusion. Another confusion-only
cipher is a simple substitution cipher . Due to the absence of a proper diffusion
mechanism, all the plaintext’s fundamental properties remain in the ciphertext.

In the literature, there exist several design principles to achieve confusion
and diffusion. Rijndael [19], ITUbee [20], 3D [28] use an 8-bit invertible S-box,
which is the composition of two operations. First, the inverse function in GF (28)
is used where the zero is mapped to itself. Then, one performs an affine transfor-
mation of over GF (2). ARIA [22] uses two different 8-bit S-boxes. Both S-boxes
consist of the inverse function y = x−1 but different affine transformations. Simi-
larly, in Camellia [1], four 8-bit S-boxes are used. Crypton [24] and Whirlpool [5]
also use 8-bit S-boxes, made of three 4-bit S-boxes. Though the initial S-box de-
sign choice of CLEFIA [35] and ANUBIS [4] is a random S-box, finally, two
types of 8-bit S-boxes are selected. The first one is made of two 4-bit S-boxes,
and the second one is an inverse function in GF (28). For DES and TWIS [32],
the S-box input and output lengths are different. For optimizing hardware re-
sources, PRESENT [8], LED [16], TWINE [36], Piccolo, MIBS [18], and RECT-
ANGLE [40] use single 4-bit S-boxes, but their securities are compromised to
some extent. For balancing hardware resources and security criteria, Midori [2],
LBlock [39], mCrypton [25], and Serpent [6] use multiple 4-bit S-boxes. A theo-
retical work by Nyberg [29] shows that the AES S-box gives the highest possible
non-linearity. This is the reason why the AES S-box has gained wide acceptance
in the design of many ciphers. The authors of Twofish [33], GOST [15], RE-
DOC II [10] and PRINTcipher [21] use key-dependent random S-boxes, mainly
to withstand several statistical attacks.

Similarly, several approaches are used for achieving the diffusion in the ci-
phers mentioned above. RECTANGLE and TWINE do fixed amounts of cyclic
rotations of each row. Twofish and Piccolo uses simple byte permutation, whereas
MIBS, mCrypton and LBlock apply nibble permutations in each round to achieve
diffusion. In PRESENT and PRINTcipher, fixed bit permutations in each round
are used for improved hardware efficiency. The designers of CLEFIA choose
the Diffusion Switching Mechanism (DMS) for acquiring diffusion. In DMS, the
diffusion matrix switches among multiple matrices in the round function in a
predefined order. In TWIS, 3D, LED, ITUbee, Camellia, and AES, single MDS
matrices are used.

In this paper, we propose a new block cipher HARPOCRATES 1 which
achieves confusion and diffusion using a new approach. The design strategy is
called Substitution Convolution Network (SCN). Our security analysis shows
that the proposed cipher is immune against known cryptanalytic techniques,
including linear attacks, differential attacks, impossible differential attacks, slide
attacks, and structural attacks.

The rest of the paper is organized as follows. Section 2 presents the spec-
ification of HARPOCRATES. More specifically, Subsections 2.3, 2.4, and 2.5
respectively elaborate the encryption algorithm, the decryption algorithm, and
lut generation. Section 3 motivates the design choices of HARPOCRATES. In

1 Harpocrates was the Greek god of silence, secrecy, and confidentiality.
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Section 4, we discuss the security of the cipher against known attacks. In Sec-
tion 5, we discuss about the software and hardware implementations. Finally,
Section 6 concludes the paper.

2 Specification of HARPOCRATES

The block length of the HARPOCRATES cipher is 128 bits arranged in an
8 × 16 binary matrix (Figure 3) in row-major order. Here, the key is only used
as an entropy source [3] to a random bit generator for shuffling the secret lookup
table (lut). In data-at-rest environments where the data do not move, we can
use a non-deterministic random bit generator to shuffle the table. In data-in-
transit environments, the parties can agree with the secret seed (key) so that
the recipient can generate lut−1 and perform the decryption. The sender may
also shuffle the table in a non-deterministic way and transfer the whole lut to the
decryption operation recipient. The specification of HARPOCRATES consists
of an encryption algorithm, a decryption algorithm, and an algorithm for the
generation of the lut.

2.1 Notations

Throughout the paper, we use following notations.

state 128-bits arranged in an 8× 16 binary matrix
lut Secret table containing a permutation of {0, 1, 2, . . . , 2l − 1}
lut−1 Involution function of lut, so that lut−1[lut[x]] = x
RCi An array contains nrounds round constants
stride It is the sliding after substitution or the convolution operation
N The block length of the state in bits
n The number of bits in a row of the state matrix

nround The number of rounds in the encryption/decryption process
nrow The number of rows
l The length of the lut in bits
s Stride or the number of bits we skip after each substitution

S [i:j] Select bits from i to (j − 1) of the bitstring S
‖ Concatenation of two bit strings
⊕ Bitwise exclusive-OR operation

LeftToRight Left-to-right convoluted substitution operation (LtR)
RightToLeft Right-to-left convoluted substitution operation (RtL)

ColSub Column-substitution operation
DRBG Deterministic Random Bit Generator
NRBG Non-deterministic Random Bit Generator
PT Plaintext
CT Ciphertext
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(a) Encryption algorithm overview
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Fig. 1: Overview of the cipher

2.2 Substitution Convolution Network

In SCN structure a randomly shuffled lookup table (lut) is generated and all
substitutions are performed using the lut. Two primary operations in SCN are
the convoluted substitution and column substitution operations. The convoluted
substitution operation provides the diffusion in each row of the binary matrix.
Column substitution operation, on the other hand, substitutes the column and
mixes all bits of a column.

To understand the scenario better, let us assume that a N -bit block is ar-
ranged in a binary matrix of size l × n. In Figure 2 the convoluted substitution
for a row of the binary matrix is shown. First of all, a l -bit region at the left-hand
side of the row is selected and replaced with the value from the lut. Then the
convolution happens; the l -bit substitution window shifts s-bits towards a spe-
cific direction (as left to right convoluted operation is shown here, the window
shifts to the right-hand side). After that, a combination of a previous substituted
random value (l-s bit) and a new value (s-bit) that comes under the substitution
window is selected for the next substitution.

The overlapping substitution and convolution operations continue until the
substitution window reaches the end of the row. Figure 2 shows the convoluted
substitution operation where the substitution window slides from the left side to
the right-hand side of a row (Left-to-Right). In SCN, there is another operation
called Right-to-Left in which the substitution operation starts in the right-hand
side of the row, and the substitution window shifts until the window reaches
the left-hand side of the row. Both Left-to-Right and Right-to-Left convoluted
substitution operation diffuses each row of the binary state matrix row-wise. In
SCN architecture, the bits in the column are the same as the number of bits in the
permutation. When the Left-to-Right convoluted substitution operation finishes
for all rows, the column substitution operation starts. In this operation the bits
of a l -bit column gets substituted by the random lut values. This operation
diffuses the bits in a column-wise fashion.
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Diffusion in SCN Diffusion describes the influence of input bits on output
bits. Ideally, every output bit should be dependent on all input bits. In the
HARPOCRATES cipher, the lut is a pseudo-random permutation. An l-bit re-
gion is selected and substituted with the random mapped value from the lut.
After every substitution, the active substitution region slides s-bit (s ≤ l

3 ) bit po-
sitions, and a mixture of (l−s)-bit intermediate substituted value and s-bit new
value is selected for the next substitution. All subsequent substitutions recur-
sively depend on previously performed substitutions. This mechanism provides
the desired diffusion.

l-bit substitution

l-bit s-bit 

s-bit new value

step 2

step 1

step 3

step 4

(l-s) bit overlapped value

step 5

step 6

        New bits  under substitution window

Overlapped bits

Already substituted (overlapped) value

Fig. 2: Convoluted substitution operation (Left-to-Right)

2.3 Encryption algorithm

The encryption process of HARPOCRATES consists of eight iterative rounds.
In every round, the Left-to-Right convoluted substitution (LtR) is applied first.
Then, a round-dependent constant value is added. This is followed by column
substitution (ColSub), which substitutes the eight bits from every column. Fi-
nally, the Right-to-Left convoluted substitution (RtL) is applied. In Algorithm
1, the encryption process is illustrated. In Section 2.5, we discuss how the lut is
generated using the key.

Each encryption round consists of three main operations,

– Substitution: This means random substitution from the lut.
– Round-constant addition: A round-dependent constant value is added to

break the round similarity.
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state=


b0,0 b0,1 b0,2 ... b0,15
b1,0 b1,1 b1,3 ... b1,15

...
...

... ...
...

b7,0 b7,1 b7,2 ... b7,15


Fig. 3: 128-bit state in 8× 16 matrix

Algorithm 1 Encryption Algorithm

1: procedure EncryptHarpocrates(plaintext, lut,N, n, l, s, nround, RC)
2: // N is block length, n is row length, nrow is number of rows
3: // l is lut length, and s is stride; all in bits
4: // state is a placeholder that gets 128-bit plaintext in a 8× 16 binary matrix
5: state← plaintext
6: nrow ← N

n

7: for i ∈ (1, .., nround) do
8: state← LeftToRight(state, lut, l, nrow, n, s)
9: state← RoundConstant(state,RC, i, nrow, n)

10: state← ColSub(state, lut, n)
11: state← RightToLeft(state, lut, l, nrow, n, s)

12: end for
13: ciphertext← state
14: return ciphertext

– Diffusion: The two convoluted substitution operations and ColSub together
ensure the diffusion.

Figure 4 depicts the LeftToRight convoluted substitution operation. Fig-
ure 5 shows the round-constant array for the first round. Figure 6 shows the
ColSub operation. The RightToLeft convoluted substitution operation is shown
in Figure 7. The algorithms for these operations are elaborated below,

LeftToRight convoluted substitution This operation as detailed in Algo-
rithm 2 consists of

(
n−l
s + 1

)
substitutions. In every step, l bits are substituted

by taking the random value from the lut. After that, the substitution window
moves s bits to the right. A mixture of (l− s) bits from the previous substituted
value and the s-bit new value (a total of l bits) are used for the next substitution.
This operation continues until the end of the row is reached.

Round constant addition To break the rounds’ self-similarity, a constant
value is added to the state matrix in each round. This operation makes the
cipher resistant against invariant attacks. Fig 5 shows the round-constant for
first round. Each row of the first round constant circularly left shifted (2× i)-th
position to generate i-th round constant.
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step 1 step 2

step 3 step 4

step 5 step 6

bits under substitution window

substituted with random values

N = 128 bit

n = 16 bit

l = 8 bit

s = 2

Fig. 4: LeftToRight convoluted substitution (shown for row 1)

Algorithm 2 LeftToRight Convoluted Substitution

1: procedure LeftToRight(state,lut,l,nrow,n,s)
2: steps←

(
n−l
s

)
+ 1

3: for i ∈ (1, . . . , nrow) do
4: temp← state[i]
5: for j ∈ (0, 1, . . . , steps− 1) do
6: temp← temp[0 : j × s] || lut[temp[j × s : j × s + l]] || temp[j × s + l : n]

7: state[i]← temp

8: end for
9: return state



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Fig. 5: Round constant for the first round
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step 1 step 2

...

step 16

...

...

all columns are replaced

area under substitution window

substituted with random value

Fig. 6: ColSub operation

ColSub column substitution ColSub (see Algorithm 3) substitutes every
column of the state matrix using the random lut. This operation diffuses the
value of every row after convoluted substitution. After 16 ColSub operations, all
columns are replaced by random values, as shown in Figure 6.

Algorithm 3 ColSub Column Substitution

1: procedure ColSub(state,lut,n)
2: // colstate[i] selects the i th column of state matrix
3: // temp placeholder holds a column
4: for i ∈ (1, . . . , n) do
5: temp← colstate[i]
6: temp← lut[temp]
7: colstate[i]← temp

8: end for
9: return state

(4) RightToLeft convoluted substitution This operation has a total of(
n−l
s + 1

)
steps. Starting from the right end of each row, the substitution window

occupies l-bits and keeps on shifting left by s bits until it reaches the beginning
of the row (Figure 7). In each position of the window, we use a total of l bits



HARPOCRATES:An Approach Towards Efficient Encryption of Data-at-rest 9

step 1 step 2

step 3 step 4

step 5 step 6

bits under substitution window

substituted with random values

N = 128 bit

n = 16 bit

l = 8 bit

s = 2

Fig. 7: RightToLeft convoluted substitution (shown for row 1)

consisting of the s-bit substituted value of the LeftToRight operation and (l−s)
bits of the previous substituted value.

2.4 Decryption algorithm

Algorithm 4 explains the decryption algorithm of HARPOCRATES. The pro-
cess (see Figure 1(b)) is almost the same as the encryption procedure with the
following exceptions.

– During decryption, the LeftToRight and RightToLeft uses lut−1.

– The round-constant addition is performed with the (nround − i)-th element
of RC array in the i-th decryption round.

– ColSub operates before RoundConstant.

2.5 Generation of lut

The generation of lut is a one-time pre-processing task. The lut is kept secret
and acts as the key for the cipher. Initially, we take an array containing the
elements 0, 1, . . . , 2l − 1, where l is the length of each lut element in bits. We
perform a random permutation on the array elements. Since the lut contains
2l elements, the number of possible permutations is 2l!. To perform the random
permutation on the array’s initial content, we need a uniform shuffling algorithm
and a random bit generator.
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Algorithm 4 Decryption Algorithm

1: procedure DecryptHarpocrates(ciphertext,lut−1,N ,n,l,s,nround,RC)
2: state← ciphertext
3: for i ∈ (1, .., nround) do
4: state← LeftToRight(state, lut−1, l, nrow, n, s)
5: state← ColSub(state, lut−1)
6: state← RoundConstant(state,RC, nround − i, nrow, n)
7: state← RightToLeft(state, lut−1, l, nrow, n, s)

8: end for
9: plaintext← state

10: return plaintext

Random bit generation In the data-at-rest mode, where the data stays at
one place, we can use a non-deterministic(NRBG) or true random bit genera-
tor [3,17] to shuffle the lut. In the data-in-transit environment, where the data
moves between two parties, we need to agree with the same lut for performing
the substitution and reverse substitution operations at the two ends. In this
case, either one party non-deterministically shuffles (Figure 8(a)) the lut and
sends the whole table to the other party or both the parties can agree with a
shared secret seed value to generate the random bits deterministically [3,14] (see
Figure 8(b)). Using NRBG, the shuffled lut may achieve log(2l!) bits of entropy.
In DRBG, using k-bit secret seed value, a maximum of 2k different luts can be
obtained.

NRBG

Alice

⇓
transfer the whole lut

lut

⇓
E(p, lut)

D(c, lut)

Bob

lut−1

⇓
D(c, lut−1)

E(p, lut−1)

(a) Using NRBG

DRBG

k bit shared seed

Alice

2k

⇓

lut

⇓
E(p, lut)

D(c, lut)

DRBG

Bob

⇓

lut−1

⇓
D(c, lut−1)

E(p, lut−1)

(b) Using DRBG

Fig. 8: lut Agreement

Shuffling the lut We use the Fisher-Yates [13] shuffling mechanism; presented
as Algorithm 5. It works in linear time and provides a uniform shuffling that
may result in 2l! possible rearrangements for an l-bit lut when operated with a
sufficient source of randomness.
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Algorithm 5 Shuffling algorithm

1: procedure FisherYatesShufflingAlgorithm(lut,l)
2: //lut is an array of length 2l, containing [0, 1, .., 2l − 1]
3: //rand(p, q) returns a random number between p to q
4: n← 2l

5: for i ∈ (0, 1, . . . , n− 2) do
6: j = rand(i, n− 1)
7: swap(lut[i], lut[j])

8: end for
9: return lut

3 Design Rationale

In this section, we briefly discuss the design principles and the selection of pa-
rameters for HARPOCRATES.

– Substitution convolution structure Most of the traditional block ci-
phers have either SPN, Feistel, or ARX structures. These ciphers generally
use some non-linear known bijective function. For our cipher, the design
structure is a substitution convolution network. We use a randomly shuffled
lut with no statistical relationship between the input and output values. For
achieving diffusion, we perform the substitution in a convoluted manner.
When a LeftToRight or RightToLeft operation works in a row, every sub-
stitution is dependent on all previous substitutions. Moreover, the ColSub
operation diffuses bits in the columns. LeftToRight and RightToLeft oper-
ations can be performed in every row parallelly. Similarly, the ColSub oper-
ation can be performed independently in every column in a parallel fashion.
In Appendix A, Figure 10 shows that after one single round, even a single
bit change may diffuse the entire 8× 16 state.

– lut size For both deterministic and non-deterministic lut generation, we
suggest the value of l as 8. Though larger luts may provide better non-
linearity, it also increases the lut size and the one-time permutation time
rapidly. Which increases the overall code size. If an NRBG is used, the lut
stores one of the 28! permutations uniformly at random. If a DRBG is used,
the entropy of the lut set is bounded by the entropy of the secret seed.

– Stride size During the convolution operation, we stride, that is, slide the
convolution window by s bits. Larger strides make encryption faster but
less convoluted, making bits loosely coupled. We should have s ≤ l

3 and
(n − l) mod s = 0 must satisfy so that the convoluted substitution ends
evenly at the end of the row. For l = 8 possible stride values are s = 1 and
s = 2. For HARPOCRATES the stride is fixed to 2. In the Appendix B, we
provide test vector with l = 8 and s = 2.

– Key length This cipher is best suited for the encryption of data-at-rest,
that is, data archived in storage systems. In that case, we can use an NRBG
which is considered a truly random bit generator [17,3,14] having access to
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an entropy source. For data-in-transit, we have two possibilities. First, a
party may shuffle the table in a non-deterministic way and send the entire
table securely to another party. Second, both parties agree upon a secret
seed and generate the same lut separately. In this case, we recommend the
length of the key or the seed to be 256 bits.

4 Security analysis

We now analyze the security of HARPOCRATES against known attacks.

4.1 Linear cryptanalysis

Linear cryptanalysis [27,23,11] is one of the most significant attacks on block ci-
phers. This is an instance of known plaintext attacks. That is, we check whether
there exists any probabilistic linear relationship between a portion of plaintext
bits and a subset of bits after substitutions are performed in the last round. To
determine the complexity of linear cryptanalysis of a cipher, the largest value
of the Linear Approximation Table (LAT) is combined with the number of ac-
tive bundles after certain rounds. From the results of Appendix A, we get ≈ 43
expected active bundle for two round HARPOCRATES. For the expected max-
imum value of LAT, we use the results from [30]. With reference from [30] let
us assume π : Zn2 → Zn2 is a random permutation and λ(π) is the linearity of π.
E(λ(π, 2k)) denote the expected number of entries in LAT of size 2k. E(λ(π, 2k))
in the Equation 1 tends to zero as a function of k we are likely to obtain an upper
bound on λ(π).

(1)

Using Equation 1 the value of k is obtained as 19 for an 8-bit random permuta-
tion. So, using the results of Appendix A, two-round expected linear character-
istics of HARPOCRATES is ≈ 2−118. Linear cryptanalysis ultimately depends
on the non-linearity of the round function. For a word-oriented cipher struc-
ture like AES, the round non-linearity reduces to the non-linearity of the S-box.
Though for a random permutation, the expected non-linearity is lesser than the
maximum possible value, for HARPOCRATES, the overlapped sub-operations
cause a bundle or parts of the bundle to get substituted multiple times. Thus, we
believe the non-linearity of the HARPOCRATES round function shall be much
higher than the expected non-linearity of a random luts.

4.2 Differential cryptanalysis

Differential cryptanalysis [23,11] is a chosen-plaintext attack. The attacker se-
lects plaintext messages and examines the corresponding ciphertext messages in
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an attempt to derive the key. Differential cryptanalysis tries to correlate plain-
text differences with ciphertext differences with high probability and works by
exploiting the properties of the S-boxes used by the cipher.

HARPOCRATES, on the other hand, uses l-bit random permutation. Ap-
pendix A shows that sub-operations LeftToRight, RightToLeft and ColSub
together generate ≈ 43 active bundles in one round transformation from one ac-
tive bit. A theoretical study of O’connor [31] shows that for a uniformly random
l-bit bijective mapping, the highest probability of differential characteristics in a
non-trivial case is expected to be at most 2l

2l
. So, the two-round HARPOCRATES

is expected to have differential characteristics 2−172 (≈ (2−4)43) when l = 8 and
s = 2. So, we expect that the differential characteristics are not a potential
threat to HARPOCRATES.

4.3 Boomerang attack

This is an extension of differential cryptanalysis [37]. In this attack, the cipher is
divided into two sub-ciphers such that E(m) = E1(E0(m)). We need two differ-
ential characteristics for the two sub-ciphers. One is∆→ ∆∗ for forward differen-
tial E0, and the another one is ∇ → ∇∗ backward differential for E−11 . Plaintext-
ciphertext pair (P,C) is chosen, and ∆, and ∇ are applied on P and C, respec-
tively. Finally, it is checked whether the initial forward differential of E0 holds.
The boomerang quartet probability is p2q2, where p =

√∑
∆∗ Pr2[∆→ ∆∗],

and q =
√∑

∇∗ Pr2[∇ → ∇∗] are the maximum differential probabilities of first
and second sub-cipher, respectively. The values of p and q are bounded by the
number of active bundles in each sub-ciphers. Drawing results from Appendix
A, we found HARPOCRATES cipher achieves a high number of expected active
bundles and resists differential cryptanalysis very well. As the boomerang quar-
tet probability is p2q2, we expect boomerang attack is much more difficult than
differential cryptanalysis.

4.4 Weak keys (luts)

The set of keys that make an encryption scheme weaker than other keys is called
a weak key set. In HARPOCRATES, choosing a 256-bit key is analogous to
choosing one permutation uniformly at random from 2256 potential permuta-
tions. A set of luts with more number of similar mappings may form a weak
lut set. As, 8-bit lut can form 28!(≈ 21684) permutations, when DRBG is used
all potential luts are expected to skip 21428(≈ 28!/2256) permutations between
two consecutive potential luts. Table 1 lists the expected number of the same
mapping between two luts between generated luts.

We believe that the attacker can gain an advantage if, throughout the encryp-
tion process using multiple luts, the substitution occurs only within the same
mappings of the luts. In HARPOCRATES, one round comprises 96 random sub-
stitutions. Let us assume that attacker gets two black box encryption engines
that possess luts, which has 32 same entries (this is a bizarre assumption). The
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Available luts Expected #same mapping

28 1

216 2

280 10

2256 32

Table 1: Number of expected same mappings

probability that both encryption engines will use identical mappings is (2−3)192.
This is sufficient to tell that a weak lut set where luts has 32 same entry will
not pose a threat to HARPOCRATES.

4.5 Slide attack

Ciphers that use identical substitution-permutation functions in every round are
vulnerable to the slide attack [7]. Unlike differential and linear cryptanalysis,
slide attack does not depend on the number of rounds. Two main criteria for
performing slide attack are:

– The encryption process is splittable into multiple rounds of identical func-
tions.

– One-round encryption function is vulnerable to a known-plaintext attack.

R0X0

Y 1
0

R1
... Y r

0Rr−1

R0X1 R1
... Y r

1Rr−1

Fig. 9: Slide attack

Let X0, X1 be two plaintext messages, and Y i0 , Y
i
1 the ciphertext after i rounds

of encryption. The attack succeeds if the one-round decryption of Y r1 gives Y r0
(see Figure 9).

HARPOCRATES does XORing of round-dependent constant values in every
encryption round with the state, thereby breaking the similarity among the
different rounds. Since identical rounds are needed for the slide attack, our cipher
should be immune to this attack.

4.6 Impossible differential attack

Impossible differential cryptanalysis exploits the slow diffusion of block ciphers.
This attack makes use of intermediate differential characteristics that never oc-
cur. A particular plaintext differential propagates through rounds produces some



HARPOCRATES:An Approach Towards Efficient Encryption of Data-at-rest 15

predefined patterns in intermediate states in the forward direction. Then, guess-
ing one candidate key, the ciphertext is decrypted up to the desired rounds and
checked whether the intermediate state pattern follows or not. Thus, eliminating
the impossible keys. In the HARPOCRATES cipher, the diffusion mechanism
is strong; predicting such state differential patterns in intermediate rounds is
not straightforward, as that depends on secret lut. Thus, we conclude that this
attack technique is not elementary to the HARPOCRATES cipher.

4.7 Algebraic attack

Algebraic attacks such as Higher-order differential attack [9], Cube attack [12]
are mainly applicable for stream ciphers and block ciphers that have a low degree
in round transformation. For performing algebraic attacks over-defined system
of algebraic equations is derived. The degree of such over-defined equations for
certain rounds is estimated as the degree of non-linear operation to the power
of the number of times the non-linear operation is performed. Expected value
of algebraic degree [38] of a random permutation of l-bit is (l − 1). In a single
round transformation of HARPOCRATES cipher, a single bundle or fraction of
a bundle is substituted multiple times due to the overlapped round operations.
We believe that the expected degree of a single round transformation will be
much higher than the degree of lut, and algebraic attacks shall be inapplicable
for our cipher.

4.8 Structural attack

Structural attacks such as integral attacks [2] and saturation attacks [26] are gen-
erally applicable to block ciphers where the state has a word-like structure (like a
collection of bytes as in AES [19]). Although HARPOCRATES uses substitution
of l-bit words, the substitution window’s shift is by an amount smaller (s ≤ l

3 )
than the word length. As a result, the word-level alignment of substitution is de-
stroyed during both LeftToRight and RightToLeft operations. Consequently,
structural attacks are unlikely to apply to our cipher.

5 Performance evaluation

We implemented the cipher in software and hardware. The inherent structure of
HARPOCRATES allows a high degree of parallelism. LeftToRight, RightToLeft
operations can be performed independently in every row. Similarly, ColSub can
be operated in all the columns parallelly. Although, for software implementation,
we do not exploit the parallelization feature in performance comparisons.

5.1 Software Implementation

We perform software implementation of the cipher and compare the perfor-
mances with the benchmarked implementations of many lightweight ciphers us-
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CPU Intel(R) Core(TM) i3-10110U

CPU Clock 2.10GHz

Architecture x86

Instruction Mode 64-bit

Hardware acceleration used ? No

Cache 4 MB

Operating System Ubuntu 20.04 LTS

Compiler GCC (version 9.3.0)

Compilation Optimization -O2

Table 2: Platform Details for Software Implementation

ing FELICS2 (Fair Evaluation of Lightweight Cryptographic Systems) frame-
work. The environment details of our software implementation and comparison
are shown in Table 2. The comparison results with other ciphers are shown in Ta-
ble 3. FELICS framework only lists benchmark implementations of lightweight
ciphers, no ciphers with key size greater than 128-bit is listed there. HAR-
POCRATES cipher only consists of substitution and XOR operations, which
take much lesser CPU cycles than arithmetic and finite field operations. We
found the proposed cipher has higher throughput than some 128-bit versions of
cipher, like, AES, SKINNY, PRINCE. It also provides higher throughput than
PRESENT, TWINE, and LED, which are some 80-bit ciphers. However, the
code size of the cipher is larger than most of the ciphers, as shown in Table 3.
But, the larger code size is justifiable; the lut is randomly generated, and its
input-output relation shall not be represented by mathematical equations and
need to be stored explicitly in the code.

5.2 Hardware Implementation

We formalized hardware implementation of three different approaches for the
proposed cipher. The first approach focuses on throughput, whereas the re-
source consumption is optimized in approach two, and approach three tries
to reduce the number of Input-Output Blocks (IOBs). In approach one round
sub-operations are performed in partial-parallel fashion and significant higher
throughput is achieved. In approach two, no parallelization is adopted and all
the sub-operations are performed in a single row or column at a time, result-
ing lesser utilization of hardware resources. Approach three uses divider circuits
in feeding the input and the output is made available in eight chunks of 16-
bit each, reducing the number of used IOBs. Table 4 shows the environment
for hardware implementation and Table 5 lists the resource consumption for all
three approaches.

2 FELICS framework is used by cipher designers to compare new primitives with state
of the art
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Algorithm Function Block Size Key Size Code Size CPU
(bit) (bit) (byte) Cycle

AES Enc 128 128 833 158906
Dec 128 128 953 241812

SPECK Enc 64 128 119 2953
Dec 64 128 122 3518

SKINNY Enc 128 128 564 63924
Dec 128 128 588 62476

PRESENT Enc 64 80 487 498522
Dec 64 80 547 497936

TWINE Enc 64 80 629 48654
Dec 64 80 607 52782

Piccolo Enc 64 80 412 31992
Dec 64 80 351 35256

LED Enc 64 80 1478 3799376
Dec 64 80 1472 3925274

PRINCE Enc 64 128 370 40428
Dec 64 128 386 41986

LEA Enc 128 128 3399 2528
Dec 128 128 3551 2930

HARPOCRATES Enc 128 256 2754 40290
Dec 128 256 2754 41050

Table 3: Performance Comparison of Software Implementation

Language Verilog HDL

Synthesis Tool Xilinx ISE

Version ISE 14.7

Family Artix 7

Device XC7A100T

Package CSG324

Table 4: Platform Details for Hardware Implementation

Approach # of LUT # IOBs Frequency Throughput
Number Slices Used (MHz) (Megabits)

1 1447 258 136 79.01

2 1256 258 136 39.52

3 1267 36 136 31.40

Table 5: Post Synthesis Result Details
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6 Conclusion

This paper proposes a new block, cipher HARPOCRATES. Its design principle
is Substitution Convolution Network, which is entirely different from the conven-
tional SPN, Feistel, and ARX models. In this cipher, the key is used to shuffle
a lut randomly. The lut substitutions are performed in a convoluted manner,
which in association with ColSub, introduces good confusion and diffusion. This
cipher may flourish full diffusion in a single round. The round sub-operations
are highly parallelizable, and due to the use of low CPU cycle consuming op-
erations, the software implementation also has higher throughput than many
popularly known ciphers. Our analysis shows that the cipher is immune to sta-
tistical attacks, boomerang attacks, algebraic attacks, structural attacks, and
slide attacks.
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Appendices

A Analysis of Differential and Linear Trails

The propagation of difference along the rounds of a cipher is called the differential
characteristics. Figure 10 shows the differential characteristics of HARPOCRATES.
Even with a single active bit, the whole block may become active after one round
transformation. We call a l-bit differential that has a non-zero value an active bundle
for the sake of discussion. After every substitution in LeftToRight and RightToLeft
convoluted operation the substitution window moves s-bit towards a particular direc-
tion. (l− s)-bits of random value is overlapped between two consecutive substitutions.
The skipped s-bits do not have any influence on the succeeding substitutions. So, the
successive bundle is active with probability p = (1− (2s−1)

2l
). Similarly, for calculating

successive active bundles, previous bundles being active is also considered. Using this
phenomenon, the expected number of active bundles and the probability of each bit of
an active bundle being set is calculated (Figure 11). If a bundle is active with prob-
ability p, then a particular bit of that bundle is active with probability p × h, where
h = 1

2
.

active bit LtR ColSub RtL

Fig. 10: Differential characteristics of HARPOCRATES

If a bit is active in a row after LeftToRight convoluted substitution, that bit par-
ticipates in the corresponding column’s diffusion. And, that column shall be active
after the ColSub operation. So, all those columns which are having a set bit after
the LeftToRight operation become active, as shown in Figure 12. Similarly, while
calculating the expected number of active bundles after the RightToLeft convoluted
substitution operation, it is observed whether the current bundle is active or not. Af-
ter each lut substitution, again check whether the new region under the substitution

h h ph ph p2h p2h p2h p2h p2h p2h p2h p2h

Fig. 11: Probability of being differentially active after first round LeftToRight
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Fig. 12: Probability of being differentially active after first round ColSub

window is active or not. In HARPOCRATES a single round transformation consist of
(n + 2 × N

n
× (n−l

s
+ 1)) number of substitution from the random lut. As the round

sub-operations perform substitutions in an overlapped manner, one bundle or part of a
bundle becomes substituted multiple times. Thus the expected number of active bun-
dles in HARPOCRATES is much higher than other ciphers after a particular round,
which helps the cipher resist the differential and linear cryptanalysis even for a lesser
number of rounds.

Example: expected number of active bundles with initial active bit is at position
b0,15 (Left most active bits shall generate lesser number of expected active bundles)
l = 8, s = 2, p = 253/256 and h = 1

2

Expected bundle weight after LeftToRight : 1
Expected bundle weight after ColSub : h + h + h + h + h + h + h + h + 1 = 5
Expected bundle weight after RightToLeft : (7× (4.819)︸ ︷︷ ︸

row=1,...,7

+ 4.92828︸ ︷︷ ︸
row=0

+5) ≈ 43

B Test vectors

Values of l = 8 and s = 2. The lut is randomly generated. Plaintext, ciphertext, and
lut are presented in the hexadecimal format.

lut = [da, 7a, e7, 93, d7, ae, d3, fa, 20, 60, 70, 62, c9, 9d, 5e, 6a, 4a, e1, 8d, b4, 74, ce,
55, ac, ea, c3, 3a, d0, 8b, 3d, 49, 7f, 82, f3, f6, 90, 6b, 3c, f9, ba, df, b1, 11, fe, 14, 73,
06, 2a, e3, 96, 6c, 0e, 13, 65, 2e, d1, 01, c2, cd, 47, 5a, d5, 4b, 10, d2, d8, 69, 2b, 1d,
f5, 99, e5, b5, 03, 9a, f0, 37, cb, 7d, 23, 53, 81, 59, 16, 2d, 94, b2, a7, 40, 86, 24, eb, 95,
1f, 83, 3b, f8, f7, 0d, 28, fd, ca, 51, db, 97, 56, 43, 5d, 5f, 9b, 71, 63, 78, f1, 52, ff, 18,
c5, 64, 32, 6f, 8c, 9e, dc, 30, ec, d9, a9, 42, a6, 0a, cc, 9f, 4c, a3, 08, ee, 57, 36, b0, ef,
0f, 25, 8e, e2, 76, 6e, fc, 35, 79, 5b, e0, 26, 98, f2, 88, f4, 67, aa, 33, 6d, d4, 41, a0, c0,
3f, 72, e4, 15, 07, c6, 7b, 44, ed, de, 91, 2f, 48, 04, 61, a8, 39, ad, b6, c8, c1, af, 7c, b9,
a5, 27, 29, 0c, 58, 34, ab, 21, e8, 9c, 19, a2, 8a, 0b, 80, 68, b7, e9, a4, 89, 4f, 12, dd, c7,
1e, e6, 75, 66, 3e, 8f, cf, d6, 54, 5c, b8, 92, bf, 22, 85, 17, 05, bb, 4d, c4, 50, 02, b3, 77,
87, 1c, bc, 1a, 45, 2c, 09, 84, 00, 1b, be, 4e, 31, 7e, a1, 38, fb, 46, bd]
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plaintext ciphertext

00000000000000000000000000000000 5f5bc52acc8665cd08700f35b8ab66dc

10000000000000000000000000000000 99ebb44375eab43dc65c7ae5526f0a54

00000000000000000000000000000001 0d1998890f92f0b97e5199d6c5f10764

10000000000000000000000000000001 e5ac90467b7d76dd9a1d625225e15ff1
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