
On The Distributed Discrete Logarithm Problem

with Preprocessing∗

Pavel Hubáček, L’ubica Jančová, and Veronika Králová

Charles University, Faculty of Mathematics and Physics

Abstract

Protocols solving the Distributed Discrete Logarithm (DDLog) problem are a core component
of many recent constructions of group-based homomorphic secret sharing schemes. On a high-level,
these protocols enable two parties to transform multiplicative shares of a secret into additive share
locally without any communication. Due to their important applications, various generic optimized
DDLog protocols were proposed in the literature, culminating in the asymptotically optimal generic
protocol of Dinur, Keller, and Klein (J. Cryptol. 2020) solving DDLog in time T with error probability
O(W/T 2) when the magnitude of the secret is bounded by W .

Given that DDLog is solved repeatedly with respect to a fixed group in its applications, a natural
approach for improving the efficiency of DDLog protocols could be via leveraging some precomputed
group-specific advice. To understand the limitations of this approach, we revisit the distributed
discrete logarithm problem in the preprocessing model and study the possible time-space trade-
offs for DDLog in the generic group model. As our main result, we show that, in a group of size
N , any generic DDLog protocol for secrets of magnitude W with parties running in time T using
precomputed group-specific advice of size S has success probability

ε = O

(
T 2

W
+

max{S, logW} · T 2

N

)
.

Thus, assuming N ≥ W logW , we get a lower bound ST 2 = Ω(εN) on the time-space trade-off for
DDLog protocols using large advice of size S = Ω(N/W). Interestingly, for DDLog protocols using
small advice of size S = O(N/W), we get a lower bound T 2 = Ω(εW) on the running time, which, in
the constant-error regime, asymptotically matches the running time of the DDLog protocol without
any advice of Dinur et al. (J. Cryptol. 2020). In other words, we show that generic DDLog protocols
achieving constant success probability do not benefit from any advice of size S = O(N/W) in the
online phase of the DDLog problem.

∗Supported by the Grant Agency of the Czech Republic under the grant agreement no. 19-27871X and by the Charles
University projects PRIMUS/17/SCI/9 and UNCE/SCI/004.

1

1 Introduction

The Distributed Discrete Logarithm problem (DDLog) serves as an abstraction for a non-interactive
multiplicative-to-additive share conversion procedure central to many recent constructions of homomor-
phic secret sharing schemes [BGI16, BCG+17, OSY21]. On a high-level, during a homomorphic eval-
uation of a restricted multiplication straight-line program using a homomorphic secret sharing scheme,
two parties hold encryptions of the secret inputs under some homomorphic public-key encryption scheme
(e.g., ElGamal encryption in [BGI16] or Paillier encryption in [OSY21]), as well as the additive shares of
the inputs. After performing the multiplication operation “multiply an input value by a memory value”,
the parties naturally obtain multiplicative shares of the result. Though, additive shares are needed for
further evaluation, and this is where the DDLog problem plays its crucial role.

Distributed discrete logarithm problem for prime-order groups. Let (G, ·) be a group in the
multiplicative notation. Two parties P0 and P1 are holding h0 ∈ G and h1 ∈ G (respectively) such that
h1

h0
= ωx for some ω ∈ G and secret x ∈ Z. Without communicating, the parties need to convert their

multiplicative shares h0 and h1 to additive shares a0 ∈ Z and a1 ∈ Z such that a1−a0 = x. For example,
in the case of [BGI16], the underlying group is a prime-order group and the element ω is its generator.
Next, we consider the DDLog problem in this case in more detail.

Let (G, ·) be a cyclic group of prime-order N with a generator g. A natural parameter of the
DDLog problem is the magnitude of the secret x. In the distributed discrete logarithm problem in
G on interval of size W ∈ N such that W ≤ N , the parties P0 and P1 get as input gb and gb+x

respectively, where x ← {x ∈ Z ∩ [−W/2,W/2]} and b ← ZN . The representation of the group G
and the generator g is known to both the parties. At the end of their local executions, the parties
output elements P0(gb), P1(gb+x) ∈ ZN respectively and they succeed in solving the distributed discrete
logarithm problem instance if P1(gb+x)− P0(gb) = x.

[BGI16] gave a protocol solving the DDLog problem achieving error probability at most ε with
time complexity O(Wε−1 log(ε−1)) group operations. Using a pseudorandom function shared among
the parties, their protocol selects a set of “special” group elements and each of the parties searches
through T points closest to her input, in sense of multiplication by the group generator g. When a party
finds a “special” point, the output of the DDLog procedure on her input is the number of steps (i.e.,
multiplications by g) she made until finding the “special” point. It is clear that if both parties find
the same “special” point, P0(gb) − P1(gb+x) = x holds. Therefore, the success probability of the above
DDLog protocol is exactly the probability of the parties synchronizing on the same “special” point. In
the application towards a construction of a homomorphic secret sharing scheme, the error probability
introduced by the DDLog protocol propagates throughout the whole homomorphic evaluation process
and, subsequently, significantly affects its efficiency.

The DDLog problem in prime-order groups was further explored in [DKK20]. First, the authors
proposed a more sophisticated DDLog protocol resulting in error probability O(W/T 2) in T group
operations. Their procedure consists of iterating random walks with carefully chosen parameters of
maximal step-length and number of steps in each stage in a way that they continuously reduces the
probability of the two parties not synchronizing on their path.

Second, the authors also analyzed the limitations of protocols solving the DDLog problem. By a
reduction of the Discrete Logarithm in Interval (DLI) problem to the DDLog problem, they proved that
the error probability of DDLog protocols running in time T is Ω(W/T 2) in specific families of groups
where the DLI problem is hard. Additionally, [DKK20] also analyzed the DDLog problem in the generic
group model [Sho97, Mau05], i.e., in a model inhibiting the attacker from exploiting a particular structure
and properties of the underlying group. Specifically, they showed that the error probability of any generic
DDLog protocol is Ω(W/T 2).

Due to the matching negative results, the DDLog protocol can be considered as optimal. The error
probability Ω(W/T 2) also implies a non-negligible correctness error in the HSS construction from [BGI16].

DDLog as a synchronization problem. Note that, at its core, the distributed DLog problem is
different than the standard DLog. In order to succeed, the parties can “merely” synchronize on some
special element with high probability. In particular, they certainly do not need to find the discrete

2

logarithms of their respective inputs to synchronize.1 One could thus attempt to construct more efficient
DDLog protocols by leveraging some precomputed group-specific advice that, on one hand, would allow
to synchronize with high probability faster while, on the other hand, would not compromise the security
of the DLog problem in the underlying group. This approach is particularly well motivated, for example,
from the perspective of trying to amortize the cost of the many DDLog instances generated during a
homomorphic evaluation in a homomorphic secret sharing scheme.

1.1 Our Results

In this work, we focus on the distributed discrete logarithm problem for prime-order groups in the
preprocessing model and examine to what extent can preprocessing help to solve the distributed discrete
logarithm problem. In other words, we allow an offline phase of the protocol for precomputing a bit-
string of length S before receiving the challenge pair (gb, gb+x) without any restriction on the time of
its computation. Then, the precomputed advice bit-string is passed as an additional input to the two
parties running in the online phase, i.e., after receiving the respective challenges. Regarding the time
complexity of the protocol, we are interested in the performance of the online phase. To examine whether
the additional advice computed during the offline phase can help to reduce the error probability in the
DDLog problem, we study this question in the generic group model.

Theorem 1 (main – informal). Let N,W ∈ N, such that N > W , N be a prime. Then any generic
protocol solving DDLog in a group of order N in time T using precomputed advice of size S has success
probability

ε = O

(
T 2

W
+

max{S, logW} · T 2

N

)
,

where W denotes the length of the interval in the DDLog problem. Furthermore, if N ≥W · logW then

ε = O

(
T 2

W
+
S · T 2

N

)
.

Our main result summarized above is an upper bound on the success probability of protocols lever-
aging preprocessing. Assuming N ≥ W logW , our bound for a “large” preprocessing advice of size
S = Ω(N/W) translates into a bound on time-space tradeoff in the DDLog problem ST 2 = Ω(εN). Note
that this bound matches the lower bounds for standard discrete logarithm problem with preprocessing
given by [CDG18] and [CK18]. As the DDLog problem naturally reduces to two instances of the classical
discrete logarithm problem, the DLog algorithms matching these lower bounds give an optimal algorithm
for DDLog in this regime of parameters.

For any “small” preprocessing advice of size S = O(N/W), our bound translates to a lower bound
on the time complexity of the DDLog problem T 2 = Ω(εW). Interestingly, for DDLog protocols with
constant success probability in this regime of parameters, our lower bound on time-complexity of proto-
cols with preprocessing is matched by the time complexity of the protocol with no preprocessing running
in time T 2 = O(W

1−ε) from [DKK20]. Hence, if we want to achieve a constant success probability in the
DDLog problem, then allowing the attacker to precompute a preprocessing advice of size S = O(N/W)
does not asymptotically help to save computation time in the online phase of the DDLog problem.

Finally, let us consider the regime of parameters relevant to the application of DDLog in homomorphic
secret sharing, i.e., the original motivation for DDLog. There, we expect W to be a polynomial function
in the security parameter, i.e., W = O(polylog(N)). In this case, our assumption N ≥ W logW is
fulfilled. Then, in order to leverage the time-space trade-off matching our lower bound, we would need
to allow advice of size S = Ω(N/ logN), which is larger than, e.g., S = 3

√
N . Moreover, advice of this size

allows to calculate discrete logarithms in polynomial time, which would ultimately break the security of
the HSS scheme.

Non-generic DDLog protocols. It is important to stress that neither our results nor the results
of Dinur et al. [DKK20] rule out non-generic DDLog protocols exploiting particular structure of some
groups in which DLI is not a difficult problem, or where the order of the underlying group is not prime.
For example, this is the case of the DDLog protocol and a subsequent construction of homomorphic

1Importantly, standard DLog is hard in the groups employed in the current applications of DDLog.

3

secret sharing in [OSY21] from Paillier encryption scheme. Specifically, [OSY21] exploits the fact that
computing discrete logarithms is easy in a particular subgroup of the Paillier group, which allowed them
to construct an efficient protocol with perfect correctness. Nevertheless, the problem of designing efficient
generic DDLog protocols is of interest besides the applications to homomorphic secret sharing schemes.
For example in the recent work of Boyle et al. [BDG+22], the DDLog protocol of Dinur et al. [DKK20]
was exploited towards constructions of a new flavour of locality-preserving hash function.

1.2 Our Techniques

On a high-level, our approach is similar to works that studied the standard discrete logarithm problem
with preprocessing in the generic group model [CK18, CDG18]. Though, as explained above, there are
significant differences to the standard DLog problem. In particular, the online adversary is distributed
in our context and, thus, we need to introduce the corresponding formalism. Additionally, the DDLog
problem is parameterized by the “magnitude” bound W corresponding to the width of the interval used
for sampling the secret. We strive to derive quantitative bounds on the power of generic preprocessing
adversaries that depend both on W and the order of the group N , which corresponds to analyzing the
power of algorithms exploiting the knowledge of the parameter W .

Similarly to [CDG18], we use the auxiliary-input generic group model in order to analyze DDLog
protocols with preprocessing. Given that proving lower bounds in the auxiliary-input model directly
is notoriously challenging, we first prove a lower bound in the more amenable bit-fixing model, which
captures the presampling technique of Unruh [Unr07]. Then, in order to translate our lower bound from
the bit-fixing model into the auxiliary-input model, we leverage an analogue of theorem from [CDG18]
relating the security of primitives in the bit-fixing and auxiliary-input model in the presence of distributed
online attackers.2

First, we notice that the proof of the correspondence between bit-fixing and auxiliary-input models
in the presence of distributed online attackers follows via minor adjustments from the analogous corre-
spondence for standard online attackers in [CDG18]. We give the formal statement (Theorem 5) and a
proof sketch highlighting the important points in Section 3.3.

The most technical part of our work is the upper bound on the success probability of a distributed
online attacker for DDLog in the bit-fixing generic group model (BF-GGM). The high-level approach for
proving an upper bound on the success probability in BF-GGM is to consider an alternative experiment
in which the adversary clearly has limited probability of succeeding and then bounding the power of the
adversary to distinguish such alternative experiment from the real security experiment. In more detail,
we can create a list of formal polynomials capturing the relations among the group elements in terms
of the encoding of the challenge gx induced by the queries of the adversary to the group oracle. In the
context of standard DLog, these are univariate polynomials in ZN [X]. The core of the proof is then
analysing the probability of a collision event when substituting an actual value x into the polynomials
– such a collision event corresponds to an inconsistent answer in the alternative experiment. In the
context of distributed DLog, it is natural to consider bivariate polynomials in ZN [X,B] that capture
relations in terms of the encodings of the DDLog challenge (gx, gx+b). Though, the most significant
technical difference is induced by the distributed nature of the online attacker. Specifically, we need
to additionally handle a collision event among the queries of the two distributed parts of the online
attackers.

2 Preliminaries

Below, we review the Schwartz-Zippel lemma (Proposition 2) and the standard Boole’s inequality, also
known as the union bound (Proposition 3).

Proposition 2 (Schwartz-Zippel). Let F be a field. Let f ∈ F[X1, . . . , Xk] be a non-zero polynomial of
total degree d ≥ 0. Let S be a finite subset of F and let x1, . . . , xk be chosen independently uniformly at
random from S. Then it holds that

Pr[f(x1, . . . , xk) = 0] ≤ d

|S|
.

2We note that one could possibly obtain similar results to ours by adapting the more recent technique from [GLLZ21]
leveraging an alternative characterization of the bit-fixing model.

4

Proposition 3 (Union Bound). Let n ∈ N and consider events E1, . . . , En, then

Pr

[
n⋃
i=1

Ei

]
≤

n∑
i=1

Pr [Ei] .

3 DDLog with Preprocessing in the Generic Group Model

3.1 The Generic Group Model

In this section, we describe a variant of the generic group model that we consider in this work, and we
define the DDLog problem in this generic group model. We use a variant of the generic group model
[Sho97, Mau05] similar to the one in [CDG18] with adjustments accommodating distributed attackers.

Let G be a cyclic group of prime-order N with a generator g. The generic group model allows to
capture the power of algorithms that do not leverage additional knowledge about the structure of the
group or the specific representation of group elements. In more detail, the structure of G is random in
the sense that the access of the adversary to the group elements is given by a random injective function
σ : ZN → [M] for some natural number M ≥ N . Thus, the elements of G are represented by the elements
from Im(σ), i.e., for a ∈ ZN , the representation of the group element ga is σ(a). We call the mapping σ
an encoding function.

Definition 1 (Encoding function). Let N,M ∈ N be natural numbers such that M ≥ N . Consider ZN ,
the additive group of integers modulo N , and the set [M] = {1, . . . ,M}. An encoding function of ZN on
[M] is an injective mapping σ : ZN → [M]. We denote IN,M the set of all encoding functions of ZN on
[M] and Yσ the image of σ.3

In order to perform group operations in the generic group model, the adversary A is granted access
to a group-operation oracle O, which chooses a random encoding function σ ← IN,M at the beginning
of the experiment and then answers adversary’s queries of the following types:

Forward query:
Any query a ∈ ZN is answered by σ(a) ∈ [M].

Group-operation query:
Any query (s1, s2) ∈ [M] × [M] is answered by σ(x1 + x2), where x1, x2 are elements of ZN such
that σ(x1) = s1 and σ(x2) = s2. If any of s1, s2 is not in Yσ, the query is answered by ⊥.

Inverse query:
Any query s ∈ [M] is answered by σ(−x), where x ∈ ZN is the preimage of s, i.e., σ(x) = s. If
s /∈ Yσ, the query is answered by ⊥.

In the generic group model, we measure the time complexity of the attacker by the number of oracle
queries performed during its execution.

Remark 1 (Explicit inverse queries). Unlike previous works studying the standard DLog with prepro-
cessing [CK18, CDG18] and the DDLog without preprocessing [DKK20] in the generic group model, we
allow the adversary to make explicit inverse queries. This choice is important for our results in order
to achieve quantitatively better bounds. Note that an inverse query can be implemented using O(logN)
group-operation queries. Thus, a lower bound in a variant of the generic group model without explicit
inverse queries yields an equivalent lower bound in our model up to a multiplicative logarithmic factor in
N . However, in order to derive meaningful bounds for the DDLog problem, we cannot afford to neglect
logarithmic factors in N and, therefore, we analyse the performance of protocols that can make explicit
inverse queries. We note that other works previously considered explicit inverse queries in GGM. See,
for example, Neven, Smart, and Warinschi [NSW09] or Blocki and Lee [BL19].

3We omit the subscript σ in Yσ when the encoding is clear from the context.

5

ExpG
O

A (λ):

1. On input 1λ, the challenger C generates a secret x from a space of secrets X and a challenge
(c0, c1) from the challenge space CHx. It forwards (1λ, c0) to A(0) and (1λ, c1) to A(1).

2. For i = 0, 1:

(a) On input (1λ, ci), the attacker A(i) makes queries to oracle O and receives answers
from the oracle.

(b) The attacker A(i) chooses a guess xi ∈ X and sends it to C.

3. The output of the experiment is 1 if x1 − x0 = x and 0 otherwise.

Figure 1: Distributed unpredictability experiment.

Unpredictability application. The distributed discrete logarithm problem can also be seen as a
problem of guessing secret information given a challenge from some challenge space dependent on the
secret. In particular, the attacker tries to guess x given the challenge of the form gb, gb+x. Nevertheless,
the unpredictability application does not provide a good representation for this problem, as it carries
several differences compared to it. Especially, the attacker in the distributed discrete logarithm problem
is composed of two algorithms who cannot communicate and each of these algorithms only gets to see
half of the challenge, moreover, “to solve” the DDLog problem, is to get the secret x secret-shared
between these two algorithms, not known explicitly by any of them. We call this special type of attacker
a distributed attacker and we represent similar problems by distributed unpredictability application.

Definition 2 (Distributed attacker). A distributed attacker (A(0),A(1)) is a pair of independent PPT
A(0) and A(1), who cannot communicate. We say the distributed attacker runs in the time T if each of
A(0) and A(1) does not make more than T oracle queries during its execution.

Below, we define a distributed unpredictability application, which captures the problem of guessing
some secret information x given a challenge from a challenge space CHx in the generic group model.

Definition 3 (Distributed unpredictability application). Let λ ∈ N be a security parameter. A dis-
tributed unpredictability application G in the oracle O-model is defined by a space of secrets X, a set
of challenge spaces {CHx | x ∈ X}, where the elements of CHx are of form (c0, c1), a PPT challenger C
with oracle access and an oracle O. We define the advantage of the distributed attacker A = (A(0),A(1))

on G, denoted AdvG
O

A (λ), as the probability of success of A in the distributed unpredictability experiment

ExpG
O

A (1λ) defined in Figure 1, i.e.,

AdvG
O

A (λ) = Pr
[
ExpG

O

A (λ) = 1
]
.

Now, we define the distributed discrete logarithm problem in the generic group model.

Definition 4 (Distributed discrete logarithm application). Let λ ∈ N be a security parameter, let
N,W ∈ N, N > W and O be a group operation oracle. The (N,W)-distributed discrete logarithm
application GODDLog(N,W) is a distributed unpredictability application in O-model, where the space of
secrets is X = {x | x ∈ Z ∩ [−W/2,W/2]}, the challenge space for x ∈ X is defined as CHx =
{(σ(b), σ(b + x)) | σ ∈ IN,M , b ∈ ZN}, and the challenger CDDLog is a PPT that samples b ← ZN and
x from the set of integers in the interval [−W/2,W/2] uniformly at random. Then CDDLog makes two
forward queries b, b+ x to the oracle and passes (1λ, σ(b)) as a challenge to A(0) and (1λ, σ(b+ x)) as a
challenge to A(1).

3.2 Preprocessing in the Generic Group Model

In this section, we introduce the definitional framework of the generic group model for the algorithms
with preprocessing. The framework is adapted from [CDG18] with some small adjustments in order to
capture the distributed attacker. First, we define the preprocessing oracle.

6

Definition 5 (Preprocessing oracle). The preprocessing oracle O is an oracle formed by a pair of oracles
(Opre,Omain), where Opre can only be queried during the offline phase of an experiment, i.e., before the
challenge is generated and Omain can only be queried in the online phase of an experiment.

The attacker in the preprocessing model is composed of two algorithms, one of them running in the
offline phase and having access to Opre, the other one running in the online phase and having an access
to Omain.

Definition 6 ((S, T)-attacker, [CDG18, Definition 1]). Let S, T ∈ N and O = (Opre,Omain) be a prepro-
cessing oracle. An (S, T)-attacker A = (A0,A1) in the O-model consist of two probabilistic algorithms:

1. A preprocessing algorithm A0, which is computationally unbounded and which interacts with Opre

and outputs a bit-string of length at most S bits.

2. An online algorithm A1, which takes as input an S-bit output of A0 and a challenge from the
challenger, then makes at most T queries to Omain, and outputs a guess.

Now, we define the notions of unpredictability application and distributed unpredictability application
in the preprocessing model. Definitions 8 and 9 correspond to Definitions 2 and 3 extended to the
preprocessing model. The (S, T)-attacker (Definition 6) and the unpredictability application with prepro-
cessing (Definition 7) correspond to the model used by [CDG18], whereas the distributed (S, T)-attacker
(Definition 8) and the distributed unpredictability application with preprocessing (Definition 3) allow us
to model the DDLog problem with preprocessing in the generic group model.

The following definition formalizes the problem of guessing secret information x given a challenge
from a related challenge space CHx, while we allow the attacker to precompute advice string before
receiving the challenge.

Definition 7 (Unpredictability application with preprocessing). Let λ ∈ N be a security parameter. An
unpredictability application with preprocessing G in the oracle (Opre,Omain)-model is defined by a space
of secrets X, a set of challenge spaces {CHx | x ∈ X}, a PPT challenger C with oracle access to Omain

and a preprocessing oracle (Opre,Omain). We define the advantage of A on G, denoted AdvG
(Opre,Omain)

A (λ),

as the probability of success of A in the unpredictability experiment with preprocessing ExpG
(Opre,Omain)

A (λ)
defined in Figure 2, i.e.,

AdvG
(Opre,Omain)

A (λ) = Pr
[
ExpG

(Opre,Omain)

A (λ) = 1
]
.

We say an unpredictability application with preprocessing G is (S, T, ε)-secure in the (Opre,Omain)-model

if, for every (S, T)-attacker A and every λ ∈ N, it holds that AdvG
(Opre,Omain)

A (λ) ≤ ε(λ).

As the online attacker in the DDLog problem is not a single algorithm, yet an attacker composed
of two algorithms who cannot communicate, we need to introduce a definition of such attacker in the
preprocessing model.

Definition 8 (Distributed (S, T)-attacker). Let S, T ∈ N and O = (Opre,Omain) be a preprocessing

oracle. A distributed (S, T)-attacker A = (A0, (A(0)
1 ,A(1)

1)) in the O-model consist of three probabilistic
algorithms:

1. A preprocessing algorithm A0, which is computationally unbounded and which interacts with Opre

and outputs a bit-string of length S bits.

2. A pair of online algorithms (A(0)
1 ,A(1)

1), which cannot communicate and each of which takes as
input an S-bit output of A0 and a challenge, then makes at most T queries to Omain, and outputs
a guess.

Now, we define the distributed unpredictability application with preprocessing, which formalizes the
problem of the distributed (S, T)-attacker’s online algorithms guessing additive shares of secret informa-
tion x, given a challenge from the related challenge space CHx.

7

ExpG
(Opre,Omain)

A (λ):

1. The attacker A0 makes queries to oracle Opre and receives answers from the oracle.

2. At the end of its execution, A0 outputs an advice bit-string adv of maximal length S bits
and forwards adv to the online phase attacker A1.

3. The challenger C generates a secret x from the space X and a challenge c from the challenge
space CHx. It forwards (1λ, c) to A1.

4. On input (1λ, adv, c), the attacker A1 makes queries to the oracle Omain and receives answers
from the oracle.

5. The attacker A1 chooses a guess x′ ∈ X and sends it to C.

6. The output of the experiment is 1 if x = x′ and 0 otherwise.

Figure 2: Unpredictability experiment with preprocessing.

DistExpG
(Opre,Omain)

A (λ):

1. The attacker A0 makes queries to oracle Opre and receives answers from the oracle.

2. At the end of its execution A0 outputs an advice bit-string adv of maximal length S bits

and forwards adv to the online phase attackers A(0)
1 ,A(1)

1 .

3. The challenger C generates a secret x from the space X and a challenge (c0, c1) from the

challenge space CHx. It forwards (1λ, c0) to A(0)
1 and (1λ, c1) to A(1)

1 .

4. For i = 0, 1 :

(a) On input (adv, 1λ, ci) the attacker A(i) makes at most T queries to oracle Omain and
receives answers from the oracle.

(b) The attacker A(i) chooses a guess xi ∈ X and sends it to C.

5. The output of the experiment is 1 if x1 − x0 = x and 0 otherwise.

Figure 3: Distributed unpredictability experiment with preprocessing.

Definition 9 (Distributed unpredictability application with preprocessing). Let λ ∈ N be a security
parameter. A distributed unpredictability application with preprocessing G in the oracle (Opre,Omain)-
model is defined by a space of secrets X, a set of challenge spaces {CHx | x ∈ X}, where the elements of
CHx are of the form (c0, c1), a PPT challenger C with oracle access to Omain and a preprocessing oracle

(Opre,Omain). We define the advantage of a distributed (S, T)-attacker A = (A0,A(0)
1 ,A(1)

1) in G, denoted

AdvG
(Opre,Omain)

A (λ), as the probability of success of A in the distributed unpredictability experiment with

preprocessing DistExpG
(Opre,Omain)

A (λ) defined in Figure 3, i.e.,

AdvG
(Opre,Omain)

A (λ) = Pr
[
DistExpG

(Opre,Omain)

A (λ) = 1
]
.

We say a distributed unpredictability application with preprocessing G is (S, T, ε)-secure in the (Opre,Omain)-

model if, for every distributed (S, T)-attacker A and every λ ∈ N, it holds that AdvG
(Opre,Omain)

A (λ) ≤ ε(λ).

Now, we define the DDLog problem with preprocessing in the generic group model.

8

Definition 10 (Distributed discrete logarithm application with preprocessing). Let λ ∈ N be a security
parameter, let N,W ∈ N, N > W . The (N,W)-distributed discrete logarithm application with prepro-

cessing G
(Opre,Omain)
DDLog (N,W) is a distributed unpredictability application with preprocessing in (Opre,Omain)-

model, where Opre is an oracle that samples σ ← IN,M at the beginning of the experiment and Omain is
a group operation oracle for the encoding function σ, the space of secrets is X = Z ∩ [−W/2,W/2], the
challenge space for x ∈ X is defined as CHx = {(σ(b), σ(b + x)) | b ∈ ZN}. The challenger CDDLog is a
PPT algorithm that samples x ← X and b ← ZN . Then CDDLog makes two forward queries b, b + x to

the oracle Omain and passes (1λ, σ(b)) as a challenge to A(0)
1 and (1λ, σ(b+ x)) as a challenge to A(1)

1 .

3.3 The Auxiliary-Input and Bit-Fixing Models

Following the technique of [CDG18], we define two different preprocessing oracles: Auxiliary-input generic
group oracle and Bit-fixing generic group oracle. The auxiliary-input generic group oracle allows us to
model the preprocessing experiment. Nevertheless, it seems difficult to perform an analysis of complexity
directly in this model, while the bit-fixing generic group oracle offers a model that is easier to analyse.
[CDG18, Theorem 1] proved a relation between an attackers’ success probabilities in these two models.
We state this result in Proposition 4.

The auxiliary-input generic group oracle allows modelling the preprocessing experiments for generic
groups, in the sense that the interface Opre allows the offline attacker to see the entire group structure,
i.e., the mapping σ. Then, A0 can choose a bit-string of maximal length S and pass it to the online
phase attacker A1 as an additional input.

On the other hand, the bit-fixing generic group oracle allows the offline attacker to fix P points
(a, s) ∈ ZN × Y and the mapping σ is chosen afterwards, in the way that it respects these fixed points.

Definition 11. We define:

Auxiliary-input generic group oracle AI-GG(N,M) is a pair (Opre,Omain), where:

• Opre: Samples σ ← IN,M and outputs σ.

• Omain: Answers forward queries, group-operation queries, and inverse queries using σ sampled
by Opre.

Bit-fixing generic group oracle BF-GG(P,N,M) is a pair (Opre,Omain), where:

• Opre: Samples Y ⊂ [M] of size N uniformly at random, takes as input at most P ∈ N pairs of
the form (a, s), a ∈ ZN , s ∈ Y with no collisions, and samples σ uniformly at random from
the subset of IN,M containing all the injections consistent with the sampled image Y and the
given fixed points.

• Omain: Answers forward queries, group-operation queries, and inverse queries using σ sampled
by Opre.

Proposition 4 ([CDG18, Theorem 1]). Let P,N,M ∈ N, N ≥ 16 and γ > 0. Consider a (S, T, ε′)-
secure unpredictability application with preprocessing G in the BF-GG(P,N,M)-model. If P ≥ 6(S +
log γ−1) · T comb

G , then G is (S, T, ε)-secure in the AI-GG(N,M)-model for ε ≤ 2ε′ + γ. Where T comb
G

denotes the combined number of queries of the attacker and the challenger.

Proof. For the proof we refer to [CDG18, Appendix A].

Importantly, Proposition 4 was formulated in [CDG18] only for (S, T, ε)-secure unpredictability ap-
plications with preprocessing, while not considering distributed applications. However, we are interested
in proving upper bounds on the success probability of an attacker in the distributed discrete logarithm
application with preprocessing, which is a distributed unpredictability application with preprocessing. If
we applied Proposition 4 to the DDLog problem directly, we would be forced to represent the distributed
attacker as a non-distributed attacker in the BF-GG(P,N,M)-model, i.e., an attacker with an online
algorithm that gets both challenges and performs up to 2T oracle queries. Then, we would apply the
theorem on this stronger attacker and we would obtain the bounds in the AI-GG(N,M)-model. Thus,
the clear disadvantage of the distributed attacker of having the challenge given to two separate algo-
rithms that are not allowed to communicate cannot be exploited in the BF-GG(P,N,M)-model before

9

applying the Proposition 4. Overall, this approach leads to loose bounds on the success probability of
the distributed attacker. Nevertheless, our central observation is that the theorem holds in the same way
for a distributed attacker.

We also remark that the generic group model used in [CDG18] does not allow the attacker to perform
inverse queries. This approach is justified by the fact that the authors apply Proposition 4 to derive
bounds precise up to polylogarithmic factors in N . The inverse of an element x in a group of order N
is equal to xN−1. Therefore, applying the standard square-and-multiply algorithm, we can simulate the
inverse operation using O(logN) group-operations. Thus, the analysis in a version of the generic group
model without the inverse queries translates to the result precise up to polylogarithmic factors in N in a
model where these queries are allowed. However, we seek to get bounds for the DDLog problem without
neglecting logarithmic factors in N , and, therefore, we explicitly include the inverse query in our generic
group model. We note that Proposition 4 holds also in our version of the generic group model. We
explain the siginificant differences in more detail in the proof sketch of Theorem 5 below.

Theorem 5. Let P,N,M ∈ N, N ≥ 16 and γ > 0. Consider a (S, T, ε′)-secure distributed unpredictabil-
ity application with preprocessing G in the BF-GG(P,N,M)-model. If P ≥ 6(S+ log γ−1) ·T comb

G , then G
is (S, T, ε)-secure in the AI-GG(N,M)-model for ε ≤ 2ε′+γ. Where T comb

G denotes the combined number
of queries of the attacker and the challenger.

Proof sketch. The proof follows from the proof of Proposition 4 stated in [CDG18, Appendix A] replacing
the (S, T)-attacker with preprocessing by a distributed (S, T)-attacker with preprocessing.

In order to prove [CDG18, Theorem 1], the authors first prove closeness of two distributions of
encoding functions, in the sense that they bound the probability that a distinguisher which is allowed
to make T forward (query a ∈ ZN is answered by σ(a)) and backward (query l ∈ [M] is answered by
σ−1(l)) oracle queries succeeds to guess from which distribution the encoding function σ of ZN on [M]
was chosen. In fact, this part of their proof is general and can be applied in the same manner in the
setting with distributed attackers.

Then, to prove Proposition 4, they construct an (S, T)-attackerA′ = (A′0,A′1) for the BF-GG(P,N,M)
oracle model from an (S, T)-attacker A = (A0,A1) for the AI-GG(N,M) oracle model. Their A′1 is
defined as A1 and their A′0 first simulates A0 to get the advice string and, based on it, it fixes at most
P points in the encoding function. Thus, A′0 forces the oracle to choose the encoding function from
a convenient distribution. Then, they let the distinguisher D for the encoding function internally run
the online algorithm A1 on the advice string calculated by A0 and, subsequently, the challenger C for
the unpredictability experiment with preprocessing. The output of the distinguisher is defined as the
output of the unpredictability experiment with preprocessing resulting from the interaction of A1 and C.
The probability of the distinguisher outputting 1 corresponds either to the probability of success of A in
the AI-GG(N,M) oracle model or to the probability of success of A′ in the BF-GG(N,M) oracle model,
depending on which distribution was σ chosen from. Due to the bound on the distinguishing probability
between the two aforementioned distributions, they get a relation between the success probabilities of A
in the AI-GG(N,M)-model and A′ in the BF-GG(P,N,M)-model stated in the theorem, which concludes
their proof.

If we replace the attacker A by a distributed attacker and define A′ in the same way as in the original
proof, A′ will also be a distributed attacker (as the online algorithms of A and A′ are defined to be the
same) and we can perform the proof in the very same fashion as in [CDG18] and get the same results
for the distributed attacker.

The proof of Proposition 4 can also be adapted to the version of generic group model which allows
inverse queries. When the distinguisher D simulates A1 and C, it must provide the answers to their
oracle queries. In their proof, [CDG18] only dealt with the forward query, which D passes as a forward
query to its oracle and passes the answer back, and the group-operation query, which is a query of the
form (a1, a2) ∈ [M]2, answered by σ(σ−1(a1) + σ−1(a2)). The group-operation query is simulated by D
by performing two backward queries σ−1(a1), σ−1(a2) and one forward query σ(σ−1(a1) + σ−1(a2)) to
its oracle. In our case, we have to deal also with the inverse query, which is a query of the form a ∈ [M],
answered by the element corresponding to the inverse of a. This query can be simulated as one backward
query σ−1(a) and one forward query σ(−σ−1(a)). As in the original proof, our distinguisher makes at
most 3T comb queries, where T comb is the combined number of queries of A1 and C. The rest of the proof
is the same, and the same results follow.

10

4 Lower Bounds for DDLog with Preprocessing in the Generic
Group Model

Now, we present our main theorem giving an upper bound on the success probability of a distributed at-
tacker with preprocessing in the DDLog problem. Our theorem is based on [CDG18, Theorem 10], which
examines the discrete logarithm problem in the preprocessing model. The structure of our proof is similar
to the one of [CDG18, Theorem 10]. However, if we simply adjusted the proof of [CDG18, Theorem 10]

to our case, we would get the bound for the success probability of an attacker ε = O
(
ST 2+T 2·log(W)

W

)
.

Nevertheless, the distributed attacker allows us to make a more careful analysis and obtain quanti-
tatively better results. As the distributed attacker is a weaker attacker than its non-distributed repre-
sentation, we can obtain a tighter bound in the BF-GG(P,N,M) oracle model. Then, we translate this
bound to the AI-GG(N,M) oracle model using Theorem 5.

Theorem 6. Let N,W ∈ N, N > W , N be a prime. The (N,W)-distributed discrete logarithm applica-

tion with preprocessing G
AI-GG(N,M)
DDLog (N,W) is (S, T, ε)-secure in the AI-GG(N,M)-model for any

ε = O

(
T 2

W
+

max{S, logW} · T 2

N

)
,

where W denotes the length of the interval in the DDLog problem. Furthermore, if N ≥W · log(W) the
theorem holds for

ε = O

(
T 2

W
+
S · T 2

N

)
.

Proof. We start with a short overview of the proof. In order to bound the advantage of a distributed
attacker in the AI-GG(N,M)-model, we analyse its advantage in the BF-GG(P,N,M)-model and we use
Theorem 5 to translate this bound to the AI-GG(N,M)-model. To bound the attacker’s advantage in the
BF-GG(P,N,M)-model, we construct an alternative experiment, where we answer the attacker’s queries
with randomly chosen elements, while we keep answers consistent in between themselves maintaining a
table of already seen elements. The secrets x ∈ Z ∩ [−W/2,W/2] and b ∈ ZN are chosen uniformly at
random from the respective sets at the end of the experiment, after the attacker outputs its guess. Then,
we express the probability of success of the distributed attacker in this alternative experiment and we
bound the probability that the distribution of query responses given in the alternative experiment differs
from the one that would be given in an honest execution (Lemmas 8 and 9). This gives us the bound on
the attacker’s advantage in the BF-GG(P,N,M)-model.

Now, we proceed with the formal proof of the theorem. First, consider the interaction of A =

(A0,A(0)
1 ,A(1)

1) with CDDLog in the BF-GG(P,N,M)-model, during which the Opre outputs Y, the image
of σ. In the rest of the proof, we condition on the choice of Y. Next, we define an alternative experiment,
during which we construct a table of pairs (v(X), s), where s ∈ Y and v(X) ∈ ZN [X,B] is a formal
polynomial corresponding to the preimage of s under σ. The experiment and, correspondingly, the
construction of the table proceed as follows:

1. A0 fixes σ in at most P points (a, s), a ∈ ZN , s ∈ Y. We add each such point to the table as a
pair (a, s), where a is a constant polynomial.

2. To create the challenge sb ∈ Y for A(0)
1 , CDDLog chooses sb from all unused values in Y uniformly

at random. The pair (B, sb) is stored in the table.

3. The execution of A(0)
1 :

(a) Upon a forward query q ∈ ZN the table is checked for the occurrence of q ∈ ZN [X,B] as a
constant polynomial. If such occurrence is found, we respond by the corresponding sq ∈ Y
that occurs in the table in a pair with q. Otherwise, we sample sq uniformly at random from
all the unused values in Y and we store the pair (q, sq) in the table.

(b) To a group-operation query (s1, s2) we respond by ⊥ if s1 or s2 is not in Y. Otherwise, if s1 is
not in the table, we sample a1 uniformly at random from all unused values in ZN and we store

11

the pair (a1, s1) in the table. The same applies for s2. Afterwards, both s1, s2 are already
stored in the table in pairs with some polynomials u1, u2 ∈ ZN [B]. We check the table for an
occurrence of the polynomial u1 + u2. If there is a record (u1 + u2, s3) for some s3 ∈ Y in the
table, we respond by s3 to the query. Otherwise we sample s3 uniformly at random from all
unused values in Y, we store (u1 + u2, s3) in the table, and we respond by s3 to the query.

(c) To an inverse query s1, we respond by ⊥ if s1 6∈ Y. If s1 ∈ Y and s1 is not in the table, we
sample u uniformly at random from all unused values in ZN and we append the pair (u, s1)
to the table. Now, s1 is in the table in pair with some polynomial u ∈ ZN [B]. We check the
table for an occurrence of (N − 1) · u, if such entry ((N − 1) · u, s2) is found for some s2 ∈ Y,
we answer the query by s2. Otherwise, we sample s2 uniformly at random from all unused
labels from Y, answer the query by s2, and we add the pair ((N − 1) · u, s2) to the table.

(d) At the end of its execution, A(0)
1 outputs x0.

4. To create the challenge sb+x for A(1)
1 , CDDLog chooses sb+x from all unused values in Y uniformly

at random. The pair (B +X, sb+x) is stored in the table.

5. The execution of A(1)
1 is handled in the same way as the execution of A(0)

1 . Except if

• A(1)
1 queries a group-operation query (s1, s2) such that either (α ·B+β, s1), or (α ·B+β, s2),

for some α, β ∈ ZN , α 6= 0 is already in the table, or

• A(1)
1 queries an inverse query s1 such that (α ·B+β, s1) for some α, β ∈ ZN , α 6= 0 is already

in the table.

We denote the event when either one of the above bullet points happens as F . If the event F
occurs, we answer the query by ⊥ and we do not append anything to the table.

At the end of its execution, A(1)
1 outputs x1.

6. CDDLog chooses x uniformly at random from all integers in [−W/2,W/2] and b uniformly at random
from ZN . CDDLog outputs 1 if and only if x1 − x0 = x.

Note that all of the polynomials in the table at the end of the execution are distinct, as we always
first check for an occurrence of a polynomial before adding it to the table. We define a collision event,
denoted E, as the event when, after a substitution of the values x, b chosen by CDDLog for the variables
X,B (respectively) in the polynomials in the table, there exist two entries (a, s) and (a, s′) in the table
such that s 6= s′. Note that the event E corresponds to a discrepancy in the query responses to the
attacker. In other words, there is no encoding function σ such that all of our query responses would be
correct because we associated the image of a with two distinct elements s, s′. If the event E does not
occur and the event F does not occur either then there exists an encoding function σ compatible with
all of our query responses. Furthermore, as we always choose the elements uniformly at random from
the appropriate sets, also the distribution of responses in the alternative experiment is identical to the
distribution of responses in the real unpredictability experiment with preprocessing.

Thus, the distribution of answers seen by A in the alternative experiment differs from the one in the
honest experiment only if at least one of the events E, F occurs. We bound the probability that the
execution differs from the honest execution by bounding the probability Pr[E∪F] ≤ Pr[E | ¬F]+Pr[F].

Below, we introduce a lemma that characterizes the structure of the contents of the table at the end
of the alternative experiment.

Lemma 7. At most 2T + 2 non-constant polynomials are in the table at the end of the execution of the
alternative experiment. Moreover,

1. at most T + 1 of those are of the form αB + β, for some α, β ∈ ZN , α 6= 0 (we say “polynomials

of type 1”) and they were added either as the challenge for A(0)
1 in the step 2 or as a polynomial

corresponding to a group-operation query response during the execution of A(0)
1 in the step 3 b, or

as a polynomial in pair with a response to an inverse query in the step 3 c. Furthermore, the value
s ∈ Y in pair with such polynomial in the table is never returned as an answer to a query made by

A(1)
1 . Also,

12

2. at most T + 1 of non-constant polynomials in the table are of the form α(X + B) + β, for some
α, β ∈ ZN , α 6= 0 (we say “polynomials of type 2”) and they were added either as the challenge for

A(1)
1 in the step 4 or as a polynomial corresponding to a group-operation query response or inverse

query response during the execution of A(1)
1 in step 5. Furthermore, the value s ∈ Y in pair with

such polynomial in the table is never returned as an answer to a query made by A(0)
1 .

There are no non-constant polynomials in the table of forms different than the polynomials of type 1 and
2.

Proof of Lemma 7. First, notice that a non-constant polynomial can only be introduced in the table in
a pair with a challenge sb, sb+x, or in a pair with a response to a group-operation or inverse query, where
at least one of the queried elements s1, s2 or the queried element s1 (for the inverse query) has already
been in the table in pair with a non-constant polynomial. As there are two challenges and at most 2T
queries performed by the distributed attacker, there is at most 2T + 2 non-constant polynomials in the
table at the end of the execution.

Next, we show that the second part of the lemma holds. Notice that the first polynomial with a
non-zero coefficient next to the variable X is added to the table with the challenge sb+x in the step 4.
Therefore, the polynomials with a non-zero coefficient next to the variable X can be added to the table
as a result of a group-operation query or an inverse query only after this moment. Since there are at most
T queries performed after this moment, there cannot be more than T + 1 polynomials with a non-zero
coefficient next to the variable X, and, thus, not more than T + 1 polynomials of type 2. Furthermore,
when a new polynomial is added to the table, we sample its pair value s from the unused values in Y. As

the polynomials of type 2 appear in the table only after the end of execution of A(0)
1 , none of the values

s in pairs with such polynomials could have been returned as an answer to a query made by A(0)
1 .

Next, we prove that, at the end of the alternative experiment, there are no non-constant polynomials
of forms different than polynomials of type 1 and 2 in the table.

Recall that non-constant polynomials are only being added to the table in the challenge pair, during
a group-operation query as a sum of two polynomials already present in the table, where at least one of
them is non-constant, or during an inverse query as an (N − 1) multiple of a polynomial in pair with
the queried element if it is non-constant. Therefore, it is obvious that all polynomials in the table are
at most of degree one in both B and X. Now, it is enough to show there is no polynomial of the form
α1B+α2X+β, where α1, α2, β ∈ ZN , α2 6= 0, α1 6= α2 that we refer to as a “polynomial of type 3”. We
already know no polynomial of this form has been added to the table before the step 4 of the experiment
because all of the polynomials until this step are of degree zero in the variable X. The polynomial
added with the challenge in step 4 is X +B, which is a polynomial of type 2. Therefore, it is enough to
look at the polynomials added to the table during step 5. We prove by induction that no non-constant
polynomials of type different than type 2 are added to the table during step 5. Suppose no non-constant
polynomials different than type 2 were added to the table during step 5 before the i-th query in step 5.
For i = 1, the assumption holds trivially. We prove the inductive step for i + 1 next. By the inductive
hypothesis, it follows that there are no polynomials different from the constant polynomials, polynomials
of type 1, and polynomials of type 2 before the i-th query of step 5 in the table. In case i-th query is
a forward query, either a constant polynomial or no polynomial is added to the table. In case the i-th
query is a group operation query (s1, s2), the following cases can occur:

1. At least one of the pair s1, s2 is not in Y. Then ⊥ is returned and no polynomials are added to
the table.

2. Both s1, s2 lie in Y, and either none of them is in the table or one of them is in the table in pair
with a constant polynomial and the other one is not in the table or both are in the table in pair
with a constant polynomial. Then, only constant polynomials are added to the table.

3. Both s1, s2 lie in Y, one of them is in the table in pair with a polynomial of type 2, and the other
one is not in the table, is in the table in pair with a constant polynomial, or is in the table in pair
with a polynomial of type 2. Then, the response will be in the table in pair with a polynomial of
type 2 or a constant polynomial.

13

4. Both s1, s2 lie in Y and one of them is in the table in pair with a polynomial of type 1. Then, the
query is answered by ⊥ and no polynomials are added to the table.

In case the i-th query is an inverse query s1, the following cases can occur:

1. The element s1 does not lie in Y. Then, ⊥ is returned and no polynomials are added to the table.

2. The element s1 lies in Y and s1 is not in the table, or it is in the table in a pair with a constant
polynomial. Then, only constant polynomials are added to the table.

3. The element s1 lies in Y and s1 is in the table in a pair with a polynomial of type 2. Then, the
response is in the table in pair with a polynomial of type 2.

4. The element s1 lies in Y and s1 is in the table in pair with a polynomial of type 1. Then, the query
is answered by ⊥ and no polynomials are added to the table.

By the above exhaustive case-analysis, no non-constant polynomial of type different than type 2 was
added during the i-th query. Therefore, no non-constant polynomial of type different than type 2 was
added during step 5. Thus, no non-constant polynomials of forms different than the polynomials of type
1 and 2 are in the table at the end of the execution of the alternative experiment.

Part 1 of the lemma follows from the fact that no non-constant polynomial of type different than

type 2 is being added to the table during the execution of A(1)
1 . More precisely, the polynomials of

type 1 can only be introduced in the table in a pair with the challenge sb or in a pair with a response

to a group-operation query or an inverse query by A(0)
1 . Since A(0)

1 makes at most T queries, at most
T + 1 polynomials of type 1 are in the table at the end of the execution. By the analysis of the possible
group-operation and inverse query responses during step 5, an s in a pair with a polynomial of type 1 is

never returned as an answer to a query made by A(1)
1 . This concludes the proof of Lemma 7.

The following lemma bounds the probability Pr[E | ¬F].

Lemma 8. The probability Pr[E | ¬F] can by bounded as follows

Pr[E | ¬F] ≤ (T + 1)2

W
+

(2T + 2) · (P + 6T + 1)

N
.

Proof of Lemma 8. We can bound the collision probability Pr[E | ¬F] in two steps:

1. First, we estimate the probability that there exist two polynomials p1(X,B), p2(X,B) in the table
such that when we substitute the value x ∈ [−W/2,W/2] chosen by CDDLog for the variable X then
p1(x,B) = p2(x,B). We refer to this event as “collision in step 1”.

2. Second, we condition on the fact that the collision in step 1 did not happen and we consider the
set of polynomials from the table after the substitution for X and estimate the probability that in
this set there exist two polynomials p1(B), p2(B) such that when we substitute the value b ∈ ZN
chosen by CDDLog for the variable B then p1(b) = p2(b). We refer to this event as “collision in step
2”.

Regarding the first step, we have already established that all of the polynomials in the table are
distinct and that there are only at most T + 1 polynomials dependent on variable X and that these
are the polynomials of type 2 (by Lemma 7). Therefore, we only examine the probability that one
of the polynomials of type 2 from the table collides with another polynomial from the table after the
substitution for X. Therefore, without loss of generality, we can assume p1 is a polynomial of type 2.
We look at the possible forms of p2:

• The polynomial p2 is a constant polynomial. After the substitution for X, p1 is still a polynomial
linear in B. Thus, p1(x,B) 6= p2(x,B).

• The polynomial p2 is a polynomial of type 1. A collision in step 1 can occur in this case.

14

• The polynomial p2 is a polynomial of type 2. Let p1(X,B) = α1(X + B) + β1, p2(X,B) =
α2(X +B) + β2, where α1, α2 6= 0, as both of the polynomials are of type 2. Consider p1(x,B) =
p2(x,B), i.e., α1B + (β1 + α1x) = α2B + (β2 + α2x), and, thus, α1 = α2 and β1 = β2. Then
p1(X,B) = p2(X,B) but there were no identical polynomials in the table before the substitution.
Therefore, p1(x,B) 6= p2(x,B).

Therefore, we only need to estimate the probability of p1(x,B) = p2(x,B), where p1 is a polynomial
of type 2 from the table and p2 is a polynomial of type 1 from the table. We consider a polynomial
p′(X,B) = p2(X,B)−p1(X,B) for each possible choice of p1 from the polynomials of type 2 in the table
and p2 from the polynomials of type 1 in the table. By Lemma 7, there are at most T + 1 polynomials
of type 1 and at most T + 1 polynomials of type 2, we have (T + 1) · (T + 1) polynomials p′ to consider.
The polynomial p′(X,B) is a non-zero polynomial and, after the substitution of x for X, it equals zero
if and only if p1(x,B) = p2(x,B). Now, we apply the Schwartz-Zippel lemma (Proposition 2) over the
field of fractions of ZN [B] to bound the probability of p′(x,B) = 0 for an x chosen uniformly at random
from the set of size W . We get Pr[p′(x,B) = 0] ≤ 1

W . Then, by the union bound (Proposition 3), the

probability of the collision in step 1 is at most (T+1)2

W .

Regarding the second step, we condition on the event that there was no collision in step 1. After the
substitution for X, we are left with at most 2T+2 non-constant distinct polynomials from ZN [B] and the
total number of entries in the table is at most P + 6T + 2. We consider all the “difference” polynomials
p′(B) = p1(B)− p2(B), where p1(B) belongs to the set of non-constant polynomials from the table after
the substitution for X and p2[B] belongs to the set of all polynomials (including constant polynomials)
from the table after the substitution for X, different from p1(B). Using the same argumentation as for
step 1 above, the probability of the collision in step 2 is equal to the probability of any of the difference
polynomials p′(B), after the substitution of b ← ZN , being 0. We apply the Schwartz-Zippel lemma
over the field ZN and the union bound to get that the probability of collision in step 2 is at most
(2T + 2) · (P + 6T + 1)

N
.

Together, we have

Pr[E | ¬F] ≤ (T + 1)2

W
+

(2T + 2) · (P + 6T + 1)

N
.

The above inequality establishes Lemma 8.

In the following lemma, we bound the probability Pr[F].

Lemma 9. The probability Pr[F] can be bounded as follows

Pr[F] ≤ 2 · T · (T + 1)

N − (P + 5T)
.

Proof of Lemma 9. We denote by T the set of elements s ∈ Y occurring in the table in pair with a
polynomial of type 1 at the end of the alternative experiment, i.e.,

T = {s ∈ Y | ∃α, β ∈ ZN , α 6= 0 : (αB + β, s) ∈ Table}.

The probability Pr[F] is the probability that, for some s ∈ T , A(1)
1 makes a group-operation query

(s, ·), (·, s), or an inverse query s during its execution. We call such queries unexpected and we bound
the probability of the first occurrence of an unexpected query.

Let P denote the set of at most P elements s ∈ Y that have been fixed by A0 and let S[i] denote the

set of elements from Y that has been revealed to A(1)
1 before its i-th query.

S[i] = P ∪ {sb+x} ∪
{s ∈ Y | s was a response to the j-th query for some j < i} ∪
{s ∈ Y | s or (s, ·) or (·, s) was the j-th query for some j < i}.

We examine the probability that an unexpected query appears as the i-th query of A(1)
1 for the first

time during the execution.

15

In case the i-th query of A(1)
1 is a group-operation query, we are interested in the probability

Pr[{s1, s2} ∩ T 6= ∅ | S[i] ∩ T = ∅],

where (s1, s2) is the i-th query made by A(1)
1 and the probability is taken over the randomness of the

experiment.

In case the i-th query of A(1)
1 is an inverse query, the probability of our interest is

Pr[{s1} ∩ T 6= ∅ | S[i] ∩ T = ∅],

where s1 is the i-th query made by A(1)
1 and the probability is taken over the randomness of the experi-

ment.
Let us fix the index i, the set S[i] and also the i-th query (s1, s2) or s1. We remark that in the

alternative experiment, all s ∈ T has been chosen uniformly at random from all unused elements in Y.
Also, whenever we use an element from Y for the first time, it is either chosen uniformly at random from
the yet unused elements, or explicitly chosen by the attacker in a group-operation query or an inverse

query. The number of such elements chosen explicitly by A(0)
1 is at most 2T .

Therefore, for every y ∈ Y \ S[i] the following inequality holds

Pr[y ∈ T | S[i] ∩ T = ∅] ≤ |T |
|Y \ S[i]| − 2T

,

where the probability is taken over the randomness of the experiment. We get the following bound for
our fixed i-th query:

Pr[i-th query is the first unexpected query]

≤ max
{

Pr
T

[{s1, s2} ∩ T 6= ∅ | S[i] ∩ T = ∅],Pr
T

[{s1} ∩ T 6= ∅ | S[i] ∩ T = ∅]
}

≤ 2
|T |

|Y \ S[i]| − 2T
≤ 2

T + 1

N − (P + 5T)
,

where the last inequality uses |T | ≤ T + 1 (Lemma 7) and S[i] ≤ P + 1 + 3(i− 1) < P + 3T , as there are

at most T queries made by A(1)
1 .

Therefore, by the union bound over the queries of A(1)
1 , we can bound the probability that any query

was unexpected, and thus, the probability of F , as follows:

Pr[F] ≤
T∑
i=1

Pr[i-th query is the first unexpected query]

≤
T∑
i=1

2
T + 1

N − (P + 5T)

≤ 2T (T + 1)

N − (P + 5T)
.

The above inequality establishes Lemma 9.

By Lemmas 8 and 9, we get

Pr[E ∪ F] ≤ (T + 1)2

W
+

(2T + 2) · (P + 6T + 1)

N
+

2 · T · (T + 1)

N − (P + 5T)
.

Since x is chosen at the end of the experiment uniformly at random from the integer values in the
interval [−W/2,W/2] in the alternative experiment, the success probability of any A in the alternative
experiment is at most 1/W . By the union bound, we can bound the success probability ε′ of A in the
standard experiment as

ε′ ≤ (T + 1)2 + 1

W
+

(2T + 2) · (P + 6T + 1)

N
+

2 · T · (T + 1)

N − (P + 5T)
.

16

In the rest of the proof, we assume that N ≥ 16 (required by Proposition 4). This can be done
without loss of generality since we are proving an asymptotic bound. Now, we apply Theorem 5 in order
to bound the attacker’s success probability ε in the AI-GG(N,M)-model. It holds that T comb

GDDLog = 2T + 2,
and we set γ := 1/W and P := 6(S + log(W)) · (2T + 2). By Theorem 5, we get that

ε ≤ 2 · ε′ + γ

≤ 2 · (T + 1)2 + 3

W
+

2 · (2T + 2) · (P + 6T + 1)

N
+

4 · T · (T + 1)

N − (P + 5T)
.

In the rest of the proof, we assume T ≥ 72. Note that, after proving our result for the attackers
with T ≥ 72, we can bound the advantage of an attacker making less queries as follows. Suppose
an attacker A makes 0 < T < 72 queries during its execution. Note that any attacker B making
T̃ := 72 · T queries can simulate A. However, by our result, we can bound the advantage of B as εB =

O

(
T̃ 2

W
+

max{S, logW} · T̃ 2

N

)
. Therefore, the advantage εA of A is also bounded by this expression

and, as T̃ = 72 · T , it also holds that εA = O

(
T 2

W
+

max{S, logW} · T 2

N

)
.

Furthermore, assume thatN ≥ 72·max{S, log(W), 1}·T . Otherwise ifN < 72·max{S, log(W), 1}·T ≤

max{S, log(W), 1}·T 2, then
max{S, log(W), 1} · T 2

N
> 1 and the theorem’s bound is looser than ε = O(1),

which holds trivially. Thus, we get

N − (P + 5T) = N − (6(S + log(W)) · (2T + 2) + 5T)

≥ N − (12 ·max{S, log(W), 1} · (2T + 2) + 5T)

≥ N − 36 ·max{S, log(W), 1} · T
≥ N/2.

Consequently, for the sum of the second and the third term, we have

2 · (2T + 2) · (P + 1 + 6T)

N
+

4 · T · (T + 1)

N − (P + 5T)
≤ 2 · (2T + 2) · (P + 1 + 6T)

N
+

8 · T · (T + 1)

N

=
4 · (T + 1)(P + 1 + 8T)

N

=
4 · (T + 1)(6 · (S + logW)(2T + 2) + 1 + 8T)

N

=
48 · (T + 1)2 · (S + logW) + (4T + 4) · (1 + 8T)

N

≤ 96 ·max{S, log(W)} · (T + 1)2 + (4T + 4) · (1 + 8T)

N

≤ 192 ·max{S, log(W), 1} · T 2

N
,

where the last inequality holds as we assume T ≥ 72. Specifically, for all T ≥ 72, it holds that

96T 2 ≥ 96 · (2T + 1) + (4T + 4) · (1 + 8T) = 32T 2 + 228T + 100,

which we use to bound the sub-quadratic terms in T in the nominator.
Therefore, it holds that

ε ≤ 3T 2

W
+

192 ·max{S, log(W), 1} · T 2

N
= O

(
T 2

W
+

max{S, log(W)} · T 2

N

)
.

Furthermore, if N ≥ (W · log(W)) then we get that

ε ≤3T 2

W
+

192 ·max{S, 1} · T 2

N
+

192 · log(W) · T 2

N

≤3T 2

W
+

192 ·max{S, 1} · T 2

N
+

192 · T 2

W
= O

(
T 2

W
+
S · T 2

N

)
.

17

The above bounds establish Theorem 6.

Acknowledgements

We are thankful to Siyao Guo for clarifications regarding the known techniques for establishing lower
bounds for problems in the generic group model with preprocessing. We also wish to thank the anonymous
ITC 2022 reviewers for helpful detailed comments on our results and their presentation.

References

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homomorphic
secret sharing: Optimizations and applications. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 2105–2122. ACM, 2017.

[BDG+22] Elette Boyle, Itai Dinur, Niv Gilboa, Yuval Ishai, Nathan Keller, and Ohad Klein. Locality-
preserving hashing for shifts with connections to cryptography. In Mark Braverman, editor,
13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 -
February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 27:1–27:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure compu-
tation under DDH. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer
Science, pages 509–539. Springer, 2016.

[BL19] Jeremiah Blocki and Seunghoon Lee. On the multi-user security of short Schnorr signatures.
IACR Cryptol. ePrint Arch., page 1105, 2019.

[CDG18] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-
permutation, ideal-cipher, and generic-group models. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I,
volume 10991 of Lecture Notes in Computer Science, pages 693–721. Springer, 2018.

[CK18] Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with prepro-
cessing. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II,
volume 10821 of Lecture Notes in Computer Science, pages 415–447. Springer, 2018.

[DKK20] Itai Dinur, Nathan Keller, and Ohad Klein. An optimal distributed discrete log protocol with
applications to homomorphic secret sharing. J. Cryptol., 33(3):824–873, 2020.

[GLLZ21] Siyao Guo, Qian Li, Qipeng Liu, and Jiapeng Zhang. Unifying presampling via concentration
bounds. In Kobbi Nissim and Brent Waters, editors, Theory of Cryptography - 19th Interna-
tional Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part
I, volume 13042 of Lecture Notes in Computer Science, pages 177–208. Springer, 2021.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography. In Nigel P. Smart, editor,
Cryptography and Coding, 10th IMA International Conference, Cirencester, UK, December
19-21, 2005, Proceedings, volume 3796 of Lecture Notes in Computer Science, pages 1–12.
Springer, 2005.

[NSW09] Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Hash function requirements for
Schnorr signatures. J. Math. Cryptol., 3(1):69–87, 2009.

18

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of Paillier: Homomorphic
secret sharing and public-key silent OT. In Anne Canteaut and François-Xavier Standaert,
editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-
21, 2021, Proceedings, Part I, volume 12696 of Lecture Notes in Computer Science, pages
678–708. Springer, 2021.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, Advances in Cryptology - EUROCRYPT ’97, International Conference on the The-
ory and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceeding, volume 1233 of Lecture Notes in Computer Science, pages 256–266. Springer,
1997.

[Unr07] Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor, Ad-
vances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in
Computer Science, pages 205–223. Springer, 2007.

19

	Introduction
	Our Results
	Our Techniques

	Preliminaries
	DDLog with Preprocessing in the Generic Group Model
	The Generic Group Model
	Preprocessing in the Generic Group Model
	The Auxiliary-Input and Bit-Fixing Models

	Lower Bounds for DDLog with Preprocessing in the Generic Group Model

