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Abstract

We consider the problem of sampling random supersingular elliptic curves over finite fields of cryp-
tographic size (SRS problem). The currently best-known method combines the reduction of a suitable
complex multiplication (CM) j-invariant and a random walk over some supersingular isogeny graph.
Unfortunately, this method is not suitable for numerous cryptographic applications because it gives infor-
mation about the endomorphism ring of the generated curve. This motivates a stricter version of the SRS
problem, requiring that the sampling algorithm gives no information about the endomorphism ring of the
output curve (cSRS problem).
In this work we formally define the SRS and cSRS problems, which both enjoy a theoretical interest. We
discuss the relevance of the latter also for cryptographic applications, and we provide a self-contained sur-
vey of the known approaches to both problems. Those for the cSRS problem have exponential complexity
in the characteristic of the base finite field (since they require computing and finding roots of polynomials
of large degree), leaving the problem open. In the second part of the paper, we propose and analyse some
alternative techniques – based either on Hasse invariant or division polynomials – and we explain the
reasons why them do not readily lead to efficient cSRS algorithms, but they may open promising research
directions.

1 Introduction
The problem of efficiently sampling random supersingular elliptic curves over Fp, or SRS problem, is not
as easy as drawing marbles from a bag. When p is large, the best known algorithm is only able to ‘directly’
extract a negligible fraction of all the existing supersingular elliptic curves, by means of Bröker’s algorithm
[Brö09]. The other curves can be sampled ‘indirectly’ as the endpoints of random walks in suitable isogeny
graphs. In other words, they cannot be reached without first passing through one of those few supersingular
elliptic curves which can be sampled directly. This would not be a problem if our only purpose was to
efficiently sample uniformly random supersingular elliptic curves. However, numerous cryptographic appli-
cations require more: the output curve should be sampled in such a way that its endomorphism ring remains
unknown. This further requirement rules out any known efficient method for sampling supersingular elliptic
curves, leaving us with an open problem that we call cSRS problem.

Although the cSRS problem is often mentioned in the literature [Vit19, p. 71; CPV20, p. 3], to the best
of our knowledge no formal definition has been given. Therefore, the first goal of this article is to formalise
the problem (Section 3).

Our second goal is to give a comprehensive and self-contained introduction to the known results on
both the SRS and cSRS problems, which we consider as still lacking in the literature. To this end, we
provide a detailed description of the best known algorithm for the SRS problem and survey some of the
known approaches for the cSRS problem (Section 4). In particular, we first give a thorough theoretical
explanation of Bröker’s algorithm [Brö09], which is based on the the deep connection, already observed by
Deuring in [Deu41], between CM elliptic curves over number fields and elliptic curves over finite fields.
To be more precise, it samples a supersingular elliptic curve modulo a large prime p by reducing modulo p
some suitably-chosen CM curve. Then, we discuss why the algorithm which combines Bröker’s algorithm
with random walks in suitable supersingular isogeny graphs solves the SRS problem but does not solve
the cSRS one. In fact, the algorithm gives information on the endomorphism ring of the output curve.
Later on, we consider some standard characterizations of supersingular elliptic curves, which lead to two
highly inefficient methods for sampling supersingular elliptic curves, i.e. exhaustive search over randomly
sampled elliptic curves, and root-finding on a polynomial of large degree (Hasse invariant).
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In the second part of this work, we propose some alternative approaches to the SRS and cSRS problems,
exploring ways to sample supersingular elliptic curves which do not make use of CM curves. In particular,
in Theorem 4.17 a classic result about the Hasse invariant is extended to elliptic curves in Jacobi form.
Then, in Section 5, we compute the Hasse invariant of different models of elliptic curves, in order to assess
whether some models lead to sparser Hasse invariants. In Proposition 5.10 we also prove a special property
of the Hasse invariant of a supersingular elliptic curve in Montgomery form - namely, it splits completely
over Fp2 .

In Section 6.2, we prove a slight generalization of a result in [Dol18] (Proposition 6.7), from which
we deduce another explicit characterization of supersingular elliptic curves in terms of their p-th division
polynomial. In Section 6.3, under an assumption on the shape of the prime p, we formulate a further
characterization of supersingular elliptic curves based on Fp-rational points of small torsion. Unfortunately,
none of the proposed alternatives approaches leads to a solution of the cSRS problem, but we hope they
may open fruitful research directions.

2 Preliminaries

2.1 Elliptic curves
Let K be a perfect field with charK /∈ {2, 3}. An elliptic curve over K is a projective curve that can be
written, up to birational equivalence, as a cubic in A2(K) in (short) Weierstrass form

y2 = x3 +Ax+B with A,B ∈ K (1)

having a base point at infinity O and such that the discriminant, ∆(E) = −16(4A3 + 27B2), is not 0.
Every elliptic curve E can be endowed with the structure of an abelian group (E,+) whose zero element
is O [Sil09, § III.2].

Since elliptic curves are defined up to birational equivalence, there exist various representations other
than the Weierstrass model considered above. In Table 1, we summarise the form of the affine equation and
the corresponding definition of the j-invariant (whose definition is recalled in the following Section 2.2) for
some of these alternative models. We also provide the values of the coefficients A and B of a birationally-
equivalent elliptic curve in Weierstrass form.

Table 1: Other models of elliptic curves
Model Affine equation j-invariant Equivalent Weierstrass form

Legendre
[Sil09, p. 49] y2 = x(x− 1)(x− λ) 28 (λ2 − λ+ 1)3

λ2(λ− 1)2


A =

−λ2 + λ− 1

3

B =
−2λ3 + 3λ2 + 3λ− 2

27

Montgomery
[CS17, § 2.4]

B′y2 = x3 +A′x2 + x
256(A′2 − 3)3

A′2 − 4


A = B′2

(
1− A′2

3

)
B =

B′3A′

3

(
2A′2

9
− 1

)

Jacobi
[BJ03, § 3]

y2 = εx4 − 2δx2 + 1 64
(δ2 + 3ε)3

ε(δ2 − ε)2


A = −4ε− 4

3
δ2

B = −16

27
δ(δ2 − 9ε)

2.2 Isogenies and Isomorphisms
An isogeny between two elliptic curves E1, E2 over K is a morphism

ϕ : E1 → E2
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such that ϕ(O) = O. We say that ϕ is a K-isogeny, or that ϕ is defined over K, if the rational functions
defining ϕ can be chosen with coefficients in K. We refer to [Sil09, § III.4] for the basic properties of
isogenies and the definition of degree.

An isogeny of degree 1 is an isomorphism. Every isomorphism class of elliptic curves over K can be
uniquely identified by an element j ∈ K, called j-invariant. The value of j can be easily retrieved from the
coefficients of any elliptic curve E : y2 = x3 +Ax+B in the isomorphism class as

j(E) = −1728
(4A)3

∆(E)
.

We recall from [Sil09, Prop. 1.4.b-c] the fundamental properties of j-invariants.

Proposition 2.1.

(a) Two elliptic curves over K are isomorphic if and only if they have the same j-invariant.

(b) Let j0 ∈ K. There exists an elliptic curve over K(j0) whose j-invariant is j0.

Given an elliptic curve E, for each positive integer m, let [m] denote the ‘multiplication-by-m’ map
which is an isogeny from E to itself such that:

[m]P = P + P + · · ·+ P︸ ︷︷ ︸
m times

.

The above definition easily extends to negative integers, setting [−m]P = −([m]P ). For each m ∈ Z, the
m-torsion of E is the subgroup E[m] = ker[m].

Let End(E) be the set of endomorphisms of an elliptic curve E (that is, isogenies E → E). Since
End(E) is a torsion-free ring, the map

[ ] : Z→ End(E)

m 7→ [m]

is injective. Endomorphisms in the image of the injective map [ ] are called trivial. Whenever the map [ ]
is not surjective, that is, there exists some non-trivial endomorphism, we say that E is a CM curve or,
equivalently, that E has complex multiplication. CM curves defined over number fields can be used as a
starting point to generate supersingular elliptic curves over finite fields, as we are going to see in Section 4.

Proposition 2.2. Let ϕ : E1 → E2 be a nonconstant isogeny of degree m. Then there exists a unique
isogeny

ϕ̂ : E2 → E1

such that ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [m].

Proof. See [Sil09, Thm. 6.1.a].

The isogeny ϕ̂ is called the dual isogeny of ϕ. We also define [̂0] = [0].

2.3 Endomorphism rings
In this section we summarise some fundamental facts about the structure of End(E) for an elliptic curve E.
We first recall that an algebra B over a field K (with charK 6= 2) is a quaternion algebra if there exist
i, j ∈ B such that 1, i, j, ij form a basis for B as a K-vector space and

i2 = a, j2 = b, ji = −ij (2)

for some a, b ∈ K∗. Let B be an algebra of finite dimension n over Q. An order O ⊂ B is a Z-module of
rank n which is also a subring.

Theorem 2.3 (Structure of End(E)). Let E be an elliptic curve over K. Then End(E) is either Z, an
order in an imaginary quadratic extension of Q, or an order in a quaternion algebra over Q. If K has
characteristic 0, the last case never occurs.

Proof. [Sil09, Cor. III.9.4].
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Corollary 2.4 (Characteristic polynomial of an endomorphism). Let ϕ be an endomorphism of an elliptic
curve E over K, and define

d = deg(ϕ) and a = 1 + deg(ϕ)− deg(1− ϕ).

Then
ϕ2 − [a] ◦ ϕ+ [d] = [0]. (3)

Proof. This can be checked directly using the properties of dual isogenies.

The integer a from Corollary 2.4 is called the trace of ϕ and denoted by tr(ϕ). In particular, when E is
over a finite field Fq of characteristic p, the endomorphism

ϕq : E → E

(x, y) 7→ (xq, yq)

is called the q-th power Frobenius endomorphism of E, and its trace is the trace of E over Fq . Moreover,
its degree equals q [Sil09, Prop. II.2.11], so that the following yields(

xq
2

, yq
2)
− [tr(ϕq)](x

q, yq) + [q](x, y) = O

for each (x, y) ∈ E(Fq).

2.4 Supersingular elliptic curves
We will now recall some characterizations of supersingular elliptic curves. Such criteria for supersingularity
will be exploited in Sections 4, 5 and 6 to generate supersingular curves. In the following, we will use p for
a prime number greater than 3and q for a generic power pn with n ∈ N.

Theorem 2.5 (Definitions of supersingular elliptic curve). Let K be a perfect field of characteristic p, and
let E : y2 = x3 +Ax+B be an elliptic curve over K. For each r ≥ 1 let

ϕr : E → E(pr)

be the pr-th power Frobenius map, where E(pr) is the elliptic curve of equation y2 = x3 + Ap
r

x + Bp
r

.
Then the following are equivalent:

(a1) E[pr] = {O} for some r ≥ 1.

(a2) E[pr] = {O} for each r ≥ 1.

(b) The endomorphism [p] : E → E is purely inseparable1 and j(E) ∈ Fp2 .

(c) End(E) is an order in a quaternion algebra over Q

If an elliptic curve satisfies one of the above conditions, it is called supersingular. In particular, the set of
supersingular j-invariants, i.e.

{ j(E)|E is supersingular over K },

lies in Fp2 .

Proof. See [Sil09, Thm. 3.1].

We highlight that every supersingular elliptic curve is a CM curve (this actually holds true for every
elliptic curve defined over a finite field). Non-supersingular elliptic curves are called ordinary.

Corollary 2.6. Every supersingular elliptic curve over a field of characteristic p is isomorphic to a super-
singular elliptic curve over Fp2 .

Proof. This is an immediate consequence of part (b) of the previous theorem and the properties of j-
invariants in Proposition 2.1.

For supersingular elliptic curves there is also another characterization which takes into account the
number of Fq-rational points:

1We refer to [Sil09, p. 21] for a precise definition of purely inseparable isogenies.

4



Theorem 2.7. Let E be an elliptic curve over Fq and ϕ : E → E the q-th power Frobenius endomorphism.
Then E is supersingular if and only if

tr(ϕ) ≡ 0 mod p

or, equivalently,
#E(Fq) ≡ 1 mod p.

Proof. See [Was08, Prop. 4.31].

2.5 Supersingular Isogeny graphs
Supersingular isogeny graphs are a major object of study in isogeny-based cryptography. Their peculiar
structure allows ‘walking’ from a vertex - the isomorphism class of a supersingular elliptic curve - to
another in such a way that

• each step can be performed quickly (via Vélu’s formulae, see [Gal18, § 25.1.1; Vél71]);

• starting from a given supersingular elliptic curve, every other supersingular elliptic curve can be
reached within a ‘small’ number of steps;

• the endpoints of ‘long enough’ random walks have an ‘almost uniform’ distribution (rapid mixing).

In this section, we provide a general introduction to random walks over graphs, showing the relation be-
tween the ‘randomness’ of a random walk and the structure of the graph. Finally, referring to a famous
result due to Pizer [Piz98], we show that random walks on suitably-chosen supersingular isogeny graphs
end on ‘random’ vertices.

2.5.1 Random walks

Let G be a graph with set of vertices V and set of edges E . A random walk on G is the stochastic process
(Xt)t≥0 defined as follows:

• each state Xt is a vertex of G;

• the starting node X0 is any vertex of G;

• for each pair of vertices i, j ∈ V ,

Pi→j =


#{ edges between i and j }
#{edges starting from i} if there is an edge between i and j,

0 otherwise,

where Pi→j denotes the probability that, given Xt = i for some t ≥ 0, the next state Xt+1 equals j.

The length of a random walk is the (possibly infinite) number of its states.
The above definition implies that a random walk is a Markov chain. If G is k-regular, then its transition

matrix T is closely related to the adjacency matrix A, namely:

T =
1

k
A.

Since the adjacency matrix encloses every information about the structure of G, it is natural to ask
which assumptions on G ensure that a sufficiently-long random walk on the graph approaches the uniform
distribution, no matter how the starting vertex is chosen. To address this question, we call probability
function on G = (V, E) any non-negative map p : V → R such that

∑
x∈V p(x) = 1.

Remark 2.8. Let n be the number of vertices of G, and suppose that we are able to sample a starting node
X0 in G according to a certain probability function p = (p1, p2, . . . , pn). Then, a random walk from X0 of
length t and transition matrix T on G allows us to sample vertices with probability distribution T tp.

Theorem 2.9. Suppose that the graphG = (V, E) is connected, non-bipartite and k-regular with n vertices.
Let A be its adjacency matrix and T = (1/k)A the Markov transition matrix. Then, for every probability
function p on G we have

lim
t→∞

T tp = u

where u is the uniform function, i.e. u(x) = 1/n for each x ∈ V .
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Proof. See [Ter99, Thm. 6.1].

Moreover, the convergence of a random walk to the uniform distribution is particularly fast if the eigen-
values of the adjacency matrix are small (in absolute value).

Theorem 2.10. Let G = (V, E) be a connected non-bipartite k-regular graph with n vertices. Denote by
A its adjacency matrix, and by T = (1/k)A its transition matrix. Define

µ =
max(|λ2|, |λn|)

k
,

where λ1 = k > λ2 ≥ · · · ≥ λn are the eigenvalues of A. Then, for every probability function p on G and
every positive integer t,

‖T tp− u‖1 ≤
√
nµt,

where u is the uniform probability function and ‖ · ‖1 is defined as ‖f‖1 =
∑
x∈V |f(x)| for each f : V →

R.

Proof. See [Ter99, Thm. 6.2].

2.5.2 Ramanujan property

Theorem 2.10 suggests that the ‘speed of expansion’ of random walks is related to the absolute value of the
eigenvalues of the adjacency matrix of the graph.

A k-regular graph with n vertices is Ramanujan if

max(|λ2|, |λn|) ≤ 2
√
k − 1,

where λ1 = k > λ2 ≥ · · · ≥ λn are the eigenvalues of its adjacency matrix.

Lemma 2.11 (Rapid mixing on Ramanujan graphs). LetG be a k-regular Ramanujan graph with n vertices,
S be any subset of s vertices, and v be any vertex of G. Then, a random walk of length at least

log
(
n√
s

)
log
(

k
2
√
k−1

)
starting from v ends in S with probability between 1

2
s
n and 3

2
s
n .

Proof. See [JMV09, Lem. 2.1].

Corollary 2.12. Let G be a k-regular Ramanujan graph with n vertices. The diameter of G, i.e. the
maximal distance between any pair of its vertices, is O(log(n)).

Proof. Fix two vertices v and w. Then, setting S = {w} in Lemma 2.11, we can conclude that a random
walk of length log(n)/ log

(
k/(2
√
k − 1)

)
starting from v ends inw with non-zero probability. In particular,

the distance between v and w is O(log(n)).

2.5.3 Supersingular isogeny graphs

Let ` and p be two distinct primes, p ≥ 5 and q = pr for some r ∈ N. By Tate’s theorem [Tat66, § 3],
two elliptic curves over Fq are Fq-isogeneous if and only if they have the same trace over Fq . We can thus
define the `-isogeny graph G`(Fq, a) as follows:

• its vertices are the elliptic curves with trace a over Fq modulo isomorphism over Fq;

• its edges are the isogenies over Fq of degree ` between vertices.

An easy consequence of Tate’s theorem is that two curves in the same isogeny graph are either both su-
persingular or both ordinary, depending on their trace over Fq being or not a multiple of p. From now on
we will focus on supersingular isogeny graphs (more information about the ordinary case can be found
in [Sut13; Koh96]).

In order to represent the set of supersingular j-invariants in Fp2 (see Theorem 2.5) in terms of an `-
isogeny graph, we wonder if the trace a can be chosen in such a way that the vertices of G`(Fp2 , a) are in
bijection with the supersingular j-invariants. We address this question by rephrasing a result in [AAM19].
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Proposition 2.13. Let a ∈ {2p,−2p}. Then, for each supersingular j-invariant j0 ∈ Fp2 there is exactly
one vertex in G`(Fp2 , a) composed by supersingular elliptic curves with j-invariant j0.

Proof. See [AAM19, pp. 5–6].

An alternative supersingular `-isogeny graph, denoted by G`(Fp2), can be defined as follows:

• its vertices are the supersingular j-invariants in Fp2 ;

• its edges are the isogenies of degree ` between vertices.

Working with G`(Fp2) or with G`(Fp2 ,±2p) is actually the same.

Theorem 2.14. G`(Fp2) and G`(Fp2 ,±2p) are isomorphic.

Proof. See [AAM19, Thm. 6].

G`(Fp2), or equivalently G`(Fp2 ,±2p), enjoys the very properties which ensure ‘good randomicity’ of
random walks. First of all, we consider the regularity of the graph.

Proposition 2.15. Every vertex of G`(Fp2 ,±2p) has outdegree `+ 1.

Proof. Let E be a vertex and α be a degree-` isogeny starting from E. Then kerα has order ` [Sil09,
Thm. III.4.10]; in particular,

kerα ⊆ E[`].

By [Sil09, Cor. III.6.4], the `-torsion of E is

E[`] ∼= Z�̀ Z×
Z�̀ Z,

and so it has exactly `+1 subgroups of order `. For each finite groupG ofE, the quotient curveE′ = E/G
(i.e. the image of the isogeny with kernel G) is unique up to isomorphism [Sil09, Prop. 4.12].

Actually, with the possible exception of the vertices 0 and 1728 and their neighbours (see [AAM19,
Thm. 7], we can consider G`(Fp2) as an undirected (`+ 1)-regular graph. In [Piz98], a fairly stronger result
is proven.

Theorem 2.16. G`(Fp2) is Ramanujan.

Therefore, G`(Fp2) enjoys the rapid mixing property stated in Lemma 2.11. Moreover, since the number
of supersingular j-invariants is at most bp/12c + 2 (see Corollary 5.4), from Corollary 2.12 we conclude
that the diameter of G`(Fp2) is O(log p).

3 Motivation
The mathematical properties of supersingular elliptic curves go far beyond the results in the previous sec-
tion. We believe that the appeal of this topic, from a theoretical perspective, needs no further evidence.
However, there are also practical reasons for considering supersingular elliptic curves, since they are widely
used in isogeny-based cryptography. We present the main hard mathematical problems on which the secu-
rity of isogeny-based cryptography is based in Section 3.1. Then, in Section 3.2, we provide two examples
of cryptosystems whose security is affected by the (partial) knowledge of the endomorphism ring of the
starting supesingular elliptic curve. Finally, in Section 3.3, we come to the formulation of the SRS and
cSRS problems, to which the remainder of this article is devoted.

3.1 Hard problems for supersingular elliptic curves
The following mathematical problems are considered computationally hard [Gal+16, § 2.2].

Problem 1 (`-ISOGENYPATH). Let p and ` be distinct primes. Given two uniformly-random supersingular
elliptic curves E and E′ over Fp2 , find an `-isogeny path between them, i.e. a path

E → E1 → · · · → E′

on G`(Fp2 , 2p).
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Problem 2 (ENDRING). Given a prime p and a uniformly-random supersingular elliptic curve E over Fp2 ,
compute End(E), i.e. find four endomorphisms that generate End(E) as a Z-module.

There exist supersingular elliptic curves whose endomorphism rings can be easily computed; namely,
those having non-trivial endomorphisms of small degree. We will detail this in Section 4.3.2.

Solving either `-ISOGENYPATH or ENDRING turns out to be the same.

Theorem 3.1. `-ISOGENYPATH and ENDRING are computationally equivalent. More precisely:

• if two elliptic curves E,E′ are given together with their endomorphism rings End(E) and End(E′),
then an `-isogeny E → E′ can be computed in polynomial time;

• if an elliptic curve E is given together with an `-isogeny E′ → E and End(E′), then End(E) can
be computed in polynomial time.

Proof. This was proven first under heuristic assumptions in [Eis+20, § 5.5], and later in [Wes21] under the
Generalised Riemann Hypothesis.

3.2 Two cryptographic applications
Hard mathematical problems can often be exploited to construct secure cryptographic protocols, and `-
ISOGENYPATH and ENDRING are no exceptions. Here we provide two examples, whose main purpose is
to motivate our formulation of the cSRS problem in Section 3.3. In fact, we will see that the security of
both examples is affected by how the starting supersingular elliptic curve E0 is chosen.

CGL hash function As a first example, we present a hash function based on the isogeny graph G`(Fp2)
for some small prime ` 6= p: the CGL function [CLG09]. Such function is outlined in Algorithm 1 for
the case ` = 2. Figure 1 depicts the path in G2(Fp2) determined by the computation of the image of the
message 101.

Algorithm 1: CGL hash function
Input: A supersingular elliptic curve E0 over Fp2 ; a message m of n bits, i.e. m = b1b2 · · · bn.
Output: CGL(m).
Choose a 2-torsion point P of E0;
Compute the isogeny ϕ0 : E0 → E0/〈P 〉 with kernel 〈P 〉;
Set E1 = E0/〈P 〉;
for i ∈ {1, . . . , n} do

Find the 2-torsion points of Ei, other than O;
Rule out the 2-torsion point P such that the map Ei → Ei/〈P 〉 with kernel 〈P 〉 is the dual of
ϕi−1;

Label the other 2-torsion points by P0, P1 (according to some convention);
Compute the isogeny ϕi : Ei → Ei/〈Pbi〉 with kernel 〈Pbi〉;
Set Ei+1 = Ei/〈Pbi〉;

end
Set CGL(m) = j (En+1);

In this setting, a collision happens whenever the same curveEn+1 can be reached through two distinct `-
isogeny paths starting from E1. Therefore, the hardness of `-ISOGENYPATH ensures that the CGL function
is, in general, collision resistant (see [CLG09, § 5]).

However, Theorem 3.1 suggests that the starting curve E0 for the CGL hash function should be chosen
carefully. Namely, if computing End(E0) is by any chance easy, then finding a collision becomes easy as
well.

SIDH key-exchange As a second example, we consider an attack by Petit [Pet17] against SIDH [DFJP14].
SIDH is a key-exchange protocol between two players, say Alice and Bob. Below we recall its construction.

Public parameters:

• A prime p of the form p = `eAA `eBB · f ± 1, where `A and `B are ‘small’ primes.
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E0

E1

E2

0 1
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0 1

0 1

0 10 1

0 1

0 1

Figure 1: The path followed by the CGL function within the graph G2(Fp2) for the message 101.

• A supersingular elliptic curve E0 defined over Fp2 .

• Two bases {PA, QA} and {PB , QB} which generate E0[`eAA ] and E0[`eBB ] respectively.

Key exchange:

• Alice chooses two random integers mA, nA ∈ [1 . . . `eAA ], not both divisible by `A. Then she com-
putes an isogenyϕA : E0 → EA with kernel 〈[mA]PA+[nA]QA〉, and sends (EA, ϕA(PB), ϕA(QB))
to Bob.

• Bob acts similarly: he chooses two random integers mB , nB ∈ [1 . . . `eBB ], not both divisible by
`B . Then he computes an isogeny ϕB : E0 → EB with kernel 〈[mB ]PB + [nB ]QB〉, and sends
(EB , ϕB(PA), ϕB(QA)) to Alice.

• Alice computes an isogeny ϕ′A : EB → EBA with kernel 〈[mA]ϕB(PA) + [nA]ϕB(QA)〉.

• Bob computes an isogeny ϕ′B : EA → EAB with kernel 〈[mB ]ϕA(PB) + [nB ]ϕA(QB)〉.

• The shared secret is the j-invariant of EAB , which is the same as the j-invariant of EBA.

The security of SIDH relies on a decisional problem supposed to be equivalent to the following CSSI
problem.

Problem 3 (CSSI (Computational supersingular isogeny)). Given Alice’s output (EA, ϕA(PB), ϕA(QB))
as above, find ϕA (equivalently: find its kernel 〈[mA]PA + [nA]QA〉).

Since the degree of ϕA is by construction `eAA , CSSI can be seen as a variant of `A-ISOGENYPATH
where some extra information is given about the isogeny to be found (namely, its action on E0[`eAA ]).

In [Pet17, §4], however, it is shown that the knowledge of any non-trivial small-degree endomorphism of
E0 leads to dramatic speed-ups in the solution of CSSI. In this case, under further assumptions (not satisfied
by the standard SIDH scheme) on the starting parameters, CSSI can be even solved in time polynomial in
the bit-length of p. As Petit’s attack can be generalised to any elliptic curve E0 with known endomorphism
ring (thanks to [Wes21]), the supersingular elliptic curve E0 should be chosen carefully to prevent Petit’s
attack against the standard SIDH scheme. To be more precise, computing End(E0) should not be easy.

3.3 SRS and cSRS problems
In this section we formalise the problem of sampling uniformly random supersingular elliptic curves over
Fp2 , in two different flavours:

• the first, weaker, version solely focuses on the mathematical problem;

• the second, stronger, version adds some further requirements which take into account the crypto-
graphic applications.
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We say that an algorithm A is a supersingular random sampler if, on input a prime p, A produces a
supersingular elliptic curve E over Fp2 and the output distribution of A on input p is equal to the uniform
distribution over the set of all supersingular elliptic curves over Fp2 .

Remark 3.2. Suppose that A′ is a deterministic algorithm that, on input a prime p, produces a supersingular
elliptic curve E over Fp2 . Then, A′ can be easily turned into a supersingular random sampler A thanks to
the rapid mixing property (Lemma 2.11). Namely, on input p, A simply performs a random walk in G`(Fp2)
starting from E ← A′(p), and outputs the endpoint of the random walk.

The first problem we define is named Supersingular Random Sampler (SRS in short) problem:

Supersingular Random Sampling (SRS) problem
Construct a supersingular random sampler whose time complexity is O(log p).

In order to formulate a stronger version of the SRS problem, for any supersingular random sampler A
we define a slight variation of Problem 2, relative to A itself.

Problem 4 (ENDRINGA). GivenE ← A(p) and the randomness used by A to produceE, compute End(E).

Given a supersingular random sampler A, we say that A is a supersingular random crypto-sampler
if ENDRINGA is computationally hard. This definition motivates the following stronger version the SRS
problem.

Crypto Supersingular Random Sampling (cSRS) problem
Construct a supersingular random crypto-sampler whose time complexity is O(log p).

Remark 3.3. Let A be a supersingular random sampler consisting of a random walk E → E′ that starts
from the output of a deterministic algorithm A′, as described in Remark 3.2. In this case, the randomness
used by A is the random walk itself. It is then clear, in the light of Theorem 3.1, that computing End(E′)
using the randomness of A is equivalent to computing End(E). Therefore, if computing End(E) is easy,
than A′ cannot be a supersingular random crypto-sampler.

4 Known approaches
We now survey some known supersingular random samplers which solve the SRS problem, showing that
none of them leads to a supersingular random crypto-sampler.

First, we provide a detailed description of the most efficient, to the best of our knowledge, supersingular
random sampler. It consists of the combination of two building blocks:

• an algorithm due to Bröker, described in Section 4.1;

• a random walk over G`(Fp), described in Section 4.3.

Our goal for this section is to provide a comprehensive and clarifying explanation of the combination of
these blocks.

In Section 4.3.2 we will discuss why the resulting algorithm is not a supersingular random crypto-
sampler. Finally, in Section 4.4 we present some cSRS algorithms. They are mainly of theoretical interest,
though, since their computational cost is at least sub-exponential in the bit-length of p, and therefore they
are not a solution of the cSRS problem.

4.1 Bröker’s algorithm
For any given prime p ≥ 5, at least one supersingular j-invariant over Fp2 can be efficiently found thanks
to Bröker’s algorithm [Brö09], which heavily relies on the following result by Deuring.

Theorem 4.1 (Deuring). Fix a prime p ≥ 5. LetE be an elliptic curve over a number fieldK, with End(E)
isomorphic to an order O in an imaginary quadratic field k. Let P be a prime of K over p, and suppose
that E has a good reduction2 modulo P, which we denote by Ẽ. Then Ẽ is supersingular if and only if p
has only one prime of k above it (that is, p does not split over k).

2We say that E has a good reduction modulo P if the P-adic valuation of ∆(E) equals 0 (see [Sil09, § VII.5] for more details).
In particular, this means that the coefficients of E can be seen as elements of some finite extension of Fp, and they define an elliptic
curve Ẽ called the reduction of E modulo P.
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Moreover, let E be an elliptic curve over a field of characteristic p with a non-trivial endomorphism α0.
Then there exists an elliptic curve E defined over a number field K, an endomorphism α of E and a good
reduction Ẽ of E at a prime P of K over p, such that E is isomorphic to Ẽ and α0 corresponds to α̃ (the
reduction of α at P) under the isomorphism.

Proof. See [Deu41; Lan87, Thm. 13.12 and 13.14].

The first part of Deuring’s theorem provides a criterion for determining whether the reduction modulo
a suitable prime ideal P of a CM curve is supersingular or not, while the second part ensures that every
supersingular elliptic curve can be expressed as the reduction modulo a prime ideal P of a CM curve.

4.1.1 Finding CM curves with supersingular reduction

By Deuring’s Theorem, constructing a supersingular elliptic curve over Fp is equivalent to constructing a
CM curve E - over some number field - such that p does not split in End(E). Equivalently, if we denote
by k the imaginary quadratic field which End(E) is an order of, and by D the discriminant of k, p does not
split in k if and only if (

D

p

)
6= 1, (4)

where the left-hand expression denotes the Legendre symbol [Cox13, Prop. 5.16, Cor. 5.17].
Once that a quadratic field k satisfying (4) is fixed, the goal is to determine the CM j-invariants whose

endomorphism rings lie in k. To this end, a deeper insight into the link between elliptic curves and lattices
over C is needed.

From complex lattices to complex elliptic curves Let x1 and x2 two R-linearly independent vectors in
the complex plane C (seen as a 2-dimensional R-vector space). The complex lattice generated by x1 and
x2 is the set

Λ = {z1x1 + z2x2 | z1, z2 ∈ Z} .
Two lattices Λ1,Λ2 are homothetic if there exists β ∈ C \ {0} such that Λ2 = βΛ1.

We will now recall how an elliptic curve E over C can be constructed from a complex lattice Λ, and
also how End(E) can be retrieved from Λ. For this part we follow [Cox13, § 10; Sil09, § C.11; Was08,
§ 9.1-9.3, 10.1] (see also [Gal18, § 16.1] for a general overview on lattices in Rn).

Let Λ be a complex lattice generated by x1, x2 ∈ C; we call complex torus the quotient C/Λ. For each
integer k ≥ 3, the Eisenstein series

Gk(Λ) =
∑
ω∈Λ
ω 6=0

ω−k

converges [Was08, Lem. 9.4]. In order to ease the notation, 60G4(Λ) and 140G6(Λ) are usually denoted by
g2(Λ) and g3(Λ), respectively.

Finally, the j-invariant of a complex lattice Λ is defined as

j(Λ) = 1728
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
. (5)

Theorem 4.2. Two complex lattices are homothetic if and only if they have the same j-invariant.

Proof. See [Cox13, Thm. 10.9]

As the use of the word ‘j-invariant’ suggests, complex lattices and elliptic curves (over C) are closely
related.

Theorem 4.3. Let Λ be a complex lattice, and define the elliptic curve

EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ).

Then the groups C/Λ and E(C) are isomorphic. Moreover, the map

{Homothety classes of complex lattices} → {Isomorphism classes of elliptic curves over C}
Λ 7→ EΛ

is well defined, one-to-one and j(Λ) = j(EΛ).
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Proof. See [Was08, § 9.2 and 9.3].

The following proposition clarifies the connection between a complex lattice Λ and the endomorphism
ring of EΛ.

Proposition 4.4. Let Λ be a complex lattice, and EΛ the corresponding elliptic curve as in Theorem 4.3.
Then

End(EΛ) ∼= {β ∈ C | βΛ ⊆ Λ}. (6)

Proof. See [Was08, Thm 10.1].

Thus, if a complex lattice Λ such that Z ( {β ∈ C | βΛ ⊆ Λ} is considered, the corresponding elliptic
curve EΛ has complex multiplication. In fact, every such Λ is homothetic to a fractional ideal in some
imaginary quadratic field, as we are going to prove in Corollary 4.9.

Proposition 4.5. LetO be an order in an imaginary quadratic field k. Then every non-zero fractional ideal
of O is a complex lattice.

Proof. See [Cox13, § 10.C].

Remark 4.6. On the contrary, a complex sublattice of an imaginary order O is not, in general, a fractional
ideal, nor even a subring, of O. For example, consider k = Q(

√
i) and the sublattice Λ generated by 2 and

i in the ring of integers of k. The square of the second generator is −1, which does not lie in Λ. Therefore,
Λ is not closed under multiplication.

Let S be the right-hand side of (6), i.e.

S = {β ∈ C | βΛ ⊆ Λ},

and assume that Λ is a fractional ideal of an order O in a quadratic imaginary field. The inclusion O ⊂ S
holds trivially. The other inclusion needs not to be true, though (see[Cox13, § 7.A]. When it does (i.e. Λ is
not a fractional ideal of any order greater than O), Λ is called a proper ideal.

Proposition 4.7. Let O be an order in an imaginary quadratic field k, and Λ a proper non-zero fractional
ideal in O. Then End(EΛ) ∼= O.

Proof. It follows immediately from the definition of proper ideal and Proposition 4.4.

The above result provides a class of complex elliptic curves whose endomorphism ring is exactly O,
that is those of the form EΛ, where Λ is a proper fractional ideal of O. Actually, up to isomorphism, there
are no other complex elliptic curves with endomorphism ring O.

Theorem 4.8. Let Λ be a complex lattice, and α ∈ C \ Z. Then, the inclusion αΛ ⊂ Λ holds if and only if
there exists an order O in an imaginary quadratic field k such that α ∈ O and Λ is homothetic to a proper
fractional ideal of O.

Proof. See [Cox13, Thm. 10.14].

Corollary 4.9. Let O be an imaginary quadratic order and E a complex elliptic curve with End(E) ∼= O.
Then there exists a proper fractional ideal of O Λ such that E ∼= EΛ.

Proof. Theorem 4.3 ensures that E ∼= EΛ′ for some complex lattice Λ′. Since we are assuming that E is a
CM curve, by (6) there exists α ∈ C \ Z such that αΛ′ ⊆ Λ′. From Theorem 4.8 we know that there exists
an imaginary quadratic orderO′ containing α and Λ′ is homothetic to a proper fractional ideal ofO′, which
we denote by Λ. By Proposition 4.7, End(EΛ) = O′. Moreover, since Λ and Λ′ are homothetic, the curves
EΛ and EΛ′ are isomorphic. Hence, their endomorphism rings are isomorphic too, i.e. O = O′.

Corollary 4.10. Let O be an order in an imaginary quadratic field. Then the map f : Λ 7→ j(EΛ) yields
a one-to-one correspondence between the ideal class group C (O) and the j-invariants of CM curves with
endomorphism ring O.

Proof. It is easy to prove that two proper fractional ideals of O determine the same class if and only if they
are homothetic as complex lattices. Therefore, f is well-defined on equivalence classes of ideals, and by
Theorem 4.2 it is also injective. Proposition 4.7 ensures that f(Λ) is actually a CM j-invariant and that the
image is a set of j-invariants of CM curves with endomorphism ring O. Finally, surjectivity follows from
Corollary 4.9.
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Hilbert class polynomials Corollary 4.10 alone does not provide an explicit strategy to compute CM
j-invariants. In fact, even though a suitable complex lattice Λ can be easily determined, the infinite sums
g2(Λ) and g3(Λ) involved in (5) make any direct computation quite impractical. Furthermore, a priori it
is not ensured that the CM j-invariants considered in Corollary 4.10 are algebraic over Q. In fact, this
is a necessary condition to apply Deuring’s theorem, since the CM curve (and therefore its j-invariant) is
required to be defined over some number field. The latter problem is addressed in the following proposition.

Proposition 4.11. Let O be an order in an imaginary quadratic field k, and denote by Λ1,Λ2, . . . ,Λh a
complete set of representatives for C (O). Then the polynomial

PO =

h∏
i=1

(
X − j(EΛi

)
)

(7)

has integer coefficients. In particular, the CM j-invariants j(EΛ1), . . . , j(EΛh
) are algebraic over Q.

Proof. See [Cox13, Thm. 13.2].

The polynomial PO defined in (7) is called Hilbert class polynomial (or ring class polynomial, whenever
O is not maximal) of the imaginary quadratic order O.

There exist several algorithms to compute the Hilbert class polynomial of a given imaginary quadratic
orderO in time Õ(discO). For the sake of completeness we sketch below the classical approach from [Coh93,
§7.6.2]:

1) compute a set of representatives Λ1,Λ2, . . . ,Λh for C (O). Equivalently, following [Coh93, § 5.3.1],
enumerate all the positive-definite reduced integral binary quadratic forms aX2 + bXY + cY 2 of
discriminant D = disc(O), i.e. the triples of integers (a, b, c) such that

• |b| ≤ a ≤ c,
• if |b| = a or a = c, then b ≥ 0,

• b2 − 4ac = D.

2) Let (a, b, c) be one of the triples from the previous step. Then the corresponding representative is
Λ = Z+ τZ with τ = −b+

√
D

2a , and j(Λ) can be approximated via the expansion

j(τ) = 1728

(
1 + 240

∑∞
k=1

k3qk

1−qk

)3

(
1 + 240

∑∞
k=1

k3qk

1−qk

)3

−
(

1− 504
∑∞
k=1

k5qk

1−qk

)2 , (8)

where q = e2πiτ [Was08, Prop. 9.12].

3) If the approximations j̃1, . . . , j̃h from the previous step are ‘good enough’, thanks to Proposition 4.11
the exact Hilbert class polynomial of O can be found by rounding the coefficients of

∏h
i=1(X − j̃i)

to the nearest integers. More precisely, the closeness of j̃i to j(Λi) depends on both the partial
sums from (8) considered for the approximation, and the precision used for numerical computations.
While the impact of the first choice is limited by the rapid convergence of (8), the second one requires
a deeper analysis of the coefficients of PO [Eng06, § 4].

4.1.2 The algorithm

To summarise, in Section 4.1.1 we have depicted the following strategy to generate a supersingular j-
invariant in Fp2 for a fixed prime p ≥ 5:

1) Choose an imaginary quadratic field k whose discriminant D satisfies equation (4);

2) Choose an order O in k;

3) Compute the Hilbert class polynomial PO;

4) Consider the reduction modulo p of PO and find one of its roots.
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Bröker’s algorithm, which is summarised in Algorithm 2, is just a special case of the above strategy. In
particular, it performs steps (1) and (2) in such a way that the computation time is polynomial in the bit-
length of p, and the j-invariant found lies in Fp. This is achieved by executing the following steps:

• compute the smallest prime q ≡ 3 mod 4 such that
(
−q
p

)
6= 1;

• set k = Q(
√
−q);

• set O = Z[(1 +
√
−q)/2], that is the maximal order of Q(

√
−q).

In particular, the fact that q is the smallest possible ensures that O is uniquely determined by p, and for this
reason we will denote it bt Op in the following. Thus, the output of Bröker’s algorithm depends only on p
and the root of PO chosen at step (4).

Algorithm 2: Bröker’s algorithm
Input: A prime p ≥ 5.
Output: A supersingular j-invariant j ∈ Fp.
Set q = 3;

while
(
−q
p

)
= 1 do

Assign q to the next prime equivalent to 3 modulo 4;
end
Compute the Hilbert class polynomial PO relative to the quadratic order O of discriminant −q;
Find a root α ∈ Fp of PO modulo p;
Set j = α.

According to Bröker’s analysis in [Brö09, Lem. 2.5], the expected running time of Algorithm 2 is
Õ
(
(log p)3

)
due to the following reasons:

• heuristically, q is likely to be below 50 for p ∼ 2256. This fact seems reasonable, since half of the
elements of Z/pZ are quadratic non-residues. In [LO77] it is proven that, under the Generalised
Riemann Hypothesis, q has size O

(
(log p)2).

• PO can be computed in Õ(disc(O)) = Õ(q) = Õ
(
(log p)2) time, as we have already pointed out in

Section 4.1.1.

• a root of PO in Fp can be found, as described for example in [GG13, § 14.5], in probabilistic time

Õ
(
deg(PO)(log p)2

)
,

that is Õ
(
(log p)3

)
because deg(PO) = h(O) = Õ(

√
q), being the latter equality a classical result

from [Sie35] (h(O) denotes the class number of the order O)).

4.2 Extending Bröker’s algorithm
Bröker’s algorithm does not sample uniformly random supersingular elliptic curves. In fact, for any p, the
output belongs to a pre-determined subset of all possible supersingular j-invariants over Fp2 , i.e., the roots
of PO in Fp, which are Õ(

√
q). Following [LB20], we now go back to the general strategy summarised at

the beginning of Section 4.1.2, and see to what extent it can be translated into an efficient SRS algorithm.

4.2.1 Listing imaginary quadratic orders

Imaginary quadratic orders can be listed according to their discriminants:

Theorem 4.12. Write every integer as f2D, where D is square-free. There is a bijection

{ Imaginary quadratic orders } ↔ Z<0

O ⊆ Q(
√
D) 7→

{
discO if D ≡ 1 mod 4,
discO

4 if D ≡ 2, 3 mod 4

Order of conductor f in Q(
√
D)← [ f2D.
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In particular, if we denote by D the set

D = {discO | O imaginary quadratic order },

we have

D =
{
f2d | f, d ∈ Z, d < 0, d square-free and either d ≡ 1 mod 4 or f is even

}
. (9)

Proof. We recall from [Cox13, § 5.B] that every imaginary quadratic field can be written as Q(
√
D) with

D negative square-free integer, and its discriminant is

dQ(
√
D) =

{
D if D ≡ 1 mod 4,

4D if D ≡ 2, 3 mod 4.

Let OD be the ring of integers of Q(
√
D). Any positive integer f yields a unique order O = Z+ fOD of

conductor f , and every imaginary quadratic order can be constructed in this way [Cox13, Lemma 7.2].
Finally, the discriminant of an order of conductor f in Q(

√
D) is f2dQ(

√
D) (see [Cox13, p. 134]). There-

fore, the maps defined above are one inverse to the other.

4.2.2 Increasing the number of outputs

The general strategy outlined in Section 4.1.2 consists in choosing a random imaginary quadratic order O
whose discriminant is not a square modulo p, and finding a root of PO modulo p. Algorithm 3, which we
label ‘Extended Bröker’s algorithm’, exactly follows this strategy, setting a lower bound −4M for discO.

Algorithm 3: Extended Bröker’s algorithm
Input: A prime p ≥ 5 and a positive integer M .
Output: A supersingular j-invariant j ∈ Fp2 .
Choose a random negative integer n ∈ D ∩ [−4M,−3], with D as in (9);
Write n = f2d with d square-free;

while
(
d
p

)
= 1 do

Choose a new n;
end
Let O be the imaginary quadratic order of discriminant f2d;
Compute the Hilbert class polynomial PO;
Compute any root α ∈ Fp2 of PO modulo p;
Set j = α.

We stress that M should be large enough so that at least one quadratic discriminant n ∈ [−4M,−3]
is not a quadratic residue modulo p (otherwise the algorithm would run endlessly). Under the Generalised
Riemann Hypothesis, it is enough to set M = Õ

(
(log p)2

)
[LO77].

The analysis of Algorithm 2 can be straightforwardly adapted to show that the expected running time of
Algorithm 3 is Õ

(√
M · (log p)2

)
:

• |n| is at most 4M .

• PO can be computed in Õ(disc(O)) = Õ(M) time.

• a root of PO in Fp2 can be found in probabilistic time

Õ
(
deg(PO)(log p)2

)
= Õ

(√
M · (log p)2

)
.

In the light of Theorem 4.1 and since any supersingular elliptic curve is a CM curve, Algorithm 3 can
generate any supersingular j-invariant in Fp2 , provided that M is large enough. Therefore, it is natural to
ask which is the minimum value of M for which this holds. A first, rough estimate immediately suggests
that M must be quite big (a more precise estimate can be found in [LB20, Prop. A.5]).

Proposition 4.13. Let N be the number of possible outputs of Algorithm 3. Then N = Õ(M3/2).
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Proof. Let O be any quadratic order whose discriminant lies in the range [−4M,−3]. We have already
observed that the class number h(O), which is equal to the number of distinct roots of PO modulo p, is
Õ(M1/2). If we denote by h(n) the class number of the quadratic order of discriminant n, then

N =
∑
n∈D
−4M≤n

h(n) ≤ 4M · Õ(M1/2) = Õ(M3/2), (10)

where D is defined as in (9).

For N to be (close to) the total number of supersingular j-invariants over Fp2 , which is about p/12 (see
Corollary 5.4 and [Was08, Cor. 4.40]), the previous proposition rules that the value of M must be Õ(p2/3).
In that case, though, the running time of Algorithm 3 is sub-exponential, namely, it is Õ(p1/3).

4.3 Bröker’s algorithm and random walks
We will now consider the extended Bröker’s algorithm (Algorithm 3) under the assumption that M is
polynomial in the bit-length of p (so that the running time is polynomial, too).

The only known algorithm for uniformly sampling over the set of all supersingular j-invariants over
Fp2 [Vit19, p. 71] is constructed according to the strategy described in Remark 3.2. In particular, it performs
a random walk in G`(Fp2) (for some small prime ` 6= p) starting from an output of Algorithm 3. This
algorithm, though, does not solve the cSRS problem, as we are going to show in Section 4.3.2.

4.3.1 Efficiency

How long should a random walk be, in order to ensure that every supersingular curve can be reached? This
question is addressed by Section 2.5.3. Namely, starting from a given supersingular j-invariant in Fp2 (in
this case, the output of Algorithm 3), every other supersingular j-invariant in Fp2 can be reached within
O(log(p)) steps in G`(Fp2). Thus, the combination of (extended) Bröker’s algorithm and random walks
solves the SRS problem.

4.3.2 Non-minimal output

Unfortunately, combining the (extended) Bröker’s algorithm with random walks does not solve the cSRS
problem.

Proposition 4.14. If E is an output of Algorithm 3, then End(E) can be computed efficiently.

Proof. The statement is remarked in [LB20, p. 1], but here we provide a more explicit explanation. Follow-
ing [LB20], we say that a curve is M -small if it has a non-trivial endomorphism of degree at most M . Let
O be the quadratic order selected at the end of the while loop in Algorithm 3, and E be an elliptic curve
over Fp2 whose j-invariant is the output of the algorithm.

A copy of O is embedded in End(E). To prove this, we recall from Section 4.1.1 that j(E) is the
reduction modulo p of some complex CM j-invariant, say j̃, whose endomorphism ring is isomorphic toO.
Let Ẽ be a complex CM curve with j-invariant j̃, and suppose that its reduction is E. The reduction map
End(Ẽ) → End(E) is a degree-preserving injective ring homomorphism [Sil94, Prop. 4.4]. Therefore, O
is embedded in End(E).

In particular, E is M -small [LB20, Prop. 2.4], i.e. End(E) contains a non-trivial endomorphism of
degree |discO| ≤ M , which can be found applying Vélu’s formulae to every subgroup of E having order
|discO|. This can be done efficiently, since we are assuming that M is polynomial in the bit-length of p.

In fact, the whole structure of End(E) can be computed as follows:

1) Depending on p, consider a ‘special’ order as in [Eis+18, Prop. 1]. By [Eis+18, Prop. 3], one can
compute a j-invariant j0 whose endomorphism ring is isomorphic to such order. Let E0 be a curve
of j-invariant j0. By construction, assuming the Generalised Riemann Hypothesis, E0 is O(log2 p)-
small.

2) [LB20, Thm. 1.3] shows that isogenies of power-smooth degree between M -small curves can be
computed in polynomial time in the bit-length of p. Thus, since End(E0) and a power-smooth
isogeny E0 → E are known, End(E) can be retrieved by Theorem 3.1.
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Corollary 4.15. Let A be the algorithm that performs random walks starting from an output of Algorithm 3
(with M polynomial in the bit-length of p). Then ENDRINGA can be solved in polynomial time in the
bit-length of p. In particular, A is not a supersingular random crypto-sampler.

Proof. The argument is the same as in Remark 3.3: once End(E) and an `-isogeny E → E′ are known,
End(E′) can be computed efficiently by Theorem 3.1.

4.4 Exponential-time algorithms
Here we present two alternative approaches to solve the cSRS problem, based on classic results: exhaustive
search via Schoof’s algorithm and computation of Hasse invariants. Within this section we will also explain
why the computational cost of these two methods is exponential in the bit-length of p.

4.4.1 Exhaustive search

There exist efficient algorithms to check whether a given elliptic curve E over Fp2 is supersingular or not.
One of them computes the number of Fp2 -rational points of E via Schoof’s algorithm [Sch85, § 3] and
checks if it equals 1 modulo p (in the light of Theorem 2.7). Therefore, it is natural to ask if an algorithm to
solve the cSRS problem might be as simple as an exhaustive search, i.e., sampling random elements in Fp2
until a supersingular j-invariant is found.

Unfortunately, exhaustive search over Fp2 is unfeasible because supersingular j-invariants are ‘rare’,
about 1 out of p elements of Fp2 is a supersingular j-invariant, as we are going to show in Corollary 5.4.

One might wonder if the probability of finding a supersingular j-invariant increases when the sample
space is restricted to the smaller set Fp. The following estimate suggests that this is true, even though the
probability of success is still negligible:

Theorem 4.16. There are O(
√
p log p) supersingular j-invariants over Fp.

Proof. See [DG16, pp. 2–3].

Therefore, a random element in Fp is a supersingular j-invariant with probability about log p/
√
p. This

rules out exhaustive search over both Fp2 and Fp as a solution for the cSRS problem.

4.4.2 Hasse invariant

Let Fq be a finite field of odd characteristic p. Hasse [Has35] defines a polynomial Aq ∈ Fq[g2, g3], such
that Aq(g̃2, g̃3) = 0 if and only if the elliptic curve over Fq of equation

y2 = 4x3 − g̃2x− g̃3

is supersingular. Below, we generalise Hasse’s characterisation of supersingular elliptic curves to other
models of elliptic curves.

Consider an elliptic curve E over Fq given by an equation

E : y2 = f(x),

where f(x) is a polynomial of degree 3 or 4 as in Table 1. For any k > 0, define

Apk = coefficient of xp
k−1 in f(x)(pk−1)/2.

In particular, we call Ap the Hasse invariant of E.
A generalisation to the case when f(x) has degree 3 is given in [Sil09, Thm. 4.1.a]. In sight of Section 5,

we prove here an extension of this result which admits the polynomial f to be one of those in Table 1.

Theorem 4.17. Consider a finite field Fq of odd characteristic p and an elliptic curve E over Fq given by
an equation

E : y2 = f(x),

where f(x) is a separable polynomial of degree 3 or 4 as in Table 1. Then E is supersingular if and only if
its Hasse invariant equals 0.
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Proof. Since the case deg(f) = 3 is already covered in Silverman’s proof, we assume that E is in Jacobi
form.
First of all, we count the Fq-rational points of E. [BJ03, § 3] shows that the points of E are in one-to-one
correspondence with non-zero triplets (X : Y : Z)[1,2,1] which satisfy

Y 2 = εX4 − 2δX2Z2 + Z4, (11)

where (X : Y : Z)[1,2,1], or simply (X : Y : Z), denotes weighted projective coordinates defined by the
equivalence relation

(X : Y : Z) = (X ′ : Y ′ : Z ′) ⇐⇒ ∃ k ∈ Fp
∗

such that


X ′ = kX,

Y ′ = k2Y,

Z ′ = kZ.

(12)

The affine points of E are the image of the bijection

{(X : Y : Z)[1,2,1] | Z 6= 0} → A2(Fp)
(X : Y : 1) 7→ (X,Y ),

that is, they are the solutions of the affine equation y2 = εx4 − 2δx2 + 1. In particular, if we let χ : F∗q →
{−1, 0, 1} be the map such that

χ(z) =


−1 if z is not a square,
0 if z = 0,

1 if z is a non-zero square,

we have
#
(
E(Fq) ∩ A2(Fq)

)
=
∑
x∈Fq

(
1 + χ

(
f(x)

))
= q +

∑
x∈Fq

χ
(
f(x)

)
.

The ‘points at infinity’ ofE, on the other hand, are triplets (X : Y : 0) satisfying (11). Notice thatX and Y
must be non-zero since ε 6= 0, so that the equation Y 2 = εX4 yields two Fq-rational points if ε is a square,
zero points otherwise. In conclusion,

#
(
E(Fq)

)
= 1 + χ(ε) + q +

∑
x∈Fq

χ
(
f(x)

)
. (13)

Since F∗q is cyclic of order q − 1, the equality

χ(z) = z
q−1
2

holds for every z ∈ Fq . In particular, (13) becomes

#E(Fq) = 1 + ε
q−1
2 + q +

∑
x∈Fq

(
f(x)

) q−1
2 .

We stress that the latter equation holds on Z, as long as we choose 1, 0 and −1 to represent the equivalence
classes of ε

q−1
2 and (f(x))

q−1
2 modulo p.

Furthermore, one can prove the following equality [Was08, Lem. 4.35] for every i ∈ N:

∑
x∈Fq

xi =

{
−1 if q − 1 | i,
0 if q − 1 - i.

As a consequence, since f(x) has degree 4, the only non-zero terms in
∑
x∈Fq

f(x)(q−1)/2 are the opposites
of the coefficients of xq−1 and x2(q−1) in f(x)(q−1)/2. Namely, the coefficient of xq−1 is Aq by definition,
while the coefficient of x2(q−1) is the leading coefficient of f(x)(q−1)/2, which is ε

q−1
2 . Then we have

#E(Fq) ≡ 1 + ε
q−1
2 − ε

q−1
2 −Aq ≡ 1−Aq mod p.
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Moreover, from [Sil09, Theorem 2.3.1] we know that

#E(Fq) = q + 1− a,

where a is the trace of the q-th power Frobenius endomorphism. By Theorem 2.7 we can therefore conclude

E is supersingular ⇐⇒ a ≡ 0 mod p ⇐⇒ Aq = 0.

The implication Aq = 0 ⇐⇒ Ap = 0 follows by induction from the relation

Apr+1 = AprA
pr

p ,

which can be proven exactly as in the cubic case (see [Was08, Lemma 4.36]).

The explicit formula for the Hasse invariant of a generic elliptic curve in Legendre form is a classical
result. Seen as a polynomial in the variable λ, such Hasse invariant can be exploited to find supersingular
elliptic curves by determining its roots.

Proposition 4.18. Let y2 = x(x − 1)(x − λ) be the equation defining an elliptic curve in Legendre form.
Then

Ap = (−1)m
m∑
i=0

(
m

i

)2

λi,

where m = (p− 1)/2.

Proof. See [Deu41, p. 201; Was08, Thm. 4.34; Sil09, Thm. 4.1.b].

As a polynomial in the variable λ, Ap has the following coefficients (considered modulo p)3

ci =
(m!)2

(i!)2
(
(m− i)!

)2 for i = 0, . . . ,m.

It is easy to see that they can be computed recursively, starting from c0 = 1, via the following formula:

ci+1 = ci ·
(m− i)2

(i+ 1)2
.

This avoids the computation of any factorial modulo p, but does not suggest any easy way to find the roots
of Ap. In terms of computational complexity, computing the zeroes of Ap appears to be worse than an
exhaustive search of supersingular j-invariants over Fp2 (described in Section 4.4.1). We will say more on
this subject in Section 5.

5 Hasse invariant of other models of elliptic curves
It is natural to wonder whether the Hasse invariant for a generic elliptic curve in a model other than the
Legendre one can lead to a sparser polynomial for which computing roots is efficient.

In this section, the Hasse invariant Ap (defined in Section 4.4.2) is explicitly computed for a generic
elliptic curve in Weierstrass, Montgomery and Jacobi form. Namely, for each model we construct Ap
as a (bivariate or univariate) polynomial whose coefficients lie in Fq , and whose roots are coefficients of
supersingular elliptic curves over (some extension of) Fq .

We make use of the same notation as in Section 4.4.2, i.e.,

m =
p− 1

2

where p ≥ 5 is a prime.

3The factor (−1)m can be neglected, since we are interested in the zeroes of Ap.
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5.1 Weierstrass model
Consider the family of elliptic curves over Fq in Weierstrass form, i.e. the curves of equation y2 = x3 +
Ax+B with A,B ∈ Fq . Thus, the Hasse invariant Ap for a generic curve in this family can be regarded as
a polynomial in Fq[A,B].

Proposition 5.1. The Hasse invariant of an elliptic curveE : y2 = x3+Ax+B, over Fq and in Weierstrass
form, is

Ap =

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
A2m−3iB2i−m. (14)

Proof. Write

(x3 +Ax+B)m =

m∑
i=0

(
m

i

)
x3i(Ax+B)m−i

=

m∑
i=0

(
m

i

)
x3i

m−i∑
j=0

(
m− i
j

)
(Ax)jBm−i−j

 .

In each term, the degree of x equals p− 1 if and only if j = p− 1− 3i. Therefore

Ap =

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
A2m−3iB2i−m.

In order to find supersingular elliptic curves over Fp2 , we wonder which values of A,B ∈ Fp2 annihi-
late Ap. The cases A = 0 or B = 0 yield elliptic curves with j-invariant 0 or 1728, for which the following
result holds [Sil09, Thm. V.4.1.c; Was08, Prop. 3.37, Cor. 4.40]:

E with j-invariant 0 is supersingular ⇐⇒ p ≡ 2 mod 3,

E with j-invariant 1728 is supersingular ⇐⇒ p ≡ 3 mod 4.

A and B may therefore be regarded as elements in the multiplicative group F∗p2 . Namely, we can express A
and B as powers of some primitive element g ∈ F∗p2 , say

A = gk, B = g` with k, ` ∈ {0, . . . , p2 − 2}.

Thus we can rewrite Ap as follows:

Ap =

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
gk(2m−3i)g`(2i−m)

=

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
gm(2k−`)+i(2`−3k)

In order to find the coefficients A,B defining supersingular elliptic curves, it is necessary to look for values
of k, ` such that the latter expression annihilates. Moreover, by multiplying the expression by the inverse of
gm(2k−`), it is enough to consider

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
gi(2`−3k). (15)

Notice that (15) can be seen as a polynomial over Fp in the variable g2`−3k.
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Lemma 5.2. Let n be a positive integer and fix C ∈ Z�(pn − 1)Z. Then

2L− 3K ≡ C mod pn − 1 (16)

has pn − 1 solutions in L and K.

Proof. Observe that

• if k ≡ C mod 2, the following pairs(
k,

3k + C

2

)
and

(
k,

3k + C

2
+
pn − 1

2

)
are distinct solutions of (16);

• if k 6≡ C mod 2, no element ` ∈ Z/(pn − 1)Z is such that (k, `) satisfies equation (16).

Therefore, equation (16) has

2 · p
n − 1

2
= pn − 1

solutions.

The zeroes of (15), seen as a polynomial over Fp in the variable g2`−3k, correspond to the superinsin-
gular j-invariants over Fp2 as detailed in the following results.

Theorem 5.3. Let g be a primitive element of Fp2 , and fix C = 2`′ − 3k′ such that gC annihilates (15). In
other words, gC is a root of

G(X) =

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
Xi ∈ Fp[X]. (17)

Denote by
E′ : y2 = x3 +A′x+B′

the corresponding supersingular elliptic curve having

A′ = gk
′
, B′ = g`

′
.

Then the elliptic curves over Fp2 and isomorphic to E′ are exactly the curves whose coefficients written in
the form

A = gk, B = g`

satisfy
C ≡ 2`− 3k mod p2 − 1.

Proof. Let E be a curve over Fp2 and isomorphic to E′ (over Fp). Therefore the coefficients of E must
satisfy

A = u2A′, B = u3B′ (18)

for some u ∈ F∗p2 [Sil09, p. 45]. Notice that there are exactly p2 − 1 such curves. In terms of a given
generator g of F∗p2 , we have

A = gk = u2gk
′

= g2r+k′ and B = g` = u3g`
′

= g3r+`′

for some r ∈ {0, . . . , p2 − 2}. Then

2`− 3k ≡ 2(3r + `′)− 3(2r + k′) ≡ 2`′ − 3k′ ≡ C mod (p2 − 1).

Thus, letting u vary in F∗p2 , we have p2 − 1 distinct solutions for the equation in L and K

2L− 3K ≡ C mod (p2 − 1). (19)

Lemma 5.2 ensures that there is no other solution.
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Corollary 5.4. Let G(X) be the polynomial defined in (17). The non-zero roots of G(X) are in bijection
with the supersingular j-invariants in Fp2 \ {0, 1728}.

Proof. Let g be a primitive element of Fp2 . We have already shown that every non-zero root gC of G(X)
corresponds to some isomorphism class of supersingular elliptic curves. Namely, if

E : y2 = x3 + gkx+ g`

is a representative of this class (in particular, 2k − 3` ≡ C mod (p2 − 1)), its j-invariant is

j(E) = 1728 · 4g3k

4g3k + 27g2`

=
1728 · 4

4 + 27g2`−3k
.

Therefore the correspondence

{non-zero roots of G(X)} ↔ {supersingular j-invariants in Fp2 \ {0, 1728}}

gC 7→ 1728 · 4
4 + 27gC

64 · 4
j
− 4

27
←[ j

(20)

is one-to-one.

Let

ci =

(
m

i

)(
m− i

2m− 3i

)
be the coefficients of G(X) (equation (17)), for i ∈

{
dp−1

4 e, . . . , b
p−1

3 c
}

. We have:

ci =
m!

i!(m− i)!
· (m− i)!

(2m− 3i)!(2i−m)!

=
m!

i!(2m− 3i)!(2i−m)!
.

We can assume thatG(X) is normalized with respect to cd p−1
4 e

. Therefore, starting from cd p−1
4 e

= 1, every
other coefficient can be computed recursively via the following formula:

ci+1 = −12 · (3i+ 1)(3i+ 2)

(4i+ 3)(4i+ 5)
· ci. (21)

With the eventual exception of cb p−1
3 c

, p does not appear within the factors of any ci, and hence every
coefficient of G(X) is different from 0. This implies that obtaining G(X) requires a storage exponential in
the bit-length of p.

5.2 Montgomery model
Consider the family of elliptic curves over Fq in Montgomery form, i.e. the curves of equation y2 =
(x3 + Ax2 + x)/B with A,B ∈ Fq , B 6= 0 and A2 6= 4. Thus, the Hasse invariant Ap of a generic curve
in this family can be regarded as a polynomial in Fq[A,B].

We note that the zeroes of Ap do not depend on B, which is in accordance with the fact that j-invariants
of Montgomery curves depend only on A (see Table 1). We can therefore assume B = 1 and compute Ap
as a polynomial in the only variable A.

Proposition 5.5. The Hasse invariant of an elliptic curve E : y2 = (x3 + Ax2 + x), over Fq and in
Montgomery form, is

Ap =

bm
2 c∑
i=0

(
m

i

)(
m− i
m− 2i

)
Am−2i,

and its coefficients can be computed recursively starting from c0 = 1 via the formula

ci+1 = ci ·
(m− 2i)(m− 2i− 1)

(i+ 1)2
.
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Proof. We start by observing that

(x3 +Ax2 + x)m = xm(x2 +Ax+ 1)m

= xm ·
m∑
i=0

(
m

i

)
x2i(Ax+ 1)m−i

= xm ·
m∑
i=0

(
m

i

)
x2i

m−i∑
j=0

(
m− i
j

)
Ajxj

 .

In each term, the degree of x equals p − 1 if and only if m + 2i + j = 2m, or, equivalently, j = m − 2i.
Therefore,

Ap =

bm
2 c∑
i=0

(
m

i

)(
m− i
m− 2i

)
︸ ︷︷ ︸

ci

Am−2i.

Notice that c0 = 1 is the coefficient of the leading term; the other coefficients can be computed recur-
sively via the formula

ci+1 = ci ·
(m− 2i)(m− 2i− 1)

(i+ 1)2
.

Remark 5.6. The degrees of the terms in Ap have all the same parity. In particular, if A annihilates Ap,
also −A does. This is, again, in accordance with the fact that j-invariants (and then isomorphism classes)
depend only on A2.

5.2.1 Splitting field of the Hasse invariant

Since every supersingular j-invariant lies in Fp2 by Theorem 2.5.b, the definition of the j-invariant for
Montgomery curves (see Table 1) suggests that the roots of Ap lie in Fp12 . A stronger result actually holds,
as we are going to show in Proposition 5.10, whose proof requires a few lemmata. The first one is just a
special case of [Was08, Ex. 4.10].

Lemma 5.7. Let E : y2 = x3 + Ax + B be an elliptic curve in Weierstrass form over Fp2 with trace a.
Then one of its twists has trace −a.

Proof. Let γ be a generator for F∗p4 . Define

u = γ
p2+1

2

and consider the curve
E′ : y2 = x3 + u4Ax+ u6B.

From [Sil09, p. 45] we know that

ϕ : E → E′

(x, y) 7→ (u2x, u3y).

is an isomorphism defined over Fp4 but not over Fp2 ; in other words, E′ is a quadratic twist of E.
Let a′ be the trace of E′. By [Sil09, Rem. V.2.6] and [Hus87, Prop. 4.1.10] we have

#E(Fp2) = 1 + p2 − a, #E′(Fp2) = 1 + p2 − a′, #E(Fp2) + #E′(Fp2) = 2p2 + 2.

The thesis follows immediately.

Lemma 5.8. Let E : y2 = x3 + A′x + B′ be a supersingular elliptic curve over Fp2 in Weierstrass form
with j-invariant different from 0 or 1728. Then every 4-torsion point of either E or one of its quadratic
twists E′ is Fp2 -rational.
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Proof. It is well-known [Sil09, Ex. 3.32, Ex. 5.10] that the number of Fp2 -rational points of a supersingular
elliptic curve E over Fp2 is p2 + 1− a, where

a ∈ {0,±p,±2p}.

Furthermore, a ∈ {0,±p} if and only if j(E) ∈ {0, 1728} [AAM19, pp. 5–6]. We can therefore assume
that E has trace 2p, while its quadratic twist E′ has trace −2p by Lemma 5.7.

From [Sch87, Lemma 4.8.ii] we know the structure of the Fp2 -rational groups of the two curves:

E(Fp2) ∼= Z�(p− 1)Z×
Z�(p− 1)Z and E′(Fp2) ∼= Z�(p+ 1)Z×

Z�(p+ 1)Z.

In particular,

• if p ≡ 1 mod 4, then Z/(p − 1)Z has a subgroup of order 4 and such subgroup must be Z/4Z.
Otherwise, E would have more than 4 points of 2-torsion, contradicting [Sil09, Cor. III.6.4]. Then
Z/4Z × Z/4Z is a subgroup of E(Fp2) (up to isomorphism). Equivalently, again from [Sil09,
Cor. III.6.4], E[4] ⊆ E(Fp2).

• Similarly, if p ≡ 3 mod 4, one can prove E′[4] ⊆ E′(Fp2).

Lemma 5.9. Let E′ : y2 = x3 +A′x+B′ be an elliptic curve over Fq . Then E′ is birationally equivalent
to a Montgomery curve E over Fq if and only if

(a) E′ has an Fq-rational 2-torsion point (α, 0),

(b) 3α2 +A′ = s2 for some s ∈ F∗q ,

and the coefficients of E are {
A = 3αs−1,

B = s−1.

Proof. See [OKS00, Prop. 4.1, 7.5].

Proposition 5.10. The Hasse invariant Ap for a generic elliptic curve over Fq and in Montgomery form
splits completely over Fp2 . Equivalently, the coefficient A of any supersingular Montgomery curve lies in
Fp2 .

Proof. First of all, notice that the j-invariant

j =
256(A2 − 3)3

A2 − 4

of an elliptic curve in Montgomery form E : By2 = x3 + Ax2 + x over Fp2 equals 0 if and only if A is a
square root of 3. Similarly, one can check that j(E) = 1728 if and only if either A = 0 or A is a square
root of 2−1 · 9. In both cases, A lies in Fp2 .
Let E be an elliptic curve representative of supersingular j-invariant j′ ∈ Fp2 \ {0, 1728}. By Proposi-
tion 2.1, E can be written in Weierstrass form over Fp2 :

E : y2 = x3 +A′x+B′.

By Lemma 5.8 we can also assume that the 4-torsion points of E are Fp2 -rational. In particular, it has the
2-torsion points (αi, 0) for i ∈ {1, 2, 3}, with αi ∈ F∗p2 (they are non-zero, otherwise B′ = 0 and j = 1728

which contradicts our assumption). Notice that B′ can be written as

B′ = −α3
i −A′αi (22)

for every i ∈ {1, 2, 3}. Such relation can be used to factor the fourth division polynomial ψ4 (see Sec-
tion 6.1) as follows:

ψ4/2y = 2x6 + 10A′x4 + 40B′x3 − 10(A′)2x2 − 8A′B′x− 2(A′)3 − 16(B′)2

= 2x6 − 40x3α3
i − 16α6

i + 10A′x4 − 40A′x3αi+

+ 8A′xα3
i − 32A′α4

i − 10(A′)2x2 + 8(A′)2xαi − 16(A′)2α2
i − 2(A′)3

= − 2(−x2 + 2xαi + 2α2
i +A′)(x4 + 2x3αi + 6x2α2

i − 4xα3
i+

+ 4α4
i + 6A′x2 − 6A′xαi + 6A′α2

i + (A′)2).

(23)
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Since ψ4 annihilates exactly on the 4-torsion points (see Proposition 6.5), for each i there exist two distinct
values xi and x′i in Fp2 that annihilate the first factor of (23), i.e.,

−x2 + 2xαi + 2α2
i +A′,

or, equivalently, satisfy
A′ + 3α2

i = (x− αi)2. (24)

Notice that xi − αi is non-zero because xi 6= x′i. The conditions (a) and (b) from Proposition 5.9 are
therefore verified, and E is birationally equivalent to elliptic curves, over Fp2 and in Montgomery form,
with coefficients {

Ai = 3αi(xi − αi)−1

Bi = (xi − αi)−1

for every i ∈ {1, 2, 3}.
We claim that A2

i 6= A2
j for i 6= j. Suppose, by contradiction, A2

i = A2
j for some i 6= j. By (24) we can

write

9α2
i (3α

2
i +A′)−1 = 9α2

j (3α
2
j +A′)−1

α2
i (3α

2
j +A′) = α2

j (3α
2
i +A′)

α2
i = α2

j ,

but this cannot occur. In fact, αi 6= αj by construction, and the assumption B′ 6= 0 together with (22)
implies αi 6= −αj .
To summarise, starting from a suitable supersingular elliptic curve in Weierstrass form with j-invariant
j′ ∈ Fp2 \ {0, 1728}, we have found three distinct solutions A2

1, A
2
2, A

2
3 for the equation

j′ =
256(X − 3)3

X − 4
.

Since there could not be any other solution, the coefficient of x2 of an elliptic curve in Montgomery form
with j-invariant j′ must belong to the set {±Ai | i = 1, 2, 3}, which is contained in Fp2 .

5.3 Jacobi
Consider the family of elliptic curves over Fq in Jacobi form, i.e. the curves of equation y2 = εx4−2δx2+1
with ε, δ ∈ Fq , ε 6= 0 and δ2 6= ε. Thus, the Hasse invariant Ap of a generic curve in the family can be
regarded as a polynomial in Fq[ε, δ].

Proposition 5.11. The Hasse invariant of an elliptic curve E : y2 = εx4− 2δx2 + 1, over Fq and in Jacobi
form, is

Ap =

bm
2 c∑
i=0

(
m

i

)(
m− i
m− 2i

)
︸ ︷︷ ︸

ci

εi(−2δ)m−2i

and its coefficients ci can be computed recursively starting from c0 = 1 via the formula

ci+1 = ci ·
(m− 2i)(m− 2i− 1)

(i+ 1)2
.

Proof. Similar to the proof of Proposition 5.5. In particular, notice that the coefficients are the same.

5.4 Efficiency analysis
We have found explicit formulas to construct the Hasse invariant Ap for a generic elliptic curve in different
models, in the form of a polynomial. None of them allows for an efficient construction of Ap. From a
computational point of view, even the storage of Ap becomes problematic when p is of cryptographic size.

However, the combination of (extended) Bröker’s algorithm and random walks, as described in Sec-
tion 4.3, provides an efficient method to find arbitrarily many roots of Ap. We cannot rule out that this
fact, combined with the recursion formulas for the coefficients of Ap, might lead to an efficient algorithm
to solve the cSRS problem. We leave the investigation for future work.
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6 Torsion points
In this section we provide two distinct characterizations of supersingular elliptic curves over finite fields in
terms of torsion points.

6.1 Division polynomials
Following [Sil09, ex. 3.7; Was08, sec. 3.2], we introduce division polynomials, which constitute the main
tool for the two characterisations. Let

E : y2 = x3 +Ax+B

be an elliptic curve over a perfect field K with charK /∈ {2, 3}. For m = −1, 0, 1, 2, . . . we define the
division polynomials ψm ∈ K[x, y], relative to E, as

ψ−1 = −1,

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 2y(2x6 + 10Ax4 + 40Bx3 − 10A2x2 − 8ABx− 2A3 − 16B2),

and then recursively by means of the following relations:

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 for n ≥ 2, (25)

ψ2n =
ψ2
n−1ψnψn+2 − ψn−2ψnψ

2
n+1

ψ2
for n ≥ 3. (26)

For ease of notation, for m ≥ 1 we also define

φm = xψ2
m − ψm+1ψm−1,

2ψ2ωm = ψ2
m−1ψm+2 − ψm−2ψ

2
m+1

for m ≥ 1.
We now review some well-known results about division polynomials, which can be proven by induction

(see [Was08, Lem. 3.3, 3.5]).

Proposition 6.1. For each m > 0, the polynomial ψ2 is an even-degree factor of{
ψ2ψm if m is even,
ψm if m is odd.

In particular, ψm is a polynomial for each m.

Remark 6.2. If m is odd, ψm, φm and ψ−1
2 ωm are polynomials in K[x, ψ2

2 ]; the same holds, if m is even,
for ψ−1

2 ψm, φm and ωm. As a consequence, when evaluating these polynomials at points of E, ψ2
2 can be

substituted with 4(x3 + Ax+ B), so that the variable y no longer appears. Therefore, by a slight abuse of
notation, we will often identify these polynomials with their representatives in the quotient ring

K[x, ψ2
2 ]�(y2 − x3 −Ax−B)

∼= K[x].

Proposition 6.3. Consider φm and ψ2
m as elements in K[x]. Then

φm(x) = xm
2

+ terms of lower degree

ψ2
m(x) = m2xm

2−1 + terms of lower degree.
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Theorem 6.4 (Computation of [m]P via division polynomials). Consider an elliptic curve E : y2 = x3 +
Ax+B over K, a point P = (x0, y0) ∈ E(K) \ {O} and a positive integer m such that [m]P 6= O. Then,
the point [m]P can be calculated as follows:

[m]P =

(
φm
ψ2
m

,
ωm
ψ3
m

)
(27)

or, equivalently,

[m]P =

(
x0 −

ψm−1ψm+1

ψ2
m

,
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

4y0ψ3
m

)
where we denote by φm, ψm e ωm the evaluations φm(x0, y0), ψm(x0, y0) and ωm(x0, y0), respectively.

Proof. See [Was08, sec. 9.5].

Proposition 6.5 (Characterization of E[m] via division polynomials). Let E : y2 = x3 + Ax + B be an
elliptic curve over K. Then

E[m] = {O} ∪ {(x0, y0) ∈ E(K) | ψm(x0, y0) = 0}.

Proof. See [CR88, Prop. 9.10].

6.2 p-torsion points
Theorem 2.5 ensures that an elliptic curve E over a field of characteristic p is supersingular if and only if
E[pr] = {O} for some r ≥ 1. As in Section 4.4.2 and Section 5, in this section we construct a polyno-
mial whose zeroes are exactly the pairs of coefficients A and B defining supersingular elliptic curves in
Weierstrass form. In this case, though, the coefficients of such polynomial lie in a much bigger set, namely
Fp[X].

Since any non-constant polynomial over Fp has its zeroes in Fp, Proposition 6.5 allows us to rephrase
the characterization given in Theorem 2.5.(a1) as follows:

Proposition 6.6. Let E : y2 = x3 + Ax + B be an elliptic curve over a field Fq of characteristic p. Then
E is supersingular if and only if ψpr (x) is constant for some r ≥ 1.

A refinement of the above result, which we state below in a more general fashion, is given in [Dol18,
Lem. 4].

Proposition 6.7. Let E : y2 = x3 + Ax + B be a elliptic curve over Fp2 . Then E is supersingular if and
only if the polynomial

ψpr with r =


1 if tr(E) = ±2p

2 if tr(E) = 0

3 if tr(E) = ±p

is either 1 or −1 in Fp[x].

Proof. Suppose that E is supersingular (the other implication is a trivial consequence of Proposition 6.6).
Doliskani’s proof covers the case tr(E) = ±2p, but it can be easily extended to the other cases, as below.
The characteristic polynomial of a supersingular elliptic curve E over Fp2 is

X2 ∓ 2pX + p2 if tr(E) = ±2p

X2 + p2 if tr(E) = 0

X2 ∓ pX + p2 if tr(E) = ±p.

As a consequence, a suitable r-th power of the Frobenius endomorphism ϕp2 equals ±[pr], namely
ϕp2 = ±[p] if tr(E) = ±2p

ϕ2
p2 = −[p2] if tr(E) = 0

ϕ3
p2 = ∓[p3] if tr(E) = ±p.
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Suppose tr(E) = −p. From the latter equations we can write

[p3](x, y) =
(
xp

6

, yp
6
)

(28)

for every (x, y) ∈ E, while from equation (27) and Proposition 6.3 we obtain

[p3](x, y) =

(
φp3

ψ2
p3
,
ωp3

ψ3
p3

)
=

(
xp

6

+ terms of lower degree
p6xp6−1 + terms of lower degree

,
ωp3

ψ3
p3

)
. (29)

Comparing the first coordinates on the right-hand sides of (28) and (29) yields ψ2
p3 = 1. The other cases

can be proven similarly.

Proposition 6.7 suggests the following strategy to sample supersingular elliptic curves:

• consider ψp for a generic elliptic curve over a field of characteristic p, i.e. ψp ∈ Fp[A,B, x];

• find pairs (A,B) that annihilate ψ2
p − 1. Such pairs are coefficients of supersingular elliptic curves.

Some further assumptions can be made in order to diminish the number of monomials in ψp:

• restrict the root finding to A,B ∈ Fp;

• assume B = −1−A.

Equivalently, we consider ψ2
p − 1 as an element of the quotient ring Fp[A,B, x]/J , where J = ((A+B +

1)(Ap−1 − 1)). The second assumption is without loss of generality since every Fp2 -isomorphism class of
supersingular elliptic curves over Fp contains at least one curve such that B = −1−A.

Proposition 6.8. For each supersingular j-invariant j ∈ Fp there is at least one elliptic curve in Weierstrass
form that has j-invariant j, is over Fp and passes through (1, 0).

Proof. If j = 1728, the elliptic curve of equation y2 = x3 − x has j-invariant 1728 and passes through
(1, 0). Assume j 6= 1728 and let E : y2 = x3 + A′x + B′ be an elliptic curve, over Fp and in Weierstrass
form, of j-invariant j (it is for Proposition 2.1.b that we can assume E is over Fp). Combining Theorem 2.7
and Hasse’s inequality

|p+ 1−#E(Fp)| ≤ 2
√
p

(see [Was08, Thm. 4.2]), we know that any supersingular curve over Fp has exactly p + 1 rational points;
in particular, #E(Fp) is even. Therefore, as O is one of the rational points, and every rational point (x, y)
yields another point (x,−y), every supersingular curve over Fp must intersect the horizontal axis an odd
number of times. Let (x0, 0) be any point in the intersection of the horizontal axis with E. Since j 6= 1728,
x0 must be non-zero. Let u ∈ F∗p2 be a square root of x0

−1. Then [Sil09, p. 45] the curve defined by the
coefficients

A = u4A′, B = u6B′

is isomorphic over Fp2 to E and passes through (1, 0) because we have

1 +A+B = 1 +
A′

x0
2

+
B′

x0
3

=
1

x0
3

(x0
3 +A′x0 +B′)

= 0.

6.2.1 Efficiency analysis

Even with the addition of extra assumptions on A and B, the computation of ψp2 − 1 remains unfeasi-
ble. The main obstacles are the recursive definition of division polynomials and their quickly-increasing
degrees. Therefore, determining the coefficients of supersingular elliptic curves as roots of ψp2 − 1 seems
an impractical method to solve the cSRS problem, despite the theoretical interest of Proposition 6.7.
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6.3 Small-torsion points
In this section, we sketch a new method for sampling supersingular elliptic curves over Fp, under the
assumption that p+ 1 has ‘many’ small factors.

Proposition 6.9. Let p =
∏r
i=1 `

ei
i − 1 be a prime such that

r∏
i=1

`i > 2
√
p, (30)

and denote by r′ the minimum integer in {1, . . . , r} satisfying (30). An elliptic curveE : y2 = x3 +Ax+B,
over Fp and in Weierstrass form, is supersingular if and only if the division polynomial ψ`i(x, y) relative
to E has a root (xi, yi) ∈ E(Fp) for each i ∈ {1, . . . , r′}.
Proof. Suppose that E is supersingular. As observed in the proof of Proposition 6.8, the subgroup E(Fp)
has p+1 elements. In particular, for any prime `i dividing p+1, Cauchy’s theorem ensures that there exists
a subgroup of E(Fp) having order `i. Equivalently, there exists an Fp-rational `i-torsion point (xi, yi) of
E. Such point annihilates ψ`i by Proposition 6.5.
For the converse, the bound (30) is needed. Suppose that there exists an Fp-rational `i-torsion point of E,
and then `i divides #E(Fp), for each i ∈ {1, . . . , r′}. Equivalently, by the Chinese Remainder Theorem,

#E(Fp) ≡ 0 mod

r∏
i=1

`i. (31)

Moreover, #E(Fp) must satisfy Hasse’s inequality

|p+ 1−#E(Fp)| ≤ 2
√
p. (32)

It is easy to check that, due to
∏r′

i=1 `i > 2
√
p, only for #E(Fp) = p + 1 both (31) and (32) are satisfied.

Therefore, E is supersingular by Theorem 2.7.

Remark 6.10. Some of the primes used in cryptographic applications do satisfy the hypotheses of Propo-
sition 6.9. For example, the prime p in CSIDH-512 [Cas+18, § 8.1] is p = 4 · 587 · `1 · · · `73 − 1 where
`1, . . . , `73 are the first 73 odd primes.

The characterisation of supersingular elliptic curves given by Proposition 6.9 provides a method to
sample supersingular elliptic curves. In particular, given a prime p =

∏r
i=1 `

ei
i − 1 such that (30) is

satisfied for some (minimal) r′ ≤ r, then any solution of the system of equations

ψ`i(A,B, xi, yi) = 0 for each i ∈ {1, . . . r′}
y2
i − x3

i −Axi −B = 0 for each i ∈ {1, . . . r′}
xpi − xi = 0 for each i ∈ {1, . . . r′}
ypi − yi = 0 for each i ∈ {1, . . . r′}
Ap −A = 0

Bp −B = 0

(33)

yields the coefficients A,B of a supersingular elliptic curve E : y2 = x3 +Ax+B over Fp, together with
the coordinates of Fp-rational `i-torsion points (xi, yi) for i ∈ {1, . . . , r′}.

6.3.1 Efficiency analysis

The polynomials involved in system (33) have either low degree or sparse coefficients. A naive use of
Groebner bases or other polynomial-system solvers, though, is far from enough to turn this method into
an efficient algorithm to solve the cSRS problem, due to the exponential size of the set of solutions of
system (33). We leave any improvement of this technique for future work.

7 Conclusions
We have provided a formalisation for the SRS and cSRS problems, relative to randomly sampling supersin-
gular elliptic curves. We have surveyed a solution to the first, and presented new approaches to the latter. A
solution for the cSRS problem, though, is yet to be found. We hope that our formalisation of the problem,
along with the analysis of the drawbacks in each of the discussed approaches, will be a useful starting point
for future research on the subject.
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