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ABSTRACT
In the artificial intelligence as a service (AIaaS) system in the client-

server model, where the clients provide the data on the cloud and

the server processes the data by using the deep neural network

in the cloud, data privacy via homomorphic encryption is getting

more important. Brakerski/Fan-Vercauteran (BFV) and Cheon-Kim-

Kim-Song (CKKS) schemes are two representative homomorphic

encryption schemes which support various arithmetic operations

for encrypted data in the single-instruction multiple-data (SIMD)

manner. As the homomorphic operations in these schemes are

performed component-wisely for encrypted message vectors, the

rotation operations for various cyclic shifts of the encrypted mes-

sage vector are required for useful advanced operations such as

bootstrapping, matrix multiplication, and convolution in convo-

lutional neural networks. Since the rotation operation requires

different Galois keys for different cyclic shifts, the servers using

the conventional BFV and CKKS schemes should ask the clients

having their secret keys to generate and send all of the required

Galois keys. In particular, in the advanced services that require

rotation operations for many cyclic shifts such as deep convolu-

tional neural networks, the total Galois key size can be hundreds

of gigabytes. It imposes substantial burdens on the clients in the

computation and communication cost aspects. In this paper, we

propose a new concept of hierarchical Galois key generation method
for homomorphic encryption to reduce the burdens of the clients

and the server running BFV and CKKS schemes. The main concept

in the proposed method is the hierarchical Galois keys, such that

after the client generates and transmits a few Galois keys in the

highest key level to the server, the server can generate any required

Galois keys from the public key and the smaller set of Galois keys

in the higher key level. This proposed method significantly reduces

the number of the clients’ operations for Galois key generation

and the communication cost for the Galois key transmission. Since

the server can generate the required Galois keys by using the re-

ceived small set of Galois keys from the client, the server does not
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need to request additional Galois keys to the clients or to store all

possible Galois keys for future use. For example, if we implement

the standard ResNet-20 network for the CIFAR-10 dataset and the

ResNet-18 network for the ImageNet dataset with pre-trained pa-

rameters of the CKKS scheme with the polynomial modulus degree

𝑁 = 2
16

and 𝑁 = 2
17
, respectively, the server requires 265 and

617 Galois keys, which occupy 105.6GB and 197.6GB of memory,

respectively. If we use the proposed three-level hierarchical Galois

key system, the Galois key size generated and transmitted by the

client can be reduced from 105.6GB to 3.4GB for ResNet-20 model

for CIFAR-10, and reduced from 197.6GB to 3.9GB for ResNet-18

model for ImageNet.
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1 INTRODUCTION
Fully homomorphic encryption (FHE) is an encryption scheme

which supports the evaluation of arbitrary boolean or arithmetic

operations on encrypted data. It is a primary solution for the pri-

vacy issue of outsourcing computation, which enables the clients

to securely entrust enterprises to processing their private infor-

mation while preserving privacy. The main application includes

machine learning [14, 23, 24], genomic analysis [6, 20, 21], and

cloud services [22], and AI-as-a-service (AIaaS) [28]. Especially, the

privacy-preserving AIaaS system is deemed to be one of the most

promising techniques, where the clients provide the encrypted data

on the cloud and the server processes the data by using the deep

https://doi.org/XXXXXXX.XXXXXXX
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neural network, while preserving privacy of clients’ data. Thus, data

privacy via homomorphic encryption is getting more important.

Among various FHE schemes, Brakerski/Fan-Vercauteran (BFV)

[5, 13] and Cheon-Kim-Kim-Song (CKKS) [9, 11] schemes are two

of the most practical FHE schemes. They can support arithmetic

operations for integer or complex numbers in the single-instruction

multiple-data (SIMD) manner. Thus, several data can be encrypted

in one ciphertext, and one homomorphic operation can simulta-

neously perform component-wise operations on these multiple

message data. The BFV scheme deals with integer data and sup-

ports exact computation on the encrypted integer data, and it fits

the situation requiring exact computation. On the other hand, since

the CKKS scheme deals with real or complex number data and sup-

ports approximate computation on the encrypted real or complex

data, it fits the situation allowing approximate computation.

The BFV and CKKS schemes also support rotation operation

which corresponds to a cyclic shift of message data within cipher-

text. Many applications that require important operations such

as bootstrapping, matrix multiplication, and convolution in con-

volutional neural networks can be achieved using this rotation.

However, one of the main obstacles for using these applications

using homomorphic encryption in the client-server system is heavy

Galois keys. The Galois keys is evaluation keys for the homomor-

phic rotation operation, which is the cyclic shift operations for

rows of the encrypted matrix in one ciphertext of the BFV scheme

and for encrypted message vector in that of the CKKS scheme. The

homomorphic rotation operation is inevitable if we should operate

data with different positions in one ciphertext, such as the boot-

strapping [3, 7, 8, 25, 26], the matrix multiplication [17], and the

convolution in convolutional neural networks [19, 23, 24]. Since

different Galois keys are required for all the different cyclic shift

values for the homomorphic rotation operation, the number and the

total size of Galois keys can be significantly large for the complex

computational model. For example, if we implement the standard

ResNet-20 network for the CIFAR-10 dataset with pre-trained pa-

rameters with the CKKS scheme with the polynomial modulus

degree 𝑁 = 2
16

using the techniques in [23], the server requires

265 Galois keys, which occupies 105.6GB of memory in the server.

If we design the ResNet-18 network for the ImageNet dataset using

the same techniques, 617 Galois keys are required and it occupies

197.6GB of memory in the server.

In conventional homomorphic encryption schemes, clients with

secret keys had to generate Galois keys for all necessary cyclic shift

values, and thus lots of Galois keys impose a heavy burden on both

servers and clients. First, clients do not have large computational

resources in general, and thus requiring the clients to generate all

of these Galois keys imposes a substantial computational burden

on the clients. In addition, considerable communication amount

between the client and the server is required because the client

should send all generated Galois keys to the server.

On the other hand, the server may not want to release the in-

formation of the required subset of Galois keys for the requested

services because it can leak some information about the compu-

tation model of the server. Further, since a great deal of memory

is used to store Galois keys of clients, the server dealing with a

large number of clients requires lots of memory resources only

to keep their Galois keys. The server may want to efficiently use

memory resources by temporarily removing some inert Galois keys

according to the services required by the client. Since the server

does not have a secret key and permission to generate the Galois

keys, it should ask clients to generate and send the required Galois

keys to the server again if the server needs them for new services

requested by the client. Otherwise, the server should store all the

Galois keys received from the clients, which prevents the server

from using memories efficiently. Therefore, a new Galois key gener-

ation scheme needs to be developed, enabling flexible management

of the Galois keys in the client-server systems.
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Figure 1: Efficient Galois key management in three-level
hierarchical Galois key generation.

1.1 Our Contributions
In the BFV and CKKS schemes, we observe that the Galois keys can

be generated from other Galois keys using key-switching operation.

The crucial observation is that we can regard the Galois key as a

set of ciphertexts. If we perform the key-switching operation to

each ciphertext in a Galois key, new Galois key for other cyclic

shift can be derived. Since the key-switching operation requires

a key-switching key with larger modulus (i.e., in the higher key

level) than the ciphertext, the key-switching key for this Galois

key generation should have higher level than the newly generated
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Galois key. This high-level key-switching key is also in the form

of the Galois key, and thus it can also be generated by another

higher-level key-switching key. Thus, a chain of Galois keys for

various levels can be defined, where each Galois key may be used

as a key-switching key for generating a lower-level Galois key.

From the above observations, we propose a hierarchical Galois

key generation system, which makes it possible to generate a lower-

level Galois key using higher-level Galois key in the server. In this

system, clients can generate only a small set of the highest-level

Galois keys such as Galois keys for only power-of-2 cyclic shifts.

Then they send the small set of Galois keys to the key management

server (KMS) or the server. The server can generate a large set of

lower-level Galois keys using the received set of Galois keys without

any help from the clients and finally, a set of level-zero Galois keys is

generated, which corresponds to the set of conventional Galois keys

for the cyclic shifts of message data within a ciphertext in the server.

In the server, inert Galois keys can be temporarily removed and

re-generated only when needed to efficiently manage the storage

of Galois keys. This proposed method can significantly reduce

the computational burdens of the client, the communication cost

between the client and server, and storage cost of all Galois keys in

the server. To further optimize this Galois key generation, we also

propose several optimization techniques, such as the hoisted Galois

key generation and the reduction to graph-theoretic algorithms.

We present a general protocol capable of efficient Galois key

management reflecting the activity of the clients using multi-level

Galois key generation scheme. When a client frequently uses the

service, it is important to generate the desired Galois keys quickly

so that the service should not be delayed due to the Galois key

generation. On the other hand, in the case of clients who do not use

the service frequently, it may be better to store only the minimal

Galois key set and reserve memory in the server for other services

to active users. However, we also have to prepare the inert client

to become an active client at any time. In Figure 1 of three-level

Galois key generation scheme, the client generates and transmits

the minimum number of the level-2 Galois keys, and the server

generates and retains an appropriate number of the level-1 Galois

keys from the level-2 Galois keys reflecting how often the client

uses services, where server and KMS can be collocated. With these

level-1 Galois keys, the server can generate the level-0 Galois keys

more efficiently. The role of the level-1 Galois keys is to give a

trade-off between the efficiency of generating the level-0 Galois

keys when requested and the memory used for storing Galois keys,

and these level-1 Galois keys can be updated only by the server

without any help from the client. Our protocol can enable this fine

keymanagement system to adjust in detail the trade-off between the

memory usage of the Galois keys and the computational complexity

of Galois key generation in the clients and the server.

We conduct the simulation with the proposed Galois key gen-

eration system for ResNet models with an appropriate computing

environment for the client-server model. If we use a three-level

hierarchical Galois key system, the Galois key size generated and

transmitted by the client can be reduced from 105.6GB for 265 Ga-

lois keys to 3.4GB for 8 Galois keys for the ResNet-20 for CIFAR-10,

and reduced from 197.6GB for 617 Galois keys to 3.9GB for 8 Galois

keys for the ResNet-18 for ImageNet. While the generation of Galois

keys for the ResNet-20 and the ResNet-18 by the client takes 368.5s

and 786.0s in the conventional system, it is reduced to 12.1s (30×)
and 15.7s (50×) in the three-level hierarchical Galois key system,

respectively. The server with GPU accelerator only needs 25.3s and

22.0s to generate all required Galois keys in the online phase.

1.2 Outline
Section 2 formalizes the concept of the hierarchical Galois key

system and its application to the specific Galois key management.

Section 3 deals with the proposed hierarchical Galois key gener-

ation algorithm for BFV and CKKS schemes. Section 4 proposes

algorithms for efficiently generating a set of Galois keys with the

given set of Galois keys in the higher levels. Section 5 suggests

a concrete example of the Galois key management protocol and

shows the numerical simulation results with ResNet models. Sec-

tion 6 concludes the paper and suggests future work. Appendices

deal with the preliminaries, the proofs of the theorems, and the

required cyclic shifts for ResNet models.

2 HIERARCHICAL GALOIS KEY SYSTEM
In this section, we provide an overview of the proposed hierarchi-

cal Galois key system. Specific procedures in this system will be

described in Sections 3 and 4.

2.1 Definition of Hierarchical Galois Key
System

We define the hierarchical Galois key system in the cloud computing

using FHE. In a 𝑘-level hierarchical Galois key system, there are

𝑘 sets of Galois keys with a hierarchy from a key level 𝑘 − 1 to 0,

where the conventional Galois key corresponds to the Galois key in

the key level 0 with 𝑘 = 1. Each Galois key can be used to generate

Galois keys in the lower levels. The additional algorithms for the

hierarchical Galois key system are InitGalKeyGen and GalKeyGen.
The algorithm InitGalKeyGen generates a set of Galois keys in

the highest key level using the secret key, which is performed

by the client who has the secret key. The algorithm GalKeyGen
generates a set of Galois keys in the intermediate key levels or the

zero key level using the public key and the set of Galois keys in

the higher key level. This algorithm is performed by the server

or the key management server (KMS) having no secret key. We

now assume that the public key and hierarchical Galois keys are

managed by the KMS collocated with or separated from the server,

and all protocols in the paper also make sense when the KMS and

the server are united. These two algorithms are defined as follows,

where 𝑘 denotes the total number of key levels for the hierarchical

Galois key system.

• InitGalKeyGen(𝑠,T𝑘−1
) → {𝑔𝑘 (𝑘−1)

𝑖
}𝑖∈T𝑘−1

: Given a secret

key 𝑠 and a set of cyclic shifts T𝑘−1
, generate the Galois keys

with cyclic shifts in T𝑘−1
in the highest key level in the client.

• GalKeyGen(ℓ,Uℓ , {𝑔𝑘 (ℓ𝑖 )𝑖
}𝑖∈Uℓ

, 𝑝𝑘,Tℓ ) → {𝑔𝑘 (ℓ)𝑖
}𝑖∈Tℓ : Given

a public key 𝑝𝑘 , a set of the Galois keys {𝑔𝑘 (ℓ𝑖 )
𝑖
}𝑖∈Uℓ

with

cyclic shifts inUℓ in the key level ℓ𝑖 higher that ℓ , and a set

of cyclic shifts Tℓ , generate the Galois keys with cyclic shifts

in Tℓ in key level ℓ in the KMS.
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The Galois key 𝑔𝑘
(ℓ)
𝑖

denotes the Galois key for the cyclic shift

𝑖 in the message vector in the key level ℓ , whose specific defini-

tion will be dealt with in Section 3. Although the public key 𝑝𝑘 is

represented separately from the Galois keys, the Galois keys are

also public in that these keys can open to the public. The set of

cyclic shifts for each key level, which is an integer set, is denoted by

T0, · · · ,T𝑘−1
, respectively. These sets are pairwisely disjoint. The

set of cyclic shifts for each key level higher than ℓ whose Galois

keys are generated in advance, is denoted byUℓ . If all desired Ga-

lois keys in the key level higher than ℓ are all generated,Uℓ equals

to

⋃𝑘−1

𝑖=ℓ+1 T𝑖 . The conventional Galois key system can be seen as a

special case of the proposed hierarchical Galois key system, where

there is only the algorithm InitGalKeyGen, and the number of key

levels in the hierarchy is one.

2.2 Galois Key Generation Protocol in
Hierarchical Galois Key System

We propose a detailed Galois key generation protocol with a general

hierarchical Galois key system. In this system, the server or the

key management server can finely control the trade-off between

the memory usage and the latency of the Galois key generation

for required services according to how often the client uses the

services. If the client requests the service more often, the server

wants to provide the service to these types of clients as fast as

possible and is willing to use more memory for it. To this end,

the required Galois keys should be generated fast with a reduced

computation amount just after the required service is determined

from the request of the client. The more Galois keys in the key

levels higher than zero we have, the smaller computation amount

we need to generate the level-zero Galois keys in the server for

specific services, but more memory is required in the server. In the

environment of the limited computational resource in the client

and the limited memory resource in the server, we need to finely

manage this trade-off for the Galois keys.

We assume that we do not know when and what model the client

will request the service to the server after the key generation and

transmission. We define the offline phase as the generation of Galois

key set in the key level𝑘−1 in the client and intermediate Galois key

sets of the key levels𝑘−2, · · · , 2, 1 in the server before determination

of required services, and online phase as the generation of the level-

zero Galois keys required for the service requested by the client.

The specific protocols are described in Algorithm 1.

3 PROPOSED HIERARCHICAL GALOIS KEY
GENERATION FOR BFV AND CKKS
SCHEMES

In this section, the hierarchical Galois key system for BFV and

CKKS schemes is proposed. The BFV and CKKS schemes differ

only in the packing structure, the decryption method, and the role

of each operation for the encrypted data, but the key-switching

operation itself is completely the same. Thus, we will deal with

them at once.

We use the term ciphertext as a pair of ring elements (𝑏, 𝑎) ∈ 𝑅2

𝑞

for some modulus 𝑞. A ciphertext (𝑏, 𝑎) ∈ 𝑅2

𝑞 is defined to be a valid

Algorithm 1: Key Management of Hierarchical Galois Key

System with the 𝑘 Key Levels

Input: Encryption parameters 𝑝𝑎𝑟𝑎𝑚𝑠 for 𝑘-level Galois

key system (client and server), a set of cyclic shifts

for Galois keys in the highest key level T𝑘−1
(client),

sets of cyclic shifts for Galois keys in the

intermediate key levels T𝑘−2
, · · · ,T1 (server), and a

homomorphic service S (server)

Output: A set of Galois keys {𝑔𝑘 (0)
𝑖
}𝑖∈T0 (server)

Key generation and transmission in client
(1) 𝑠𝑘 ← SecGen(1𝜆, 𝑝𝑎𝑟𝑎𝑚𝑠)
(2) 𝑝𝑘 ← PubGen(𝑠𝑘)
(3) {𝑔𝑘 (𝑘−1)

𝑖
}𝑖∈T𝑘−1

← InitGalKeyGen(𝑠,T𝑘−1
)

(4) Transmit (𝑝𝑘, {𝑔𝑘 (𝑘−1)
𝑖

}𝑖∈T𝑘−1
) to the server and let

G = {𝑔𝑘 (𝑘−1)
𝑖

}𝑖∈T𝑘−1

Offline phase: generating Galois keys in the key level
ℓ for frequent users

(1) {𝑔𝑘 (ℓ)
𝑖
}𝑖∈Tℓ ← GalKeyGen(ℓ,Uℓ , {𝑔𝑘 (ℓ𝑖 )𝑖

}𝑖∈Uℓ
, 𝑝𝑘,Tℓ )

(2) G ← G ∪ {𝑔𝑘 (ℓ)
𝑖

: 𝑖 ∈ Tℓ }
Offline phase: removal of Galois keys in the key level
lower than ℓ for non-frequent user

(1) G ← {𝑔𝑘 (ℓ𝑖 )
𝑖
∈ G : 𝑖 ∈ ⋃𝑘−1

𝑗=ℓ T𝑗 , ℓ𝑖 ≥ ℓ}
Online phase: Galois key generation in server

(1) T0 ← ExtractGalSet(S)
(2) {𝑔𝑘 (0)

𝑖
}𝑖∈T0 ← GalKeyGen(0,Uℓ , {𝑔𝑘 (1)𝑖

}𝑖∈Tℓ , 𝑝𝑘,T0)

ciphertext of𝑚 with the secret key 𝑠 if 𝑏 + 𝑎 · 𝑠 = 𝑚 + 𝑒 mod 𝑞,

where 𝑒 is a polynomial with small coefficients compared to 𝑞.

Let 𝑄 =
∏dnum−1

𝑖=0
𝑄𝑖 be a product of several coprime positive

integers 𝑄𝑖 ’s, and 𝑃 be a positive integer which is coprime to and

larger than 𝑄𝑖 ’s. A Galois key gk𝑟 = {gk𝑟,𝑖 }𝑖=0,· · · ,dnum−1 for cyclic

shift 𝑟 with the secret key polynomial 𝑠 ∈ 𝑅 is defined to be valid

if each gk𝑟,𝑖 = (𝑏𝑟,𝑖 , 𝑎𝑟,𝑖 ) ∈ 𝑅2

𝑃𝑄
is a valid ciphertext of 𝑃 · 𝑄̂𝑖 ·

[𝑄̂−1

𝑖
]𝑄𝑖
· 𝑠 (𝑋 5

𝑟 ) with the secret key 𝑠 , where 𝑄̂𝑖 =
∏

𝑗≠𝑖 𝑄 𝑗 . This

can be used for the key-switching operation to the ciphertext in

the modulus 𝑞, where 𝑞 is a divisor of 𝑄 . We call 𝑄 the evaluation

modulus and 𝑃 the special modulus.

These Galois keys are used in the rotation operation. The rota-

tion operation in the BFV scheme is an operation mapping (𝑣𝑖, 𝑗 ) ↦→
(𝑣𝑖,( 𝑗+𝑟 ) ) while encrypted, where the addition operation of the

subscript is in modulo 𝑁 /2 and 𝑁 is the polynomial modulus

degree. The rotation operation of the CKKS scheme is an oper-

ation mapping (𝑣𝑖 ) ↦→ (𝑣𝑖+𝑟 ) while encrypted. In terms of ring

elements, these operations can be unified as operations mapping

𝑚(𝑋 ) ↦→𝑚(𝑋 5
𝑟 ). For these operations, we first perform an oper-

ation of (𝑏 (𝑋 ), 𝑎(𝑋 )) ↦→ (𝑏 (𝑋 5
𝑟 ), 𝑎(𝑋 5

𝑟 )). This processed cipher-

text satisfies 𝑏 (𝑋 5
𝑟 ) +𝑎(𝑋 5

𝑟 ) · 𝑠 (𝑋 5
𝑟 ) ≈𝑚(𝑋 5

𝑟 ), which means that

it is a ciphertext of a plaintext polynomial𝑚(𝑋 5
𝑟 ) with the secret

key 𝑠 (𝑋 5
𝑟 ). We have to convert this ciphertext to a ciphertext of the

same plaintext with the original secret key. This is done by taking
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the key-switching operation from 𝑠 (𝑋 5
𝑟 ) to 𝑠 (𝑋 ) using Galois key

for cyclic shift 𝑟 .

3.1 Hierarchical Special Modulus
The crucial idea in the proposed hierarchical Galois key is to apply

the key-switching algorithm to the public key or the existing Galois

keys in the corresponding key level, and the key-switching keys

that are needed for this key-switching algorithm are the higher-

level Galois keys. Since the key-switching operation requires a

key-switching key with a larger modulus than that of ciphertexts,

we set the larger modulus for the Galois key in the higher key level

than that for the public key or the Galois keys to be key-switched.

Let 𝑄0 be the maximum modulus for the ciphertext, and let 𝑃ℓ
be the additional modulus for the Galois keys in the key level ℓ

compared to that in the key level ℓ−1, which is called the hierarchical
special modulus for the key level ℓ . The modulus 𝑃ℓ is regarded

as a special modulus in the key level ℓ , but it is regarded as a

divisor of the evaluation modulus in the higher key level than ℓ . The

modulus for the level-ℓ Galois keys is 𝑃ℓ𝑄ℓ , where𝑄ℓ = 𝑄0

∏ℓ−1

𝑖=0
𝑃𝑖 .

The conventional special modulus corresponds to 𝑃0, which is the

hierarchical special modulus for the key level 0. Each hierarchical

special modulus can be set independently from each other. We

define hdnumℓ as the number of the RNS moduli in 𝑄ℓ decomposed

for the key-switching operation in the key level ℓ . 𝑃ℓ is chosen to

be larger than all the hdnumℓ decomposed moduli in 𝑄ℓ .

In the previous schemes, the number of RNS modulus is equally

decomposed with dnum regardless of the size of each RNS modulus.

However, in the CKKS scheme, the size of each RNS modulus is

different from each other according to the required precision for

each level, and the special modulus is not ensured to be a minimum

size. Since the size of the special modulus can affect the security

level of the scheme, it is desirable to minimize the size of the special

modulus. We also propose an algorithm for obtaining the list of

special modulus for the Galois key in each key level in Algorithms

2 and 3.

Given RNS moduli for ciphertexts and the decomposition num-

bers for each key level hdnum𝑖 , the HModulusSelection algorithm

chooses the set of RNS moduli for each hierarchical special mod-

ulus. We design theModulusSelection algorithm to minimize the

bit-length of each special modulus, and it is used as a subroutine

algorithm in the HModulusSelection algorithm as in Algorithm 3.

The value maxmod is the maximum bit-length that we can use for

each RNS primes, and this value is usually 60 when we use 64-bit

computing system. The optimization for each modulus is mean-

ingful for the security because the modulus for the highest-level

Galois keys directly determines the security level. The RNS moduli

for ciphertexts in each level are determined from the requested

services by the client, in particular from the required precision for

homomorphic multiplication in each level. This algorithm is also

desirable to be used for the conventional FHE scheme using the

special modulus without the hierarchical Galois key scheme. The

correctness of the algorithm is formalized in the following theorem,

which will be proved in Appendix B.

Theorem 3.1. Algorithm 2 outputs the list of indices 𝐼 = {𝑢0 =

0, 𝑢1, · · · , 𝑢dnum−1} such that 0 = 𝑢0 < 𝑢1 < · · · < 𝑢dnum−1 ≤ 𝐿 and

minimizes the following formula

max

{
𝑢1−1∑︁
𝑖=𝑢0

log𝑞𝑖 ,

𝑢2−1∑︁
𝑖=𝑢1

log𝑞𝑖 , · · · ,
𝐿∑︁

𝑖=𝑢dnum−1

log𝑞𝑖

}
.

Algorithm 2:ModulusSelection

Input: A list of modulus {𝑞0, · · · , 𝑞𝐿}, decomposition

number dnum
Output: Log of minimum special modulus log 𝑃 , the list of

boundary indices 𝐼 = {𝑢0 = 0, 𝑢1, · · · , 𝑢dnum−1}
1 if dnum = 1 then
2 return

∑𝐿
𝑖=0

log𝑞𝑖 and {0}
3 else
4 Find 𝑗 minimizing the value���∑𝑗

𝑖=0
log𝑞𝑖 − dnum−1

dnum

∑𝐿
𝑖=0

log𝑞𝑖

���.
5 PerformModulusSelection with {𝑞0, · · · , 𝑞 𝑗 } and

dnum − 1 to output 𝑢 𝑗 and 𝐼 𝑗 .

6 𝑣 𝑗 ←
∑𝐿
𝑖=𝑗+1 log𝑞𝑖

7 if 𝑢 𝑗 = 𝑣 𝑗 then return 𝑢 𝑗 and 𝐼 𝑗 ∪ { 𝑗 + 1} ;
8 else if 𝑢 𝑗 > 𝑣 𝑗 then
9 while 𝑢 𝑗 ≥ 𝑣 𝑗 do
10 𝑗 ← 𝑗 − 1

11 PerformModulusSelection with {𝑞0, · · · , 𝑞 𝑗 }
and dnum − 1 to output 𝑢 𝑗 and 𝐼 𝑗 .

12 𝑣 𝑗 ←
∑𝐿
𝑖=𝑗+1 log𝑞𝑖

13 end
14 if 𝑢 𝑗+1 > 𝑣 𝑗 then return 𝑣 𝑗 and 𝐼 𝑗 ∪ { 𝑗 + 1} ;
15 else return 𝑢 𝑗+1 and 𝐼 𝑗+1 ∪ { 𝑗 + 2} ;
16 else
17 while 𝑢 𝑗 ≤ 𝑣 𝑗 do
18 𝑗 ← 𝑗 + 1

19 PerformModulusSelection for {𝑞0, · · · , 𝑞 𝑗 } and
dnum − 1 to output 𝑢 𝑗 and 𝐼 𝑗 .

20 𝑣 𝑗 ←
∑𝐿
𝑖=𝑗+1 log𝑞𝑖

21 end
22 if 𝑢 𝑗 > 𝑣 𝑗−1 then return 𝑣 𝑗−1 and 𝐼 𝑗−1 ∪ { 𝑗} ;
23 else return 𝑢 𝑗 and 𝐼 𝑗 ∪ { 𝑗 + 1} ;
24 end
25 end

We set the notation for the modulus as follows. The list of moduli

for ciphertexts is denoted as C = {𝑞0, · · · , 𝑞𝐿}, where 𝐿 is the

maximum level of the ciphertext. The additional list of moduli for

the key level ℓ is denoted as Bℓ and its elements are denoted as

{𝑞𝐿ℓ−1+1, · · · , 𝑞𝐿ℓ }, where 𝐿ℓ is the number of extended levels in

C ∪⋃ℓ
𝑗=0
B𝑗 . The list of moduli for C ∪⋃ℓ

𝑗=0
B𝑗 can be denoted

as {𝑞0, · · · , 𝑞𝐿ℓ }. Let 𝐼ℓ = {𝑢ℓ,0 = 0, 𝑢ℓ,1, · · · , 𝑢ℓ,hdnumℓ−1} be the list
of the indices of boundary position derived by HModulusSelection.
Then, 𝑄ℓ,𝑖 denotes

∏𝑢ℓ,𝑖+1−1

𝑡=𝑢ℓ,𝑖
𝑞𝑡 for 0 ≤ ℓ ≤ 𝑘 − 1 and 0 ≤ 𝑖 ≤

hdnumℓ − 1 and 𝑄̂ℓ,𝑖 denotes
∏

𝑗≠𝑖 𝑄ℓ, 𝑗 .
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Algorithm 3: HModulusSelection

Input: A list of modulus for ciphertexts C = {𝑞0, · · · , 𝑞𝐿},
hierarchical decomposition number hdnumℓ for each
ℓ , 0 ≤ ℓ ≤ 𝑘 − 1, the maximum bit-length of RNS

modulus maxmod
Output: The lists of hierarchical special modulus Bℓ for

each ℓ , 0 ≤ ℓ ≤ 𝑘 − 1 and the lists of boundary

indices 𝐼ℓ for each ℓ , 0 ≤ ℓ ≤ 𝑘 − 1

1 for ℓ = 0 to 𝑘 − 1 do
2 PerformModulusSelection for C ∪⋃ℓ−1

𝑗=0
B𝑗 and hdnumℓ

to output log 𝑃ℓ and 𝐼ℓ .

3 𝑚ℓ ←
⌈

log𝑃ℓ
maxmod

⌉
4 Sample𝑚ℓ primes with a bit-length of log 𝑃ℓ/𝑚ℓ and

insert them to Bℓ .
5 end

3.2 Generation of Public Key and Galois Keys in
Client

The conventional schemes generate a public key (𝑏, 𝑎) with the

modulus 𝑄 =
∏𝐿

𝑖=0
𝑞𝑖 because the special modulus is only used in

the key-switching operation. In contrast, the proposed hierarchical

Galois key generation scheme generates a public key (𝑏, 𝑎) with
𝑄𝑘−1

=
∏𝐿𝑘−2

𝑖=0
𝑞𝑖 to prepare to use it to generate Galois keys with

key levels smaller than 𝑘 − 1. The Galois keys with the highest

key level are generated by the client. The set of cyclic shiftsUℓ of

Galois keys in the key level higher than ℓ should be the set that can

generate all cyclic shifts Tℓ of Galois keys with the key level ℓ by the
sum allowing repetition. The small size of T𝑘−1

for the highest key

level can reduce the computational burden and the communication

cost of the client.

In the InitGalKeyGen operation for the proposed scheme, a sin-

gle highest-level Galois key for cyclic shift 𝑟 with the secret key poly-

nomial 𝑠 ∈ 𝑅 is the form of gk(𝑘−1)
𝑟 = {gk(𝑘−1)

𝑟,𝑖
}𝑖=0,· · · ,hdnum𝑘−1−1,

where gk(𝑘−1)
𝑟,𝑖

= (𝑏 (𝑘−1)
𝑟,𝑖

, 𝑎
(𝑘−1)
𝑟,𝑖

) ∈ 𝑅2

𝑄𝑘−1𝑃𝑘−1

such that 𝑎
(𝑘−1)
𝑟,𝑖

←
𝑅𝑄𝑘−1𝑃𝑘−1

and𝑏
(𝑘−1)
𝑟,𝑖

= −𝑎 (𝑘−1)
𝑟,𝑖

·𝑠+𝑒 (𝑘−1)
𝑟,𝑖

+𝑃𝑘−1
·𝑄̂𝑘−1,𝑖 ·[𝑄̂−1

𝑘−1,𝑖
]𝑄𝑘−1,𝑖

·
𝑠 (𝑋 5

𝑟 ) for 𝑒 (𝑘−1)
𝑟,𝑖

← 𝜒 . The RNS bases for gk𝑟,𝑖 are C ∪
⋃𝑘−1

𝑗=0
B𝑗 .

Note that the distribution and the form of the Galois keys generated

by the client is the same as those in the conventional Galois key

generation.

3.3 GalToGal and PubToGal Operations
Two types of operations are required to make the level-ℓ Galois

keys for ℓ less than 𝑘 − 1. One is the operation PubToGal, which
generates a level-ℓ Galois key from the public key, and the other

is the operation GalToGal, which generates a level-ℓ Galois key

from the existing level-ℓ Galois keys for the other cyclic shifts. The

combination of PubToGal operation and GalToGal operation will

generate all Galois keys with only the public key and Galois keys

in the key level higher than ℓ .

Let the shift-𝑟 Galois key be defined as the Galois key for cyclic

shift 𝑟 , and let (𝑟, ℓ) Galois key be defined as the Galois key for

cyclic shift 𝑟 in the key level ℓ . For the convenience of explana-

tion, we will first explain the operation GalToGal. The operation
GalToGal is an operation that generates a (𝑟 + 𝑟 ′, ℓ) Galois key
from a (𝑟, ℓ) Galois key in the key level ℓ with a shift-𝑟 ′ Galois
key in the key level higher than ℓ . To understand this operation,

keep in mind that rotation operation is a map 𝑚(𝑋 ) ↦→ 𝑚(𝑋 5
𝑟 )

from the perspective of the plaintext polynomial. In other words,

the rotation operation can be seen as an operation that gener-

ates a ciphertext of 𝑚(𝑋 5
𝑟 ) from a ciphertext of 𝑚(𝑋 ) [11]. We

note that the Galois key for cyclic shift 𝑟 is a set of ciphertexts

gk(ℓ)𝑟 = {gk(ℓ)
𝑟,𝑖
}𝑖=0,· · · ,hdnumℓ−1, where gk

(ℓ)
𝑟,𝑖

= (𝑏 (ℓ)
𝑟,𝑖

, 𝑎
(ℓ)
𝑟,𝑖
) ∈ 𝑅2

𝑄ℓ𝑃ℓ

and𝑏
(ℓ)
𝑟,𝑖

= −𝑎 (ℓ)
𝑟,𝑖
·𝑠+𝑒 (ℓ)

𝑟,𝑖
+𝑃ℓ ·𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
·𝑠 (𝑋 5

𝑟 ). Each gk(ℓ)
𝑟,𝑖

is a

ciphertext of 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
· 𝑠 (𝑋 5

𝑟 ). If we perform the rotation

operation with cyclic shift 𝑟 ′ on gk(ℓ)
𝑟,𝑖

, the output is a ciphertext of

the following polynomial,

𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
· 𝑠 ((𝑋 5

𝑟 ′
)5

𝑟

)

= 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
· 𝑠 (𝑋 5

𝑟+𝑟 ′
) .

This rotation operation requires an (𝑟 ′, ℓ ′) Galois key gk(ℓ
′)

𝑟 ′ , where

ℓ ′ higher than ℓ . If we define this output as gk(ℓ)
𝑟+𝑟 ′,𝑖 , the set gk

(ℓ)
𝑟+𝑟 ′ =

{gk(ℓ)
𝑟+𝑟 ′,𝑖 }𝑖=0,· · · ,hdnumℓ−1 is a valid (𝑟 + 𝑟 ′, ℓ) Galois key. We will call

this operation GalToGal, as shown in Algorithm 4. The following

theorem shows the correctness of GalToGal operation, which will

be proved in Appendix C.

Theorem 3.2. The output of Algorithm 4 is a valid Galois key for
the rotation operation for cyclic shift 𝑟 + 𝑟 ′.

Next, we will describe the operation PubToGal. Note that the
above operation is useful only when some Galois keys exist. How-

ever, since the server does not receive any Galois keys in the key

level lower than 𝑘 − 1 from the client, the Galois key should be gen-

erated first with the public key and Galois keys in the higher levels

in the server. To this end, we can think of a formal shift-0 Galois key.

If a shift-0 Galois key can be generated from a public key, a shift-𝑟 ′

Galois key can be generated by adding a GalToGal operation to the

shift-0 Galois key for cyclic shift 𝑟 ′. By definition, the shift-0 Galois
key should be the form of gk(ℓ)

0
= {gk(ℓ)

0,𝑖
}𝑖=0,· · · ,hdnumℓ−1, where

gk(ℓ)
0,𝑖

= (𝑏 (ℓ)
0,𝑖

, 𝑎
(ℓ)
0,𝑖
) ∈ 𝑅2

𝑄ℓ𝑃ℓ
and 𝑏

(ℓ)
0,𝑖

= −𝑎 (ℓ)
0,𝑖
· 𝑠 + 𝑒 (ℓ)

0,𝑖
+ 𝑃ℓ · 𝑄̂ℓ,𝑖 ·

[𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
· 𝑠 .

To generate gk(ℓ)
0,𝑖

from the public key (𝑏, 𝑎) ∈ 𝑅2

𝑄𝑘−1

, we first

reduce the public key to (𝑏 ′, 𝑎′) = (𝑏 mod 𝑄ℓ𝑃ℓ , 𝑎 mod 𝑄ℓ𝑃ℓ ) ∈
𝑅2

𝑄ℓ𝑃ℓ
by simply extracting values for corresponding RNS moduli.

Then, we set as 𝑏
(ℓ)
0,𝑖

= 𝑏 ′ and 𝑎 (ℓ)
0,𝑖

= 𝑎′ + 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖

. Then,

we can have 𝑏
(ℓ)
0,𝑖

= −𝑎 (ℓ)
0,𝑖
· 𝑠 + 𝑒 (ℓ)

0,𝑖
+ 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
· 𝑠 . If we

define (𝑏 (ℓ)
0,𝑖

, 𝑎
(ℓ)
0,𝑖
) as gk(ℓ)

0,𝑖
, the set gk(ℓ)

0
= {gk(ℓ)

0,𝑖
}𝑖=0,· · · ,hdnumℓ−1

is a valid formal (0, ℓ) Galois key. Then we can generate a shift-𝑟

Galois key by performing a GalToGal operation on it with the (𝑟, ℓ)
Galois key.

In addition, we can optimize the operations further by combin-

ing the decomposition processes in the key-switching operation.

Trivially, the decomposition process is performed hdnumℓ times
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if all the key-switching operations are performed in a black-box

manner likeGalToGal. Since the decomposition process is the heav-

iest operation in the key-switching operation [3], reducing the

number of these processes is desirable. Rather than performing the

decomposition process after adding 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖

to 𝑎′ for
each 𝑖 , we perform the decomposition process to 𝑎′ only once and

add [𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 to the 𝑗-th decomposed component

for each 𝑖 , where this added value can be pre-computed. Since the

number of the decomposition processes is reduced to one, this opti-

mization effectively improves the running time performance. The

PubToGal operation is shown in Algorithm 5. The correctness of

this optimization is shown in the following theorem, which will be

proved in Appendix D, where 𝑃ℓ𝑄ℓ = 𝑄ℓ+1 = (∏𝜇−2

𝑗=0
𝑄ℓ′, 𝑗 ) ·𝑄ℓ′,𝜇−1,

𝑄ℓ′,𝜇−1 is a divisor of 𝑄ℓ′,𝜇−1, and 𝜇 ≤ hdnumℓ′

Theorem 3.3. The output of Algorithm 5 is a valid Galois key for
the rotation operation for cyclic shift 𝑟 .

Algorithm 4: GalToGal
Input: An (𝑟, ℓ) Galois key,

gk(ℓ)𝑟 = {(𝑏 (ℓ)
𝑟,𝑖

, 𝑎
(ℓ)
𝑟,𝑖
)}𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅2

𝑄ℓ𝑃ℓ
)hdnumℓ

and an (𝑟 ′, ℓ ′) Galois key, where ℓ ′ is higher than ℓ ,

gk(ℓ
′)

𝑟 ′ = {(𝑏 (ℓ
′)

𝑟 ′,𝑖 , 𝑎
(ℓ′)
𝑟 ′,𝑖 )}𝑖=0,· · · ,hdnumℓ−1 ∈

(𝑅2

𝑄ℓ′𝑃ℓ′
)hdnumℓ′

Output: An (𝑟 + 𝑟 ′, ℓ) Galois key, gk(ℓ)
𝑟+𝑟 ′ =

{𝑏 (ℓ)
𝑟+𝑟 ′,𝑖 , 𝑎

(ℓ)
𝑟+𝑟 ′,𝑖 }𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅2

𝑄ℓ𝑃ℓ
)hdnumℓ

1 for 𝑖 = 0 to hdnumℓ − 1 do
2 ( ˜𝑏, 𝑎) ← (𝑏 (ℓ)

𝑟,𝑖
(𝑋 5

𝑟 ′ ), 𝑎 (ℓ)
𝑟,𝑖
(𝑋 5

𝑟 ′ ))
3 (𝑏 (ℓ)

𝑟+𝑟 ′,𝑖 , 𝑎
(ℓ)
𝑟+𝑟 ′,𝑖 ) ← key-switching operation to ( ˜𝑏, 𝑎)

with the Galois key gk(ℓ
′)

𝑟 ′ .

4 end
5 return {(𝑏 (ℓ)

𝑟+𝑟 ′,𝑖 , 𝑎
(ℓ)
𝑟+𝑟 ′,𝑖 )}𝑖=0,· · · ,hdnumℓ−1

3.4 Galois Key Generation in the Lower Key
Level

We can generate the desired level-ℓ Galois keys with only the public

key and the Galois keys in the key level higher than ℓ through

GalToGal and PubToGal described in Algorithm 6. We assume that

a cyclic shift 𝑟 of a required Galois key can be represented as 𝑟0 +
· · · + 𝑟𝑡−1, where each 𝑟𝑖 is an element inUℓ , and we deal with the

case when only one level-ℓ Galois key is generated. To generate

the (𝑟, ℓ) Galois key, we first perform the operation PubToGal with
the shift-𝑟0 Galois key and the public key. Then we perform a

GalToGal operation iteratively with the shift-𝑟𝑖 Galois key and the

shift-

∑𝑖−1

𝑗=0
𝑟 𝑗 Galois key to generate a shift-

∑𝑖
𝑗=0

𝑟 𝑗 Galois key for

𝑖 = 1, · · · , 𝑡 − 1, which outputs the (𝑟, ℓ) Galois key at last. The

generation algorithm for one Galois key is described in Algorithm

6.

We usually have to generate a bundle of Galois keys rather than

only one Galois key for a specific service. We will deal with the

Algorithm 5: PubToGal

Input: A public key (𝑏, 𝑎) ∈ 𝑅2

𝑄𝑘−1

, a (𝑟, ℓ ′) Galois key,
gk(ℓ

′)
𝑟 = {𝑏 (ℓ

′)
𝑟, 𝑗

, 𝑎
(ℓ′)
𝑟,𝑗
} 𝑗=0,· · · ,hdnumℓ′−1 ∈

(𝑅2

𝑄ℓ′𝑃ℓ′
)hdnumℓ′ , and the key level ℓ

Output: A (𝑟, ℓ) Galois key,
gk(ℓ)𝑟 = {𝑏 (ℓ)

𝑟,𝑖
, 𝑎
(ℓ)
𝑟,𝑖
}𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅2

𝑄ℓ𝑃ℓ
)hdnumℓ

1 (𝑏 ′, 𝑎′) ← ([𝑏 (𝑋 5
𝑟 )]𝑄ℓ𝑃ℓ , [𝑎(𝑋 5

𝑟 )]𝑄ℓ𝑃ℓ ) ∈ 𝑅2

𝑄ℓ𝑃ℓ

2 Decompose 𝑎′ into a vector (𝑎0, · · · , 𝑎𝜇−1) ∈ 𝑅𝜇𝑃ℓ′𝑄ℓ+1
,

where 𝑎 𝑗 = [𝑎′]𝑄ℓ′, 𝑗 +𝑄ℓ′, 𝑗 · 𝑒 𝑗 for small 𝑒 𝑗 ’s for

0 ≤ 𝑗 ≤ 𝜇 − 2 and 𝑎𝜇−1 = [𝑎′]𝑄̄ℓ′,𝜇−1

+𝑄ℓ′,𝜇−1 · 𝑒𝜇−1 for

small 𝑒𝜇−1.

3 for 𝑖 = 0 to hdnumℓ − 1 do
4 ( ¯𝑏, 𝑎) ← (0, 0) ∈ 𝑅2

𝑃ℓ′𝑄ℓ′

5 for 𝑗 ← 0 to 𝜇 − 1 do
6 if 𝑗 = 𝜇 − 1 then
7 ( ¯𝑏, 𝑎) ←

( ¯𝑏, 𝑎) + (𝑎𝜇−1 + [𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄̄ℓ′,𝜇−1

) ·

( [𝑏 (ℓ
′)

𝑟,𝜇−1
]𝑃ℓ′𝑄ℓ+1 , [𝑎

(ℓ′)
𝑟,𝜇−1
]𝑃ℓ′𝑄ℓ+1 )

8 else
9 ( ¯𝑏, 𝑎) ← ( ¯𝑏, 𝑎) + (𝑎 𝑗 + [𝑃ℓ · 𝑄̂ℓ,𝑖 ·

[𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 ) · ( [𝑏

(ℓ′)
𝑟,𝑗
]𝑃ℓ′𝑄ℓ+1 , [𝑎

(ℓ′)
𝑟, 𝑗
]𝑃ℓ′𝑄ℓ+1 )

10 end
11 end
12 (𝑏 (ℓ)

𝑟,𝑖
, 𝑎
(ℓ)
𝑟,𝑖
) ← (⌊𝑃−1

ℓ′ · ¯𝑏⌉, ⌊𝑃−1

ℓ′ · 𝑎⌉) ∈ 𝑅
2

𝑄ℓ+1
= 𝑅2

𝑃ℓ𝑄ℓ

13 𝑏
(ℓ)
𝑟,𝑖
← 𝑏

(ℓ)
𝑟,𝑖
+ 𝑏 ′

14 end
15 return {(𝑏 (ℓ)

𝑟,𝑖
, 𝑎
(ℓ)
𝑟,𝑖
)}𝑖=0,· · · ,hdnumℓ−1

more efficient method for the case when we need to make a set of

Galois keys at once in Section 4.

3.5 Security Issues
One can be concerned that the server may be able to obtain some

information about the secret key using the fact that the Galois keys

for any cyclic shifts can be generated by the server indefinitely.

However, according to the argument often used in the simulation

paradigm in cryptography, if any new information can be efficiently

obtained from existing information, this new information is consid-

ered to tell us nothing beyond the existing information [27]. Thus,

even if new Galois keys are generated indefinitely with the pro-

posed algorithms from the Galois keys sent by the client, these new

Galois keys do not give the server any new information beyond the

public keys and the Galois keys in the highest key level sent by the

client.

Thus, we only need to consider the security of the public key

and the Galois keys at the highest key level sent by the client. As

mentioned in Section 3.2, the generating method for the public key

and the Galois key in the highest key level by the client is exactly

the same as those of the conventional FHE schemes. Just as the
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conventional FHE schemes are based on the circular security as-

sumption, the proposed hierarchical Galois key generation scheme

also requires the circular security assumption. The public key is an

element of 𝑅2

𝑄𝑘−1

, and the Galois key in the highest key level is an

element of (𝑅𝑄𝑘−1𝑃𝑘−1
)2)hdnum𝑘−1

. Since the main factor that affects

the security level is the maximum modulus bit-length of rings, the

value of 𝑄𝑘−1
𝑃𝑘−1

is the main factor for security. For a given poly-

nomial modulus degree 𝑁 and the secret key Hamming weight ℎ,

we can be given the maximum modulus bit length to guarantee the

security level 𝜆 [3, 10], and the bit-length of 𝑄𝑘−1
𝑃𝑘−1

should not

exceed this bit length.

Algorithm 6: GalKeyGen for one Galois key

Input: A public key (𝑏, 𝑎) ∈ 𝑅2

𝑄𝑘−1

, a set of Galois keys

GUℓ
= {gk(ℓ𝑟 )𝑟 = {(𝑏 (ℓ𝑟 )

𝑟,𝑖
, 𝑎
(ℓ𝑟 )
𝑟,𝑖
)}𝑖=0,· · · ,hdnumℓ𝑟 −1 ∈

(𝑅2

𝑄ℓ𝑟 𝑃ℓ𝑟
)hdnumℓ𝑟 |𝑟 ∈ Uℓ } for cyclic shift generator

setUℓ in the key level higher than ℓ , and a cyclic

shift 𝑟 =
∑𝑡−1

𝑢=0
𝑟𝑢 for 𝑟𝑢 ∈ Uℓ

Output: An (𝑟, ℓ) Galois key,
gk(ℓ)𝑟 = {𝑏 (ℓ)

𝑟,𝑖
, 𝑎
(ℓ)
𝑟,𝑖
}𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅2

𝑄ℓ𝑃ℓ
)hdnumℓ

1 {(𝑏 (ℓ)
𝑟0,𝑖

, 𝑎
(ℓ)
𝑟0,𝑖
)𝑖=0,· · · ,hdnumℓ } ← PubToGal with the public key

and the (𝑟0, ℓ𝑟0
) Galois key

2 for ℎ = 1 to 𝑡 − 1 do
3 {(𝑏 (ℓ)∑ℎ

𝑗=0
𝑟 𝑗 ,𝑖

, 𝑎
(ℓ)∑ℎ

𝑗=0
𝑟 𝑗 ,𝑖
)𝑖=0,· · · ,hdnumℓ } ← GalToGal with

{(𝑏 (ℓ)∑ℎ−1

𝑗=0
𝑟 𝑗 ,𝑖

, 𝑎
(ℓ)∑ℎ−1

𝑗=0
𝑟 𝑗 ,𝑖
)𝑖=0,· · · ,hdnumℓ } and the (𝑟ℎ, ℓ𝑟ℎ )

Galois key

4 end
5 return gkℓ𝑟 = {(𝑏 (ℓ)

𝑟,𝑖
, 𝑎
(ℓ)
𝑟,𝑖
)𝑖=0,· · · ,hdnumℓ }

4 EFFICIENT GENERATION METHOD OF
GALOIS KEY SET

In the previous section, we dealt with the specific algorithms needed

to make a Galois key in the lower key level using Galois keys in the

higher key level. However, we often require many Galois keys at

once, especially for certain services requested by the client. Thus,

it is necessary to efficiently generate a set of Galois keys using

the Galois keys in the higher key level. We need to reduce the

number of these GalToGal operations and PubToGal operations
to efficiently generate hierarchical Galois keys. Note that there

are many intermediate Galois keys in the hierarchical Galois key

system. Given a certain fixed set of Galois keys in the higher key

level, the key problem is how to minimize the number of operations

for generating these intermediate Galois keys by systematically

organizing the generating sequence of the Galois keys.

4.1 Reduction to Minimum Spanning
Arborescence Problem and Minimum
Spanning Tree Problem

Given a setUℓ of specific fixed Galois keys in the higher key level

than ℓ , generating level-ℓ Galois keys with as few operations as

possible is desirable. In other words, it becomes important to use the

least amount of operations ofGalToGal and PubToGal by arranging
the order in which the Galois keys in the set are generated. We

propose an algorithm that can determine the order of generating

Galois keys in the set in the hierarchical Galois key system to reduce

the number of operations.

To this end, we reduce the problem of determining the order of

generation of Galois keys to the minimal spanning arborescence

problem, a well-known graph-theoretic computational problem.

First, set the |Tℓ | + 1 nodes for each element in the Tℓ ∪ {0}, and
then set the directed edge weight between any two nodes 𝑎, 𝑏 as the

minimum number of elements inUℓ required to add up to |𝑎 − 𝑏 |
allowing repetition. The method for setting this edge weight will

be given in the next subsection. There are some identical points to

the minimum arborescence problem in our ordering of the Galois

key generation problem as follows.

• We need to generate each Galois key only once. This fact is

related to the property of the arborescence that any node has

only one path from the root node.

• Each Galois key can be generated by using a GalToGal or a
PubToGal from the public key or existing Galois keys. An edge

from the node 𝑎 to the node 𝑏 with weight 𝑤 means that the

(𝑏, ℓ) Galois key can be generated from the (𝑎, ℓ) Galois key with
𝑤 operations of GalToGal and PubToGal.
• All Galois keys should be generated from the public key and the

higher level Galois keys. An arborescence has only one root node

that is the source of all nodes, and this root node corresponds to

the public key.

• We need to minimize the total number of key-switching op-

erations to generate all Galois keys. The minimum spanning

arborescence problem is to find the arborescence with the min-

imum total weight, which corresponds to the total number of

PubToGal operations or GalToGal operations.

Therefore, the graph produced in this way can be seen as a di-

rected graph, and our problem is to find a spanning arborescence

with a minimum sum of edges, which is the goal of the minimum

spanning arborescence problem. If we find a spanning arborescence

in the graph, we can view the node with zero as a public key and

generate the Galois keys along the obtained tree. The minimum

spanning arborescence problem can be solved by Edmonds’ algo-

rithm [12], and thus an answer to this problem can be efficiently

obtained.

If the Galois keys in the higher key level exist in pairs of different

signs of the same absolute value, a faster and more efficient solution

for generating the Galois keys in the lower key level can be obtained

by reducing to another computation problem. If a shift-𝑟1 Galois

key can be generated with𝑚 operations from a shift-𝑟2 Galois key,

we can generate the shift-𝑟2 Galois key from that of cyclic shift 𝑟1

with the higher-level Galois keys for cyclic shifts having the same

absolute value with the different sign. In view of the corresponding

graph, any pairs of two edges (𝑟1, 𝑟2) and (𝑟2, 𝑟1) exist and have the
same edge weight. Thus, we can replace the directed graph with the

undirected graph with the same nodes in which each edge has the

same weight as the corresponding edge in the directed graph. For

the undirected graph, we can reduce this problem to the minimum
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spanning tree problem, which can be solved by Prim’s algorithm

[29].

We note that this solution is not exactly the optimal solution

since the insertion of additional nodes can reduce the operations

further. If we set the nodes for all cyclic shifts (i.e., ±1,±2,±3, · · · )
in the graph, our problem is to find the minimum Steiner tree for

required cyclic shifts. The Steiner tree in a graph is a tree connect-

ing a subset of designated nodes, and the problem of finding the

Steiner tree is known as an NP-hard problem. Thus, we choose the

near-optimal solution using a more practically feasible algorithm.

Designing a fast algorithm to find the solution closer to the optimal

solution in the proposed situation is an important future work.

4.2 Edge Weight for 𝑝-ary Galois Keys
We should consider a method to compute the edge of each graph,

where we need to find a way to represent the difference between

two nodes as a sum of the minimum number of elements in Uℓ ,

allowing repetition. In general, the server can ask the client for a

well-designed set ofUℓ so that it can be easy to represent any given

number as the desired sum inUℓ . Rather than proposing the general

method for unstructuredUℓ , we suggest a specific example of key

management system withUℓ with power-of-𝑝 integers within the

desired interval. We will discuss how to obtain edges for both cases

whenUℓ consists of power-of-𝑝 integers with both signs and when

it consists of only positive power-of-𝑝 integers.

Algorithm 7: ComputeEdgePos

Input: A power base 𝑝 for the setUℓ with only positive

numbers and a number 𝑡 to be summed

Output: The minimum number of elements inUℓ summed

to 𝑡 allowing repetition

1 (𝑡0𝑡1 · · · 𝑡ℓ−1) (𝑝) ← 𝑝-ary representation of 𝑡

2 return
∑ℓ−1

𝑖=0
𝑡𝑖

We consider the easier case, a set of positive power-of-𝑝 , in which

the rotation graph is a directed graph. In this case, each edge can

be computed as follows. First, we can find the difference between

the end node and the start node of the edge, and then express this

difference in the 𝑝-ary representation, and then set the sum of the

digits as the edge weight. This algorithm is described in Algorithm

7 without proof.

Next, we consider the case of power-of-𝑝 integers with both

signs in which the rotation graph is an undirected graph as Section

4.1. In this case, since the power-of-two integers with different

signs can add up to the value, expressing 𝑝-ary representation is

not enough to find the optimal solution. Instead, we propose the

following algorithm to obtain the edge weight between any two

nodes, which is efficient enough for the input range. Assume that 𝑟

is the difference between the two given nodes. If 𝑟 is a multiple of 𝑝 ,

then recursively output a value of Alg(𝑟/𝑝), otherwise find 𝑟1 such

that 𝑝𝑟1 ≤ 𝑟 < 𝑝 (𝑟1 + 1) and recursively output min{Alg(𝑟1) + (𝑟 −
𝑝𝑟1),Alg(𝑟1 + 1) + (𝑝 (𝑟1 + 1) − 𝑟 )}. This algorithm is described in

Algorithm 8. To help understanding these reduction to the graph,

we depict the toy example of Galois key graph in Appendix E.

Algorithm 8: ComputeEdgeBoth

Input: A power base 𝑝 for the set S with both signs and the

number 𝑡 to be summed

Output: The minimum number of elements in S summed

to 𝑡 allowing repetition

1 if 𝑝 |𝑡 then
2 return ComputeEdgeBoth(𝑝, 𝑡/𝑝)
3 else
4 𝑟 ← ⌊|𝑡 |/𝑝⌋
5 if 𝑟 = 0 then
6 return |𝑡 |
7 else
8 return min{ComputeEdgeBoth(𝑝, 𝑟 ) + (|𝑡 | −

𝑝𝑟 ),ComputeEdgeBoth(𝑝, 𝑟 + 1) + (𝑝 (𝑟 + 1) − |𝑡 |)}
9 end

10 end

4.3 Hoisted Galois Key Generation
The previous subsections focus on the reduction of the number of

GalToGal and PubToGal operations. In this subsection, we further

reduce the number of the decompose processes by the hoisting

technique. The hoisting technique is a method for minimizing the

number of operations by interchanging or combining operations

without changing functionalities. This technique has been used in

the linear transformation in the FHE schemes, and the optimization

of the bootstrapping of the FHE schemes is one of its important

applications [3, 15]. We propose the hoisting method for generating

of the Galois key set in the hierarchical Galois key generation

systems.

The target situation is when several level-ℓ Galois keys are gen-

erated from the public key or one level-ℓ Galois key with Galois

keys in the key level ℓ ′ higher than ℓ . If we want to generate 𝑑

Galois keys, we can naively perform exactly 𝑑 PubToGal opera-
tions or 𝑑 GalToGal operations. As we stated in Section 3.3, the

decomposition process is the most time-consuming process in the

key-switching operation, and thus the decomposition process is de-

sirable to be reduced further. To this end, we postpone the process

of automorphism in line 2 of Algorithm 4 or line 1 of Algorithm 5 to

the last of the operations to combine the decomposition processes

into one process. To maintain the functionality of the operation, we

conduct the automorphism inversely to the Galois keys in the key

level higher than ℓ before the inner-product with the decomposed

components. If the source Galois key is the public key, we reduce

the number of decomposition processes from 𝑑 to one for gener-

ating 𝑑 Galois keys. If the source Galois key is the other Galois

key in the same key level, we reduce the number of decomposi-

tion processes from 𝑑 · hdnumℓ to hdnumℓ . The hoisted version of

GalToGal and PubToGal operations are described in Algorithms 9

and 10. The whole generation algorithm is described in Algorithm

11. We use breath-first search when we search each node in the

output arborescence. This search method is desirable for the hoisted

generation of Galois keys.
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Algorithm 9: HoistedGalToGal
Input: An (𝑟, ℓ) Galois key,

gk(ℓ)𝑟 = {(𝑏 (ℓ)
𝑟,𝑖

, 𝑎
(ℓ)
𝑟,𝑖
)}𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅2

𝑄ℓ𝑃ℓ
)hdnumℓ

and 𝑑 (𝑟 ′𝛼 , ℓ ′) Galois keys, where ℓ ′ is higher than ℓ ,

gk(ℓ
′)

𝑟 ′𝛼
= {(𝑏 (ℓ

′)
𝑟 ′𝛼 ,𝑖

, 𝑎
(ℓ′)
𝑟 ′𝛼 ,𝑖
)}𝑖=0,· · · ,hdnumℓ−1 ∈

(𝑅2

𝑄ℓ′𝑃ℓ′
)hdnumℓ′ for 𝛼 = 0, · · · , 𝑑 − 1

Output: 𝑑 (𝑟 + 𝑟 ′𝛼 , ℓ) Galois keys, gk
(ℓ)
𝑟+𝑟 ′𝛼

=

{𝑏 (ℓ)
𝑟+𝑟 ′𝛼 ,𝑖

, 𝑎
(ℓ)
𝑟+𝑟 ′𝛼 ,𝑖

}𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅2

𝑄ℓ𝑃ℓ
)hdnumℓ

for 𝛼 = 0, · · · , 𝑑 − 1

1 for 𝑖 = 0 to hdnumℓ − 1 do
2 Decompose 𝑎

(ℓ)
𝑟, 𝑗

into a vector (𝑎0, · · · , 𝑎𝜇−1) ∈ 𝑅𝜇𝑃ℓ′𝑄ℓ+1
,

where 𝑎 𝑗 = [𝑎]𝑄ℓ′, 𝑗 +𝑄ℓ′, 𝑗 · 𝑒 𝑗 for small 𝑒 𝑗 ’s for

0 ≤ 𝑗 ≤ 𝜇 − 2 and 𝑎𝜇−1 = [𝑎]𝑄̄ℓ′,𝜇−1

+𝑄ℓ′,𝜇−1 · 𝑒𝜇−1 for

small 𝑒𝜇−1.

3 for 𝛼 = 0 to 𝑑 − 1 do
4 ( ¯𝑏, 𝑎) ← (0, 0) ∈ 𝑅2

𝑃ℓ𝑄ℓ

5 for 𝑗 ← 0 to 𝜇 − 1 do
6 ( ¯𝑏, 𝑎) ← ( ¯𝑏, 𝑎) + 𝑎 𝑗 ·

( [𝑏 (ℓ
′)

𝑟 ′𝛼 , 𝑗
(𝑋 5

−𝑟 ′𝛼 )]𝑃ℓ′𝑄ℓ+1 , [𝑎
(ℓ′)
𝑟 ′𝛼 , 𝑗
(𝑋 5

−𝑟 ′𝛼 )]𝑃ℓ′𝑄ℓ+1 )
7 end
8 (𝑏 (ℓ)

𝑟+𝑟 ′𝛼 ,𝑖
, 𝑎
(ℓ)
𝑟+𝑟 ′𝛼 ,𝑖

) ← (⌊𝑃−1

ℓ′ · ¯𝑏⌉, ⌊𝑃−1

ℓ′ · 𝑎⌉) ∈ 𝑅
2

𝑄ℓ+1

9 𝑏
(ℓ)
𝑟+𝑟 ′𝛼 ,𝑖

← 𝑏
(ℓ)
𝑟+𝑟 ′𝛼 ,𝑖

+ 𝑏 (ℓ)
𝑟,𝑖

10 (𝑏 (ℓ)
𝑟+𝑟 ′𝛼 ,𝑖

, 𝑎
(ℓ)
𝑟+𝑟 ′𝛼 ,𝑖

) ← (𝑏 (ℓ)
𝑟+𝑟 ′𝛼 ,𝑖

(𝑋 5
𝑟 ′𝛼 ), 𝑎 (ℓ)

𝑟+𝑟 ′𝛼 ,𝑖
(𝑋 5

𝑟 ′𝛼 ))
11 end
12 end
13 return {𝑏 (ℓ)

𝑟+𝑟 ′𝛼 ,𝑖
, 𝑎
(ℓ)
𝑟+𝑟 ′𝛼 ,𝑖

}𝑖=0,· · · ,hdnumℓ−1 for 𝛼 = 0, · · · , 𝑑 − 1

5 SIMULATION RESULTS WITH RESNET
MODELS

In this section, we numerically verify the validity of the proposed

hierarchical Galois key generationmethodwith an appropriate com-

puting environment for the client-server model with the ResNet

standard neural network and the CKKS scheme. In the cloud com-

puting model, the server usually has high-performance computing

resources, and the client has only a general-purpose personal com-

puter. To simulate this environment, we use a PC with Intel(R)

Core(TM) i7-10700 CPU and no accelerator as a client and a high-

performance server with a AMD Ryzen Threadripper PRO 3995WX

CPU processor and a NVIDIA GeForce RTX 3090 GPU accelerator.

As a representative example of complex computation models, we

assume that the service requested by the client requires the ResNet-

20 model for the CIFAR-10 dataset or the ResNet-18 model for the

ImageNet dataset. Recently, Lee et al. [23] proposed several tech-

niques for minimizing homomorphic operations for ResNet models

with the CKKS scheme. They proposed a multiplexed parallel convo-

lution technique, an index-arranging average pooling technique, to

effectively perform ResNet models dealing with three-dimensional

tensor structures on CKKS schemes with one-dimensional vector

structures. They enable efficient computation of each component of

Algorithm 10: HoistedPubToGal

Input: A public key (𝑏, 𝑎) ∈ 𝑅2

𝑄𝑘−1

, 𝑑 (𝑟𝛼 , ℓ ′) Galois keys,
where ℓ ′ is higher than ℓ , gk(ℓ

′)
𝑟𝛼 =

{(𝑏 (ℓ
′)

𝑟𝛼 ,𝑖
, 𝑎
(ℓ′)
𝑟𝛼 ,𝑖
)}𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅2

𝑄ℓ′𝑃ℓ′
)hdnumℓ′ for

𝛼 = 0, · · · , 𝑑 − 1, and the key level ℓ

Output: 𝑑 (𝑟𝛼 , ℓ) Galois keys, gk(ℓ)𝑟𝛼 =

{𝑏 (ℓ)
𝑟𝛼 ,𝑖

, 𝑎
(ℓ)
𝑟𝛼 ,𝑖
}𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅2

𝑄ℓ𝑃ℓ
)hdnumℓ for

𝛼 = 0, · · · , 𝑑 − 1

1 Decompose 𝑎 into a vector (𝑎0, · · · , 𝑎𝜇−1) ∈ 𝑅𝜇𝑃ℓ′𝑄ℓ+1
, where

𝑎 𝑗 = [𝑎]𝑄ℓ′, 𝑗 +𝑄ℓ′, 𝑗 · 𝑒 𝑗 for small 𝑒 𝑗 ’s for 0 ≤ 𝑗 ≤ 𝜇 − 2 and

𝑎𝜇−1 = [𝑎]𝑄̄ℓ′,𝜇−1

+𝑄ℓ′,𝜇−1 · 𝑒𝜇−1 for small 𝑒𝜇−1.

2 for 𝑖 = 0 to hdnumℓ − 1 do
3 ( ¯𝑏, 𝑎) ← (0, 0) ∈ 𝑅2

𝑃ℓ𝑄ℓ

4 for 𝛼 = 0 to 𝑑 − 1 do
5 for 𝑗 ← 0 to 𝜇 − 1 do
6 if 𝑗 = 𝜇 − 1 then
7 ( ¯𝑏, 𝑎) ←

( ¯𝑏, 𝑎) + (𝑎𝜇−1 + [𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄̄ℓ′,𝜇−1

) ·

( [𝑏 (ℓ
′)

𝑟𝛼 , 𝑗
(𝑋 5

−𝑟𝛼 )]𝑃ℓ′𝑄ℓ+1 , [𝑎
(ℓ′)
𝑟𝛼 , 𝑗
(𝑋 5

−𝑟𝛼 )]𝑃ℓ′𝑄ℓ+1 )
8 else
9 ( ¯𝑏, 𝑎) ←

( ¯𝑏, 𝑎) + (𝑎 𝑗 + [𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 ) ·

( [𝑏 (ℓ
′)

𝑟𝛼 , 𝑗
(𝑋 5

−𝑟𝛼 )]𝑃ℓ′𝑄ℓ+1 , [𝑎
(ℓ′)
𝑟𝛼 , 𝑗
(𝑋 5

−𝑟𝛼 )]𝑃ℓ′𝑄ℓ+1 )
10 end
11 end
12 (𝑏 (ℓ)

𝑟𝛼 ,𝑖
, 𝑎
(ℓ)
𝑟𝛼 ,𝑖
) ← (⌊𝑃−1

ℓ′ · ¯𝑏⌉, ⌊𝑃−1

ℓ′ · 𝑎⌉) ∈ 𝑅
2

𝑄ℓ+1

13 𝑏
(ℓ)
𝑟𝛼 ,𝑖
← 𝑏

(ℓ)
𝑟𝛼 ,𝑖
+ [𝑏]𝑄ℓ+1

14 (𝑏 (ℓ)
𝑟𝛼 ,𝑖

, 𝑎
(ℓ)
𝑟𝛼 ,𝑖
) ← (𝑏 (ℓ)

𝑟𝛼 ,𝑖
(𝑋 5

𝑟𝛼 ), 𝑎 (ℓ)
𝑟𝛼 ,𝑖
(𝑋 5

𝑟𝛼 ))
15 end
16 end
17 return {𝑏 (ℓ)

𝑟𝛼 ,𝑖
, 𝑎
(ℓ)
𝑟𝛼 ,𝑖
}𝑖=0,· · · ,hdnumℓ−1 for 𝛼 = 0, · · · , 𝑑 − 1

the ResNet model. In addition, when the bootstrapping is performed,

sparse-slot bootstrapping [8, 23] is performed with different slots

for different layers, where we can require different Galois keys for

the bootstrapping operation with different number of sparse slots.

Also, the sparse-secret encapsulation method [4] is assumed to be

used for the bootstrapping with the dense secret key with more

reduced running time and higher precision. We use the baby-step

giant-step algorithm for fully connected layers [8]. When using

all of these methods with CKKS algorithms using 𝑁 = 2
16

for the

polynomial modulus degree, we found that 265 Galois keys for dif-

ferent cyclic shifts are required in the ResNet-20 model processing

the CIFAR-10 dataset, and the detailed cyclic shifts actually needed

are shown in Appendix F.

The CKKS scheme is used for the simulation, and the parameters

of the CKKS scheme we use for the simulation are shown in Table

1. The lattigo library [1] is used for the simulation, and the CUDA
library by NVIDIA is used for GPU acceleration of the Galois key
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Algorithm 11: GalKeyGen
Input: A cyclic shift set Tℓ for the key level ℓ , a cyclic shift

generator setUℓ for the key level higher than ℓ , a set

of Galois keys GUℓ
for cyclic shifts inUℓ in the key

level higher than ℓ , and a public key (𝑏, 𝑎) ∈ 𝑅𝑄𝑘−1

Output: A set of Galois keys GTℓ for a cyclic shift set Tℓ
1 𝑉 ← T ∪ {0}
2 𝐸 ← {(𝑣,𝑤) |𝑣,𝑤 ∈ 𝑉 }
3 𝑤 (𝑣,𝑤) ← the minimum number of elements in S summed

to𝑤 − 𝑣 allowing repetition

4 𝐺 ′ = (𝑉 , 𝐸 ′) ← Edmonds’ algorithm with 𝐺 = (𝑉 , 𝐸) ;
// It can be replaced with Prim’s algorithm

when Uℓ is symmetric around zero.

5 𝑄 [] ← empty queue for nodes

6 GTℓ ← ∅
7 while 𝑄 is not empty do
8 𝑣 ← dequeue from 𝑄

9 𝑊 ← the set of nodes adjacent to 𝑣 .

10 if 𝑣 = 0 then
11 Generate the set of Galois keys

G𝑊 = {gk(ℓ)𝑤 |𝑤 ∈𝑊 } from (𝑏, 𝑎) using PubToGal
or HoistedPubToGal

12 else
13 Generate the set of Galois keys

G𝑊 = {gk(ℓ)𝑤 |𝑤 ∈𝑊 } from gk(ℓ)𝑣 using GalToGal
or HoistedGalToGal

14 end
15 GTℓ ← GTℓ ∪ G𝑊
16 Enqueue elements in𝑊 to 𝑄 .

17 end
18 return GTℓ

Table 1: Encryption parameters in the CKKS scheme for
ResNet models

Parameters

ResNet-20

for CIFAR-10

ResNet-18

for ImageNet

Polynomial modulus degree 2
16

2
17

Secret key Hamming weight 2
15

2
16

Gaussian error stand. dev. 3.2 3.2

Minimum security level 128-bit 128-bit

Maximum modulus bit-length 1792 3220

generation. The Galois key generation with the GPU processor

is implemented based on [18]. In the server, algorithms for the

preparation of Galois key generation are executed on the CPU

processor and all actual Galois key generation is computed by the

GPU processor. The running time for Galois key generation by

the client, the communication amount between the client and the

server, the required storage for Galois keys in the server, and the

running time for Galois key generation by the server are measured

and presented in this section.

In the conventional CKKS scheme, the client generates all the re-

quired Galois keys and transmits them to the server. In the two-level

Table 2: Modulus bit-lengths and decomposition numbers for
each Galois key generation scheme in ResNet-20 for CIFAR-
10

Galois key

generation

Modulus bit-length

Decomposition

number

Conventional

(log𝑄0, log 𝑃0)
= (1345, 129)

12

Two-level

(log𝑄0, log 𝑃0, log 𝑃1)
= (1345, 129, 158)

(12, 11)

Three-level

(log𝑄0, log 𝑃0, log 𝑃1, log 𝑃2)
= (1345, 129, 158, 160)

(12, 11, 11)

Table 3: Modulus bit-lengths and decomposition numbers
for each Galois key generation scheme in ResNet-18 for Ima-
geNet

Galois key

generation

Modulus bit-length

Decomposition

number

Conventional

(log𝑄0, log 𝑃0)
= (1465, 392)

4

Two-level

(log𝑄0, log 𝑃0, log 𝑃1)
= (1465, 392, 637)

(4, 3)

Three-level

(log𝑄0, log 𝑃0, log 𝑃1, log 𝑃2)
= (1465, 392, 637, 637)

(4, 3, 4)

hierarchical Galois key scheme, the client generates the quaternary

level-1 Galois key set with both signs and transmits them to the

server, where the set of the cyclic shifts is {±1,±4,±16, · · · ,±2
12}.

Then, the server generates the required Galois keys for the ResNet

models from this quaternary level-1 Galois key set. In the three-

level hierarchical Galois key scheme, the client generates the 16-ary

level-2 Galois key set with both signs and transmits them to the

server, where the set of the cyclic shifts is {±1,±16,±256,±2
12}.

If the server needs to give services to the client immediately, the

server generates the required Galois keys for the ResNet models

from this 16-ary level-2 Galois key set. If the services do not need

to be given to the client immediately and does not determined just

after receiving the level-2 Galois keys, the server can generate more

level-1 Galois keys for faster Galois key generation in the offline

phase before the services so that level-2 Galois keys and level-1 Ga-

lois keys constitutes a quaternary Galois key set. Then, the server

generates the required level-0 Galois keys for the ResNet models

from this quaternary level-2 and level-1 Galois key set just after the

services are requested, which is the online phase. Tables 2 and 3

show the evaluation modulus in the key level zero, the hierarchical

special moduli for each key level, and each decomposition number

for each key level used in the simulation.

Table 4 shows the number of core operations for generation

of each Galois key set for ResNet models using 4-ary or 16-ary

Galois key set, and it shows the effectiveness of the hoisted Ga-

lois key generation and the Prim’s algorithm. Note that the total

numbers of GalToGal and PubToGal operations are close to the

number of Galois keys. Roughly speaking, 1.04 and 1.07 numbers

of key-switching operations for a Galois key are needed on average

if we use 4-ary Galois key generation set, and 1.43 and 1.18 num-

bers of key-switching operations for a Galois key are needed on
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Table 4: Number of core operations optimized by hoisted
Galois key generation and Prim’s algorithm

ResNet-20

for CIFAR-10

ResNet-18

for ImageNet

4-ary 16-ary 4-ary 16-ary

No. of Galois Keys 265 617

GalToGal
Total 263 372 649 721

Decompose 149 292 347 529

PubToGal
Total 14 7 14 8

Decompose 1 1 1 1

average if we use 16-ary Galois key generation set. It means that

most of the Galois keys can be generated by only one GalToGal or
PubToGal operation from other Galois key, which is the result of

Prim’s algorithm.

Note that the number of the decompose processes is effectively re-

duced compared to the total numbers ofGalToGal and PubToGal op-
erations by the hoisted Galois key generation. The decompose pro-

cesses are the most time-consuming process in the key-switching

operation. If we do not use the hoisted Galois key generation

method, the number of the decompose processes is the same as the

total number of GalToGal and PubToGal operations. For example,

in the two-level Galois key generation for the ResNet-20, it takes

35.0s to generate all Galois keys using 4-ary level-1 Galois keys if

we do not use the hoisted method. If we use the hoisted method, it

takes 24.4s to generate all Galois keys with the same level-1 Galois

keys, which is reduced by 31.4%.

Table 5 shows the various performances with the ResNet-20 for

the CIFAR-10 dataset when using the conventional system, the two-

level Galois key generation system, and the three-level Galois key

generation system. As the number of Galois keys generated by the

client is reduced to only 15 in the two-level system, the running time

required for the client to generate level-1 Galois keys is reduced to

20.9s, and the size of the total level-1 Galois keys to be transmitted

is also reduced to 6.0GB. It shows that the computational and com-

munication burden of the client is significantly reduced, and a large

part of computations goes to the high-performance server, which

balances the computation tasks and the communication amount

according to the environment. As the number of Galois keys gen-

erated by the client is reduced to 8 in the three-level system, the

running time to generate the level-2 Galois keys and the commu-

nication amount required for transmission of these keys are more

reduced. For the case when services have not yet been requested

just after the server received the level-2 Galois keys from the client,

the level-1 Galois keys can be generated in advance to reduce the

actual required level-0 Galois key generation time for 3.5s and with

the required memory of 6.2GB for storing level-2 and level-1 Galois

keys. The running time to generate the level-0 Galois keys required

for ResNet is reduced to 25.3s with the level-2 and level-1 Galois

keys. Therefore, the computational and communication amount

in the client and the amount of computation for the online phase

required to generate the necessary Galois keys are both improved.

We also investigate the case when using Lee et al.’s idea to imple-

ment the ResNet-18 model for the larger ImageNet dataset. Because

of the larger image and channel size in the dataset, 617 cyclic shifts

are required for the polynomial modulus degree 𝑁 = 2
17
. Table 6

shows the various performances with the ResNet-18 for the Ima-

geNet dataset. The effectiveness of the proposed hierarchical Galois

key system can be validated also for the ResNet models with the

ImageNet dataset in the same manner as the case of ResNet-20

model for the CIFAR-10 dataset.

6 CONCLUSION
For the privacy-preserving AIaaS with FHE in the client-server

model, we proposed a hierarchical Galois key generation method

for the first time to significantly reduce the computational and

communication costs of the client and to make the Galois key

management with the reduced memory in the server more efficient.

It allows the server to generate the Galois keys for the required

cyclic shifts using the Galois keys in the higher key level without

a secret key or any help from the clients, and it helps the server

to use its memory for storing Galois keys efficiently. With this

method, we showed a simple protocol between a client and a server

using the simplest two-level hierarchical Galois key system and a

more general protocol capable of efficient Galois key management

reflecting the activity of the clients using a multi-level hierarchical

Galois key system.

We constructed this hierarchical Galois key generation system

for the BFV and CKKS schemes using a key-switching operation

applied to the public key. Also, we proposed a more efficient Galois

key generation method by using Edmonds’ algorithm and Prim’s

algorithm when a bundle of Galois keys has to be generated at once.

Finally, we suggested a concrete example of Galois keymanagement

protocols by putting them together.

This proposed system will make the FHE system more flexible in

various applications, especially when efficient memory use is highly

required in the cloud computing system. It can be an important

future work that designs a systematic method to perform complex

services with limited memory by using the proposed method more

efficiently. Designing a fast algorithm for generating a sequence of

Galois keys closer to the optimal solution in the proposed situation

is also an important future work.
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A PRELIMINARIES
A.1 Notations
Let Z,R, and C denote the set of integers, the set of real numbers,

and the set of complex numbers, respectively. Let Z𝑝 = Z/𝑝Z, and
let 𝑅 and 𝑅𝑝 denote the rings R[𝑋 ]/(𝑋𝑁 + 1) and Z𝑝 [𝑋 ]/(𝑋𝑁 + 1),
respectively. 𝜒 denotes an error distribution with a small variance,

such as a Gaussian distribution. For integer 𝑥 and positive integer

𝑝 , [𝑥]𝑝 denotes the non-negative remainder 𝑟 such that 𝑥 = 𝑝𝑞 + 𝑟 ,
where 𝑞 is an integer and 0 ≤ 𝑟 ≤ 𝑝 − 1. For integer 𝑥 coprime with

𝑝 , [𝑥−1]𝑝 denotes the inverse element of [𝑥]𝑝 in Z𝑝 .

A.2 BFV and CKKS Schemes
Fully homomorphic encryption, abbreviated as homomorphic en-

cryption, is an encryption scheme designed to enable arbitrary

arithmetic operations on encrypted data. Homomorphic encryp-

tion was initially defined as a bit-wise encryption scheme capable

of performing all boolean operations while encrypted. The def-

inition was mitigated to include word-wise encryption schemes

capable of arbitrary arithmetic operations for encrypted integers

or complex number data. The homomorphic encryptions covered

in this paper are BFV and CKKS schemes. These homomorphic

encryption schemes support arithmetic operations with the SIMD

manner, allowing multiple independent data to be encrypted and

operated at once in a single ciphertext with a single homomorphic
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operation. In the case of BFV, the data storing structure is a matrix

in which the number of rows is two, and in the case of CKKS, it is

a one-dimensional vector. In addition, in the case of BFV, integers

are encrypted, and in the case of CKKS, complex numbers are en-

crypted. Although each scheme has several variants, wewill address

the schemes with the following encoding and encryption methods,

where (𝑏, 𝑎) ∈ 𝑅2

𝑄
in a ring-LWE sample such that 𝑏 = −𝑎 · 𝑠 + 𝑒 for

the secret key 𝑠 ← 𝜒 and a noise 𝑒 ← 𝜒 .

• BFV scheme: The packing structure is a 2 × 𝑁 /2-matrix

(𝑣𝑖 𝑗 ) ∈ Z2×𝑁 /2
𝑡 . Let𝜔 be a 2𝑁 -th root of unity in Z𝑡 . We then

obtain𝑚(𝑋 ) ∈ 𝑅𝑡 such that𝑚(𝜔𝛼𝑖 𝑗 ) = 𝑣𝑖 𝑗 for𝛼𝑖 𝑗 = (−1)𝑖 ·5𝑗
mod 2𝑁 and encrypt as 𝑢 · (𝑏, 𝑎) + (𝑄/𝑡 ·𝑚 + 𝑒0, 𝑒1), where
𝑢, 𝑒0, 𝑒1 ← 𝜒 .

• CKKS scheme: The packing structure is a vector of length

𝑁 /2, (𝑣𝑖 ) ∈ R𝑁 /2. Let 𝜁 be a 2𝑁 -th root of unity in C. We

then obtain𝑚(𝑋 ) ∈ R[𝑋 ]/(𝑋𝑁 + 1) such that𝑚(𝜁𝛼𝑖 ) = 𝑣𝑖
for 𝛼𝑖 = 5

𝑗
mod 2𝑁 and encrypt it as 𝑢 · (𝑏, 𝑎) + (⌊Δ ·

𝑚⌉ + 𝑒0, 𝑒1), where 𝑢, 𝑒0, 𝑒1 ← 𝜒 and Δ is scaling factor that

determines the precision of𝑚.

We assume that the residue number system (RNS) variants of

BFV and CKKS schemes [2, 9] are used. In this variant, the cipher-

text modulus is chosen as the product of large primes, and the

ciphertext is represented as a vector of remainders for the primes

rather than one large remainder for the ciphertext modulus. By the

Chinese remainder theorem (CRT), each vector of remainders for

the primes has a one-to-one correspondence to the large remainder

of the large modulus. The element-wise addition and multiplication

between two vectors of remainders also correspond to those be-

tween two corresponding remainders of the product of the primes.

The non-trivial operations in these RNS variants are the ModUp
andModDown operations. TheModUp operation raises the mod-

ulus with remaining the remainder, and theModDown operation

divides the modulus and the remainder by the product of some

prime moduli and round the output. These operations include many

heavy NTT/INTT operations and CRT merge processes, and thus

these are one of the most time-consuming low-level operations in

the BFV and CKKS. Since the decomposition process in the key-

switching operation requires severalModUp processes, reducing

the decomposition process is important in minimizing homomor-

phic operations. The specific ModUp and ModDwon operations

are described in Algorithms 12 and 13, where we assume that each

ring element is in the NTT form.

This pair of ring elements (𝑏, 𝑎) is the public key of each scheme.

Although there are evaluation keys for homomorphic operations

that are opened to the public domain, we only represent these pairs

(𝑏, 𝑎) for the encryption process as the public key in this paper.

For the CKKS scheme, the level of a ciphertext is the maximum

number of multiplications that can be performed on the ciphertext

without bootstrapping. In the RNS-CKKS scheme, if the level of a

ciphertext is ℓ , there is ℓ+1 number of RNSmoduli for the ciphertext.

Each size of RNS moduli is determined by the required precision

of the multiplication in each level. Since the other homomorphic

operations rather than the rotation operation of the BFV and CKKS

schemes are not relevant to understanding this paper, we only deal

with the rotation operation for𝑚(𝑋 ) corresponding to cyclic shift

Algorithm 12:ModUp

Input: Two disjoint sets of primes C = {𝑞0, · · · , 𝑞𝜎−1},
B = {𝑝0, · · · , 𝑝𝜏−1}, where 𝑄 =

∏
𝑖 𝑞𝑖 and

𝑃 =
∏

𝑗 𝑝 𝑗 , and an RNS-form ring element

(𝑎0, · · · , 𝑎𝜎−1) ∈
∏𝜎−1

𝑖=0
𝑅𝑞𝑖 for 𝑎 ∈ 𝑅𝑄 , where 𝑎𝑖 = 𝑎

mod 𝑞𝑖 .

Output: an RNS-form ring element

(𝑎0, · · · , 𝑎𝜎−1, 𝑎0, · · · , 𝑎𝜏−1) ∈∏𝜎−1

𝑖=0
𝑅𝑞𝑖 ×

∏𝜏−1

𝑗=0
𝑅𝑝𝑖 for 𝑎

′ ∈ 𝑅𝑃𝑄 , where 𝑎𝑖 = 𝑎′

mod 𝑞𝑖 , 𝑎 𝑗 = 𝑎′ mod 𝑝 𝑗 , and 𝑎
′ = 𝑎 +𝑄 · 𝑒 for

small 𝑒 .

1 INTT operation to (𝑎0, · · · , 𝑎𝜎−1).
2 for 𝑖 ← 0 to 𝜎 − 1 do
3 𝑎𝑖 ← 𝑎𝑖

4 𝑏𝑖 ← 𝑎𝑖 · [𝑞−1

𝑖
]𝑞𝑖 ∈ 𝑅𝑞𝑖

5 end
6 for 𝑗 ← 0 to 𝜏 − 1 do
7 𝑎 𝑗 ← 0

8 for 𝑖 ← 0 to 𝜎 − 1 do
9 𝑎 𝑗 ← 𝑎 𝑗 + 𝑏𝑖 · [𝑞𝑖 ]𝑝 𝑗

∈ 𝑅𝑝 𝑗

10 end
11 end
12 NTT operation to (𝑎0, · · · , 𝑎𝜎−1, 𝑎0, · · · , 𝑎𝜏−1).
13 return (𝑎0, · · · , 𝑎𝜎−1, 𝑎0, · · · , 𝑎𝜏−1) ∈

∏𝜎−1

𝑖=0
𝑅𝑞𝑖 ×

∏𝜏−1

𝑗=0
𝑅𝑝𝑖

Algorithm 13:ModDown

Input: Two disjoint sets of primes C = {𝑞0, · · · , 𝑞𝜎−1},
B = {𝑝0, · · · , 𝑝𝜏−1}, where 𝑄 =

∏
𝑖 𝑞𝑖 and

𝑃 =
∏

𝑗 𝑝 𝑗 , and an RNS-form ring element

(𝑎0, · · · , 𝑎𝜎−1, 𝑎0, · · · , 𝑎𝜏−1) ∈
∏𝜎−1

𝑖=0
𝑅𝑞𝑖 ×

∏𝜏−1

𝑗=0
𝑅𝑝𝑖

for 𝑎 ∈ 𝑅𝑃𝑄 , where 𝑎𝑖 = 𝑎 mod 𝑞𝑖 , 𝑎 𝑗 = 𝑎 mod 𝑝 𝑗 .

Output: an RNS-form ring element

(𝑎′
0
, · · · , 𝑎′

𝜎−1
) ∈ ∏𝜎−1

𝑖=0
𝑅𝑞𝑖 for 𝑎

′ ∈ 𝑅𝑄 , where
𝑎′
𝑖
= 𝑎′ mod 𝑞𝑖 and 𝑎

′ = ⌊𝑃−1 · 𝑎⌉ + 𝑒 for small 𝑒 .

1 for 𝑖 ← 0 to 𝜎 − 1 do
2 ¯𝑏𝑖 ← 𝑎𝑖 + [⌊𝑃/2⌋]𝑞𝑖 ∈ 𝑅𝑞𝑖
3 end
4 for 𝑗 ← 0 to 𝜏 − 1 do
5 ˜𝑏 𝑗 ← 𝑎 𝑗 + [⌊𝑃/2⌋]𝑝 𝑗

∈ 𝑅𝑝 𝑗

6 end
7 ( ¯𝑏 ′

0
, · · · , ¯𝑏 ′

𝜎−1
, ˜𝑏 ′

0
, · · · , ˜𝑏 ′

𝜏−1
) ← ModUp for ( ˜𝑏0, · · · , ˜𝑏𝜏−1)

from

∏𝜏−1

𝑗=0
𝑅𝑝𝑖 to

∏𝜎−1

𝑖=0
𝑅𝑞𝑖 ×

∏𝜏−1

𝑗=0
𝑅𝑝𝑖

8 for 𝑖 ← 0 to 𝜎 − 1 do
9 𝑎′

𝑖
← [𝑃−1]𝑞𝑖 · ( ¯𝑏𝑖 − ¯𝑏 ′

𝑖
) ∈ 𝑅𝑞𝑖

10 end
11 return (𝑎′

0
, · · · , 𝑎′

𝜎−1
) ∈ ∏𝜎−1

𝑖=0
𝑅𝑞𝑖

of the message vector. The detailed explanations of other operations

can be found in [5, 9, 11, 13].
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A.3 Key-Switching Operation and Galois Key
We now explain the key-switching operation [16] in BFV and CKKS

schemes. This operation converts a ciphertext (𝑏, 𝑎) that can be

decrypted by a secret key 𝑠 to another ciphertext (𝑏 ′, 𝑎′) that can be

decrypted by another secret key 𝑠 ′ without changing the messages.

It requires an evaluation key called the key-switching key, which is

constructed as follows. Suppose that we want to perform the key-

switching operation switching the secret key from 𝑠 to 𝑠 ′. The RNS
moduli that we use for key-switching are𝑄𝑖 for 𝑖 = 0, · · · , dnum− 1

and the special modulus is 𝑃 , where dnum is defined to be the number

of the RNS moduli decomposed for the key-switching operation.

In this case, the RNS bases for these RNS moduli are 𝑄̂𝑖 · [𝑄̂−1

𝑖
]𝑄𝑖

,

where 𝑄̂𝑖 means

∏
𝑗≠𝑖 𝑄 𝑗 . The special modulus 𝑃 should be set

to be larger than all 𝑄𝑖 ’s because of the noise reduction in the

key-switching operation. We construct the key-switching key as

dnum ciphertexts, each of which is (𝑏𝑖 , 𝑎𝑖 ) ∈ 𝑅2

𝑃𝑄
, where 𝑎𝑖 ← 𝑅𝑃𝑄

and 𝑏𝑖 = −𝑎𝑖 · 𝑠 ′ + 𝑒 + 𝑃 · 𝑄̂𝑖 · [𝑄̂−1

𝑖
]𝑄𝑖
· 𝑠 . In the key-switching

operation, 𝑎 is first decomposed into the RNS elements of 𝑎 with the

ModUp operation, which is described in Algorithm 14. Each RNS

element is multiplied by the ciphertext having the corresponding

RNS basis in the key-switching key and added with each other.

Then, we divide the ciphertext and the modulus by the special

modulus with theModDown operation. The whole algorithm for

key-switching operation is described in Algorithm 15. This process

of temporarily raising and reducing the modulus prevents the noise

from amplifying, and the special modulus should be larger than all

of the dnum RNS moduli used in the key-switching operation.

Algorithm 14: Decompose

Input: A ring element 𝑎 ∈ 𝑅𝑄 in the RNS form, where

𝑄 =
∏𝛿−1

𝑖=0
𝑄𝑖 and 𝑄𝑖 ’s are pairwisely coprime, and

the additional modulus 𝑃 coprime to 𝑄 .

Output: A vector of ring elements (𝑎0, · · · , 𝑎𝛿−1
) ∈ 𝑅𝛿

𝑃𝑄
,

where 𝑎𝑖 = [𝑎]𝑄𝑖
+𝑄𝑖 · 𝑒𝑖 for small 𝑒𝑖 ’s and 𝑎𝑖 ’s

are in the RNS form.

1 for 𝑖 ← 0 to 𝛿 − 1 do
2 𝑎𝑖 ← ModUp for [𝑎]𝑄𝑖

∈ 𝑅𝑄𝑖
from 𝑅𝑄𝑖

to 𝑅𝑃𝑄 .

3 end
4 return (𝑎0, · · · , 𝑎𝛿−1

) ∈ 𝑅𝛿
𝑃𝑄

A trade-off for various performances occurs depending on the

value of dnum. As the value of dnum increases, the computation

amount in the key-switching operation increases due to the in-

crease in the number of NTT/INTT operations and the amount of

inner-product computation. Also, the size of the key-switching keys

increases because the number of ciphertexts in the key-switching

key is dnum. On the other hand, if the value of dnum is large, each
RNS modulus used in the key-switching operation is small, making

the special modulus small. Since the upper bound of the size of the

total modulus is fixed with the specified security level, the avail-

able modulus for homomorphic computations, except the special

modulus, can be large. This can accommodate a more deep homo-

morphic circuit without the bootstrapping operation or reduce the

number of the bootstrapping operations when we perform a deep

homomorphic circuit with the bootstrapping operations. The value

of dnum is selected in consideration of these trade-offs.

If we want to perform the rotation operation for cyclic shift 𝑟 , the

key-switching key for this operation can be constructed as above

for 𝑠 ′ = 𝑠 (𝑋 5
𝑟 ). We will call this key-switching key a Galois key for

cyclic shift 𝑟 of the corresponding message vector because this key

is used for performing Galois automorphism𝑚(𝑋 ) ↦→𝑚(𝑋 5
𝑘 ) to

encrypted message polynomial, which is equivalent to the rotation

operations. The specific algorithm for the key-switching operation

is shown in Algorithm 15.

Note that in this algorithm, we deal with a general case when the

modulus 𝑄 of a ciphertext is a divisor of the maximum evaluation

modulus 𝑄 . We can simply replace 𝑄 with 𝑄 in the key-switching

operation with the same decomposed RNS moduli except the last

RNS modulus. The non-trivial point is that

{([𝑏 (𝑖) ]𝑃𝑄̄ , [𝑎
(𝑖) ]𝑃𝑄̄ )}𝑖=0,· · · ,𝜇−1 ∈ (𝑅𝑃𝑄̄ )

𝜇

is a valid Galois key for the evaluation modulus 𝑄 and the special

modulus 𝑃 . For ease of understanding, we add the proof for this

fact in the following theorem.

Theorem A.1. Assume that

{(𝑏 (𝑖) , 𝑎 (𝑖) )}𝑖=0,· · · ,dnum−1 ∈ (𝑅𝑃𝑄 )dnum

is a valid shift-𝑟 Galois key for the evaluation modulus 𝑄 and the
special modulus 𝑃 . Let𝑄 = (∏𝜇−2

𝑖=0
𝑄𝑖 ) ·𝑄𝜇−1, where𝑄𝜇−1 is a divisor

of 𝑄𝜇−1 and 𝜇 ≤ dnum. Then, the shift-𝑟 Galois key

{([𝑏 (𝑖) ]𝑃𝑄̄ , [𝑎
(𝑖) ]𝑃𝑄̄ )}𝑖=0,· · · ,𝜇−1 ∈ (𝑅𝑃𝑄̄ )

𝜇

is valid for the evaluation modulus 𝑄 and the special modulus 𝑃 .

Proof. Since the Galois key

{(𝑏 (𝑖) , 𝑎 (𝑖) )}𝑖=0,· · · ,dnum−1 ∈ (𝑅𝑃𝑄 )dnum

is valid, we have

𝑏 (𝑖) + 𝑎 (𝑖) · 𝑠 = 𝑃 · 𝑄̂𝑖 · [𝑄̂−1

𝑖 ]𝑄𝑖
· 𝑠 (𝑋 5

𝑟

) + 𝑒𝑖 ∈ 𝑅𝑃𝑄
for all 𝑖 and small error 𝑒𝑖 ’s. If we perform the modular reduction

to 𝑏 (𝑖) + 𝑎 (𝑖) · 𝑠 by each 𝑄 𝑗 for 0 ≤ 𝑗 ≤ 𝜇 − 1, we have

[𝑏 (𝑖) + 𝑎 (𝑖) · 𝑠]𝑄 𝑗
=

{
[𝑃]𝑄𝑖

· 𝑠 (𝑋 5
𝑟 ) + 𝑒𝑖 if 𝑖 = 𝑗

𝑒𝑖 if 𝑖 ≠ 𝑗
(1)

If we perform the modular reduction to 𝑏 (𝑖) + 𝑎 (𝑖) · 𝑠 by each 𝑃 , we

have [𝑏 (𝑖) + 𝑎 (𝑖) · 𝑠]𝑃 = 𝑒𝑖 . Since 𝑄𝜇−1 is a divisor of 𝑄𝜇−1, we can

replace 𝑄𝜇−1 in (1) with 𝑄𝜇−1 for all 𝑖 and 𝑗 .

On the other hand, we consider the following ring element

𝑃 · ˆ̄𝑄𝑖 · [ ˆ̄𝑄−1

𝑖 ]𝑄̄𝑖
· 𝑠 (𝑋 5

𝑟

) + 𝑒𝑖 ∈ 𝑅𝑃𝑄̄ ,

where 𝑄𝑖 = 𝑄𝑖 for 0 ≤ 𝑖 ≤ 𝜇 − 2 and
ˆ̄

𝑖𝑄 =
∏𝜇−1

𝑗=0, 𝑗≠𝑖
𝑄𝑖 . Note that

we have

[𝑃 · ˆ̄𝑄𝑖 · [ ˆ̄𝑄−1

𝑖 ]𝑄̄𝑖
· 𝑠 (𝑋 5

𝑟

) + 𝑒𝑖 ]𝑄̄ 𝑗
=

{
[𝑃]𝑄̄𝑖

· 𝑠 (𝑋 5
𝑟 ) + 𝑒𝑖 if 𝑖 = 𝑗

𝑒𝑖 if 𝑖 ≠ 𝑗

If we perform the modular reduction to 𝑃 · ˆ̄𝑄𝑖 · [ ˆ̄𝑄−1

𝑖
]𝑄̄𝑖
· 𝑠 (𝑋 5

𝑟 ) +𝑒𝑖
by each 𝑃 , we have [𝑃 · ˆ̄𝑄𝑖 · [ ˆ̄𝑄−1

𝑖
]𝑄̄𝑖
· 𝑠 (𝑋 5

𝑟 ) + 𝑒𝑖 ]𝑃 = 𝑒𝑖 .
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𝑏 (𝑖) + 𝑎 (𝑖) · 𝑠 and 𝑃 · ˆ̄𝑄𝑖 · [ ˆ̄𝑄−1

𝑖
]𝑄̄𝑖
· 𝑠 (𝑋 5

𝑟 ) + 𝑒𝑖 has the same

remainders for all 𝑄𝑖 ’s and 𝑃 , the two value is equal to each other

in modulo 𝑃𝑄 by the Chinese remainder theorem. Thus, we have

[𝑏 (𝑖) ]𝑃𝑄̄ + [𝑎
(𝑖) ]𝑃𝑄̄ · 𝑠 = [𝑏

(𝑖) + 𝑎 (𝑖) · 𝑠]𝑃𝑄̄
= 𝑃 · ˆ̄𝑄𝑖 · [ ˆ̄𝑄−1

𝑖 ]𝑄̄𝑖
· 𝑠 (𝑋 5

𝑟

) + 𝑒𝑖

for all 𝑖’s. Thus, the shift-𝑟 Galois key

{([𝑏 (𝑖) ]𝑃𝑄̄ , [𝑎
(𝑖) ]𝑃𝑄̄ )}𝑖=0,· · · ,𝜇−1 ∈ (𝑅𝑃𝑄̄ )

𝜇

is valid for the evaluationmodulus𝑄 and the special modulus 𝑃 . □

Algorithm 15: Key-Switching Operation [16]

Input: A key-switching key from 𝑠 to 𝑠 ′,
swk = {(𝑏 (𝑖) , 𝑎 (𝑖) }𝑖=0,· · · ,dnum−1 ∈ (𝑅2

𝑃𝑄
)dnum for

𝑄 =
∏dnum−1

𝑖=0
𝑄𝑖 , and a ciphertext (𝑏, 𝑎) ∈ 𝑅2

𝑄̄

encrypted with secret key 𝑠 ∈ 𝑅 for

𝑄 = (∏𝜇−2

𝑖=0
𝑄𝑖 ) ·𝑄𝜇−1, where 𝑄𝜇−1 is a divisor of

𝑄𝜇−1 and 𝜇 ≤ dnum.

Output: A ciphertext (𝑏 ′, 𝑎′) ∈ 𝑅2

𝑄̄
encrypted with secret

key 𝑠 ′ ∈ 𝑅
1 Decompose 𝑎 into a vector (𝑎0, · · · , 𝑎𝜇−1) ∈ 𝑅𝜇

𝑃𝑄̄
, where

𝑎𝑖 = [𝑎]𝑄𝑖
+𝑄𝑖 · 𝑒𝑖 for small 𝑒𝑖 ’s for 0 ≤ 𝑖 ≤ 𝜇 − 2 and

𝑎𝜇−1 = [𝑎]𝑄̄𝜇−1

+𝑄𝜇−1 · 𝑒𝜇−1 for small 𝑒𝜇−1.

2 ( ¯𝑏, 𝑎) ← (0, 0) ∈ 𝑅2

𝑃𝑄̄

3 for 𝑖 ← 0 to 𝜇 − 1 do
4 ( ¯𝑏, 𝑎) ← ( ¯𝑏, 𝑎) + 𝑎𝑖 · ( [𝑏 (𝑖) ]𝑃𝑄̄ , [𝑎 (𝑖) ]𝑃𝑄̄ )
5 end
6 (𝑏 ′, 𝑎′) ← (⌊𝑃−1 · ¯𝑏⌉, ⌊𝑃−1 · 𝑎⌉) ∈ 𝑅2

𝑄̄

7 𝑏 ′ ← 𝑏 ′ + 𝑏
8 return (𝑏 ′, 𝑎′)

A.4 Graph-Theoretic Algorithms
An arborescence in a given directed graph is a directed subgraph

in which a single path exists on any node from a specific root node,

and a spanning arborescence is an arborescence having paths from

the root node to all nodes in the graph. The minimum spanning

tree problem is the problem of finding a spanning tree whose sum

of edge weights is minimum. This problem is also known to be

solved within polynomial time, and Edmonds’ algorithm is known

to solve this problem [12], shown in Algorithm 16.

A spanning tree in a given undirected graph is a subgraph in a

given graph such that all edges and all nodes are connected and

there is no cycle in the subgraph. The minimum spanning tree

problem is the problem of finding a spanning tree whose sum of

edge weights is minimum. There are many algorithms for this, but

we will use Prim’s algorithm [29] appropriate for the dense graph

in this paper because we deal with a complete graph, shown in

Algorithm 17.

Algorithm 16: Edmonds’ Algorithm[12]

Input: A directed graph 𝐺 = (𝑉 , 𝐸) with an edge weight

𝑤 (𝑒) for all 𝑒 ∈ 𝐸, the root node 𝑣𝑟 ∈ 𝑉
Output: A minimum spanning arborescence 𝐺 ′ = (𝑉 , 𝐸 ′)

from the root node 𝑣𝑟
1 Remove all edges to the root node 𝑣𝑟 from 𝐸

2 𝐸 ′ ← ∅
3 for 𝑣 ∈ 𝑉 \{𝑣𝑟 } do
4 𝜋 (𝑣) ← the node such that an edge (𝜋 (𝑣), 𝑣) ∈ 𝐸 has

the minimum weight among edges to 𝑣

5 𝐸 ′ ← 𝐸 ′ ∪ {(𝜋 (𝑣), 𝑣)}
6 end
7 if 𝐺 ′ = (𝑉 , 𝐸 ′) has no cycle then
8 return 𝐺 ′ = (𝑉 , 𝐸 ′)
9 else
10 𝐶 = (𝑉𝑐 , 𝐸𝑐 ) ← a cycle in 𝐺 ′

11 𝑉 ← (𝑉 \𝑉𝑐 ) ∪ {𝑣𝑐 } for new node 𝑣𝑐

12 𝐸 ← 𝐸\𝐸𝑐
13 for (𝑣1, 𝑣2) ∈ 𝐸 such that 𝑣1 ∈ 𝑉 \𝑉𝑐 , 𝑣2 ∈ 𝑉𝑐 do
14 Generate an edge (𝑣1, 𝑣𝑐 ) with a weight

𝑤 (𝑣1, 𝑣𝑐 ) = 𝑤 (𝑣1, 𝑣2) −𝑤 (𝜋 (𝑣2), 𝑣2)
15 𝐸 ← (𝐸\{(𝑣1, 𝑣2}) ∪ {(𝑣1, 𝑣𝑐 )}
16 end
17 for (𝑣1, 𝑣2) ∈ 𝐸 such that 𝑣1 ∈ 𝑉𝑐 , 𝑣2 ∈ 𝑉 \𝑉𝑐 do
18 if (𝑣𝑐 , 𝑣2) ∉ 𝐸 or𝑤 (𝑣𝑐 , 𝑣2) > 𝑤 (𝑣1, 𝑣2) then
19 Generate (or update) an edge (𝑣𝑐 , 𝑣2) with a

weight𝑤 (𝑣𝑐 , 𝑣2) = 𝑤 (𝑣1, 𝑣2)
20 𝐸 ← 𝐸\{(𝑣1, 𝑣2)} ∪ {(𝑣𝑐 , 𝑣2)}
21 end
22 end
23 𝐺 ′ = (𝑉 , 𝐸 ′) ←Edmonds’ algorithm for (𝑉 , 𝐸) with 𝑣𝑟

24 𝐸 ′ ← all edges in 𝐸 that correspond to edges in 𝐸 ′

25 𝑣𝑡 ← the node such that (𝑢, 𝑣𝑡 ) ∈ 𝐸 ′ corresponds to
(𝑢, 𝑣𝑐 ) ∈ 𝐸 ′

26 𝐸 ′ ← (𝐸 ′ ∪ 𝐸𝑐 )\{(𝜋 (𝑣𝑡 ), 𝑣𝑡 )}
27 return 𝐺 ′ ← (𝑉 , 𝐸 ′)
28 end

Algorithm 17: Prim’s Algorithm[29]

Input: An undirected graph 𝐺 = (𝑉 , 𝐸) with an edge

weight𝑤 (𝑒) for all 𝑒 ∈ 𝐸
Output: A minimum spanning tree 𝐺 ′ = (𝑉 , 𝐸 ′)

1 Initialize 𝐺 ′ = (𝑉 ′, 𝐸 ′), where 𝑉 ′ ← {𝑣}, 𝐸 ′ ← ∅ for

randomly selected 𝑣 ∈ 𝑉
2 while 𝑉 ′ ≠ 𝑉 do
3 𝐸 ← {(𝑣1, 𝑣2) |𝑣1 ∈ 𝑉 ′, 𝑣2 ∈ 𝑉 \𝑉 ′}
4 Find an edge 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸 having the minimum edge

weight among 𝐸

5 𝑉 ′ ← 𝑉 ′ ∪ {𝑣2}
6 𝐸 ′ ← 𝐸 ′ ∪ {𝑒}
7 end
8 return 𝐺 ′ = (𝑉 , 𝐸 ′)
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B PROOF OF THEOREM 3.1
To prove Theorem 3.1, we need the following three lemmas. After

proving the lemmas, we prove Theorem 3.1 using these lemmas.

Lemma B.1. For any positive numbers 𝑣0, · · · , 𝑣𝐿 and integer𝑚 ≥
1, let 𝛼𝑚 ( 𝑗) be the function defined as

𝛼𝑚 ( 𝑗) = min

0=𝑢0<𝑢1<· · ·<𝑢𝑚−1≤ 𝑗

{
max

{
𝑢1−1∑︁
𝑖=0

𝑣𝑖 ,

𝑢2−1∑︁
𝑖=𝑢1

𝑣𝑖 , · · · ,
𝑗∑︁

𝑖=𝑢𝑚−1

𝑣𝑖

}}
,

where we define min𝑖∈𝐼 𝑓 (𝑖) = ∞ for 𝐼 = ∅ and any function 𝑓 . Then,
𝛼𝑚 ( 𝑗) is a monotonously increasing function.

Proof. Assume that 𝛼 ( 𝑗) > 𝛼 ( 𝑗 + 1) for some positive numbers

(𝑣0, · · · , 𝑣𝐿),𝑚 ≥ 1, and 𝑗 . Let

𝑈 𝑗+1 = {𝑢 𝑗+1,0 = 0, 𝑢 𝑗+1,1, · · · , 𝑢 𝑗+1,𝑚−1}
be the set of indices minimizing the value

𝛽 𝑗+1 (𝑢0 = 0, 𝑢1, · · · , 𝑢𝑚−1) = max

{
𝑢1−1∑︁
𝑖=0

𝑣𝑖 ,

𝑢2−1∑︁
𝑖=𝑢1

𝑣𝑖 , · · · ,
𝑗+1∑︁

𝑖=𝑢𝑚−1

𝑣𝑖

}
.

If we replace the last term

∑𝑗+1
𝑖=𝑢𝑚−1

𝑣𝑖 with
∑𝑗
𝑖=𝑢𝑚−1

𝑣𝑖 , this mini-

mum value decreases as 𝑣𝑖 > 0, and thus we have 𝛼𝑚 ( 𝑗 + 1) ≥
𝛽 𝑗 (𝑢 𝑗+1,0 = 0, 𝑢 𝑗+1,1, · · · , 𝑢 𝑗+1,𝑚−1). Because of the definition of

𝛼𝑚 ( 𝑗), we also have 𝛽 𝑗 (𝑢 𝑗+1,0 = 0, 𝑢 𝑗+1,1, · · · , 𝑢 𝑗+1,𝑚−1) ≥ 𝑓 ( 𝑗).
Therefore, we have 𝛼𝑚 ( 𝑗) ≤ 𝛼𝑚 ( 𝑗 + 1), which contradicts the

assumption. □

Lemma B.2. Let 𝑓 , 𝑔 : Z ∩ [0, 𝐿] → Z+ be functions satisfying the
following conditions.

(1) 𝑓 (0) = 𝑔(𝐿) = 0.

(2) 𝑓 (𝐿), 𝑔(0) > 0.

(3) 𝑓 is a monotonously increasing function.
(4) 𝑔 is a strictly decreasing function.

Then, there is a value ℓ ∈ Z ∩ [0, 𝐿) such that 𝑓 (𝑛) ≤ 𝑔(𝑛) for 𝑛 in
[0, ℓ], 𝑓 (𝑛) > 𝑔(𝑛) for 𝑛 in [ℓ + 1, 𝐿], and min{𝑔(ℓ), 𝑓 (ℓ + 1)} is the
minimum value of ℎ(𝑛) = max{𝑓 (𝑛), 𝑔(𝑛)} in [0, 𝐿].

Proof. Let 𝑠 (𝑛) = 𝑔(𝑛) − 𝑓 (𝑛), and then 𝑠 (𝑛) is a strictly de-

creasing function. Since 𝑠 (0) > 0, 𝑠 (𝐿) < 0, there is an integer

ℓ ∈ Z ∩ [0, 𝐿) such that 𝑠 (ℓ) ≥ 0, 𝑠 (ℓ + 1) < 0. Since 𝑠 (𝑛) is a
strictly decreasing function, 𝑠 (𝑛) ≥ 𝑠 (ℓ) ≥ 0, 𝑓 (𝑛) ≤ 𝑔(𝑛) for
𝑛 ≤ ℓ , and 𝑠 (𝑛) ≤ 𝑠 (ℓ + 1) < 0, 𝑓 (𝑛) > 𝑔(𝑛) for 𝑛 ≥ ℓ + 1. Note

that ℎ(𝑛) = 𝑔(𝑛) for 𝑛 ≤ ℓ and ℎ(𝑛) = 𝑓 (𝑛) for 𝑛 ≥ ℓ + 1. Since

𝑔(𝑛) is strictly decreasing, ℎ(𝑛) is strictly decreasing in 𝑛 ≤ ℓ ,

and thus ℎ(𝑛) ≥ ℎ(ℓ) = 𝑔(ℓ). Since 𝑓 (𝑛) is monotonously in-

creasing, ℎ(𝑛) is monotonously increasing in 𝑛 ≥ ℓ + 1, and thus

ℎ(𝑛) ≥ ℎ(ℓ + 1) = 𝑓 (ℓ + 1). Therefore, min{𝑔(ℓ), 𝑓 (ℓ + 1)} is the
minimum value of ℎ(𝑛) = max{𝑓 (𝑛), 𝑔(𝑛)} in [0, 𝐿].

□

Lemma B.3. For positive numbers 𝑣0, · · · , 𝑣𝐿 and integer𝑚 > 1,
the function 𝛼𝑚 ( 𝑗) is defined as Lemma B.1. Then, the following
equation is satisfied as

𝛼𝑚 (𝐿) = min

0<𝑢≤𝐿

{
max

{
𝛼𝑚 (𝑢 − 1),

𝐿∑︁
𝑖=𝑢

𝑣𝑖

}}
.

Proof. Let 𝛼𝑚,𝑢 ( 𝑗) be defined as

𝛼𝑚,𝑢 ( 𝑗) = min

0<𝑢1<· · ·<𝑢𝑚−2<𝑢≤ 𝑗

{
max

{
𝑢1−1∑︁
𝑖=0

𝑣𝑖 ,

𝑢2−1∑︁
𝑖=𝑢1

𝑣𝑖 , · · · ,
𝑗∑︁

𝑖=𝑢

𝑣𝑖

}}
.

(2)

If a set𝐴 is decomposed into a union of disjoint sets𝐴𝑖 for index set 𝐼 ,

that is,𝐴 =
⊔

𝑖∈𝐼 𝐴𝑖 , we havemin𝑥 ∈𝐴 𝑓 (𝑥) = min𝑖∈𝐼 (min𝑥 ∈𝐴𝑖
𝑓 (𝑥)).

Since the following set formula holds

{(𝑢1, · · · , 𝑢𝑚−1) : 0 < 𝑢1 < · · · < 𝑢𝑚−1 ≤ 𝐿}

=

𝐿⊔
𝑢=1

{(𝑢1, · · · , 𝑢𝑚−2, 𝑢) : 0 < 𝑢1 < · · · < 𝑢𝑚−2 < 𝑢 ≤ 𝐿},

we have 𝛼𝑚 (𝐿) = min0≤𝑢≤𝐿 𝛼𝑚,𝑢 (𝐿). We want to show that for all

𝑢, 0 ≤ 𝑢 ≤ 𝐿, we have

𝛼𝑚,𝑢 (𝐿) = max

{
𝛼𝑚−1 (𝑢 − 1),

𝐿∑︁
𝑖=𝑢

𝑣𝑖

}
. (3)

If we fix𝑢 in (3), the term

∑𝐿
𝑖=𝑢 𝑣𝑖 in the right side of (3) is a constant.

We now consider the two cases; one case is when 𝛼𝑚−1 (𝑢 − 1) ≤∑𝐿
𝑖=𝑢 𝑣𝑖 , and the other case is when 𝛼𝑚−1 (𝑢 − 1) > ∑𝐿

𝑖=𝑢 𝑣𝑖 .

(1) 𝛼𝑚−1 (𝑢 − 1) ≤ ∑𝐿
𝑖=𝑢 𝑣𝑖 : For the left side of (3), we know

𝛼𝑚,𝑢 (𝐿) ≥
∑𝐿
𝑖=𝑢 𝑣𝑖 since the term in the min function in (2)

is always larger than

∑𝐿
𝑖=𝑢 𝑣𝑖 when 𝑗 = 𝐿. If 𝛼𝑚−1 (𝑢 − 1) ≤∑𝐿

𝑖=𝑢 𝑣𝑖 , there is an index set {𝑢0 = 0, 𝑢1, 𝑢2, · · · , 𝑢𝑚−2} such
that

max

{
𝑢1−1∑︁
𝑖=0

𝑣𝑖 ,

𝑢2−1∑︁
𝑖=𝑢1

𝑣𝑖 , · · · ,
𝑢−1∑︁

𝑖=𝑚−2

𝑣𝑖

}
≤

𝐿∑︁
𝑖=𝑢

𝑣𝑖 .

With this indices, the term in the min function in (2) is∑𝐿
𝑖=𝑢 𝑣𝑖 when 𝑗 = 𝐿. Thus,𝛼𝑚,𝑢 (𝐿) ≤

∑𝐿
𝑖=𝑢 , and thus𝛼𝑚,𝑢 (𝐿) =∑𝐿

𝑖=𝑢 . Since the right side of (3) is
∑𝐿
𝑖=𝑢 , (3) holds.

(2) 𝛼𝑚−1 (𝑢 − 1) > ∑𝐿
𝑖=𝑢 𝑣𝑖 : In this case, for all index sets {𝑢0 =

0, 𝑢1, · · · , 𝑢𝑚−2} such that 𝑢0 < 𝑢1 < · · · < 𝑢𝑚−2 ≤ 𝑢 − 1,

the following inequality holds

max

{
𝑢1−1∑︁
𝑖=0

𝑣𝑖 ,

𝑢2−1∑︁
𝑖=𝑢1

𝑣𝑖 , · · · ,
𝑢−1∑︁

𝑖=𝑚−2

𝑣𝑖

}
>

𝐿∑︁
𝑖=𝑢

𝑣𝑖 .

Then (2) for 𝑗 = 𝐿 holds even if we remove the last term∑𝐿
𝑖=𝑢 𝑣𝑖 , where the right term becomes exactly 𝛼𝑚−1 (𝑢 − 1).

Since the right side of (3) is 𝛼𝑚−1 (𝑢 − 1), (3) holds.
□

Theorem 3.1. Algorithm 2 outputs the list of indices 𝐼 = {𝑢0 =

0, 𝑢1, · · · , 𝑢dnum−1} such that 0 = 𝑢0 < 𝑢1 < · · · < 𝑢dnum−1 ≤ 𝐿 and
minimizes the following formula

max

{
𝑢1−1∑︁
𝑖=𝑢0

log𝑞𝑖 ,

𝑢2−1∑︁
𝑖=𝑢1

log𝑞𝑖 , · · · ,
𝐿∑︁

𝑖=𝑢dnum−1

log𝑞𝑖

}
.

Proof. We now prove Theorem 3.1 by induction with dnum.

(1) dnum = 1: The equality trivially holds.
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(2) dnum > 1: Assume that the equality holds for dnum − 1. If

we set 𝑣𝑖 = log𝑞𝑖 , 𝛼dnum−1 ( 𝑗) is a monotonously increasing

function. If we define 𝛾 ( 𝑗) = ∑𝐿
𝑖=𝑗+1 log𝑞𝑖 , 𝛾 ( 𝑗) is a strictly

decreasing function as 𝑣𝑖 > 0 for all 𝑖 . Since the function

𝛼dnum−1 and 𝛾 satisfy the conditions in Lemma B.2, there

is an integer ℓ ∈ Z ∩ [0, 𝐿) such that 𝛼dnum−1 (𝑛) ≤ 𝛾 (𝑛)
for 𝑛 ∈ [0, ℓ], 𝛼dnum−1 (𝑛) > 𝛾 (𝑛) for 𝑛 ∈ [ℓ + 1, 𝐿], and
the minimum value of ℎ(𝑛) = max{𝛼dnum−1 (𝑛), 𝛾 (𝑛)} is
min{𝛾 (ℓ), 𝛼dnum−1 (ℓ + 1)}.
If 𝑗 = 𝑗0 in line 4 of Algorithm 2 satisfies 𝛼dnum−1 ( 𝑗0) = 𝛾 ( 𝑗0),
we have 𝑗0 = ℓ , and the value 𝛼dnum−1 ( 𝑗0) = 𝛾 ( 𝑗0) is the
minimum value of ℎ(𝑛). If 𝛼dnum−1 ( 𝑗0) > 𝛾 ( 𝑗0), we have

𝑗0 ≥ ℓ + 1. We can find ℓ at the point when 𝛼dnum−1 ( 𝑗) ≤
𝛾 ( 𝑗) first holds as 𝑗 decreases from 𝑗0 by 1. Then, the value

min{𝛼dnum−1 (ℓ + 1), 𝛾 (ℓ)} is the minimum value of ℎ(𝑛). If
𝛼dnum−1 ( 𝑗0) < 𝛾 ( 𝑗0), we have 𝑗0 ≤ ℓ . We can find ℓ ′ = ℓ+1 at

the point when 𝛼dnum−1 ( 𝑗) > 𝛾 ( 𝑗) first holds as 𝑗 increases
from 𝑗0 by 1. Then, the value min{𝛼dnum−1 (ℓ ′), 𝛾 (ℓ ′ − 1)} =
min{𝛼dnum−1 (ℓ + 1), 𝛾 (ℓ)} is the minimum value of ℎ(𝑛).
For all cases, we can find the minimum value of ℎ(𝑛). This
minimum value is actually the minimum value of 𝑓 (𝑢0 =

0, · · · , 𝑢dnum−1) by Lemma B.3, which proves the theorem.

□

C PROOF OF THEOREM 3.2
Theorem 3.2. The output of Algorithm 4 is a valid Galois key for

the rotation operation for cyclic shift 𝑟 + 𝑟 ′.

Proof. We give the proof for ℓ ′ = ℓ + 1. The proof for ℓ ′ > ℓ + 1

is the same as the case of ℓ ′ = ℓ + 1 by Theorem A.1. A Galois key

gk(ℓ)𝑟 = {(𝑏 (ℓ)
𝑟,𝑖

, 𝑎
(ℓ)
𝑟,𝑖
)}𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅𝑄ℓ𝑃

2

ℓ
)hdnumℓ

for cyclic shift 𝑟 in the key level ℓ is valid if and only if

𝑏
(ℓ)
𝑟,𝑖
+ 𝑎 (ℓ)

𝑟,𝑖
· 𝑠 = 𝑃ℓ · 𝑄̂ℓ · [𝑄̂−1

ℓ ]𝑄ℓ
· 𝑠 (𝑋 5

𝑟

) + 𝑒 (ℓ)
𝑟,𝑖

for small errors 𝑒
(ℓ)
𝑟,𝑖

. If we perform

( ˜𝑏𝑟,𝑖 , 𝑎𝑟,𝑖 ) ← (𝑏 (ℓ)𝑟,𝑖
(𝑋 5

𝑟 ′
), 𝑎 (ℓ)

𝑟,𝑖
(𝑋 5

𝑟 ′
))

as in line 2 of Algorithm 4, we have

˜𝑏𝑟,𝑖 + 𝑎𝑟,𝑖 · 𝑠 (𝑋 5
𝑟 ′
) = 𝑏

(ℓ)
𝑟,𝑖
(𝑋 5

𝑟 ′
) + 𝑎 (ℓ)

𝑟,𝑖
(𝑋 5

𝑟 ′
) · 𝑠 (𝑋 5

𝑟 ′
)

= 𝑃ℓ · 𝑄̂ℓ · [𝑄̂−1

ℓ ]𝑄ℓ
· 𝑠 ((𝑋 5

𝑟 ′
)5

𝑟

) + 𝑒 (ℓ)
𝑟,𝑖
(𝑋 5

𝑟 ′
)

= 𝑃ℓ · 𝑄̂ℓ · [𝑄̂−1

ℓ ]𝑄ℓ
· 𝑠 (𝑋 5

𝑟+𝑟 ′
) + 𝑒 (ℓ)

𝑟,𝑖
(𝑋 5

𝑟 ′
) .

If we perform the key-switching operation to ( ˜𝑏𝑟,𝑖 , 𝑎𝑟,𝑖 ) from
𝑠 (𝑋 5

𝑟 ′ ) to 𝑠 (𝑋 ) as in line 3 of Algorithm 4, the output (𝑏 (ℓ)
𝑟+𝑟 ′,𝑖 , 𝑎

(ℓ)
𝑟+𝑟 ′,𝑖 )

satisfies

𝑏
(ℓ)
𝑟+𝑟 ′,𝑖 + 𝑎

(ℓ)
𝑟+𝑟 ′,𝑖 · 𝑠 = ˜𝑏𝑟,𝑖 + 𝑎𝑟,𝑖 · 𝑠 (𝑋 5

𝑟 ′
) + 𝑒 ′𝑟,𝑖

= 𝑃ℓ · 𝑄̂ℓ · [𝑄̂−1

ℓ ]𝑄ℓ
· 𝑠 (𝑋 5

𝑟+𝑟 ′
) + 𝑒 (ℓ)

𝑟,𝑖
(𝑋 5

𝑟 ′
) + 𝑒 ′𝑟,𝑖

for small errors 𝑒 ′
𝑟,𝑖

generated from the key-switching operation.

Since 𝑒
(ℓ)
𝑟,𝑖
(𝑋 5

𝑟 ′ ) + 𝑒 ′
𝑟,𝑖

is a small polynomial,

gk(ℓ)
𝑟+𝑟 ′ = {𝑏

(ℓ)
𝑟+𝑟 ′,𝑖 , 𝑎

(ℓ)
𝑟+𝑟 ′,𝑖 }𝑖=0,· · · ,hdnumℓ−1

is a valid Galois key for cyclic shift 𝑟 + 𝑟 ′ in the key level ℓ .

To use the Galois key gk(ℓ
′)

𝑟 ′ ∈ (𝑅2

𝑄ℓ′𝑃ℓ′
)hdnumℓ′ in this key-

switching operation, themodulus of the ciphertext to be key-switched

should be a divisor of 𝑄ℓ′ . Note that 𝑄ℓ = 𝑃ℓ−1𝑄ℓ−1 for all ℓ . If

the key level ℓ is less than ℓ ′, 𝑃ℓ𝑄ℓ is a divisor of 𝑄ℓ′ . Therefore,

( ˜𝑏𝑟,𝑖 , 𝑎𝑟,𝑖 ) can be key-switched by gk(ℓ
′)

𝑟 ′ .

□

D PROOF OF THEOREM 3.3
Theorem 3.3. The output of Algorithm 5 is a valid Galois key for

the rotation operation for cyclic shift 𝑟 .

Proof. We give the proof for ℓ ′ = ℓ + 1. The proof for ℓ ′ > ℓ + 1

is the same as the case of ℓ ′ = ℓ + 1 by Theorem A.1. A public key

(𝑏, 𝑎) ∈ 𝑅2

𝑄𝑘−1

is valid if and only if

𝑏 + 𝑎 · 𝑠 = 𝑒

for small 𝑒 ∈ 𝑅𝑄𝑘−1
. Note that ℓ is less than 𝑘 − 1, and 𝑃ℓ𝑄ℓ is a

divisor of 𝑄𝑘−1
. If we perform

(𝑏 ′, 𝑎′) ← ([𝑏 (𝑋 5
𝑟

)]𝑃ℓ𝑄ℓ
, [𝑎(𝑋 5

𝑟

)]𝑃ℓ𝑄ℓ
) ∈ 𝑅2

𝑃ℓ𝑄ℓ

as in line 1 of Algorithm 5, we have

𝑏 ′ + 𝑎′ · 𝑠 (𝑋 5
𝑟

) = 𝑏 (𝑋 5
𝑟

) + 𝑎(𝑋 5
𝑟

) · 𝑠 (𝑋 5
𝑟

) = 𝑒 (𝑋 5
𝑟

) ∈ 𝑅𝑃ℓ𝑄ℓ
.

If we decompose 𝑎′ into a vector (𝑎0, · · · , 𝑎hdnumℓ′−1) ∈ 𝑅
hdnumℓ′
𝑃ℓ′𝑄ℓ′

usingModUp opeation, we have 𝑎 𝑗 = [𝑎′]𝑄ℓ′, 𝑗 +𝑄ℓ′, 𝑗 · 𝑒 𝑗 for small

𝑒 𝑗 ’s, rather than [𝑎′]𝑄ℓ′, 𝑗 . The reason for this is the fast basis con-

version technique [2], which omits the modular reduction by the

product of moduli in the CRT merge process to remove the need

for transforming to non-RNS representation.

On the other hand, the Galois key

gk(ℓ
′)

𝑟 = {𝑏 (ℓ
′)

𝑟, 𝑗
, 𝑎
(ℓ′)
𝑟,𝑗
} 𝑗=0,· · · ,hdnumℓ′−1 ∈ (𝑅2

𝑄ℓ′𝑃ℓ′
)hdnumℓ′

for cyclic shift 𝑟 in the key level ℓ ′ satisfies

𝑏
(ℓ′)
𝑟,𝑗
+ 𝑎 (ℓ

′)
𝑟,𝑗
· 𝑠 = 𝑃ℓ′ · 𝑄̂ℓ′, 𝑗 · [𝑄̂−1

ℓ′, 𝑗 ]𝑄ℓ′, 𝑗 · 𝑠 (𝑋
5
𝑟

) + 𝑒 (ℓ
′)

𝑟,𝑗

for small errors 𝑒
(ℓ′)
𝑟,𝑗

. lines 4-7 compute

hdnumℓ′−1∑︁
𝑗=0

(𝑎 𝑗 + [𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 ) · (𝑏

(ℓ′)
𝑟,𝑗

, 𝑎
(ℓ′)
𝑟, 𝑗
) ∈ 𝑅2

𝑄ℓ′𝑃ℓ′
,

whichwe denote as ( ¯𝑏 (ℓ)
𝑟,𝑖

, 𝑎
(ℓ)
𝑟,𝑖
). The term𝑎 𝑗+[𝑃ℓ ·𝑄̂ℓ,𝑖 ·[𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗

can be arranged as

𝑎 𝑗 + [𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗

=[𝑎′]𝑄ℓ′, 𝑗 +𝑄ℓ′, 𝑗 · 𝑒 𝑗 + [𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗

=[𝑎′ + 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 +𝑄ℓ′, 𝑗 · 𝑒 ′𝑖, 𝑗 +𝑄ℓ′, 𝑗 · 𝑒 𝑗

=[𝑎′ + 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 +𝑄ℓ′, 𝑗 · (𝑒 ′𝑖, 𝑗 + 𝑒 𝑗 ),

where𝑄ℓ′, 𝑗 ·𝑒 ′𝑖, 𝑗 denotes the difference between [𝑎
′]𝑄ℓ′, 𝑗 + [𝑃ℓ ·𝑄̂ℓ,𝑖 ·

[𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 and [𝑎

′+𝑃ℓ ·𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 . The difference oc-

curs because these operations are performed in 𝑅𝑃ℓ′𝑄ℓ′ , rather than

𝑅𝑄ℓ′, 𝑗 . Since [𝑎
′]𝑄ℓ′, 𝑗 and [𝑃ℓ ·𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 are positive inte-

ger polynomials less than𝑄ℓ′, 𝑗 , [𝑎′]𝑄ℓ′, 𝑗 + [𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗

is a positive integer polynomial less than 2𝑄ℓ′, 𝑗 . The polynomial
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[𝑎′ + 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 is a positive integer polynomial less

than𝑄ℓ′, 𝑗 , and [𝑎′]𝑄ℓ′, 𝑗 + [𝑃ℓ ·𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 and [𝑎

′+𝑃ℓ ·𝑄̂ℓ,𝑖 ·
[𝑄̂−1

ℓ,𝑖
]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 are the same in modulo 𝑄ℓ′, 𝑗 . Thus, the difference

is the multiple of 𝑄ℓ′, 𝑗 so that it has the form of 𝑄ℓ′, 𝑗 · 𝑒 ′𝑖, 𝑗 , and 𝑒
′
𝑖, 𝑗

is polynomials having zero or one as its coefficients.

If we compute
¯𝑏
(ℓ)
𝑟,𝑖
+ 𝑎 (ℓ)

𝑟,𝑖
· 𝑠 , we have

¯𝑏
(ℓ)
𝑟,𝑖
+ 𝑎 (ℓ)

𝑟,𝑖
· 𝑠

=

hdnumℓ′−1∑︁
𝑗=0

(𝑎 𝑗 + [𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 ) · (𝑏

(ℓ′)
𝑟,𝑗
+ 𝑎 (ℓ

′)
𝑟,𝑗
· 𝑠)

=

hdnumℓ′−1∑︁
𝑗=0

( [𝑎′ + 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 +𝑄ℓ′, 𝑗 · (𝑒 ′𝑖, 𝑗 + 𝑒 𝑗 ))·

(𝑃ℓ′ · 𝑄̂ℓ′, 𝑗 · [𝑄̂−1

ℓ′, 𝑗 ]𝑄ℓ′, 𝑗 · 𝑠 (𝑋
5
𝑟

) + 𝑒 (ℓ
′)

𝑟, 𝑗
)

= 𝑃ℓ′ ·
( hdnumℓ′−1∑︁

𝑗=0

[𝑎′ + 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗

· 𝑄̂ℓ′, 𝑗 · [𝑄̂−1

ℓ′, 𝑗 ]𝑄ℓ′, 𝑗 · 𝑠 (𝑋
5
𝑟

)
)

+ ([𝑎′ + 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
]𝑄ℓ′, 𝑗 +𝑄ℓ′, 𝑗 · (𝑒 ′𝑖, 𝑗 + 𝑒 𝑗 )) · 𝑒

(ℓ′)
𝑟, 𝑗

= 𝑃ℓ′ · (𝑎′ + 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
) · 𝑠 (𝑋 5

𝑟

) + 𝐸𝑖, 𝑗
= 𝑃ℓ′ · (−𝑏 ′ + 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
· 𝑠 (𝑋 5

𝑟

) + 𝑒 (𝑋 5
𝑟

)) + 𝐸𝑖, 𝑗 ,

where 𝐸𝑖, 𝑗 denotes the remaining error term.

If we performModDown operation to ( ¯𝑏 (ℓ)
𝑟,𝑖

, 𝑎
(ℓ)
𝑟,𝑖
) to divide the

terms and the modulus by 𝑃ℓ′ and add (𝑏 ′, 0), which we denotes

(𝑏 (ℓ)
𝑟,𝑖

, 𝑎
(ℓ)
𝑟,𝑖
), we have

𝑏
(ℓ)
𝑟,𝑖
+ 𝑎 (ℓ)

𝑟,𝑖
· 𝑠

= 𝑃ℓ · 𝑄̂ℓ,𝑖 · [𝑄̂−1

ℓ,𝑖 ]𝑄ℓ,𝑖
· 𝑠 (𝑋 5

𝑟

) + 𝑒 (𝑋 5
𝑟

) + ⌊𝑃−1

ℓ′ · 𝐸𝑖, 𝑗 ⌉ .

Since we choose 𝑃ℓ′ as larger than𝑄ℓ′, 𝑗 for all 𝑗 , the term ⌊𝑃−1

ℓ′ ·𝐸𝑖, 𝑗 ⌉
is only small error. Thus,

gk(ℓ)𝑟 = {𝑏 (ℓ)
𝑟,𝑖

, 𝑎
(ℓ)
𝑟,𝑖
}𝑖=0,· · · ,hdnumℓ−1 ∈ (𝑅2

𝑄ℓ𝑃ℓ
)hdnumℓ

is a valid Galois key for cyclic shift 𝑟 in the key level ℓ .

□

E TOY EXAMPLE OF GALOIS KEY GRAPH
To help understanding the graph-theoretic algorithms for Galois

key generation in Section 4, we depict the corresponding graph

and the minimum spanning tree for Tℓ = {1, 13, 16, 17, 19} and
Uℓ = {±1,±2,±4,±8,±16} in Figure 2.

F REQUIRED GALOIS KEYS FOR RESNET
MODELS

The set of cyclic shifts required to perform the ResNet-20 for the

CIFAR-10 dataset is enumerated as follows.

• T ResNet−20
0

= {1, -1, 2, -2, 3, 4, -4, 5, 6, 7, 8, -8, 9, 12, 16, -16,

18, 27, 28, 32, -32, 36, 45, 48, 54, 56, 63, 64, -64, 72, 80, 84,

96, -96, 112, 128, -128, 192, 256, 384, 512, 768, 959, 960, 990,

0
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Figure 2: Galois key graph for Tℓ = {1, 13, 16, 17, 19} andUℓ =

{±1,±2,±4,±8,±16}.

991, -994, 1008, 1023, 1024, -1024, -1025, 1036, -1056, 1064,

-1088, 1092, -1120, 1536, 1952, 1982, 1983, 2016, 2044, 2047,

2048, -2048, 2072, 2078, -2080, 2100, -2112, -2144, 3007, 3024,

3040, 3052, 3070, 3071, 3072, -3072, 3080, -3104, 3108, -3136,

-3168, 3840, 3904, 3968, 4031, 4032, 4062, 4063, 4080, 4084,

4088, 4092, 4095, 4096, -4096, 4104, -4128, -4131, -4195, 5023,

5024, 5054, 5055, 5087, 5118, 5119, 5120, -5120, -5152, -5155,

-5219, 6047, 6078, 6079, 6111, 6112, 6142, 6143, 6144, -6144,

-6176, -6179, -6243, 7071, 7102, 7103, 7135, 7166, 7167, 7168,

-7168, -7200, -7203, -7267, 7936, 8000, 8064, 8095, 8126, 8127,

8128, 8159, 8176, 8180, 8184, 8188, 8190, 8191, 8192, -8192,

-8195, 8200, -8225, -8226, -8227, -8259, -8290, -8291, 9149,

9183, 9184, 9213, 9215, 9216, -9219, -9249, -9250, -9251, -9283,

-9314, -9315, 10173, 10207, 10208, 10237, 10239, 10240, -10240,

-10243, -10273, -10274, -10275, -10307, -10338, -10339, 11197,

11231, 11232, 11261, 11263, 11264, -11264, -11267, -11297,

-11298, -11299, -11331, -11362, -11363, 12221, 12255, 12256,

12285, 12287, 12288, -12288, -12321, -12385, 13214, 13216,

13246, 13278, 13279, 13280, 13310, 13311, 13312, -13345, -

13409, 14238, 14240, 14270, 14302, 14303, 14304, 14334, 14335,

14336, -14336, -14369, -14433, 15262, 15264, 15294, 15326,

15327, 15328, 15358, 15359, 15360, -15393, -15457, 15872,

16000, 16128, 16256, 16286, 16288, 16318, 16350, 16351, 16352,

16368, 16372, 16376, -16376, 16380, 16382, 16383, 16384}

The set of cyclic shifts required to perform the ResNet-18 for the

ImageNet dataset is enumerated as follows.

• T ResNet−18
0

= {1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 7, -7, 8, -8,

-9, -10, -11, -12, -13, -14, -15, 16, -16, -17, -18, -19, -20, -21,

-22, -23, 24, -24, -25, -26, -27, -28, -29, -30, -31, 32, -32, 39, 64,

78, 96, 117, 128, 156, 160, 192, 195, 221, 222, 224, -224, -225,

-226, -227, -228, -229, -230, -231, -232, -233, 234, -234, -235,
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-236, -237, -238, -239, -240, -241, -242, -243, -244, -245, -246,

-247, -248, -249, -250, -251, -252, -253, -254, -255, 256, -256,

273, 312, 351, 384, 390, 429, 445, 448, -448, -449, -450, -451,

-452, -453, -454, -455, -456, -457, -458, -459, -460, -461, -462,

-463, -464, -465, -466, -467, 468, -468, -469, -470, -471, -472,

-473, -474, -475, -476, -477, -478, -479, 507, 512, -512, 546, 576,

585, 624, 663, 669, -672, -673, -674, -675, -676, -677, -678, -679,

-680, -681, -682, -683, -684, -685, -686, -687, -688, -689, -690,

-691, -692, -693, -694, -695, -696, -697, -698, -699, -700, -701,

702, -702, -703, 741, 768, -768, 780, 819, 858, 896, -896, 897,

-897, -898, -899, -900, -901, -902, -903, -904, -905, -906, -907,

-908, -909, -910, -911, -912, -913, -914, -915, -916, -917, -918,

-919, -920, -921, -922, -923, -924, -925, -926, -927, 936, 960, 975,

-999, 1014, 1024, -1024, 1053, 1092, -1120, -1121, -1122, -1123,

-1124, -1125, -1126, -1127, -1128, -1129, -1130, 1131, -1131,

-1132, -1133, -1134, -1135, -1136, -1137, -1138, -1139, -1140,

-1141, -1142, -1143, -1144, -1145, -1146, -1147, -1148, -1149,

-1150, -1151, 1152, 1170, 1209, 1248, 1287, 1326, 1344, -1344,

-1345, -1346, -1347, -1348, -1349, -1350, -1351, -1352, -1353,

-1354, -1355, -1356, -1357, -1358, -1359, -1360, -1361, -1362,

-1363, -1364, 1365, -1365, -1366, -1367, -1368, -1369, -1370,

-1371, -1372, -1373, -1374, -1375, 1404, 1443, 1482, 1536, -1568,

-1569, -1570, -1571, -1572, -1573, -1574, -1575, -1576, -1577,

-1578, -1579, -1580, -1581, -1582, -1583, -1584, -1585, -1586,

-1587, -1588, -1589, -1590, -1591, -1592, -1593, -1594, -1595,

-1596, -1597, -1598, -1599, 1728, 1792, -1792, -1793, -1794, -

1795, -1796, -1797, -1798, -1799, -1800, -1801, -1802, -1803,

-1804, -1805, -1806, -1807, -1808, -1809, -1810, -1811, -1812,

-1813, -1814, -1815, -1816, -1817, -1818, -1819, -1820, -1821,

-1822, -1823, 1920, -2016, -2017, -2018, -2019, -2020, -2021,

-2022, -2023, -2024, -2025, -2026, -2027, -2028, -2029, -2030,

-2031, -2032, -2033, -2034, -2035, -2036, -2037, -2038, -2039,

-2040, -2041, -2042, -2043, -2044, -2045, -2046, -2047, 2048,

2112, -2240, -2241, -2242, -2243, -2244, -2245, -2246, -2247,

-2248, -2249, -2250, -2251, -2252, -2253, -2254, -2255, -2256,

-2257, -2258, -2259, -2260, -2261, -2262, -2263, -2264, -2265,

-2266, -2267, -2268, -2269, -2270, -2271, 2304, -2464, -2465,

-2466, -2467, -2468, -2469, -2470, -2471, -2472, -2473, -2474,

-2475, -2476, -2477, -2478, -2479, -2480, -2481, -2482, -2483,

-2484, -2485, -2486, -2487, -2488, -2489, -2490, -2491, -2492,

-2493, -2494, -2495, 2496, 2688, -2688, -2689, -2690, -2691, -

2692, -2693, -2694, -2695, -2696, -2697, -2698, -2699, -2700,

-2701, -2702, -2703, -2704, -2705, -2706, -2707, -2708, -2709,

-2710, -2711, -2712, -2713, -2714, -2715, -2716, -2717, -2718,

-2719, 2880, -2912, -2913, -2914, -2915, -2916, -2917, -2918,

-2919, -2920, -2921, -2922, -2923, -2924, -2925, -2926, -2927,

-2928, -2929, -2930, -2931, -2932, -2933, -2934, -2935, -2936,

-2937, -2938, -2939, -2940, -2941, -2942, -2943, 3072, -3136,

-3137, -3138, -3139, -3140, -3141, -3142, -3143, -3144, -3145,

-3146, -3147, -3148, -3149, -3150, -3151, -3152, -3153, -3154,

-3155, -3156, -3157, -3158, -3159, -3160, -3161, -3162, -3163,

-3164, -3165, -3166, -3167, -3360, -3361, -3362, -3363, -3364,

-3365, -3366, -3367, -3368, -3369, -3370, -3371, -3372, -3373,

-3374, -3375, -3376, -3377, -3378, -3379, -3380, -3381, -3382,

-3383, -3384, -3385, -3386, -3387, -3388, -3389, -3390, -3391,

3584, -3584, 4096, 5120, 6144, 7168, -7168, 8192, -8192, 14336,

16384, -16384, 21504, -22528, 24576, -24576, 28672, -29696,

32768}
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