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Abstract. Due to the complexity and the cost of producing integrated
circuits, most hardware circuit designers outsource the manufacturing of
their circuits to a third-party foundry. However, a dishonest foundry may
abuse its access to the circuit’s design in a variety of ways that undermine
the designer’s investment or potentially introduce vulnerabilities.
To combat these issues, the hardware community has developed the no-
tion of logic locking, which allows the designer to send the foundry a
“locked” version of the original circuit. After the locked circuit has been
manufactured, authorized users can unlock the original functionality with
a secret key.
Unfortunately, most logic locking schemes are analyzed using informal
security notions, leading to a cycle of attacks and ad hoc defenses that
impedes the adoption of logic locking.
In this work, we propose a formal simulation-based security definition for
logic locking. We then show that a construction based on universal cir-
cuits provably satisfies the definition. More importantly, we explore ways
to efficiently realize our construction in actual hardware. This entails the
design of alternate approaches and optimizations, and our evaluation
(based on standard hardware metrics like power, area, and performance)
illuminates tradeoffs between these designs.

1 Introduction

While general-purpose CPUs are perhaps the best known computing devices, a
growing share of computation now takes place on application-specific integrated
circuits (ASICs) [14]. Compared to a general-purpose CPU, an ASIC can improve
performance and reduce energy usage by orders of magnitude. For example,
Magaki et al. show ASICs outperforming CPUs in energy effiency by 4676×,
685×, and 8516×, for Bitcoin, Litecoin, and video transcoding respectively [23].

However, manufacturing such ASICs is an increasingly difficult and expensive
process [35, 39], and major hardware design houses now save money by outsourc-
ing manufacturing to external foundries. Such outsourcing introduces new risks,
since the foundry naturally sees the full details of the design, including the netlist
(a description of the hardware nodes and their connectivity) and physical lay-
out information. An unscrupulous foundry can use this information to steal the
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designer’s clever insights, to produce more ASICs than requested (selling the
extras illicitly), or to modify the circuit to, e.g., insert a hardware Trojan. These
threats undermine the security of the hardware supply chain [15, 29] and the
significant cost associated with developing digital circuits [20].

Of the many solutions the hardware community has explored, one of the
most prominent is logic locking [30]. Informally, the design house applies an al-
gorithm that takes in the design’s original circuit along with a secret key and
produces a “locked” circuit, which is provided to the foundry. Intuitively, the
foundry can manufacture the locked circuit but should learn nothing about the
original one, preventing design theft and making overproduction useless. When
the designer receives the manufactured circuit from the foundry, they connect
it to memory containing the key and apply standard tamper-proofing to the
combined device. With the key present, the device provides the same function-
ality as the original circuit, but the tamper-proof enclosure prevents an end-user
from reverse-engineering the design. Note that the use of a symmetric key dis-
tinguishes this setting from traditional work on cryptographic obfuscation [4],
opening up new opportunities not possible in that more stringent setting.

Since logic locking’s inception [30], a series of proposed schemes and attacks
on those schemes have followed a pattern familiar from pre-modern cryptography.
For example, early logic-locking constructions inserted XOR/XNOR gates at
random locations in the circuit, with one input from the secret key and one
input from the original circuit’s wire [30, 28]. Using the correct key restores
the original functionality, while incorrect key bits flip the corresponding wire
value. Later proposals based on inserting AND/OR gates [13] or multiplexers [27]
followed a similar approach. All provided heuristic arguments about the difficulty
of determining the correct key, given only the locked circuit. In 2015, however,
Subramanyan et al. [33] introduced a powerful new attack that broke all of
these schemes. Subsequent schemes focused on protecting against this particular
attack, and in turn fell victim to new attacks. As we discuss in §2.3, a few
attempts were made to introduce more formal definitions of security, but these
definitions were either too strict to be achievable, or too weak to rule out obvious
attacks.

In this work, to break the cycle of ad hoc designs for logic locking, we provide
a new simulation-based security definition. Our definition intuitively matches the
security expected for logic locking, and importantly, we show by construction
that the definition can be satisfied.

Our construction is based on a well-known cryptographic primitive – uni-
versal circuits. Introduced by Valiant [37], informally, a universal circuit can be
programmed to evaluate any circuit up to a given size. As we formally prove, a
universal circuit can be used as a secure locked circuit. The proof is straightfor-
ward, but it leaves open the question of how to most efficiently instantiate the
scheme in practice.

As we show in §6, directly manufacturing an ASIC that executes Valiant’s
universal circuit construction imposes significant power, area, and performance
overheads relative to the original circuit. Hence, we explore the use of embedded
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field-programmable gate arrays (e-FPGAs) [1]. An e-FPGA is integrated into
an ASIC where certain logic blocks and the connections between them can be
dynamically programmed after manufacturing. Note that e-FPGAs allow the
ASIC system to retain most of the power and efficiency gains provided by ASICs,
which sets them apart from standard FPGAs. e-FGPAs also benefit from decades
of research and tool development focused on improving their efficiency.

While it is tempting to think that an eFPGA with N programmable logic
blocks is a universal circuit for circuits of size N , physical restrictions on the con-
nections between the programmable logic blocks make this unlikely (§5.2). How-
ever, we prove that Valiant’s universal circuit construction [37] can be mapped
onto an eFPGA, despite its constraints, showing that an eFPGA, when properly
configured, can be treated as universal. We then discuss ways to optimize the
number of programmable logic blocks used in the mapping.

Since the mapping above is an indirect route to universality, as a second ap-
proach, we design a direct solution, topological logic locking, which directly maps
any circuit with a given number of inputs, outputs, and gates to an eFPGA
structure. Unlike our mapping of Valiant’s UC construction, our topological con-
struction applies even to standard eFPGA designs, which only allow a constant
number of connections between each logic block.

As we discover, in both constructions, by increasing the number of connec-
tions between the logic blocks, we can reduce the number of logic blocks needed
for the mapping. Hence either construction can be optimized for number of con-
nections or number of logic blocks.

In summary, we make the following contributions. We:

– Introduce a formal simulation-based security notion for logic-locking schemes.
– Connect the hardware community’s logic-locking problem to universal cir-

cuits, a topic with a rich history in the cryptographic community. We prove
that universal circuits satisfy our security definition for logic locking.

– Show that Valiant’s universal circuit can be mapped onto a eFPGA, and
thus such eFPGAs can be used as a provably secure logic-locking solution.

– Propose topological logic locking – a (more direct) eFPGA-based construc-
tion which can be programmed to implement any circuit up to a given size.

– Evaluate our proposals, as well as straw-man solutions, in terms of standard
power, area and performance metrics.

2 Defining Logic Locking

We begin with an informal description of logic locking. Next, we formally intro-
duce the syntax of a logic locking scheme, as well as a basic correctness definition.
We then discuss the limitations of previous notions of security. Finally, we pro-
pose our own definition for the security of logic locking.

2.1 Problem Overview

With the rise of outsourced hardware manufacturing, a (simplified) circuit fabri-
cation chain typically looks as follows. A Design House spends years developing
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and optimizing a circuit design. They send the circuit design to the Foundry
which manufactures the physical chip and sends it to the design house. The
design house packages the chip into a device and sells the device to the End
User.

Logic locking aims to secure the outsourcing process outlined above by hiding
the circuit’s design from a malicious foundry. Simultaneously, it ensures that
a legitimate end user is able to execute the circuit on arbitrary inputs. Such
functionality is typically implemented by modifying the circuit (the modified
circuit is called a locked circuit) and introducing additional key inputs. Given
the correct key and a normal input, the locked circuit produces the same output
as the original circuit. Without the correct key, the hope is that the locked circuit
does not reveal any information about the original one.

In the following, we assume that the design house is trusted and that the
foundry is untrusted. We assume an honest-but-curious foundry, since a fully
malicious foundry can always insert a Trojan that leaks the secret key when
activated [17], and foolproof prevention or detection of hardware Trojans remains
an open problem. Finally, we assume that the end user is untrusted, but has
limited capabilities. In particular, we assume that the final device, which contains
the manufactured circuit and key, is physically protected against, e.g., probing
or tampering attacks.

2.2 Syntax and Correctness

We now introduce the logic locking syntax. As mentioned above, logic locking
transforms an original circuit co : I → O into a locked circuit ce : I ×K → O by
adding a new key input k ∈ K. The original circuit co may be combinational
(stateless) or sequential (stateful). However, note that a sequential circuit can
be split into combinational blocks, where in addition to the input, each circuit
block takes in the current state, and produces not only the output itself (if any),
but also the new state. Such combinational function blocks can then be executed
one after the other (using memory to buffer the states) and locked separately.
Thus for simplicity we will focus on combinational circuits.

A combinational circuit can be thought of as a Directed Acyclic Graph
(DAG), where each node represents a gate. We take the following syntax for
combinational logic locking on DAG circuit families verbatim from Shamsi et
al. [31]:

Definition 1 (Combinational logic locking [31]). A combinational logic
locking scheme for a family of stateless DAG circuits {Cλ} is a probabilistic
polynomial time (PPT) algorithm Lock that takes a security parameter λ and
an original circuit co ∈ {Cλ}, and returns a key k∗ and a locked combinational
circuit ce, such that the following holds:

– `Added key inputs. We have co : I → O, I = Fn2 , O = Fm2 , ce : K×I → O,
and K = F`2.

– Correctness under correct key. We have ∀i ∈ I, ce(k∗, i) = co(i).
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– Polynomial overhead. We have size(ce) ≤ poly(size(co)) and depth(ce) ≤
poly(depth(co)).

We additionally define the following property restricting the key size of a
logic locking scheme, which may be needed if the size of the device’s tamper-
proof memory is limited.

– Polynomial key size. We have ` = poly(λ).

2.3 Limitations of Previous Security Notions

As context, we briefly review prior notions of security, highlighting their strengths
and weaknesses.

Since the foundry is untrusted, all security definitions assume that the design
of the locked circuit is known to the adversary. However, they differ in whether
the adversary also has access to an end-user device. Those that assume such
access are known as oracle-guided attacks, while those without are oracle-less.

Ad Hoc Notions For over a decade, the hardware community evaluated the
security of logic locking designs based on their resilience against brute force
attacks. Later, this was expanded to include resilience against more advanced
attacks, e.g., SAT attacks [34]. A SAT attack uses oracle access to produce input-
output pairs, which are in turn used to rule out keys that do not produce the
same pairs in the locked circuit. A scheme was considered secure if such attacks
required time exponential in the key size.

While resistance to SAT attacks is, of course, necessary, it is by no means
sufficient. For example, while running the attack to completion may be infeasible,
intermediate results may produce keys that are functionally close to the original
design. In this case, the adversary need not complete the attack, but rather run
until the keys produced exhibit low enough error rates.

Multiple works have attempted to use various circuit parameters of locked
design to quantify security under oracle-less attacks. For example, output cor-
ruption [32] measures the likelihood across all keys and inputs that a locked
circuit produces an incorrect answer. However, it is entirely possible that the
adversary is interested in the outputs of the circuit only on some application-
specific inputs. Furthermore, output corruptibility can be maximized by simply
inverting the output bits of the original circuit, and yet such a “locked” circuit
would leak the entire original design. Other metrics, such as key sensitivity [36]
and structural and functional secrecy factors [38] can expose vulnerabilities in
specific locking schemes, but they do not provide a connection to the ultimate
security of the scheme.

Formal Notions In the past few years, a few formal notions of security have
been introduced. For example, Shamsi et al. [31] propose the following security
definitions, where OG corresponds to oracle-guided attacks, and OL to oracle-less
attacks. An ε-approximation of a function f is some function f ′ that disagrees
with f on at most an ε fraction of the input space.
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Definition 2. (Approximate Functional Secrecy (AFS) [31]). The adversary A
has ce, makes up to q chosen input queries to co, and then must return an ε-
approximation of co. We say that a scheme is (t, q, ε, σ)-AFS-OG secure if the
advantage of any A bounded by t operations is no more than σ better than the
advantage of the adversary A that makes q queries to co and randomly guesses
the remaining 2n − q truth-table entries. As for OL attackers, (t, ε, σ)-AFS-OL ≡
(t, 0, ε, σ)-AFS-OG.

Definition 3. (Best-Possible Approximate Functional Secrecy
(BPAFS) [31]). The adversary A has ce, makes up to q chosen input queries to
co, and then must return an ε-approximation of co. We say that a a scheme is
(t, q, ε, σ)-BPAFS-OG secure if the advantage of any A bounded by t operations
is no more than σ better than the advantage of any adversary A′ that tries to
learn the blackbox co with a priori knowledge that depth(co) ≤ depth(ce) and
size(co) ≤ size(ce) through q queries. * For oracle-less attackers (t, ε, σ)-BPAFS-
OL ≡ (t, 0, ε, σ)-BPAFS-OL.

Similar notions have also been proposed by Chhotaray and Shrimpton [11],
as well as by Di Crescenzo et al. [12].

Discussion Unfortunately, all of the definitions outlined above are somewhat
flawed. For example, as pointed out by Shamsi et al. [31], for some circuit fam-
ilies, AFS-OG is impossible to achieve with an exponentially small adversarial
advantage.

More importantly, the intuitive goal of logic locking is that the locked circuit
reveals no new information about the original circuit to the adversary. Unfortu-
nately, the definitions outlined above fail to capture this idea – an adversary who
can obtain some non-trivial information about co (e.g., the last bit of the output
for every possible input) but who cannot obtain a representation approximately
equivalent to co never wins, and thus a scheme which is secure according to this
definition might in fact leak information about the original circuit.

2.4 Our Definition of Logic-Locking Security

We now propose our definition of security for logic locking. It is a standard (for
the cryptographic community) simulation-based notion. The intuition behind
this definition is that having access to the locked circuit does not provide any
additional information about the original circuit. In other words, everything the
adversary can compute using the locked circuit and oracle access to the original
circuit is computable using only oracle access to the original circuit plus any
“allowed” leaked information (such as the number of inputs or gates in the
original circuit).

Given a family of stateless DAG circuits Cλ, denote the allowed leakage
function by L : Cλ → Fll2 , where ll denotes the length of the leakage. Then, logic
locking security can be formally defined as follows.

*As the authors note, A′ should be understood as the “strongest learner” of the
black-box co.
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Definition 4. Simulation Security. For any PPT adversary A that has ac-
cess to ce = Lock(λ, co) and is able to make q queries to the oracle Oq,co for co,
there exists a PPT simulator S that is able to make to q queries to the oracle
Oq,co , such that the following holds

AOq,co (1λ, ce, L(co)) ≈c SOq,co (1λ, L(co)),

where X ≈c Y denotes that X and Y are computationally indistinguishable.

Note Concurrent and independent work by Beerel et al. [5] recently appeared.
Like us, they propose a simulation-based security definition and suggest instan-
tiating it with a universal circuit. In contrast to our work, however, they do not
explore how a universal circuit can be efficiently instantiated in hardware.

3 Building Blocks

We briefly discuss the two main building blocks in our construction (§4). One
(universal circuits) comes from the cryptographic community, while the other
(eFPGAs) comes from the hardware community.

3.1 Background - Universal Circuits

We can represent any computable function f(·) as a Boolean circuit [26] with n
input bits and m output bits. Given an input x to f(·), the corresponding input
bits to the circuit are x = (x1, . . . , xn), and likewise for the function’s output.
Valiant introduced the notion of a universal circuit (UC) [37] that, informally,
takes as input both a description of a circuit and an input to that circuit, and
then simulates the application of the circuit to the input.

We formalize a UC using a more modern definition from Zhao et al. [40].

Definition 5. A circuit UCn,ms is called a universal circuit, if for any circuit
with n inputs, m outputs, and size (in gates) up to s (denoted by Cn,ms ), there
exists a set of program bits p ∈ {0, 1}l such that UCn,ms can be programmed to
realize Cn,ms , i.e., ∀x ∈ {0, 1}n, UCn,ms (p, x) = Cn,ms (x).

For presentation purposes, we explicitly define the algorithms for generating
the UC and for generating a circuit’s program bits p.

– ConstructUC(n,m, s) → UCn,ms : Given n, m, and s produces a universal
circuit for a family {Cn,ms }.

– ProduceProgram(n,m, s, C)→ p: Given n, m, s, and a circuit C ∈ {Cn,ms },
produces a set of program bits p such that for any x ∈ {0, 1}n : UCn,ms (p, x) =
C(x).

In introducing the notion of a UC, Valiant also provided a construction that
uses O(s log s) gates to simulate circuits in {Cn,ms }, and he proved that this
construction is asymptotically optimal [37]. Subsequent work has improved on
the constants in the construction [22, 18, 40].

Because one of our solutions depends on Valiant’s construction, we briefly
summarize it below.
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Valiant’s Universal Circuit Recall that a circuit can be thought of as a DAG,
with circuit gates represented by graph nodes, and circuit wires represented by
graph edges. Valiant’s construction utilizes this idea and, as a first step, finds a
“universal graph”, which embeds any DAG of a certain size. Denote DAGs of
size z, and fan-in/fan-out d by DAGd(z). Then, a “universal graph” is defined as
follows.

Definition 6. (Zhao et al. [40]) An edge-embedding σ of G = (V,E) into G∗ =
(V ∗, E∗) is a mapping that maps V into V ∗ one-to-one, and E into directed paths
in G∗ (i.e., (i, j) ∈ E maps to a path from σ(i) to σ(j)) that are pairwise edge-
disjoint. A graph G∗ is an edge-universal graph EUGd(z) for DAGd(z) if it has z
nodes (dubbed distinguished poles) P1, . . . , Pz such that every G ∈ DAGd0(z0),
with d0 ≤ d and z0 ≤ z, can be edge-embedded into G∗ by a mapping σ such that
σ(i) = Pi for each i ∈ V . This should hold for any labeling of G.

Note that the cryptographic community typically assumes w.l.o.g. that a
circuit has fan-in/fan-out d = 2. We will follow this approach for now and discuss
a possibility for an optimization by changing the fan-in/fan-out in Section 5.3.

Building an EUG2(z) involves the following steps.

1. Construct an EUG1(z) given an EUG1(dz/ce − 1) for some constant c.
For a large z, it is difficult to find a direct EUG construction which avoids
large overheads in terms of the size and depth. Thus, constructions typically
resort to providing a recursive solution, where an EUG for a larger z is
constructed from EUGs for smaller z, repeating recursively until we reach a
sufficiently small z for which an EUG can be constructed directly.

2. Construct an EUG2(z) from an EUG1(z).
Given an EUG for graphs of fan-in/fan-out 1, an EUG for graphs of fan-
in/fan-out 2 can be constructed by taking two instances of EUG1(z) and
merging each pole with its twin. This works because the edge set E of any
DAG2(z) (V,E) can be split into two edge sets E1, E2 such that both (V,E1)
and (V,E2) are DAG1(z). Thus, the original graph can be split into two such
sets, each of which can be embedded separately into a single EUG1(z). The
combination of these two EUGs then results in an EUG which can embed
the original graph of fan-in/fan-out 2.

Figure 5 illustrates a recursive EUG construction step.
Given an EUG2(z), where z = s + n, the universal circuit UCn,ms can be con-

structed by replacing graph nodes by gates and edges by wires. In more detail,
the replacement strategy makes use of the restriction of the EUG to fan-in/fan-
out two. It replaces each distinguished pole of the EUG with a universal gate,
which implements any of the 16 functions from two inputs bits to one output
bit. While each of the remaining nodes (dubbed common nodes) could be im-
plemented by a universal gate as well, there is a cheaper solution. If a common
node’s in-degree is two, it can be implemented by a switching gate (which re-
quires at most 4 binary gates, in contrast to the 9 required for a universal gate).
If the node’s in-degree is one, and out-degree is two, it can be implemented by
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Fig. 1: Overview of Island-style eFPGA architecture

two wires carrying the same signal. If both in-degree and out-degree are one, it
can implemented simply with a wire. Each edge in the EUG is then implemented
by a wire between the corresponding gates in the universal circuit.

Intuitively, this results in a circuit which can embed any circuit with n in-
puts, m outputs, and s gates. Each input and each gate of the original circuit
can be simulated by one of the z = s + n universal gates. Since an EUG can
embed any DAG and the original circuit can be thought of as a DAG, there ex-
ists a connection between the embedding of any two gates of the original circuit
(implemented using universal gates), as there is a connection between the corre-
sponding two poles of the EUG. These connections are furthermore guaranteed
to be pairwise edge-disjoint, as the same holds for the corresponding connections
in the EUG. Thus, we never use the same wire to forward two different signals.

Overall, this approach produces a universal circuit with size O(s log s) and
depth O(s) [37].
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3.2 Background - eFPGAs

In the hardware world, an intuitive analog of a universal circuit is a Field-
Programmable Gate Array (FPGA). After manufacturing, an FPGA can be dy-
namically configured into particular circuit configuration. This can provide sig-
nificant performance and power efficiency improvements compared to a general-
purpose CPU [2], particularly for data-parallel workloads. However, the pro-
grammability comes at a cost: for a given configuration, an FPGA is typically
3-4x slower and consumes about 14x more power and area than a corresponding
ASIC [21].

An embedded FPGA (eFPGA) [1], however, aims to provide provide the
best of both worlds, namely the flexibility of an FPGA and the performance and
efficiency of an ASIC. eFPGA is a small FPGA IP core, which can be tuned to
a small size and integrated into the ASIC SoC, this integration allow the overall
system to maintain high performance and energy efficiency.

The most common eFPGA architecture consists of a two-dimensional array
of configurable logic blocks that are interconnected through a programmable
routing network. Figure 1 illustrates the typical “island-style” design, which
consists of the following building blocks.

1. Configurable Logic Blocks (CLBs): A CLB (shown in Figure 2) implements
the basic logic for an application design. It consists of an array of logic el-
ements called Look-up Tables (LUTs). An n-input LUT can be configured
to compute any function C ∈ L : (0, 1)

n
� (0, 1), depending of its con-

figuration p ∈ {0, 1}2n . For example, a 2-input LUT, with (x1,x0) inputs,
and (p3,p2,p1,p0) configuration implements logic L as L(x1, x0)(p3,p2,p1,p0) =
x1 · x0 · p3 + x1 · x̄0 · p2 + x̄1 · x0 · p1 + x̄1 · x̄0 · p0.

2. I/O Blocks: The input/output blocks connect the eFPGA to the outside
world. The I/O blocks are located around the periphery of the chip, providing
programmable I/O connections and support for various I/O standards.

3. Routing Network: The routing resources comprise vertical and horizontal
channel tracks (routing wires) which run through the length and width of
the eFPGA fabric. These channels connect the CLBs to each other and to
the I/O blocks. The connections are facilitated through connection boxes and
switch-boxes which are used to re-direct signals. The routing is entirely re-
configurable subject to the constraint that two signals can never be merged.
That is, each wire can only carry one signal at a time.
(a) Connection Box (CB): The connection boxes connect the CLBs and I/O

blocks within the horizontal channel or vertical channels they lie on. An
example of a connection box for channel width two is shown in Figure 3,
where each of the channel tracks (T1, T2) can be programmed to connect
to either of the CLBs through their pins (P11, P12) and (P21, P22), re-
spectively. A graphical representation of these connections is shown on
the right-hand side. An example connection is shown in green, where pin
P11 of CLB1 is connected to pin P22 CLBs using track T2. This would
imply that (T2) can’t be further used for any connections, whereas, (T1)
would be available.
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Fig. 2: Configurable Logic Blocks

Fig. 3: Connection Box

(b) Switch Box (SB): Switch boxes lie at the intersection of the horizontal
and vertical channels, facilitating connections in all directions. An ex-
ample of a switch box of width two is shown in Figure 4, where each
terminal (say, T11) can be connected to any of the other 3 sides of the
switch box, through terminals on that side (here, T21, T31 and T41). All
possible connections among these terminal sets (e.g., T11, T21, T31, T41)
form a clique, as shown in the graph representation.

Nomenclature: In addition to the standard notions of CLBs, connection boxes
and switch boxes discussed above, for presentation purposes, we introduce the
following terms: Whenever we refer to a row or column, we mean an eFPGA row
(column) that contains CLBs, enumerated from top to bottom (left to right).
eFPGA rows and columns which do not contain CLBs we dub SB-CB rows (SB-
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Fig. 4: Switch Box

CB columns), similarly enumerated from top to bottom (left to right). We let
the height of the eFPGA be the number of (CLB) rows and the width be the
number of (CLB) columns.

4 Using UCs for Logic Locking

We now introduce our first provably secure logic-locking solution. Intuitively,
universal circuits satisfy our security definition simply because they can be pro-
grammed to realize any circuit up to a certain size with a fixed number of inputs
and outputs. Thus, when using a universal circuit as the locked circuit, no in-
formation is leaked as to which specific circuit will be executed by the end user.

We define our logic-locking scheme as follows.

UC-based Logic Locking

– Inputs:
Original circuit C with number of inputs n, number of outputs m, size of
the circuit s, security parameter λ.

– Locking algorithm:
Lock(λ,C)→ (p, UCn,ms ), where
UCn,ms ← ConstructUC(n,m, s) and
p← ProduceProgram(n,m, s, C).

We show that this construction is a secure logic locking scheme, where the
allowed leakage function L outputs the number of inputs, outputs, and gates of
the original circuit C.

Proof. The correctness of this construction follows directly from the correctness
of the underlying universal circuit construction. To prove security, we provide
a simulator S which does not have access to the locked circuit. In this case,
constructing simulator S is trivial, as the locking algorithm does not actually use
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the original circuit C (only the information provided by the leakage function L,
to which the simulator has access according to the definition). Thus, S can simply
follow the actual locking procedure and use the algorithm ConstructUC(n,m, s)
to obtain ce = UCn,ms . Then, S starts an internal adversary A with ce as input.
Whenever A sends a query to its oracle, S forwards the query to its own oracle,
and forwards the oracle’s answer to A.

We define the following hybrids:
Hybrid0: This hybrid corresponds to the execution in the real world. The

simulator honestly follows the protocol, including following the locking procedure
for the given circuit.

Hybrid1: In this hybrid the simulator works as outlined in the description
above.

Note that nothing changed between Hybrid0 and Hybrid1. Thus, the dis-
tributions are identical. Furthermore, note that in Hybrid1 the simulator does
not require access to the description of the original circuit co. Thus, no informa-
tion about the original circuit (besides the allowed leakage consisting of n, m,
and s) is leaked.

While our logic locking definition (Def. 4) requires only computational secu-
rity, note that the construction above is, in fact, information-theoretically secure.

Key length optimization When used with non-trivial circuits, the construction
above produces a large key, i.e., the set of program bits needed to describe the
original function. However, it is possible to obtain a small key and thus satisfy the
additional polynomial-size key requirement by adjusting the construction above
as follows. The UC’s program bits for the original circuit is encrypted with a key
from a symmetric encryption scheme (e.g., AES). The ciphertext is included as
part of the locked circuit, while the symmetric encryption key serves as the logic-
locking key. During execution, the symmetric encryption key is used to decrypt
the ciphertext, and the UC is executed using the resulting program bits. This is
a generic way of satisfying the polynomial key requirement. However, since it is
orthogonal to our constructions, for simplicity, in the following we focus on the
information-theoretic version.

5 Manufacturing Efficient UCs

While we have established that universal circuits are a secure logic-locking so-
lution, a key question remains: how can we manufacture a universal circuit that
retains (most of) the performance and energy efficiency of the original, unlocked
circuit design?

Below, we consider three possible approaches: (1) directly manufacture an
existing UC construction, (2) map an existing UC construction to an eFPGA,
(3) construct a new UC scheme that maps more naturally to the structure of
an eFPGA. As discussed qualitatively below and evaluated quantitatively in
§6, the latter two approaches are able to take advantage of the tooling and
optimizations the hardware community has already invested in eFPGA design,
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leading to better performance, energy use, and integration with existing design
pipelines.

5.1 Directly Manufacturing a UC

The simplest approach to manufacturing a UC would be to feed an existing UC
construction, e.g., Valiant’s [37] or a more recent optimization [22, 40, 18], to an
ASIC design tool. While simple, this approach has several drawbacks.

First, existing UC constructions are primarily designed and optimized for
use in cryptographic protocols and theory proofs, rather than optimizing for the
performance and energy use of a physical circuit.

Second, modern circuits have increasingly complex designs, which are fine-
tuned to a particular application. Mapping such complex designs efficiently to a
programmable substrate like a UC, is a hard problem, and hardware equivalents,
such as FPGAs and eFPGAs, rely on high-quality automated design tools [10, 19]
specific to those technologies. Comparable tools do not (yet) exist for existing
UC constructions, and it is unclear if sufficient market investment would support
their development.

Finally, logic-locked circuits are typically embedded in a larger circuit con-
sisting of less sensitive components. Hence, it is beneficial for the design tools
for the logic-locked circuit integrate with those for the rest of the design.

Despite these drawbacks, we use this construction as a baseline in our evalua-
tion, where we find that our other two approaches, described below, outperform
it in most dimensions.

5.2 Mapping a UC to an eFPGA

Our next approach to manufacturing a UC is to map an existing UC construction
to the structure of an eFPGA. This approach is intuitively appealing, since
eFPGAs are already designed for general programmability, suggesting we could
think of the eFPGA’s configuration bits as analogous to the key bits of a logic-
locked circuit. Indeed, prior work has explicitly proposed using eFPGAs for logic
locking [24, 16].

On the plus side, this prior work shows that it is feasible to incorporate
eFPGAs into a larger system design without disrupting the typical ASIC design
flow. It also shows that this approach is compatible with optimizations that can
help achieve reasonable power, and performance overheads.

Unfortunately, this prior work offers no proofs of security for their design,
and there is reason to believe that simply treating an eFPGA with s CLBs and
n + m I/O blocks as a UCn,ms is unsound. In particular, even if we count the
switch and connection boxes that constitute the eFPGA’s routing network, an
eFPGA with s CLBs can be represented as a circuit with O(s) gates. If such a
circuit were a universal circuit UCn,ms , it would violate Valiant’s lower bound of
z log z = (n+ s) log (n+ s).

Indeed, the news gets worse: It is not immediately clear if even that lower
bound is achievable on an eFPGA! In particular, in Valiant’s graph construction
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of the EUG, any two nodes can be connected “for free”. However, on an eFPGA,
the horizontal and vertical channels typically have a (small) constant width, and
the physics of the circuitry require that a new connection must take a path on
the eFPGA grid which has not been previously used and does not interfere with
the connections that have been established already.

As an initial step, we show (§5.2) that by carefully embedding an existing
UC construction in an eFPGA, we can provably use O(z2) = O((n+ s)2) CLBs
as a universal circuit UCn,ms . Despite the optimizations in §5.2, this construction
requires that the channel width grow logarithmically with the circuit size. Since
most eFPGA designs offer only a (small) constant channel width, this construc-
tion either requires a custom eFPGA design, or a limit on the maximum circuit
size.

Mapping Valiant’s UC We focus on mapping Valiant’s UC construction to
an eFPGA, since it is arguably one of the simplest constructions, and it remains
asymptotically optimal. Experimenting with more recent constructions [22, 40,
18] to see if their improvements to Valiant’s constants translate to the eFPGA
setting would be interesting future work.

Recall that Valiant’s construction proceeds recursively (§3.1). It relies on
an edge-universal graph (EUG) for fan-in/fan-out 1 as depicted in Figure 5.
Here, the distinguished poles of the EUG of size z are shown as squares, and
the additional nodes are depicted as dots and circles. Consider the recursive
construction of EUG1(z), where z is even. The nodes {q1, · · · , q z−2

2
} as well as

{r1, · · · , r z−2
2
} are poles of two EUG1( z−22 ). These two subgraphs can still be

quite large and might in turn be built out of multiple levels of recursion (see
Figure 5 for an example of two such levels).

As a result, it is not immediately clear how such a construction can be em-
bedded onto the grid-like structure of the eFPGA. Specifically, in Valiant’s graph
construction, when the new level of recursion is added, the new poles can sim-
ply be connected to the old ones by introducing a new edge. In contrast, given
the limited channel width of the eFPGA, we must ensure that whenever a new
connection is introduced, it does not physically interfere with any previous con-
nections.

Below, we describe how to perform a physically compatible embedding of
Valiant’s EUG into an eFPGA, which allows us to show the following result:

Theorem 1. An eFPGA with O((n+s)2) CLBs and channel width O(log2 (n+ s))
can embed all stateless DAG circuits with fan-in/fan-out 2, s gates and n inputs
bits.

As a first step, Figure 6 shows how an eFPGA which is supposed to embed
a EUG1(z) can be built out of eFPGAs which embed EUGs EUG1( z−22 ) (if z is
even) or EUG1( z−12 ) (if z is odd). Below, we elaborate on each of the steps from
Figure 6.
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Fig. 5: Valiant’s UC – Edge-Universal Graph (EUG) for graphs of fan-in/fan-out
1 and z distinguished poles.
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Embedding Valiant’s UC onto an eFPGA

– Inputs:
Number of poles z in the EUG.

– Construction:
1. Embed EUG1(1) into an eFPGA of height h = 1, width w = 1, and channel

width cw = 1 (Figure 7). Denote the resulting eFPGA chip as eFPGA1.
2. For each i from 2 to log2(z):

• Depending on whether the number of poles z′ in step i is even or odd,
use the corresponding structure for EUG1(z′) as follows:
* Let cw = cw + 1.
* If z′ is even, let h = 2 ∗ h + 2. Otherwise, let h = 2 ∗ h + 1.
* Let w = 2 ∗ w + 1.
* Double the number of rows in eFPGAi−1 and place each CLB that

was previously on row i on row 2 ∗ i − 1 (each CLB’s column re-
mains the same). Connect the CLBs exactly the same as they were
connected in eFPGAi−1, except that if a column wire segment was
used to connect CLB (SB-CB) row i to SB-CB (CLB) row j, this
wire segment now connects CLB (SB-CB) row 2 ∗ i − 1 to SB-CB
(CLB) row 2∗ j−1. Denote this “stretched” version of eFPGAi−1 by
S-eFPGAi−1.

* Let eFPGAi be an eFPGA fabric of height h and width w. Then,
the CLB on row i of the middle column corresponds to the pole pi.
The left-hand side of eFPGAi (the first (w−1)/2 columns) is used to
embed S-eFPGAi−1, the right-hand side (the last (w−1)/2 columns)
is used to embed S-eFPGAi−1 as well.

Fig. 6: Mapping of EUG used in Valiant’s UC onto eFPGA, Fan-in/Fan-out One

Fig. 7: FPGA with height h = 1, width w = 1, channel width cw = 1.
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Connecting new poles to old ones First, note that Figure 6 does not specify
how the common nodes (white and black dots in Figure 5) are implemented or
how the “middle part” of an eFPGAi is connected to the CLBs representing the
poles of S-eFPGAi−1. Consider a common node such as A in Figure 5. Its only
purpose is to connect the new pole p1 to p2 and B. As for B, its purpose is to
enable any connection from A (thus effectively p1) and p2 to the old poles q1 and
r1. The other common nodes are similarly used to connect new and old poles
which are close to each other. Instead of explicitly implementing these nodes on
the eFPGA, we rely on the internal eFPGA structure (of corresponding channel
width) to show that any required connection from the new poles to the poles of
the previous recursion level is possible.

Now, consider a node qi (ri is analogous). According to Valiant’s construction,
one of the following four nodes can provide input to qi: p2i−1, p2i, qi−1, ri−1.
If p2i−1 is used, one simply uses the SB-CB row 2i − 1 (note that qi is on row
2i − 1 in S-eFPGAi−1) to connect qi and p2i−1. If p2i is used, one uses the w-th
SB-CB column to go from row 2i to the SB-CB row 2i − 1, and then uses this
row to connect to qi. If qi−1 is used, the SB-CB row 2(i− 1) is used to connect
to the w-th SB-CB column, and then SB-CB row 2i− 1 is used to connect to qi.
Finally, if ri−1 is used, the SB-CB row 2(i−1) is used to connect to the w+1-th
SB-CB column, and then SB-CB row 2i−1 is used to connect to qi (see Figure 8
for an example).

Similarly, a node qi can provide outputs to one of the following four nodes:
p2i+1, p2i, qi+1, ri+1. We already described how the last two cases are handled.
For p2i+1, the SB-CB row 2i is used connect to the w-th SB-CB column and go
to row 2i + 1. Similarly, for p2i, the SB-CB row 2i is used connect to the w-th
SB-CB column and go to row 2i.

These connections are always possible because eFPGA1 does not use any con-
nections on the outer SB-CB columns and in the following iterations, new con-
nections never utilize new outer columns. Thus, the outer SB-CB columns of
S-eFPGAi−1 are “free”, and hence we can utilize SB-CB columns w and w+ 1 to
connect the new poles to the old ones (at most two connections use the same
segment of each of these columns simultaneously). Additionally, note that at
most a single new connection is used on each SB-CB row to the left and to
the right side of the middle column (these two connections do not intersect).
Thus, by increasing channel width by one at each level i, we account for all new
connections.

CLBs Acting as Switches Note that in recursive step, we use CLBs to represent
the poles. However, in the next recursive step these poles qi and ri are no longer
poles (see Figure 5, the graph in the middle). Instead, they are simply nodes
with at most two inputs and at most two outputs and can thus act either as
switches, or simply forward the incoming signal. All of these functionalities can
be performed by a CLB. As described in Section 3.2, a CLB consists of LUTs,
and a 2-input LUT can be programmed to perform any function from two input
bits to one output bit. Two LUTs can then be programmed to perform any
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Fig. 8: Embedding of recursive step i = 2, where z′ = 4 (EUG1(1) to EUG1(4)).
CLBs which are assigned to both new and old poles are labeled as their counter-
parts in Figure 5. CLBs which are labeled simply as “CLB” are not assigned to
any nodes. Connections using arrows indicate how a node p1 can be connected
to q1, q1 to p4, p2 to r1, and r1 to p3.
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function from two inputs to two outputs. Thus, we do not need to change our
construction when moving to the next recursive level.

Increasing Fan-in/Fan-out Recall that the construction in Figure 5 is an
EUG for graphs with fan-in/fan-out one. Recall that it is possible to use two
copies of such a construction and merge the respective poles in order to obtain
an EUG for graphs with fan-in/fan-out two. We follow the same approach and
simply double the channel width to obtain an EUG for fan-in/fan-out two.�

Analysis As the recursive step is repeated O(log2(z)) times, and each step
increases the channel width by one, the resulting channel width of the eFPGA is
O(log2(z)). The height is O(z), and the width is also O(z). Thus, unfortunately,
while the UC is of size O(z log z), the construction uses area O(z2). While this
discrepancy might seem surprising initially, it is directly caused by the limited
channel width of the eFPGA. Hence, we cannot simply connect a new pole to
an old one as Valiant’s construction does. Intuitively, at each recursive step we
must decide between a higher overhead in terms of the channel width or a higher
overhead in terms of the resulting area. In the construction above, we optimize
for channel width by increasing it only by one in each step. However, as we show
below, other trade-offs are indeed possible.

Finally, recall that the number of poles z in Valiant’s EUG construction for
circuits with n inputs and s gates is z = n+s. Thus, the number of CLBs in the
construction is equal to O(z2) = O((n + s)2), which gives us exactly the result
in Theorem 1.

Optimization: Channel Width - Area Trade-off The mapping above ef-
fectively prioritizes channel width over area – in each recursive step, channel
width is increased only by one, while both the height and the width increase by
at least a factor of two. We ask ourselves whether it is possible to improve the
area (possibly by sacrificing channel width), and the answer is yes.

In the following, for simplicity assume that in each recursive step we use
the EUG construction for EUG1(z) where z is even. Consider the construction
which follows an approach similar to the one introduced above, except that now
instead of using a single column in the middle for the new poles, in recursive
step i, we place the CLBs which represent the new poles in two such columns
(p2k+1, p2k+2 are placed on row 2k + 1 for each k ∈ {0, · · · , i−22 }). Then, by
an argument analogous to that in Section 5.2, the channel width will need to
increase by two – each old pole qi (ri) requires one connection to obtain input
from a new pole, and one connection to forward its output to another new pole.

�It is also possible to instead double both the left and the right side of the eFPGA
(by placing the new left side to the left of the original one, and the new right side to
the right of the original) and then connect the poles in the middle to the old poles on
the new left and right side. This requires an increase of the channel width only by one,
but almost doubles the area.
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The width increases by two instead of one (since we did not double the height
and thus might need to use same SB-CB row to forward output of a previous
pole, and forward input to another previous pole); however, the height increases
only by two instead of a factor of two. Thus the area increases only slightly
compared to our earlier construction.

For the same reasoning to apply to the next step i + 1, we need to use four
middle columns instead of two (otherwise the height would increase by a factor
of two in comparison with step i). This way, the width increases by four, and
the height increases by two in comparison with step i. However, the channel
width will increase by four (to connect old poles from two columns to the new
ones). In general, in order to ensure that each connection from old to new poles
is possible, we need to increase the channel width by 2 ∗Wpoles, where Wpoles

denotes the number of columns used for the mapping of the poles of the previous
recursive step.

Thus, at each step one can make a decision whether to prioritize area or
channel width by deciding how many columns to use for the new poles (more
columns result in higher channel width, but when the column number is chosen
carefully it can help to reduce the area of the final construction).

We propose the following heuristic: Starting with an efficient mapping of
some small EUG onto the eFPGA fabric, use as many new middle columns as
are needed to make the height of the new eFPGA the same as that of the old
one. Additionally, before using the eFPGA constructed in step i − 1 for step i,
rotate this eFPGA by 90◦ whenever the number of columns needed to embed the
new poles of level i−1 are larger than the number of rows needed to embed these
poles. As the channel width in each step increases by 2 ∗Wpoles, this rotation
allows us to save channel width. As we show in Section 6, this optimized version
indeed produces better results.

5.3 Topological Logic Locking

We now introduce our final approach, topological logic locking, which relies on a
new UC construction that is tailored to the constraints of the eFPGA setting.
Compared to the approach based on embedding Valiant’s UC, this construction
allows us to achieve a more general result.

Theorem 2. An eFPGA with d (n+s)
2

w′ e CLBs, where w ≥ 2 is the channel
width and w′ ≤ bw2 c, can embed all stateless DAG circuits with fan-in/fan-out
2, s gates and n inputs bits.

We prove this result by giving an embedding of any stateless DAG circuit
onto an eFPGA with these parameters in Figure 9.

We illustrate this mapping with an example in Figure 10; the corresponding
circuit is given in Figure 11.

Analysis The connections between CLBs in the construction outlined in Fig-
ure 9 are always possible, since we never user more wires on each column and
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eFPGA to UC, Topological Logic Locking

– Input:
Original circuit C with number of inputs n, number of outputs m, size of the
circuit s.

– Finding an embedding:
1. Sort inputs and gates of C in topological order. Let C′ denote the resulting

circuit.
2. Assign column i of the eFPGA to the i-th element (input or gate) in C′.
3. Following the topological ordering, process every edge (x, y) which connects

two elements in C′:
(a) Check whether a row was already assigned to x. If not, assign the first

row j that was not yet used to x. Program the CLB on row j and column
x (that was assigned to x in Step 2) to implement x; denote this CLB
as CLBx.

(b) Check whether a row was already assigned to y. If not, assign the first
row j that was not yet used to y. Program the CLB on row j and column
y (that was assigned to y in Step 2) to implement y; denote this CLB
as CLBy.

(c) CLBx and CLBy can be connected by first going up or down to the row
that was assigned to y and then following this row until it reaches CLBy.

4. Any outputs can be forwarded to the I/O blocks of the eFPGA by using the
same row as the gate that computes the output.

Fig. 9: Topological Logic Locking

row than the eFPGA channel width. This can be seen by the following argu-
ment. Since the fan-in of C is two, and we assign each input and each gate a new
row, there are at most two connections that use each row. Additionally, since
the fan-out of C is two, and each column is used only to route the output of a
single CLB to the correct row, there are at most two connections that use each
column. This is clearly supported by a width w ≥ 2.

This construction clearly gives us a correct embedding of a circuit C, since the
CLBs can be programmed to implement any input or gate, and each connection
(wire) in C is implemented on the eFPGA structure by construction.

For this construction, we use an eFPGA with n + s CLB columns (as each
column is assigned to a single input/gate), and n+s rows (again, since each row
is assigned to a single input/gate). Hence, in total the construction requires an
eFPGA with (n+ s)2 CLBs.

Optimizations There are a few ways we can optimize the construction intro-
duced above. As described, it only uses two connections in each row and column.
If the eFPGA width is larger than two (for simplicity, we assume that the chan-
nel width w = 2w′ is even), then we can improve the number of rows used in
the construction by using a single row (with w wires) to provide inputs to and
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Fig. 10: Topological Construction – Embedding the circuit in Figure 11. A label
x in a CLB denotes CLBx.

forward outputs from not only a single CLB, but w′ such CLBs (as each CLB
requires only two wires). To ensure that the output signal of a CLB does not
interfere with the other CLBs on the path, to connect CLBx and CLBy in Step
3c), as well as to forward the output in Step 4 of Figure 9, we will now use the
SB-CB rows directly above the CLB row that was assigned to a particular gate
(instead of the CLB row itself). We call this approach packing. This changes
our embedding as follows: When assigning a row to an input/gate, instead of
assigning the first row that was not yet used, we assign the first row that is
not yet saturated. This allows us to use each (SB-CB) row for w′ inputs/gates,
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Fig. 11: Topological Construction – Cicruit

instead of only one and thus decrease the total number of rows to n+s
w′ . The

number of CLBs used in our construction thus becomes (n+s)2

w′ . Generalizing w′

to w′ ≤ bw2 c trivially gives us the result in Theorem 2.
We can further reduce the number of CLBs by using CLBs which can compute

functions of larger input sizes. Instead of computing functions of two input bits
to two output bits, typical commercial CLBs can compute functions from, e.g.,
five input bits to two output bits. Our construction using such CLBs remains
largely the same: C must be brought into a form where gates accept as many
input bits as the CLBs, and the rows must be packed according to the new input
sizes (if each CLB supports five input bits, w/5 rows can be packed into one).

Channel Width – Area Trade-off An interesting aspect of our construction
with packing enabled is that it allows us to easily optimize for the parameters
of the eFPGA. If the channel width is constant, the number of CLBs in this
construction is O((n + s)2). If we allow the channel width to depend on n and
s, then even the asymptotics for the number of CLBs in this construction can
improve. For instance, if the channel width is O( n+s

log (n+s) ), then the number

of CLBs becomes O((n + s) log (n+ s)) – equivalent to the number of gates in
Valiant’s UC construction.

6 Evaluation

We evaluate the efficiency of each of our proposed approaches to manufactur-
ing a UC: directly manufacturing a UC, mapping an existing UC construction
onto an eFPGA, and our topological construction. To assess the cost of secu-
rity, we compare these provably secure approaches with both the original circuit
(which provides no security) and with a standard eFPGA design, which offers
programmability but does not guarantee security.

We compare these approaches using standard VLSI metrics: performance,
power, and area. The physical area of the chip affects its one-time manufactur-
ing cost, while operational costs stem from the chip’s power and delay. Higher
power consumption or lower performance can undermine the design efforts that
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went into the original circuit, which is designed and optimized to meet the spec-
ifications of a particular application.

6.1 Evaluation Methodology

Here we try to mimic the flow a designer would have to follow in order to
implement our suggested logic locking schemes.

1. Logic-Gate Implementations: The process of locking a circuit starts with a
Verilog description of the design. The locking algorithm takes this design
as input and produces a Verilog description of the locked circuit. For our
constructions, we use the following tool flow for locking.
(a) Valiant’s Universal Circuit Tool Flow : We use a modern open-source

implementation of Valiant’s UC construction [18]. We develop Python-
based parsers to map the original circuit Verilog to the Bristol format
expected by the tool. We use another Python script to map the UC tool’s
output to Verilog.

(b) eFPGA Tool Flow : We use the popular open-source FPGA-CAD tool
VPR (Versatile Place and Route) [25] to map our original circuit onto
an eFPGA. We parse the graph description of the eFPGA used, and the
placement and routing produced for the original circuit. We parse these
into a Verilog description and eFPGA configuration using Chisel [3] and
Python scripts, respectively.

2. Synthesis: Using the Cadence Genus logic synthesis tool[8], we map the Ver-
ilog for the locked circuit (produced above) to standard cells (a collection of
technology-optimized logic gates), which are each sized and repacked through
an iterative process to maximize the design’s frequency (which correlates
with performance). This is the locked design, which which the foundry will
manufacture.

Given the locked circuit produced by the process above, we analyze its effi-
ciency as follows.

1. Static Timing Analysis [9]: This is standard practice in an ASIC design
flow. The design is broken down into timing paths, and based on the signal
probability constraints (if any) applied to the inputs, it calculates the delay
along each path. The result is a measure of the worst-case delay in calculating
a new output for a given input, which corresponds to the highest frequency
of operation the design can support. Higher frequencies, in turn, correspond
to better application performance. For our constructions, we do this analysis
by setting the signal probability to the value of the correct key-configuration
bits.

2. Power Analysis [7]: Similarly, we assert the correct constant signal values
and zero toggle rate for the key configuration bits (meaning they are held
fixed). All other inputs are toggled at the operational frequency, in order
to determine the average power consumption for operating the circuit at its
highest possible frequency.
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Fig. 12: Baseline evaluation over c17. Note the log-scale y-axis. Lower is better.

3. Evaluation Metric: In hardware designs, higher performance can always be
achieved by consuming more power, and lower power can be achieved by
accepting a lower operational frequency. Hence, to reasonably compare the
efficiency of different circuit architectures, we use a standard energy efficiency
metric Power-Delay Product (PDP). A lower PDP implies better energy
efficiency, implying that the given architecture can run faster (lower delay)
in the same amount of power, or will consume lower power at the same
operational frequency.

6.2 Baseline Costs of Universality

Our initial experiments measure the cost of supporting programmability com-
pared to simply manufacturing the (insecure) original circuit. For the original
circuit we use a small combinational circuit, ISCAS’85 benchmark c17 [6].

We evaluate the cost of instantiating this circuit using a directly manufac-
tured (secure) UC construction and the base eFPGA design (which offers pro-
grammability but does not security). As a sanity check, we also measure two
naive approaches to mapping Valiant’s UC construction onto an eFPGA. In
both approaches, we start by simply feeding the standard UC circuit to the
standard eFPGA synthesis pipeline. This obviously retains the universality of
the UC circuit. When it comes time to unlock the circuit, we can do so in two
ways.
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– Version I: Program the eFPGA to function as a UC whose program bits are
another set of inputs to the eFPGA, which are held constant (to the values
corresponding to c17) throughout the operation of the design.

– Version II: Program the eFPGA to function as the original c17 circuit. From
an adversary’s perspective, since the eFPGA was constructed to be large
enough to execute Version I, this approach retains the same security, but
potentially offers better run-time performance.

Figure 12 shows the energy efficiency (PDP) and area of each of these con-
structions. We highlight a few important points.

1. The cost of programmability, via Valiant’s UC or the eFPGA, is high. How-
ever, as discussed in §5.1, a logic-locked circuit is typically incorporated into
larger circuit design. Hence, the overhead paid for locking may overestimate
the overhead for the system as a whole.

2. The direct UC implementation has worse efficiency than the base eFPGA
but uses less area.

3. The efficiency of the naive versions of mapping Valiant’s UC to an eFPGA
is particularly bad. This is expected as a much larger (than required to
map the original design) eFPGA is configured to emulate a circuit (the
universal circuit) which introduces a second layer of inefficiency compared
to the original circuit.

4. By design, both versions of the naive mapping of a UC to the eFPGA use
the same area, but Version II over an order of magnitude more efficient. This
suggests that even with a relatively large eFPGA construction, the tools can
find an energy-efficient configuration to implement the original logic.

Since the direct UC instantiation dominates the naive UC-to-eFPGA em-
beddings, in the experiments below, we use the direct UC instantiation as our
baseline.

6.3 Comparison of Our Constructions

We now compare the energy efficiency of each of our constructions as we increase
the size and complexity of the original circuit. To control these aspects of the
circuit, we create a synthetic circuit benchmark suite. Circuits in the suite are
DAGs of varying size and connectivity. Each node has fan-in/fan-out ≤ 2 and is
programmed to a random logic gate.

Figure 13 shows our results. We include data for both our original embedding
of Valiant’s UC into an eFPGA (§5.2), and a version with the optimizations from
§5.2. Both our optimized embedding of a UC construction into the eFPGA and
our topological locking construction outperform the baseline direct UC imple-
mentation, with topological locking performing particularly well. Further, the
gap between our constructions and the direct UC grows as circuit size increases,
suggesting that they will provide even larger savings for more realistic circuits.

We attribute the improved energy efficiency both to our more tailored design
and to the eFPGA CAD tools, which can find a relatively optimal configuration
to execute the original circuit’s functionality.
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Fig. 13: Comparison of Our Logic-Locking Approaches. Lower is better.

6.4 Evaluation Over Arithmetic Circuits

Although our evaluation above with synthetic circuits provides insight into how
our constructions’ energy efficiency scales, we also wish to evaluate more realistic
circuits. Hence, we measure their efficiency on the most common arithmetic
circuits, an adder and a comparator.

Figure 14 shows our results, which indicate similar trends to those seen in
§6.3. Although the efficiency of the direct UC approach is worse than the base
eFPGA, our optimized topological construction helps bridge the gap.

7 Future Work

While our constructions provide provably-secure logic locking and improve over
the performance of a direct UC solution, the locking overhead is still non-trivial.
There are several possible directions for future exploration.

– Our constructions could be easily extended to support logic locking for state-
ful circuits, which could increase computation capacity per unit area.

– We could explore the use of spatial parallelism for our constructions.

– Increasing the information provided by the leakage function L (e.g., to reveal
the number of layers in the circuit) could improve performance while still
offering a provable security guarantee.
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Fig. 14: Comparison of Locking over Arithmetic Circuits. Lower is better.

8 Conclusion

To stop the cycle of attacks and ad hoc defenses for logic locking, we provide a
well-grounded formal definition of logic-locking security. We present a solution
which meets this definition, and we explore constructions which can realize the
solution as an ASIC design. While we propose several efficient constructions,
there are likely other interesting points within this design space that can offer
additional improvements and tradeoffs.
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