
Power Contracts: Provably Complete Power Leakage Models for
Processors

Roderick Bloem
Graz University of Technology

Barbara Gigerl
Graz University of Technology

Marc Gourjon
Hamburg University of Technology

and NXP Semiconductors

Vedad Hadžić
Graz University of Technology

Stefan Mangard
Graz University of Technology

Robert Primas
Graz University of Technology

ABSTRACT

The protection of cryptographic software implementations against
power-analysis attacks is critical for applications in embedded sys-
tems. A commonly used algorithmic countermeasure against these
attacks is masking, a secret-sharing scheme that splits a sensitive
computation into computation on multiple random shares. In prac-
tice, the security of masking schemes relies on several assumptions
that are often violated by microarchitectural side-effects of CPUs.
Many past works address this problem by studying these leakage
effects and building corresponding leakage models that can then be
integrated into a software verification workflow. However, these
models have only been derived empirically, putting the otherwise
rigorous security statements made with verification in question.

We solve this problem in two steps. First, we introduce a contract
layer between the (CPU) hardware and the software that allows
the specification of microarchitectural side-effects on masked soft-
ware in an intuitive language. Second, we present a method for
proving the correspondence between contracts and CPU netlists
to ensure the completeness of the specified leakage models. Then,
any further security proofs only need to happen between software
and contract, which brings benefits such as reduced verification
runtime, improved user experience, and the possibility of working
with vendor-supplied contracts of CPUs whose design is not avail-
able on netlist-level due to IP restrictions. We apply our approach
to the popular RISC-V IBEX core, provide a corresponding formally
verified contract, and describe how this contract could be used to
verify masked software implementations.

KEYWORDS

Power Side-Channel, LeakageModel, Verification, Contract, Domain-
Specific Language, Masking, Probing Security

Author Email: first.last@iaik.tugraz.at and first.last@tuhh.de

1 INTRODUCTION

Physical side-channel attacks such as power or EM analysis allow
attackers within proximity of a device to learn sensitive informa-
tion like cryptographic keys [31, 45]. One of the most widely used
algorithmic countermeasures for protecting a cryptographic im-
plementation against these kinds of attacks is masking [14, 27, 30].
Masking is a secret-sharing technique that splits input and interme-
diate variables of cryptographic computations into𝑑 ≥ 𝑡+1 random
shares such that the observation of up to 𝑡 shares does not reveal any
information about their corresponding unmasked value. Masking
schemes typically rely on certain assumptions, such as independent
computations producing independent side-channel leakage. How-
ever, the structure of a CPU architecture can violate these assump-
tions and introduce additional leakage effects [16, 18, 25, 39, 43].
Such leakage is often also referred to as order-reducing leakage

because it induces a security loss and thus a gap between formal
security assurance and practical resilience. The physical characteris-
tics of gates are relatively well understood and give rise to extended
leakage models, which allow constructing hardware implementa-
tions that reliably mitigate order-reducing leakage [17, 20, 33, 34].
Similarly, when designing masked software implementations of
cryptographic algorithms, knowing the concrete power side-effects
of different instruction types is indispensable. It allows develop-
ers to optimize the performance of masked implementations by
simplifying the otherwise trial-and-error hardening process [9].

State of the Art. Many works address the problem of charac-
terizing and understanding the leakage behavior of instructions.
These can be divided into two categories: works that use empirical
methods to determine side-channel leakage, and works that use
formal verification approaches to verify side-channel resilience.

On the empirical side, the measurement of a CPU’s power con-
sumption combined with a subsequent analysis using statistical
methods, is a straightforward approach to determine whether cryp-
tographic software is correctly masked. Any observed leakage ef-
fects can be reverse-engineered and taken into account in hardened
versions of the respective masked software implementations [1,
23, 24, 36, 38, 43, 48]. Based on these observations, subsequent
works derive leakage models that describe the leakage behavior of
assembly instructions that are commonly used for masking imple-
mentations on CPUs [9, 10, 37]. All existing empirical approaches
require high practical effort and cannot guarantee completeness,
thereby reducing the confidence in security assessments [5, 39].

On the formal verification side, several works verify the secu-
rity of masked software implementations under specific masking-
related security notions. MaskVerif performs algorithmic software

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

masking verification using generic leakagemodels [7]. Barthe et al. [9]
improve upon this by verifying the absence of order-reducing leak-
age with the tool scVerif which combines user-provided leakage
models for assembly instructions with verification routines for
the more practice-oriented stateful extensions of the commonly
accepted security notions 𝑡–NI and 𝑡–SNI [7, 8]. However, the se-
curity assurance still relies on the completeness of the used leakage
models, as it is the case for pure empirical approaches.

An entirely different take on masked software verification was
presentedwith the Coco tool byGigerl et al., which avoidsmodeling
leakage entirely and instead simulates the execution of masked soft-
ware directly on the processor netlist [25, 26, 29]. Their approach
considers the leakage of every single gate in an extended hardware
leakage model and captures a wide range of microarchitectural
side-effects. However, their method requires the processor’s netlist,
which may not be available, e.g., for most Arm-based embedded de-
vices. All other tools operate in fixed software leakage models and
are inadequate to protect software against device-specific leakage.

Our Contribution. We answer to the question of leakage
model completeness and establish end-to-end (E2E) security for
software executing on a processor. First, we introduce a contract
between the hardware and the software that defines precise seman-
tics and models side-channel behavior of assembly instructions.
We then establish a technique to verify compliance of a processor
with a contract. A processor is compliant when the leakage of each
of its gates and the semantic of instruction is correctly specified
in the contract. Put vice-versa, we prove the contract’s model of
instructions correct and its model of leakages complete. We pave
the way for provable E2E security by defining software compli-
ance for threshold probing security notions so that the approach
of Barthe et al. [9] can be easily mapped to our slightly different
language for contracts. We combine hardware compliance and soft-
ware compliance to prove E2E security: any compliant software is
secure w.r.t. all microarchitectural power side-channel leakage of
any compliant CPU. Compared to related work, our approach comes
with benefits such as more rigorous (practical) security statements,
simplified software verification workflows, and the possibility of
working with vendor-supplied contracts of CPUs whose design is
not available on netlist-level due to IP restrictions. Our contribu-
tions also enable the construction of reliable hardened processors,
as users can specify the desired leakage model in a contract and
modify the CPU implementation to achieve compliance for fixed
contracts. We emphasize that the intermediate contract layer en-
ables for the first time portability of secure implementations across
processors and improves the separation of secure hardware and
software development in general.
1. Contracts. We introduce an intuitive and industry-grade domain-
specific language (DSL) called Genoa. Genoa allows specifying
Instruction Set Architecture (ISA) semantics and device-specific
leakages in contracts. Genoa extends the long-standing Sail lan-
guage to support leakage specifications. The RISC-V foundation
recently picked Sail as the official tool to specify the reference
RISC-V ISA and all standard extensions [40, 47]. Models for multi-
ple architectures (e.g., Arm) exist, which can be freely adopted and
compiled to software emulators [4]. We reuse existing models as the
basis for contracts, augmenting them with leakage specifications
and providing an interface for our verification tool. We show that

whenever a program is secure with respect to a contract, its concrete
execution on a compliant processor is also secure, i.e., no order-
reducing leakage can occur. We emphasize that our contracts also
support higher-order masking, branching, and secret-dependent
memory accesses needed for masked table lookups [15].
2. Hardware Compliance. We present a method to automatically
verify the compliance of a processor with a contract. Verification
ensures that the leakage of every gate is captured by a leakage
specification in the contract and that the contract specifies correct
instruction semantics. Our methodology is based on the intuition
that if the contract properly models the hardware, then any leakage
arising in the hardware can be computed from leakage produced
during an execution in the contract. The verification encodes both
hardware and contract execution, respectively leakage, as SMT
formulas and checks for model gaps using the SMT solver Z3 [6, 19].
If the solver finds no cases where a hardware leakage is not modeled
from the contract leakage, we have proven hardware compliance.
3. Case Study. We implement our methods in a tool and apply
them to the popular RISC-V IBEX core [32], resulting in a ver-
ifiably complete contract for a wide range of instructions that
are commonly used for cryptographic implementations. An ap-
proach for the verification of masked software implementations
from Barthe et al. [9] can then easily be adopted to prove the ab-
sence of order-reducing leakage of masked software that is executed
on a compliant CPU hardware. The contract, which is based on the
official RISC-V reference models, is provided as an artifact.

2 SIDE-CHANNEL RESILIENCE

We introduce preliminaries for side-channel security. Hardware
circuits and their power side-channel leakage are modeled in Sec-
tion 2.1. In Section 2.2, we recall the masking countermeasure and
the formal notions of provable side-channel resilience.

2.1 Hardware Model and Gate-level Leakage

Processors are digital hardware circuits which can bemodeled using
labeled directed graphs. For any given circuit (𝐺,𝑊 , 𝐿), we say that
𝐺 is the set of gates,𝑊 ⊆ 𝐺 ×𝐺 is the set of wires connecting the
gates, and 𝐿 : 𝐺 → 𝑇 is a labeling defining the type 𝜏 ∈ 𝑇 of each
gate 𝑔 ∈ 𝐺 . The types 𝑇 depend on the technology that realizes the
circuit. In addition to combinatorial gates we only require that the
technology contains an input type 𝜏in and a register type 𝜏reg. Input
gates only have outgoing wires, and register gates only have one
incomingwire. Additionally, every cyclic path in the circuit contains
at least one register gate. The state of a circuit is completely defined
by the values of its inputs and registers, referred to as locations,
denoted with 𝑉ℎ =

{
𝑔 ∈ 𝐺 | 𝐿(𝑔) ∈

{
𝜏in, 𝜏reg

}}
. Hardware states

are denoted with 𝜎ℎ ∈ B
��𝑉ℎ

��, with optional subscripts. Any location
𝑣ℎ ∈ 𝑉ℎ just returns the appropriate bit of the state. Any gate 𝑔
is a function of a state, i.e., 𝑔 : B

��𝑉ℎ
�� → B where gate 𝑔 ∈ 𝐺 \ 𝑉

combines state bits according to its type 𝜏 .
The execution of a circuit happens in clock cycles. For a state

𝜎ℎ
𝑗
, we denote the next state as 𝜎ℎ

𝑗+1. The registers of the next state
have values reflecting the values of their inputs in the previous
cycle, i.e., 𝑔(𝜎ℎ

𝑗+1) := 𝑔′(𝜎ℎ
𝑗
) with (𝑔′, 𝑔) ∈ 𝑊 , whereas the next

state of circuit inputs is determined by the environment.

Power Contracts: Provably Complete Power Leakage Models for Processors

We now proceed to define the power side-channel leakage that is
exposed to an adversary. The root cause of power side-channels is
that CMOS logic draws power, or emits electromagnetic radiation,
mainly if a transistor switches its state. Thus, CMOS gates have
a data-dependent power consumption. The leakage behavior of
CMOS gates themselves is relatively well understood and can be
modeled by a few simple leakage effects which allow an (idealized)
probing adversary to observe the (intermediate) values of gates and
wires without any loss due to measurement noise [5, 20, 30]. The
seminal work of Ishai et al. [30] introduced value leakage which
allows an idealized adversary to observe the value of any wire
connected to a gate at the beginning or end of a cycle, i.e., its sta-
ble signal. The value leakage 𝜆𝑔 exposed by the gate is its value
𝜆𝑔 (𝜎ℎ𝑗) = 𝑔(𝜎ℎ

𝑗
) in the state 𝜎ℎ

𝑗
. Besides value leakage, additional

leakage effects are also observable in hardware. We define our ex-
tended probing model in close relation to the robust probing model
of Faust et al. [20]. Transition leakage refers to the phenomeneon
that the power consumption of CMOS gates depends on the charges
(state) of the gate before computation. As such transition leakage al-
lows observing whether the value of a gate changed during a clock
cycle but also whether the value changed from zero to one or vice-
versa. Formally, our idealized adversary is able to observe the initial
value and the resulting value of each gate. The observable gate
leakage is then the concatenation of the old and new gate values,
i.e., 𝜆𝑔 (𝜎ℎ𝑗−1, 𝜎

ℎ
𝑗
) = 𝑔(𝜎ℎ

𝑗−1) | |𝑔(𝜎
ℎ
𝑗
). This sufficiently captures any

real-world transition leakage function computable from the old and
new gate values. In addition to these main phenomena, there are
glitches caused by propagation delay in the temporary logic states
of combinatorial circuits within one clock cycle (and thus rather
ephemeral) [35] and couplings caused by inductive coupling of adja-
cent wires [17]. These can be modeled by defining 𝜆𝑔 (𝜎ℎ𝑗−1, 𝜎

ℎ
𝑗
) for

non-register gates as the concatenation of all possible values the
gate 𝑔 could take on due to these effects. We use Lℎ

0,𝑚 to denote
the observable gate-level leakage throughout the execution starting
in state 𝜎ℎ0 and ending in state 𝜎ℎ𝑚 . While the techniques described
in the following apply to all effects, for the purpose of this paper,
we focus on value leakage and transition leakage. Hence, we define
Lℎ

0,𝑚 = {𝜆ℎ𝑔 (𝜎ℎ𝑗−1, 𝜎
ℎ
𝑗
) | 𝑔 ∈ 𝐺, 1 ≤ 𝑗 < 𝑚}.

2.2 Provable Security and Simulatability

Applying masking to a cryptographic algorithm requires to replace
the primitive operations (e.g., logical conjunction, exclusive or, addi-
tion) by masked computations, often called gadgets, which compute
the same operation securely on shares [28, 30, 41, 46]. The chal-
lenge in the design and implementation of gadgets is to maintain
the security of the secret-sharing: it must remain information the-
oretically impossible to learn the secrets or intermediate values
by observing up to 𝑡 leakages caused by the circuit. In sufficiently
noisy environments this leads to an exponential gain of security
in the order of 𝑡 [13, 44]. However, many works do not take the
full gate-level leakages into account, resulting in nominally secure
implementations which are exploitable at an lower-than-advertised
security order. Especially for masked software, the resulting gap
in the security assurance allows to break the implementation by
observing, e.g., transition leakage of the processor executing the
program [5, 33, 42]. The focus of this work is to reduce the gap by

enabling software security assessments to include the complete set
of gate-level leakages.

We give an overview of the notation associated with masking,
and formalize gadgets and their security. Masking heavily relies on
random variables. We write the names of random variables in lower-
case, e.g., 𝑥𝑖 , and use lowercase boldface names for sets of variables,
e.g., 𝒙 = {𝑥0, . . . , 𝑥𝑛}. Each random variable 𝑥𝑖 , respectively set 𝒙 ,
is associated with a probability distribution Pr [𝑥𝑖], respectively
Pr [𝒙]. Each secret 𝑥𝑖 is encoded (masked) using 𝑑 ≥ 𝑡 + 1 shares
and we write 𝒙𝑖 = {𝑥0

𝑖
, . . . , 𝑥𝑑

𝑖
} for the shares which encode 𝑥𝑖 ,

where 𝑥 𝑗
𝑖
denotes for 0 ≤ 𝑖 < 𝑛 and 0 ≤ 𝑗 < 𝑑 the 𝑗 th share of the

𝑖th secret. The set of all shares is denoted by 𝒙 = {𝒙0, . . . , 𝒙𝑛−1}.
A gadget operates on input tuple (𝒙, 𝒓,𝒑) returning tuple (𝒚, 𝒐,L),

each consisting of random variables. The input shares 𝒙 are a set of
𝑡-wise independent encodings 𝒙𝑖 , each encoding a secret variable
𝒙𝑖 . 𝒓 represents a set of independent and uniformly random vari-
ables, 𝒑 are public inputs independent of secrets. The output of a
gadget consist of output shares 𝒚, public outputs 𝒐, and observable
leakage L. Each individual output is a random variable 𝑦 𝑗

𝑖
(respec-

tively 𝑜𝑖) and computed as a function of the gadget’s inputs, i.e.,
𝑦
𝑗
𝑖
= 𝑓

𝑗
𝑖
(𝒙, 𝒓 ,𝒑). During its execution a gadget produces observable

leakage L = {𝜆0 (𝒙, 𝒓,𝒑), . . . , 𝜆𝑚 (𝒙, 𝒓,𝒑)}, which an attacker can
observe, e.g., through power measurements. The attacker’s goal is
to learn information about the unshared secret inputs 𝒙 .

Threshold non-interference (𝑡–NI) and strong threshold non-
interference (𝑡–SNI) are two prominent security notions for proving
the security of gadgets against idealized adversaries [7, 8]. These
have been extended in [9] into Stateful 𝑡–(S)NI to incorporate
that physical execution involves state and public in- and outputs.
Security of gadgets in these notions is shown by proving that the
observations an attacker makes can be simulated without knowing
the secret values, thereby proving that no information can be gained
from 𝑡 observations. In the following, we formalize what it means
to simulate random variables, and restate 𝑡–NI and 𝑡–SNI.

Definition 1 (Simulation Procedure). Let 𝒄 and 𝒉 be sets

of possibly related random variables and 𝒓 be a set of independent

and uniformly distributed variables. The simulation procedure 𝑆 :
Dom(𝒄 ∪ 𝒓) → Dom(𝒉) (simulator for short) samples the random

variables 𝒓 to simulate the distribution of 𝒉 from 𝒄 . We say that

simulator 𝑆 simulates 𝒉 from 𝒄 and 𝒓 if Pr [𝑆 (𝒄, 𝒓)] = Pr [𝒉].

Importantly, the variables 𝒄 and 𝒉 are not necessarily indepen-
dent, meaning Pr [𝒉 | 𝒄] could be different from Pr [𝒉], i.e., their
distributions are somehow related. This is central in the defini-
tions of Stateful 𝑡–NI and 𝑡–SNI, however, we introduce a non-
probabilistic way of modeling (instead of simulating) the outcome
of a computation from a related but different value.

Definition 2 (Modeling Function). Let 𝑓𝐻 : 𝐻 → 𝑉 and

𝑓𝐶 : 𝐶 → 𝑈 be deterministic functions. We say that a deterministic

function 𝑓𝑆 : 𝑈 → 𝑉 is a modeling function which models 𝑓𝐻 from

𝑓𝐶 under deterministic Ψ : 𝐻 ×𝐶 → B whenever

∀ℎ ∈ 𝐻, 𝑐 ∈ 𝐶 : Ψ (ℎ, 𝑐) ⇒ 𝑓𝑆 ◦ 𝑓𝐶 (𝑐) = 𝑓𝐻 (ℎ) . (1)

Definition 2 is strong: whenever modeling function 𝑓𝑆 models
𝑓𝐻 then it also simulates it, captured by Lemma 1.

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

Lemma 1 (Modeling Functions Simulate). Let 𝒉 and 𝒄 be sets
of possibly dependent random variables with deterministic function

𝑓𝐻 computing a set of dependent random variables 𝒗 and function 𝑓𝐶
computing dependent random variables 𝒖. If function 𝑓𝑆 models 𝑓𝐻
from 𝑓𝐶 whenever Ψ(𝒉, 𝒄) then it also simulates 𝒗:

Pr [𝑓𝑆 ◦ 𝑓𝐶 (𝒄) | Ψ(𝒉, 𝒄) = ⊤] = Pr [𝒉 | Ψ(𝒉, 𝒄) = ⊤] . (2)

Stateful 𝑡–(S)NI requires a probabilistic simulator to simulate
observations on leakage or outputs shares independently of secrets
and a function modeling public outputs from public inputs.

Definition 3 (Stateful 𝑡–(S)NI [7–9]). Gadget G (𝒙, 𝒓,𝒑) =
(𝒚, 𝒐,L) is Stateful 𝑡–(S)NI if for every set e ⊆ L ∪𝒚, with |e| ≤ 𝑡 ,

there exists a subset of input shares s ⊆ 𝒙 , with ∀𝑖 : |s ∩ 𝒙𝑖 | ≤
𝑡 ′ ≤ 𝑡 , a set of uniformly random variables 𝒓 ′, a modeling function

𝐹 : Dom(𝒑) → Dom(𝒐) modeling public outputs 𝒐 from public

inputs 𝒑 and a simulator 𝑆 : Dom(s, 𝒓 ′,𝒑) → Dom(e) simulating
observations e from a subset of shares s, random 𝒓 ′ and public inputs
𝒑 such that Pr [𝑆 (s, 𝒓 ′,𝒑) , 𝐹 (𝒑)] = Pr [e, 𝒐] and 𝒐 = 𝐹 (𝒑). For
𝑡–NI 𝑡 ′ = |e| while the stricter 𝑡–SNI notion requires 𝑡 ′ = |e\𝒚 |.

The tool scVerif allows proving software gadgets secure un-
der these notions for custom definitions of the observable leakage
behavior L [9]. However, to prove security with respect to gate-
level leakage, the provided model of L must capture absolutely all
gate-level leakages of the CPU executing a gadget. In case a gate-
level leakage is modeled incorrectly, the tool could assert security
although the gadget can be broken with less than 𝑡 observations at
the gate-level. As analyzed by Balasch et al. [5], such leakage may
halve the security order, i.e., 𝑡 ′ = 𝑡

2 . Even worse, Gigerl et al. report
protection losses that scale with the number of processor pipeline
stages [26]. Our work mitigates such losses by verifying that all
gate-level leakages are modeled.

3 HARDWARE-SOFTWARE CONTRACTS

In Sections 3.1 and 3.2, we describe how to build a contract which
completely captures the leakage exposed by every single gate of a
processor. We introduce our DSL called Genoa and demonstrate it
by describing our contract for IBEX. In Section 3.3 we define how to
verify the security of masked software against the model specified
in a contract.

We then turn towards the question of model completeness: In
Section 3.4 we define compliance, a property which connects gate-
level leakage of a processor to the leakage model specified in a
contract. Finally, we prove E2E security by showing that if a pro-
cessor’s hardware complies with a contract, the contract models all
gate-level leakages. This allows to reduce security assessments to
the model specified in the contract and allows to show that when-
ever a specific masked software implementation is secure in the
contract, then, the security order of the software is not reduced
when executed on real, compliant hardware. In Section 4 we derive
an automated verification tool to check compliance w.r.t. gate-level
transition leakage of realistic processors.

3.1 Expressing Contracts in Genoa

A contract defines the instruction semantics and exposed side-
channel information of a processor from the perspective of a soft-
ware developer, i.e., which data is leaked via power side-channels

Listing 1: Contract model of state defined in Genoa.

1 // adopted from RISCV Sail Model, see license in Listing 6
2 register PC : bits(32)
3 register nextPC : bits(32)
4 register x1 : bits(32) . . .

5 // shadow registers
6 register rf_pA : bits(32) // register file read port A
7 register rf_pB : bits(32) // register file read port B
8 register mem_last_addr : bits(32) // address of last access
9 register mem_last_read : bits(32) // value of last access

when an instruction is executed in conjunction with the seman-
tic of the instruction. Contracts must specify correct instruction
semantics to be able to express accurate data leakage. Besides the in-
struction perspective contracts allow to execute and thereby model
entire programs. In practice, a contract is a user-supplied text file
containing specifications of instructions written in Genoa, which
is an extension of the industry-grade Sail DSL [4]. In a nutshell,
Sail is designed to model the semantic of instructions of arbitrary
ISAs and we add the ability to specify leakage.

Genoa extends Sail by a dedicated leak statement to express
that specific values are observable through a side-channel. For
example, a statement of the form leak(val1, val2) indicates that
the processor may leak any combination of the source operands,
i.e., any value that can be computed using these operands. Users are
free to specify more fine-grained leakage using concrete functions,
e.g., the Hamming-Distance. Barthe et al. applied this concept in [9]
to a custom DSL but require users to develop complex models from
scratch, involving considerable effort. As we will show, modeling
leakage in a contract becomes as easy as adding few leak statements
to one of the many existing Sail models for RISC-V, Arm, etc.
(Genoa supports all Sail models), providing an interface to our
tool and applying it to check for modeling gaps (more on this in
Section 5) Our contract for IBEX is shown in Listings 1 to 6.

The Sail manual [2] and the work of Armstrong et al. [4] provide
in-depth explanations of the syntax, we give a brief overview. In
Listing 1 we define the architectural state of a processor, consisting
of 32-bit registers which are declared as global variables. Additional
shadow registers are introduced to model leakage which arises from
microarchitectural state in hardware. For example, rf_pA is used to
remember the value last read from the register file but is not used
in the specification of instruction semantics. Its value is maintained
in the model and later on leaked in leak statements to model leak-
age of instructions accessing the register file since such leakage
involves the value of the register read last [43]. Every contract must
specify a step function defining how a single instruction is executed.
For IBEX, step_ibex shown in Listing 2 decodes the machine code
instruction (encdec) provided as parameter op and returns whether
the instruction executes (execute) successfully. Both encdec and
execute are scattered into multiple clauses which describe the
decoding, respectively execution, for a few instructions loosely be-
longing to a category (see Listing 6). Each category is represented
by a datatype ast, e.g., RTYPE for instructions operating on three
ISA registers, represented by three indices for destination and two
operands, as well as another datatype rop for different operations.
Listing 3 shows the model of RTYPE instructions; encdec maps be-
tween instruction bits and ast representations using conditional

Power Contracts: Provably Complete Power Leakage Models for Processors

Listing 2: Model of instruction-step 𝜒 defined in Genoa.

1 // adopted from RISCV Sail Model, see license in Listing 6
2 function step_ibex (op : bits(32)) -> bool = {
3 nextPC = PC + 4;
4 let instruction = encdec(op);
5 let ret = execute(instruction);
6 tick_pc();
7 match ret {
8 RETIRE_SUCCESS => return true,
9 RETIRE_FAIL => return false}}

Listing 3: Contract model of R-type instructions in Genoa.

1 // adopted from RISCV Sail Model, see license in Listing 6
2 type regidx = bits(5) // index of register 0b00001 = x1
3 enum rop = {RISCV_ADD, RISCV_SUB, RISCV_SLL, RISCV_SLT,

↩→ RISCV_SLTU, RISCV_XOR, RISCV_SRL, RISCV_SRA,
↩→ RISCV_OR, RISCV_AND}

4 union clause ast = RTYPE : (regidx, regidx, regidx, rop),
5 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)
6 <-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011
7 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)
8 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_SLT)
9 <-> 0b0000000 @ rs2 @ rs1 @ 0b010 @ rd @ 0b0110011
10 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)
11 . . .

12 function clause execute (RTYPE(rs2, rs1, rd, op)) = {
13 let rs1_val = X(rs1);
14 let rs2_val = X(rs2);
15 common_leakage(rs1_val, rs2_val);
16 let result : bits(32) = match op {
17 RISCV_ADD => rs1_val + rs2_val,
18 RISCV_SLT => EXTZ(bool_to_bits(rs1_val <_s rs2_val)),
19 . . . };
20 overwrite_leakage(rd, result);
21 X(rd) = result;
22 return RETIRE_SUCCESS}

pattern matching. In line 6 rs1 represents the index bits of the first
source register. The instruction semantic and leakage is specified in
execute, X(rs1) returns the value of the register addressed by rs1.
Leakage which is common across multiple instruction categories
is exposed with a call to function common_leakage (we defer the
descriptions to Section 5.2, Listing 4). The semantics of the differ-
ent operations (add, signed less than, etc.) is defined in the match

statement. Additional leakage is specified by overwrite_leakage

(Listing 6) before writing the result to the destination register. In
summary, Genoa allows designers to quickly construct and ad-
just contracts, while the human-readable specification supports the
systematic development of side-channel protected software.

3.2 Contract Formalization

In the previous section we explained how to express contracts in the
Genoa DSL. We now describe Genoa’s profound formal semantics
which is the basis for security verification and compliance checking.

The small-steps semantics of Genoa are defined as a reduction:

(𝛿, 𝑠,L) ↦→
(
𝛿 ′, 𝑠 ′,L′

)
. (3)

𝛿 is the context containing the definition of functions and the values
of local and global variables, 𝑠 is a sequence of statements and L

is the leakage exposed during execution. After the execution of
one Genoa statement (not to be confused with an instruction) 𝛿 ′ is
the resulting context, 𝑠 ′ are the remaining statements and L′ ⊇ L

is the resulting leakage. Leakage cannot be erased. All statements
except leak do not add leakage and their transformation rules stay
the same as in Sail [3]. A leak statement appends its operands
𝑣1, . . . , 𝑣𝑛 to the execution leakage (·; · is a sequence of statements).

(𝛿, leak (𝑣1, . . . , 𝑣𝑛) ; 𝑠,L) ↦→
(
𝛿, 𝑠,L ∪

{
𝑣1 (𝜎𝑐) | | . . . | |𝑣𝑛 (𝜎𝑐)

})
.

(4)
A leak statement may expose multiple values, which allows

abstracting away from particular assumptions such as Hamming-
Distance leakage, as processors are allowed to leak any combination
of the values exposed by a leak. While Genoa does not feature a
construct to sample random values, sampling can be mimicked by
reading from a dedicated state region containing randomness.

The behavior of a program is defined by user-supplied execu-
tions semantics which are specified in the contract. The contract
specification written in Genoa thus defines the context 𝛿 for small-
step execution and, as for hardware, the contract state 𝜎𝑐 ∈ B |𝑉 𝑐 |

denotes the values of variables 𝑣𝑐 ∈ 𝑉 𝑐 , further on referred to as
locations. Based on these definitions, we can now define the seman-
tics for the execution of an entire instruction, denoted by the step
function 𝜒 , starting in state 𝜎𝑐

𝑖
and returning the state 𝜎𝑐

𝑖+1 and a
set of side-channel leakages L𝑐

𝑖
of executing the 𝑖th instruction:

𝜒
(
𝜎𝑐𝑖

)
=
(
𝜎𝑐𝑖+1,L

𝑐
𝑖

)
(5)

The instruction to be executed is determined by the state 𝜎𝑐
𝑖
it-

self, e.g., by the value of the program counter. The execution of
an instruction corresponds to the many-steps evaluation of the
instruction-steps function 𝜒 using the small-steps semantics de-
scribed before. 𝜒 is part of the contract (for IBEX step_ibex) and
supplied by the user; to simplify our tool state𝜎𝑐

𝑖
is implicitly passed

while the instruction to be executed is passed explicitly. A step can
either fail or succeed, indicated by a Boolean flag, the criteria for
failing the execution is governed by user-defined assumptions. For
IBEX these prohibit illegal instructions, accesses of non-existent
registers or unaligned memory accesses. In the following, we depict
execution of an entire instruction in the contract with:

𝜎𝑐𝑖

L𝑐
𝑖−−−⇀ 𝜎𝑐𝑖+1 (6)

Finally, we define the execution of programs in a contract. Con-
tract ⟦·⟧𝑐 models the execution of program P starting in initial
state 𝜎𝑐0 and resulting in state 𝜎𝑐𝑛 while producing the accumulated
observable side-channel information L𝑐

0,𝑛 =
⋃𝑛−1

𝑖=0 L𝑐
𝑖
, i.e.,

⟦P⟧𝑐
(
𝜎𝑐0

)
=

(
𝜎𝑐𝑛,L

𝑐
0,𝑛

)
. (7)

3.3 Software Security

In this section we link security of abstract gadgets to the execu-
tion in a contract or on hardware, i.e., we define security w.r.t. the
leakages specified in a contract or gate-level leakage of a processor.

Gadgets have as inputs and outputs either shares, random or
public values, which are linked to the definition of Stateful 𝑡–(S)NI
(Definition 3). However, when the implementation of a gadget is

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

executed within a contract or hardware then the gadget’s inputs are
located in the state 𝜎 with an implementation-specific placement,
e.g., shares could be in registers or memory. We introduce policies
𝜋 to translate between the structured in- and outputs of a gadget
and the states in a contract, respectively hardware. Input policy
𝜋in : (𝒙, 𝒓 ,𝒑) ↔ 𝜎0 constructs a state given values of variables for
input shares, random and public variables but also the converse;
extracting the values of gadget inputs given a state. In practice, such
a policy is an annotation which defines where shares, random and
public (initial) values are located w.r.t. locations of the state. Similar,
output policy 𝜋out : (𝒚, 𝒐) ↔ 𝜎𝑛 maps between the values of
public outputs and output shares of a gadget and state 𝜎𝑛 resulting
from an execution. Since Stateful 𝑡–(S)NI is defined for random
variables let 𝝈 denote the random variable for states. Using policies
we can link Stateful 𝑡–(S)NI security of gadgets to the execution
of their concrete implementation P within big-steps semantics ⟦·⟧
representing either the contract or hardware:

Definition 4 (𝑡–(S)NI of ⟦P⟧ under 𝜋𝑖𝑛, 𝜋𝑜𝑢𝑡). An implemen-

tation P of gadgetG (𝒙, 𝒓,𝒑) is 𝑡–(S)NI secure w.r.t. semantic ⟦·⟧ and
placement policies 𝜋in, 𝜋out if the gadget G′ (𝒙, 𝒓,𝒑) =

(
𝒚, 𝒐,L0,𝑛

)
is 𝑡–(S)NI according to Definition 3, where the inputs of the gadget

correspond to the starting states 𝝈0 = 𝜋in (𝒙, 𝒓,𝒑) while leakages and
gadget outputs correspond to the random variables 𝜋out (𝒚, 𝒐) = 𝝈𝑛
resulting from execution ⟦P⟧(𝝈0) = (𝝈𝑛,L0,𝑛).

The actual verification of security for software implementations
follows the same principles as outlined by Barthe et al. [9], which
also describes representation of policies. However, the dependent
type system of Genoa enables new approaches to verification of
masked conversion functions and arithmetic masking in rings with
prime moduli for security orders 𝑡 > 1. We leave the development
of verification tools to dedicated future work.

3.4 Hardware Compliance With a Contract

We now turn towards the question of model completeness and de-
fine compliance with a contract, a formal property expressing that
the results and leakages from execution on a CPU can be modeled
by a contract according to Definition 2. This property is verified
in Section 4 and ensures, as we prove in Section 3.5, that any im-
plementation that is Stateful 𝑡–(S)NI secure in a contract mitigates
any order-reducing leakage caused by the gate-level leakage of a
processor.

A program P executed in initial hardware state 𝜎ℎ0 leads to leak-
ages Lℎ

0,𝑚 and final state 𝜎ℎ𝑚 when executed on processor ⟦·⟧ℎ :

⟦P⟧ℎ
(
𝜎ℎ0

)
=

(
𝜎ℎ𝑚,Lℎ

0,𝑚

)
(8)

In contrast to contracts the execution proceeds in clock-cycles
instead of instruction-steps, i.e., one step in hardware corresponds
to one clock cycle as defined in Section 2.1:

𝜎ℎ𝑗
Lℎ

𝑗−−−⇁ 𝜎ℎ𝑗+1 . (9)

Compliance expresses the property that all leakage and all out-
puts of hardware execution ⟦·⟧ℎ can be modeled (according to Def-
inition 2) from execution in a contract ⟦·⟧𝑐 as long as the starting
states are similar, i.e., execute the same program under equivalent
inputs, depicted in Figure 1.

⟦P⟧𝑐
(
𝜎𝑐0

)
: 𝜎𝑐0 𝜎𝑐1 . . . 𝜎𝑐𝑛

⟦P⟧ℎ
(
𝜎ℎ0

)
: 𝜎ℎ0 𝜎ℎ1 . . . 𝜎ℎ𝑚

L𝑐
0

M

L𝑐
1 L𝑐

𝑛−1

M

Lℎ
0 Lℎ

1 Lℎ
𝑚−1

Figure 1: Compliance for a full program execution

In Definition 5 we introduce a Boolean relation between hard-
ware state 𝜎ℎ and contract state 𝜎𝑐 expressing that the values con-
tained at a specific location 𝑣ℎ in the hardware can be modeled from
a location 𝑣𝑐 in the contract, e.g., register x1 models its counterpart
in hardware. Which contract locations model some hardware lo-
cation is defined in the simulation mappingM provided by users
alongside every contract and checked by our tool. The mapping
specifies for all registers in the hardware (including finite state
machines, decode stages, etc.) a location in the contract modeling
the hardware location. To ease notation assume there are contract
locations 𝑣𝑐0, 𝑣

𝑐
1 ∈ 𝑉

𝑐 which are constant zero, respectively one, and
are later on used to express constraints on hardware execution.

Definition 5 (Similar states: 𝜎ℎ ≃M 𝜎𝑐). Two states 𝜎ℎ and

𝜎𝑐 , with respective locations 𝑉ℎ
and 𝑉 𝑐

are similar under simulation

mappingM ⊆ 𝑉ℎ ×𝑉 𝑐
, written as 𝜎ℎ ≃M 𝜎𝑐 , if and only if∧

(𝑣ℎ,𝑣𝑐)∈M
𝑣ℎ (𝜎ℎ) = 𝑣𝑐 (𝜎𝑐) (10)

Simulation mappingM is said to be complete if for all hardware
locations 𝑉ℎ

a mapping is defined.

Wenow give the definition of compliance, ensuring that semantic
and leakage of execution of hardware is correctly modeled:

Definition 6 (Compliance: ⟦·⟧ℎ ⊢M ⟦·⟧𝑐). A hardware imple-

mentation is compliant with a contract under simulation mapping

M if for every program P and starting hardware and contract states

𝜎ℎ0 and 𝜎𝑐0 , the program executions

⟦P⟧𝑐
(
𝜎𝑐0

)
=

(
𝜎𝑐𝑛,L

𝑐
0,𝑛

)
and ⟦P⟧ℎ

(
𝜎ℎ0

)
=

(
𝜎ℎ𝑚,Lℎ

0,𝑚

)
fulfill the following conditions:

(1) States remain similar: Whenever 𝜎ℎ0 and 𝜎𝑐0 are similar

underM, so are 𝜎ℎ𝑚 and 𝜎𝑐𝑛 :

∀𝜎ℎ0 , 𝜎
𝑐
0 : 𝜎ℎ0 ≃M 𝜎𝑐0 ⇒ 𝜎ℎ𝑚 ≃M 𝜎𝑐𝑛 . (11)

(2) Leaks are modeled: For every leak 𝜆𝑔 (𝜎ℎ𝑗−1, 𝜎
ℎ
𝑗
) ∈ Lℎ

0,𝑚 ob-

servable in hardware, there exists a leak 𝜆(𝜎𝑐
𝑖
) ∈ L𝑐

0,𝑛 in the

contract and a function 𝑓𝜆 : Dom(𝜆) → Dom(𝜆𝑔) that models

𝜆𝑔 from 𝜆 under relation 𝜎ℎ0 ≃M 𝜎𝑐0 according to Definition 2:

∀𝜎ℎ0 , 𝜎
𝑐
0 : 𝜎ℎ0 ≃M 𝜎𝑐0 ⇒ 𝑓𝜆 ◦ 𝜆

(
𝜎𝑐𝑖

)
= 𝜆𝑔

(
𝜎ℎ𝑗−1, 𝜎

ℎ
𝑗

)
. (12)

The notion of similar states allows to express a key ingredient for
the relational definition of compliance: if execution in a contract and
hardware start in a similar state, then execution must end in similar
states such that the hardware execution’s results can be modeled
according to the simulation mapping (Clause 1 of Definition 6).
Further, the second part of compliance expresses that every gate-
level leak observable during execution in hardwaremust bemodeled

Power Contracts: Provably Complete Power Leakage Models for Processors

by a single, fixed leak observable during execution in the contract
(Clause 2 of Definition 6). Combined, this guarantees that software
which is Stateful 𝑡–(S)NI secure when executed in the contract, is
necessarily Stateful 𝑡–(S)NIwhen executed on compliant hardware.

3.5 End-to-end security

It remains to prove our E2E security claim: any implementation P
of gadget G that is Stateful 𝑡–(S)NI w.r.t. the leakages of a contract
must be Stateful 𝑡–(S)NI w.r.t. all gate-level leakage when executed
on any compliant hardware and as such its security order cannot
be decreased by leakage of the processor.

However, E2E security is claimed for the execution of the same
gadget implementation in hardware and contract, i.e., both execu-
tions use the same structured inputs and outputs. Since the states
in hardware and contract may have different structures we intro-
duce a definition to ensure that the placement of inputs in hard-
ware 𝜋ℎin, 𝜋

ℎ
out is similar to the ones 𝜋𝑐in, 𝜋

𝑐
out for which 𝑡–(S)NI was

shown in the contract. A hardware policy can be derived from a
contract policy by substituting the locations which define where a
value resides in the state according to the simulation mapping.

Definition 7 (Similar Policy (𝜋ℎ ≜M 𝜋𝑐)). Let contract policy
𝜋𝑐 : (𝒅1, . . . , 𝒅𝑛) ↔ 𝜎𝑐 link sets of values 𝒅1, . . . , 𝒅𝒏 to contract state

𝜎𝑐 . Hardware policy 𝜋ℎ : (𝒅1, . . . , 𝒅𝑛) ↔ 𝜎ℎ is similar to 𝜋𝑐 , denoted

𝜋ℎ ≜M 𝜋𝑐 if any pair of contract and hardware states constructed

from the same sets of values are similar under mappingM:

∀𝜎ℎ = 𝜋ℎ (𝒅1, . . . , 𝒅𝑛) , 𝜎𝑐 = 𝜋𝑐 (𝒅1, . . . , 𝒅𝑛) : 𝜎ℎ ≃M 𝜎𝑐 . (13)

Instead of proving the security reduction for 𝑡–(S)NI directly
we prove a general model reduction: any observations made by
an adversary interacting with hardware may be modeled with a
contract the hardware complies with instead. We emphasize the
difference: 𝑡–(S)NI requires the existence of a simulation proce-

dure whereas compliance guarantees the existence of a (stronger)
modeling function easing the subsequent security reduction.

Theorem 2 (Model Reduction). Let P be a program, and the gad-

gets G𝑐 (𝒙, 𝒓,𝒑) =
(
𝒚𝑐 , 𝒐𝑐 ,L𝑐

0,𝑛

)
and Gℎ (𝒙, 𝒓,𝒑) =

(
𝒚ℎ, 𝒐ℎ,Lℎ

0,𝑚

)
correspond to the program executions ⟦P⟧𝑐 (𝝈𝑐

0) = (𝝈
𝑐
𝑛,L

𝑐
0,𝑛), respec-

tively ⟦P⟧ℎ (𝝈ℎ
0) = (𝝈

ℎ
𝑚,Lℎ

0,𝑚), under policies 𝜋ℎin and 𝜋
ℎ
out

, respec-

tively 𝜋𝑐
in
and 𝜋𝑐

out
, with 𝝈𝑐

0 = 𝜋𝑐
in
(𝒙, 𝒓,𝒑), 𝝈ℎ

0 = 𝜋ℎ
in
(𝒙, 𝒓,𝒑), 𝝈𝑐

𝑛 =

𝜋𝑐
out
(𝒚𝑐 , 𝒐𝑐), and 𝝈ℎ

𝑚 = 𝜋ℎ
out

(
𝒚ℎ, 𝒐ℎ

)
. Furthermore, let ⟦·⟧ℎ ⊢M

⟦·⟧𝑐 , 𝜋ℎ
in
≜M 𝜋𝑐

in
and 𝜋ℎ

out
≜M 𝜋𝑐

out
under complete mappingM.

For every set of observations in hardware on 𝒚ℎ or 𝒐ℎ there is an

equally sized set of observations in the contract on 𝒚𝑐 or 𝒐𝑐 which

allows to model the observations under the identity function:

∀eℎ𝒚 ⊆ 𝒚ℎ ∃ e𝑐𝒚 ⊆ 𝒚𝑐 : eℎ𝒚 = e𝑐𝒚 , (14)

∀eℎ𝒐 ⊆ 𝒐ℎ ∃ e𝑐𝒐 ⊆ 𝒐𝑐 : eℎ𝒐 = e𝑐𝒐 . (15)

In addition, for every set of observations in hardware on Lℎ
0,𝑚 , a

modeling function 𝑇L
and a (potentially smaller) set of observations

in the contract on L𝑐
0,𝑛 allow to model the observations in hardware:

∀eℎ
L
⊆ L

ℎ
0,𝑚 ∃ e

𝑐
L
⊆ L

𝑐
0,𝑛 :

���e𝑐
L

��� ≤ ���eℎ
L

��� ∧ eℎ
L

= 𝑇L
(
e𝑐
L

)
. (16)

Proof. The gadgets G𝑐 and Gℎ operate on equally distributed
inputs and the policies for hardware are similar, thus for every initial
state 𝜎ℎ0 there must be a starting state 𝜎𝑐0 similar under mapping
M, i.e., 𝜎ℎ0 ≃M 𝜎𝑐0 . Since hardware is compliant with the contract,
the resulting states are similar as well, i.e., 𝜎ℎ𝑚 ≃M 𝜎𝑐𝑛 and since
every observation in eℎ𝒐 , respectively eℎ

𝒚
, is an observation on the

value of a location in 𝜎ℎ𝑚 it follows directly that there exists a
single location in the contract e𝑐𝒐 , respectively eℎ

𝒚
, according to the

mappingM which models the observation, fulfilling (14) and (15).
From Lemma 1 and the second compliance clause (12) it follows
that every observation 𝜆𝑔 (𝝈ℎ

𝑗−1,𝝈
ℎ
𝑗
) ∈ eℎ

L
can be modeled from

some contract leak 𝜆(𝝈𝑐
𝑖
) ∈ L𝑐

0,𝑛 using 𝑓𝜆 as modeling function.
Grouping the necessary 𝜆(𝝈𝑐

𝑖
) as the set of random variables e𝑐

L
,

results in
���e𝑐
L

��� ≤ ���eℎ
L

���, and defining 𝑇L as the set of respective 𝑓𝜆

implies (16), completing the proof. □

From Theorem 3, we derive simulatability of mixed observations
in Corollary 3. Furthermore, the reduction from Stateful 𝑡–(S)NI
in hardware to Stateful 𝑡–(S)NI in contract stated in Corollary 4 is
a direct consequence of Theorem 3 and Corollary 3.

Corollary 3 (Mixed observations). Let the setting be as in

Theorem 2. Every set of mixed observations on leakage and shared

outputs eℎ
L,𝒚
⊆ Lℎ ∪𝒚ℎ , can be modeled from some an equally sized

set e𝑐
L,𝒚
⊆ L𝑐 ∪𝒚𝑐 by some modeling function 𝑇L,𝒚

.

Corollary 4 (End-to-End Security). Let the setting be as in
Theorem 2. If gadget G𝑐

is 𝑡–(S)NI then gadget Gℎ
is also 𝑡–(S)NI

since there exist simulators𝑇L,𝒚 ◦𝑆 and 𝐹 which simulate the outputs

of Gℎ
according to Definition 3.

This proof is valid for higher-order masking, i.e., 𝑡 ≥ 1, as each
of the 𝑡 hardware observations in eℎ can be simulated from one

observation in e𝑐 in the contract. The presented model reduction
can be of help in proving the preservation of other security notions
like PINI [12] or Threshold Implementations [41].

4 VERIFYING HARDWARE COMPLIANCE

Whereas Section 3 introduces contracts and what it means for hard-
ware to be compliant, this section presents a method to actually
check hardware compliance for a given processor. The method is
broken down into verification steps. Each step checks if the pro-
cessor satisfies some part of Definition 6. First, we check whether
similar hardware and contract states stay similar after executing
an instruction according to Clause 1. Then, we check that each
hardware leak can be modeled from a single leak emitted in the
contract, according to Clause 2.

4.1 Verification Concept

In this section, we first suggest that it is possible to prove a processor
compliant without looking at full program executions. We argue
that looking at all possible single instruction executions is sufficient
to form an inductive argument of compliance. Next, we give an
overview of the individual verification steps needed to verify that a
processor is compliant with a given contract. Finally, we present a
method for indirectly proving the existence of modeling functions.

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

𝜎𝑐
𝑖

𝜎𝑐
𝑖+1

𝜎ℎ
𝑗

. . . 𝜎ℎ
𝑗+𝑘

L𝑐
𝑖

M

Lℎ
𝑗

M

Lℎ
𝑗+𝑘−1

Figure 2: Compliance for single instruction execution

This method is the backbone of the verification procedure and
relies on encoding constraints into SMT formulas and checking
their satisfiability with an SMT solver.

Single instructions. Checking compliance for all programs and
pairs of processors and contracts using SMT solvers is computa-
tionally intractable. Instead we prove compliance inductively by
showing that Definition 6 holds for all possible executions of a
single instruction. Consequently, we require compliant processors
to fulfill the outlined properties at the start and end of each instruc-
tion, as shown in Figure 2. Starting with similar states 𝜎ℎ

𝑗
and 𝜎𝑐

𝑖
,

the hardware executes 𝑘 clock cycles and the contract executes one
instruction step. The executions produce leaks Lℎ

𝑗,𝑗+𝑘 , respectively
L𝑐
𝑖 , and state 𝜎ℎ

𝑗+𝑘 , respectively 𝜎
𝑐
𝑖+1, for which we need to show:

(a) States remain similar: The states 𝜎ℎ
𝑗+𝑘 and 𝜎𝑐

𝑖+1 are similar

underM (marked red), i.e., every location in 𝜎ℎ
𝑗+𝑘 is equal

to the corresponding location in 𝜎𝑐
𝑖+1.

(b) Leaks are modeled: Every leak 𝜆𝑔 (𝜎ℎ𝑗+𝑙−1, 𝜎
ℎ
𝑗+𝑙) ∈ L

ℎ
𝑗,𝑗+𝑘 pro-

duced by the processor (marked red) must be modeled by a
single leak 𝜆(𝜎𝑐

𝑖
) ∈ L𝑐

𝑖 emitted in the contract execution.

These conditions are inductive and much stricter than the cor-
responding clauses in Definition 6, i.e., if the execution of a single
instruction in an arbitrary valid starting state maintains the com-
pliance properties, the processor complies with the contract for all
possible program executions.

Unfortunately, as seen in Figure 2, the hardware might require
multiple clock cycles to execute an instruction, and we do not have
a lock-step execution with the contract. For the purposes of this pa-
per, we define the starting point of an instruction as the moment it
becomes in-flight, i.e., it reaches the decode stage, and its end point
when it retires, i.e., the writeback completes. Therefore, we look at
every possible instruction duration 𝑘 on that particular processor.
Concurrent execution of instructions in the pipeline complicates
this approach. For simple pipelines, contracts can easily model the
produced leakage because the fetch stage does not operate with
security-critical data, and the writeback stage can be made the syn-
chronisation point for the induction, instead of its full retirement.
In more complex pipelines, the methods described in this paper re-
quire checking leakage produced by hardware components directly
influenced by the instruction bits.

Verifying that states remain similar. As the very first step in the
verification procedure, we show that the hardware and contract
states are similar throughout the whole execution. That is, we show
that if the relation 𝜎ℎ

𝑗
≃M 𝜎𝑐

𝑖
holds, the relation 𝜎ℎ

𝑗+𝑘 ≃M 𝜎𝑐
𝑖+1 must

hold after the execution of a 𝑘-cycle instruction i.e., 𝜎ℎ
𝑗+𝑘 = 𝜒𝑘 (𝜎ℎ

𝑗
)

and 𝜎𝑐
𝑖+𝑖 = 𝜒 (𝜎𝑐

𝑖
), no matter what the starting states were. This

is essentially a full-fledged functional equivalence proof between
the hardware and the contract. If this check succeeds, we have

shown that the processor satisfies Clause 1 of Definition 6 because
≃M is conserved over the execution of an instruction. Section 4.3
formalizes the verification step and gives a verification method.

Finding modeling functions for gates. Before verifying that leaks
are modeled, we require an intermediate verification step that pro-
vides information about the old values of gates. This constrains the
old values of each gate 𝑔, therefore implicitly constraining the pos-
sible values of the corresponding leak 𝜆𝑔 . Otherwise, the old value
could directly leak secrets, trivially breaking leakage modeling. For
every gate 𝑔 ∈ 𝐺 in the hardware, we show that 𝑔 can be modeled
by some function 𝑓𝑔 : B𝑛 → B that only uses a (small) subset of
contract state bits 𝜃𝑔 : B |𝑉

𝑐 | → B𝑛 , i.e.,

∃𝑓𝑔 : ∀𝜎ℎ𝑗 , 𝜎
𝑐
𝑖 : 𝜎ℎ𝑗 ≃M 𝜎𝑐𝑖 ⇒ 𝑓𝑔 ◦𝜃𝑔 ◦ 𝜒

(
𝜎𝑐𝑖

)
= 𝑔◦ 𝜒𝑘−1

(
𝜎ℎ𝑗

)
. (17)

Ideally, we want to prove the existence of a modeling function that
uses as little contract state information 𝜃𝑔 as possible. Section 4.4
gives exact definitions of the verification checks and the greedy
minimization procedure for 𝜃𝑔 .

Verifying that leaks are modeled. In this verification step, we
check whether the hardware leakage is properly modeled from
contract leakage for any possible instruction execution, starting
in any pair of similar states 𝜎ℎ

𝑗
≃M 𝜎𝑐

𝑖
. If the check succeeds, the

proper modeling throughout any program execution is implied by
composition of single instructions. Because we consider transition
leakage, we constrain the possible values of gates at the end of the
previous instruction. As mentioned before, we use the existence of
a modeling function 𝑓𝑔 according to (17) from the previous step.

The hardware leak 𝜆𝑔 (𝜎ℎ𝑗+𝑙−1, 𝜎
ℎ
𝑗+𝑙) = 𝑔(𝜎ℎ

𝑗+𝑙−1) | |𝑔(𝜎
ℎ
𝑗+𝑙) con-

tains information about both the old, and the new values of gate 𝑔
for any clock cycle 𝑙 of the executed instruction. We analyze each
hardware leak function 𝜆𝑔 separately by going through all leak-
age functions 𝜆 : B |𝑉

𝑐 | → B𝑚 and checking if there is a function
𝑓𝜆 : B𝑚 → B2 that models 𝜆𝑔 from 𝜆, whenever states 𝜎ℎ

𝑗
and 𝜎𝑐

𝑖

are similar, the contract leak is emmitted, i.e., 𝜆(𝜎𝑐
𝑖
) ∈ L𝑐

𝑖 , and 𝑓𝑔
models the previous value of the gate 𝑔 from 𝜃𝑔 . Written formally:

∀𝜎ℎ𝑗 , 𝜎
𝑐
𝑖 : 𝜎ℎ𝑗 ≃M 𝜎𝑐𝑖 ∧ 𝑓𝑔 ◦ 𝜃𝑔 ◦ 𝜒

(
𝜎𝑐𝑖

)
= 𝑔 ◦ 𝜒𝑘−1

(
𝜎ℎ𝑗

)
∧

𝜆
(
𝜎𝑐𝑖

)
∈ L𝑐

𝑖 ⇒ 𝑓𝜆 ◦ 𝜆
(
𝜎𝑐𝑖

)
= 𝜆𝑔

(
𝜎ℎ
𝑗+𝑙−1, 𝜎

ℎ
𝑗+𝑙

)
.

(18)

Additionally, we require that for any possible state 𝜎𝑐
𝑖
at least one

leak 𝜆 fulfills (18), guaranteeing that Caluse 2 of the compliance
definition is fulfilled. Section 4.5 gives a more detailed description.

Existence of modeling functions. Within the last two verifica-
tion steps, we check that functions over the hardware state 𝜎ℎ can
be modeled from functions over the contract state 𝜎𝑐 whenever
𝜎ℎ ≃M 𝜎𝑐 . This involves proving the existence of modeling func-
tions from Definition 2. However, automatically finding modeling
functions is intractable in general [21]. We circumvent this issue by
proving the existence of modeling functions without finding their
definitions. Theorem 5 presents the condition we need to check.

Theorem 5 (Existence of Modeling Function). There exists a
modeling function 𝑓 : 𝑈 → 𝑉 according to Def. 2 if and only if

∀ℎ,ℎ′ ∈ 𝐻, 𝑐, 𝑐 ′ ∈ 𝐶 :

Ψ (ℎ, 𝑐) ∧ Ψ
(
ℎ′, 𝑐 ′

)
∧ 𝑓𝐶 (𝑐) = 𝑓𝐶

(
𝑐 ′
)
⇒ 𝑓𝐻 (ℎ) = 𝑓𝐻

(
ℎ′
)
.

(19)

Power Contracts: Provably Complete Power Leakage Models for Processors

Proof. We prove the equality of the two statements by showing
an implication in both directions. First, we prove that (19) follows
from (1). From the functional congruence of 𝑓 , we have:

∀𝑐, 𝑐 ′ ∈ 𝐶 :
(
𝑓𝐶 (𝑐) = 𝑓𝐶

(
𝑐 ′
))
⇒

(
𝑓 ◦ 𝑓𝐶 (𝑐) = 𝑓 ◦ 𝑓𝐶

(
𝑐 ′
))
.

After instantiating the statement (1) separately for the primed and
non-primed versions of ℎ ∈ 𝐻 and 𝑐 ∈ 𝐶 , we get:

∀ℎ ∈ 𝐻, 𝑐 ∈ 𝐶 : Ψ (ℎ, 𝑐) ⇒ 𝑓 ◦ 𝑓𝐶 (𝑐) = 𝑓𝐻 (ℎ) ,
∀ℎ′ ∈ 𝐻, 𝑐 ′ ∈ 𝐶 : Ψ

(
ℎ′, 𝑐 ′

)
⇒ 𝑓 ◦ 𝑓𝐶

(
𝑐 ′
)
= 𝑓𝐻

(
ℎ′
)
.

We see that if all three premises are fulfilled simultaneously, then
also all consequences of the implication must be fulfilled simultane-
ously. Therefore, we consolidate the left- and right-hand sides. Af-
terwards, we simplify the right-hand side by substituting 𝑓 ◦ 𝑓𝐶 (𝑐)
with 𝑓𝐻 (ℎ), and respectively 𝑓 ◦ 𝑓𝐶 (𝑐 ′) with 𝑓𝐻 (ℎ′), to get (19).

For the second direction of the proof, we assume (19) and con-
struct 𝑓 so that it fulfills (1) and is well defined for all 𝑢 ∈ 𝑈 . First,
we define the subset𝑈 ⊆ 𝑈 of function inputs as

𝑈 := {𝑢 | ∃ℎ ∈ 𝐻, 𝑐 ∈ 𝐶 : 𝑢 = 𝑓𝐶 (𝑐) ∧ Ψ (ℎ, 𝑐)} . (20)

For inputs 𝑢 ∈ 𝑈 \𝑈 , we define 𝑓 (𝑢) as an arbitrary result 𝑣 ∈ 𝑉 .
This partial definition trivially fulfills (1). For all other 𝑢 ∈ 𝑈 , we
define 𝑓 (𝑢) := 𝑓𝐻 (ℎ), for an arbitrary qualified ℎ and 𝑐 as in (20).
We now argue that this portion of 𝑓 is well defined, because 𝑓𝐻 (ℎ)
is fixed for 𝑢. Consider the case where we can pick two such pairs:

∃ℎ,ℎ′ ∈ 𝐻, 𝑐, 𝑐 ′ ∈ 𝐶 : 𝑢 = 𝑓𝐶 (𝑐) ∧ Ψ (ℎ, 𝑐) ∧
𝑢 = 𝑓𝐶

(
𝑐 ′
)
∧ Ψ

(
ℎ′, 𝑐 ′

)
.

Because 𝑓𝐶 (𝑐) = 𝑓𝐶 (𝑐 ′) = 𝑢, the assumption (19) implies that
𝑓𝐻 (ℎ) is unique since we always get 𝑓𝐻 (ℎ′) = 𝑓𝐻 (ℎ). □

The underlying principle behind Theorem 5 can be thought of
as partial functional congruence. Plainly speaking, if equal inputs
𝑓𝐶 (𝑐) and 𝑓𝐶 (𝑐 ′) always result in equal outputs 𝑓𝐻 (ℎ) and 𝑓𝐻 (ℎ′),
then there must also be a function mapping between them. More-
over, Theorem 5 can be translated into the quantifier-free SMT
fragment and efficiently checked for satisfiability with modern
SMT solvers.

4.2 Verification Prerequisites

Real program execution within a processor is subject to many inter-
nal assumptions and restrictions that need to be considered when
checking the compliance properties. In particular, we define normal

operating conditions for the execution of an instruction, as well as
constraints related to the mappingM from Section 3.4.

Normal operating conditions. The hardware of a processor has
many input ports and internal registers that are invisible to a soft-
ware developer and are subject to hidden assumptions under nor-
mal operating conditions. In this section, we introduce predicates
𝜙_ to explicitly represent these assumptions. We use the predicate
𝜙dev (𝜎

ℎ) to represent the usual assumptions a software developer
might have, such as the processor not getting reset, triggering an
interrupt, going into debug mode, or getting memory access errors.
Similarly, there are several internal conditions for the processor
to fetch, start the execution of, and retire an instruction. We for-
malize these conditions as 𝜙𝑙instr (𝜎

ℎ), 0 ≤ 𝑙 < 𝑘 for the 𝑙-th cycle
in 𝑘-cycle instructions and apply them for the intermediate states

𝜎ℎ
𝑗+𝑙 = 𝜒𝑙 (𝜎ℎ

𝑗
). Sometimes, the contract is not able to execute an

instruction because it violates some sanity conditions such as the
instruction not being implemented or triggering a fault. We formal-
ize the condition of the contract successfully retiring an instruction
as 𝜙ret (𝜎𝑐). We aggregate these conditions into 𝜙noc as

𝜙noc

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
:= 𝜙ret

(
𝜎𝑐𝑖

)
∧

𝑘−1∧
𝑙=0

𝜙dev

(
𝜎ℎ
𝑗+𝑙

)
∧ 𝜙𝑙instr

(
𝜎ℎ
𝑗+𝑙

)
.

There are also some constraints that concern multiple execu-
tions of the hardware and contract. For such predicates we write 𝜙∗_
instead. We define 𝜙∗ports (𝜎ℎ, 𝜎ℎ

′) as the constraint that certain pro-
cessor input ports only contain public values. More concretely, for
two executions of the hardware, these input ports are required to
produce identical values. There are also similar execution-spanning
conditions for the contract. For instance, the contract should forbid
the program counter from becoming secret dependent. The predi-
cate 𝜙∗ret (𝜎𝑐 , 𝜎𝑐

′) expresses these constraints, and is stricter than
both 𝜙ret (𝜎𝑐) and 𝜙ret (𝜎𝑐

′) separately. Finally, we extend 𝜙noc to
𝜙∗noc over several executions as

𝜙∗noc
(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖

)
:= 𝜙∗ret

(
𝜎𝑐𝑖 , 𝜎

𝑐′
𝑖

)
∧

𝑘−1∧
𝑙=0

𝜙∗ports
(
𝜎ℎ
𝑗+𝑙 , 𝜎

ℎ′

𝑗+𝑙

)
𝑘−1∧
𝑙=0

𝜙dev

(
𝜎ℎ
𝑗+𝑙

)
∧ 𝜙dev

(
𝜎ℎ
′

𝑗+𝑙

)
∧ 𝜙𝑙instr

(
𝜎ℎ
𝑗+𝑙

)
∧ 𝜙𝑙instr

(
𝜎ℎ
′

𝑗+𝑙

)
.

Breaking any of the conditions from 𝜙∗noc breaks the guarantees
provided in this work. Because these assumptions are instrumental
for correct execution, we make sure that the restrictions imposed on
the hardware still permit the execution of all instructions defined
in the contract. This sanity check confirms that software can still
execute within both the hardware and the contract, allowing the
implementation of a sensible software verifier.

Applying mappings. As introduced in Section 3.4, hardware and
contract states can be similar under a mapping. For expressing that
two states 𝜎ℎ and 𝜎𝑐 are similar under mappingM, i.e., 𝜎ℎ ≃M 𝜎𝑐 ,
we use the predicate 𝜙Mrel (𝜎

ℎ, 𝜎𝑐) as defined in (10). Conversely, we
also require a predicate expressing that all registers, which are not
in the mappingM, are equivalent across hardware executions of
the same program. We specify this property of two hardware states
𝜎ℎ and 𝜎ℎ

′
for the mappingM and hardware locations 𝑉ℎ as

𝜙M∗pub

(
𝜎ℎ, 𝜎ℎ

′)
:=

∧
𝑣ℎ ∈𝑉ℎ,�(𝑣ℎ,𝑣𝑐) ∈M

𝑣ℎ
(
𝜎ℎ

)
= 𝑣ℎ

(
𝜎ℎ
′)
.

4.3 Verifying that States Remain Similar

As introduced in Section 4.1, we verify that the hardware and con-
tract states resulting from the execution of a program are similar by
showing similarity after every instruction. Our inductive argument
assumes that the states 𝜎ℎ

𝑗
and 𝜎𝑐

𝑖
are similar at the start of an

instruction, and proves that the states 𝜎ℎ
𝑗+𝑘 and 𝜎ℎ

𝑖+1 are also similar
after the 𝑘-cycle instruction terminates. This is a straightforward
functional equivalence check under the assumption that 𝜙noc holds.

Proposition 1. Let 𝜎ℎ
𝑗
be a hardware state and 𝜎𝑐

𝑖
the corre-

sponding contract state under mappingM. Furthermore, let 𝜎ℎ
𝑗+𝑘 =

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

𝜒𝑘 (𝜎ℎ
𝑗
) and 𝜎𝑐

𝑖+1 = 𝜒 (𝜎𝑐
𝑖
) be the hardware and contract state after

the execution of an instruction. Inductively,

� 𝜎ℎ𝑗 , 𝜎
𝑐
𝑖 : 𝜙

noc

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ 𝜙M

rel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ ¬𝜙M

rel

(
𝜎ℎ
𝑗+𝑘 , 𝜎

𝑐
𝑖+1

)
(21)

implies the first hardware compliance condition (11) from Definition 6

under normal operating conditions.

Proposition 1 specifies how exactly this check is performed. We
use an SMT solver to check for states that satisfy both 𝜙noc and
𝜙Mrel , but their successors break 𝜙

M
rel . Any such case is a counterex-

ample to the state similarity property of Definition 6. Otherwise
the property is inductive, and we can use it as an assumption in all
further verification checks.

We also check that 𝜙M∗pub (·) is inductive because all of the further
verification targets require this as an assumption. We check the
inductiveness by asking an SMT solver

�𝜎ℎ𝑗 , 𝜎
ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖 : 𝜙∗noc

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖

)
∧ 𝜙Mrel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧

𝜙Mrel

(
𝜎ℎ
′

𝑗 , 𝜎
𝑐′
𝑖

)
∧ 𝜙M∗pub

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗

)
∧ ¬𝜙M∗pub

(
𝜎ℎ
𝑗+𝑘 , 𝜎

ℎ′

𝑗+𝑘

)
.

(22)

If the solver is not able to find a solution, 𝜙M∗pub is inductive and

we assume 𝜙M∗pub in addition to 𝜙Mrel whenever we check properties
under normal operating conditions over multiple executions.

4.4 Finding Modeling Functions for Gates

In this section, we introduce a method that finds a small number
of contract registers from which the value of a hardware gate is
modeled. We require this as an intermediate step whose aim it
is to restrict the values a gate can have at the end of the previ-
ous instruction. Corollary 6 instantiates the general statements
from Theorem 5 under normal operating conditions and presents
a method for checking whether the value of a hardware 𝑔 can be
modeled by contract state bits 𝜃𝑔 .

Corollary 6. Let 𝜎ℎ
𝑗
be a hardware state and 𝜎𝑐

𝑖
the correspond-

ing contract state under mappingM that fulfill both (21) and (22).

Furthermore, let 𝜎ℎ
𝑗+𝑘−1 = 𝜒𝑘−1 (𝜎ℎ

𝑗
) be the last hardware state before

the instruction terminates, and 𝜎𝑐
𝑖+1 = 𝜒 (𝜎𝑐

𝑖
) be the contract state after

the instruction terminates. Under normal operating conditions, the

value of gate 𝑔 in cycle 𝑘 − 1 can be modeled from contract function

𝜃𝑔 if and only if

�𝜎ℎ𝑗 , 𝜎
ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖 : 𝜙∗

noc

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖

)
∧

𝜙M∗
pub

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗

)
∧ 𝜙M

rel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ 𝜙M

rel

(
𝜎ℎ
′

𝑗 , 𝜎
𝑐′
𝑖

)
∧

𝜃𝑔
(
𝜎𝑐𝑖+1

)
= 𝜃𝑔

(
𝜎𝑐
′

𝑖+1
)
∧ 𝑔

(
𝜎ℎ
𝑗+𝑘−1

)
≠ 𝑔

(
𝜎ℎ
′

𝑗+𝑘−1

)
.

(23)

Corollary 6 instantiates Theorem 5 under assumption of𝜙noc and
𝜙M∗pub . Here, 𝑔 is the function 𝑓𝐻 to be modeled, 𝜃𝑔 is the function
𝑓𝐶 whose results are used as inputs for the modeling function, and
𝜙Mrel is the relation Ψ between the hardware and contract states.

However, not all functions 𝜃𝑔 are useful, so a function like
𝜃𝑔 (𝜎𝑐) = 𝜎𝑐 would not really restrict the initial values of 𝑔. In-
stead, we propose the greedy minimization procedure shown in
Algorithm 1. Here, we first check whether the hardware gate 𝑔

Algorithm 1 Greedy minimization of required state bits.

1: procedure find_theta(gate 𝑔)
2: Θ← 𝑉 𝑐 ; 𝜃𝑔 ← concat (Θ);
3: if formula (23) is SAT then

4: error(“gate 𝑔 cannot be modeled”);
5: for 𝑣𝑐 ∈ 𝑉 𝑐

do

6: 𝜃𝑔 ← concat (Θ \ {𝑣𝑐 });
7: if formula (23) is UNSAT then

8: Θ← Θ \ {𝑣𝑐 };
9: return 𝜃𝑔 ;

can be modeled from the complete contract state. If this fails the
contract does not model the hardware properly and the verifica-
tion fails because there is no way of telling the value of 𝑔 when
starting the execution of an instruction. Algorithm 1 iterates over
all locations 𝑣𝑐 in the contract state and checks whether they are
needed for modeling 𝑔. In case they are not, i.e., formula (23) is
unsatisfirable, they are removed from 𝜃𝑔 . At the end, we have a
(locally) minimal 𝜃𝑔 , where removing even one of its component
locations would not allow to model gate 𝑔.

4.5 Verifying that Leaks are Modeled

Lastly, we verify that the hardware leakage produced during the
execution of an instruction can be modeled by the contract leakage
emitted during the execution of the same instruction. The set of
transition leaks produced in the hardware, starting in state 𝜎ℎ

𝑗
and

executing a 𝑘-cycle instruction is given by

L
ℎ
𝑗,𝑗+𝑘 =

{
𝜆𝑔

(
𝜎ℎ
𝑗+𝑙−1, 𝜎

ℎ
𝑗+𝑙

)
| 𝑔 ∈ 𝐺, 0 ≤ 𝑙 < 𝑘

}
.

As established in Section 4.1, we analyze every hardware leak
𝜆𝑔 (𝜎ℎ𝑗+𝑞−1, 𝜎

ℎ
𝑗+𝑞) separately and show that there is a set of leak

statementsL𝑔 ⊆ L𝑐
𝑖 such that every 𝜆𝑔 can be modeled by 𝜆(𝜎𝑐

𝑖
) ∈

L𝑔 whenever the corresponding leak statement is reached in the
contract, written as 𝜙emit (𝜎

𝑐
𝑖
, 𝜆). Here, we use the intermediate

proof of 𝑔(𝜎ℎ
𝑗−1) being modeled by 𝜃𝑔 (𝜎𝑐𝑖), which we have shown

through Corollary 6.

Proposition 2. Let 𝜎ℎ
𝑗−1 be the predecessor of hardware state

𝜎ℎ
𝑗
= 𝜒 (𝜎ℎ

𝑗−1), and 𝜎
ℎ
𝑗
be similar to contract state 𝜎𝑐

𝑖
under mapping

M, fulfilling both (21) and (22). Furthermore, let 𝜎ℎ
𝑗+𝑙 = 𝜒𝑙 (𝜎ℎ

𝑗
) with

0 ≤ 𝑙 < 𝑘 be the hardware states reached throughout the execution

of a 𝑘-cycle instruction. Let 𝜆𝑔 be the leakage function of a hardware

gate 𝑔, and 𝜃𝑔 be a contract function such that (23) holds. Crutially, let

L𝑔 ⊆ L𝑐
𝑖 be a set of contract leaks, such that for every 𝜆(𝜎𝑐

𝑖
) ∈ L𝑔

:

�𝜎ℎ𝑗−, 𝜎
ℎ′
𝑗−1, 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖 : 𝜙∗

noc

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖

)
∧ 𝜙

emit

(
𝜎𝑐𝑖 , 𝜆

)
∧

𝜙M∗
pub

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗

)
∧ 𝜙M

rel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ 𝜙M

rel

(
𝜎ℎ
′

𝑗 , 𝜎
𝑐′
𝑖

)
∧(

𝜃𝑔
(
𝜎𝑐𝑖

)
= 𝜃𝑔

(
𝜎𝑐
′

𝑖

)
⇒ 𝑔

(
𝜎ℎ𝑗−1

)
= 𝑔

(
𝜎ℎ
′

𝑗−1
))
∧

𝜆(𝜎𝑐𝑖) = 𝜆(𝜎𝑐
′

𝑖) ∧ 𝜆𝑔
(
𝜎ℎ
𝑗+𝑙−1, 𝜎

ℎ
𝑗+𝑙

)
≠ 𝜆𝑔

(
𝜎ℎ
′

𝑗+𝑙−1, 𝜎
ℎ′

𝑗+𝑙

)
.

The leak function 𝜆𝑔 in cycle 𝑙 of a 𝑘-cycle instruction is modeled

by a single contract leak function 𝜆 under relation 𝜙M
rel

and normal

Power Contracts: Provably Complete Power Leakage Models for Processors

operating conditions 𝜙
noc

, according Definition 6 if

∀𝜎ℎ𝑗 , 𝜎
𝑐
𝑖 : 𝜙

noc

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ 𝜙M

rel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
⇒

∨
𝜆(𝜎𝑐

𝑖)∈L𝑔

𝜙
emit

(
𝜎𝑐𝑖 , 𝜆

)
.

Again, the method outlined in Proposition 2 uses an SMT solver
to show that the hardware cannot leak more information than the
contract. If the solver is able to find a pair of states 𝜎ℎ

𝑗
, 𝜎𝑐

𝑖
for which

the check fails, it has found a counterexample and the hardware
does not comply with the leakage specified in the contract.

4.6 Modeling and Implementation

In this section, we briefly discuss the implementation and modeling
details enabling our verification method. In particular, we discuss
how all the formulas given to the SMT solver are constructed.

Unfolding circuits into SMT. Our verification method works with
the processor netlist, and uses it to build the SMT formulas previ-
ously shown in Section 4. For the most part, this is standard proce-
dure and has been elaborated in the model checking community.
In short, the hardware state 𝜎ℎ

𝑗
is represented symbolically using

propositional variables. Each gate 𝑔 in the processor is a symbolic
expression of the variables representing hardware locations 𝑉ℎ .
The expressions are generated by topologically iterating through
the circuit and building the representation of each gate 𝑔 from its
inputs and gate type. With regard to clock cycles, the registers of
the very first state 𝜎ℎ

𝑗
, repsectively 𝜎ℎ

𝑗−1, are variables. In succes-
sor states 𝜎ℎ

𝑗+𝑙 , the registers are determined by their writebacks
from the previous cycle. In a sense, we unfold the processor circuit
symbolically 𝑘 times for our verification.

Genoa to SMT translation. The translation of a contract to a
SMT formula is based on an existing Sail back-end which allows
to generate SMT formulas for custom predicates. However, the
back-end cannot handle leak statements. We perform two code-
rewriting passes from Genoa to Genoa. The first adds global state
for each value in a leak statement and replaces the leak by an
assignment to the respective global state. This reduces the Genoa
DSL to the Sail subset supported by the SMT back-end. The second
pass duplicates the variables representing contract state 𝜎𝑐 and
leakages into prime and non-primed variants and duplicates the
instruction-step function 𝜒 by rewriting it to operate on either 𝜎𝑐

𝑖

or 𝜎𝑐
′

𝑖
and resulting in 𝜎𝑐

𝑖+1, respectively 𝜎
𝑐′
𝑖+1. Finally, a predicate

is defined to ensure the initial and final states, including global
leakages are preserved by the SMT back-end and that the predicates
𝜙ret, 𝜙

∗
ret and 𝜙emit hold. Our tool receives the SMT as input.

Gluing it all together. Configuration files play a central role in
the generation of formulas. In particular, our verification procedure
expects an input where all of the hardware locations are declared,
and either mapped onto contract registers with 𝜙Mrel , subjected to
developer assumptions 𝜙dev, port restrictions 𝜙

∗
ports, or instruction

execution constraints 𝜙𝑙instr. As previously mentioned, everything
specified in the configuration is heavily sanity-checked, making
sure that execution still works properly, public signals 𝜙M∗pub remain
public, and every hardware location is declared. Similarly, inter-
mediate results such as 𝜃𝑔 are cached in configuration files and
checked upon loading a configuration.

5 VERIFICATION PROCESS

We apply the verification method presented to the IBEX processor
and detail the process and results. IBEX is an open source RISC-
V processor that supports the Integer, Embedded,Multiplication,
Compressed and Bit manipulation ISA extensions [32]. For the
purpose of our paper, we mainly target the E extension, although
adding support for the others is possible. The IBEX pipeline consists
of two stages, Instruction Fetch (IF) and Instruction Decode/Execute
(ID/EX). Computations take place in the ID/EX stage, which consists
of a decoder, a controller, and the register file, which forward the
data into the arithmetic-logic unit (ALU), and the load-store unit
(LSU). In the same pipeline stage, and hence in the same clock cycle,
the result is written back into the register file.

The verification requires two manual and four automated steps:
(1) Configuration of the processor by defining constraints
(2) Definition of a mapping between hardware and contract
(3) Automated sanity-check to ensure instructions defined in the

contract can still execute in the processor under constraints
(4) Automated check of similarity for resulting states (Section 4.3)
(5) Automated check for gate modeling functions (Section 4.4)
(6) Automated check for leakagemodeling functions (Section 4.5)

In case any of the steps fail, the verification framework produces
a detailed counterexample explaining the verification failure. The
developer must then adjust the configuration, the annotation, the
contract, or even the processor in order to fix the problem and
restart verification. Therefore, development and verification form a
refinement loop producing improved contracts.

5.1 IBEX Configuration

We align the contract and the hardware by restricting the state of
the processor throughout the execution of an instruction. In the
configuration files, provided in Listing 7, we precisely constrain the
values of all registers with regard to the current instruction length
and analyzed cycle. For the verification, we look at instructions
when they reach the ID stage. At this point, signal instr_rdata_id
carries the instruction bits and must be set equivalent to the argu-
ment of step_ibex in the contract.

Additionally, we need to make sure that instructions are only
retired in the last cycle 𝑘−1 of a 𝑘-cycle instruction by constraining
instr_id_done to be ⊤ in the last cycle and ⊥ otherwise. Simi-
larly, we enforce that the next instruction is fetched exactly in
cycle 𝑘 − 1 by constraining fetch_valid and id_in_ready. We
assert that there are no outstanding errors caused by the previ-
ous instruction by constraining registers lsu_err_q, pmp_err_q,
branch_set_raw, and data_err_i to be ⊥. To make sure that the
state machines in the LSU and control unit start off in a valid
state when the instruction starts executing, we add several further
constraints. Finally, we also assert that there is no reset through
rst_ni and no interrupt signals irq_*, debug_req_i are triggered
to match the developers expected behavior.

One of the main challenges in modeling the processor environ-
ment is the memory interface. Whenever the processor requests
data by setting data_req_o to ⊤, the next cycle provides a grant
with data_rvalid_i set to ⊤ and the corresponding read data be-
ing available at data_rdata_i. Here, we additionally require mem-
ory to only provide acknowledgement through data_rvalid_i

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

Listing 4: Common leakage occurring in every instruction.

1 function common_leakage(rs1_val, rs2_val) = {
2 leak(rs1_val, rs2_val, rf_pA, rf_pB,
3 mem_last_addr, mem_last_read);
4 rf_pA = rs1_val; rf_pB = rs2_val; /* read port */}

Listing 5: Specialized leakage occurring during loads.

5 function load_leakage(rs1_val : xlenbits, rs2_val : xlenbits
↩→ , addr: xlenbits, req_data: xlenbits) = {

6 leak(rf_pA, rf_pB, rs1_val, rs2_val);
7 leak(rf_pA, rf_pB, mem_last_addr, mem_last_read);
8 rf_pA = rs1_val; rf_pB = rs2_val;
9 leak(addr, req_data, mem_last_addr, mem_last_read);
10 mem_last_read = req_data; mem_last_addr = addr; }

if there was a request, and not provide any data on the input
data_rdata_i otherwise. This is due to an oversight in IBEX,which
causes the data_rvalid_i signal to overrule all other signals in
the processor and ultimately issue an erroneous write-back.

5.2 Complete Power Contract for IBEX

We have proven that IBEX is compliant with the contract shown in
Listings 1 to 6. In this section, we discuss the observed behavior and
compare the findings to existing models for other architectures.

Most instructions have a common leakage pattern modeled in
common_leakage in Listing 4. The IBEX processor combines the pre-
vious outputs of the register file (modeled in leakage states rf_pA,
rf_pB) with the current outputs rs1_val and rs2_val, as well as the
address and value of the last memory access mem_last_addr and
mem_last_read. This leak statement models all transition leakage
and value leakage produced in the ALU and the writeback logic.
None of the operands in the leak statement can be removed without
breaking compliance since distinct parts of IBEX cause these com-
binations The writeback logic causes additional combinations: ALU
or branch instructions following a LOAD cause a transition between
data from memory access and the current ALU result.

This common leakage covers leak effects previously discussed
in related works. It models transition leakage produced in the ALU,
whose source are the two read ports of the register file. Transi-
tions in the first, respectively second, operand of instructions are
well-known [36, 37]. Furthermore, the leakage is even caused by in-
structions which have no register operands like LUI (load unsigned
immediate) (line 88 in Listing 6). The root cause of this effect is that
the register file is always active, decoding specific instruction bits as
register addresses. In the case of LUI, these bits are actually part of
the immediate value. This effect was observed by Gigerl et al. [25]
but we model it precisely.

The leakage of load instructions modeled by load_leakage (List-
ing 5) differs from all other instructions. Here, the leak statement in
common_leakage can be broken down into smaller leak statements.
First off, because the ALU is always active and performs its compu-
tations even when not necessary, the current and previous values
of the register file outputs are combined in line 6. Similarly, the
last register file outputs are combined with the loaded data and the
load address within the writeback logic, as shown in line 7. Papa-
giannopoulos et al. [43] already observe leakage across the value

read in two load instructions separated by an arbitrary number of
unrelated instructions. We see this effect as well, as shown in line 9.

Surprisingly, IBEX does not expose transition leakages in sub-
sequent memory writes separated by arbitrary other instructions,
which was observed for several Arm architectures [9, 36]. Likely,
this is related to IBEX not having additional registers in the memory
path which many other processors have.

We emphasize that our model is provably complete for branching
instructions as well (see Listing 6). The side-channel behavior of
these ubiquitous instructions was not characterized so far.

5.3 Discussion

While we demonstrate our approach on the RISC-V IBEX core we
emphasize that it is neither limited to RISC-V processors, nor the
IBEX core. Verifying contract compliance for similar architectures
and processors requires adapting the tool to their pipeline and
properly configuring the verification procedure.

Our tool focuses on value leakage and transition leakage, while
our theoretical framework supports arbitrary gate-level leakage.
Extending our verification tool to include further effects such as
glitches makes an interesting future research question, and could
be achieved by extending the encoding of leakage from Section 4.5.

Our verification methodology and the contracts themselves sup-
port bitsliced and 𝑛-sliced masking [11], which are among the most
popular implementation techniques for masked software. More
exotic concepts like share-slicing require a bit-granular verification.
However, since we confirm the empirical results of Gao et al. [22]
and show the existence of bit-combinations within one 32-bit regis-
ter, any share-sliced implementation is insecure on IBEX.

6 CONCLUSION

We introduced a methodology for creating software leakage mod-
els and proving their completeness based on the netlist of a CPU.
Our rigorous approach allows us to treat the model as contract
between the software and the hardware which provably guarantees
end-to-end security: any implementation secure w.r.t. a contract
is also secure on any compliant processor for all leakages exposed
at gate-level. Overall the result significantly improve the secure
construction of hardened software implementations.

Besides providing strong guarantees of side-channel resistance,
easing the safe porting of programs to different CPUs and the most
extensive modeling of different instructions’s side-channel leakage,
we think our approach could be beneficial for other applications as
well. In particular, we believe it could be used for leakage emulators
or statistical security evaluations that can be derived from the
executable Genoa contracts.

ACKNOWLEDGMENTS

This work received funding from the Federal Ministry of Educa-
tion and Research (BMBF) as part of the VE-Jupiter project (grant
number 16ME0231K). This work was supported by the Austrian
Research Promotion Agency (FFG) through the FERMION project
(grant number 867542).

Power Contracts: Provably Complete Power Leakage Models for Processors

REFERENCES

[1] Arnold Abromeit, Florian Bache, Leon A. Becker, Marc Gourjon, Tim Güneysu,
Sabrina Jorn, Amir Moradi, Maximilian Orlt, and Falk Schellenberg. Automated
masking of software implementations on industrial microcontrollers. In Design,

Automation & Test in Europe Conference & Exhibition, DATE 2021, Grenoble, France,

February 1-5, 2021, pages 1006–1011. IEEE, 2021.
[2] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Kathryn E. Gray, Robert

Norton-Wright, Christopher Pulte, Shaked Flur, and Peter Sewell, July 2021
(accessed January 12, 2022). https://raw.githubusercontent.com/rems-project/
sail/sail2/manual.pdf.

[3] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.
Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-
pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. Minisail:
A core calculus for sail, 2018 (accessed January 12, 2022). https://www.cl.cam.ac.
uk/~mpew2/papers/minisail_anf.pdf.

[4] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.
Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-
pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. ISA
semantics for ARMv8-A, RISC-V, and CHERI-MIPS. In Proc. 46th ACM SIGPLAN

Symposium on Principles of Programming Languages, January 2019. Proc. ACM
Program. Lang. 3, POPL, Article 71.

[5] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the cost of lazy engineering for masked software imple-
mentations. In Marc Joye and Amir Moradi, editors, Smart Card Research and

Advanced Applications - 13th International Conference, CARDIS 2014, Paris, France,

November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in
Computer Science, pages 64–81. Springer, 2014.

[6] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version
2.0. Technical report, Department of Computer Science, The University of Iowa,
2010. Available at www.SMT-LIB.org.

[7] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 457–485. Springer, Heidelberg, April 2015.

[8] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 116–129. ACM Press, October 2016.

[9] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglia-
longa, and Lars Porth. Masking in fine-grained leakage models: Construc-
tion, implementation and verification. IACR TCHES, 2021(2):189–228, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8792.

[10] Omid Bazangani, Alexandre Iooss, Ileana Buhan, and Lejla Batina. Abby: Au-
tomating the creation of fine-grained leakage models. Cryptology ePrint Archive,
Report 2021/1569, 2021. https://ia.cr/2021/1569.

[11] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and
Raphaël Wintersdorff. Tornado: Automatic generation of probing-secure masked
bitsliced implementations. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 311–341. Springer, Heidelberg,
May 2020.

[12] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently com-
posing masked gadgets with probe isolating non-interference. IEEE Trans. Inf.

Forensics Secur., 15:2542–2555, 2020.
[13] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards

sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer, Heidelberg,
August 1999.

[14] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. Masking AES with d+1 shares in hardware. In Cryptographic
Hardware and Embedded Systems - CHES 2016 - 18th International Conference,

Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 194–212. Springer, 2016.

[15] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 441–458. Springer, Heidelberg, May 2014.

[16] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of security proofs from
one leakage model to another: A new issue. In Constructive Side-Channel Analy-

sis and Secure Design - Third International Workshop, COSADE 2012, Darmstadt,

Germany, May 3-4, 2012. Proceedings, volume 7275 of Lecture Notes in Computer

Science, pages 69–81. Springer, 2012.
[17] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla

Nikova, and Vincent Rijmen. Does coupling affect the security of masked im-
plementations? In Sylvain Guilley, editor, COSADE 2017, volume 10348 of LNCS,
pages 1–18. Springer, Heidelberg, April 2017.

[18] Wouter de Groot, Kostas Papagiannopoulos, Antonio de la Piedra, Erik Schneider,
and Lejla Batina. Bitsliced masking and ARM: friends or foes? In Lightweight

Cryptography for Security and Privacy - 5th International Workshop, LightSec 2016,

Aksaray, Turkey, September 21-22, 2016, Revised Selected Papers, volume 10098 of
Lecture Notes in Computer Science, pages 91–109. Springer, 2016.

[19] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the

Construction and Analysis of Systems, 14th International Conference, TACAS 2008,

Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[20] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and
François-Xavier Standaert. Composable masking schemes in the presence of
physical defaults & the robust probing model. IACR TCHES, 2018(3):89–120, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7270.

[21] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. More on the complexity
of quantifier-free fixed-size bit-vector logics with binary encoding. In Andrei A.
Bulatov and Arseny M. Shur, editors, Computer Science - Theory and Applications

- 8th International Computer Science Symposium in Russia, CSR 2013, Ekaterinburg,

Russia, June 25-29, 2013. Proceedings, volume 7913 of Lecture Notes in Computer

Science, pages 378–390. Springer, 2013.
[22] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing: Friend

or foe? IACR TCHES, 2020(1):152–174, 2019. https://tches.iacr.org/index.php/
TCHES/article/view/8396.

[23] Si Gao and Elisabeth Oswald. A novel completeness test and its application to
side channel attacks and simulators. Cryptology ePrint Archive, Report 2021/756,
2021. https://ia.cr/2021/756.

[24] Si Gao, Elisabeth Oswald, and Dan Page. Reverse engineering the micro-
architectural leakage features of a commercial processor. Cryptology ePrint
Archive, Report 2021/794, 2021. https://ia.cr/2021/794.

[25] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-design and co-verification of masked software implementations
on cpus. In Michael Bailey and Rachel Greenstadt, editors, 30th USENIX Security

Symposium, USENIX Security 2021, August 11-13, 2021, pages 1469–1468. USENIX
Association, 2021.

[26] Barbara Gigerl, Robert Primas, and Stefan Mangard. Secure and efficient software
masking on superscalar pipelined processors. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology - ASIACRYPT 2021 - 27th International

Conference on the Theory and Application of Cryptology and Information Security,

Singapore, December 6-10, 2021, Proceedings, Part II, volume 13091 of Lecture Notes
in Computer Science, pages 3–32. Springer, 2021.

[27] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-Oriented Masking:
Compact Masked Hardware Implementations with Arbitrary Protection Order.
In Proceedings of the 2016 ACM Workshop on Theory of Implementation Security,
TIS ’16, pages 3–3, New York, NY, USA, 2016. ACM.

[28] Hannes Gross, Stefan Mangard, and Thomas Korak. An Efficient Side-Channel
Protected AES Implementation with Arbitrary Protection Order. In Helena
Handschuh, editor, CT-RSA 2017, San Francisco, CA, USA, February 14–17, 2017,

Proceedings, pages 95–112, Cham, 2017. Springer International Publishing.
[29] Vedad Hadzic and Roderick Bloem. COCOALMA: A versatile masking verifier.

In Formal Methods in Computer Aided Design, FMCAD 2021, New Haven, CT, USA,

October 19-22, 2021, pages 1–10. IEEE, 2021.
[30] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware

against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[31] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual

International Cryptology Conference, Santa Barbara, California, USA, August 15-

19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[32] lowRISC. Ibex RISC-V Core. https://github.com/lowRISC/ibex.
[33] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage of

masked CMOS gates. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of
LNCS, pages 351–365. Springer, Heidelberg, February 2005.

[34] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attack-
ing masked AES hardware implementations. In Josyula R. Rao and Berk Sunar,
editors, CHES 2005, volume 3659 of LNCS, pages 157–171. Springer, Heidelberg,
August / September 2005.

[35] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attack-
ing masked AES hardware implementations. In CHES, volume 3659 of Lecture
Notes in Computer Science, pages 157–171. Springer, 2005.

[36] Ben Marshall, Dan Page, and James Webb. Miracle: Micro-architectural leak-
age evaluation: A study of micro-architectural power leakage across many de-
vices. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(1):175–220, Nov. 2021.

[37] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical tools
for side channel aware software engineering: ’grey box’ modelling for instruction
leakages. In Engin Kirda and Thomas Ristenpart, editors, USENIX Security 2017,

https://raw.githubusercontent.com/rems-project/sail/sail2/manual.pdf
https://raw.githubusercontent.com/rems-project/sail/sail2/manual.pdf
https://www.cl.cam.ac.uk/~mpew2/papers/minisail_anf.pdf
https://www.cl.cam.ac.uk/~mpew2/papers/minisail_anf.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8792
https://ia.cr/2021/1569
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/8396
https://tches.iacr.org/index.php/TCHES/article/view/8396
https://ia.cr/2021/756
https://ia.cr/2021/794
https://github.com/lowRISC/ibex

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

pages 199–216. USENIX Association, August 2017.
[38] David McCann, Carolyn Whitnall, and Elisabeth Oswald. ELMO: emulating leaks

for the ARM cortex-m0 without access to a side channel lab. IACR Cryptol. ePrint

Arch., page 517, 2016.
[39] Lauren De Meyer, Elke De Mulder, and Michael Tunstall. On the effect of the

(micro)architecture on the development of side-channel resistant software. IACR
Cryptol. ePrint Arch., 2020:1297, 2020.

[40] Prashanth Mundkur, Rishiyur S. Nikhil, Bluespec Inc, Jon French, Brian Campbell,
Robert Norton-Wright, Alasdair Armstrong, Thomas Bauereiss, Shaked Flur,
Christopher Pulte, Peter Sewell, Alexander Richardson, HeshamAlmatary, Jessica
Clarke, Microsoft, Nathaniel Wesley Filardo, Peter Rugg, and Aril Computer Corp.
Riscv sail model, August 2021 (accessed January 17, 2022). https://github.com/
riscv/sail-riscv.

[41] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and
Ninghui Li, editors, ICICS 06, volume 4307 of LNCS, pages 529–545. Springer,
Heidelberg, December 2006.

[42] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implemen-
tation of nonlinear functions in the presence of glitches. Journal of Cryptology,
24(2):292–321, April 2011.

[43] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards secure
1st-order masking in software. In Sylvain Guilley, editor, COSADE 2017, volume
10348 of LNCS, pages 282–297. Springer, Heidelberg, April 2017.

[44] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer, Heidelberg,
May 2013.

[45] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In Isabelle Attali and Thomas P.
Jensen, editors, Smart Card Programming and Security, International Conference

on Research in Smart Cards, E-smart 2001, Cannes, France, September 19-21, 2001,

Proceedings, volume 2140 of Lecture Notes in Computer Science, pages 200–210.
Springer, 2001.

[46] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating Masking Schemes. In CRYPTO 2015, 2015.

[47] Peter Sewell. Isa formal spec public review, June 2020 (accessed January 14, 2022).
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review.

[48] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. In NDSS. The Internet Society, 2021.

APPENDIX

6.1 RISC-V Model for IBEX

The missing parts of our contract for IBEX are depicted in Listing 6.
Comment for reviewers: The non-blinded copyright holders do not
deanonymize the authors of this paper.

Listing 6: Contract model of remaining instructions for

IBEX.

23 /*==============================*/

24 /* RISCV Sail Model */

25 /* This Sail RISC-V architecture model, comprising all files

↩→ and directories except for the snapshots of the

↩→ Lem and Sail libraries in the prover_snapshots

↩→ directory (which include copies of their licences),

↩→ is subject to the BSD two-clause licence below. */

26 /* Copyright (c) 2017-2021 Prashanth Mundkur, Rishiyur S.

↩→ Nikhil and Bluespec Inc., Jon French, Brian

↩→ Campbell, Robert Norton-Wright, Alasdair Armstrong,

↩→ Thomas Bauereiss, Shaked Flur, Christopher Pulte,

↩→ Peter Sewell, Alexander Richardson, Hesham Almatary,

↩→ Jessica Clarke, Microsoft, for contributions by

↩→ Robert Norton-Wright and Nathaniel Wesley Filardo,

↩→ Peter Rugg and Aril Computer Corp., for

↩→ contributions by Scott Johnson */

27 /* Copyright 2020-2022 - TUHH, TU Graz */

28 /* All rights reserved. */

29 /* This software was developed by the above within the

↩→ Rigorous Engineering of Mainstream Systems (REMS)

↩→ project, partly funded by EPSRC grant EP/K008528/1,

↩→ at the Universities of Cambridge and Edinburgh. */

30 /* This software was developed by SRI International and the

↩→ University of Cambridge Computer Laboratory (

↩→ Department of Computer Science and Technology)

↩→ under DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"),

↩→ and under DARPA contract HR0011-18-C-0016 ("ECATS")

↩→ as part of the DARPA SSITH research programme. */

31 /* This project has received funding from the European

↩→ Research Council (ERC) under the European Union's

↩→ Horizon 2020 research and innovation programme (

↩→ grant agreement 789108, ELVER). */

32 /* This software has received funding from the Federal
Ministry of Education and Research
(BMBF) as part of the VE-Jupiter project grant
16ME0231K. */

33 /* This work was supported by the Austrian Research
Promotion Agency (FFG) through the FERMION project
(grant number 867542). */

34 /* Redistribution and use in source and binary forms, with

↩→ or without modification, are permitted provided

↩→ that the following conditions are met: */

35 /* 1. Redistributions of source code must retain the above

↩→ copyright notice, this list of conditions and the

↩→ following disclaimer. */

36 /* 2. Redistributions in binary form must reproduce the

↩→ above copyright notice, this list of conditions and

↩→ the following disclaimer in the documentation and/

↩→ or other materials provided with the distribution.

↩→ */

37 /* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS

↩→ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,

↩→ INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

↩→ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

↩→ PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

↩→ SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY

↩→ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

↩→ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

↩→ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

↩→ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

↩→ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

↩→ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

↩→ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

↩→ OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

↩→ THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

↩→ OF SUCH DAMAGE. */

38 /*==============================*/

39

40 val overwrite_leakage : (regidx, xlenbits) -> unit effect {

↩→ rreg, leakage}

41 function overwrite_leakage(dest_idx : regidx, res : xlenbits

↩→) = {

42 let x1_n = if (dest_idx == 0b00001)

43 then {res} else {x1} in leak(x1 , x1_n);

44 let x2_n = if (dest_idx == 0b00010)

https://github.com/riscv/sail-riscv
https://github.com/riscv/sail-riscv
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review

Power Contracts: Provably Complete Power Leakage Models for Processors

45 then {res} else {x2} in leak(x2 , x2_n);

46 let x3_n = if (dest_idx == 0b00011)

47 then {res} else {x3} in leak(x3 , x3_n);

48 let x4_n = if (dest_idx == 0b00100)

49 then {res} else {x4} in leak(x4 , x4_n);

50 let x5_n = if (dest_idx == 0b00101)

51 then {res} else {x5} in leak(x5 , x5_n);

52 let x6_n = if (dest_idx == 0b00110)

53 then {res} else {x6} in leak(x6 , x6_n);

54 let x7_n = if (dest_idx == 0b00111)

55 then {res} else {x7} in leak(x7 , x7_n);

56 let x8_n = if (dest_idx == 0b01000)

57 then {res} else {x8} in leak(x8 , x8_n);

58 let x9_n = if (dest_idx == 0b01001)

59 then {res} else {x9} in leak(x9 , x9_n);

60 let x10_n = if (dest_idx == 0b01010)

61 then {res} else {x10} in leak(x10, x10_n);

62 let x11_n = if (dest_idx == 0b01011)

63 then {res} else {x11} in leak(x11, x11_n);

64 let x12_n = if (dest_idx == 0b01100)

65 then {res} else {x12} in leak(x12, x12_n);

66 let x13_n = if (dest_idx == 0b01101)

67 then {res} else {x13} in leak(x13, x13_n);

68 let x14_n = if (dest_idx == 0b01110)

69 then {res} else {x14} in leak(x14, x14_n);

70 let x15_n = if (dest_idx == 0b01111)

71 then {res} else {x15} in leak(x15, x15_n);

72 }

73

74 /* **************************** */

75 enum uop = {RISCV_LUI, RISCV_AUIPC}

76 union clause ast = UTYPE : (bits(20), regidx, uop)

77

78 mapping encdec_uop : uop <-> bits(7) = {

79 RISCV_LUI <-> 0b0110111,

80 RISCV_AUIPC <-> 0b0010111

81 }

82

83 mapping clause encdec = UTYPE(imm, rd, op)

84 <-> imm @ rd @ encdec_uop(op)

85 if (rd[4] == bitzero)

86

87 function clause execute UTYPE(imm, rd, op) = {

88 let rs1_val = X(0b0 @ imm[6 .. 3]);

89 let rs2_val = X(0b0 @ imm[11 .. 8]);

90 common_leakage(rs1_val, rs2_val);

91

92 let off : xlenbits = EXTS(imm @ 0x000);

93 let ret : xlenbits = match op {

94 RISCV_LUI => off,

95 RISCV_AUIPC => get_arch_pc() + off

96 };

97

98 X(rd) = ret;

99 RETIRE_SUCCESS

100 }

101

102 /* **************************** */

103 union clause ast = RISCV_JAL : (bits(21), regidx)

104

105 mapping clause encdec =

106 RISCV_JAL(imm_19 @ imm_7_0 @ imm_8 @ imm_18_13 @ imm_12_9

↩→ @ 0b0, rd)

107 <-> imm_19 : bits(1) @ imm_18_13 : bits(6) @ imm_12_9 :

↩→ bits(4) @ imm_8 : bits(1) @ imm_7_0 : bits(8) @ rd

↩→ @ 0b1101111

108 if (rd[4] == bitzero)

109

110 function clause execute (RISCV_JAL(imm, rd)) = {

111 let rs1_val = X(0b0 @ imm[18 .. 15]);

112 let rs2_val = X(0b0 @ imm[3 .. 1]

113 @ subrange_bits(imm, 11, 11));

114 common_leakage(rs1_val, rs2_val);

115

116 let t : xlenbits = PC + EXTS(imm);

117 let rd_next = get_next_pc();

118

119 overwrite_leakage(rd, rd_next);

120 X(rd) = rd_next;

121 if t[1 .. 0] == 0b00 then {

122 set_next_pc(t);

123 RETIRE_SUCCESS

124 } else RETIRE_FAIL

125 }

126

127 /* **************************** */

128 union clause ast =

129 RISCV_JALR : (bits(12), regidx, regidx)

130

131 mapping clause encdec = RISCV_JALR(imm, rs1, rd)

132 <-> imm @ rs1 @ 0b000 @ rd @ 0b1100111

133 if (rs1[4] == bitzero & rd[4] == bitzero)

134

135 function clause execute (RISCV_JALR(imm, rs1, rd)) = {

136 let rs1_val = X(rs1);

137 let rs2_val = X(0b0 @ imm[3..0]);

138 common_leakage(rs1_val, rs2_val);

139

140 let t : xlenbits =

141 [(rs1_val + EXTS(imm)) with 0 = bitzero];

142 if t[1 .. 0] == 0b00 then {

143 overwrite_leakage(rd, get_next_pc());

144 X(rd) = get_next_pc();

145 set_next_pc(t);

146 RETIRE_SUCCESS

147 } else RETIRE_FAIL

148 }

149

150 /* **************************** */

151 enum bop = {RISCV_BEQ, RISCV_BNE, RISCV_BLT, RISCV_BGE,

↩→ RISCV_BLTU, RISCV_BGEU}

152 union clause ast =

153 BTYPE : (bits(13), regidx, regidx, bop)

154

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

155 mapping encdec_bop : bop <-> bits(3) = {

156 RISCV_BEQ <-> 0b000,

157 RISCV_BNE <-> 0b001,

158 RISCV_BLT <-> 0b100,

159 RISCV_BGE <-> 0b101,

160 RISCV_BLTU <-> 0b110,

161 RISCV_BGEU <-> 0b111

162 }

163

164 mapping clause encdec = BTYPE(imm7_6 @ imm5_0 @ imm7_5_0 @

↩→ imm5_4_1 @ 0b0, rs2, rs1, op)

165 <-> imm7_6 : bits(1) @ imm7_5_0 : bits(6) @ rs2 @ rs1 @

↩→ encdec_bop(op) @ imm5_4_1 : bits(4) @ imm5_0 :

↩→ bits(1) @ 0b1100011

166 if (rs1[4] == bitzero & rs2[4] == bitzero)

167

168 function clause execute (BTYPE(imm, rs2, rs1, op)) = {

169 let rs1_val = X(rs1);

170 let rs2_val = X(rs2);

171 common_leakage(rs1_val, rs2_val);

172 let taken : bool = match op {

173 RISCV_BEQ => rs1_val == rs2_val,

174 RISCV_BNE => rs1_val != rs2_val,

175 RISCV_BLT => rs1_val <_s rs2_val,

176 RISCV_BGE => rs1_val >=_s rs2_val,

177 RISCV_BLTU => rs1_val <_u rs2_val,

178 RISCV_BGEU => rs1_val >=_u rs2_val

179 };

180

181 let t : xlenbits = PC + EXTS(imm);

182 if (t[1 .. 0] != 0b00) then

183 return RETIRE_FAIL;

184 if taken then { set_next_pc(t); };

185 return RETIRE_SUCCESS

186 }

187

188 /* **************************** */

189 enum iop = {RISCV_ADDI, RISCV_SLTI, RISCV_SLTIU, RISCV_XORI,

↩→ RISCV_ORI, RISCV_ANDI}

190 union clause ast =

191 ITYPE : (bits(12), regidx, regidx, iop)

192

193 mapping encdec_iop : iop <-> bits(3) = {

194 RISCV_ADDI <-> 0b000,

195 RISCV_SLTI <-> 0b010,

196 RISCV_SLTIU <-> 0b011,

197 RISCV_ANDI <-> 0b111,

198 RISCV_ORI <-> 0b110,

199 RISCV_XORI <-> 0b100

200 }

201

202 mapping clause encdec = ITYPE(imm, rs1, rd, op)

203 <-> imm @ rs1 @ encdec_iop(op) @ rd @ 0b0010011

204 if (rs1[4] == bitzero) & (rd[4] == bitzero)

205

206 function clause execute (ITYPE (imm, rs1, rd, op)) = {

207 let rs1_val = X(rs1);

208 let rs2_val = X(0b0 @ imm[3 .. 0]);

209 common_leakage(rs1_val, rs2_val);

210 let immext : xlenbits = EXTS(imm);

211 let result : xlenbits = match op {

212 RISCV_ADDI => rs1_val + immext,

213 RISCV_SLTI =>

214 EXTZ(bool_to_bits(rs1_val <_s immext)),

215 RISCV_SLTIU =>

216 EXTZ(bool_to_bits(rs1_val <_u immext)),

217 RISCV_ANDI => rs1_val & immext,

218 RISCV_ORI => rs1_val | immext,

219 RISCV_XORI => rs1_val ^ immext

220 };

221 overwrite_leakage(rd, result);

222 X(rd) = result;

223 RETIRE_SUCCESS

224 }

225

226 /* **************************** */

227 enum sop = {RISCV_SLLI, RISCV_SRLI, RISCV_SRAI}

228 union clause ast =

229 SHIFTIOP : (bits(6), regidx, regidx, sop)

230

231 mapping encdec_sop : sop <-> bits(3) = {

232 RISCV_SLLI <-> 0b001,

233 RISCV_SRLI <-> 0b101,

234 RISCV_SRAI <-> 0b101

235 }

236

237 mapping clause encdec = SHIFTIOP(shamt, rs1, rd, RISCV_SLLI)

238 <-> 0b000000 @ shamt @ rs1 @ 0b001 @ rd @ 0b0010011

239 if (shamt[5] == bitzero) &(rs1[4] == bitzero) & (rd[4] ==

↩→ bitzero)

240 mapping clause encdec = SHIFTIOP(shamt, rs1, rd, RISCV_SRLI)

241 <-> 0b000000 @ shamt @ rs1 @ 0b101 @ rd @ 0b0010011

242 if (shamt[5] == bitzero) &(rs1[4] == bitzero) & (rd[4] ==

↩→ bitzero)

243 mapping clause encdec = SHIFTIOP(shamt, rs1, rd, RISCV_SRAI)

244 <-> 0b010000 @ shamt @ rs1 @ 0b101 @ rd @ 0b0010011

245 if (shamt[5] == bitzero) &(rs1[4] == bitzero) & (rd[4] ==

↩→ bitzero)

246

247 function clause execute (SHIFTIOP(shamt, rs1, rd, op)) = {

248 let rs1_val = X(rs1);

249 let rs2_val = X(0b0 @ shamt[3..0]);

250 common_leakage(rs1_val, rs2_val);

251 /* the decoder guard ensures that shamt[5] = 0 for RV32E

↩→ */

252 let result : xlenbits = match op {

253 RISCV_SLLI => if sizeof(xlen) == 32

254 then rs1_val << shamt[4..0]

255 else rs1_val << shamt,

256 RISCV_SRLI => if sizeof(xlen) == 32

257 then rs1_val >> shamt[4..0]

258 else rs1_val >> shamt,

259 RISCV_SRAI => if sizeof(xlen) == 32

Power Contracts: Provably Complete Power Leakage Models for Processors

260 then shift_right_arith32(rs1_val, shamt

↩→ [4..0])

261 else shift_right_arith64(rs1_val, shamt)};

262 overwrite_leakage(rd, result);

263 X(rd) = result;

264 RETIRE_SUCCESS

265 }

266

267 /* **************************** */

268 enum word_width = {BYTE, HALF, WORD, DOUBLE}

269 union clause ast = LOAD :

270 (bits(12), regidx, regidx, bool, word_width, bool, bool)

271

272 mapping clause encdec = LOAD(imm, rs1, rd, is_unsigned, size

↩→ , false, false)

273 if ((word_width_bytes(size) < sizeof(xlen_bytes)) | (

↩→ not_bool(is_unsigned) & word_width_bytes(size) <=

↩→ sizeof(xlen_bytes))) & (rs1[4] == bitzero) & (rd

↩→ [4] == bitzero)

274 <-> imm @ rs1 @ bool_bits(is_unsigned) @ size_bits(size) @

↩→ rd @ 0b0000011

275 if ((word_width_bytes(size) < sizeof(xlen_bytes)) | (

↩→ not_bool(is_unsigned) & word_width_bytes(size) <=

↩→ sizeof(xlen_bytes))) & (rs1[4] == bitzero) & (rd

↩→ [4] == bitzero)

276

277 function aligned(vaddr : xlenbits, width : word_width) ->

↩→ bool =

278 { width == BYTE | (width == HALF & vaddr[0] == bitzero) |

↩→ (width == WORD & vaddr[1 .. 0] == 0b00) }

279

280 val load_leakage : (xlenbits, xlenbits, xlenbits, xlenbits)

281 -> unit effect {rreg, wreg, leakage}

282 function load_leakage(rs1_val : xlenbits, rs2_val : xlenbits

↩→ , addr: xlenbits, req_data: xlenbits) = {

283 // as in common_leakage

284 leak(rf_pA, rf_pB, rs1_val, rs2_val);

285 leak(rf_pA, rf_pB, mem_last_addr, mem_last_read);

286 rf_pA = rs1_val;

287 rf_pB = rs2_val;

288 leak(addr, req_data, mem_last_addr, mem_last_read);

289 mem_last_read = req_data;

290 mem_last_addr = addr;

291 }

292

293 function clause execute(LOAD(imm, rs1, rd, is_unsigned,

↩→ width, aq, rl)) = {

294 let offset : xlenbits = EXTS(imm);

295 let rs1_val = X(rs1);

296 let rs2_val = X(0b0 @ imm[3 .. 0]);

297 let addr = rs1_val + offset;

298 let req_addr = addr[(sizeof(xlen) - 1) .. 2] @ 0b00;

299 let req_data = read_mem(Read_plain, sizeof(xlen), req_addr

↩→ , 4);

300 load_leakage(rs1_val, rs2_val, addr, req_data);

301 let req_byte : bits(8) = match (addr[1 .. 0]) {

302 0b00 => req_data[7 .. 0],

303 0b01 => req_data[15 .. 8],

304 0b10 => req_data[23 .. 16],

305 0b11 => req_data[31 .. 24]};

306 let req_half : bits(16) = match (addr[1]) {

307 bitzero => req_data[15 .. 0],

308 bitone => req_data[31 .. 16]};

309 match (width, addr[1 .. 0]) {

310 (BYTE, _) => process_load(rd, addr, req_byte,

↩→ is_unsigned),

311 (HALF, 0b00) => process_load(rd, addr, req_half,

↩→ is_unsigned),

312 (HALF, 0b10) => process_load(rd, addr, req_half,

↩→ is_unsigned),

313 (WORD, 0b00) => process_load(rd, addr, req_data,

↩→ is_unsigned),

314 (_, _) => RETIRE_FAIL // takes care of misaligned}

315 }

316 /* **************************** */

317 union clause ast = STORE :

318 (bits(12), regidx, regidx, word_width, bool, bool)

319

320 mapping clause encdec = STORE(imm7 @ imm5, rs2, rs1, size,

↩→ false, false)

321 if (word_width_bytes(size) <= sizeof(xlen_bytes)) & (rs1

↩→ [4] == bitzero) & (rs2[4] == bitzero)

322 <-> imm7 : bits(7) @ rs2 @ rs1 @ 0b0 @ size_bits(size) @

↩→ imm5 : bits(5) @ 0b0100011

323 if (word_width_bytes(size) <= sizeof(xlen_bytes)) & (rs1

↩→ [4] == bitzero) & (rs2[4] == bitzero)

324

325 function clause execute (STORE(imm, rs2, rs1, width, aq, rl)

↩→) = {

326 let offset : xlenbits = EXTS(imm);

327 let rs1_val = X(rs1);

328 let rs2_val = X(rs2);

329 common_leakage(rs1_val, rs2_val);

330 let addr = rs1_val + offset;

331 // address comptation and register file access leakage

332 leak(mem_last_addr, addr);

333 mem_last_addr = addr;

334 if aligned(addr, width) then {

335 let result = rs2_val;

336 overwrite_leakage(0b00000, result);

337 let success : bool = match(width) {

338 BYTE => write_mem(Write_plain, sizeof(xlen), addr, 1,

↩→ result[7..0]),

339 HALF => write_mem(Write_plain, sizeof(xlen), addr, 2,

↩→ result[15..0]),

340 WORD => write_mem(Write_plain, sizeof(xlen), addr, 4,

↩→ result),

341 _ => false};

342 if success then {RETIRE_SUCCESS} else {RETIRE_FAIL}

343 } else { RETIRE_FAIL }

344 }

345 /* **************************** */

346 mapping clause encdec = ILLEGAL(s) <-> s

347 function clause execute (ILLEGAL(s)) =

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

348 { return RETIRE_FAIL }

6.2 IBEX Configuration

In the following, we give the configuration file that specifies the
mapping and normal operating conditions simultaneously.

Listing 7: IBEX configuration file

1 // Power Contract for IBEX

2 //

3 // Copyright (c) 2020-2022 - TUHH, TU Graz

4 //

5 // All rights reserved.

6 //

7 // This software has received funding from the Federal
Ministry of Education and Research (BMBF) as part of
the VE-Jupiter project grant 16ME0231K.

8 //

9 // This work was supported by the Austrian Research
Promotion Agency (FFG) through the FERMION project
(grant number 867542).

10 //

11 // Redistribution and use in source and binary forms,

12 // with or without modification, are permitted provided

13 // that the following conditions are met:

14 // 1. Redistributions of source code must retain the

15 // above copyright notice, this list of conditions

16 // and the following disclaimer.

17 // 2. Redistributions in binary form must reproduce the

18 // above copyright notice, this list of conditions

19 // and the following disclaimer in the documentation

20 // and/or other materials provided with the

21 // distribution.

22 //

23 // THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND

24 // CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR

25 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

26 // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

27 // AND FITNESS FOR A PARTICULAR PURPOSE ARE

28 // DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR

29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

30 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

31 // DAMAGES (INCLUDING, BUT NOT LIMITED TO,

32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

33 // OF USE, DATA, OR PROFITS; OR BUSINESS

34 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

35 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

36 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

37 // ARISING IN ANY WAY OUT OF THE USE OF THIS

38 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

39 // SUCH DAMAGE.

40

41 ///

42 // This file contains the configuration of our tool.

43 // It specifies

44 // - the state modeled in the contract (registers, memory,

↩→ leakage state)

45 // - the registers of the IBEX processor (registers and

↩→ memory)

46 // - a mapping between the states

47 // - which states may contain sensitive data

48 // - conditions which have to hold before/during execution

↩→ of an instruction

49 // - which HW and contract state is printed in

↩→ counterexamples

50 ///

51

52 ///

53 // specification of architectural registers and HW/CT

↩→ mapping

54 ///

55 // PC

56 contract register PC BitVec 32

57 hardware public u_ibex_core.pc_id

58 mapping register PC u_ibex_core.pc_id

59

60 // next PC

61 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.instr_addr_q

62 contract register nextPC BitVec 32

63 mapping register nextPC u_ibex_core.if_stage_i.

↩→ gen_prefetch_buffer.prefetch_buffer_i.fifo_i.

↩→ instr_addr_q

64

65 // REGISTERS

66 contract register x1 BitVec 32

67 contract register x2 BitVec 32

68 contract register x3 BitVec 32

69 contract register x4 BitVec 32

70 contract register x5 BitVec 32

71 contract register x6 BitVec 32

72 contract register x7 BitVec 32

73 contract register x8 BitVec 32

74 contract register x9 BitVec 32

75 contract register x10 BitVec 32

76 contract register x11 BitVec 32

77 contract register x12 BitVec 32

78 contract register x13 BitVec 32

79 contract register x14 BitVec 32

80 contract register x15 BitVec 32

81 hardware variable register_file_i.rf_reg_q[1]

82 hardware variable register_file_i.rf_reg_q[2]

83 hardware variable register_file_i.rf_reg_q[3]

84 hardware variable register_file_i.rf_reg_q[4]

85 hardware variable register_file_i.rf_reg_q[5]

86 hardware variable register_file_i.rf_reg_q[6]

87 hardware variable register_file_i.rf_reg_q[7]

88 hardware variable register_file_i.rf_reg_q[8]

89 hardware variable register_file_i.rf_reg_q[9]

90 hardware variable register_file_i.rf_reg_q[10]

91 hardware variable register_file_i.rf_reg_q[11]

92 hardware variable register_file_i.rf_reg_q[12]

93 hardware variable register_file_i.rf_reg_q[13]

94 hardware variable register_file_i.rf_reg_q[14]

Power Contracts: Provably Complete Power Leakage Models for Processors

95 hardware variable register_file_i.rf_reg_q[15]

96 mapping register x1 register_file_i.rf_reg_q[1]

97 mapping register x2 register_file_i.rf_reg_q[2]

98 mapping register x3 register_file_i.rf_reg_q[3]

99 mapping register x4 register_file_i.rf_reg_q[4]

100 mapping register x5 register_file_i.rf_reg_q[5]

101 mapping register x6 register_file_i.rf_reg_q[6]

102 mapping register x7 register_file_i.rf_reg_q[7]

103 mapping register x8 register_file_i.rf_reg_q[8]

104 mapping register x9 register_file_i.rf_reg_q[9]

105 mapping register x10 register_file_i.rf_reg_q[10]

106 mapping register x11 register_file_i.rf_reg_q[11]

107 mapping register x12 register_file_i.rf_reg_q[12]

108 mapping register x13 register_file_i.rf_reg_q[13]

109 mapping register x14 register_file_i.rf_reg_q[14]

110 mapping register x15 register_file_i.rf_reg_q[15]

111

112 contract opcode op BitVec 32

113 // instruction bits for the instruction whose last execution

↩→ cycle is this cycle

114 // only true if the assertion for the valid_d is present

115 hardware opcode u_ibex_core.instr_rdata_id

116

117 // memory request name_contract name_hardware

118 contract register read_val_1 BitVec 32

119 contract register read_addr_1 BitVec 32

120 hardware variable data_rdata_i

121

122 memory raddr u_ibex_core.load_store_unit_i.adder_result_ex_i

↩→ read_addr_1

123 memory rdata data_rdata_i read_val_1

124 memory req data_req_o

125 memory gnt data_gnt_i

126 memory ack data_rvalid_i

127 memory we data_we_o

128

129 ///

130 // Non-regport signals that must be constrained

131 ///

132 // fetching next instruction was successful, ready to

↩→ continue execution

133 hardware const@end-1 u_ibex_core.if_stage_i.fetch_valid 0b1

134 hardware const@pre u_ibex_core.if_stage_i.fetch_valid 0b1

135 // do not load a new instruction until last cycle

136 hardware const@start:end-1 u_ibex_core.id_stage_i.

↩→ id_in_ready_o 0b0

137 // make sure that nothing retires before the end of the last

↩→ cycle

138 hardware const@start:end-1 u_ibex_core.instr_id_done 0b0

139 // make sure that an instruction has its last cycle in our

↩→ last cycle

140 hardware const@end-1 u_ibex_core.instr_id_done 0b1

141 hardware const@pre u_ibex_core.instr_id_done 0b1

142 hardware const@start u_ibex_core.id_stage_i.decoder_i.

↩→ illegal_insn 0b0

143

144 ///

145 // important signals that must be constrained

146 ///

147 // never trigger a reset of the core

148 hardware public rst_ni

149 hardware const@pre: rst_ni 0b1

150 // make sure that initially, the ID FSM is in state

↩→ instr_first_cycle_i

151 // this means that we look at the case where we started

↩→ executing in 0th cycle

152 hardware public u_ibex_core.id_stage_i.id_fsm_q

153 hardware const@start u_ibex_core.id_stage_i.id_fsm_q 0b0

154 // no compressed (valid or invalid) instructions at the

↩→ output of instruction fetch stage

155 hardware public u_ibex_core.if_stage_i.instr_new_id_q

156 hardware public u_ibex_core.if_stage_i.

↩→ instr_is_compressed_id_o

157 hardware const@start u_ibex_core.if_stage_i.

↩→ instr_is_compressed_id_o 0b0

158 hardware public u_ibex_core.if_stage_i.illegal_c_insn_id_o

159 hardware const@start u_ibex_core.if_stage_i.

↩→ illegal_c_insn_id_o 0b0

160 // this is a hidden assumption made by IBEX developers

161 hardware public u_ibex_core.if_stage_i.instr_rdata_alu_id_o

162 hardware public u_ibex_core.if_stage_i.instr_rdata_id_o

163 // this encodes pre cycle and first cycle assumptions

164 hardware equiv@pre:start+1 u_ibex_core.if_stage_i.

↩→ instr_rdata_id_o u_ibex_core.if_stage_i.

↩→ instr_rdata_alu_id_o

165

166 ///

167 // annotation of input ports of ibex_top

168 ///

169 hardware public clk_i

170 hardware public ram_cfg_i

171 hardware public test_en_i

172 hardware public hart_id_i

173 hardware public boot_addr_i

174 // Instruction memory interface

175 hardware public instr_gnt_i

176 hardware public instr_rvalid_i

177 hardware public instr_rdata_i

178 hardware public instr_err_i

179 hardware public data_gnt_i

180 hardware public data_rvalid_i

181 hardware public data_err_i

182 hardware const@pre: data_err_i 0b0

183 // interrupts

184 hardware public irq_software_i

185 hardware public irq_timer_i

186 hardware public irq_external_i

187 hardware public irq_fast_i

188 hardware public irq_nm_i

189 // disabling interrupts

190 hardware const@pre: irq_software_i 0b0

191 hardware const@pre: irq_timer_i 0b0

192 hardware const@pre: irq_external_i 0b0

193 hardware const@pre: irq_fast_i 0b000000000000000

Bloem, Gigerl, Gourjon, Hadžić, Mangard and Primas

194 hardware const@pre: irq_nm_i 0b0

195 // core debug

196 hardware public debug_req_i

197 hardware const@pre: debug_req_i 0b0

198 hardware public fetch_enable_i

199 hardware public scan_rst_ni

200

201 //////////////////////////////////////

202 // annotate internal state of ibex

203 //////////////////////////////////////

204 hardware public core_busy_q

205 hardware public u_ibex_core.instr_fetch_err

206 hardware public u_ibex_core.instr_fetch_err_plus2

207 // instructions in the prefetch fifo

208 hardware public u_ibex_core.if_stage_i.instr_valid_id_q

209 hardware public u_ibex_core.if_stage_i.instr_rdata_c_id_o

210 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.rdata_q0

211 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.rdata_q1

212 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.rdata_q2

213 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.err_q

214 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.valid_q

215 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.rdata_pmp_err_q

216 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.discard_req_q

217 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.branch_discard_q

218 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.rdata_outstanding_q

219 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fetch_addr_q

220 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.stored_addr_q

221

222 // instruction decode

223 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ ctrl_fsm_cs

224 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ load_err_q

225 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ store_err_q

226 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ exc_req_q

227 hardware public u_ibex_core.id_stage_i.branch_set_raw

228 hardware const@start u_ibex_core.id_stage_i.branch_set_raw 0

↩→ b0

229 hardware public u_ibex_core.id_stage_i.

↩→ branch_jump_set_done_q

230 hardware public u_ibex_core.load_store_unit_i.data_we_q

231

232 // since data_pmp_err_i is 0, this should not be 1

233 hardware public u_ibex_core.load_store_unit_i.pmp_err_q

234 hardware const@start u_ibex_core.load_store_unit_i.pmp_err_q

↩→ 0b0

235 // since data_err_i is never 1 and pmp_err_q is also not 1,

↩→ this must be 0

236 hardware public u_ibex_core.load_store_unit_i.lsu_err_q

237 hardware const@start u_ibex_core.load_store_unit_i.lsu_err_q

↩→ 0b0

238 hardware public u_ibex_core.load_store_unit_i.

↩→ handle_misaligned_q

239 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ illegal_insn_q

240 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ do_single_step_q

241 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ enter_debug_mode_prio_q

242 // LSU register handling misaligned memory accesses which

↩→ are not allowed by the contract

243 hardware public u_ibex_core.load_store_unit_i.rdata_q

244 contract leakagestate mem_last_read BitVec 32

245 // Must be idle when new instruction reaches ID/EX

246 hardware public u_ibex_core.load_store_unit_i.ls_fsm_cs

247 hardware const@start u_ibex_core.load_store_unit_i.ls_fsm_cs

↩→ 0b000

248 hardware variable u_ibex_core.load_store_unit_i.addr_last_q

249 hardware variable u_ibex_core.load_store_unit_i.

↩→ rdata_offset_q

250 contract leakagestate mem_last_addr BitVec 32

251 mapping leakagestate mem_last_addr u_ibex_core.

↩→ load_store_unit_i.addr_last_q

252 mapping leakagestate mem_last_addr u_ibex_core.

↩→ load_store_unit_i.rdata_offset_q

253 hardware public u_ibex_core.load_store_unit_i.data_type_q

254 hardware public u_ibex_core.load_store_unit_i.

↩→ data_sign_ext_q

255

256 // system registers

257 hardware public u_ibex_core.cs_registers_i.mie_q

258 hardware public u_ibex_core.cs_registers_i.mtval_q

259 hardware public u_ibex_core.cs_registers_i.mcause_q

260 hardware public u_ibex_core.cs_registers_i.mscratch_q

261 hardware public u_ibex_core.cs_registers_i.dscratch0_q

262 hardware public u_ibex_core.cs_registers_i.dscratch1_q

263 hardware public u_ibex_core.cs_registers_i.mstack_q

264 hardware public u_ibex_core.cs_registers_i.mstack_cause_q

265 hardware public u_ibex_core.cs_registers_i.mstack_epc_q

266 hardware public u_ibex_core.cs_registers_i.mstatus_q

267 hardware public u_ibex_core.cs_registers_i.dcsr_q

268 hardware const@start u_ibex_core.cs_registers_i.dcsr_q 0

↩→ b00000000000000000000000000000000

269 hardware public u_ibex_core.cs_registers_i.mhpmcounter[0]

270 hardware public u_ibex_core.cs_registers_i.mhpmcounter[1]

271 hardware public u_ibex_core.cs_registers_i.mhpmcounter[2]

272 hardware public u_ibex_core.cs_registers_i.mcountinhibit

273 hardware public u_ibex_core.csr_depc

274 hardware public u_ibex_core.csr_mtvec

275 hardware public u_ibex_core.csr_mepc

276 hardware public u_ibex_core.dummy_instr_en

Power Contracts: Provably Complete Power Leakage Models for Processors

277 hardware public u_ibex_core.dummy_instr_mask

278 hardware public u_ibex_core.data_ind_timing

279 hardware public u_ibex_core.icache_enable

280 hardware public u_ibex_core.debug_mode

281 hardware public u_ibex_core.priv_mode_id

282 hardware public u_ibex_core.nmi_mode

283

284 contract leakagestate rf_pA BitVec 32

285 contract leakagestate rf_pB BitVec 32

	Abstract
	1 Introduction
	2 Side-Channel Resilience
	2.1 Hardware Model and Gate-level Leakage
	2.2 Provable Security and Simulatability

	3 Hardware-Software Contracts
	3.1 Expressing Contracts in Genoa
	3.2 Contract Formalization
	3.3 Software Security
	3.4 Hardware Compliance With a Contract
	3.5 End-to-end security

	4 Verifying Hardware Compliance
	4.1 Verification Concept
	4.2 Verification Prerequisites
	4.3 Verifying that States Remain Similar
	4.4 Finding Modeling Functions for Gates
	4.5 Verifying that Leaks are Modeled
	4.6 Modeling and Implementation

	5 Verification Process
	5.1 IBEX Configuration
	5.2 Complete Power Contract for IBEX
	5.3 Discussion

	6 Conclusion
	References
	6.1 RISC-V Model for IBEX
	6.2 IBEX Configuration

