
Fast Skinny-128 SIMD Implementations for
Sequential Modes of Operation

Alexandre Adomnicai1, Kazuhiko Minematsu2,3, and Maki Shigeri4

1 CryptoNext Security, Paris, France, alex.adomnicai@gmail.com
2 NEC, Kawasaki, Japan, k-minematsu@nec.com

3 Yokohama National University, Japan
4 NEC Solution Innovators, Hokuriku, Japan, m-shigeri pb@nec.com

Keywords: Skinny · Romulus · NIST LWC · SIMD

Abstract. This paper reports new software implementation results for
the Skinny-128 tweakable block ciphers on various SIMD architectures.
More precisely, we introduce a decomposition of the 8-bit S-box into four
4-bit S-boxes in order to take advantage of vector permute instructions,
leading to significant performance improvements over previous constant-
time implementations. Since our approach is of particular interest when
Skinny-128 is used in sequential modes of operation, we also report how
it benefits to the Romulus authenticated encryption scheme, a finalist of
the NIST LWC standardization process.

1 Introduction

The Internet of Things (IoT) does not come without its challenges, and se-
curity concerns remain a major barrier to its adoption. One of the technical
considerations is the efficiency/security trade-off of cryptographic implementa-
tions on IoT devices. The restrictions in terms of power and memory introduce
challenges that do not exist when using cryptography in more conventional IT
platforms. Moreover, environments in which IoT devices are deployed make these
devices vulnerable to unforeseen physical threats where attackers may tamper
with them directly. It implies that cryptographic implementations must show
some resilience against physical attacks to avoid key recoveries that might lead
to a compromised network, as already demonstrated in practice [27]. Therefore,
numerous symmetric-key ciphers have been proposed by taking all these as-
pects into consideration at the design level. They are categorized as lightweight
cryptography, aiming at providing better hardware and/or software implemen-
tation properties on embedded devices. In this context, the National Institute
of Standards and Technology (NIST) initiated a process that started in 2018,
with the goal of selecting the future Authenticated Encryption with Associated
Data (AEAD) standard(s) for constrained environments [23]. AEAD algorithms
ensure confidentiality, integrity, and authenticity of data in a single primitive.
Romulus [19] is one of the ten proposals currently competing for standardization



2 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

in the final round. It is based on Skinny [7], a tweakable block cipher standard-
ized in ISO/IEC 18033-7. If Skinny shows outstanding results when implemented
in hardware, the picture is more mixed when it comes to software. Although
recent works have been undertaken to optimize its performance on 32-bit mi-
crocontrollers, for example by Adomnicai and Peyrin [2], it is not clear what is
the best implementation strategy on more advanced architectures. Although the
main goal of lightweight cryptography is to provide optimized encryption and
authentication solutions for resource-constrained devices (e.g. low-cost micro-
controllers), it will be inevitably deployed on more sophisticated platforms for
interoperability purposes. For instance, many IoT networks adopt a star topology
where numerous low-end devices communicate with a single server that has to
decrypt received data. Mobile devices (e.g. smartphones, tablets) are also com-
monly used for network monitoring purposes, requiring to handle secure commu-
nications with many nodes simultaneously. Therefore, software performance of
lightweight cryptography does matter on mid-range to high-end microprocessors
as well. Most of these platforms are now equipped with single instruction mul-
tiple data (SIMD) units whose goal is to vectorize calculations by performing
the same operation on multiple data operands concurrently. On Intel proces-
sors, SIMD units have been available since the advent of the MMX instruction
set architecture extension, initially designed to speed up the performance of
multimedia applications. Similarly, ARM introduced SIMD extensions with the
NEON technology being implemented on all ARM Cortex-A series processors.
To date, the best software Skinny-128 implementation results reported on SIMD
architectures are obtained by processing many 128-bit blocks in parallel (e.g. 64
using AVX2 [7]) thanks to bitslicing. While relying on implementations that op-
erate on a large amount of data at once is not necessarily relevant in the context
of IoT, where payloads are usually a few dozen of bytes only, it is even less of
interest for sequential (i.e. non-parallelizable) modes of operation as in Romulus.

Our contributions. In this paper, we optimize the performance of Skinny-128 for
sequential modes of operation on SIMD platforms, with a focus on ARM proces-
sors with NEON technology. First, we briefly review various publicly available
software implementations of Skinny-128 and highlight that the 8-bit S-box com-
ponent is the most-time consuming part of the encryption process. To address
this issue, we propose an optimization trick which consists in decomposing the S-
box into smaller ones so that we can take advantage of SIMD-specific vector per-
mute instructions to reach competitive performance without introducing secret-
dependent timing variations. While it has already been shown that lightweight
ciphers with 4-bit S-boxes can highly benefit from such instructions [8,5], it is
less trivial for designs with larger (e.g. 8-bit) S-boxes. Still, a similar implemen-
tation trick has been first proposed by Hamburg for AES on Intel processors [18].
Our work shows that this is also quite effective for Skinny-128 by introducing
a novel decomposition of its 8-bit S-box into 4 tables. As a result, we observe
a speedup by a factor that ranges from 1.5 to 3.5 depending on the computing
platform, compared to the fixsliced implementation strategy [2], which is cur-
rently the fastest option for Skinny-128 when used in non-parallelizable operating



Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 3

modes. We also port our implementations on Intel platforms, improving the per-
formance by a factor of 4. These results straightforwardly apply to Romulus as
shown by our benchmarks. Finally, our software implementations are released
into the public domain at https://github.com/aadomn/skinny.

2 Skinny in software

2.1 The Skinny-128 tweakable block ciphers

A tweakable block cipher is family of permutations where both key and tweak are
used to select a permutation. Skinny follows the tweakey framework [21] which
treats the tweak and the key in the same way in a structure called tweakey. It
is up to the user what part of this tweakey will be key material and/or tweak
material. The internal state of Skinny-128 as well as the tweakey states consist
of a 4× 4 square arrays of bytes. The number of tweakey states ranges from one
to three (namely TK1, TK2 and TK3), and is directly linked to the quantity
of tweakey material which is either 128, 256, or 384 bits. The corresponding
versions are denoted by Skinny-128-128, Skinny-128-256, and Skinny-128-384, and
are composed of 40, 48, and 56 encryption rounds, respectively. One encryption
round is itself composed of five operations in the following order: SubCells,
AddConstants, AddRoundTweakey, ShiftRows and MixColumns as illustrated in
Figure 1.

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1: The Skinny round function (from [20])

SubCells refers to the non-linear layer and consists in applying an 8-bit
S-box, depicted in Figure 2, to each byte individually.

AddConstants consists in combining three round constants c0, c1, c2 with the
three topmost bytes in the first state column using bitwise exclusive-OR (XOR).
The round constants are defined as below:

c0 = 0 ‖ 0 ‖ 0 ‖ 0 ‖ rc3 ‖ rc2 ‖ rc1 ‖ rc0
c1 = 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ rc5 ‖ rc4
c2 = 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 1 ‖ 1

where rci are defined by the following 6-bit LFSR

(rc5 ‖ rc4 ‖ rc3 ‖ rc2 ‖ rc1 ‖ rc0)→ (rc4 ‖ rc3 ‖ rc2 ‖ rc1 ‖ rc0 ‖ rc5 ⊕ rc4 ⊕ 1) .

https://github.com/aadomn/skinny


4 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

MSB LSB

MSB LSB

Fig. 2: The Skinny-128 S-box (from [20])

AddRoundTweakey extracts the two topmost rows of each tweakey array and
adds them to the internal state using bitwise XOR. Then all tweakey arrays are
updated by applying a byte permutation to the state and an 8-bit LFSR to each
byte, as illustrated in Figure 3. Finally, ShiftRows and MixColumns refer to the
linear layer, ensuring diffusion within the state.

Extracted
round tweakey

PT

LFSR

LFSR

Fig. 3: Tweakey state update (from [20])

2.2 Publicly available software implementations

The original publication of Skinny reports efficient bitsliced implementations1

with Skinny-128-128 running at 3.78 and 3.43 cycles per byte (cpb) on Haswell
and Skylake architectures respectively, by taking advantage of Intel AVX2 in-
structions. However, it requires to process 64 blocks in parallel which makes it
quite inefficient for sequential modes of operation since it would basically de-
crease computation speed by a factor of 64.

Regarding 32-bit implementations, as for the AES T-tables, it is possible
to combine multiple steps of the round function into table lookups. This has

1 https://github.com/kste/skinny_avx

https://github.com/kste/skinny_avx


Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 5

been investigated in [14] in order to optimize ForkAE [3], which is based on
the Skinny round function, but there are no implementation results reported for
Skinny itself. For platforms where cache-based attacks are a concern, one should
favor constant-time implementations to avoid timing side-channels that could
leak information about the secret key. An application of the fixslicing technique
to Skinny-128 was recently proposed in this regard [2]. Fixslicing is a specific
instance of bitslicing where at least one slice remains fixed (potentially leading
to an alternative representation for a few rounds), with the aim of optimizing the
diffusion layer. It was originally proposed by Adomnicai, Najm and Peyrin [1]
with an application to GIFT-COFB, a NIST LWC finalist based on the GIFT block
cipher [6] and the COFB mode of operation [13]. According to [2], fixsliced Skinny-
128-128 runs around 191 cpb on ARMv7-M when processing a single block at a
time (with precomputed round tweakeys). Note that there is also a constant-time
implementation from Weatherley which stores the internal state in a byte-wise
fashion but implements the S-box in a bitsliced manner by means of bitmasks
and bitwise operations [31]. While it is around 2.5 times slower than the fixsliced
version on ARMv7-M when processing a single block at time [2], it requires
half RAM to store the round tweakeys. Still, the improvement factor should be
significantly reduced on 64-bit platforms since the byte-wise representation can
benefit from larger registers to apply the S-box on only two 64-bit words instead
of four 32-bit words.

There has also been work on Skinny-128 optimizations using the ARM NEON
extension, with the objective to enhance the performance of the ForkAE lightweight
encryption scheme [14]. The implementation strategy is the same as [31]: the au-
thors use a single 128-bit NEON register to store the entire internal state and rely
on a bitsliced approach for the S-box, requiring 63 instructions in total2. Because
no implementation results are reported for Skinny-128 itself, it is not clear how it
performs compared to the fixsliced3 and byte-wise4 implementations. To clarify
this point, we performed a simple benchmark on the following three ARM CPUs
implementing the NEON extension: the Cortex-A7, Cortex-A53 and Cortex-A72
processors briefly described hereafter. We used the SUPERCOP benchmarking
suite [9] using gcc 8.3.0. The results are reported in Table 1.

ARM Cortex-A7. The Cortex-A7 is an in-order pipeline CPU core with moderate
performance but an extremely small die size and very low power consumption.
It was initially introduced for entry-level smartphones and now progressively
finds its place in system-on-chips dedicated to the IoT [22]. It is based on the
32-bit ARMv7-A architecture which has 16 32-bit general-purpose ARM reg-
isters R0-R15 and 32 64-bit NEON registers D0-D31. These NEON registers can
also be manipulated as 16 128-bit registers Q0-Q15 where each Qi maps to the

2 https://github.com/ArneDeprez1/ForkAE-SW/blob/master/Neon_SIMD/sbox_

neon.S
3 https://github.com/aadomn/skinny/tree/master/crypto_tbc/skinny128/1_

block/opt32
4 https://github.com/rweather/skinny-c

https://github.com/ArneDeprez1/ForkAE-SW/blob/master/Neon_SIMD/sbox_neon.S
https://github.com/ArneDeprez1/ForkAE-SW/blob/master/Neon_SIMD/sbox_neon.S
https://github.com/aadomn/skinny/tree/master/crypto_tbc/skinny128/1_block/opt32
https://github.com/aadomn/skinny/tree/master/crypto_tbc/skinny128/1_block/opt32
https://github.com/rweather/skinny-c


6 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

pair (D2i, D2i+1). For our benchmarks, we use the Raspberry Pi 2 Model B fea-
turing the 900MHz quad-core Cortex-A7 Broadcom BCM2836 chipset running
Raspbian 10 (buster).

ARM Cortex-A53. The Cortex-A53 is one of the first two processors implement-
ing the ARMv8-A architecture and is typically found in entry-level smartphone
and other embedded devices. ARMv8-A introduces a new 64-bit instruction set
known as A64 which operates in the 64-bit execution state called AArch64. It
also provides a 32-bit execution state called AArch32 to ensure backward com-
patibility with ARMv7-A. While AArch32 has the same number of registers as
ARMv7-A, AArch64, by comparison, has 31 64-bit ARM registers X0-X30 and 32
128-bit NEON registers V0-V31. For our benchmarks, we use the Raspberry Pi
3 Model B featuring the 1.2 GHz quad-core Cortex-A53 Broadcom BCM2837
chipset running Debian 10 (buster).

ARM Cortex-A72. Finally, the Cortex-A72 is based on the ARMv8-A architec-
ture and is designed for the mobile market. It is considered as a high performant
core which is often combined with lower performance processors such as the
Cortex-A53 to achieve better tradeoffs between energy and performance. For
our benchmarks, we use the Raspberry Pi 4 Model B featuring the 1.5GHz
quad-core Cortex-A72 Broadcom BCM2711 chipset running Debian 10 (buster).

Algorithm Implementation
Speed (clock cycles)

A7 A53 A72

Fixsliced [2] 5492 2814 2655

Byte-wise [31] 10 328 3 055 2 993Skinny-128-384 block encryption

ARMv7-A NEON [14] 10 563 - -

Fixsliced [2] 3901 3 210 2 082

Byte-wise [31] 7 855 2294 1568Skinny-128-384 tweakey schedule

ARMv7-A NEON [14] 4 127 - -

Table 1: Performance comparison between three Skinny-128 implementations.
Best results are bolded.

As expected, fixslicing appears as the most efficient implementation strategy
for the encryption round function. While the byte-wise approach shows better
performance for the tweakey schedule on 64-bit platforms, we decide to take
the fixsliced implementation as a reference in terms of performance since many



Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 7

operation modes leave some tweakey states unchanged across calls to Skinny-128.
Another observation that stems from our benchmark is that the use of NEON
on the Cortex-A7 outperforms the non-vectorized byte-wise implementation for
the tweakey schedule only, resulting in similar performance for the encryption
round function. This is likely due to the fact that, on the Cortex-A7, while
most NEON instructions have a throughput of either 1 and 2 instructions per
clock cycle when operating on doubleword and quadword registers, respectively,
latencies are typically 4 cycles or more [28]. Therefore, directly using the result
of the previous instruction will cause a stall. While the ARMv7-A NEON S-box
implementation tries to mitigate such additional costs by carefully scheduling
instructions, its sequential aspect makes it impossible to completely avoid it.
The performance bottleneck of the encryption round function is clearly the 8-
bit S-box, which is responsible for about 60% of the clock cycles in the fixsliced
setting, versus 80% in the byte-wise setting. Therefore, optimizing this operation
would significantly enhance the overall Skinny-128 performance.

3 Optimizing the S-box layer

3.1 NEON vector permute instructions

NEON instruction set features a vector permute instruction named tbl which
performs a table lookup at byte level. As originally introduced in ARMv7-A, it
operates on doubleword registers providing a 64-bit output at a time. The table
can be specified from 1 to 4 double-word registers, allowing up to 32 bytes. While
the tbl instruction insert zeroes for out-of-bounds indices, its sister instruction
tbx leaves the destination unchanged instead. In ARMv8-A, these instructions
are operating on 128-bit wide registers allowing to specify a table of up to 64
bytes. Therefore, a single instruction is enough to compute an S-box up to either
5-bit or 6-bit on ARMv7-A and ARMv8-A, respectively. It is also possible to go
further by combining several tbl/tbx calls. For instance, on ARMv8-A, given
an 8-bit S-box one can split it into four 6-bit S-boxes: the first one covering
bytes from 0 to 63, the second one covering bytes from 64 to 127, etc. First,
a tbl instruction with the first 6-bit S-box is performed. If a byte is out-of-
bounds the result is set to 0, or the final S-box output otherwise. Then, 64 is
subtracted to each byte before applying the second 6-bit S-box using the tbx

instruction (so that non-zero bytes calculated in the previous instruction are not
affected). The same reasoning applies for the two remaining 6-bit S-boxes as
detailed in Listing 1.1. This technique was actually applied to the AES S-box
in order to boost its performance for ARMv8-A processors that do not include
the optional Cryptography Extension [11,15]. Although the same trick applies
to ARMv7-A as well, the limited number of registers coupled with the fact that
permute instructions operate on 64-bit doublewords makes it inefficient for an
8-bit S-box, as it would occupy all the 32 NEON registers available. It would
be still possible to store it in memory and perform loads during the calculation,
but it would have a significant impact on performance. Another drawback of this
technique is its inefficiency in some processors. It has been observed that tbl/tbx



8 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

performance can greatly vary from one platform to another [4]. For instance, in
AArch64 mode, a tbl instruction with 4 input registers has a latency of 15
cycles on the A72 compared to only 5 on the A53, as summarized in Table 2.
Those latency issues can be mitigated by executing several instances in parallel.
However, because the internal state fits in a single 128-bit register, it is only of
interest for parallelizable modes of operation. Another potential solution would
be to use a clever decomposition of the S-box rather than simply splitting it into
several parts.

1 tbl v1.16b, {v16.16b - v19.16b}, v0.16b // S-box for bytes in [0,63]

2 sub v0.16b, v0.16b, v15.16b // Subtracts 64 to each byte

3 tbx v1.16b, {v20.16b - v23.16b}, v0.16b // S-box for bytes in [64,127]

4 sub v0.16b, v0.16b, v15.16b // Subtracts 64 to each byte

5 tbx v1.16b, {v24.16b - v27.16b}, v0.16b // S-box for bytes in [128,191]

6 sub v0.16b, v0.16b, v15.16b // Subtracts 64 to each byte

7 tbx v1.16b, {v28.16b - v31.16b}, v0.16b // S-box for bytes in [192,255]

Listing 1.1: ARMv8-A NEON implementation of an 8-bit S-box stored in
v16-v31. The input register is v0 and while the output register is v1. v15 is
supposed to contain 0x40...40.

Execution
Instructions

Throughput (ops/cycle) Latency (cycles)

Mode A7 A53 A72 A7 A53 A72

vtbl/vtbx from 1/2 sources (64-bit wide) 1 1 2 4 2 3
Aarch32

vtbl/vtbx from 3/4 sources (64-bit wide) 1/2 1/2 1 5 3 6

tbl/tbx from n sources (64-bit wide) - 1/n 2/n - n + 1 3n
Aarch64

tbl/tbx from n sources (128-bit wide) - 1/n 1/(2n− 1) - n + 1 3n + 3

Table 2: Effective execution latency and throughput for Neon vector permute
instructions.

3.2 S-box decomposition

The decomposition of an S-box into smaller ones is a well-known technique to
achieve compact hardware implementations. Building large S-boxes from smaller
ones is actually a design strategy that has been used in many ciphers (e.g.
Whirlpool [30], CLEFIA [29], Streebog and Kuznyechik [25]) . This is also useful for
side-channel countermeasures such as threshold implementations, where having
a decomposition into functions with lower algebraic degrees allows to reach a
secure implementation with fewer shares. Note that improvements for first-order



Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 9

threshold implementations of Skinny-128 have been recently proposed thanks
to novel S-box decompositions [12]. Such decompositions are also of interest
in software, as it allows to build S-boxes that combine strong cryptanalytic
properties and efficient bitsliced implementations (see e.g. Scream [17], Robin
and Fantomas [16]). More closely related to our case study, a decomposition of
the AES S-box has been proposed to achieve a constant-time implementation on
Intel SIMD architectures [18]. It consists in representing F28 as a degree-2 field
extension of F24 which allows computation of the AES S-box using small look-up
tables that fit in pshufb instructions.

In the case of Skinny-128, we aim at finding an S-box decomposition that
minimizes the number of inner S-boxes as well as their input size. Limiting the
number of inner S-boxes will reduce the number of vector permute instructions
while limiting their input size will reduce the number of input registers for these
instructions (which has an impact on latency). Note that their output size can
be anything between 1 and 8 bits since vector permute instructions operate at
byte level. Another criterion to take into account is the way the input bits are
positioned within bytes. Indeed for vector permute instructions, we want to be
able to extract these input bits easily in order to store them in a contiguous
manner. The ideal instruction to do so would be an SIMD equivalent of Intel
pext which, for each byte, would apply a bitmask and pack the selected bits
(either contiguous or non-contiguous) into contiguous low-order bit positions, as
illustrated in Figure 4.

op1 (source)

op2 (mask)

dest

· · ·

· · ·

· · ·

xn−1 xn−2 xn−3 xn−4 xn−5 xn−6 xn−7 xn−8 x7 x6 x5 x4 x3 x2 x1 x0

1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0

0 0 0 0 xn−1 xn−4 xn−5 xn−7 0 0 0 0 x7 x4 x3 x1

Fig. 4: Byte-wise SIMD parallel bit extract instruction. Each cell refers to a bit.

Unfortunately, there is no such instruction on ARM and replicating it in pure
software is non-trivial as it would require many bit manipulations. To avoid such
additional costs, we considered decompositions such that input bits of the inner
S-boxes are always stored contiguously so that they can be extracted using a
single bitmask or bitshift. We naturally started our investigations by looking at
what can be done when applying a 4-bit S-box to each nibble individually. As
highlighted in Figure 5, it appears that a single output term, namely y6, exclu-
sively depends on the most significant nibble while two output terms, namely
y5 and y3, exclusively depend on the less significant nibble. It implies that ad-
ditional inner S-boxes are necessary to compute the remaining five terms, with
their inputs consisting of output terms from both previous 4-bit S-boxes. Because



10 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

those S-box outputs will be stored in two distinct registers, we will inevitably
spend some cycles to end up with output terms from both S-boxes in the same
register. To mix up these output bits, we suggest taking advantage of the fact
that the output size of inner S-boxes is up to 8 bits. Therefore, without addi-
tional cost, we can do some bit rearrangement with the next inner S-boxes in
mind before merging both outputs in the same register using a bitwise XOR.
This way we can simply extract the input bits using a single bitmask or bitshift
as done previously. Note that a clever merge of both outputs using a bitwise
XOR also allows computing some logic gates for free. This is typically the case
for the XOR required to compute the output term y2 = ¬(x2 ∨ x1)⊕ x6, which
means that after the merge, we now have four (instead of three) output terms
among eight: y2, y3, y5, y6 as highlighted in Figure 5. As a result, we are not sim-
ply interested in pure table decompositions, but rather in decompositions with
potential additional bitwise operations. In order to investigate what would be
the best strategy for the remaining four terms, we give a more formal definition
of the 8-bit S-box in Equation (1).

S : {0, 1}8 → {0, 1}8

x7

x6

x5

x4

x3

x2

x1

x0



7→



y7

y6

y5

y4

y3

y2

y1

y0



=



(x7 ∨ x6 ⊕ x4) ∧ (x3 ∨ x2 ⊕ x0)⊕ x5

¬(x7 ∨ x6)⊕ x4

¬(x3 ∨ x2)⊕ x0

¬((¬(y6 ∨ y5)⊕ x5) ∨ y6)⊕ x3

¬(y5 ∨ x3)⊕ x1

¬(x2 ∨ x1)⊕ x6

¬(y7 ∨ y2)⊕ x7

¬(y1 ∨ y3)⊕ x2



(1)

In all logic, the four output terms that require only two inner S-boxes are
defined by the component functions with the lowest algebraic degree. Among
the four remaining terms, y7 and y4 are of degree 4, y1 is of degree 5 and y0 is
of degree 6. Without considering y0, which is the output term of the highest de-
gree, another single inner S-box with four input bits would be sufficient. Indeed,
one can see that y7, y4 and y1 can be partially computed from y6, y5, y2 and x5

which are all available after the first layer of inner S-boxes (including the merge
step). Note that we would actually need x7 and x3 as well for additional bitwise
XORs, but we assume that they can be included in the computation for free with
a clever merge as detailed above. However, y0 makes things more complicated
as it requires to consider two additional terms: x7 and y3. Therefore, we could
theoretically get the remaining four output terms with a single 6-bit S-box call,
but this option is only worth consideration for the ARMv8-A architecture since
ARMv7-A vtbl and Intel SSSE3 pshufb instructions do not support such sizes.
Instead, we suggest to slightly decompose the last output term as detailed in



Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 11

x7 x6 x5 x4 x3 x2 x1 x0

y7 y6 y5 y4 y3 y2 y1 y0

Fig. 5: The Skinny-128 S-box. Two inner S-boxes with 4-bit input (respectively
highlighted in red and blue) are sufficient to get four output terms (including
XOR when merging outputs, highlighted in black).

Equation (2) so that each operand of the bitwise XOR can be computed sep-
arately and then merged together. It still requires to consider y3 as additional
input, resulting in a 5-bit S-box.

y0 = ¬(y1 ∨ y3)⊕ x2

= ¬((¬(y7 ∨ y2)⊕ x7) ∨ y3)⊕ x2

= (y7 ∨ y2 ⊕ x7) ∧ ¬y3 ⊕ x2

=
[
(y7 ∨ y2) ∧ ¬y3

]
⊕
[
x7 ∧ ¬y3 ⊕ x2

] (2)

In order to achieve a version with 4-bit inner S-boxes only, one can use an ad-
ditional bitwise AND operation at the cost of latency cycles. Both approaches,
namely D4444 and D4454, are formally defined in Appendixes A and B, respec-
tively. Note that those decompositions are not the only possible ones, and other
similar solutions surely exist. Still, given the restriction on the contiguous stor-
age of the input bits, we believe that it is not possible to reach less than four
inner S-box calls when limiting the number of input bits to 4 or 5. As shown in
Table 3, our decompositions make the S-box layer faster on all processors, ex-
cept on the A72 where they reach the same performance as the fixsliced version.
According to the performance, it seems that one should favor D4454 over D4444.
However, the fact that the 5-bit inner S-box S2 requires an additional 128-bit
register is troublesome on the ARMv7-A architecture. We suggest to keep this
register free on ARMv7-A as it allows to avoid stack usage during the entire
Skinny-128 encryption as detailed in Section 4.2.



12 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

Implementation Ref
Speed (clock cycles)

A7 A53 A72

Fixsliced [2] 40 32 33

Byte-wise [31] 169 62 70

ARMv7-A NEON [14] 163 - -

ARMv8-A tbl/tbx split [11] - 26 64

D4444 Ours 34 14 33

D4454 Ours 30 13 33

Table 3: Performance comparison of various software implementations of the
Skinny-128 S-box.

4 Other optimizations

4.1 Linear layer

The linear layer consists of the ShiftRows followed by the MixColumns. The
main complication with our representation, i.e. the 128-bit internal state stored
row-wise in a 128-bit register, is that XORs within the MixColumns are per-
formed row-wise. In order to avoid additional bitmasks and bitshifts to add the
correspondig rows together, our implementations take again advantage of vec-
tor permute instructions by expressing the MixColumns as the XOR of three
operands as detailed in Equation (3).

MixColumns


r0

r1

r2

r3

 =


r0 ⊕ r2 ⊕ r3

r0

r1 ⊕ r2

r0 ⊕ r2

 =


r3

r0

r1

r2

⊕

r2

0

r2

r0

⊕

r0

0

0

0

 (3)

Since the operands are just different rows reordering of the internal state,
they can be easily computed using a table lookup instruction. We also include
the ShiftRows calculation within those instructions as it comes at no cost. Note
that because the third operand only consists of the first row, whose bytes are not
shifted by the ShiftRows, we simply perform a bitwise AND instead of a table
lookup instruction. Therefore, the entire linear layer can be computed using 2
128-bit wide vector permute instructions, 1 bitwise AND, and 2 XORs. This
translates to 6 and 5 instructions on ARMv7-A and ARMv8-A architectures,
respectively.



Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 13

4.2 Tweakey schedule

When it comes to the tweakey expansion, two options are left to the implementer:
precalculation versus on-the-fly computation. It usually refers to a time-memory
trade-off as on-the-fly computations allow to reduce memory usage at the cost of
additional operations, and vice-versa. In our case, we decided to consider both
approaches depending on the target platform. For instance, as highlighted in
Table 3, our implementations suffer from many stall cycles on the A7 and A72
processors due to the latency of vector permute instructions on those platforms.
Therefore, we suggest to take advantage of these stall cycles in order to compute
the round tweakeys on-the-fly, in the background. We naturally implement the
byte permutation using vector permute instructions while using bitwise opera-
tions for the LFSRs. On the ARMv8-A architecture, we compute double updates
at once as illustrated in Figure 6 so that we can divide by a factor of two the
number of instructions. Thanks to the large number of registers available in the

Extracted
8s-bit subtweakey

LFSR

LFSR

LFSR

LFSR

Extracted
8s-bit subtweakey

P 2
T

Fig. 6: Tweakey state double update

NEON SIMD unit, we can fit all the working variables in the NEON bank regis-
ter without additional usage of the stack, even for Skinny-128-384 which requires
three 128-bit tweakey states. This is what motivates us to use the D4444 de-
composition on ARMv7-A since it requires two fewer 64-bit registers than D4454

(which would imply additional loads/stores on the stack).

5 Implementation results

5.1 ARM NEON

Table 4 reports benchmark results on the selected ARM NEON processors for
Skinny-128-384+ and Romulus using the SUPERCOP benchmarking suite [9].
Skinny-128-384+ is a round-reduced version of Skinny-128-384 (decreased from
56 to 40) used in Romulus in order to enhance the performance while preserving
a high security margin5. The latest specification of Romulus includes a nonce-
based AE (Romulus-N), a nonce-misuse-resistant AE [26] (Romulus-M), a leakage-
resilient AE (Romulus-T) based on TEDT [10], and a hash function (Romulus-H)

5 https://groups.google.com/a/list.nist.gov/g/lwc-forum/c/5_mqi9irD0U

https://groups.google.com/a/list.nist.gov/g/lwc-forum/c/5_mqi9irD0U


14 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

based on MDPH [24]. We implemented and benchmarked all these members in
order to compare our work with the fixsliced approach, which defines the most
efficient software implementation available on this platform as highlighted in
Section 2. For the sake of completeness, we considered both alternatives with
precalculated and on-the-fly calculated round tweakeys. On top of running faster,
a clear advantage of our NEON implementations over previous work is the RAM
usage, which is smaller by a factor of 4 when computing the tweakey schedule
on the fly. As expected, taking advantage of stall cycles on the A7 and A72
to compute the tweakey schedule in the background allows to reach the best
performance on those platforms. Still, precomputing the round tweakeys is the
most efficient approach on the A53. This is not only because there are fewer
cycles latency for vector permute instructions on this platform: in each variant
of Romulus, the tweakey is only differing from a byte or so across many calls to
Skinny-128-384+ (see the Romulus specification for more details [19]). Therefore,
it is possible to run some precalculations since the tweakeys TK2 and TK3
remain fixed. In the end, the improvement factor of our NEON implementations
over fixslicing differs significantly depending on the processor. For Skinny-128-
384+ (including the tweakey schedule) and Romulus, it is roughly 1.5, 2, and 3.5
on the A72, A7, and A53, respectively.

5.2 Intel Streaming SIMD Extensions

We also ported our implementations on Intel using Supplemental Streaming
SIMD Extensions 3 (SSSE3) intrinsics. To do so, we naturally opted for the D4444

decomposition since the vector permute instruction pshufb operates on 16-byte
vectors only. In order to save 1 instruction per S-box call, we simply reordered the
output bits of S0 and S1 so that we can extract y3 using a single bitmask instead
of a shift (there is no mm srli epi8 so we would need mm srli epi16 followed
by mm and si128 to discard the bits from adjacent bytes). Because there are
no high latency issues related to pshufb and because the amount of RAM us-
age is relatively small for such platforms, we only considered the variant with
precalculation of the round tweakeys in order to reach the best performance. As
reported in Table 5, the improvement in terms of performance ranges between 4
and 5 on Whiskey Lake and Comet Lake microarchitectures. Note that the ad-
vanced vector extension AVX2 should not lead to significant enhancements since
its vpshufb instruction operates within 128-bit lanes. The only advantage is to
either (1) process two blocks in parallel (which is only of interest for Romulus-H
that rely on the MDPH mode) or (2) to use a sparse representation by storing
bytes within 16-bit words in order to use a single mm srli epi16 instruction
when extracting topmost nibbles for the S-box decomposition. Still, the vpshufb
instruction in AVX512 allows to handle permutations across entire 512-bit reg-
isters, making possible to implement the D4454 decomposition on Intel as well.



Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 15

Algorithm Implementation
Speed (cycles/byte) RAM

A7 A53 A72 (bytes)

Skinny-128-384+

Fixsliced [2] 254 129 123 -
encryption only

Ours 127 57 111 -

Fixsliced [2] 431 321 201 736

Ours (precalculate) 177 84 148 368encryption + tweakey schedule

Ours (on-the-fly) 143 85 112 16

Romulus

Fixsliced [2] 239 165 137 1 088

Ours (precalculate) 112 48 94 544
Romulus-N

nonce-based AEAD

Ours (on-the-fly) 110 64 85 240

Fixsliced [2] 337 245 199 1 136

Ours (precalculate) 153 69 130 640
Romulus-M

nonce misuse-resistant AEAD

Ours (on-the-fly) 144 83 113 272

Fixsliced [2] 705 551 387 1 136

Ours (precalculate) 321 145 273 640
Romulus-T

leakage-resilient AEAD

Ours (on-the-fly) 289 158 226 272

Fixsliced [2] 318 227 187 1 104

Ours (precalculate) 161 71 138 544
Romulus-H

hash function

Ours (on-the-fly) 150 85 116 224

Table 4: Benchmark on ARM Cortex-A processors. Results are given when pro-
cessing 4096 bytes for Romulus (2048-byte additional data and 2048-byte mes-
sage) and a single block (i.e. 16 bytes) for Skinny-128-384+. The function ‘encryp-
tion only’ takes as input the round tweakeys fully precomputed while ‘encryption
+ tweakey schedule’ simply requires the 48-byte tweakey.



16 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

Algorithm Implementation

Speed (cycles/byte)

i5-8365U i7-10510U

(Whiskey Lake) (Comet Lake)

Skinny-128-384+

Fixsliced [2] 150 165
encryption only

Ours 44 47

Fixsliced [2] 282 305
encryption + tweakey schedule

Ours 58 62

Romulus

Fixsliced [2] 161 175Romulus-N
nonce-based AEAD Ours 37 40

Fixsliced [2] 234 252Romulus-M
nonce misuse-resistant AEAD Ours 51 55

Fixsliced [2] 453 491Romulus-T
leakage-resilient AEAD Ours 109 118

Fixsliced [2] 220 238Romulus-H
hash function Ours 54 58

Table 5: Benchmark on Intel processors. Results are given when processing 4096
bytes for Romulus (2048-byte additional data and 2048-byte message) and a sin-
gle block (i.e. 16 bytes) for Skinny-128-384+. The function ‘encryption only’ takes
as input the round tweakeys fully precomputed while ‘encryption + tweakey
schedule’ simply requires the 48-byte tweakey. Benchmarks were run by care-
fully disabling the TurboBoost technology.

6 Conclusion and future work

We introduced SIMD implementations of Skinny-128 whose performance out-
perform previous work by up to a factor of 4 on various platforms. The main
optimization consists in decomposing the 8-bit S-box in smaller S-boxes with
4/5-bit inputs in order to take advantage of vector permute instructions. It is
very likely that other S-boxes in the litterature may benefit from a similar imple-
mentation technique, and developing a generic tool that would list the relevant
decompositions regarding vector permute instructions could be useful for other
designs. More generally, we believe that the design of large S-boxes with effi-
cient decompositions could provide attractive trade-offs between security and
performance on SIMD platforms. Our work also highlights that performance
can greatly vary from a microarchitecture to another, due to possible design dis-
crepancies regarding vector permute instructions. Finally, we did not discuss the
integration of countermeasures against power side-channel attacks but studying
the relevance of lookup table masking schemes combined with vector permute
instructions might be an interesting direction for future research.



Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 17

Acknowledgements. We are grateful to Thomas Peyrin as well as the anony-
mous reviewers for their comments that improved the quality of this article.

References

1. Adomnicai, A., Najm, Z., Peyrin, T.: Fixslicing: A new GIFT representation fast
constant-time implementations of GIFT and GIFT-COFB on ARM cortex-m.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 402–427 (2020)

2. Adomnicai, A., Peyrin, T.: Fixslicing AES-like Ciphers: New bitsliced AES speed
records on ARM-Cortex M and RISC-V. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2021(1), 402–425 (Dec 2020), https://tches.
iacr.org/index.php/TCHES/article/view/8739

3. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
ForkAE v.1. Submission to the NIST Lightweight Cryptography Project (2019)

4. Aufranc, J.L.: How ARM Nerfed NEON Permute Instruc-
tions in ARMv8. https://www.cnx-software.com/2017/08/07/

how-arm-nerfed-neon-permute-instructions-in-armv8 (2017), accessed:
2021-11-25

5. Banik, S., Bao, Z., Isobe, T., Kubo, H., Liu, F., Minematsu, K., Sakamoto, K.,
Shibata, N., Shigeri, M.: WARP : Revisiting GFN for Lightweight 128-Bit Block
Cipher. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) Selected Areas
in Cryptography. pp. 535–564. Springer International Publishing, Cham (2021)

6. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
Small Present - Towards Reaching the Limit of Lightweight Encryption. In: CHES.
Lecture Notes in Computer Science, vol. 10529, pp. 321–345. Springer (2017)

7. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS. In: CRYPTO (2). Lecture Notes in Computer Science, vol. 9815,
pp. 123–153. Springer (2016)

8. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing Lightweight Block
Ciphers on x86 Architectures. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) Se-
lected Areas in Cryptography – SAC 2013. pp. 324–351. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2014)

9. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems. https://bench.cr.yp.to, accessed: 2022-02-25

10. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.: TEDT, a Leakage-Resist
AEAD Mode for High Physical Security Applications. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(1), 256–320 (2020)

11. Biesheuvel, A.: Accelerated AES for the Arm64 Linux kernel. https://www.

linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/ (2017), ac-
cessed: 2021-10-25

12. Caforio, A., Collins, D., Glamocanin, O., Banik, S.: Improving First-Order Thresh-
old Implementations of SKINNY. Cryptology ePrint Archive, Report 2021/1425
(2021), https://ia.cr/2021/1425

13. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-Based Authen-
ticated Encryption: How Small Can We Go? In: CHES. Lecture Notes in Computer
Science, vol. 10529, pp. 277–298. Springer (2017)

14. Deprez, A., Andreeva, E., Mera, J.M.B., Karmakar, A., Purnal, A.: Optimized
Software Implementations for the Lightweight Encryption Scheme ForkAE. In:

https://tches.iacr.org/index.php/TCHES/article/view/8739
https://tches.iacr.org/index.php/TCHES/article/view/8739
https://www.cnx-software.com/2017/08/07/how-arm-nerfed-neon-permute-instructions-in-armv8
https://www.cnx-software.com/2017/08/07/how-arm-nerfed-neon-permute-instructions-in-armv8
https://bench.cr.yp.to
https://www.linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/
https://www.linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/
https://ia.cr/2021/1425


18 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

Liardet, P.Y., Mentens, N. (eds.) Smart Card Research and Advanced Applications.
pp. 68–83. Springer International Publishing, Cham (2021)

15. Fujii, H., Rodrigues, F.C., López, J.: Fast AES Implementation Using ARMv8
ASIMD Without Cryptography Extension. In: Seo, J.H. (ed.) Information Secu-
rity and Cryptology – ICISC 2019. pp. 84–101. Springer International Publishing,
Cham (2020)

16. Grosso, V., Leurent, G., Standaert, F.X., Varıcı, K.: LS-Designs: Bitslice Encryp-
tion for Efficient Masked Software Implementations. In: Cid, C., Rechberger, C.
(eds.) Fast Software Encryption. pp. 18–37. Springer Berlin Heidelberg, Berlin,
Heidelberg (2015), https://hal.inria.fr/hal-01093491/document

17. Grosso, V., Varici, A.K., Gaspar, L.: Scream - side-channel resistant authenti-
cated encryption with masking (2015), https://competitions.cr.yp.to/round2/
screamv3.pdf

18. Hamburg, M.: Accelerating AES with Vector Permute Instructions. In: Clavier, C.,
Gaj, K. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2009. pp.
18–32. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

19. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Duel of the Titans: The Ro-
mulus and Remus Families of Lightweight AEAD Algorithms. IACR Transactions
on Symmetric Cryptology 2020(1), 43–120 (May 2020), https://tosc.iacr.org/
index.php/ToSC/article/view/8560

20. Jean, J.: TikZ for Cryptographers. https://www.iacr.org/authors/tikz/ (2016)
21. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The

TWEAKEY Framework. In: ASIACRYPT (2014)
22. Mauro, A.D., Fatemi, H., de Gyvez, J.P., Benini, L.: Idleness-Aware Dynamic

Power Mode Selection on the i.MX 7ULP IoT Edge Processor. Journal of
Low Power Electronics and Applications 10(2) (2020), https://www.mdpi.com/

2079-9268/10/2/19
23. McKay, K., Bassham, L., Turan, M.S., Mouha, N.: Report on Lightweight Cryptog-

raphy (2017-03-28 00:03:00 2017), https://tsapps.nist.gov/publication/get_
pdf.cfm?pub_id=922743

24. Naito, Y.: Optimally Indifferentiable Double-Block-Length Hashing Without Post-
processing and with Support for Longer Key Than Single Block. In: LATIN-
CRYPT. Lecture Notes in Computer Science, vol. 11774, pp. 65–85. Springer (2019)

25. Perrin, L.: Partitions in the S-Box of Streebog and Kuznyechik. IACR Transactions
on Symmetric Cryptology 2019(1), 302–329 (Mar 2019), https://tosc.iacr.org/
index.php/ToSC/article/view/7405

26. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 4004, pp.
373–390. Springer (2006)

27. Ronen, E., Shamir, A., Weingarten, A.O., O’Flynn, C.: IoT Goes Nuclear: Creating
a ZigBee Chain Reaction. In: 2017 IEEE Symposium on Security and Privacy (SP).
pp. 195–212 (2017)

28. Rullgard, M.: Cortex-A7 instruction cycle timings. https://hardwarebug.org/

2014/05/15/cortex-a7-instruction-cycle-timings (2014), accessed: 2021-10-
25

29. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Blockci-
pher CLEFIA. In: Proceedings of the 14th International Conference on Fast Soft-
ware Encryption. p. 181–195. FSE’07, Springer-Verlag, Berlin, Heidelberg (2007)

30. S.L.M, P., Rijmen, V.: The Whirlpool Hashing Function (2003)
31. Weatherley, R.: SKINNY tweakable block cipher. https://github.com/rweather/

skinny-c (2017)

https://hal.inria.fr/hal-01093491/document
https://competitions.cr.yp.to/round2/screamv3.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf
https://tosc.iacr.org/index.php/ToSC/article/view/8560
https://tosc.iacr.org/index.php/ToSC/article/view/8560
https://www.iacr.org/authors/tikz/
https://www.mdpi.com/2079-9268/10/2/19
https://www.mdpi.com/2079-9268/10/2/19
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922743
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922743
https://tosc.iacr.org/index.php/ToSC/article/view/7405
https://tosc.iacr.org/index.php/ToSC/article/view/7405
https://hardwarebug.org/2014/05/15/cortex-a7-instruction-cycle-timings
https://hardwarebug.org/2014/05/15/cortex-a7-instruction-cycle-timings
https://github.com/rweather/skinny-c
https://github.com/rweather/skinny-c


Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 19

Appendix

This appendix formally defines the S-box decompositions D4444 and D4454 in-
troduced in Section 3.

A D4444 decomposition

S0


x7

x6

x5

x4

 =



0

0

0

x7

x5

¬(x7 ∨ x6)⊕ x4

0

x6


S1


x3

x2

x1

x0

 =



¬
(
(¬(x3 ∨ x2)⊕ x0) ∨ x3

)
⊕ x1

x3

x2

0

0

0

¬(x3 ∨ x2)⊕ x0

¬(x2 ∨ x1)



S2


x7

x6

x5

x4

 =



0

0

0

x6

x7

0

x4

(x7 ∨ ¬x4)⊕ x5


S3


x3

x2

x1

x0

 =



¬(x2 ∨ x1)⊕ x3

x2

x1

¬
(
(¬(x2 ∨ x1)⊕ x3) ∨ x2

)
0

x0

¬
(
(¬(x2 ∨ x1)⊕ x3) ∨ x0

)
¬
(
(¬(x2 ∨ x1)⊕ x3) ∨ x0

)



S0


x7

x6

x5

x4

⊕ S1


x3

x2

x1

x0

 =



y3
x3

x2

x7

x5

y6
y5
y2


S2


y3
x3

x2

x7

⊕ S3


x5

y6
y5
y2

 ∨



0

0

0

0

0

0

0

y3


=



y7
y6
y5
y4
y3
y2
y1
y0





20 Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

B D4454 decomposition

S0


x7

x6

x5

x4

 =



x5

¬(x7 ∨ x6)⊕ x4

0

x6

0

0

0

x7


S1


x3

x2

x1

x0

 =



0

0

¬(x3 ∨ x2)⊕ x0

¬(x2 ∨ x1)

¬
(
(¬(x3 ∨ x2)⊕ x0) ∨ x3

)
⊕ x1

x3

x2

0



S2


x7

x6

x5

x4

x3

 =



¬(x6 ∨ x5)⊕ x7

x6

x5

¬
(
(¬(x6 ∨ x5)⊕ x7) ∨ x6

)
0

x4

¬
(
(¬(x6 ∨ x5)⊕ x7) ∨ x4

)
¬
(
(¬(x6 ∨ x5)⊕ x7) ∨ x4

)
∨ x3


S3


x3

x2

x1

x0

 =



0

0

0

x2

x3

0

x0

(x3 ∨ ¬x0)⊕ x1



S0


x7

x6

x5

x4

⊕ S1


x3

x2

x1

x0

 =



x5

y6
y5
y2
y3
x3

x2

x7


S2


x5

y6
y5
y2
y3

⊕ S3


y3
x3

x2

x7

 =



y7
y6
y5
y4
y3
y2
y1
y0




	Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation

