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ABSTRACT
Post-quantum cryptography (PQC) is critical to the next generation

of network security. The NTRU lattice is a promising candidate to

construct practical cryptosystems resistant to quantum computing

attacks, and particularly plays a leading role in the ongoing NIST

post-quantum cryptography standardization. On the one hand, it

is benefited from a strong security guarantee since it has essen-

tially not been broken over 24 years. On the other hand, all the

known patent threats against NTRU have expired, which is deemed

a critical factor for consideration when deploying PQC algorithms

in reality. Nevertheless, there are still some obstacles to the com-

putational efficiency and bandwidth complexity of NTRU-based

constructions of key encapsulation mechanisms (KEM).

To address these issues, we propose a compact and efficient KEM

based on the NTRU lattice, called CTRU, by introducing a scalable

ciphertext compression technique. It demonstrates a new approach

to decrypting NTRU ciphertext, where the plaintext message is

recovered with the aid of our decoding algorithm in the scalable

E8 lattice (instead of eliminating the extra terms modulo 𝑝 in tradi-

tional NTRU-based KEM schemes). The instantiation of CTRU is

over the NTT-friendly rings of the form Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1). We

remark that the scalable ciphertext compression technique can also

be applied to NTRU-based KEM schemes over other polynomial

rings. In order to deal with the inconvenient issue that various NTT

algorithms are needed for different 𝑛’s, we present a unified NTT

methodology over Z𝑞 [𝑥]/(𝑥𝑛 −𝑥𝑛/2 +1), 𝑛 ∈ {512, 768, 1024}, such
that only one type of NTT computation is required for different 𝑛’s,

which might be of independent interest.

To our knowledge, our CTRU is the most bandwidth efficient

KEM based on the NTRU lattice up to now. In addition, roughly

speaking, compared to other NTRU-based KEM schemes, CTRU has

stronger security against known attacks, enjoys more robust CCA

security reduction (starting from IND-CPA rather than OW-CPA),

and its encapsulation and decapsulation processes are also among

the most efficient. For example, when compared to the NIST Round

3 finalist NTRU-HRSS, our CTRU-768 has 15% smaller ciphertext

size and its security is strengthened by (45, 40) bits for classical
and quantum security respectively. When compared to the NIST

Round 3 finalist Kyber that is based on the Module-LWE (MLWE)

assumption, CTRU has both smaller bandwidth and lower error

probabilities at about the same security level.

*Corresponding author: ylzhao@fudan.edu.cn.

1 INTRODUCTION
Most current public-key cryptographic schemes in use, which are

based on the hardness assumptions of factoring large integers and

solving (elliptic curve) discrete logarithms, will suffer from quantum

attack, if practical quantum computers are built. These cryptosys-

tems play an important role in ensuring the confidentiality and

authenticity of communications on the Internet. With the increas-

ing cryptographic security risks of quantum computing in recent

years, post-quantum cryptography (PQC) has become a research

focus for the crypto community. There are five main types of post-

quantum cryptographic schemes: hash-based, code-based, lattice-

based, multivariable-based, and isogeny-based schemes, among

which lattice-based cryptography is commonly viewed as amongst

the most promising one due to its outstanding balanced perfor-

mance in security, communication bandwidth, and computational

efficiency.

In the post-quantum cryptography standardization competition

held by the U.S. National Institute of Standards and Technology

(NIST), lattice-based schemes account for 26 out of 64 schemes in

the first round [90], 12 out of 26 in the second round [91], and

7 out of 15 in the current third round [92]. Most of these lattice-

based schemes are based on one of the following types: plain lattice

and algebraically structured lattice (ideal lattice, NTRU lattice, and

module lattice). They are mainly instantiated from the following

two categories of hardness assumptions. The first category con-

sists of Learning With Errors (LWE) [97] and its variants with al-

gebraic structures such as Ring-Learning With Errors (RLWE) [84]

and Module-Learning With Errors (MLWE) [79], as well as Learning
With Rounding (LWR) [13] and its variants such as Ring-Learning
With Rounding (RLWR) [13] and Module-Learning With Rounding
(MLWR) [7]. The second category is the NTRU assumption [64].

NTRU, which stands for “𝑁 𝑡ℎ-Degree Truncated Polynomial Ring
Units”, was first proposed by Jeffrey Hoffstein at the rump session

Crypto96 [62], and it survived a lattice attack in 1997 [36]. With

some improvements on security, NTRU was published by Hoffstein,

Pipher and Silverman in 1998 [64], which is named NTRU-HPS in

this work. NTRU-HPS was the first practical public key cryptosys-

tem based on the lattice hardness assumptions over polynomial

rings. There have been many variants of NTRU-HPS such as those

proposed in [11, 19, 29, 52, 70, 85]. And NTRU has played a basic

role in many cryptographic protocols, e.g., [46, 51, 55, 63, 80, 83]. In

particular, NTRU-based schemes have achieved impressive success

in the third round of NIST PQC standardization. Specifically, NTRU

KEM (including NTRU-HRSS and NTRUEncrypt) [29] and Falcon
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signature scheme [51] are two of the seven finalists, and NTRU

Prime KEM (including SNTRU Prime and NTRU LPRime) [19] is

one of the alternate candidates in NIST PQC Round 3.

There are several reasons for using NTRU-based KEM schemes.

The first is about its security. As the first practical lattice-based

cryptographic scheme, until now NTRU-based KEM schemes have

survived attacks and cryptanalysis over 24 years. Some efforts on

provable security have been made in [101, 104, 107, 108]. But their

resultingNTRU-based schemes are impractical since they have large

parameters. In general, most current NTRU-based schemes remain

unbroken. The second reason is that all the patent threats against

NTRU have expired. However, there are some known patents that

arguably threaten other lattice-based finalists such as Kyber [9]

and Saber [14]. For example, besides more latent patent threats,

U.S. patent 9094189 [54] threatens their “noisy Diffle-Hellman with

reconciliation” structure, and U.S. patent 9246675 [42] threatens

their decryption mechanisms. The patent threats are deemed a

critical factor for consideration when deploying PQC standardized

algorithms in reality. The third reason is that NTRU-based KEM

schemes admit more flexible key sizes to be encapsulated (corre-

sponding to the message spaceM in this work), varying according

to the degree of the underlying quotient polynomial. In comparison,

the KEM schemes based on MLWE and MLWR like Kyber and Saber

encapsulate keys of fixed size that is restricted to the underlying

quotient polynomial that is of degree 256 for Kyber and Saber.

On the other hand, currently there are also some drawbacks to

NTRU-based KEM schemes. The first is about ciphertext compres-

sion. The importance of reducing ciphertext size is self-evident,

since low communication bandwidth is friendly to internet proto-

cols (e.g., TLS) and constrained devices in the internet of things

(IoT). Though ciphertext compression is a quite mature technique

for {R,M}LWE-based KEM schemes, it is at a very rusty stage

for NTRU-based KEM constructions. Common NTRU-based en-

cryption schemes [29, 48, 64, 101] consist of the ciphertext of the

form 𝑐 = 𝑝ℎ𝑟 +𝑚 mod 𝑞, where 𝑝 is the message space modulus,

ℎ is the public key, 𝑟 is the randomness, and 𝑚 is the message

to be encrypted. In the decryption process, one could compute

𝑐 𝑓 mod 𝑞 = 𝑝𝑔𝑟 +𝑚𝑓 , and clean out the term 𝑝𝑔𝑟 via reduction

modulo 𝑝 . In order to obtain𝑚, one can multiply the inverse of 𝑓

modulo 𝑝 , or directly reducemodulo 𝑝 if 𝑓 = 𝑝𝑓 ′+1. It can be viewed
as a unidimensional error-correction mechanism. However, if the

ciphertext is further compressed, the error term in each component

can not be eliminated via reduction modulo 𝑝 and consequently

the messages can not be recovered correctly. Without ciphertext

compression, as a consequence, at about the same security level, the

bandwidth of NTRU-based KEM schemes is usually larger than that

of {R,M}LWE-based KEM schemes. The second drawback is about

security reduction. For most NTRU-based KEM constructions, their

chosen ciphertext attack (CCA) security is usually reduced to the

one-way (OW-CPA) secure encryption instead of the traditional

IND-CPA encryption. Above all, IND-CPA is a strictly stronger

security notion than OW-CPA. OW-CPA can be transformed into

IND-CPA, but at the price of further loosening the reduction bound

particularly in the quantum random oracle model (QROM) [48].

One can also have a tight reduction from CCA security to OW-CPA

deterministic public-key encryption (DPKE), but at the cost of a

more complicated decapsulation process [19, 29]. More detailed

discussions and clarifications on CCA security reduction of KEM

in the ROM and the QROM are presented in Appendix A. As a con-

sequence, it is still desirable for NTRU-based KEM constructions to

have security reduction from CCA security to IND-CPA security,

as is in {R,M}LWE-based KEM schemes.

1.1 Our Contributions
In this work, we present a new variant of NTRU-based cryptosys-

tem, called CTRU, which can achieve scalable ciphertext compres-

sion and has CCA provable security reduced directly to IND-CPA.

It consists of an IND-CPA secure public-key encryption, named

CTRU.PKE, and an IND-CCA secure key encapsulation mechanism,

named CTRU.KEM constructed through FO̸
⊥
𝐼𝐷 (𝑝𝑘),𝑚 that is an en-

hanced variant of Fujisaki-Okamoto transformation [53, 65] with a

short prefix of the public key into the hash function [47].

Our CTRU.PKE demonstrates a novel approach to construct-

ing NTRU-based PKE. The description of CTRU is over the NTT-

friendly rings of the form Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1). We choose 𝑛 ∈
{512, 768, 1024} for NIST recommended security levels I, III and

V, respectively, with the same 𝑞 = 3457 set for all the three di-

mensions for ease of implementation simplicity and compatability.

We recommend the case of 𝑛 = 768 which could have a moderate

post-quantum security and performance in reality.

1.1.1 New construction. The key generation algorithm in CTRU

is similar to the exiting NTRU-based KEM schemes such as [19,

29, 48, 64]. CTRU uses ℎ = 𝑔/𝑓 as its public key and 𝑓 as its secret

key. We develop a new encryption algorithm which breaks through

the limitation of ciphertext compression for NTRU-based KEM,

such that we can compress the ciphertexts in the case of one single

polynomial. To be specific, we encode every 4-bit messages into

a scalable E8 lattice point and hide its information by an RLWE

instance, after which we compress the resulting ciphertext as many

as possible. As for the decryption algorithm, we multiply the ci-

phertext polynomial by the secret polynomial, and finally recover

the messages correctly with the aid of our decoding algorithm in

the scalable E8 lattice whenever the ℓ2 norm of the error term is

less than the sphere radius of the scalable E8 lattice. An important

point to note is that, different from most existing NTRU-based KEM

schemes such as [29, 48, 64], in CTRU the message space modu-

lus 𝑝 is removed in the public key ℎ and in the ciphertext 𝑐 , as

it is not needed there to recover the message 𝑚 with our CTRU

construction. The only reserved position for 𝑝 is the secret key

𝑓 , which has the form of 𝑓 = 𝑝 𝑓 ′ + 1. We show that the above

steps constitute an IND-CPA secure PKE scheme: CTRU.PKE, based

on the NTRU assumption and the RLWE assumption. Finally, we

then apply the FO̸
⊥
𝐼𝐷 (𝑝𝑘),𝑚 transformation [47] to get the IND-CCA

secure CTRU.KEM.

1.1.2 Unified NTT. The NTT-based polynomial operations over

Z𝑞 [𝑥]/(𝑥𝑛 −𝑥𝑛/2 +1) are very efficient. However, as the dimension

𝑛 varies with CTRU, we have to equip with multiple NTT algo-

rithms with different input/output lengths in accordance with each

𝑛 ∈ {512, 768, 1024}. This brings inconvenient issues for software
implementation and especially for hardware implementation. In
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this work, we overcome this problem by presenting the method-

ology of using a unified NTT technique to compute NTTs over

Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1) for all 𝑛 ∈ {512, 768, 1024} with 𝑞 = 3457.

Technically speaking, we split 𝑓 ∈ Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1) into
𝛼 ∈ {2, 3, 4} sub-polynomials of lower degrees, each of which is

in Z𝑞 [𝑥]/(𝑥256 − 𝑥128 + 1). We then design a 256-point unified

NTT based on the ideas from [85, 88], and apply it to each sub-

polynomial. Finally, their intermediate NTT results are combined

to generate the final results. In this case, in order to obtain the

public key (the quotient of two 𝑛-dimension polynomials), we need

to compute the inversions in the rings of the form Z𝑞 [𝑥]/(𝑥2𝛼 − 𝜁 ),
where 𝜁 is some primitive root of unity in Z𝑞 . We use Cramer’s

Rule [57] to compute the inverse of polynomials of low degree.

1.1.3 Performance and comparisons. By careful evaluation and

selection, we provide a set of parameters for CTRU, and present the

recommended parameter sets in Section 5.1.3. Here, we make com-

parisons between CTRU on the recommended parameters and other

prominent practical NTRU-based KEM schemes: NTRU-HRSS [29,

69], SNTRU Prime [19], NTTRU [85] and NTRU-C
768

3457
[48], as well

as Kyber [9]. The comparisons are summarized in Table 1.

To the best of our knowledge, CTRU is the first NTRU-based

KEM scheme with scalable ciphertext compression via only one

single ciphertext polynomial. From the comparisons, CTRU has the

smallest bandwidth and the strongest security guarantees among

all the practical NTRU-based KEM schemes. The error probabilities

of CTRU are set according to the security level targeted by each

set of parameters, which can be viewed as negligible in accordance

with the security level. For example, when compared to the NIST

Round 3 finalist NTRU-HRSS [29], our CTRU-768 has 15% smaller

ciphertext size and its security is strengthened by (45, 40) bits for
classical and quantum security, respectively. When compared to

the NIST Round 3 finalist Kyber [9] that is based on the MLWE

assumption, the security of CTRU is slightly reduced for about 1 or

2 bits, due to the modulus 𝑞 = 3457 in CTRU that is slightly larger

than 𝑞 = 3329 in Kyber. But roughly at the same level of security,

CTRU has both smaller bandwidth and lower error probabilities.

To the best of our knowledge, CTRU is the first NTRU-based KEM

that enjoys all these advantages.

On negligible error vs. zero error. The error probability of

CTRU-768 is set to be 2
−187

, while that of NTRU-HRSS [29] is

zero. Since the target security level of CTRU-768 is 164, the error

probability of 2
−187

is sufficiently low. In our opinion, it is quite

paranoid that some NTRU-based KEM schemes, e.g., NTRU-HRSS,

reduce the error probability to zero. One can see that the tradeoffs

for no error vs. negligible error 2
−187

are more than 40 bits of

security and 15% smaller ciphertext size when compared to NTRU-

HRSS. We also stress that we do not know how to have the well

balance achieved by CTRU by simply adjusting parameters for the

existing NTRU-based KEM schemes.

On security reduction. Our CTRU.PKE can achieve the IND-

CPA security under the NTRU assumption and the RLWE assump-

tion, while most of the existing practical NTRU-based PKEs only

achieve OW-CPA security. The reduction advantage of CCA secu-

rity of our CTRU.KEM is tighter than those of NTTRU [85] and

NTRU-C
768

3457
[48]. For example, in the quantum setting, the CCA

reduction bound of CTRU.KEM is dominated by𝑂 (
√︁
𝑞′𝜖𝐶𝑃𝐴), while

those of NTTRU andNTRU-C
768

3457
are𝑂 (𝑞′√𝜖𝑂𝑊 ) and𝑂 (𝑞′1.5 4

√
𝜖𝑂𝑊 )

respectively, where 𝜖𝐶𝑃𝐴 (𝜖𝑂𝑊 ) is the advantage against the un-
derlying IND-CPA (resp., OW-CPA) secure PKE and 𝑞′ is the total
query number. However, NTRU-HRSS has a tight CCA reduction

bound starting from OW-CPA deterministic PKE (DPKE), at the cost

of more complicated and time-consuming decryption process [29].

In any case, IND-CPA is a strictly stronger security notion than

OW-CPA.

1.1.4 Reference implementation and benchmark. We provide C

reference implementation for CTRU-768, and perform benchmark

comparisons with the related lattice-based KEM schemes (for those

whose reference implementation codes are online available). The

benchmark comparisons show that the encapsulation and decapsu-

lation algorithms of CTRU-768 are among the most efficient. When

compared to the reference implementation of NTRU-HRSS in NIST

PQC Round 3, CTRU-768 is faster by 15X in KeyGen, 39X in Encaps,

and 61X in Decaps, respectively. More details and discussions about

the implementation and benchmark comparisons are referred to

Section 7.

1.2 Related Work
In recent years, many NTRU variants have been proposed. Jarvis

and Nevins [70] presented a new variant of NTRU-HPS [64] over

the ring of Eisenstein integers Z[𝜔]/(𝑥𝑛 − 1) where 𝜔 = 𝑒2𝜋𝑖/3,
which has smaller key sizes and faster performance than NTRU-

HPS. Bagheri et al. [11] generalized NTRU-HPS over bivariate poly-

nomial rings of the form (−1,−1)/(Z[𝑥,𝑦]/(𝑥𝑛 − 1, 𝑦𝑛 − 1)) for
stronger security and smaller public key sizes. Hülsing et al. [69]

improved NTRU-HPS in terms of speed, key size, and ciphertext

size, and presented NTRU-HRSS, which is one of the finalists in

NIST PQC Round 3 now [29]. Bernstein et al. [18] proposed NTRU

Prime, which aims for “an efficient implementation of high security

prime-degree large-Galois-group inert-modulus ideal-lattice-based

cryptography”. It tweaks the textbook NTRU scheme to use some

rings with less special structures, i.e., Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥 − 1), where
both 𝑛 and 𝑞 are primes.

In order to obtain better performance of NTRU encryption,

Lyubashevsky and Seiler [85] instantiated it over Z7681 [𝑥]/(𝑥768 −
𝑥384+1). Then Duman et al. [48] generalized the rings Z𝑞 [𝑥]/(𝑥𝑛 −
𝑥𝑛/2 + 1) with various 𝑛 for flexible parameter selection. But all of

them follow the similar structure of NTRU-HPS and do not support

ciphertext compression.

Very recently, Fouque et al. [52] proposed a new NTRU variant

named BAT. It shares many similarities with Falcon signature [51]

where a trapdoor basis is required in the secret key, which makes its

key generation complicated. BAT uses two linear equations in two

unknowns to recover the secret and error, without introducing the

modulus 𝑝 to extract message. It reduces the ciphertext sizes by con-

structing its intermediate value as an RLWR instance (with binary

secrets), and encrypts the message via ACWC0 transformation [48].

However, ACWC0 transformation consists of two terms, causing

that there are some dozens of bytes in the second ciphertext. An-

other disadvantage is about the inflexibility of selecting parameters.

Since BAT applies power-of-two cyclotomics Z𝑞 [𝑥]/(𝑥𝑛 + 1), it is
inconvenient to find an underlying cyclotomic polynomial of some

particular degree up to the next power of two. For example, BAT
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Table 1: Comparisons between CTRU and other lattice-based KEM schemes. The column “Assumptions” refers to the underlying
hardness assumptions. The column “Reduction” means that IND-CCA security is reduced to what kinds of CPA security,
where “IND” (“OW”) refers to indistinguishability (resp., one-wayness) and “RPKE” (“DPKE”) refers to randomized (resp.,
deterministic) public-key encryptions. “Rings” refers to the underlying polynomial rings. The column “𝑛” means the total
dimension of algebraically structured lattices. “𝑞” is the modulus. The public key sizes |𝑝𝑘 |, ciphertext sizes |𝑐𝑡 |, and B.W.
(bandwidth, |𝑝𝑘 | + |𝑐𝑡 |) are measured in bytes. “Sec.C” and “Sec.Q” mean the estimated security expressed in bits in the classical
and quantum setting respectively, which are gotten by the same methodology and scripts provided by Kyber and NTRU KEM in
NIST PQC Round 3, where we minimize the target values if the two hardness problems, say NTRU and RLWE, have different
security values. The column “𝛿” indicates the error probabilities.

Schemes Assumptions Reduction Rings 𝑛 𝑞 |𝑝𝑘 | |𝑐𝑡 | B.W. (Sec.C, Sec.Q) 𝛿

CTRU (Ours)

NTRU,

RLWE

IND-CPA

RPKE

Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1)
512 3457 768 640 1408 (118,107) 2

−144

768 3457 1152 960 2112 (181,164) 2
−187

1024 3457 1536 1408 2944 (255,231) 2
−206

NTRU-HRSS [29] NTRU

OW-CPA

DPKE

Z𝑞 [𝑥]/(𝑥𝑛 − 1) 701 8192 1138 1138 2276 (136,124) 2
−∞

SNTRU Prime-761 [19] NTRU

OW-CPA

DPKE

Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥 − 1) 761 4591 1158 1039 2197 (153,137) 2
−∞

NTTRU [85] NTRU

OW-CPA

RPKE

Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1) 768 7681 1248 1248 2496 (153,140) 2
−1217

NTRU-C
768

3457
[48]

NTRU,

RLWE

IND-CPA

RPKE

Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1) 768 3457 1152 1184 2336 (171,155) 2
−255

Kyber [9] MLWE

IND-CPA

RPKE

Z𝑞 [𝑥]/(𝑥𝑛/𝑘 + 1)
𝑘 = 2, 3, 4

512 3329 800 768 1568 (118,107) 2
−139

768 3329 1184 1088 2272 (183,166) 2
−164

1024 3329 1568 1568 3136 (256,232) 2
−174

chooses Z𝑞 [𝑥]/(𝑥512 + 1) and Z𝑞 [𝑥]/(𝑥1024 + 1) for NIST recom-

mended security levels I and V, but lacks of parameter set for level

III, which, however, is the aimed and recommended security level

for most lattice-based KEM schemes like Kyber [9] and our CTRU.

Although BAT has an advantage of bandwidth, its key generation is

1,000 times slower than other NTRU-based KEM schemes, and there

are some worries about its provable security based on the RLWR

assumption with binary secrets which is quite a new assumption

tailored for BAT. For the above reasons, we do not make a direct

comparison between CTRU and BAT.

2 PRELIMINARIES
2.1 Notations and Definitions
Let Z and R be the set of rational integers and real numbers, respec-

tively. Let 𝑛 and 𝑞 be some positive integers. Denote Z𝑞 = Z/𝑞Z �
{0, 1, . . . , 𝑞 − 1} and R𝑞 = R/𝑞R. Let Z×𝑞 be the group of invertible

elements of Z𝑞 . For any 𝑥 ∈ R, ⌊𝑥⌉ denotes the closest integer

to 𝑥 . We denote Z[𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1) and Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1)
by R and R𝑞 respectively in this work. The elements in R or R𝑞
are polynomials, which are denoted by regular font letters such

as 𝑓 , 𝑔. The polynomial, e.g., 𝑓 , in R (or R𝑞 ) can be represented in

the form of power series: 𝑓 =
∑𝑛−1
𝑖=0 𝑓𝑖𝑥

𝑖
, or in the form of vector:

𝑓 = (𝑓0, 𝑓1, . . . , 𝑓𝑛−1), where 𝑓𝑖 ∈ Z (or 𝑓𝑖 ∈ Z𝑞), 𝑖 = 0, 1, . . . , 𝑛 − 1.
A function 𝜖 : N→ [0, 1] is negligible, if 𝜖 (𝜆) < 1/𝜆𝑐 holds for any
positive 𝑐 and sufficiently large 𝜆. Denote a negligible function by

𝑛𝑒𝑔𝑙 .

Cyclotomics. More details about cyclotomics can be found

in [105]. Let 𝑚 be a positive integer, 𝜉𝑚 = exp( 2𝜋𝑖𝑚 ) be a 𝑚-th

root of unity. The𝑚-th cyclotomic polynomial Φ𝑚 (𝑥) is defined as

Φ𝑚 (𝑥) =
∏𝑚

𝑗=1,gcd( 𝑗,𝑚)=1 (𝑥 − 𝜉
𝑗
𝑚). It is a monic irreducible poly-

nomial of degree 𝜙 (𝑚) in Z[𝑥], where 𝜙 is the Euler function. The

𝑚-th cyclotomic field is Q(𝜉𝑚) � Q[𝑥]/(Φ𝑚 (𝑥)) and its corre-

sponding ring of integers is exactly Z[𝜉𝑚] � Z[𝑥]/(Φ𝑚 (𝑥)). Most

of cryptographic schemes based on algebraically structured lattices

are defined over power-of-two cyclotomic rings, Z[𝑥]/(𝑥𝑛 + 1) and
Z𝑞 [𝑥]/(𝑥𝑛 + 1), where 𝑛 = 2

𝑒
is a power of two such that 𝑥𝑛 + 1

is the 2
𝑒+1

-th cyclotomic polynomial. We use non-power-of-two

cyclotomic rings Z[𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1) and Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1),
where 𝑛 = 3

𝑙 · 2𝑒 , 𝑙 ≥ 0, 𝑒 ≥ 1 throughout this paper and in this

case 𝑥𝑛 − 𝑥𝑛/2 + 1 is the 3𝑙+1 · 2𝑒 -th cyclotomic polynomial.

Modular reductions. In this work, we expand the definition

of modular reduction from Z to R. For a positive number 𝑞, 𝑟 ′ =
𝑟 mod

±𝑞means that 𝑟 ′ is the representative element of 𝑟 in [−𝑞
2
,
𝑞
2
).

Let 𝑟 ′ = 𝑟 mod 𝑞 denote as the representative element of 𝑟 in [0, 𝑞).
Sizes of elements. Let 𝑞 be a positive number. For any num-

ber 𝑤 ∈ R, denote by ∥𝑤 ∥𝑞,∞ = |𝑤 mod
±𝑞 | its ℓ∞ norm. If 𝑤 is

an 𝑛-dimension vector, then its ℓ2 norm is defined as ∥𝑤 ∥𝑞,2 =√︃
∥𝑤0∥2𝑞,∞ + · · · + ∥𝑤𝑛−1∥2𝑞,∞. Notice that ∥𝑤 ∥𝑞,2 = ∥𝑤 ∥𝑞,∞ holds

for any number𝑤 ∈ R.
Sets and Distributions. For a set 𝐷 , we denote by 𝑥

$←− 𝐷

sampling 𝑥 from 𝐷 uniformly at random. If 𝐷 is a probability distri-

bution, 𝑥 ← 𝐷 means that 𝑥 is chosen according to the distribution

𝐷 . The centered binomial distribution 𝐵𝜂 with respect to a positive

integer 𝜂 is defined as follows: Sample (𝑎1, . . . , 𝑎𝜂 , 𝑏1, . . . , 𝑏𝜂 )
$←−

{0, 1}2𝜂 , and output∑𝜂

𝑖=1
(𝑎𝑖 − 𝑏𝑖 ). Sampling a polynomial 𝑓 ← 𝐵𝜂

means sampling each coefficient according to 𝐵𝜂 individually.
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2.2 Cryptographic Primitives
Apublic-key encryption scheme contains PKE = (KeyGen, Enc, Dec),

with a message spaceM. The key generation algorithm KeyGen

returns a pair of public key and secret key (𝑝𝑘, 𝑠𝑘). The encryption
algorithm Enc takes a public key 𝑝𝑘 and a message 𝑚 ∈ M to

produce a ciphertext 𝑐 . Denote by Enc(𝑝𝑘,𝑚; 𝑐𝑜𝑖𝑛) the encryption
algorithm with an explicit randomness 𝑐𝑜𝑖𝑛 if necessary. The de-

terministic decryption algorithm Dec takes a secret key 𝑠𝑘 and a

ciphertext 𝑐 , and outputs either a message 𝑚 ∈ M or a special

symbol ⊥ to indicate a rejection. The decryption error 𝛿 of PKE is

defined as E[max𝑚∈MPr[Dec(𝑠𝑘 ,Enc(𝑝𝑘,𝑚))] ≠𝑚]< 𝛿 . The advan-

tage of an adversary A against indistinguishability under chosen-
plaintext attacks (IND-CPA) for public-key encryption is defined as

AdvIND-CPA
PKE

(A) =���������Pr

𝑏 ′ = 𝑏 :

(𝑝𝑘, 𝑠𝑘) ← KeyGen();
(𝑚0,𝑚1, 𝑠) ← A(𝑝𝑘);

𝑏
$←− {0, 1}; 𝑐∗ ← Enc(𝑝𝑘,𝑚𝑏 );

𝑏 ′ ← A(𝑠, 𝑐∗)


− 1

2

��������� .
A key encapsulation mechanism contains KEM = (KeyGen, En-

caps, Decaps) with a key space K . The key generation algorithm

KeyGen returns a pair of public key and secret key (𝑝𝑘, 𝑠𝑘). The
encapsulation algorithm Encaps takes a public key 𝑝𝑘 to produce

a ciphertext 𝑐 and a key 𝐾 ∈ K . The deterministic decapsula-

tion algorithm Decaps inputs a secret key 𝑠𝑘 and a ciphertext

𝑐 , and outputs either a key 𝐾 ∈ K or a special symbol ⊥ indi-

cating a rejection. The error probability 𝛿 of KEM is defined as

Pr[Decaps(𝑠𝑘, 𝑐) ≠ 𝐾 : (𝑐, 𝐾) ← Encaps(𝑝𝑘)] < 𝛿 . The advantage of

an adversary A against indistinguishability under chosen-ciphertext
attacks (IND-CCA) for KEM is defined as AdvIND-CCA

KEM
(A) =������������

Pr


𝑏 ′ = 𝑏 :

(𝑝𝑘, 𝑠𝑘) ← KeyGen();
𝑏

$←− {0, 1};
(𝑐∗, 𝐾∗

0
) ← Encaps(𝑝𝑘);
𝐾∗
1

$←− K ;
𝑏 ′ ← A Decaps( ·) (𝑝𝑘, 𝑐∗, 𝐾∗

𝑏
)


− 1

2

������������
.

2.3 Hardness Assumptions
As the lattice cryptography evolved over the decades, the security of

NTRU and its variants can be naturally viewed as two assumptions.

One is theNTRU assumption [64], and the other is the Ring-Learning
with error (RLWE) assumption [84], which are listed as follows. In

some sense, the NTRU assumption can be viewed as a special case

of the RLWE assumption. More details about NTRU cryptosystem

and its applications can be seen in the excellent survey [102].

Definition 2.1 (NTRU assumption [64]). Let Ψ be a distribution

over a polynomial ring R. Sample 𝑓 and 𝑔 according to Ψ, and 𝑓
is invertible in R. Let ℎ = 𝑔/𝑓 . The decisional NTRU assumption

states that ℎ is indistinguishable from a uniformly-random element

in R. More precisely, the decisional NTRU assumption is hard if the

advantage AdvNTRU
𝑅,Ψ (A) of any probabilistic polynomial time (PPT)

adversary A is negligible, where AdvNTRU
𝑅,Ψ (A) =����Pr [𝑏 ′ = 1 :

𝑓 , 𝑔← Ψ ∧ 𝑓 −1 ∈ 𝑅
ℎ = 𝑔/𝑓 ∈ 𝑅;𝑏 ′ ← A(ℎ)

]
−Pr

[
𝑏 ′ = 1 : ℎ

$←− 𝑅;𝑏 ′ ← A(ℎ)
] ����.

Definition 2.2 (RLWE assumption [84]). Let Ψ be a distribution

over a polynomial ring R. The (decisional) Ring-Learning with

error (RLWE) assumption over R is to distinguish uniform samples

(ℎ, 𝑐) $←− 𝑅 × 𝑅 from samples (ℎ, 𝑐) ∈ 𝑅 × 𝑅 where ℎ
$←− 𝑅 and

𝑐 = ℎ𝑟 +𝑒 with 𝑟, 𝑒 ← Ψ. It is hard if the advantageAdvRLWE

𝑅,Ψ (A) of
any probabilistic polynomial time adversary A is negligible, where

AdvRLWE

𝑅,Ψ (A) =�����Pr
[
𝑏 ′ = 1 :

ℎ
$←− 𝑅; 𝑟, 𝑒 ← Ψ;

𝑐 = ℎ𝑟 + 𝑒 ∈ 𝑅;𝑏 ′ ← A(ℎ, 𝑐)

]
−Pr

[
𝑏 ′ = 1 : ℎ

$←− 𝑅; 𝑐 $←− 𝑅;𝑏 ′ ← A(ℎ, 𝑐)
] �����.

3 THE LATTICE CODING
Before introducing our proposed NTRU-based KEM scheme, we

present simple and efficient lattice coding algorithms. The mo-

tivation is that a dense lattice with efficient decoding algorithm

is needed in our construction for better efficiency on recovering

message and low enough error probability. The coding algorithms

should satisfy the following conditions.

• The operations should be simple enough, and can be im-

plemented by efficient arithmetic (better for integer-only

operations).

• The decoding bound is large enough such that it leads to a

high fault-tolerant mechanism.

We note that an 8-dimension lattice, named E8 lattice (see [34],

Chapter 4) could satisfy the above requirements to some extent. As

for its density, there is a remarkable mathematical breakthrough

that sphere packing in the E8 lattice is proved to be optimal in

the sense of the best density when packing in R8 [103]. As for the
efficiency on coding, there has been simple executable encoding

and decoding algorithms of the E8 lattice in [33, 34]. However, the

known coding algorithms in [33, 34] cannot be directly applied here.

To work in our setting, we need to specify a one-to-one mapping

from binary strings to the E8 lattice points to encode messages. In

this work, we specify such a mapping by choosing a basis for the

scalable version of the E8 lattice, which can transform the lattice

points to the binary strings without involving Gaussian Elimination.

3.1 Coding with Scalable E8 Lattice
The scalable E8 lattice is constructed from the Extended Hamming

Code with respect to dimension 8, which is defined as 𝐻8 = {c ∈
{0, 1}8 | c = zH mod 2, z ∈ {0, 1}4} where the binary matrix H is

H =


1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

0 1 0 1 0 1 0 1

 .
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Let 𝐶 = {(𝑥1, 𝑥1, 𝑥2, 𝑥2, 𝑥3, 𝑥3, 𝑥4, 𝑥4) ∈ {0, 1}8 |
∑
𝑥𝑖 ≡ 0 mod

2}, where 𝐶 is spanned by the up most three rows of H. Then the

scalable E8 lattice (named E
′
8
lattice) is constructed as

E
′
8
= 𝜆 · [𝐶 ∪ (𝐶 + c)] ⊂ [0, 𝜆]8

where c = (0, 1, 0, 1, 0, 1, 0, 1) is the last row of H, 𝜆 ∈ R+ is the scale
factor and 𝜆 ·𝐶 means that all the elements in 𝐶 multiply by 𝜆.

3.1.1 Encoding algorithm of the E′
8
lattice. The encoding algo-

rithm of the E
′
8
lattice (see Algorithm 1) is to calculate 𝜆·(kH mod 2),

given a 4-bit binary string k, where (kH mod 2) can be computed

efficiently by bitwise operations.

Algorithm 1 Encode𝐸′
8

(k ∈ {0, 1}4)

1: v := 𝜆 · (kH mod 2) ∈ [0, 𝜆]8
2: return v

Algorithm 2 Decode𝐸′
8

(x = (𝑥0, . . . , 𝑥7) ∈ R8)

1: Recall that c := (0, 1, 0, 1, 0, 1, 0, 1)
2: (k0, TotalCost0) := Decode𝐶′ (x)
3: (k1, TotalCost1) := Decode𝐶′ (x − 𝜆 · c)
4: 𝑏 := argmin{TotalCost0, TotalCost1}
5: (𝑘0, 𝑘1, 𝑘2, 𝑘3) := k𝑏
6: k := (𝑘0, 𝑘1 ⊕ 𝑘0, 𝑘3, 𝑏) ∈ {0, 1}4
7: return k

Algorithm 3 Decode𝐶′ (x ∈ R8)
1: 𝑚𝑖𝑛𝑑 := +∞
2: 𝑚𝑖𝑛𝑖 := 0

3: TotalCost := 0

4: for 𝑖 = 0 . . . 3 do
5: 𝑐0 := ∥𝑥2𝑖 ∥2

2𝜆,2
+ ∥𝑥2𝑖+1∥2

2𝜆,2

6: 𝑐1 := ∥𝑥2𝑖 − 𝜆∥2
2𝜆,2
+ ∥𝑥2𝑖+1 − 𝜆∥2

2𝜆,2

7: 𝑘𝑖 := argmin{𝑐0, 𝑐1}
8: TotalCost := TotalCost + 𝑐𝑘𝑖
9: if 𝑐

1−𝑘𝑖 − 𝑐𝑘𝑖 < 𝑚𝑖𝑛𝑑 then
10: 𝑚𝑖𝑛𝑑 := 𝑐

1−𝑘𝑖 − 𝑐𝑘𝑖
11: 𝑚𝑖𝑛𝑖 := 𝑖

12: end if
13: end for
14: if 𝑘0 + 𝑘1 + 𝑘2 + 𝑘3 mod 2 = 1 then
15: 𝑘𝑚𝑖𝑛𝑖 := 1 − 𝑘𝑚𝑖𝑛𝑖

16: TotalCost := TotalCost +𝑚𝑖𝑛𝑑
17: end if
18: k := (𝑘0, 𝑘1, 𝑘2, 𝑘3) ∈ {0, 1}4
19: return (k, TotalCost)

3.1.2 Decoding algorithm. Given any x ∈ R8, the decoding

algorithm is to find the solution of the closest vector problem (CVP)

of x in the E
′
8
lattice, which is denoted by 𝜆 · k′H mod 2, and it

outputs the 4-bit string k′. To solve the CVP of x ∈ R8 in the E
′
8

lattice, we turn to solve the CVP of x and x − 𝜆c in the lattice

𝐶 ′ = 𝜆 ·𝐶 . The one that has smaller distance is the final answer.

We briefly introduce the idea of solving the CVP in the lattice

𝐶 ′ here. Given x ∈ R8, for every two components in x, determine

whether they are close to (0, 0) or (𝜆, 𝜆). Assign the correspond-

ing component of k to 0 if the former is true, and 1 otherwise. If∑
𝑘𝑖 mod 2 = 0 holds, it indicates that 𝜆 · (𝑘0, 𝑘0, 𝑘1, 𝑘1, 𝑘2, 𝑘2, 𝑘3, 𝑘3)

is the solution. However,

∑
𝑘𝑖 mod 2 might be equal to 1. Then we

choose the secondly closest vector, 𝜆 · (𝑘 ′
0
, 𝑘 ′

0
, 𝑘 ′

1
, 𝑘 ′

1
, 𝑘 ′

2
, 𝑘 ′

2
, 𝑘 ′

3
, 𝑘 ′

3
),

where therewill be atmost one-bit difference between (𝑘0, 𝑘1, 𝑘2, 𝑘3)
and (𝑘 ′

0
, 𝑘 ′

1
, 𝑘 ′

2
, 𝑘 ′

3
). The detailed algorithm is given in Algorithm 2,

along with Algorithm 3 as its subroutines. Note that in Algorithm 3,

𝑚𝑖𝑛𝑑 and𝑚𝑖𝑛𝑖 are set to store the minimal difference of the com-

ponents and the corresponding index, respectively.

Finally, Decode𝐶′ in Algorithm 2 will output the 4-bit string

(𝑘0, 𝑘1, 𝑘2, 𝑘3) such that the lattice point 𝜆 · (𝑘0, 𝑘0 ⊕ 𝑏, 𝑘1, 𝑘1 ⊕
𝑏, 𝑘2, 𝑘2 ⊕ 𝑏, 𝑘3, 𝑘3 ⊕ 𝑏) is closest to x in the E

′
8
lattice. Since the

lattice point has the form of 𝜆 · (kH mod 2), the decoding result

k can be obtained by tweaking the solution of the CVP in the E
′
8

lattice, as in line 5 and line 6 in Algorithm 2.

3.2 Bound of Correct Decoding
Theorem 3.1 gives a bound of correct decoding w.r.t. Algorithm 2.

Briefly speaking, for any 8-dimension vector which is close enough

to the given E
′
8
lattice point under the metric of ℓ2 norm, it can be

decoded into the same 4-bit string that generates the lattice point.

This theorem is helpful whenwe try to recover the targetedmessage

from the given lattice point with error terms in our schemes.

Theorem 3.1 (Correctness bound of the E
′
8
lattice decod-

ing). For any given k1 ∈ {0, 1}4, denote v1 := Encode𝐸′
8

(k1). For
any v2 ∈ R8, denote k2 := Decode𝐸′

8

(v2). If ∥v2 − v1∥2𝜆,2 < 𝜆, then
k1 = k2.

Proof. According to the construction of the ExtendedHamming

Code 𝐻8, we know that its minimal Hamming distance is 4. Thus,

the radius of sphere packing in the E
′
8
lattice we used is

1

2

√
4 · 𝜆2 = 𝜆.

As shown in Algorithm 1, v1 is the lattice point generated from k1.
As for v2 ∈ R8, if ∥v2 − v1∥2𝜆,2 < 𝜆, the solution of the CVP about

v2 in the E
′
8
lattice is v1. Since Decode𝐸′

8

in Algorithm 2 will output

the 4-bit string finally, instead of the intermediate solution of the

CVP, v1 is also generated from k2, i.e., v1 = 𝜆 · (k2H mod 2), which
indicates that k1 = k2. □

4 CTRU: CONSTRUCTION AND ANALYSIS
In this section, we propose our new cryptosystem based on NTRU

lattice, named CTRU, which contains an IND-CPA secure public-key

encryption (CTRU.PKE) and an IND-CCA secure key encapsulation

mechanism (CTRU.KEM). CTRU has a similar form of public key

and secret key to those of the traditional NTRU-based KEM schemes,

but the method to recover message in CTRU is significantly differ-

ent from them. With our construction, CTRU will achieve smaller

ciphertext sizes with scalable ciphertext compression.

4.1 Proposal Description
Our CTRU.PKE scheme is specified in Algorithm 4-6. Restate that

R𝑞 = Z𝑞 [𝑥]/(𝑥𝑛 −𝑥𝑛/2 + 1), where 𝑛 and 𝑞 are the ring parameters.

Let 𝑞2 be the ciphertext modulus, which is usually set to be a power
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of two. Let 𝑝 be the message space modulus, satisfying gcd(𝑞, 𝑝) = 1.

We fix 𝑝 = 2 in this work. Let Ψ be the distribution over R. For
presentation simplicity, the secret terms, 𝑓 ′, 𝑔, 𝑟 and 𝑒 , are all taken
from Ψ. In general, they can taken from different distributions. Let

M = {0, 1}𝑛/2 denote the message space, where each𝑚 ∈ M can

be seen as a
𝑛
2
-dimension polynomial with coefficients in {0, 1}.

Algorithm 4 CTRU.PKE.KeyGen()

1: 𝑓 ′, 𝑔← Ψ
2: 𝑓 := 𝑝𝑓 ′ + 1
3: If 𝑓 is not invertible in R𝑞 , restart.
4: ℎ := 𝑔/𝑓
5: return (𝑝𝑘 := ℎ, 𝑠𝑘 := 𝑓 )

Algorithm 5 CTRU.PKE.Enc(𝑝𝑘 = ℎ,𝑚 ∈ M)

1: 𝑟, 𝑒 ← Ψ
2: 𝜎 := ℎ𝑟 + 𝑒

3: 𝑐 :=

⌊𝑞2
𝑞
(𝜎 +

⌊
PolyEncode(𝑚)

⌉
)
⌉
mod 𝑞2

4: return 𝑐

Algorithm 6 CTRU.PKE.Dec(𝑠𝑘 = 𝑓 , 𝑐)

1: 𝑚 := PolyDecode

(
𝑐 𝑓 mod

±𝑞2
)

2: return𝑚

Algorithm 7 PolyEncode(𝑚 =
𝑛/2−1∑
𝑖=0

𝑚𝑖𝑥
𝑖 ∈ M)

1: E
′
8
:=

𝑞
2
· [𝐶 ∪ (𝐶 + c)] ⊂ [0, 𝑞

2
]8

2: for 𝑖 = 0 . . . 𝑛/8 − 1 do
3: k𝑖 := (𝑚4𝑖 ,𝑚4𝑖+1,𝑚4𝑖+2,𝑚4𝑖+3) ∈ {0, 1}4
4: (𝑣8𝑖 , 𝑣8𝑖+1, . . . , 𝑣8𝑖+7) := Encode𝐸′

8

(k𝑖 ) ∈ [0, 𝑞
2
]8

5: end for

6: 𝑣 :=
𝑛−1∑
𝑖=0

𝑣𝑖𝑥
𝑖

7: return 𝑣

Algorithm 8 PolyDecode(𝑣 =
𝑛−1∑
𝑖=0

𝑣𝑖𝑥
𝑖 ∈ R𝑞2 )

1: E
′′
8
:=

𝑞2
2
· [𝐶 ∪ (𝐶 + c)] ⊂ [0, 𝑞2

2
]8

2: for 𝑖 = 0 . . . 𝑛/8 − 1 do
3: x𝑖 := (𝑣8𝑖 , 𝑣8𝑖+1, . . . , 𝑣8𝑖+7) ∈ R8
4: (𝑚4𝑖 ,𝑚4𝑖+1,𝑚4𝑖+2,𝑚4𝑖+3) := Decode𝐸′′

8

(x𝑖 ) ∈ {0, 1}4
5: end for

6: 𝑚 :=
𝑛/2−1∑
𝑖=0

𝑚𝑖𝑥
𝑖 ∈ M

7: return𝑚

The PolyEncode algorithm and PolyDecode algorithm are de-

scribed in Algorithm 7 and 8, respectively. Specifically, we construct

the E
′
8
lattice with the scale factor

𝑞
2
in Algorithm 7. That is, the en-

coding algorithmworks over E
′
8
:=

𝑞
2
· [𝐶∪(𝐶+c)]. The PolyEncode

algorithm splits each𝑚 ∈ M into some quadruples, each of which

will be encoded via Encode𝐸′
8

. As for PolyDecode algorithm, the

decoding algorithm works over the lattice E
′′
8
:=

𝑞2
2
· [𝐶 ∪ (𝐶 + c)].

It splits 𝑣 ∈ R𝑞2 into some octets, each of which will be decoded

via Decode𝐸′′
8

. The final message𝑚 can be recovered by combining

all the 4-bit binary strings output by Decode𝐸′′
8

.

We construct our CTRU.KEM=(Keygen, Encaps, Decaps) by ap-

plying FO̸
⊥
𝐼𝐷 (𝑝𝑘),𝑚 , a variant of Fujisaki-Okamoto (FO) transforma-

tion [53, 65] aimed for the strengthened IND-CCA security in multi-

user setting [47]. Let 𝜄, 𝛾 be positive integers. We prefer to choose

𝜄, 𝛾 ≥ 256 for strong security. LetH : {0, 1}∗ → K × COINS be

a hash function, where K is the shared key space of CTRU.KEM

and COINS is the randomness space of CTRU.PKE.Enc. Note that

we make explicit the randomness in CTRU.PKE.Enc here. Define

H1 (·) asH(·)’s partial output that is mapped into K . Let PK be

the public key space of CTRU.PKE. Let 𝐼𝐷 : PK → {0, 1}𝛾 be a

fixed-output length function. The algorithms of CTRU.KEM are

described in Algorithm 9-11.

Algorithm 9 CTRU.KEM.KeyGen()

1: (𝑝𝑘, 𝑠𝑘) ← CTRU.PKE.KeyGen()

2: 𝑧
$←− {0, 1}𝜄

3: return (𝑝𝑘 ′ := 𝑝𝑘, 𝑠𝑘 ′ := (𝑠𝑘, 𝑧))

Algorithm 10 CTUR.KEM.Encaps(𝑝𝑘)

1: 𝑚
$←−M

2: (𝐾, 𝑐𝑜𝑖𝑛) := H(𝐼𝐷 (𝑝𝑘),𝑚)
3: 𝑐 := CTRU.PKE.Enc(𝑝𝑘,𝑚; 𝑐𝑜𝑖𝑛)
4: return (𝑐, 𝐾)

Algorithm 11 CTRU.KEM.Decaps((𝑠𝑘, 𝑧), 𝑐)
1: 𝑚′ := CTRU.PKE.Dec(𝑠𝑘, 𝑐)
2: (𝐾 ′, 𝑐𝑜𝑖𝑛′) := H(𝐼𝐷 (𝑝𝑘),𝑚′)
3: 𝐾̃ := H1 (𝐼𝐷 (𝑝𝑘), 𝑧, 𝑐)
4: if 𝑚′ ≠⊥ and 𝑐 = CTRU.PKE.Enc(𝑝𝑘,𝑚′; 𝑐𝑜𝑖𝑛′) then
5: return 𝐾 ′

6: else
7: return 𝐾̃
8: end if

4.2 Correctness Analysis
Lemma 4.1. It holds that 𝑐 𝑓 mod

±𝑞2 =
𝑞2
𝑞 ((

𝑞
𝑞2
𝑐) 𝑓 mod

±𝑞).

Proof. Since polynomial multiplication can be described as

matrix-vector multiplication, which keeps the linearity, it holds

that ( 𝑞𝑞2 𝑐) 𝑓 =
𝑞
𝑞2
(𝑐 𝑓 ). There exits an integral vector 𝜃 ∈ Z𝑛 such

that
𝑞
𝑞2
𝑐 𝑓 mod

±𝑞 =
𝑞
𝑞2
𝑐 𝑓 +𝑞𝜃 and −𝑞

2
≤ 𝑞

𝑞2
𝑐 𝑓 +𝑞𝜃 <

𝑞
2
. Thus, we

have −𝑞2
2
≤ 𝑐 𝑓 + 𝑞2𝜃 <

𝑞2
2
. Hence, we obtain

𝑐 𝑓 mod
±𝑞2 = 𝑐 𝑓 + 𝑞2𝜃 =

𝑞2

𝑞
( 𝑞
𝑞2
𝑐 𝑓 + 𝑞𝜃 ) = 𝑞2

𝑞
(( 𝑞
𝑞2
𝑐) 𝑓 mod

±𝑞).

□
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Theorem 4.2. LetΨ be the distribution over the ringR, and𝑞, 𝑞2, 𝑝
be positive integers. Let 𝑓 ′, 𝑔, 𝑟, 𝑒 ← Ψ. Let 𝜀1 ← 𝜒1, where 𝜒1 is the

distribution over R defined as follows: Sample 𝑠
$←− R2 and output( ⌊𝑞

2
𝑠
⌉
− 𝑞

2
𝑠

)
mod

±𝑞. And, let 𝜀2 ← 𝜒2, where 𝜒2 is the distribution

over R defined as follows: Sample 𝜎
$←− R𝑞 and 𝑠

$←− R2 and output[ ⌊
𝑞2
𝑞 (𝜎 +

⌊𝑞
2
𝑠
⌉
)
⌉
− 𝑞2

𝑞 (𝜎 +
⌊𝑞
2
𝑠
⌉
)
]
mod

±𝑞2. Let Err𝑖 be the 𝑖-th octet

of 𝑔𝑟 + 𝑒 𝑓 + (𝜀1 + 𝑞
𝑞2
𝜀2) 𝑓 . Denote 1 − 𝛿 = Pr

[
∥Err𝑖 ∥𝑞,2 <

𝑞
2

]
. Then,

the error probability of CTRU is 𝛿 .

Proof. Scale the E
′′
8
lattice and 𝑐 𝑓 mod

±𝑞2 by the factor 𝑞/𝑞2.
According to Lemma 4.1, we have

𝑚 = PolyDecode𝐸′′
8

(
𝑐 𝑓 mod

±𝑞2
)

= PolyDecode𝐸′
8

(
( 𝑞
𝑞2
𝑐) 𝑓 mod

±𝑞
)

(1)

in Algorithm 6. Since 𝑚
$←− M in Algorithm 10, the result of

PolyEncode(𝑚) in Algorithm 5 can be denoted by
𝑞
2
𝑠 where 𝑠

$←− R2.
Based on the hardness of the NTRU assumption and the RLWE

assumption, 𝜎 in line 2 in Algorithm 5 is pseudo-random in R𝑞 .
Therefore, the value of 𝑐 in line 3 in Algorithm 5 is

𝑐 =

⌊𝑞2
𝑞
(𝜎 +

⌊𝑞
2

𝑠
⌉
)
⌉
mod 𝑞2 =

𝑞2

𝑞
(𝜎 +

𝑞

2

𝑠 + 𝜀1) + 𝜀2 mod 𝑞2 .

With 𝜎 = ℎ𝑟 + 𝑒 , ℎ = 𝑔/𝑓 and 𝑓 = 2𝑓 ′ + 1, for the formula (1) we

get

( 𝑞
𝑞2
𝑐) 𝑓 mod

±𝑞 =
𝑞

𝑞2
[
𝑞2

𝑞
(𝜎 +

𝑞

2

𝑠 + 𝜀1) + 𝜀2] · 𝑓 mod
±𝑞

=
𝑞

2

𝑠 (2𝑓 ′ + 1) + 𝜎 𝑓 + (𝜀1 +
𝑞

𝑞2
𝜀2) 𝑓 mod

±𝑞

=
𝑞

2

𝑠 + 𝑔𝑟 + 𝑒 𝑓 + (𝜀1 +
𝑞

𝑞2
𝜀2) 𝑓 mod

±𝑞

(2)

Each octet of
𝑞
2
𝑠 in (2) is essentially a lattice point in the E

′
8

lattice, which we denoted by
𝑞
2
(k𝑖H mod 2). From Theorem 3.1 we

know that to recover k𝑖 , it should hold ∥Err𝑖 ∥𝑞,2 <
𝑞
2
, where Err𝑖

is the 𝑖-th octet of 𝑔𝑟 + 𝑒 𝑓 + (𝜀1 + 𝑞
𝑞2
𝜀2) 𝑓 . □

The form of polynomial product in the ring Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 +
1) is presented in detail in Appendix B. The error probability is

estimated by using a Python script. The results for the selected

parameters are given in Table 2.

4.3 Provable Security
We prove that CTRU.PKE is IND-CPA secure under the NTRU

assumption and the RLWE assumption.

Theorem 4.3 (IND-CPA security). For any adversary A, there ex-
its adversaries B and C such that AdvIND-CPACTRU.PKE (A) ≤ AdvNTRUR𝑞 ,Ψ (B) +
AdvRLWE

R𝑞 ,Ψ (C).

Proof. We complete our proof through a sequence of gamesG0,

G1 and G2. Let A be the adversary against the IND-CPA security

experiment. Denote by Succ𝑖 the event that A wins in the game G𝑖 ,

that is, A outputs 𝑏 ′ such that 𝑏 ′ = 𝑏 in G𝑖 .

Game G0. This game is the original IND-CPA security experi-

ment. Thus, AdvIND-CPA
CTRU.PKE

(A) = |Pr[Succ0] − 1/2|.
Game G1. This game is the same as G0, except that replacing the

public key ℎ = 𝑔/𝑓 in the KeyGen by ℎ
$←− R𝑞 . To distinguish G1

from G0 is equivalent to solve an NTRU problem. More precisely,

there exits an adversary B with the same running time as that of A
such that |Pr[Succ0] − Pr[Succ1] | ≤ AdvNTRUR𝑞 ,Ψ (B).

Game G2. This game is the same as G1, except that using uni-

formly random elements from R𝑞 to replace 𝜎 in the encryption.

Similarly, there exits an adversary C with the same running time

as that of A such that |Pr[Succ1] − Pr[Succ2] | ≤ AdvRLWE

R𝑞 ,Ψ (C).
In Game G2, for any given𝑚𝑏 , according to Algorithm 5 and 7,

𝑚𝑏 is split into 𝑛/8 quadruples. Denote the 𝑖-th quadruple of𝑚𝑏

as𝑚
(𝑖)
𝑏

, which will later be operated to output the 𝑖-th octet of the

ciphertext 𝑐 that is denoted as 𝑐 (𝑖) , 𝑖 = 0, 1, . . . , 𝑛/8 − 1. Since 𝑐 (𝑖)

is only dependent on𝑚
(𝑖)
𝑏

and other parts of𝑚𝑏 do not interfere

with 𝑐 (𝑖) , our aim is to prove that 𝑐 (𝑖) is independent of𝑚 (𝑖)
𝑏

, 𝑖 =

0, 1, . . . , 𝑛/8 − 1. For any 𝑖 and any given𝑚
(𝑖)
𝑏

, ⌊Encode𝐸′
8

(𝑚 (𝑖)
𝑏
)⌉

is fixed. Based on the uniform randomness of 𝜎 in R𝑞 , its 𝑖-th

octet (denoted as 𝜎 (𝑖) ) is uniformly random in Z8𝑞 , so is 𝜎 (𝑖) +
⌊Encode𝐸′

8

(𝑚 (𝑖)
𝑏
)⌉. Therefore, the resulting 𝑐 (𝑖) is subject to the

distribution ⌊𝑞2𝑞 𝑢⌉ mod 𝑞2 where 𝑢 is uniformly random in Z8𝑞 ,

which implies that 𝑐 (𝑖) is independent of 𝑚 (𝑖)
𝑏

. Hence, each 𝑐 (𝑖)

leaks no information of the corresponding𝑚
(𝑖)
𝑏

, 𝑖 = 0, 1, . . . , 𝑛/8−1.
We have Pr[Succ2] = 1/2.

Combining all the probabilities finishes the proof. □

By applying the FO̸
⊥
𝐼𝐷 (𝑝𝑘),𝑚 transformation and adapting the

results given in [47], we have the following results on CCA security

of CTRU in the random oracle model (ROM) [15] and quantum

random oracle model (QROM) [25].

Theorem 4.4 (IND-CCA security in the ROM and QROM [47]).

Let ℓ be the min-entropy [53] of 𝐼𝐷 (𝑝𝑘), i.e., ℓ = 𝐻∞ (𝐼𝐷 (𝑝𝑘)), where
(𝑝𝑘, 𝑠𝑘)←CTRU.PKE.KeyGen. For any (quantum) adversary A, mak-
ing at most 𝑞𝐷 decapsulation queries, 𝑞𝐻 (Q)RO queries, against the
IND-CCA security of CTRU.KEM, there exits a (quantum) adversary
B with roughly the same running time of A, such that:

• In the ROM, it holds that AdvIND-CCACTRU.KEM (A) ≤

2

(
AdvIND-CPACTRU.PKE (B) +

𝑞𝐻 + 1
|M|

)
+ 𝑞𝐻

2
𝜄
+ (𝑞𝐻 + 𝑞𝐷 )𝛿 +

1

2
ℓ
;

• In the QROM, it holds that AdvIND-CCACTRU.KEM (A) ≤

2

√︃
𝑞𝐻𝐷AdvIND-CPACTRU.PKE (B)+

4𝑞𝐻𝐷√︁
|M|
+ 4(𝑞𝐻 + 1)√

2
𝜄
+16𝑞2𝐻𝐷𝛿+

1

|M| +
1

2
ℓ
,

where 𝑞𝐻𝐷 := 𝑞𝐻 + 𝑞𝐷 + 1.

The detailed discussions and clarifications on CCA security re-

duction of KEM in the ROM and the QROM are given in Appendix A.

8



4.4 Discussions and Comparisons
The rings.As in [48, 85], we choose non-power-of-two cyclotomics

Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1) with respect to 𝑛 = 3
𝑙 · 2𝑒 and prime 𝑞, This

type of ring allows very fast NTT-based polynomial multiplication

if the ringmoduli are set to be NTT-friendly. Moreover, it also allows

very flexible parameter selection, since there are many integral 𝑛

of the form 3
𝑙 · 2𝑒 , 𝑙 ≥ 0, 𝑒 ≥ 1.

The message modulus. Note that the modulus 𝑝 is removed in

the public key ℎ (i.e., ℎ = 𝑔/𝑓 ) and in the ciphertext 𝑐 of our CTRU,

for the reason that 𝑝 is not needed in ℎ and 𝑐 to recover the message

𝑚 in our construction. The only reserved position of 𝑝 is the secret

key 𝑓 , which has the form of 𝑓 = 𝑝𝑓 ′ + 1. Since gcd(𝑞, 𝑝) = 1 is

required for NTRU-based KEM schemes, we can use 𝑝 = 2 instead

of 𝑝 = 3. A smaller 𝑝 can lead to a lower error probability. Note that

for other NTRU-based KEM schemes with power-of-two modulus

𝑞 as in NTRU-HRSS [29], 𝑝 is set to be 3 because it is the smallest

integer co-prime to the power-of-2 modulus.

The decryption mechanism. Technically speaking, the cipher-
text of NTRU-based PKE schemes [29, 48, 64, 101] has the form of

𝑐 = 𝑝ℎ𝑟 +𝑚 mod 𝑞. One can recover the message𝑚 through a unidi-

mensional error-correction mechanism, after computing 𝑐 𝑓 mod 𝑞.

Instead, we use a multi-dimension coding mechanism. We encode

each 4-bit messages into a lattice point in the E
′
8
lattice. They can

be recovered correctly with the aid of the E
′
8
decoding algorithm if

the ℓ2 norm of the error term is less than the sphere radius of the

E
′
8
lattice.

The ciphertext compression. To the best of our knowledge,

CTRU is the first NTRU-based KEM with scalable ciphertext com-

pression via a single polynomial. The ciphertext modulus 𝑞2 is

adjustable, depending on the bits to be dropped. The reason that

most NTRU-based KEM schemes fail to compress ciphertext is that

the message cannot be recovered via reduction modulo 𝑝 once the

ciphertext is compressed.

5 CONCRETE HARDNESS AND PARAMETER
SELECTION

In this section, we first estimate and select parameters for CTRU,

by applying the methodology of core-SVP hardness estimation [6].

Then, we present the refined gate-count estimate, by using the

scripts provided by Kyber and NTRU Prime in NIST PQC Round 3.

Finally, we overview and discuss some recent attacks beyond the

core-SVP hardness.

5.1 Parameter Selection with Core-SVP
5.1.1 Primal attack and dual attack. Currently, for the param-

eters selected for most practical lattice-based cryptosystems, the

dominant attacks considered are the lattice-based primal and dual

attacks. The primal attack is to solve the unique-Short Vector Prob-
lem (u-SVP) in the lattice by constructing an integer embedding
lattice (Kannan embedding [75], Bai-Galbraith embedding [12], etc).

The most common lattice reduction algorithm is the BKZ algo-

rithm [30, 99]. Given a lattice basis, the blocksize, which we denote

by 𝑏, is necessarily chosen to recover the short vector while run-

ning the BKZ algorithm. NTRU problem can be treated as a u-SVP

instance in the NTRU lattice [36], while a u-SVP instance can also

be constructed from the LWE problem. The dual attack [87] is to

solve the decisional LWE problem, consisting of using the BKZ

algorithm in the dual lattice, so as to recover part of the secret and

infer the final secret vector.

5.1.2 Core-SVP hardness of CTRU. Following the simple and

conservative methodology of the core-SVP hardness developed

from [6], the best known cost of running SVP solver on𝑏-dimension

sublattice is 2
0.292𝑏

for the classical case and 2
0.265𝑏

for the quantum

case. These cost models can be used for conservative estimates of

the security of our schemes. Note that the number of samples is

set to be 2𝑛 for NTRU problem (resp., 𝑛 for LWE problem), since

the adversary is given such samples. We estimate the classical and

quantum core-SVP hardness security of CTRU via the Python script

from [6, 9, 26]. The concrete results are given in Table 2.

5.1.3 Parameter sets. The parameter sets of CTRU are given

in Table 2, where those in red are the recommended parameters

also given in Table 1. Though the parameters in red are marked as

recommended, we believe the other parameter sets are still very

useful in certain application scenarios. Note that in Table 1 we did

not list the security against the dual attack. The reason is that the

dual attack was considered less realistic than the primal attack, and

was not taken for concrete hardness estimates in many lattice-based

cryptosystems including Kyber in NIST PQC Round 3 [9]. For ease

of a fair comparison, the security estimate against the dual attack

was not listed in Table 1.

The ring dimension 𝑛 is chosen from {512, 768, 1024}, corre-
sponding to the targeted security levels I, III and V recommended

by NIST. We stress that selecting these 𝑛’s for CTRU is only for

simplicity. The ring modulus 𝑞 is set to 3457, and 𝑞2 is the ciphertext

modulus. Recall that we fix the message space modulus 𝑝 = 2 and

the underlying cyclotomic polynomial Φ(𝑥) = 𝑥𝑛 − 𝑥𝑛/2 + 1, which
are omitted in Table 2. Ψ is the probability distribution which is

set to be the centered binomial distribution 𝐵2 or 𝐵3. The public

key sizes |𝑝𝑘 |, ciphertext sizes |𝑐𝑡 | and B.W. (bandwidth, |𝑝𝑘 | + |𝑐𝑡 |)
are measured in terms of bytes. “Sec.C” and “Sec.Q” mean the esti-

mated security level expressed in bits in the classical and quantum

settings respectively, where all the types of NTRU attack, LWE

primal attack, and LWE dual attack are considered. The last column

“𝛿” indicates the error probability, which is evaluated by a script

according to the analysis given in Section 4.2.

5.2 Refined Gate-Count Estimate
As for the quantum gates and space complexity related to the LWE

problem, we use the same gate number estimation method as Ky-

ber, NTRU KEM, and SNTRU Prime in NIST PQC Round 3. Briefly

speaking, it uses the probabilistic simulation of [40] rather than

the GSA-intersect model of [5, 6] to determine the BKZ blocksize

𝑏 for a successful attack. And it relies on the concrete estimation

for the cost of sieving in gates from [4]. It also accounts for the

“few dimensions for free” proposed in [45], which permits to solve

SVP in dimension 𝑏 by sieving in a somewhat smaller dimension

𝑏0 = 𝑏 −𝑂 (𝑏). Finally, it dismisses the dual attack as realistically

more expensive than the primal attack. In particular, in the dual at-

tack, exploiting the short vectors generated by the Nearest Neighbor

Search used in lattice sieving is not compatible with the “dimension

9



Table 2: Parameter sets of CTRU

Schemes 𝑛 𝑞 𝑞2 Ψ |𝑝𝑘 | |𝑐𝑡 | B.W.

NTRU

(Sec.C, Sec.Q)

LWE, primal

(Sec.C, Sec.Q)

LWE, dual

(Sec.C, Sec.Q)

𝛿

CTRU-512

512 3457 2
9 𝐵2 768 576 1344 (111,100) (111,100) (110,100) 2

−120

512 3457 2
10 𝐵3 768 640 1408 (118,107) (118,107) (117,106) 2

−144

CTRU-768

768 3457 2
10 𝐵2 1152 960 2112 (181,164) (181,164) (180,163) 2

−187

768 3457 3457 𝐵3 1152 1152 2304 (192,174) (192,174) (190,173) 2
−143

768 3457 2
11 𝐵3 1152 1056 2208 (192,174) (192,174) (190,173) 2

−125

CTRU-1024

1024 3457 2
11 𝐵2 1536 1408 2944 (255,231) (255,231) (252,229) 2

−206

1024 3457 2
10 𝐵2 1536 1280 2816 (255,231) (255,231) (252,229) 2

−137

1024 3457 3457 𝐵3 1536 1536 3072 (269,244) (269,244) (266,241) 2
−104

Table 3: Gate-count estimate of CTRU parameters. 𝑑 is the
optimal lattice dimension for the attack. 𝑏 is the BKZ block-
size. 𝑏 ′ is the sieving dimension accounting for “dimensions
for free”. Gates and memory are expressed in bits. The last
column means the required log(gates) values by NIST.

Schemes Ψ 𝑑 𝑏 𝑏′ log(gates) log(memory)

log(gates)

by NIST

CTRU-512

𝐵2 1007 386 350 144.1 88.4

143

𝐵3 1025 411 373 150.9 93.3

CTRU-768

𝐵2 1467 634 583 214.2 137.9

207

𝐵3 1498 671 618 224.6 145.3

CTRU-1024

𝐵2 1919 890 825 286.1 188.9

272

𝐵3 1958 939 871 299.7 198.5

for free” trick [45]. The scripts for these refined estimates are pro-

vided in a git branch of the leaky-LWE estimator [40]
1
. The results

of CTRU parameter sets are shown in Table 3. It is estimated in [9]

that the actual cost may not be more than 16 bits away from this

estimate in either direction.

5.3 Attacks Beyond Core-SVP Hardness
5.3.1 Hybrid attack. The works [61, 91, 92] consider the hybrid

attack as the most powerful against NTRU-based cryptosystems.

However, even with many heuristic and theoretical analysis on

hybrid attack [27, 61, 67, 106], so far it still fails to make significant

security impact on NTRU-based cryptosystems partially due to the

memory constraints. By improving the collision attack on NTRU

problem, it is suggested in [89] that the mixed attack complexity

estimate used for NTRU problem is unreliable, and there are both

overestimation and underestimation. Judging from the current hy-

brid and meet-in-the-middle (MITM) attacks on NTRU problem,

there is an estimation bias in the security estimates of NTRU-based

KEMs, but this bias does not make a big difference to the claimed se-

curity. For example, under the MITM search, the security of NTRU

KEM in NIST PQC Round 3 may be 2
−8

less than the acclaimed

value in the worst situation [89].

5.3.2 Recent advances on dual attack. There are some recent

progress on the dual attack, and we discuss their impacts on CTRU.

Duc et al. [44] propose that fast Fourier transform (FFT) can be

useful to the dual attack. As for the small coefficients of the secrets,

various improvements can also be achieved [1, 27, 31]. Albrecht and

1
https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3

Martin [1] propose a re-randomization and smaller-dimensional

lattice reduction method, and investigate the method for generating

coefficients of short vectors in the dual attack. Guo and Thomas [58]

show that the current security estimates from the primal attacks

are overestimated. Espitau et al. [50] achieve a dual attack that

outperforms the primal attack. These attacks can be combined with

the hybrid attack proposed in [68] to achieve a further optimized

attack under specific parameters [27, 77, 100]. Very recently, MAT-

ZOV [86] further optimizes the dual attack, and claims that the

impact of its methods is larger than those of Guo and Thomas’s

work [58]. It is also mentioned in [86] that the newly developed

methods might also be applicable to NTRU-based cryptosystems

(e.g., by improving the hybrid attack). The improvements of dual

attacks mentioned above have potential threats to the security of

CTRU (as well as to other cryptosystems based on algebraically

structured lattices). This line of research is still actively ongoing,

and there is still no mature and convincing estimate method up to

now.

5.3.3 S-unit attack. The basis of the S-unit attack is the unit

attack: finding a short generator. On the basis of the constant-degree

algorithm proposed in [49, 60], Biasse et al. [21] present a quantum

polynomial time algorithm, which is the basis for generating the

generator used in the unit attack and S-unit attack. Then, the unit

attack is to shorten the generator by reducing the modulus of the

unit, and the idea is based on the variant of the LLL algorithm [32]

to reduce the size of the generator in the S-unit group. That is,

it replaces 𝑦𝑖 with 𝑦𝑖/𝜖 , thereby reducing the size of 𝑦𝑖 , where 𝑦𝑖
refers to the size of the generator and 𝜖 is the reduction factor of

the modulus of the unit. The S-unit attack is briefly recalled in

Appendix C. Campbell et al. [28] consider the application of the

cycloid structure to the unit attack, which mainly depends on the

simple generator of the cycloid unit. Under the cycloid structure, the

determinant is easy to determine, and is larger than the logarithmic

length of the private key, which means that the private key can be

recovered through the LLL algorithm.

After establishing a set of short vectors, the simple reduction

repeatedly uses 𝑣 −𝑢 to replace 𝑣 , thereby reducing the modulus of

vector 𝑣 , where 𝑢 belongs to the set of short vectors. This idea is

discovered in [10, 32]. The difference is that the algorithm proposed

by Avanzi and Howard [10] can be applied to any lattice, but is

limited to the ℓ2 norm, while the algorithm proposed by Cohen [32]
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is applicable to more norms. Pellet-Mary et al. [94] analyze the algo-

rithm of Avanzi and Howard [10], and apply it to S-unit. They point

out that the S-unit attack could achieve shorter vectors than exist-

ing methods, but still with exponential time for an exponentially

large approximation factor. Very recently, Bernstein and Tanja [20]

further improve the S-unit attack.

Up to now, it is still an open problem to predict the effectiveness

of the reduction inside the unit attacks. The statistical experiments

on various𝑚′-th cyclotomics (with respect to power-of-two𝑚′)
show that the efficiency of the S-unit attacks is much higher than a

spherical model of the same lattice for𝑚′ ∈ {128, 256, 512} [17]. The
effect is about a factor of 2

−3
, 2
−6

and 2
−11

, respectively. Therefore,

even with a conservative estimate, the security impact on CTRU

may not exceed a factor of 2
−11

.

5.3.4 BKW attack. For cryptographic schemes to which the

BKW method can be applied, the combined methods proposed

in [2, 23, 59, 76], which extend the BKW method, can be the most

efficient method for specific parameters. These methods require a

large number of samples, and their security estimates are based on

the analysis of lattice basis reduction, either by solving the encoding

problem in the lattice or by converting to a u-SVP problem [3, 81,

82]. These attacks do not affect the security of CTRU, because the

parameters chosen for CTRU do not meet the conditions of BKW.

5.3.5 Side channel attack. Ravi et al. [96] construct some cipher-

texts with specific structures where the key information exists in

the intermediate variables, so as to recover the key through side

channel attack (SCA). They apply this attack to NTRU KEM and

NTRU Prime in NIST PQC Round 3, which can recover the full

secret keys through a few thousands of chosen ciphertext queries.

This type of SCA-aided chosen ciphertext attack is not directly

applicable to CTRU, but might be possible to be improved against

CTRU.

5.3.6 Other attacks. Algebraic attacks [21, 28, 38, 39] and dense
sublattice attacks [77] also provide new ideas for LWE-based cryp-

tographic analysis. However, these attacks do not currently affect

the acclaimed security of the proposed CTRU parameters.

6 POLYNOMIAL OPERATIONS IN CTRU
From a computational point of view, the fundamental and also time-

consuming operations in NTRU-based schemes are the multiplica-

tions and divisions of the elements in the rings Z𝑞 [𝑥]/(Φ(𝑥)). Num-

ber theoretic transform (NTT) is a special case of fast Fourier trans-

form (FFT) over a finite field [95]. NTT is the most efficient method

for computing polynomial multiplication of high degrees, due to

its quasilinear complexity 𝑂 (𝑛 log𝑛). The complete NTT-based

multiplication with respect to 𝑓 and 𝑔 is 𝐼𝑁𝑇𝑇 (𝑁𝑇𝑇 (𝑓 ) ◦𝑁𝑇𝑇 (𝑔)),
where𝑁𝑇𝑇 is the forward transform, 𝐼𝑁𝑇𝑇 is the inverse transform

and “◦” is the point-wise multiplication.

The FFT trick [16] is a fast algorithm to compute NTT, via the

Chinese Remainder Theorem (CRT) in the ring form. Briefly speak-

ing, given two co-prime polynomials 𝑔 and ℎ, the CRT isomor-

phism is that 𝜑 : Z𝑞 [𝑥]/(𝑔ℎ) � Z𝑞 [𝑥]/(𝑔) × Z𝑞 [𝑥]/(ℎ) along with

𝜑 (𝑓 ) = (𝑓 mod 𝑔, 𝑓 mod ℎ). In the case of the radix-2 FFT trick,

given 𝑔 = 𝑥𝑚 − 𝜁 and ℎ = 𝑥𝑚 + 𝜁 , where 𝜁 is invertible in Z𝑞 , the
computation of the forward FFT tirck and inverse FFT tirck can be

Zq[x]/(xα·N − xα·N/2 + 1)
(
Zq[y]/(yN − yN/2 + 1)

)
[x]/(xα − y)

N/2β−1∏
k=0

Zq[x]/(xα·2
β − ζτ(k))

(
N/2β−1∏
k=0

Zq[y]/(y2
β − ζτ(k))

)
[x]/(xα − y)

ϕ1

ϕ2

n-point NTT N -point NTT

Figure 1: Map road for unified NTT

conducted via Cooley-Tukey butterfly [35] and Gentleman-Sande

butterfly [56], respectively. The former indicates the computation

from (𝑓𝑖 , 𝑓𝑗 ) to (𝑓𝑖 + 𝜁 · 𝑓𝑗 , 𝑓𝑖 − 𝜁 · 𝑓𝑗 ), while the later indicates the
computation from (𝑓 ′

𝑖
, 𝑓 ′

𝑗
) to (𝑓 ′

𝑖
+ 𝑓 ′

𝑗
, (𝑓 ′

𝑖
− 𝑓 ′

𝑗
) · 𝜁−1).

6.1 Unified NTT
In this work, we consider 𝑛 = 𝛼 · 𝑁 , where 𝛼 ∈ {2, 3, 4} is called
the splitting-parameter and 𝑁 is a power of two. In fact, 𝛼 can

be chosen more freely as arbitrary values of the form 2
𝑖
3
𝑗 , 𝑖 ≥

0, 𝑗 ≥ 0. With the traditional NTT technique, when the dimension

𝑛 changes we need to use different NTT algorithms of various

input/output lengths to compute polynomial multiplications over

Z𝑞 [𝑥]/(𝑥𝑛 −𝑥𝑛/2+1). This causes much inconvenience to software

and particularly hardware implementations. To address this issue,

we unify the various 𝑛-point NTTs through an 𝑁 -point NTT, which

is referred to as the unified NTT technique. For 𝑛 ∈ {512, 768, 1024},
we fix 𝑁 = 256 and choose 𝛼 ∈ {2, 3, 4}. With this technique, we

only focus on the implementation of the𝑁 -point NTT, which serves

as the unified procedure to be invoked for different 𝑛’s. Specifically,

the computation of NTT over Z𝑞 [𝑥]/(𝑥𝑛 −𝑥𝑛/2 + 1) is divided into
three steps. For presentation simplicity, we only give the procedures

of the forward transform as follows, since the inverse transform

can be obtained by inverting these procedures. The map road is

shown in Figure 1.

Step 1. Construct a splitting-polynomial map 𝜑1 :

Z𝑞 [𝑥 ]/(𝑥𝛼 ·𝑁 − 𝑥𝛼 ·𝑁 /2 + 1) →
(
Z𝑞 [𝑦 ]/(𝑦𝑁 − 𝑦𝑁 /2 + 1)

)
[𝑥 ]/(𝑥𝛼 − 𝑦)

𝑓 =

𝛼 ·𝑁−1∑︁
𝑖=0

𝑓𝑖𝑥
𝑖 ↦→

𝛼−1∑︁
𝑗=0

𝐹 𝑗𝑥
𝑗

where 𝐹 𝑗 =
𝑁−1∑
𝑖=0

𝑓𝛼 ·𝑖+𝑗𝑦𝑖 ∈ Z𝑞 [𝑦]/(𝑦𝑁 − 𝑦𝑁 /2 + 1). Namely, the 𝑛-

dimension polynomial is split into 𝛼 𝑁 -dimension sub-polynomials.

Step 2. Apply the unified 𝑁 -point NTT to 𝐹 𝑗 over Z𝑞 [𝑦]/(𝑦𝑁 −
𝑦𝑁 /2 + 1), 𝑗 = 0, 1, . . . , 𝛼 − 1. Specifically, inspired by NTTRU [85],

there is amapping such thatZ𝑞 [𝑦]/(𝑦𝑁−𝑦𝑁 /2+1) � Z𝑞 [𝑦]/(𝑦𝑁 /2−
𝜁1) × Z𝑞 [𝑦]/(𝑦𝑁 /2 − 𝜁2) where 𝜁1 + 𝜁2 = 1 and 𝜁1 · 𝜁2 = 1. Let 𝑞

be the prime satisfying
3𝑁
2
𝛽 | (𝑞 − 1), where 𝛽 ∈ N is called the

truncating-parameter, such that it exits the primitive
3𝑁
2
𝛽 -th root

of unity 𝜁 in Z𝑞 . To apply the radix-2 FFT trick, we choose 𝜁1 =

𝜁𝑁 /2
𝛽+1

mod 𝑞 and 𝜁2 = 𝜁 5
1
= 𝜁 5𝑁 /2

𝛽+1
mod 𝑞. Thus, both 𝑦𝑁 /2 −

𝜁1 and 𝑦𝑁 /2 − 𝜁2 can be recursively split down into degree-2
𝛽

terms like 𝑦2
𝛽 ± 𝜁 . The idea of truncating FFT trick originates

from [88]. Therefore, Z𝑞 [𝑦]/(𝑦𝑁 − 𝑦𝑁 /2 + 1) can be decomposed
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into

𝑁 /2𝛽−1∏
𝑘=0

Z𝑞 [𝑦]/(𝑦2
𝛽 − 𝜁𝜏 (𝑘) ), where 𝜏 (𝑘) is the power of 𝜁 of

the 𝑘-th term and we start the index 𝑘 from zero. Let 𝐹 𝑗 be the NTT

result of 𝐹 𝑗 and 𝐹 𝑗,𝑙 be its 𝑙-th coefficient, 𝑙 = 0, 1, . . . , 𝑁 − 1. Hence,
we can write

𝐹 𝑗 = (
2
𝛽−1∑︁
𝑙=0

𝐹 𝑗,𝑙𝑦
𝑙 ,

2
𝛽−1∑︁
𝑙=0

𝐹
𝑗,𝑙+2𝛽 𝑦

𝑙 , . . . ,

2
𝛽−1∑︁
𝑙=0

𝐹
𝑗,𝑙+𝑁−2𝛽 𝑦

𝑙 )

∈
𝑁 /2𝛽−1∏
𝑘=0

Z𝑞 [𝑦 ]/(𝑦2
𝛽 − 𝜁𝜏 (𝑘 ) )

Step 3. Combine the intermediate values and obtain the final result

by the map 𝜑2 :

©­«
𝑁 /2𝛽−1∏
𝑘=0

Z𝑞 [𝑦 ]/(𝑦2
𝛽 − 𝜁 𝜏 (𝑘 ) )ª®¬ [𝑥 ]/(𝑥𝛼 − 𝑦) →

𝑁 /2𝛽−1∏
𝑘=0

Z𝑞 [𝑥 ]/(𝑥𝛼 ·2
𝛽 − 𝜁 𝜏 (𝑘 ) )

𝛼−1∑︁
𝑗=0

𝐹 𝑗𝑥
𝑗 ↦→ ˆ𝑓

where
ˆ𝑓 =

𝛼 ·𝑁−1∑
𝑖=0

ˆ𝑓𝑖𝑥
𝑖
is the NTT result of 𝑓 . Its 𝑖-th coefficient is

ˆ𝑓𝑖 = 𝐹 𝑗,𝑙 , where 𝑗 = 𝑖 mod 𝛼 and 𝑙 = ⌊ 𝑖𝛼 ⌋. It can be rewritten as:

ˆ𝑓 = (
𝛼 ·2𝛽−1∑︁
𝑖=0

ˆ𝑓𝑖𝑥
𝑖 ,

𝛼 ·2𝛽−1∑︁
𝑖=0

ˆ𝑓
𝑖+𝛼 ·2𝛽 𝑥

𝑖 , . . . ,

𝛼 ·2𝛽−1∑︁
𝑖=0

ˆ𝑓
𝑖+𝑛−𝛼 ·2𝛽 𝑥

𝑖 )

∈
𝑁 /2𝛽−1∏
𝑘=0

Z𝑞 [𝑥 ]/(𝑥𝛼 ·2
𝛽 − 𝜁𝜏 (𝑘 ) )

(3)

In this work, we choose 𝛽 = 1 and 𝑞 = 3457, where the primitive

384-th root of unity 𝜁 = 55 exits in Z3457. In this case, the point-wise
multiplication is the corresponding 2𝛼-dimension polynomial mul-

tiplication in Z𝑞 [𝑥]/(𝑥2𝛼 −𝜁𝜏 (𝑘) ), 𝛼 ∈ {2, 3, 4}, 𝑘 = 0, 1, . . . , 𝑁 /2−1.

6.2 Base Case Inversion
Utilizing the NTT techniques to compute the public key ℎ = 𝑔/𝑓 is

essentially to compute ℎ = 𝐼𝑁𝑇𝑇 (𝑔 ◦ ˆ𝑓 −1). Here, 𝑔 = 𝑁𝑇𝑇 (𝑔) and
ˆ𝑓 = 𝑁𝑇𝑇 (𝑓 ) are of the form (3), and

ˆ𝑓 −1 is gotten by computing a

series of the inverses of 2𝛼-dimension sub-polynomials (with re-

spect to
ˆ𝑓 ) in Z𝑞 [𝑥]/(𝑥2𝛼−𝜁𝜏 (𝑘) ), 𝛼 ∈ {2, 3, 4}, 𝑘 = 0, 1, . . . , 𝑁 /2−1.

The inverse of the elements inZ𝑞 [𝑥]/(𝑥2𝛼−𝜁𝜏 (𝑘) ) can be computed

by Cramer’s Rule [57].

Take Z𝑞 [𝑥]/(𝑥4 − 𝜁 ) as an example. Let 𝑓 be a degree-3 polyno-

mial in Z𝑞 [𝑥]/(𝑥4 − 𝜁 ), and denote its inverse by 𝑓 ′, which implies

𝑓 · 𝑓 ′ = 1 mod 𝑥4 −𝜁 . It can be written in the form of matrix-vector

multiplication:
𝑓0 𝜁 𝑓3 𝜁 𝑓2 𝜁 𝑓1
𝑓1 𝑓0 𝜁 𝑓3 𝜁 𝑓2
𝑓2 𝑓1 𝑓0 𝜁 𝑓3
𝑓3 𝑓2 𝑓1 𝑓0

 ·

𝑓 ′
0

𝑓 ′
1

𝑓 ′
2

𝑓 ′
3

 =

1

0

0

0

 . (4)

Let Δ be the determinant of the coefficient matrix. Hence, the

inverse of 𝑓 exits if and only if Δ ≠ 0. In this case, according to

Cramer’s Rule, there is a unique 𝑓 ′, whose individual components

are given by

𝑓 ′𝑖 =
Δ𝑖

Δ
, 𝑖 = 0, 1, 2, 3 (5)

where Δ𝑖 is the determinant of the matrix generated by replacing

the (𝑖 + 1)-th column of the coefficient matrix with (1, 0, 0, 0)𝑇 .
And Δ−1 can be computed by using Fermat’s Little Theorem, i.e.,

Δ−1 ≡ Δ𝑞−2 mod 𝑞.

7 IMPLEMENTATION AND BENCHMARK
We provide the portable C implementation of our CTRU for the rec-

ommended parameter set of (𝑛 = 768, 𝑞 = 3457, 𝑞2 = 2
10,Ψ = 𝐵2).

As for the prefix 𝐼𝐷 (𝑝𝑘) of the public keyℎ in CTRU, we use the first
33 bytes of the bit-packed NTT representation of ℎ. It is reasonable,

since ℎ is computationally indistinguishable from a uniformly ran-

dom polynomial in R𝑞 and the forward NTT transform keeps the

randomness property (i.e., ℎ is random, so is 𝑁𝑇𝑇 (ℎ)). Assuming

uniformly random ℎ, the first 22 coefficients have the min-entropy

of more than 256 bits and occupy 33 bytes in the bit-packed NTT

representation since each coefficient has 12 bits.

All the benchmark tests are run on an Intel(R) Core(TM) i7-

10510U CPU at 2.3GHz (16 GB memory) with Turbo Boost and

Hyperthreading disabled. The operating system is Ubuntu 20.04 LTS

with Linux Kernel 4.4.0 and the gcc version is 9.4.0. The compiler flag

is listed as follows: -Wall -march=native -mtune=native -O3 -fomit-
frame-pointer -Wno-unknown-pragmas. We run the corresponding

KEM algorithms for 10,000 times and calculate the average CPU

cycles. The source codes of NTRU-HRSS, SNTRU-Prime and Kyber

are taken from their Round 3 supporting documentations or their

websites, while those of NTTRU are taken from [85]. However, the

FO transformation in Kyber has been changed to FO̸
⊥
𝐼𝐷 (𝑝𝑘),𝑚 as

in [47], since it is the fastest implementation of Kyber. One regret is

that the source codes of NTRU-C
768

3457
are not online available in [48],

so we omit its results. The benchmark results of those schemes are

shown in Table 4. For the sake of completeness, we also provide

the comparison between CTRU and Saber [14] in Appendix D.

From Table 4, we can see that the encapsulation (Encaps) and

decapsulation (Decaps) processes of CTRU are among the most

efficient. When compared to NTRU-HRSS and SNTRU Prime-761,

the efficiency improvements of CTRU-768 are benefited from the

applications of NTT in polynomial operations. Note that CTRU-768

is faster than NTRU-HRSS by 15X in KeyGen, 39X in Encaps, and

61X in Decaps, respectively. The Decaps of CTRU is slightly slower

than that of NTTRU, on the following grounds: (1) the decoding

algorithm of the E
′
8
lattice costs extra time; (2) NTT is invalid in

R𝑞2 w.r.t. power-of-two 𝑞2 in the decryption process, so we turn to

schoolbook algorithm instead. The KeyGen of CTRU-768 needs to

compute the inverse of degree-5 polynomials, whereas NTTRU’s

larger modulus 𝑞 = 7681 allows simpler degree-2 polynomial inver-

sions. However, with the smaller 𝑞 = 3457, CTRU-768 has shorter

pubic key size (7.6% shorter than that of NTTRU) and stronger

security (164-bit quantum security of CTRU-768 vs. 140-bit security

of NTTRU). If necessary, CTRU can choose parameter sets w.r.t.

𝑞 = 7681 to obtain a more efficient KeyGen process comparable

to that of NTTRU, which also further accelerates the processes of

the Encaps and Decaps, but at the cost of bandwidth or security.

Note that in practice the KeyGen is run once and for all, and its

computational cost is less sensitive to most cryptographic applica-

tions. When compared to Kyber-768, the efficiency improvements

in the Encaps and Decaps of CTRU-768 are mainly due to the fact
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that there is only one polynomial multiplication in CTRU-768’s

encryption process (which is also re-run with the Decaps), whereas

there is a complicated polynomial matrix-vector multiplication in

Kyber-768’s encryption process.

Table 4: CPU cycles of lattice-based schemes (in kilo cycles).

Schemes KeyGen Encaps Decaps

CTRU-768 8.2 × 103 80.9 151.8

NTRU-HRSS [29] 127.6 × 103 3.2 × 103 9.4 × 103
SNTRU Prime-761 [19] 17.1 × 103 9.0 × 103 23.7 × 103

NTTRU [85] 157.4 98.9 142.4

Kyber-768 [9] 140.3 159.0 205.9
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A ON CCA SECURITY REDUCTION OF KEM IN
THE ROM AND THE QROM

Generic constructions of an efficient IND-CCA secure KEM are

well studied in [41, 65], which are essentially various KEM variants

of Fujisaki-Okamoto (FO) transformation [53] and GEM/REACT

transformation [37, 93]. The work [65] gives a modular analysis of

various FO transformations in the ROM and the QROM, and sum-

marizes some practical FO transformations that are widely used to

construct an IND-CCA secure KEM from a passive secure PKE (e.g.,

OW-CPA and IND-CPA), including the following transformations

FO
⊥
, FO
⊥
𝑚 , FO̸

⊥
, FO
̸⊥
𝑚 , U

̸⊥
and U

̸⊥
𝑚 , etc, where𝑚 (without𝑚) means

𝐾 = 𝐻 (𝑚) (𝐾 = 𝐻 (𝑚,𝑐)), ̸⊥ (⊥) means implicit (explicit) rejection.

FO
⊥
, FO
⊥
𝑚 , FO̸

⊥
and FO̸

⊥
𝑚 are the most common transformations

used in NIST PQC. According to [65], in the ROM, the reduction

bound of these four transformations are all 𝜖 ′ ≤ 𝜖𝐶𝑃𝐴 + 𝑞′𝛿 and

𝜖 ′ ≤ 𝑞′𝜖𝑂𝑊 +𝑞′𝛿 , where 𝜖 ′ is the advantage of an adversary against
IND-CCA security of KEM, 𝜖𝐶𝑃𝐴 (𝜖𝑂𝑊 ) is the the advantage of an

adversary against IND-CPA (OW-CPA) security of the underlying

PKE, 𝑞′ is the total number of hash queries, and 𝛿 is the error

probability. Notice that in order to keep the comparison lucid, we

ignore the small constant factors and additional inherent summands.

The reduction is tight for IND-CPA secure PKE, but it has a loss

factor 𝑞′ for OW-CPA secure PKE in the ROM. However, all of

their reduction bounds in the QROM suffer from a quartic loss,

i.e., 𝜖 ′ ≤ 𝑞′
√︃
𝑞′
√
𝜖𝑂𝑊 + 𝑞′2𝛿 with an additional hash in [65]. Later,

the bound of FO̸
⊥
is improved as follows: 𝜖 ′ ≤ 𝑞′√𝜖𝑂𝑊 + 𝑞′

√
𝛿

without additional hash in [71], 𝜖 ′ ≤
√︁
𝑞′𝜖𝐶𝑃𝐴 + 𝑞′

√
𝛿 with semi-

classical oracles [8] in [73], 𝜖 ′ ≤
√︁
𝑞′𝜖𝐶𝑃𝐴 +𝑞′2𝛿 with double-sided

OW2H lemma in [22], and 𝜖 ′ ≤ 𝑞′2𝜖𝐶𝑃𝐴 + 𝑞′2𝛿 with measure-

rewind-measure technique in [78]. The bound of FO̸
⊥
𝑚 is improved

as follows: 𝜖 ′ ≤ 𝑞′√𝜖𝑂𝑊 + 𝑞′
√
𝛿 without additional hash in [71],

𝜖 ′ ≤
√︁
𝑞′𝜖𝐶𝑃𝐴 + 𝑞′2𝛿 with disjoint simulatability in [66], 𝜖 ′ ≤√︁

𝑞′𝜖𝐶𝑃𝐴 + 𝑞′2𝛿 with prefix hashing in [47]. The bound of FO
⊥
𝑚 is

improved as follows: 𝜖 ′ ≤ 𝑞′√𝜖𝑂𝑊 +𝑞′
√
𝛿 and 𝜖 ′ ≤

√︁
𝑞′𝜖𝐶𝑃𝐴+𝑞′

√
𝛿

with extra hash in [72], 𝜖 ′ ≤ 𝑞′√𝜖𝑂𝑊 + 𝑞′2
√
𝛿 without extra hash

in [43].

There also exists some transformations with tight reduction

for deterministic PKE (DPKE) with disjoint simulatability and per-

fect correctness, for example, a variant of U̸
⊥
𝑚 proposed in [98]. In

the case that the underlying PKE is non-deterministic, all known

bounds are of the form 𝑂 (
√︁
𝑞′𝜖𝐶𝑃𝐴) and 𝑂 (𝑞′

√
𝜖𝑂𝑊 ) as we intro-

duce above, with the exception of [78]. The work [74] shows that

the measurement-based reduction involving no rewinding will in-

evitably incur a quadratic loss of the security in the QROM. In

another word, as for the underlying PKE, the IND-CPA secure PKE

has a tighter reduction bound than the OW-CPA secure PKE. It

also significantly leads us to construct an IND-CPA secure PKE for

tighter reduction bound of the resulting IND-CCA secure KEM.

Some discussions are presented here for comparing the reduc-

tion bounds of CTRU and other NTRU-based KEM schemes. Most

of the existing NTRU-based encryption schemes can only achieve

OW-CPA security. NTRU-HRSS and SNTRU Prime construct the

KEM schemes from OW-CPA DPKEs via U̸
⊥
𝑚 variants. Although

they can reach tight CCA reductions with extra assumptions in

the (Q)ROM [19, 29], there is a disadvantage that some extra com-

putation is needed to recover the randomness in the decryption

algorithms.

Determinism is a much stricter condition, thus some NTRU-

based PKEs prefer to be non-deterministic (i.e., randomized). NT-

TRU applies FO
⊥
𝑚 to build an IND-CCA KEM from an OW-CPA

randomized PKE [85]. According to [43, 65], its IND-CCA reduction

bounds are not-tight in both the ROM (𝑂 (𝑞′𝜖𝑂𝑊 )) and the QROM

( 𝑂 (𝑞′√𝜖𝑂𝑊 )).
NTRU-C is the general form of NTRU-C

768

3457
. NTRU-C uses a

slightly different way that it first constructs an IND-CPA PKE from

an OW-CPA NTRU-based PKE via ACWC0 transformation [48],

and then transforms it into an IND-CCA KEM via FO
⊥
𝑚 . Note that

ACWC0 brings two terms of ciphertexts, where the extra term of

ciphertexts costs 32 bytes. The IND-CPA security of the resulting

after-ACWC0 PKE can be tightly reduced to the OW-CPA security

of the underlying before-ACWC0 PKE in the ROM. However, there

is a quadratic loss advantage in the QROM, i.e., 𝜖𝐶𝑃𝐴 ≤ 𝑞′
√
𝜖𝑂𝑊 . In

the ROM, the advantage of the adversary against IND-CCA security

of KEM is tightly reduced to that of the adversary against IND-CPA

security of after-ACWC0 PKE, and consequently is tightly reduced

to that of the adversary against OW-CPA security of before-ACWC0

PKE. However, in the QROM, there is no known direct reduction

proof about FO
⊥
𝑚 from IND-CPA PKE to IND-CCA KEM without

additional hash. The reduction bound of FO
⊥
𝑚 in the QROM in [43]

only aims at the underlying OW-CPA PKE. Since the IND-CPA

security implies OW-CPA security [65], the reduction bound of

IND-CCA KEM to before-ACWC0 OW-CPA PKE will suffer from

the quartic advantage loss in the QROM. That is, if the adversary has

𝜖𝑂𝑊 advantage against the before-ACWC0 OW-CPA PKE, then it

has 𝑂 (𝑞′1.5 4

√
𝜖𝑂𝑊 ) advantage against the resulting IND-CCA KEM

in the QROM. On the other hand, with an additional hash, a better

bound of FO
⊥
𝑚 for after-ACWC0 IND-CPA PKE can be achieved, i.e.,

𝑂 (
√︁
𝑞′𝜖𝐶𝑃𝐴) advantage against the resulting IND-CCA KEM in the

QROM [72] at the cost of some extra ciphertext burden. ACWC0 also

has an effect on the efficiency, since an extra transformation from

OW-CPA PKE to IND-CPA PKE is also relatively time-consuming.

Our CTRU seems to be more simple, compact, efficient and

memory-saving than other NTRU-based KEM schemes, along with

a tight bound in the ROM and a tighter bound in the QROM for

IND-CCA security. When compared to NTRU-HRSS, SNTRU Prime

and NTRU-C, an obvious efficiency improvement of our CTRU is

due to the fact that there is no extra requirement of recovering ran-

domness in decryption algorithm or reinforced transformation to

obtain IND-CPA security. CTRU.PKE can achieve IND-CPA security

in the case that its ciphertext can be only represented by a single

polynomial, without any extra ciphertext term like NTRU-C. Start-

ing from our IND-CPA PKE to construct KEM with FO̸
⊥
𝐼𝐷 (𝑝𝑘),𝑚 ,

the reduction bound of IND-CCA security is tightly reduced to

IND-CPA security in the ROM (𝜖 ′ ≤ 𝑂 (𝜖𝐶𝑃𝐴), restated), so it is

tightly reduced to the underlying hardness assumptions. We also

have the known best bound in the QROM (𝜖 ′ ≤ 𝑂 (
√︁
𝑞′𝜖𝐶𝑃𝐴), re-

stated) according to [47], which is better than those in NTTRU and

NTRU-C.
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A.1 CCA Security in Multi-User Setting
We remark that, thework [47] originally gives themulti-user/challenge

IND-CCA reduction bound of FO̸
⊥
𝐼𝐷 (𝑝𝑘),𝑚 in the ROM and the

QROM. We adapt the results from Theorem 3.1 and Theorem 3.2

in [47] into the single-user/challenge setting of CTRU, which is

only for ease of fair comparisons as other KEM schemes only utilize

single-user/challenge FO transformations. As CTRU.PKE is IND-

CPA secure, another advantage of using FO̸
⊥
𝐼𝐷 (𝑝𝑘),𝑚 is that CTRU

can be improved to enjoy the multi-user/challenge IND-CCA se-

curity as well. To address this issue, some adjustments are needed

as follows. Unlike the single-user/challenge setting, the adversary

(against the 𝑛′-user/𝑞𝐶 -challenge IND-CPA security of the underly-

ing PKE) is given the public keys of 𝑛′ users, and is allowed to make

at most 𝑞𝐶 challenge queries w.r.t. the same challenge plaintext𝑚𝑏

chosen by the challenger. According to [47], based on the single-

user/challenge IND-CPA security of the underlying PKE, the formal

multi-user/challenge IND-CCA security of the resulting KEM is

given in Theorem A.1.

Theorem A.1 (𝑛′-user/𝑞𝐶 -challenge IND-CCA security in

the ROM and the QROM [47]). Following [47], we will use (or
recall) the following terms in the concrete security statements.

• 𝑛′-user error probability 𝛿 (𝑛′) [47].
• Min-entropy ℓ [53] of 𝐼𝐷 (𝑝𝑘), i.e., ℓ = 𝐻∞ (𝐼𝐷 (𝑝𝑘)), where
(𝑝𝑘, 𝑠𝑘) ← 𝐶𝑇𝑅𝑈 .𝑃𝐾𝐸.𝐾𝑒𝑦𝐺𝑒𝑛.

• Bit-length 𝜄 of the secret seed 𝑧 ∈ {0, 1}𝜄 .
• Maximal number of (Q)RO queries 𝑞𝐻 .
• Maximal number of decapsulation queries 𝑞𝐷 .
• Maximal number of challenge queries 𝑞𝐶 .

For any (quantum) adversary A against the (𝑛′, 𝑞𝐶 )-IND-CCA se-
curity of CTRU.KEM, there exits a (quantum) adversary B against
the (𝑛′, 𝑞𝐶 )-IND-CPA security of CTRU.PKE with roughly the same
running time of A, such that:

• In the ROM, it holds that Adv(𝑛
′,𝑞𝐶 )-IND-CCA

CTRU.KEM (A) ≤

2

(
Adv(𝑛

′,𝑞𝐶 )-IND-CPA
CTRU.PKE (B) + (𝑞𝐻 + 𝑞𝐶 )𝑞𝐶|M|

)
+𝑞𝐻
2
𝜄
+(𝑞𝐻+𝑞𝐷 )𝛿 (𝑛′)+

𝑛′2

2
ℓ
;

• In the QROM, it holds that Adv(𝑛
′,𝑞𝐶 )-IND-CCA

CTRU.KEM (A) ≤

2

√︃
𝑞𝐻𝐷Adv

(𝑛′,𝑞𝐶 )-IND-CPA
CTRU.PKE (B) + 4𝑞𝐻𝐷

√︄
𝑞𝐶 · 𝑛′
|M| + 4(𝑞𝐻 + 1)

√︂
𝑛′

2
𝜄

+16𝑞2
𝐻𝐷

𝛿 (𝑛′) + 𝑞2
𝐶

|M | +
𝑛′2

2
ℓ , where 𝑞𝐻𝐷 := 𝑞𝐻 + 𝑞𝐷 + 1.

B THE FORM OF POLYNOMIAL PRODUCT IN
Z[𝑋 ]/(𝑋𝑁 − 𝑋𝑁 /2 + 1)

Following the methodology in [85], the general form of the polyno-

mial product of 𝑓 =
𝑛−1∑
𝑖=0

𝑓𝑖𝑥
𝑖
and𝑔 =

𝑛−1∑
𝑖=0

𝑔𝑖𝑥
𝑖
in the ring Z[𝑥]/(𝑥𝑛−

𝑥𝑛/2 + 1) is presented via a matrix-vector multiplication

ℎ =


ℎ0
ℎ1
.
.
.

ℎ𝑛−1


=

[
L − U −F − U
F + U F + L

]
·


𝑔0
𝑔1
.
.
.

𝑔𝑛−1


, (6)

where F, L,U are the 𝑛/2-dimension Toeplitz matrices as follows:

F =


𝑓𝑛/2 𝑓𝑛/2−1 · · · 𝑓1

𝑓𝑛/2+1 𝑓𝑛/2 · · · 𝑓2
.
.
.

.

.

.
. . .

.

.

.

𝑓𝑛−1 𝑓𝑛−2 · · · 𝑓𝑛/2


, L =


𝑓0 0 · · · 0

𝑓1 𝑓0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

𝑓𝑛/2−1 𝑓𝑛/2−2 · · · 𝑓0


,

U =


0 𝑓𝑛−1 · · · 𝑓𝑛/2+1
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 𝑓𝑛−1
0 0 · · · 0


.

The computation about the error probability in Theorem 4.2 is

based on the polynomial product in Z[𝑥]/(𝑥𝑛−𝑥𝑛/2+1). The whole
product is divided into two parts through the form of partitioned

matrices. In the formula (6), each coefficient of the bottom half of the

product, i.e., [F+U F+L] · [𝑔0, 𝑔1, . . . , 𝑔𝑛−1]𝑇 , is obtained from the

sum of 𝑛/2 terms of the form 𝜉𝑖,𝑖′, 𝑗, 𝑗 ′ = 𝑓𝑖𝑔 𝑗 + (𝑓𝑖 + 𝑓𝑖′)𝑔 𝑗 ′ . Similarly,

the coefficient of the 𝑙-th row of the upper half, i.e., [L−U −F−U] ·
[𝑔0, 𝑔1, . . . , 𝑔𝑛−1]𝑇 , is the sum of 𝑛/2 − 𝑙 terms of the form 𝜉𝑖,𝑖′, 𝑗, 𝑗 ′ ,

and 𝑙 terms of the form 𝜗𝑖,𝑖′, 𝑗, 𝑗 ′ = 𝑓𝑖𝑔 𝑗 + 𝑓𝑖′𝑔 𝑗 ′ . As suggested in [85],

the distribution of 𝜉𝑖,𝑖′, 𝑗, 𝑗 ′ has a “wider” probability distribution

than that of 𝜗𝑖,𝑖′, 𝑗, 𝑗 ′ . To bound the error probability correctly, we

should consider the widest distribution consisting of sums of 𝑛/2
random variables with the distribution of 𝜉𝑖,𝑖′, 𝑗, 𝑗 ′ . Therefore, in our

correctness analysis, the term 𝑔𝑟 +𝑒 𝑓 + (𝜀1 + 𝑞
𝑞2
𝜀2) 𝑓 in Theorem 4.2

will be computed from this methodology.

C S-UNIT ATTACK
Here we refer to [20] to briefly introduce S-unit attack.

S-unit attack begins with a nonzero 𝑣 ∈ 𝐼 and outputs 𝑣/𝑢, but
now 𝑢 is allowed to range over a larger subset of 𝐾∗ , specifically
the group of S-units.

Here 𝑆 is a finite set of places, a subset of the set 𝑉 mentioned

above. There are two types of places:

• The “infinite places” are labeled 1, 3, 5, . . . , 𝑛−1, except that
for 𝑛 = 1 there is one infinite place labeled 1. The entry at

place 𝑗 in log𝛼 is defined as 2 log |𝜎 𝑗 (𝛼) |, except that the
factor 2 is omitted for 𝑛 = 1. The set of all infinite places is

denoted∞, and is required to be a subset of 𝑆 .

• For each nonzero prime ideal 𝑃 of 𝑅, there is a “finite place”

which is labeled as 𝑃 . The entry at place 𝑃 in log𝛼 is defined

as −(𝑜𝑟𝑑𝑃𝛼) log | (𝑅/𝑃) |, where 𝑜𝑟𝑑𝑃𝛼 is the exponent of 𝑃

in the factorization of 𝛼 as the product of powers of prime

ideals. There are many choices of 𝑆 here. It focuses on the

following form of 𝑆 : choose a parameter 𝑦, and take 𝑃 ∈ 𝑆
if and only if | (𝑅/𝑃) | ≤ 𝑦.

The group𝑈𝑆 of S-units of 𝐾 is, by definition, the set of elements

𝑢 ∈ 𝐾∗such that the vector log𝑢 is supported on 𝑆 , i.e., it is 0 at

every place outside 𝑆 . The S-unit lattice is the lattice log𝑈𝑆 , which

has rank |𝑆 − 1|.
Short 𝑣/𝑢 again corresponds to short log 𝑣 − log𝑢, but it is re-

quired to ensure that 𝑣/𝑢 ∈ 𝐼 , i.e., 𝑜𝑟𝑑𝑃 (𝑣/𝑢) ≥ 𝑜𝑟𝑑𝑃 𝐼 for each finite
place 𝑃 . This was automatic for unit attacks but is not automatic

for general S-unit attacks. One thus wants to find a vector log𝑢 in

the S-unit lattice log𝑈𝑆 that is close to log 𝑣 in the following sense:
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Table 5: Comparison between CTRU and Saber.

Schemes Assumptions Reduction Rings 𝑛 𝑞 |𝑝𝑘 | |𝑐𝑡 | B.W. (Sec.C, Sec.Q) 𝛿

CTRU (Ours)

NTRU,

RLWE

IND-CPA

RPKE

Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1)
512 3457 768 640 1408 (118,107) 2

−144

768 3457 1152 960 2112 (181,164) 2
−187

1024 3457 1536 1408 2944 (255,231) 2
−206

Saber [14] MLWR

IND-CPA

RPKE

Z𝑞 [𝑥]/(𝑥𝑛/𝑘 + 1)
𝑘 = 2, 3, 4

512 8192 672 736 1408 (118,107) 2
−120

768 8192 992 1088 2080 (189,172) 2
−136

1024 8192 1312 1472 2784 (260,236) 2
−165

log𝑢 is close to log 𝑣 at the infinite places, and 𝑜𝑟𝑑𝑃𝑢 is close to but

no greater than 𝑜𝑟𝑑𝑃𝑣 − 𝑜𝑟𝑑𝑃 𝐼 .
As for closeness, as a preliminary step, if 𝑜𝑟𝑑𝑃𝑣 < 𝑜𝑟𝑑𝑃 𝐼 for some

𝑃 , update 𝑣 by multiplying it by a generator of 𝑃𝑃 (or, if possible,

of 𝑃 ) as explained above, and repeat this step. Then 𝑣 ∈ 𝐼 . Next, if
some 𝑢 in the list has 𝑣/𝑢 shorter than 𝑣 and 𝑣/𝑢 ∈ 𝐼 , replace 𝑣 with
𝑣/𝑢, and repeat this step. Output the final 𝑣 .

As an extreme case, if 𝑆 = ∞ (the smallest possible choice, not

including any 𝑃 ), then𝑈𝑆 = 𝑅∗ : the S-units of 𝐾 are the units of 𝑅,

the S-unit lattice is the unit lattice, and S-unit attacks are the same

as unit attacks. Extending 𝑆 to include more and more prime ideals

𝑃 gives S-unit attacks the ability to modify more and more places

in log 𝑣 .

D COMPARISONS BETWEEN CTRU AND
SABER

Saber [14] is based on the MLWR assumption that can be viewed

as derandomized MLWE [7, 13]. The reduction from (M)LWR to

(M)LWE is not tight, which suffers from a polynomial loss in the

case of small modulus [24]. In addition, the security estimation

made by Saber [14] is slightly different from those of other schemes.

Therefore, for ease of fair comparisons, we do not make a direct

comparison between Saber and other lattice-based schemes. How-

ever, for the sake of completeness, the comparison between CTRU

and Saber is still given in Table 5. From Table 5, at about the secu-

rity levels, CTRU enjoys smaller ciphertext sizes and lower error

probabilities. The sizes of public keys of Saber are relatively smaller

due to the MLWR trick used.

We also implement Saber with the modification that its FO trans-

formation has also been changed to FO̸
⊥
𝐼𝐷 (𝑝𝑘),𝑚 as in [47]. The

benchmark results are summarized in Table 6. It can be seen that

the Encaps process of CTRU is still the most efficient. The effi-

ciency improvements in the KeyGen and the Decaps of Saber are

benefited from the fact: most arithmetic operations can be con-

ducted by bitwise operations since all the moduli used in Saber are

power-of-two.

Table 6: CPU cycles of CTRU and Saber (in kilo cycles).

Schemes KeyGen Encaps Decaps

CTRU-768 8.2 × 103 80.9 151.8

Saber-768 [14] 94.7 109.7 138.9

E CNTR: CONSTRUCTION AND ANALYSIS
We propose a variant of CTRU, named CNTR, which is based on the

NTRU assumption [64] and the RLWR assumption [13]. Here, CNTR

stands for “Compact NTRu based on RLWR". CNTR is also usually

the abbreviation of container, which has the meaning CNTR is an

economically concise yet powerful key encapsulation mechanism.

E.1 Proposal Description
Our CNTR.PKE scheme is specified in Algorithm 12-14. Restate that

R𝑞 = Z𝑞 [𝑥]/(𝑥𝑛 −𝑥𝑛/2 + 1), where 𝑛 and 𝑞 are the ring parameters.

Let 𝑞2 be the modulus, which is usually set to be a power of two

that is less than 𝑞. Let 𝑝 be the message space modulus, satisfying

gcd(𝑞, 𝑝) = 1. Let Ψ and Ψ𝑟 be the distribution over R. For presen-
tation simplicity, the secret terms, 𝑓 ′ and 𝑔 are taken from Ψ, and 𝑟
is taken from Ψ𝑟 . Actually, Ψ and Ψ𝑟 can be different distributions.

LetM = {0, 1}𝑛/2 denote the message space, where each𝑚 ∈ M
can be seen as a

𝑛
2
-dimension polynomial with coefficients in {0, 1}.

The PolyEncode algorithm and PolyDecode algorithm are the same

as Algorithm 7 and 8, respectively.

Algorithm 12 CNTR.PKE.KeyGen()

1: 𝑓 ′, 𝑔← Ψ
2: 𝑓 := 𝑝𝑓 ′ + 1
3: If 𝑓 is not invertible in R𝑞 , restart.
4: ℎ := 𝑔/𝑓
5: return (𝑝𝑘 := ℎ, 𝑠𝑘 := 𝑓 )

Algorithm 13 CNTR.PKE.Enc(𝑝𝑘 = ℎ,𝑚 ∈ M)

1: 𝑟 ← Ψ𝑟
2: 𝜎 := ℎ𝑟

3: 𝑐 :=

⌊𝑞2
𝑞
(𝜎 + PolyEncode(𝑚))

⌉
mod 𝑞2

4: return 𝑐

Algorithm 14 CNTR.PKE.Dec(𝑠𝑘 = 𝑓 , 𝑐)

1: 𝑚 := PolyDecode

(
𝑐 𝑓 mod

±𝑞2
)

2: return𝑚

Unlike the encryption algorithm of CTRU (see Algorithm 5), that

of CNTR has the following distinctions: (1) the error polynomial is

moved; (2) the rounding of PolyEncode algorithm is moved.

Our CNTR.KEM scheme is constructed in the same way as

CTRU.KEM, via the FO transformation FO
̸⊥
𝐼𝐷 (𝑝𝑘),𝑚 [47]. The al-

gorithms of CNTR.KEM can be referred to Algorithm 9-11.
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E.2 Correctness Analysis
Theorem E.1. Let Ψ and Ψ𝑟 be the distribution over the ring R,

and 𝑞, 𝑞2, 𝑝 be positive integers. 𝑞2 is an even number that is less
than 𝑞. Let 𝑓 ′, 𝑔 ← Ψ and 𝑟 ← Ψ𝑟 . Let 𝜀 ← 𝜒 , where 𝜒 is the

distribution over R defined as follows: Sample 𝑢
$←− [− 𝑞

2𝑞2
,

𝑞
2𝑞2
) ∩ Z

and output −𝑞2𝑞 𝑢. Let Err𝑖 be the 𝑖-th octet of 𝑔𝑟 + 𝑞
𝑞2
𝜀 𝑓 . Denote

1 − 𝛿 = Pr
[
∥Err𝑖 ∥𝑞,2 <

𝑞
2

]
. Then, the error probability of CNTR is 𝛿 .

Proof. The proof is similar to that of Theorem 4.2. The main

observation is that the computation of the ciphertext 𝑐 is equivalent

to

𝑐 =

⌊𝑞2
𝑞
(𝜎 + PolyEncode(𝑚))

⌉
mod 𝑞2

=

⌊𝑞2
𝑞
ℎ𝑟 +

𝑞2

𝑞
·
𝑞

2

𝑠

⌉
mod 𝑞2

=

⌊𝑞2
𝑞
ℎ𝑟

⌉
+
𝑞2

2

𝑠 mod 𝑞2

=
𝑞2

𝑞
ℎ𝑟 + 𝜀 +

𝑞2

2

𝑠 mod 𝑞2

(7)

for even 𝑞2 < 𝑞. The term
⌊𝑞2
𝑞 ℎ𝑟

⌉
indicates an RLWR sample, and

the term
𝑞2
2
𝑠 implies the encoding output of𝑚 via the scalable E8

lattice w.r.t. the scale factor
𝑞2
2
.

Similar to [14], we can roughly regard the distribution of − 𝑞
𝑞2
𝜀 =

ℎ𝑟 − 𝑞
𝑞2
⌊𝑞2𝑞 ℎ𝑟⌉ as the uniform distribution over [− 𝑞

2𝑞2
,

𝑞
2𝑞2
) ∩ Z.

Therefore, the distribution of 𝜀 can be subject to the distribution 𝜒

defined as in the theorem statement.

Similarly, we have

𝑚 = PolyDecode𝐸′′
8

(
𝑐 𝑓 mod

±𝑞2
)

= PolyDecode𝐸′
8

(
( 𝑞
𝑞2
𝑐) 𝑓 mod

±𝑞
)
,

thereby ( 𝑞𝑞2 𝑐) 𝑓 =
𝑞
2
𝑠 + 𝑔𝑟 + 𝑞

𝑞2
𝜀 𝑓 . Each octet of

𝑞
2
𝑠 is essentially a

lattice point in the scalable E8 lattice w.r.t. the scale factor
𝑞
2
, which

we denoted by
𝑞
2
(k𝑖H mod 2). From Theorem 3.1 we know that to

recover k𝑖 , it should hold ∥Err𝑖 ∥𝑞,2 <
𝑞
2
, where Err𝑖 is the 𝑖-th octet

of 𝑔𝑟 + 𝑞
𝑞2
𝜀 𝑓 .

□

E.3 Provable Security
Definition E.2 (RLWR assumption [13]). Let 𝑞 > 𝑝 ≥ 2 be integers.

LetΨ𝑟 be a distribution over a polynomial ring R. Let𝑅𝑞 = 𝑅/𝑞𝑅 and

𝑅𝑝 = 𝑅/𝑝𝑅 be the quotient rings. The (decisional) Ring-Learning

with rounding (RLWR) assumption is to distinguish uniform sam-

ples (ℎ, 𝑐) $←− 𝑅𝑞 ×𝑅𝑝 from samples (ℎ, 𝑐) ∈ 𝑅𝑞 ×𝑅𝑝 where ℎ
$←− 𝑅𝑞

and 𝑐 = ⌊ 𝑝𝑞ℎ𝑟⌉ mod 𝑝 with 𝑟 ← Ψ𝑟 . It is hard if the advantage

AdvRLWR

𝑅,Ψ𝑟
(A) of any probabilistic polynomial time adversary A is

negligible, where AdvRLWR

𝑅,Ψ𝑟
(A) =�����Pr

[
𝑏 ′ = 1 :

ℎ
$←− 𝑅𝑞 ; 𝑟 ← Ψ𝑟 ;

𝑐 = ⌊ 𝑝𝑞ℎ𝑟⌉ mod 𝑝 ∈ 𝑅𝑝 ;𝑏 ′ ← A(ℎ, 𝑐)

]
−Pr

[
𝑏 ′ = 1 : ℎ

$←− 𝑅𝑞 ; 𝑐
$←− 𝑅𝑝 ;𝑏 ′ ← A(ℎ, 𝑐)

] �����.
Theorem E.3 (IND-CPA security of CNTR.PKE). For any adver-

sary A, there exits adversaries B and C such that AdvIND-CPACNTR.PKE (A) ≤
AdvNTRUR𝑞 ,Ψ (B) + Adv

RLWR
R,Ψ𝑟 (C).

Proof. We complete our proof through a sequence of gamesG0,

G1 and G2. Let A be the adversary against the IND-CPA security

experiment. Denote by Succ𝑖 the event that A wins in the game G𝑖 ,

that is, A outputs 𝑏 ′ such that 𝑏 ′ = 𝑏 in G𝑖 .

Game G0. This game is the original IND-CPA security experi-

ment. Thus, AdvIND-CPA
CNTR.PKE

(A) = |Pr[Succ0] − 1/2|.
Game G1. This game is the same as G0, except that replacing the

public key ℎ = 𝑔/𝑓 in the KeyGen by ℎ
$←− R𝑞 . To distinguish G1

from G0 is equivalent to solve an NTRU problem. More precisely,

there exits an adversary B with the same running time as that of A
such that |Pr[Succ0] − Pr[Succ1] | ≤ AdvNTRUR𝑞 ,Ψ (B).

GameG2. This game is the same asG1, except that using random

elements from R𝑞2 to replace ⌊𝑞2𝑞 ℎ𝑟⌉ of 𝑐 = ⌊
𝑞2
𝑞 ℎ𝑟⌉ +

𝑞2
2
𝑠 mod 𝑞2

(see the formula (7)) in the encryption where the term
𝑞2
2
𝑠 implies

the encoding output of the given challenge plaintext𝑚𝑏 via the

scalable E8 lattice w.r.t. the scale factor
𝑞2
2
. Similarly, there exits

an adversary C with the same running time as that of A such that

|Pr[Succ1] − Pr[Succ2] | ≤ AdvRLWR

R,Ψ𝑟 (C).
In Game G2, the information of the challenge plaintext𝑚𝑏 is

perfectly hidden by the uniformly random element fromR𝑞2 . Hence,
the advantage of the adversary is zero in G2. We have Pr[Succ2] =
1/2.

Combining all the probabilities finishes the proof. □

As for the IND-CCA security, since the FO transformation is not

changed, Theorem 4.4 is still applicable to the IND-CCA security

of CNTR.KEM.

E.4 Concrete Hardness and Parameter Selection
The parameter sets of CNTR are given in Table 7, where those

in red are the recommended parameters which are also given in

Table 9. Though the parameters in red are marked as recommended,

we believe the other parameter sets are still very useful in certain

application scenarios. 𝑛 and 𝑞 are the ring parameters. 𝑞2 is the

compression modulus w.r.t. the RLWR problem. Recall that we fix

the message space modulus 𝑝 = 2 and the underlying cyclotomic

polynomial Φ(𝑥) = 𝑥𝑛 − 𝑥𝑛/2 + 1, which are omitted in Table 7.

Ψ and Ψ𝑟 are the probability distribution which are set to be 𝐵𝜂
or 𝑈𝑘 , where 𝐵𝜂 is the centered binomial distribution w.r.t. the

integer 𝜂 and 𝑈𝑘 is the uniform distribution over [−𝑘, 𝑘] ∩ Z. The
public key sizes |𝑝𝑘 |, ciphertext sizes |𝑐𝑡 | and B.W. (bandwidth,

|𝑝𝑘 | + |𝑐𝑡 |) are measured in terms of bytes. “Sec.C” and “Sec.Q”

mean the estimated core-SVP security level expressed in bits in the

classical and quantum settings respectively, where both the types

18



Table 7: Parameter sets of CNTR

Schemes 𝑛 𝑞 𝑞2 (Ψ,Ψ𝑟 ) |𝑝𝑘 | |𝑐𝑡 | B.W.

NTRU

(Sec.C, Sec.Q)

RLWR

(Sec.C, Sec.Q)

𝛿

CNTR-512

512 3457 2
9 (𝐵3,𝑈1) 768 576 1344 (118,107) (118,107) 2

−86

512 3457 2
10 (𝐵5,𝑈3) 768 640 1408 (127,115) (123,111) 2

−141

512 3457 2
10 (𝐵5,𝑈4) 768 640 1408 (127,115) (128,116) 2

−94

CNTR-768

768 3457 2
10 (𝐵3, 𝐵3) 1152 960 2112 (192,174) (186,169) 2

−269

768 3457 2
10 (𝐵3,𝑈2) 1152 960 2112 (192,174) (190,172) 2

−237

768 3457 2
10 (𝐵3,𝑈3) 1152 960 2112 (192,174) (199,181) 2

−158

CNTR-1024

1024 3457 2
10 (𝐵3, 𝐵3) 1536 1280 2816 (269,244) (261,236) 2

−195

1024 3457 2
10 (𝐵3,𝑈2) 1536 1280 2816 (269,244) (265,241) 2

−171

1024 3457 2
10 (𝐵3,𝑈3) 1536 1280 2816 (269,244) (277,252) 2

−113

Table 8: Gate-count estimate of CNTR parameters. 𝑞2 and (Ψ,Ψ𝑟 ) are referred to section E.4. 𝑑 is the optimal lattice dimension
for the attack. 𝑏 is the BKZ blocksize. 𝑏 ′ is the sieving dimension accounting for “dimensions for free”. Gates and memory are
expressed in bits. The last column means the required log(gates) values by NIST.

Schemes 𝑞2 (Ψ,Ψ𝑟 ) 𝑑 𝑏 𝑏 ′ log(gates) log(memory)

log(gates)

by NIST

CNTR-512

2
9 (𝐵3,𝑈1) 981 385 349 143.7 88.2

1432
10 (𝐵5,𝑈3) 1025 461 420 164.8 103.4

2
10 (𝐵5,𝑈4) 1025 481 439 170.4 107.4

CNTR-768

2
10 (𝐵3, 𝐵3) 1498 671 618 224.6 145.3

2072
10 (𝐵3,𝑈2) 1496 684 630 228.1 147.8

2
10 (𝐵3,𝑈3) 1489 718 662 237.5 154.6

CNTR-1024

2
10 (𝐵3, 𝐵3) 1958 939 871 299.7 198.5

272

2
10 (𝐵3,𝑈2) 1955 957 888 304.6 202.1

Table 9: Comparison between CNTR and Saber. The column “Assumptions” refers to the underlying hardness assumptions.
The column “Reduction” means that IND-CCA security is reduced to what kinds of CPA security, where “IND” (“OW”) refers
to indistinguishability (resp., one-wayness) and “RPKE” (“DPKE”) refers to randomized (resp., deterministic) public-key
encryptions. “Rings” refers to the underlying polynomial rings. The column “𝑛” means the total dimension of algebraically
structured lattices. “𝑞” is the modulus. The public key sizes |𝑝𝑘 |, ciphertext sizes |𝑐𝑡 |, and B.W. (bandwidth, |𝑝𝑘 | + |𝑐𝑡 |) are
measured in bytes. “Sec.C” and “Sec.Q” mean the estimated security expressed in bits in the classical and quantum setting
respectively, which are gotten by the same methodology and scripts provided by NTRU KEM and Saber in NIST PQC Round 3,
where we minimize the target values if the two hardness problems, say NTRU and RLWR, have different security values. The
column “𝛿” indicates the error probabilities.

Schemes Assumptions Reduction Rings 𝑛 𝑞 |𝑝𝑘 | |𝑐𝑡 | B.W. (Sec.C, Sec.Q) 𝛿

CNTR (Ours)

NTRU,

RLWR

IND-CPA

RPKE

Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1)
512 3457 768 640 1408 (123,111) 2

−141

768 3457 1152 960 2112 (192,174) 2
−158

1024 3457 1536 1280 2816 (265,241) 2
−171

Saber [14] MLWR

IND-CPA

RPKE

Z𝑞 [𝑥]/(𝑥𝑛/𝑘 + 1)
𝑘 = 2, 3, 4

512 8192 672 736 1408 (118,107) 2
−120

768 8192 992 1088 2080 (189,172) 2
−136

1024 8192 1312 1472 2784 (260,236) 2
−165

of NTRU attack and RLWR attack are considered. The last column

“𝛿” indicates the error probabilities.

Remark that we estimate the classical and quantum core-SVP

hardness security of the RLWR problem via the same scripts from

Saber in NIST PQC Round 3 [14]. We also remark that CNTR en-

joys a flexibility of parameter selections, but selecting these 𝑛’s

in Table 7 for CNTR is only for simplicity. One can also choose 𝑛

from {576, 648, 864, 972, 1152, 1296} which are integers of the form

3
𝑙 · 2𝑒 , 𝑙 ≥ 0, 𝑒 ≥ 1. Note also that the plaintext message space of

CNTR is {0, 1}𝑛/2, compared to the fixed message space {0, 1}256
of Saber. The first parameter set of CNTR-512 w.r.t. 𝑞2 = 2

9
domi-

nates the smallest ciphertext size and bandwidth, whereas the third

parameter set of CNTR-512 has the strongest hardness of lattice as-

sumptions (say, NTRU and RLWR). They are practically applicable

in certain application scenarios which are not much sensitive to

error probability. In practice, each secret key will not be used for
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decryption more than 2
80

times during its lifetime. In this case, the

relatively higher error probabilities 2
−86

and 2
−94

do not undermine

the actual security of these parameter sets in reality.

E.5 Refined Gate-Count Estimate
As for the quantum gates and space complexity, we use the same

gate number estimation method as Saber in NIST PQC Round 3.

The results of CNTR parameter sets are shown in Table 8. The data

of CNTR-1024 w.r.t. (𝑞2 = 2
10,Ψ = 𝐵3,Ψ𝑟 = 𝑈3) is out of the range

of the gate-count estimator, so we omit it.

E.6 Implementation and Benchmark
We provide the portable C implementation of our CNTR for the

recommended parameter set of (𝑛 = 768, 𝑞 = 3457, 𝑞2 = 2
10,Ψ =

𝐵3,Ψ𝑟 = 𝑈3). Similar to CTRU, as for the prefix 𝐼𝐷 (𝑝𝑘) of the public
key ℎ in CNTR, we use the first 33 bytes of the bit-packed NTT

representation of ℎ.

All the benchmark tests are run on an Intel(R) Core(TM) i7-

10510U CPU at 2.3GHz (16 GB memory) with Turbo Boost and

Hyperthreading disabled. The operating system is Ubuntu 20.04 LTS

with Linux Kernel 4.4.0 and the gcc version is 9.4.0. The compiler flag

is listed as follows: -Wall -march=native -mtune=native -O3 -fomit-
frame-pointer -Wno-unknown-pragmas. We run the corresponding

KEM algorithms for 10,000 times and calculate the average CPU

cycles. The benchmark results of the schemes are shown in Table 10.

E.7 Comparisons with Saber
We mainly make a comparison between CNTR and Saber, that

is based on the MLWR assumption. The source codes of Saber

are taken from its Round 3 supporting materials. In addition, the

FO transformation in Saber has been changed to FO
̸⊥
𝐼𝐷 (𝑝𝑘),𝑚 as

in [47]. The results are given in Table 9 and Table 10 for intuitive

comparisons.

From Table 9, CNTR has smaller ciphertext sizes, stronger se-

curity and lower error probabilities for the three recommended

parameter sets when compared to Saber. From Table 10, the Encaps

process of CNTR-768 is still more efficient than that of Saber-768.

Table 10: CPU cycles of CNTR and Saber (in kilo cycles).

Schemes KeyGen Encaps Decaps

CNTR-768 8.2 × 103 80.4 150.3

Saber-768 [14] 94.7 109.7 138.9
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