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Abstract

Identifying the concrete hardness of the discrete logarithm problem is crucial for instantiating
a vast range of cryptographic schemes. Towards this goal, Corrigan-Gibbs and Kogan (EURO-
CRYPT ’18) extended the generic-group model for capturing “preprocessing” algorithms, offering
a tradeoff between the space S required for storing their preprocessing information, the time T
required for their online phase, and their success probability. Corrigan-Gibbs and Kogan proved
an upper bound of Õ(ST 2/N) on the success probability of any such algorithm, where N is the
prime order of the group, matching the known preprocessing algorithms.

However, the known algorithms assume the availability of truly random hash functions, with-
out taking into account the space required for storing them as part of the preprocessing informa-
tion, and the time required for evaluating them in essentially each and every step of the online
phase. This led Corrigan-Gibbs and Kogan to pose the open problem of designing a discrete-
logarithm preprocessing algorithm that is fully constructive in the sense that it relies on explicit
hash functions whose description lengths and evaluation times are taken into account in the
algorithm’s space-time tradeoff.

We present a fully constructive discrete-logarithm preprocessing algorithm with an asymp-
totically optimal space-time tradeoff (i.e., with success probability Ω̃(ST 2/N)). In addition, we
obtain an algorithm that settles the corresponding tradeoff for the computational Diffie-Hellman
problem. Our approach is based on derandomization techniques that provide rather weak inde-
pendence guarantees. On the one hand, we show that such guarantees can be realized in our
setting with only a minor efficiency overhead. On the other hand, exploiting such weak guar-
antees requires a more subtle and in-depth analysis of the underlying combinatorial structure
compared to that of the known preprocessing algorithms and their analyses.

∗School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email:
{lior.rotem,segev}@cs.huji.ac.il. Supported by the European Union’s Horizon 2020 Framework Program (H2020)
via an ERC Grant (Grant No. 714253).

†Supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.



1 Introduction

Identifying the concrete hardness of the discrete logarithm problem in prime-order groups is crucial
for instantiating a vast range of cryptographic schemes. Shoup’s seminal work [Sho97] introduced
the generic-group model, capturing all computations that do not exploit any specific property of the
representation of the underlying group, and provided a tight bound on the hardness of the discrete
logarithm problem in this model. Specifically, Shoup proved that any generic-group algorithm that
runs in time at most T (thus, in particular, performs at most T group operations), computes the
discrete logarithm of a uniformly-distributed group element with probability O(T 2/N), where N is
the prime order of the group.1

Although generic-group algorithms seem somewhat restricted, the generic hardness of the discrete
logarithm problem may nevertheless be used for setting concrete security parameters in any group in
which non-generic discrete logarithm algorithms do not seem to outperform the known generic ones
(most notably, in popular elliptic-curve groups [KMV00, FST10]). However, as recently observed
by Corrigan-Gibbs and Kogan [CK18], the bound established by Shoup and Maurer does not apply
to “preprocessing” algorithms, as introduced by Hellman in the context of the function inversion
problem [Hel80, FN99, DTT10]. For the discrete logarithm problem, a preprocessing algorithm may
first preprocess the group in an offline phase. Then, in an online phase, the algorithm receives a
group element h ∈ G, and may use the preprocessing information to compute its discrete logarithm.
The efficiency of such algorithms is measured via the tradeoff between the space S required for
storing their preprocessing information, the time T required for their online phase, and their success
probability.

Motivated by elegant preprocessing algorithms for the discrete logarithm problem due to Lee,
Cheon, and Hong [LCH11] and by Bernstein and Lange [BL13], Corrigan-Gibbs and Kogan extended
the generic-group model to capture preprocessing algorithms, and proved an upper bound on the
success probability of any such algorithm in computing discrete logarithms. Specifically, for essen-
tially any S and T , they proved that any preprocessing algorithm computes the discrete logarithm of
a uniformly-distributed group element with probability Õ(ST 2/N). Alternatively, denoting by ε the
success probability of such algorithms, they proved the lower bound ST 2 = Ω̃(εN) on the required
space and time resources.

The tradeoff established by Corrigan-Gibbs and Kogan matches the performance provided by
the algorithms of Lee et al. and of Bernstein and Lange. However, these algorithms assume the
availability of truly random hash functions, without taking into account the space required for
storing them as part of the preprocessing information, and the time required for evaluating them
in essentially each and every step of the online phase.2 A standard approach in the design and
analysis of algorithms for eliminating this assumption is to rely on derandomization techniques
based on k-wise independent hash functions, guaranteeing that their outputs are independently and
uniformly distributed when restricted to any set of most k inputs. Unfortunately, as we discuss in
Section 1.3, for the level k of independence that seems required for the probabilistic analysis of the
above two algorithms, explicit constructions of k-wise independent hash functions inherently result
in a significant increase either in the space required for storing them as part of the preprocessing

1An alternative generic-group model was later introduced by Maurer [Mau05], admitting the same tight bound on
the hardness of the discrete logarithm problem.

2The lower bound of Corrigan-Gibbs and Kogan allows the offline and online phases to share an arbitrary-long
common random string which is not accounted for in the space required for storing the preprocessing information.
Thus, on the one hand, their lower bound applies even to algorithms that assume the availability of truly random hash
functions. On the other hand, however, when taking the required storage into account, a comparable yet more direct
solution is to just store the discrete logarithms of all group elements.

1



information or in the time required for evaluating them in the online phase [Sie04].
This state of affairs has led Corrigan-Gibbs and Kogan to pose the open problem of designing

a preprocessing algorithm for computing discrete logarithms that is fully constructive in the sense
that it relies on explicit hash functions whose description lengths and evaluation times are taken into
account in the algorithm’s space-time tradeoff. That is:

Is there an explicit (i.e., fully constructive) preprocessing algorithm
for computing discrete logarithms that matches the ST 2 = Θ̃(εN) tradeoff?

This question is in fact relevant not only to the discrete logarithm problem, but also to various
other problems in prime-order groups for which the known preprocessing algorithms assume the
availability of truly random functions without taking into account the space required for storing
them and the time required for evaluating them. These include, in particular, the computational
Diffie-Hellman problem, for which Corrigan-Gibbs and Kogan proved a similar ST 2 = Ω̃(εN) lower
bound.

1.1 Existing Approaches

The seminal work of Fiat and Naor [FN99] considered the function-inversion variant of this problem,
given that Hellman’s preprocessing function inversion algorithm [Hel80] assumed the availability of
truly random hash functions in a similar manner. Fiat and Naor presented an explicit algorithm that
relies on concrete hash functions, and were able to match the tradeoff established by Hellman. The
algorithm of Fiat and Naor can be seen as an explicit preprocessing algorithm for computing discrete
logarithms. However, the bound that it achieves when applied to the discrete logarithm problem
is S2T = Θ(εN2), far from matching the ST 2 = Θ̃(εN) tradeoff. It is worth stressing that this
gap stems from the fact that the setting considered by Fiat and Naor is much more general: Their
algorithm can invert any function, and thus cannot exploit the algebraic structure of the underlying
group in the discrete logarithm problem. Nevertheless, one could hope that relying on the same
ideas of Fiat and Naor, one could make the algorithms of Lee, Cheon, and Hong [LCH11] and of
Bernstein and Lange [BL13] explicit. Unfortunately, as we discuss in Section 1.3, the standard
amortization technique that enabled Fiat and Naor to rely on concrete hash functions while still
matching Hellman’s tradeoff does not seem applicable for the known preprocessing algorithms for
the discrete logarithm problem.

The recent work of Maurer, Portman, and Zhu [MPZ20] considered the task of replacing the
random function assumed by Lee, Cheon, and Hong [LCH11] and of Bernstein and Lange [BL13]
by an explicit k-wise independent hash function for a suitable choice of k. However, the focus of
their work is different, as they consider idealized models which only account for the number of oracle
queries that the online algorithm issues. As a result, their analysis does not take into account the
time required for evaluating the k-wise independent hash function, and they only consider the space
required for representing it. As we discuss in Section 1.3, instantiating their approach in the standard
model results in a space-time tradeoff that is far from optimal.

Finally, it should be noted that preprocessing algorithms that assume the availability of truly
random hash functions can be viewed as algorithms within the random-oracle model [BR93].3 When
instantiating the random oracle with cryptographic hash functions, most applications rely on the
standard assumption that such functions are “sufficiently random” with respect to a polynomial (or,
say, moderately super-polynomial) number of queries. However, the known preprocessing algorithms

3See also [Unr07, DGK17, CDG18], and the references therein, for the related line of work on bounding the
usefulness of auxiliary inputs in the random-oracle model.
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issue a nearly exponential number of queries (e.g., N1/3 queries), and this holds even when consid-
ering only the queries issued in their online phase. From the theoretical perspective, this requires a
substantially stronger assumption regarding the heuristic security of cryptographic hash functions.
Moreover, from the more practical perspective of setting concrete security parameters against prepro-
cessing attacks, this unnecessarily ties the assumed concrete security of discrete logarithm problem
(and of additional related problems) to that of cryptographic hash functions.

1.2 Our Contributions

In this work we resolve the above-stated question by presenting an explicit (i.e., fully constructive)
discrete logarithm preprocessing algorithm that is asymptotically optimal in terms of its space-time
tradeoff. In fact, our algorithm does not explicitly settle the space-time tradeoff only for the discrete
logarithm problem, but also yields an explicit algorithm that settles the corresponding tradeoff for
the computational Diffie-Hellman problem (CDH).

Within the unit-cost RAM model, which is the standard model for analyzing the efficiency of
explicit data structures and algorithms (see Section 2), we prove the following theorem:

Theorem 1.1 (informal). For any integers S and T such that S−T = Ω(S), there exists an explicit
algorithm A = (A0, A1) such that for any cyclic group (G, N, g) it holds that

Pr
x←ZN

[A1 (A0(G, N, g), gx) = x] = Ω̃

(
S · T 2

N

)
,

where the offline algorithm A0 outputs S bits of preprocessing information, and the online algorithm
A1 runs in time T .

Note that our algorithm A consists of a pair (A0, A1) of algorithms: The offline algorithm A0 takes
as input the description (G, N, g) of a cyclic group of orderN that is generated by g ∈ G and produces
the preprocessing information, and the online algorithm A1 takes as input a uniformly-distributed
group element gx ∈ G (together with the preprocessing information) and tries to compute its discrete
logarithm x ∈ ZN with respect to the given generator g. Similarly to the previously-known algorithms
[LCH11, BL13], our algorithm does not rely on any specific property of the representation of the
underlying group, and can be formally presented within Shoup’s generic-group model [Sho97].

In addition, note that we require the parameters S and T to satisfy S − T = Ω(S) (i.e., we
require that (1 − α)S ≥ T for some constant α > 0), and this results from the additional space
overhead we incur for explicitly storing descriptions of hash functions.4 This is a somewhat natural
restriction given the nature of preprocessing algorithms (relying on preprocessing information in
order to reduce the online running time), which captures in particular the choice of S = Θ(N1/3)
and T = Θ(N1/3) that balances the space and time resources of the algorithm, as well as any other
choice of S = Θ(N1−2β) and T = Θ(Nβ) for β ≥ 1/3.

Finally, note that any preprocessing algorithm for the discrete logarithm problem directly yields a
preprocessing algorithm for the computational Diffie-Hellman (CDH) problem with the same space-
time tradeoff. Thus, given that Corrigan-Gibbs and Kogan [CK18] additionally proved the lower
bound ST 2 = Ω̃(εN) for the CDH problem with preprocessing, the following corollary of Theorem
1.1 provides an explicit preprocessing algorithm that asymptotically matches the optimal tradeoff
for the CDH problem as well:

4An interesting technical question is whether the requirement S − T = Ω(S) can be avoided while still matching
the ST 2 = Θ̃(εN) tradeoff with an explicit algorithm.
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Corollary 1.2 (informal). For any integers S and T such that S−T = Ω(S), there exists an explicit
algorithm A = (A0, A1) such that for any cyclic group (G, N, g) it holds that

Pr
x,y←ZN

[A1 (A0(G, N, g), gx, gy) = gxy] = Ω̃

(
S · T 2

N

)
,

where the offline algorithm A0 outputs S bits of preprocessing information, and the online algorithm
A1 runs in time T .

1.3 Overview of Our Approach

Our starting point: Preprocessing with a truly random function. The starting point for
our explicit preprocessing algorithms is the approach which underlies the preprocessing algorithms
of Lee, Cheon, and Hong [LCH11] and Bernstein and Lange [BL13]. This approach relies on the
existence of a truly random hash function f : G→ ZN , shared between the preprocessing algorithm
A0 and the online algorithm A1. This function defines a random walk on the elements of G via the
step function h→ h · gf(h).

The preprocessing algorithm A0 preforms S such random walks, starting from S uniformly-
random group elements gα1 , . . . , gαS , and taking T steps in each walk. It then stored the end point
hi of each walk, together with its discrete logarithm βi with respect to g. Note that A0 can indeed
compute βi, since βi = αi +

∑T
j=1 f

(j)(gαi), where f (1)(·) = f(·) and f (j)(·) = f(f (j−1)(·)) for j ≥ 2.
The endpoints h1, . . . , hS and their respective discrete logarithms β1, . . . , βS are passed as the state
to the online algorithm A1.

The online algorithm A1 receives as input the above state and a challenge group element h = gx,
and its goal is to compute x. To this end, it performs a random walk of length at most 2T ,
starting from the challenge h. The hope is that eventually, this walk will “hit” one of the stored
endpoints h1, . . . , hS . Say that the online walk hits hi after ` steps. In this case, we know that
gx+

∑`
j=1 f

(j)(h) = hi = gβi . Since g is a generator of the group, this implies that x = βi−
∑`

j=1 f
(j)(h).

Since βi and h are both known to A1, it can compute and output x.
The description length of the state passed from A0 to A1 is roughly S (assuming that the function

f does not need to be stored as part of the state). The computation executed by A1 involves roughly
2T invocations of H, and T exponentiations in the group, resulting in a running time of roughly T
(when ignoring the time required for evaluating f).5

We now sketch the analysis for bounding the success probability of these algorithms (see also
[CK18] and the references therein). First, observe that if the online random walk collides with at
least one of the precomputed paths within the first T steps, then it will inevitably hit a precomputed
endpoint and A1 will successfully output the discrete logarithm of the challenge element h. Hence, it
is sufficient to bound the probability that such a collision occurs. This bound follows from two simple
probabilistic arguments. The first argument shows that with constant probability, the expected
number of distinct group elements “touched” by the precomputed paths is at least Ω(ST ). The
second argument shows that when the precomputed paths touch at least Ω(ST ) group elements, the
collision probability that we wish to bound is at least Ω(ST 2/N), since each new group element
in the online walk hits any of the elements touched by the precomputed elements with probability
Ω(ST/N). Both of these probabilities are taken also over the choice of the truly random function f ,
and both arguments inherently rely on the assumption that f is sampled uniformly at random from
the set of all functions from the group G to ZN .

5Both the state size and the running time ignore logN factors.
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Accounting for the description length of the hash function. As previously mentioned, the
above attack attains the optimal tradeoff between the preprocessed state size, the online running
time and the success probability only when we do not take into count the description length of the
truly random hash function f as part of the state size. When we do account for the description
length of the function f , the state size blows up to more than N · logN bits. This clearly renders
the entire approach useless, since with this many bits, the preprocessing algorithm can simply pass
to the online algorithm the discrete logarithm of every group element.

A standard way of reducing the representation size of such functions while still enjoying certain
independence guarantees, is by sampling them from a family of k-wise independent hash functions
for a suitable choice of k. Observe that f is applied by A0 and A1 to O(ST ) group elements.
Hence, instead of using a truly uniform function, one can use a hash function sampled from a family
of O(ST )-wise independent functions while keeping the analysis intact and without damaging the
success probability. Alas, this is still far from satisfactory, since the space for storing a function from
such families and its evaluation time will yield a tradeoff which is far from optimal. For example,
instantiating such functions via randomly-sampled polynomials of degree O(ST ) will result in a state
of size S′ = O(ST ) and online running time of T ′ = O(ST 2). In other words, the success probability
is only Ω(T ′/N), smaller by a factor of roughly S′T ′ from the lower bound of Corrigan-Gibbs and
Kogan. This non-optimality seems to be inherent when instantiating f using full-fledged k-wise
independence: A lower bound by Siegel [Sie04] shows that any construction reducing the evaluation
time of k-wise independent functions below Ω(k) entails a polynomial increase in the space required
for representing each function, thus once again leading to a non-optimal tradeoff.

Relying on O(T )-wise independence via a local analysis. As a first step, we present a
more nuanced analysis for the success probability of the above algorithms, which enables us to
reduce the level of independence required for the family of hash functions from O(ST ) to just O(T ).
Note that indeed, due to its global nature, the analysis presented above for a truly random hash
function breaks down when replacing it with a function sampled from an O(T )-wise independent
family. In particular, we can no longer argue that the random walks in the preprocessing stage cover
Ω(ST ) distinct group element with high enough probability. The key observation is that such a
global argument is unnecessary. What we are really interested in is the probability that the online
walk collides with one of the walks from the preprocessing stage. Indeed, this probability can be
sufficiently large even if the fraction of group elements covered by the preprocessed walks is very
small. Intuitively, this is even likely: The more skewed the distribution over endpoints of T -step
random walks is, the greater the probability is for a collision.6

Our refined analysis relies on a local argument that only considers the application of the hash
function f on O(T ) group elements at a time. Therefore, it holds even when f is sampled from a
family of O(T )-wise independent functions. First, we prove that the probability that the online walk
collides with any specific precomputed walk within T steps is at least Ω(T 2/N). Then, we prove
that the probability that it collides with any two specific precomputed walks within T steps is at
most O(T 4/N2). Since these arguments only consider at most 2T and 3T distinct group elements,
respectively, we are able to prove them relying on H being sampled from a 3T -wise independent
family. Finally, we use the inclusion-exclusion principle to bound the probability that the online
walk hits a precomputed walk with T steps by Ω(ST 2/N).

6As an extreme example, consider a function f∗ that maps every group element h ∈ G to an integer α ∈ ZN such
that h ·gα = g. If this function is used, the preprocessed walks cover at most S+1 group elements, but the online walk
collides with all of them with probability 1. Of course, the function f∗ essentially computes the discrete logarithm of
every group element without the random-walks-based algorithms. We use it here merely to exemplify the above point.
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The remaining gap: The evaluation time of k-wise independent functions. Sampling the
hash function f from a family of O(T )-wise independent functions still does not suffice to match the
lower bound of Corrigan-Gibbs and Kogan. Consider again using a randomly-sampled polynomial
of degree O(T ). In this case, the size of the state passed from A0 to A1 is indeed reduced to
S′ = O(S + T ), simplifying to S′ = O(S) in the natural case in which S − T = Ω(S). However,
the running time of A1 is much greater than T . Each evaluation of a degree O(T ) polynomial takes
time at least Ω(T ), and at worst, A1 makes 2T such evaluations. This results in a running time
of at least T ′ = Ω(T 2). In other words, the success probability is only Ω(S′T ′/N), a factor of
roughly T ′ away from the lower bound of Corrigan-Gibbs and Kogan. The lower bound of Siegel
[Sie04] again suggests that other instantiations of O(T )-wise independent families will also result in
far-from-optimal tradeoffs.

The unsuitability of Fiat-Naor’s derandomization. The work of Fiat and Naor [FN99] un-
dertakes a similar endeavor to ours, presenting explicit preprocessing algorithms for the function
inversion problem. They too start from (a modification of) previously-known algorithms that assume
the existence of truly random functions shared between the preprocessing and the online algorithms
[Hel80] and encounter a similar problem to the one described above: Trying to instantiate the random
functions naively by choosing them independently from a k-wise independent family (for a suitable
value of k) results in a sub-optimal running time. Their solution to this problem is to choose these
functions in a pairwise independent manner, instead of choosing them completely independently.
Concretely, each function in their construction is a random polynomial of degree k − 1, but the
coefficients of the different polynomials are sampled using pairwise independent functions. Fiat and
Naor show that this change does not hurt the success probability of the attack too much, while at
the same time, it enables a valuable speed-up in the online running time by evaluating these poly-
nomials concurrently using the Fast Fourier Transform. Such an approach does not seem to fit our
setting, where we are need to derandomize only a single truly random function. Moreover, attempts
to modify the algorithms of Lee, Cheon, and Hong [LCH11] and Bernstein and Lange [BL13] to use
several different random functions (to instantiate them in a correlated manner like Fiat and Naor
did) seem to yield sub-optimal tradeoffs.

Our Solution: Reducing running time via weaker independence. To reduce the overhead in
the online running time caused by the T hash evaluations, we prove that the O(T )-wise independent
family can be replaced with a function family that offers weaker independence guarantees. Concretely,
we sample our hash function f from function families put forth by Pagh and Pagh [PP08] (following
Siegel [Sie04]). Functions within these families can be evaluated in constant time in the standard
unit-cost RAM model (as described in Section 2), effectively eliminating the overhead in running time
relative to using full-fledged O(T )-wise independent families. The process of sampling a function from
these families can be thought of as occurring in two steps: First, a function family F , parameterized
by a parameter k ∈ N, is drawn from a collection of families. Then, a function f is sampled from F .
Simplifying, the independence guarantee is that for any specific set S of k elements in the domain, F
is “fully” independent with respect to S with high probability. This differs from the standard notion
of k-wise independence, which requires a randomly chosen function to satisfy this property for any
set S of size k.

We would like to argue that the above analysis, for a function f sampled from an O(T )-wise
independent family, carries over to the case where f is sampled from a family with this weaker
independence guarantee (where the parameter k is set to be O(T )). The problem, though, is that
according to the original analysis of Pagh and Pagh, the family F is guaranteed to be k-wise inde-
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pendent with high probability only with respect to subsets which are fixed before F is chosen. It
immediately follows that F is k-wise independent with high probability also with respect to subsets
which are sampled from a distribution which is independent of the choice of F . In our case, however,
the analysis of the discrete log algorithms requires F to be fully independent with respect to random
subsets that do depend on the choice F . Concretely, we want the function f , sampled from F , to
behave like a random function on the union of two or three T -step random walks induced by f .
Fortunately, a lemma proved by Berman, Haitner, Komargodski, and Naor [BHK+19] in a different
context implies that F remains essentially fully independent with sufficiently high probability on
such adaptively-chosen subsets as well. Overcoming various additional technical difficulties, this en-
ables us to rely on explicit hash functions whose description lengths and evaluation times are taken
into account in the algorithm’s asymptotically optimal space-time tradeoff.

2 Preliminaries

In this section we present the basic notions and standard cryptographic primitives that are used in
this work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote
by x ← X the process of sampling a value x from the distribution X. Similarly, for a set X we
denote by x← X the process of sampling a value x from the uniform distribution over X .

The computational model. We consider the unit-cost RAM model which has been the subject of
much research, and is the standard model for analyzing the efficiency of explicit data structures and
algorithms in terms of the running time of their operations (see, for example, [Mil99, HMP01, DP08,
PP08] and the references therein). In this model, any operation in a rather minimal instruction set
can be executed in constant time on w-bit operands, where w = O(log u), and all elements are taken
from a universe of size u. In our case, u may be any polynomial in the order N of the underlying
group G in which we wish to compute discrete logarithms, and thus w = O(logN). We consider the
standard instruction set for the unit-cost RAM model, which includes integer addition, subtraction,
bit-wise Boolean operations, left and right bit shifts, and integer multiplication (we emphasize that
the integers considered in the analysis of our algorithms will all be in the range 0, . . . , N − 1).

Additionally, for an underlying cyclic group G of order p we denote by tmult and texp the running
times of computing the group operation and the group exponentiation, respectively. Within the
unit-cost RAM model we then state the running time of our algorithms as functions of tmult and texp.
Assuming that both operations can be implemented in time polynomial in logN , this translates into
(at most) a multiplicative lower-order factor of poly(logN).

Uniform hashing. A function family H is said to be uniform over a set S of elements in its
domain, if a uniformly-sampled function h ← H is indistinguishable from a truly random function
when evaluated on S. This is formally captured via the following definition:

Definition 2.1. Let X and Y be sets and let S = {x1, . . . , xk} ⊆ X be a subset of size k. We say
that a function family H mapping X to Y is uniform over S if for every tuple (y1, . . . , yk) ∈ Yk it
holds that

Pr
h←H

[∀i ∈ [k] : h(xi) = yi] =
1

|Y|k
.

We say that H is k-wise independent if it is uniform over all subsets of X of size at most k.

Functions families which are k-wise independent have repeatedly proven to be useful for the
design and analysis of data structures in general, and for cryptographic preprocessing attacks in
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particular [FN99]. Alas, all known constructions of such families provide functions which take time
at least k to evaluate; this will, unfortunately, prove to be too costly for our attack. However, Pagh
and Pagh [PP08], following Siegel [Sie04], constructed families of functions which can be evaluated in
constant time, offering weaker guarantees than full-fledged k-wise independence, but such that still
suffice for our needs. Concretely, they consider a randomized algorithm which generates a random
family H of functions, such that for any predetermined set S of at most k elements in the domain,
the family H is uniform over S with high probability.

Theorem 2.2 ([PP08] – simplified). Let X and Y be sets. Then, there exists an algorithm HashGen
that on input any integer k ∈ N and any constant c > 0, outputs a description of a function family
H mapping X to Y such the following hold:

1. For every set S ⊆ X of size at most k it holds that

Pr
H←HashGen(k,c)

[H is uniform over S] ≥ 1− 1

kc
.

2. Every function in H can be represented using at most 2k · log |Y|+O(k+ log log |X |) bits, and
evaluated on any input in constant time within the unit-cost RAM model.

We note that the construction of Pagh and Pagh was later improved in various ways (see, for
example, [DW03, DR09, ADW14]), but the parameters it offers already suffice for our needs. In
addition, note that Theorem 2.2 guarantees only that H sampled by HashGen is uniform with high
probability over sets of elements which are a-priori fixed, and do not depend on H. Looking ahead,
we will want to reason about the output distribution of H on sets of elements that do depend on H.
To this end, we will rely on a lemma by Berman et al. [BHK+19] who proved that H sampled by
HashGen is uniform with high probability also on sets of elements which are chosen by an unbounded
adversary which queries a random function in H at most k times.

Lemma 2.3 ([BHK+19] – simplified). Let X and Y be sets, let k be an integer, let Fk be a k-wise
independent family of functions f : X → Y, and let HashGen be the algorithm guaranteed by Theorem
2.2 producing families of functions f : X → Y. Then, for any k-query algorithm D and constant
c > 0 it holds that ∣∣∣∣∣ Pr

H←HashGen(k,c)
f←H

[
Df () = 1

]
− Pr
f←Fk

[
Df () = 1

]∣∣∣∣∣ ≤ O
(

1

kc

)
.

3 Our Discrete-Logarithm Preprocessing Algorithm

In this section we present our preprocessing algorithm for computing discrete logarithms in a cyclic
group G of order N relative to a generator g ∈ G. For simplicity, throughout the section we fix the
group G, the order N and the generator g, and note that these can in fact be provided as inputs
to our algorithm. Our algorithm A consists of a pair (A0, A1) of algorithms, where A0 and A1 are
the preprocessing algorithm and the on-line algorithm, respectively. Additionally, our algorithm
is parameterized by integers `, s ∈ N and by a constant c > 0, and uses as a building block the
algorithm HashGen described in Section 2 for producing families of hash functions f : G→ ZN .
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The preprocessing algorithm A0

Input: A description (G, N, g) of a cyclic group G of order N that is generated by g ∈ G, integers `
and s, and a constant c > 0.

1. Sample H ← HashGen(3`, c) and f ← H.

2. For each i = 1, . . . , s:

(a) Sample xi,1 ← ZN and compute gi,1 = gxi,1 .

(b) For each j = 2, . . . , ` compute xi,j = xi,j−1 + f(gi,j−1) and gi,j = gxi,j .

(c) Set yi = xi,` and gi = gi,`.

3. Output st =
(
f, {(gi, yi)}i∈[s]

)
.

The online algorithm A1

Input: A description (G, N, g) of a cyclic group, a group element h ∈ G, and a state st =(
f, {(gi, yi)}i∈[s]

)
produced by A0.

1. If h = gi for some i ∈ [s], then output yi and terminate.

2. Set h1 = h and ∆1 = 0, and for each i = 2, . . . , 2`:

(a) Compute δi = f(hi−1) and ∆i = ∆i−1 + δi.

(b) Compute hi = hi−1 · gδi .
(c) If hi = gj for some j ∈ [s], then output x = yj −∆i and terminate.

3. Output ⊥.

Note that the description of the online algorithm A1 includes two non-trivial lookup operations
in Steps 1 and 2c for the elements h and hi, respectively. For avoiding a noticeable overhead in
the running time of A1, these lookup operations can be implemented by having the preprocessing
algorithm A0 store the pairs {(gi, yi)}i∈[s] within an explicit data structure that supports efficient
lookup operations and uses linear space (i.e., O(s) space). In the unit-cost RAM model, existing
such data structures range, for example, from the most basic solution of a sorted list that supports
lookup operations in time O(log s), to more advanced solutions such as cuckoo hashing that supports
lookup operations in constant time [PR04].

The following theorem states our bounds on the amount of space required for storing the state
produced by the preprocessing algorithm A0, on the running time of the online algorithm A1, and on
the success probability of A1 in computing the discrete logarithm dlogg(h) of a uniformly-distributed
group element h.

Theorem 3.1. Let G be a cyclic group of order N that is generated by g ∈ G. Let s and ` be any
integers such that s · `2 ≤ N/64, and let c > 0 be any constant. Then,

Pr
[
A1 (G, N, g, h, st) = dlogg(h)

]
≥ 1

8
· s · `

2

N
−O

(
1

(3`)c

)
,

where st ← A0(G, p, g) and h ← G. In addition, A0 outputs O((` + s) · logN) bits, and A1 runs in
time O(` · texp) in the unit-cost RAM model, where texp denotes the running time of exponentiation
in the group G.
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Assuming that exponentiation in the group G can be implemented in time texp = poly(logN),
the following corollary captures the specific setting of s = ` = O(N1/3):

Corollary 3.2. When setting s = ` = O(N1/3), the preprocessing algorithm A0 outputs S = Õ(N1/3)
bits, and the online algorithm A1 runs in time T = Õ(N1/3) in the unit-cost RAM model and succeeds
with a constant probability.

Proof of Theorem 3.1. First, note that the state st =
(
f, {(gi, yi)}i∈[s]

)
produced by A0 consists

of the description of a hash function f sampled from the family H produced by HashGen(3`, c), and
of s pairs (gi, yi) where gi ∈ G and yi ∈ ZN for each i ∈ [s]. By Theorem 2.2 the description of f is
of length at most 2 · 3` ·O(logN) +O(`+ log logN) bits, and additionally each pair (gi, yi) can be
represented using O(logN) bits. Therefore, A0 outputs O((`+ s) · logN) bits.

Second, note that A1’s running time is dominated by that of Step 2, which is repeated for at
most 2` iterations. Each such iteration consists of an evaluation of the hash function f (which by
Theorem 2.2 takes constant time in the unit-cost RAM model), a group multiplication, a group
exponentiation, and an additional constant number of constant-time operations. Therefore, overall
A1 runs in time O(` · texp).

In the remainder of this proof, we analyze the success probability of our algorithm. For any
function f : G→ ZN , define the function f̂ : G→ G by f̂(h) = h · gf(h).

Claim 3.3. Let H be a family of functions f : G → ZN and let GH =
{
f̂
}
f∈H

. Then, for any

integer k ∈ N, if H is k-wise independent then GH is k-wise independent.

Proof. Assume that H is k-wise independent, and let h1, . . . , hk ∈ G be distinct group elements.
Then, for every k group elements u1, . . . , uk ∈ G it holds that

Pr
f̂←GH

[
∀i ∈ [k] : f̂(hi) = ui

]
= Pr

f←H

[
∀i ∈ [k] : f̂(hi) = ui

]
= Pr

f←H

[
∀i ∈ [k] : hi · gf(hi) = ui

]
= Pr

f←H

[
∀i ∈ [k] : f(hi) = dlogg(ui)− dlogg(hi)

]
=

(
1

N

)k
(3.1)

where for a group element u ∈ G, dlogg(u) is the unique ZN element x such that gx = u, and Eq.
(3.1) follows from the k-wise independence of H.

For a group element u ∈ G, a function f and an integer k ∈ N, denote

Cu,f,k =
(
f̂ (j)(u)

)
j∈{0,...,k−1}

,

where f̂ (j)(u) = f̂(f̂ (j−1)(u)) and f̂ (0)(u) = u. That is, Cu,f,k is the ordered multi-set of all group
elements visited by a (k − 1)-step walk in G, which starts from u and progresses according to the
function f̂ . For k = 0 we use the convention that Cu,f,0 is the empty set. We define the following
random variables:

• Let F denote the random variable corresponding to the hash function f chosen by A0 in Step
1 by sampling H ← HashGen(3`, c) and f ← H.
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• For each i ∈ [s] let Gi,1 denote the random variable corresponding to the group element gi,1 ∈ G
sampled uniformly by A1 in Step 2a.

• Let H be the random variable corresponding to the uniformly-distributed group element h ∈ G
that is given as input to A1.

Note that using this notation, for each i ∈ [s] it holds that CGi,1,F,` is a random variable corresponding
to the multi-set of group elements computed by A0 in each iteration of Step 2. Similarly, CH,F,2` is
a random variable corresponding to the multi-set of group elements computed by A1 in Step 2.

Observe that if CH,F,` (which contains the first ` elements computed by A1) intersects CGj,1,F,`
for some j ∈ [s], then A1 successfully outputs X for which gX = H. This is the case since
CH,F,` ∩ CGj,1,F,` 6= ∅ implies that Gj ∈ CH,F,2`, where Gj is included in the state st along with
the corresponding exponent Yj such that Gj = gYj . Moreover, if Gj is the ith element computed by
A1, then the integer ∆i computed by A1 satisfies Gj = H · g∆i . Therefore, we obtain

gYj = Gj = H · g∆i

which implies that
H = gYj−∆i ,

and that the outputX = Yj−∆i of A1 is indeed the discrete logarithm ofH with respect to g. Hence,
in the remainder of the proof we will focus on bounding the probability that CH,F,` ∩ CGj,1,F,` 6= ∅
for some j ∈ [s]. By the inclusion-exclusion principle, it holds that

Pr

 ∨
j∈[s]

CH,F,` ∩ CGj,1,F,` 6= ∅


≥
∑

1≤j≤s
Pr
[
CH,F,` ∩ CGj,1,F,` 6= ∅

]
−

∑
1≤i<j≤s

Pr

[
CH,F,` ∩ CGi,1,F,` 6= ∅
∧ CH,F,` ∩ CGj,1,F,` 6= ∅

]
. (3.2)

We now bound each of the sums in Eq. (3.2) separately, in Claims 3.4 and 3.5 below.

Claim 3.4. For every j ∈ [s] it holds that

Pr
[
CH,F,` ∩ CGj,1,F,` 6= ∅

]
>

1

2
√
e
· `

2

N
−O

(
1

(3`)c

)
.

Proof. Let j ∈ [s], and let F ∗ denote a random variable describing a function from G to ZN
distributed uniformly in a 3`-wise independent family F . We will prove that

Pr
[
CH,F ∗,` ∩ CGj,1,F ∗,` 6= ∅

]
>

1

2
√
e
· `

2

N
,

and the claim then follows immediately from Lemma 2.3. By total probability,

Pr
[
CH,F ∗,` ∩ CGj,1,F ∗,` 6= ∅

]
≥ Pr

[
CH,F ∗,` ∩ CGj,1,F ∗,` 6= ∅

∣∣ |CH,F ∗,`| = ` ∧ |CGj,1,F ∗,`| = `
]

×Pr
[
|CH,F ∗,`| = ` ∧ |CGj,1,F ∗,`| = `

]
.

Moreover, it holds that

Pr
[
|CH,F ∗,`| = ` ∧ |CGj,1,F ∗,`| = `

]
= 1− Pr

[
|CH,F ∗,`| < ` ∨ |CGj,1,F ∗,`| < `

]
≥ 1− 2 · Pr [|CH,F ∗,`| < `] (3.3)
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where Eq. (3.3) follows from the union bound and the fact that the random variables |CH,F ∗,`| and
|CGj,1,F ∗,`| are identically distributed. We now turn to bound Pr [|CH,F ∗,`| < `]. By total probability

Pr [|CH,F ∗,`| < `] =
∑
h∈G

Pr [H = h] · Pr [|Ch,F ∗,`| < `] . (3.4)

Since for every h ∈ G, the events {|Ch,F ∗,i−1| = i−1∧|Ch,F ∗,i| < i}i∈[`] form a partition of the event
|Ch,F ∗,`| < `, for every h ∈ G it holds that

Pr [|Ch,F ∗,`| < `] =
∑̀
i=1

Pr [|Ch,F ∗,i−1| = i− 1 ∧ |Ch,F ∗,i| < i]

≤
∑̀
i=1

Pr [|Ch,F ∗,i−1| = i− 1 | |Ch,F ∗,i| < i]

=
∑̀
i=1

∑
h2,...,hi−1∈G:

∀1≤k<t≤i−1, hk 6=ht

Pr

[
∀k ∈ [i− 2] : F̂ ∗(hk) = hk+1

∧ F̂ ∗(hi−1) ∈ {h1, . . . , hi−1}

]

=
∑̀
i=1

∑
h2,...,hi−1∈G:

∀1≤k<t≤i−1, hk 6=ht

∑
m∈[i−1]

Pr

[
∀k ∈ [i− 2] : F̂ ∗(hk) = hk+1

∧ F̂ ∗(hi−1) = hm

]
,

where h1 = h and F̂ ∗ is the function define by F̂ ∗(u) = u · gF ∗(u). By the fact that GF is 3`-wise
independent, then it is in particular `-wise independent, and thus the following holds: For every
i ∈ [`], for every h1, . . . , hi−1 ∈ G and for every m ∈ [i− 1], the fraction of functions f̂ in GF which
satisfy f̂(hk) = hk+1 for all k ∈ [i−2] and f̂(hi−1) = hm is N−(i−1). Hence, we obtain that for every
h ∈ G,

Pr [|Ch,F ∗,`| < `] ≤
∑̀
i=1

∑
h2,...,hi−1∈G:

∀1≤k<t≤i−1, hk 6=ht

(i− 1) ·N−(i−1)

<
∑̀
i=1

i− 1

N

≤ `2

N
.

Together with Eq. (3.3) and (3.4), this implies that

Pr
[
|CH,F ∗,`| = ` ∧ |CGj,1,F ∗,`| = `

]
≥ 1− 2

∑
h∈G

Pr [H = h] · `
2

N

= 1− 2`2

N
. (3.5)

For each i ∈ [`], let Ei denote the event in which(
CH,F ∗,i−1 ∩ CGj,1,F ∗,` = ∅

)
∧
(
CH,F ∗,i ∩ CGj,1,F ∗,` 6= ∅

)
.
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That is, Ei is the event in which the ith element in CH,F ∗,` is the first element in CH,F ∗,` that
also appears in CGj,1,F ∗,`. Then, the 3`-wise independence of F implies in particular its 2`-wise
independence, and thus for each i ∈ [`] it holds that

Pr
[
Ei
∣∣ |CH,F ∗,`| = ` ∧ |CGj,1,F ∗,`| = `

]
=

(
i∏

k=1

(
1− `+ k − 1

N

))
· `
N

≥
(

1− 2`

N

)i
· `
N
,

and since 1− x ≤ e−2x for all x ∈ [0, 1/2], the fact that ` ≤ N/4 implies that

Pr
[
Ei
∣∣ |CH,F ∗,`| = ` ∧ |CGj,1,F ∗,`| = `

]
≥ e−2`i/N · `

N
.

It thus follows that

Pr
[
CH,F ∗,` ∩ CGj,1,F ∗,` 6= ∅

∣∣ |CH,F ∗,`| = ` ∧ |CGj,1,F ∗,`| = `
]

=
∑̀
i=1

Pr
[
Ei
∣∣ |CH,F ∗,`| = ` ∧ |CGj,1,H,`| = `

]
≥ `

N
·
∑̀
i=1

e−2`i/N

≥ `

N
· ` · e−2`2/N . (3.6)

Taken together, Eq. (3.5) and Eq. (3.6) imply that

Pr
[
CH,F ∗,` ∩ CGj,1,F ∗,` 6= ∅

]
>

(
1− 2`2

N

)
· `

2

N
· e−2`2/N ,

and since ` ≤
√
N/2, we obtain

Pr
[
CH,F ∗,` ∩ CGj,1,F ∗,` 6= ∅

]
>

1

2
√
e
· `

2

N
.

By Lemma 2.3, this implies that

Pr
[
CH,F,` ∩ CGj,1,F,` 6= ∅

]
>

1

2
√
e
· `

2

N
−O

(
1

(3`)c

)
.

Claim 3.5. For every 1 ≤ i < j ≤ s it holds that

Pr
[
CH,F,` ∩ CGi,1,F,` 6= ∅ ∧ CH,F,` ∩ CGj,1,F,` 6= ∅

]
≤ 8`4

N2
+O

(
1

(3`)c

)
.

Proof. Let i, j such that 1 ≤ i < j ≤ s, and as before let F ∗ denote a random variable describing a
function from G to ZN distributed uniformly in a 3`-wise independent family F . We will prove that

Pr
[
CH,F ∗,` ∩ CGi,1,F ∗,` 6= ∅ ∧ CH,F ∗,` ∩ CGj,1,F ∗,` 6= ∅

]
≤ 8`4

N2
,
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and the claim then follows immediately from Lemma 2.3. Since the event CH,F ∗,` ∩CGj,1,F ∗,` 6= ∅ is
contained in the event CGj,1,F ∗,` ∩

(
CH,F ∗,` ∪ CGi,1,F ∗,`

)
6= ∅, it holds that

Pr
[
CH,F ∗,` ∩ CGi,1,F ∗,` 6= ∅ ∧ CH,F ∗,` ∩ CGj,1,F ∗,` 6= ∅

]
≤ Pr

[
CH,F ∗,` ∩ CGi,1,F ∗,` 6= ∅ ∧ CGj,1,F ∗,` ∩

(
CH,F ∗,` ∪ CGi,1,F ∗,`

)
6= ∅
]

≤ Pr
[
CH,F ∗,` ∩ CGi,1,F ∗,` 6= ∅

]
(3.7)

·Pr
[
CGj,1,F ∗,` ∩

(
CH,F ∗,` ∪ CGi,1,F ∗,`

)
6= ∅

∣∣CH,F ∗,` ∩ CGi,1,F ∗,` 6= ∅] (3.8)

For upper bounding Eq. 3.7, note that |CH,F ∗,`| ≤ ` and |CGi,1,F ∗,`| ≤ `, and therefore the 3`-wise
independence of F (which implies, in particular, 2`-wise independence) guarantees that

Pr
[
CH,F ∗,` ∩ CGi,1,F ∗,` 6= ∅

]
≤

(
1−

(
1− `

N

)`)
.

Similarly, for upper bounding Eq. 3.8, note that |CGj,1,F ∗,`| ≤ ` and |CH,F ∗,` ∪ CGi,1,F ∗,`| ≤ 2`, and
therefore the 3`-wise independence of F guarantees that

Pr
[
CGj,1,F ∗,` ∩

(
CH,F ∗,` ∪ CGi,1,F ∗,`

)
6= ∅

∣∣CH,F ∗,` ∩ CGi,1,F ∗,` 6= ∅] ≤
(

1−
(

1− 2`

N

)`)
.

Since 1− (1− x)y ≤ 2xy for all x, y ∈ N such that x ≤ 1/2, and since ` ≤ p/4, these imply that

Pr
[
CH,F ∗,` ∩ CGi,1,F ∗,` 6= ∅ ∧ CH,F ∗,` ∩ CGj,1,F ∗,` 6= ∅

]
≤ 2`2

N
· 4`2

N
=

8`4

N2
,

and from Lemma 2.3 we obtain that

Pr
[
CH,F,` ∩ CGi,1,F,` 6= ∅ ∧ CH,F,` ∩ CGj,1,F,` 6= ∅

]
≤ 8`4

N2
+O

(
1

(3`)c

)
.

From Claims 3.4 and 3.5 and from Eq. (3.2), we obtain that

Pr
[
A1 (G, N, g, h, st) = dlogg(h)

]
>
∑

1≤j≤s

1

2
√
e
· `

2

N
−

∑
1≤i<j≤s

8`4

N2
−O

(
1

(3`)c

)

>
1

2
√
e
· s · `

2

N
− 8 · s

2 · `4

N2
−O

(
1

(3`)c

)
>

1

4
· s · `

2

N
− 8 · s

2 · `4

N2
−O

(
1

(3`)c

)
.

Since s · `2 ≤ N/64, this implies that

8 · s
2 · `4

N2
≤ 1

8
· s · `

2

N

and hence

Pr
[
A1 (G, N, g, h, st) = dlogg(h)

]
>

1

8
· s · `

2

N
−O

(
1

(3`)c

)
.

This concludes the proof of Theorem 3.1.
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