
Unnecessary Input Heuristics & PayJoin
Transactions

Simin Ghesmati1,3, Andreas Kern2,3, Aljosha Judmayer2,3, Nicholas Stifter2,3,
and Edgar Weippl2,3

1 Vienna University of Technology, Austria
2 University of Vienna, Austria

3 SBA Research, Vienna, Austria
Email:(firstletterfirstname)(lastname)@sba-research.org

This work published on HCI International 2021

Abstract. Over the years, several privacy attacks targeted at UTXO-
based cryptocurrencies such as Bitcoin have been proposed. This has led
to an arms race between increasingly sophisticated analysis approaches
and a continuous stream of proposals that seek to counter such attacks
against users’ privacy. Recently, PayJoin was presented as a new tech-
nique for mitigating one of the most prominent heuristics, namely com-
mon input ownership. This heuristic assumes that the inputs of a trans-
action, and thus the associated addresses, belong to the same entity.
However, a problem with PayJoin is that implementations can acciden-
tally reveal such transactions if the corresponding inputs from involved
parties are not chosen carefully. Specifically, if a transaction is formed in
a way such that it contains seemingly unnecessary inputs, it can be iden-
tified through so-called unnecessary input heuristic (UIH). What is not
yet clear is the impact of naive coin selection algorithms within PayJoin
implementations that may flag such transactions as PayJoin. This paper
investigates the resemblance of PayJoin transactions to ordinary pay-
ment transactions by examining the significance of the unnecessary in-
put heuristic in transactions with more than one input and exactly two
outputs which is the common template of recent PayJoin transactions.

Keywords: PayJoin · Bitcoin · privacy · blockchain · mixing · unneces-
sary input heuristic · optimal change heuristic.

1 Introduction

Blockchain-based cryptocurrencies such as Bitcoin have gained significant inter-
est by a wider audience in recent years. Hereby, the topic of transaction privacy
has received considerable attention as research clearly highlights that storing
every transaction in the network within a publicly accessible ledger can have a
serious effect on user privacy. Previous studies [1,2] report some of the possi-
ble attacks that can reveal the identities of different entities and effectively find
their relationships within UTXO(unspent transaction output)-based blockchains
such as Bitcoin. Several techniques have been proposed to remedy these privacy

http://dx.doi.org/10.1007/978-3-030-78642-7_56


2 S. Ghesmati et al.

issues. In Bitcoin, the amount (also referred to as coins) associated with an ad-
dress can be transferred to another address through a transaction. Transactions
consist of input and output addresses. Each input address should be signed by
its private key to unlock transferring the coins from that address. It is assumed
that all the inputs in a transaction are controlled by the same user. This leads to
a so-called common input ownership heuristic [1] which helps to cluster all the
addresses that belong to the same user. To prevent effectiveness of this heuristic,
CoinJoin was proposed by G. Maxwell in 2013 in which the users jointly create
a transaction with their inputs and their desired outputs and then each of the
users separately signs her input. Users have to send the same amount of coins to
the desired outputs to prevent any linkage between the inputs and the outputs,
which in turn leads to the distinguishability of these equal-sized output trans-
actions in the blockchain. In recent years, the PayJoin [3,4,5] protocol, which
follows the basic idea of CoinJoin, has been proposed to enhance the privacy of
Bitcoin transactions, whereby the intended recipient of a transaction adds some
of her own unspent transaction outputs to the inputs of the sender’s transaction
to break the so-called common input ownership heuristic [1]. The technique has
been proposed as a Bitcoin Improvement Protocol BIP78 [6]; however, a naive
implementation of the protocol, specifically in regard to the coin selection by
participants, has the potential to flag such transactions as a PayJoin.

This paper evaluates the significance of unnecessary input heuristic on PayJoin
transactions and discusses possible solutions to better blend in these transac-
tions. In particular, the contributions of this paper are as follows:
- We compare the different definitions of unnecessary input heuristic (UIH).
- We provide an empirical analysis of the different UIH approaches.
- We extend upon existing discussions and describe possible countermeasures for
PayJoin technique.

The remaining part of the paper is structured as follows: We first provide
definitions and background information on PayJoin transactions in Section 2.
Section 3 examines the definition of unnecessary input heuristic, reports ex-
tracted transaction statistics from Bitcoin, analyzes them via this heuristic. We
then discuss research challenges specific to the PayJoin protocol in Section 4.

2 PayJoin transactions

The concept of PayJoin was first proposed in a blog-post by BlockStream, called
Improving Privacy Using Pay-to-EndPoint (P2EP) [3]; shortly after, BustaPay [4]
was proposed in the Linux Foundation, Gibson provided more details under the
name of PayJoin [5]. PayJoin solves the distinguishability of equal-size CoinJoin
transactions by adding at least one UTXO of the recipient to the UTXO inputs
of the transaction (Figure 1), which provides plausible deniability. Simplified,
it can be considered as performing a CoinJoin while paying someone else. The
protocol effectively breaks one of the most prominent heuristics that can be
employed to de-anonymize Bitcoin users, namely common input ownership. By
breaking this heuristic, the utilization of the PayJoin protocol by some users can



Unnecessary Input Heuristics & PayJoin Transactions 3

also provide privacy to other users. Further, the protocol also intends to hide
the true payment amount, as the total output of the transaction will be the sum
of the payment amount and the recipient’s input amounts.

To run the protocol [6], the recipient (Bob) sends his address and the amount
to the sender (Alice), using BIP21 URI. The sender creates and signs a transac-
tion (original transaction) in which she sends the specified amount to the recipi-
ent’s address. She also provides her change address to receive the remainder, and
then sends the transaction to the recipient. The recipient checks the transaction
and creates a new transaction (PayJoin proposal) by appending his inputs to the
transaction created by the sender. The recipient then alters the output amount
by adding his input amounts. He signs his inputs and sends this PayJoin pro-
posal to the sender. The sender checks and signs the PayJoin transaction and
broadcasts it to the network. The recipient is also able to broadcast the original
transaction if there was any problem in creating the PayJoin transaction. At
the time of writing, the protocol has been implemented by Joinmarket wallet,
Samourai wallet (Stowaway), Wasabi wallet, Blue wallet and BTCPay. Users can
create their own stores in BTCPay to receive PayJoin transactions (e.g., for sell-
ing their services). The senders (or buyers) can pay to the recipients through the
aforementioned wallets that support PayJoin transactions. Currently, PayJoin
transactions are formed as multiple inputs and exactly two outputs, which we
consider as interesting transactions in this paper.

PayJoin
Transaction

BO

AO

A1

B1

An

Bm

…
Payment+ 𝐵𝐼𝑚

1

𝐴𝐼𝑛
1 - Payment

…

Fig. 1. A sample PayJoin transaction

3 Optimal Change/Unnecessary Input Heuristic

Whenever the sum of the inputs is larger than the payment amount, a so-called
change address is created in Bitcoin to return the remainder of the coins to
the sender [1]. Over the years, several heuristics have been implemented to aid
address attribution. In this section, we want to look at one of the heuristics, which
can be directly used to identify PayJoin transactions, amongst all transactions
with more than one input and exactly two outputs.
UIH1 (Optimal change address): The optimal change heuristic was intro-
duced to detect the change address of a transaction. It has been implemented by
blockchain analysis tools such as blocksci [2] to cluster addresses. This heuristic
flags the smallest output as a change address if it is smaller than the smallest
input [2].



4 S. Ghesmati et al.

UIH2 (Unnecessary Input): This heuristic flags transactions as abnormal, if
the largest output could be paid without the smallest input.

In practice, there exist several nuanced variants of UIH1 and UIH2, which
we discuss in the following.
BlockSci UIH1 [2]: ”If there exists an output that is smaller than any of the
inputs it is likely the change.”4

BlockStream UIH15: ”This heuristic gives an indication that one output is
more likely to be a change because some inputs would have been unnecessary if
it was the payment.”
Gibson UIH1 [5]: ”One output is smaller than any input. This heuristically
implies that output is not a payment, and must therefore be a change output.”
BlockSci UIH2 [2]: ”If a change output was larger than the smallest input, then
the coin selection algorithm would not need to add the input in the first place.”6

BlockStream UIH2: ”If the sum of the inputs minus minimum input covers
the larger output and transaction fee, the transaction has seemingly unnecessary
inputs that are not typically added by consumer wallet software with a less so-
phisticated coin selection algorithm.”
Gibson UIH2 [5]: ”One input is larger than any output. This heuristically im-
plies that this is not a normal wallet-created payment.”
Gibson, A. [5] and BlockStream definitions need double-checking for UIH1 and
UIH2; however, UIH2 by [5] does not cover the situation when the subset sum
of the inputs is enough for paying the larger output. There is also a degree of
uncertainty over the definition of UIH2, as different coin selection algorithms or
input consolidation can violate this heuristic [7], however, creating those kinds
of transactions by PayJoin protocol has the potential to make these kinds of
transactions suspicious. Avoiding UIH1 and UIH2 is an open question amongst
PayJoin developers, and what is not yet clear is the anonymity set that can
be achieved by avoiding these heuristics. The discussion among the developers
refers to the statistics that were provided on gist and then published in [5].
The statistics provide the number of transactions with more than one input
and exactly two outputs for 885 blocks in one week of the December 2018. To
clarify how these transactions appear in practice, we refer to these real PayJoin
transactions that can be categorized by UIH17 and UIH28. As can be seen, one
performed such as normal payment transactions (UIH1) and the other has un-
necessary input (UIH2)9. PayJoin technique is recently implemented and there
is not enough ground truth, however, in our manual inspection to find BTCPay
PayJoin transactions and in the transactions that we created using BTCPay, we

4
We consider the BlockSci definition in a simpler form, ignoring the transaction fee for data cate-
gorization.

5
https://github.com/Blockstream/esplora/blob/cbed66ecee9f468802cf1f073c204718beac30d7/
client/src/lib/privacy-analysis.js#L47-L70

6
A comprehensive definition can be considered as (sum(in)−min(in) >= sum(out)−min(out)+
TX.fee)

7
https://blockstream.info/tx/8cb0af96f1a2693683621758acbf3b7a7ad69a69672c61e144941d666f72da2a

8
https://blockstream.info/tx/58d68b22ab96b87a11c1fbd3090fee23f96f71a4115f96210ba776d0ae7d8d55

9
In the second transaction, different nSequence fields also reveal that the inputs were added by
different wallets, however, wallet fingerprinting is beyond the scope of this paper.

https://github.com/Blockstream/esplora/blob/cbed66ecee9f468802cf1f073c204718beac30d7/client/src/lib/privacy-analysis.js#L47-L70
https://github.com/Blockstream/esplora/blob/cbed66ecee9f468802cf1f073c204718beac30d7/client/src/lib/privacy-analysis.js#L47-L70
https://blockstream.info/tx/8cb0af96f1a2693683621758acbf3b7a7ad69a69672c61e144941d666f72da2a
https://blockstream.info/tx/58d68b22ab96b87a11c1fbd3090fee23f96f71a4115f96210ba776d0ae7d8d55


Unnecessary Input Heuristics & PayJoin Transactions 5

Algorithm 1 BlockSci UIH1 and UIH2 according to BlockSci !UIH1
if min(out) < min(in) then

Transaction is UIH1
else

Transaction is UIH2
end if

Algorithm 2 BlockStream UIH1 and UIH2
if (Sum(in) − min(in) >= max(out) + TX.fee) then

Transaction is UIH2
else if (Sum(in) − min(in) >= min(out) + TX.fee) then

Transaction is UIH1
end if

Algorithm 3 Gibson UIH1 and UIH2
if min(out) < min(in) then

Transaction is UIH1
end if
if max(in) > max(out) then

Transaction is UIH2
end if

found that BTCPay does not prevent UIH2 and some of the transactions are
formed such that they can be flagged as UIH2.

3.1 Transactions statistics via the Unnecessary Input Heuristic

We Parsed Bitcoin blockchain and extracted all the interesting transactions over
a week in September from 2009 to 2020, and then apply different definitions to
shed light on the significance of avoiding UIH1 and UIH2 in PayJoin transactions
as well as to compare the statistics obtained by different definitions. We Parsed
Bitcoin blockchain and extracted all the transactions with more than one input
and exactly two outputs for 885 blocks in one week of the September from 2009 to
2020, the statistics of which are indicated in figure 2. Due to practical constraints,
this paper cannot provide comprehensive data for all the transactions which are
performed in the Bitcoin blockchain.

As illustrated in the table, the classical payment transactions with exactly
two outputs decreased in recent years. The other point that can be achieved
is that interesting transactions are almost 20% of all transactions on average.
PayJoin at this stage can only be hidden in this set of transactions, which can be
considered as the possible anonymity set. Further, this anonymity set is almost
15% in September 2020 which indicates a smaller anonymity set in the year that
PayJoin was implemented by most of the wallets. We then analyzed the interest-
ing transactions through SC−UIH1 (BlockSci), G−UIH1 (Gibson [5]), ST−UIH1
(BlockStream), SC−UIH2 (BlockSci !UIH1), ST−UIH2 (BlockStream), and G−
UIH2 (Gibson [5]). We also extracted the data for 885 blocks in December 2018
to compare our results with the statistics in [5].

We applied algorithms 1, 2, and 3 to categorize transactions by different def-
initions of UIH1 and UIH2. The results of our research are reported in table 1
which shows a breakdown of transactions by the different UIH1 and UIH2 cat-
egories. As can be seen in the selected blocks during September 2020, 64.8% of



6 S. Ghesmati et al.

Sep09
Sep10

Sep11
Sep12

Sep13
Sep14

Sep15
Sep16

Sep17
Sep18

Sep19
Sep20

0%

10%

20%

30%

Fig. 2. Percentage of interesting transactions from total transactions

Table 1. UIH1 and UIH2 transactions

885 Blocks
Start from

SC−UIH1‡

G−UIH1�
ST−UIH1× SC−UIH2 ST−UIH2 G−UIH2

SC−UIH1%
G−UIH1%

ST−UIH1% SC−UIH2% ST−UIH2% G−UIH2%

3-Dec-18 145264 145003 122828 122684 83513 54.20% 54.09% 45.80% 45.76% 31.20%
9-Sep-09 1 1 0 0 0 100.00% 100.00% 0.00% 0.00% 0.00%

9-Sep-10 56 56 33 33 16 62.90% 62.92% 37.10% 37.08% 18.00%
9-Sep-11 5258 5282 2323 2288 466 69.40% 69.67% 30.60% 30.18% 6.10%
9-Sep-12 21107 20982 32164 32137 21551 39.60% 39.39% 60.40% 60.33% 40.50%
9-Sep-13 44308 44277 27448 27258 15539 61.70% 61.70% 38.30% 37.99% 21.70%
9-Sep-14 64926 65432 55308 54653 36083 54.00% 54.42% 46.00% 45.46% 30.00%
9-Sep-15 100210 100699 106913 105518 84373 48.40% 48.62% 51.60% 50.94% 40.70%
9-Sep-16 133802 133345 82436 82359 57103 61.90% 61.67% 38.10% 38.09% 26.40%
9-Sep-17 124684 123971 90398 90197 60583 58.00% 57.64% 42.00% 41.94% 28.20%
9-Sep-18 140864 140474 112492 112428 74070 55.60% 55.45% 44.40% 44.38% 29.20%
9-Sep-19 144879 144143 88588 88544 69510 62.10% 61.74% 37.90% 37.93% 29.80%
9-Sep-20 171532 170790 93180 93120 75295 64.80% 64.52% 35.20% 35.18% 28.40%

Average 58.04% 57.98% 41.96% 41.77% 27.18%

‡ SC stands for BlockSci. × ST stands for BlockStream. � G stands for Gibson.

Sep09
Sep10

Sep11
Sep12

Sep13
Sep14

Sep15
Sep16

Sep17
Sep18

Sep19
Sep20

0%

20%

40%

60%

%
o
f

T
o
ta

l
T

x

SC-UIH2 ST-UIH2 G-UIH2

Fig. 3. Percentage of UIH2 transactions

BlockSci

BlockStream

Gibson
0.25

14.78

41.96

41.77

27.18

58.04

57.98

58.04

UIH1 UIH2 uncategorized

Fig. 4. % of transaction categories by BlockSci, BlockStream, and Gibson definitions

transactions are categorized as SC−UIH1 transactions, in which the change ad-
dress is identifiable while 35.2% are SC−UIH2 which contain unnecessary input.
Due to the small number of transactions in the selected data during Septem-
ber 2009, we exclude this year in the following statistical reports. The results
obtained from the preliminary analysis show that on average nearly 58.04%
of transactions are categorized as SC−UIH1 compared to around 41.96% as



Unnecessary Input Heuristics & PayJoin Transactions 7

SC−UIH2. An interesting aspect we observe is the high ratio of SC−UIH2 and
ST−UIH2 transactions, which shows almost 40% of transactions did not follow
normal coin selection algorithms and were created with unnecessary input. Fig-
ure 3 illustrates the chart of UIH2 transactions by different algorithms. The peak
in September 2012 for the transactions that are categorized as SC−UIH2 and
ST−UIH2 (60.40% and 60.33%, respectively) could be an interesting point to
investigate and seek the reason for creating lots of transactions with unnecessary
input during that time. From Figure 4 we can see that 57.98% and 41.77% of
the transactions are categorized by ST−UIH1 and ST−UIH2, while 0.25% fit in
none of the categories, which shows that Blockstream algorithm can not catego-
rize all the transactions. The high ratio of uncategorized transactions (14.78%)
by Gibsons’ definition is as a result of considering only the largest input, instead
of a subset sum of the inputs in UIH2 definition, which leads to flagging only
27.18% of the transactions as UIH2.

4 Discussion

At the time of writing, implementations of the PayJoin protocol remain rela-
tively new and we conjecture that they are not yet used much in practice; thus,
the data-set will likely not include many PayJoin transactions that are created
as UIH2 and therefore in theory identifiable. Due to the large ratio of UIH2
transactions, the small number of PayJoins have not led to a bias in the last
evaluation period (Sep 20), where they could have occurred. This might change
if the reason for the high ratio of UIH2 transactions can be identified. A manual
investigation of some of the UIH2 transactions revealed that there are trans-
actions which can be categorized as internal address reuse, i.e., spending the
UTXOs of the same address. This circumstance can separate these transactions
from others, indicating that they are not PayJoin transactions. Further analysis
is required to investigate the high number of UIH2 transactions. One of the pos-
sible countermeasures to avoid UIH2 in PayJoin transactions would be adding
the input by the recipient such that it overtakes the change address of the sender
(AO in Figure 1); in this manner, the minimum output would be less than the
minimum input which results in creating the transaction as an ordinary one.

On the one hand, the PayJoin protocol has the potential to cause privacy
problems for both the sender and the recipient. If the adversary assumes common
input ownership heuristic for all the inputs, she links the inputs to the previ-
ous transactions of the other participant. The sender may encounter a serious
problem if she is not knowledgeable about PayJoin technique and the way it is
created. In the current implementation of the wallets, the actions that should
be done to send the coins as PayJoin is similar to sending the coins as an ordi-
nary payment. Thus, the novice user is involved in a mixing technique, while she
might not know the consequence of linking her inputs to the recipient inputs.
In the worst case, if the recipient’s input is related to the Darknet or criminal
activities, the user may get into trouble. If the community seeks a technique that
can increase the user’s privacy by making the common input ownership heuristic
less effective, they should also consider the privacy of the user who gets involved



8 S. Ghesmati et al.

in these transactions. Any side effects as a result of lacking the knowledge by
the user should be avoided. On the other hand, PayJoin transactions may ren-
der cluster analysis more difficult than before, as it creates false positives in the
analysis leading to more super clusters.

In its current state, PayJoin is only described for transactions with more than
one input and two outputs. This leads to an anonymity set of 15.4% compared to
the total number of transactions according to our extracted data for September
2020 (Figure 2). Moreover, it appears that classical payment transactions have
been decreasing over the past years. Therefore, PayJoin should also be extended
to transactions with more than two outputs to increase the anonymity set. As one
of the main contributions of PayJoin is breaking the common input ownership
heuristic, it can also poison the heuristic for a larger set of transactions.

Acknowledgment

This work is supported by COMET SBA-K1 and the Austrian Research Promo-
tion Agency (FFG) via project number 874019.

References
1. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.

M., and Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on Internet measurement conference,
pp. 127–140. Association for Computing Machinery, New York (2013)

2. Kalodner, H., Möser, M., Lee, K., Goldfeder, S., Plattner, M., Chator, A., and
Narayanan, A.: BlockSci: Design and applications of a blockchain analysis plat-
form. In: 29th USENIX Security Symposium (USENIX Security 20), pp. 2721–2738.
USENIX, (2020), Change Address Heuristics, https://citp.github.io/BlockSci/
\reference/heuristics/change.html. Last accessed 20 Sep 2020

3. Improving Privacy Using Pay-to-EndPoint (P2EP), https://blockstream.com/

2018/08/08/en-improving-privacy-using-pay-to-endpoint/. Last accessed 20
Sep 2020

4. Bustapay BIP: a practical sender/receiver coinjoin protocol, https://lists.

linuxfoundation.org/pipermail/bitcoin-dev/2018-August/016340.html. Last
accessed 20 Sep 2020

5. PayJoin, https://joinmarket.me/blog/blog/payjoin/. Last accessed 23 Aug 2020
6. BIP78: A Simple Payjoin Proposal, https://github.com/bitcoin/bips/blob/

master/bip-0078.mediawiki. Last accessed 20 Sep 2020
7. BitCoin Privacy, https://en.bitcoin.it/wiki/Privacy. Last accessed 20 Sep 2020
8. Bitcoin privacy (Payjoin/P2EP), https://diyhpl.us/wiki/transcripts/

london-bitcoin-devs/2020-05-05-socratic-seminar-payjoins/. Last accessed
20 Sep 2020

https://citp.github.io/BlockSci/\reference/heuristics/change.html
https://citp.github.io/BlockSci/\reference/heuristics/change.html
https://blockstream.com/2018/ 08/08/en-improving-privacy-using-pay-to-endpoint/
https://blockstream.com/2018/ 08/08/en-improving-privacy-using-pay-to-endpoint/
https://lists. linuxfoundation.org/pipermail/bitcoin-dev/2018-August/016340.html
https://lists. linuxfoundation.org/pipermail/bitcoin-dev/2018-August/016340.html
https://joinmarket.me/blog/blog/payjoin/
https://github.com/bitcoin/bips/blob/master/bip-0078.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0078.mediawiki
https://en.bitcoin.it/wiki/Privacy
https://diyhpl.us/wiki/transcripts/london-bitcoin-devs/2020-05-05-socratic-seminar-payjoins/
https://diyhpl.us/wiki/transcripts/london-bitcoin-devs/2020-05-05-socratic-seminar-payjoins/

	Unnecessary Input Heuristics & PayJoin Transactions

