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ABSTRACT
We present the first proactive secret sharing under honest majority

which is purely over pairwise asynchronous channels. Moreover:

- it has robust reconstruction. In addition, provided a single broadcast

in the sharing phase, then it commits the dealer to a value;

- it operates under a bare PKI and enables dynamic membership;

- the standard version carries over the model known as “receiver-

anonymous (Yoso)” in which participants speak only once then

erase their memories. Each refresh of a secret takes 2 actual message

delays and a total of O(n4) bits sent by the honest parties;

- it allows an optimization in O(n3) bits and latency of 5 messages.

1 INTRODUCTION
The goal of threshold cryptography is to process information that

should remain secret, and quickly and reliably deliver a result, de-

spite an adversary corrupting any minority of participants. Flagship

use-cases are the distributed generation and storage of secret keys,

for the purpose of distributed signing of transactions, or of secure

storage [BGG+20; Gro21]. The baseline technique is known as se-
cret sharing. It enables the owner of a secret to distribute shares

of it, to n parties, while ensuring (i) that an adversary controling

some threshold number of t-out-of-n parties, will learn no informa-

tion on the secret, and (ii) robust reconstruction of the secret from

any t+1 valid shares. To withstand a mobile adversary, i.e. that
can corrupt possibly all parties within the lifetime of the system,

[OY91] introduced the notion of proactive security. The lifespan

of a protocol is divided into time periods denoted epochs, and the

adversary is able to corrupt at most t parties per epoch. A proactive
secret sharing (PSS) scheme refreshes the shares held by parties in

every new epoch. As a result, parties obtain new shares of the se-

cret that are independent of the old ones, which then can be safely

erased. We consider the most general setting, which is known as

dynamic PSS protocols, i.e., that support changes of participants

across epochs. This model considers one separate set of parties

per epoch, denoted as a committee. Since the model is agnostic of

the physical computers on which parties of different committees

are running, it captures all settings. It covers the particular case

where some party, which would have been corrupt then reinitial-

ized, would re-enter the protocol with an empty state, thus being

treated as a new participant. The goal of a dynamic PSS is to:

- enable the secret owner to share its secret to a committee C(1) of
parties, which we denote as the committee of the first epoch e = 1;

- maintain the correctness and liveness invariants that in each epoch

e , the committee C(e) should hold shares of this same secret;

- to this end, there is a protocol, denoted Refresh, between each com-

mittee C(e), denoted exiting, and C(e+1), denoted entering, which
should provideC(e+1) with new shares of the same secret, in a way

that maintains the privacy invariant that the adversary does not

gain any incremental information on the secret, despite having

corrupted t parties in every committee so far.

Benefits and Challenges of Asynchronous Protocols. All
known PSS under honest majority assume a synchronous network,
i.e., where the delivery delay of the messages is upper-bounded by

a known constant. Synchronous PSS protocols either lose privacy,

consistency or liveness as soon as the delivery of a single message

from a honest party takes more than this constant: see section 1.3.

In turn, synchronous PSS protocols instruct to wait for a predeter-

mined delay between each step, which is a worst-case conservative

upper bound on the network delay, resulting in artificially long exe-

cutions. Furthermore, synchronous PSS protocols require broadcast

channels, of which the implementation either requires substantial

interaction ([KK09] for the state of the art under tight adversary

bound and no common coin setup), or, an external public ledger

[MZW+19; BGG+20; GKM+22; Gro21]. Asynchronous protocols,

by contrast, run at the actual speed of the network, which is a prop-

erty known as responsiveness, and still resists to arbitrarily long

periods of asynchrony. In an asynchronous network, there is no

upper-bound on the latencies of messages. The challenge is thus

that it is impossible for a party Pi expecting a message from an-

other party Pj to distinguish between 1) a slow honest party, whose

message has not yet arrived due to the network latency and 2) an

adversary that did not send anything. Waiting for such a message

in an asynchronous protocol could prevent liveness, as it can stop

Pi from making progress. Thus, whenever we let parties multicast

to all the parties in the protocol, in the next step we can at most let

an honest party wait for n-t messages. To achieve this, all previous

works required some form of Byzantine consensus among the new

committee, very roughly, to reach consensus on a subset of new

secret shares received obtained from the previous committee. Since

asynchronous consensus within a committee is not solvable beyond

t < n/3 corruptions [DLS88], we need other techniques to break

the bound.

This paper’s main goal is to answer the following question: Is it
possible to construct a proactive and asynchronous secret sharing

scheme under honest majority ?

Secondary Challenge: Minimizing theWindow of Vulner-
ability. On the one hand, the dynamic committee model is agnostic

of whether two members P
(e)
i and P

(e+1)
i of adjacent committees,

C(e) and C(e+1), would be running on the same machine. On the

other hand, it is commonplace to weaken the adversary model by

making the reasonable convention that, in such a case, if the one

(P
(e)
i ) of the exiting committee is still corrupt and online afterC(e+1)

has entered the protocol, then, P
(e+1)
i counts in the corruption bud-

get of C(e+1). Thus, the longer the time-frame while two adjacent

committees must be simultaneously online, the more this reason-

able assumption weakens the freedom of the adversary to choose
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whom to corrupt in each committee. We thus denote this time-

frame as window of vulnerability. This terminology encompasses

the one denoted “future horizon” in [GHK+21], but is orthogonal

to the one of [ZSV05]. However, recent optimized PSS protocols

[MZW+19; GKM+22; YXD22] take an approach, which consists in

generating a fresh sharing of 0 to mask old shares, which incurs a

substantial window of vulnerability.

1.1 Results
We answer positively the feasibility question.

Theorem 1. Consider committees of n = 2t+1 parties, in each of
which t are maliciously corrupt by a polynomial mobile adversary.
Consider a fully asynchronous communication network, with the bare
setup of a bulletin board of public keys. Then there exists a protocol,
denoted DP-AVSS, that implements proactive secret sharing.

Moreover:

- DP-AVSS has (public) verifiability, i.e., that upon termination of the

sharing phase, there exists exactly one value, such that only this

value can possibly be the one opened. The sharing takes one single

terminating broadcast from the secret owner to the first committee,

which could furthermore be traded by a simple multicast if we had

considered only honest secret owners.

- DP-AVSS has no window of vulnerability: members of the exiting

committee need only to send a single batch of messages to the

entering committee, then erase their memories;

- DP-AVSS completes a Refresh within the actual network delay of

3 consecutive asynchronous messages deliveries;

- The total bitsize sent by honest parties of a committee is O(n4),
further optimized into O(n3) (section 5.2) if allowing a window of

vulnerability of 2 messages, and a total Refresh delay of 5 messages;

- DP-AVSS straightforwardly adapts to a communication model,

known as “You Only Speak Once”, where members of committees

are known only by their public key and speak only once (§5.3);

- DP-AVSS straightforwardly generalizes to possibly many secret

owners and receivers and, by design, enables the opening a linear

combination of secrets from possibly several owners.

A by-product of our proof, in section 4.6, is that we show simu-

latability of publicly verifiable secret sharing (PVSS), thus positively

answering the question raized by [SBKN21, p5]. We furthermore

achieve it without straight-line extraction, thanks to a gadget de-

noted “inference of corrupt shares”. It thus allows (section 5.4)

lighter NIZK proofs, in logarithmic size.

1.2 Our Techniques
Our baseline approach is based on resharing of secret shares. It
was introduced by [GHY87], then used for proactivity in [AGY95;

FGMY97; CKLS02; GG06; DM15; BGG+20; Gro21; GHL22]. Let us

outline it very roughly, on the example of [CKLS02]. Initially, each

party Pi owns a share si of a secret s , under univariate Shamir

sharing with threshold t . At the end of an epoch e , parties broadcast
new keys and perform the resharing as follows:

- Non-interactive resharing of each share: Every party P
(e)
i performs

asynchronous verifiable secret sharing (AVSS) of its share s
(e)
i , and

immediately deletes it.

- Parties perform multi-valued Byzantine consensus to agree on a

subsetU of t+1 successfully terminated AVSS.

- Generation of a new share: Each party P (e+1)j computes its new share

s
(e+1)
j from the set of t+1 shares received fromU, by applying the

Lagrange reconstruction formula on them.

However, this approach is not applicable in an asynchronous set-

ting under honest majority, as it either requires broadcast [DM15;

BGG+20; Gro21], or AVSS and Byzantine consensus [CKLS02]

which cannot be achieved for t ≥ n/3.
To circumvent this difficulty, we propose a new computation

model. Parties exchange a structure of data that are n-sized vectors

of encrypted shares. We maintain the invariant that all such vectors

encrypt shares of the same secret s , furthermore equal to the one ini-

tially shared by the secret owner. To guarantee this correctness, we

impose them to be signed by a quorum of t+1 parties: we denote this
structure verified proactivized sharing VPS. VPS are created in two

steps. First, each member of the exiting committee C(e), for every

VPS
(e)

which it has, decrypts its share then generates a fresh pub-

licly verifiable (re-)sharing of it, i.e., a vector of encrypted shares of

its share. Then it engages into n parallel instances of a sub-protocol,

denoted Leader-Based (LB)-refresh, each being coordinated by a

party of C(e+1) acting as the leader. The leader aggregates any t+1
re-sharings of the same VPS into a new vector of encrypted shares.

To this end it applies the same Lagrange reconstruction formula as

above, which it evaluates linearly homomorphically on the vectors

of shares. Then it submits this new vector of encrypted shares to

C(e+1), which verify its correctness then multicast their signatures

on it, to form a VPS
(e+1)

. Existence of at least one (even t+1) honest
leader maintains the invariant that: all t+1 honest parties inC(e+1)

ultimately obtain, at least, one VPS
(e+1)

in common, even if they do

not know which one. Remarkably, there is no guaranteed common

view on a unique VPS created in a LB-refresh driven by a malicious

leader.

1.3 Further Details on Related Works
The protocol [ZSV05] also runs n instances of a leader-based re-

fresh in parallel. However, to guarantee correctness and uniform

termination in each instance, they require quorums of size 2t + 1,
in turn limiting their resilience to n ≥ 3t + 1. Moreover, the size of

their shares are exponential in n. The protocols [BGG+20; Gro21]
and [GHL22, §C] operate by publicly verifiable re-sharings, which

are sent over a synchronous broadcast channel. Under our asyn-

chronous setting we do not have such resource, thus the problem of

consistency is non-trivial. In the Table 1 we multiply the complex-

ities of [SLL10] by O(t), since in the worst-case of t consecutive
corrupt leaders, their refresh could be restarted t times before suc-

ceeding. The protocol Exp-CHURP-A [MZW+19] is the one which

serves as fallback of their optimistic protocol (not displayed in Ta-

ble 1). It has same nBC(n) complexity as [BGG+20] and [GHL22,

§C]. In the regime of optimal corruption tolerance n = 2t + 1, this
fallback is activated as soon as one single message is not timely

received. Critically, when the broadcast from a honest party Pj is
not received in time, then [MZW+19, p. C.1.3] forces honest parties

to publicly expose what they sent to Pj , which provides enough
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Scheme Network Threshold Dynamic Comm. Window of Vulnerability Setup
Herzberg et al. [HJKY95] Synch t < n/2 No n

��
BC(n)

��
3BC PKI

Cachin et al. [CKLS02] Asynch t < n/3 No O(n4) 0 threshold coin

Zhou et al. [ZSV05] Asynch t < n/3 Yes exp(n) O(δ ) secure channels

MPSS [SLL10] Partial-Synch t < n/3 Yes O(tn4) O(t) PKI

Exp-CHURP-A [MZW+19] Synch t < n/2 Yes n
��
BC(n)

��
5BC PKI

Goyal et al. [GKM+22] Synch t < n/2 Yes

��
BC(n)

��
5BC PKI

Shanrang [YXD22] Asynch t < n/4 Yes O(n3log(n)) MVACS threshold coin

DP-AVSS(Th 7) Asynch t < n/2 Yes O(n4) 0 PKI

Optimization (Section 5.2) Asynch t < n/2 Yes O(n3) 2δ PKI

Table 1:Window of vulnerability denotes the worst-case consecutive interactive tasks requiring parties of both the exiting and entering

committee to be simultaneously online. Publication delay on the bulletin board of public keys is ignored. 2δ denotes 2 consecutive message

deliveries, MVACS denotes multivalued agreement on a common subset. + denotes consecutive tasks, e.g., 5BC denotes 5 consecutive

broadcasts. Communication complexity is also measured as the total number of bits sent by honest parties in a committee to realize a task.

E.g.: n
��
BC(n)

��
denotes the bitsize of n broadcasts, each with input size O(n) bits.

information to the adversary to reconstruct the stored secret. Exp-

CHURP-A also serves as fallback for Shanrang [YXD22], which has

asynchronous runs in failure-free executions, and runs in expected

O(logn) rounds for every Refresh.
Likewise in [GKM+22, p8], when a message from some honest

sender is not received in time by a honest party, then the sender

is forced to publicly expose the content of this message, which

provides to the adversary substantial information on the stored se-

cret. The 3BC and 5BC of window of vulnerability in [HJKY95] and

[GKM+22] account for the possible accusation-and-response phase.
Their

��
BC(n)

��
complexity is in the amortized regime of sharing more

than n secrets

2 MODEL AND DEFINITIONS
The set of non-negative integers is denoted as N, the set of positive

ones is denoted as N∗ = {1, 2, . . . }. We consider integers t ∈ N and

n :=2t+1. For F a finite set, we denote |F | its cardinality, and f $
←− F

the sampling of an element in F uniformly at random. The empty

string is denoted as⊥. Form an integer, we denote [m] := {1, . . . ,m}.
Vectors of size n are denoted in bold: c , and their coordinates as ci ,
or c[i], for i ∈ [n].

Finally, we consider secrets in prime finite fields, as follows. Let

p denote any prime number larger than n + 1, then Fp denotes the

finite field Z/pZ. Fp [X ]t denotes the (t+1)-vector space of polyno-

mials of degree at most t . We denote Fp [X ]
(0)
t :=

{∑t
i=1 riX

i , ri ∈

Fp ∀i ∈ [t]
}
⊂ Fp [X ]t the t-subspace of polynomials evaluating

to 0 at 0, i.e., with 0
th
coefficient equal to 0. We leave implicit the

security parameter.

2.1 Mobile Corruptions
We consider an arbitrarily long sequence of integers e ∈ N∗ de-
noted “epoch numbers”. For each e , we consider a set of distinct
probabilistic polynomial time (PPT) machines, denoted “committee”

C(e) = (P
(e)
1
, . . . , P

(e)
n ), for simplicity of fixed size n = 2t+1. Their

members are denoted “parties”. TheC(e) are disjunct, nonwithstand-

ing some P
(e)
i ∈ C(e) and P

(e+1)
j ∈ C(e+1) could possibly run on

the same physical computer. For simplicity parties have fixed and

public identities, although the protocol straightforwardly adapts to

“receiver-anonymous” models (§5.3).

We consider a PPT machine denoted the Environment E. For

each e ∈ N∗ and honest party P (e)i ∈C
(e)

, E may send a signal “start”

to P
(e)
i at some point. From this point we say that P

(e)
i is “alive”. We

also consider two PPT machines denoted “secret owner” SO and

“secret-receiver” SR, of which none, one or both can be corrupt. If

SO is honest, then E may send (“share”, s ∈ Fp ) to it. Anticipating

on §2.3, this instructs SO to share some secret s to C(1). For every

e , E may send: “refresh” to parties in C(e). Anticipating §2.3, this

instructs them to start interacting with C(e+1). For any eo ∈ N∗, E
may send “open” to some honest parties inC(eo ). Anticipating §2.3,
this instructs them to open to SR all the shares of the secret which

they have. We then designate eo as the opening epoch and C(eo ) as
the “opening committee”. For simplicity we consider that E then

does not send “refresh ” to parties in C(eo ). E then learns the value

output by SR if it is honest (or, if it is corrupt, all the messages sent

to it). Protocols may instruct parties to shut-off themselves, which

means that they erase all their memory and quit the protocol.

We consider a PPTmachineA denoted “adversary”.Without loss

of generality [Can01] we actually considerA to be fully controlled

by E, such A is known as “dummy”. For each e ∈ N∗, A may

maliciously corrupt a set I(e) of up to t parties in C(e), i.e., it has
full control over them. We denote the non-corrupt parties as honest.
For simplicity we consider static corruptions with respect to each

committee, i.e.,A cannot corrupt a party which received “start”, i.e.,

which is already alive. DP-AVSS (but not the optimization of §5.2)

extends to adaptive corruptions with standard techniques [CDN15,

§5.6][GKM+22]. In addition, A may de-corrupt parties at any time,

which also has for effect to shut them off.

2.2 Ideal Functionalities and Delayed Output
Following [Can01] we say that an ideal functionality F sends a

delayed output v to R if it engages in the following interaction:

instead of simply outputting v to R, F first sends to the adversary

a request, which we denote as network, asking for permission to

deliver an output to R. When we make the precision public de-

layed output, then this means that the content of the value v is
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furthermore leaked toA in the request. When the adversary replies

[which we denote as activate], F outputsv to R. By ssid we denote

the sub-session numbers of functionalities. We omit the session

number since we will consider for simplicity one single instance of

secret sharing.

AsynchronousAuthenticatedMessageTransmittingFAUTH
In Thm 7 all entities are connected by pairwise public authenticated

channels, i.e., the content of bitstrings sent on the network is leaked

to the adversary. In particular, we do not need to specify private

channels from the parties to the secret-receiver SR, even if it is hon-

est, because we are able to perfectly simulate opening shares. This

functionality is formalized by [Can01] as FAUTH. It is parametrized

by a sender S and receiver R. On input (input, ssid,v) from S : then

F
S ,R
AUTH

provides R with public delayed output (ssid,v).

2.2.1 Bulletin Board of Public Keys. In Thm 7 we will consider

the classical model, denoted as “PKI” in [DMR+21], which can be

phrased as enabling parties to publish the public key of their choice

upon entering the protocol. We formalize it as the functionality

denoted certification authority FCA in [Can04], and provide it in the

appendix §A. We will in particular use digital signatures, which are

shown in [Can04] to be UC implementable from FCA. Subsequent

works [CSV16] also denote FCA as “bulletin board” PKI or “bare”

PKI, to underline that it does not perform any check of knowl-

edge of a secret key. By contrast, protocols known as “distributed

key generation” implement a much stronger setup, which securely

assigns correlated private keys to parties. Our protocol actually

withstands a slight downgrading of FCA, into an entity that would

deliver certificates tying a public key to the identity of its owner,

and would possibly deliver certificates for different keys tied to the

same corrupt party.

2.2.2 Terminating Reliable Broadcast. The ideal functionality FBC,
on input a value (possibly ⊥) from either SO or possiblyA if SO is

corrupt, delay-outputs this value to all parties.

2.2.3 NIZKs. Wewill use non-interactive zero knowledge arguments
of knowledge, which we dub as NIZKs. For simplicity, we capture

them by the ideal functionality FNIZK, defined as in [GO07]. FNIZK
is parametrized by a NP relation R. Upon request of a prover P ex-

hibiting some public input x and knowledge of some secret witness

w , it verifies if (x,w) ∈ R then deletes w from its memory. If the

verification passes, then FNIZK delay-outputs to P a string π . Upon
subsequent input the same string π and x from any verifier, FNIZK
then confirms to the verifier that P knows some witness for x . We

denote Π the space of such strings π , their sizes will be discussed in
§5.4. We provide a description of FNIZK in Fig. 5. Under our honest

majority setting, it can be implemented from FCA using so-called

multi-string NIZKs [GO07].

2.2.4 Signature Scheme. We assume that parties have access to

a non-interactive digital signature scheme, as defined in [Bol03,

§2]. Recall that it consists in the following algorithms. There is a

KeyGen() function that allows any party to generate a key pair

(pki , ski ). Then, on input its secret key and any messagem, a party

Pi can generate a signature σi ← Sign(m, ski ). There is a public
verification function, denoted Sign.Verify, that takes as input a
public key pk and checks the validity of any signature σ on anym.

In addition, we require a public aggregation function, that takes

as input a set of signatures {σi }i ∈U , where |U| = t+1, a fixed list

of n public keys (pki )i ∈[n] and each σi ← Sign(m, ski ), and can be

used to produce a signature σ ← Sign.Combine(m,
{σi }i ∈U ) on m. We require a robustness property, as defined in

[Sho00; Bol03] which states that if σi ← Sign(m, ski ) with
Sign.Verify(m, pki ,σi ) returning True for each i ∈ U, |U| = t+1,
and if σ ← Sign.Combine(m, {σi }i ∈U ), then Sign.Verify(m,σ ) re-
turns True. We require the unforgeability property that, an ad-

versary being allowed to choose t public keys (pki )i ∈I and given

access to oracles {Sign(·, ski )}i ∈[n]\I , then it has a negligible proba-
bility of producing a signature σ for any messagem on which it did

not query any of the oracles. Notice that the aggregation function

could be implemented as the plain concatenation of the set of t+1
signatures, see §5.4 for more efficient implementations under the

bare bulletin board PKI setup.

2.3 DP-AVSS Protocols
We formalize the functionality which we aim at implementing,

as “Dynamic Proactive Asynchronous Verifiable Secret Sharing”

FDP-AVSS.

FDP-AVSS

Upon receiving (“share”, s ∈ Fp )
{
from SO or, possibly, from

A if SO corrupt

}
for the first time: stores s , sends “stored” to

honest parties, and initiates e := 1.

Upon receiving “started” from all honest parties in C(e), leak
“started” to A.

Upon receiving “refresh” from all honest parties in C(e), leak
“refresh” to A and sets e := e + 1.
Upon receiving “open” from all honest parties inC(e), if some

s ∈ Fp is stored, leaks “open” to A then delay-outputs s to
SR.

Figure 1

Following themodel [Can01], we say that a protocol UC-implements

FDP-AVSS if there exists a PPT machine S denoted simulator, also
known as “ideal adversary”, such that no E can tell apart whether

it is interacting with:

- either (i) the dummy A, which fully controls t out of the n = 2t+1
parties in each of the committees (ii) honest parties performing the

actual protocol, (iii) and possibly SO and/or SR if they are honest;

- or with (i) S, which interacts, on the one side, with FDP-AVSS on

behalf of corrupt parties, and on the other side with E on behalf

of A, (ii) honest parties performing the “dummy protocol”, i.e.,

which simply forward to FDP-AVSS the signals “start”, “refresh” and

“open” every time they receive them from E, (iii) and possibly SO
and/or SR if they are honest, in which case: SO performs the dummy

protocol, consisting in forwarding (“share”, s ∈ Fp ) to FDP-AVSS
upon receiving it from E, and, for SR, in outputting s ′ ∈ Fp upon

receiving it from FDP-AVSS, if any.

The former is denoted the real execution REALA of the protocol,

the latter the ideal execution IDEALFDP-AVSS,S .
Notice that the trivial protocol, requiring parties to take no action

and SR to never output, implements FDP-AVSS in the UC sense. To
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see this, consider the simulator which does nothing, in particular,

upon receiving a request from FDP-AVSS to deliver the output to SR,
does not respond to this request. Thus we now specify a desirable

sub-class of protocols at which we are aiming.

Definition 2. For any integer L, we say that a protocol APSS is a

Dynamic Proactive Asynchronous Verifiable Secret Sharing
with Refresh Latency in L Messages if:

Security: It UC-implements FDP-AVSS
Structure: It is defined by three sub-protocols:

– APSS.Share (between SO and C(1)): Upon receiving start,
parties inC(1) perform APSS.Share with SO. Upon receiv-

ing “share”, SO performs APSS.Share with C(1).
– APSS.Refresh (between any committee C(e), denoted “ex-

iting”, and any committeeC(e+1), denoted “entering”). For

every e ≥ 1: upon receiving start, parties in C(e+1) per-

form APSS.Refresh as entering withC(e) as closing. Upon

receiving refresh, parties inC(e) perform APSS.Refresh as

closing, with C(e+1) as entering.
– APSS.Open (performed by any committee): For every e ≥

1, upon receiving “open”, parties in C(e) and SR perform

APSS.Open.
Liveness: is specified, only when SR is honest, as follows. In any given

execution, let us denote as δ the maximum delay taken by

the delivery of a message sent by any honest party to a

honest party, via FAUTH. Notice that δ is possibly∞. Then

SR outputs in any execution in which:

– A allows all delivery requests from FNIZK and FCA;

[In our implementation]: the output (possibly ⊥ if SO
corrupt), of the single terminating reliable broadcast from

SO to all parties, is delivered before E sends a signal, either

“Refresh” or “Open”, to parties in C(1);
– there is some eo ∈ N∗ such that E sendsOpen to all honest
parties in C(eo );

– for all e ∈ [1, . . . , eo − 1] (possibly empty),

{
all parties of

C(e) receive refresh and all parties of C(e+1) receive start
then publish some string (possibly ⊥ if corrupt) on FCA

}
.

Furthemore, from this point, there is at least a delay Lδ

before any party of C(e+1) receives “refresh” or “open”.
– all messages from honest players in C(eo ) to SR are deliv-

ered.

3 PUBLICLY VERIFIABLE SECRET SHARING
3.1 Overview. A technique for publicly verifiably sharing a secret

s among n parties with threshold t , is suggested in [GMW91, §3.2].

It consists in generating a vector of shares of s under the Shamir

secret-sharing scheme, then output (i) the n-sized vector of encryp-

tions: for each i ∈ [n], of the i-th share under Pi ’s public key; (ii)
appended with a NIZK proof of plaintext knowledge, i.e., of: s and of

the randomness fully explaining the vector of encrypted shares. No-

tice that such NIZKs are eased by the use of linearly homomorphic

commitments, see section 5.2 for an example. The data structure

obtained is known as a Publicly Verifiable Secret Sharing (PVSS),

and we denote the algorithm as PVShare. To publicly verifiably

open a PVSS, each party Pi outputs (i) a decryption of its share, (ii)

appended with, roughly, a NIZK of correctness.

Then, on input any t+1 such publicly verifiable opening shares,

the public reconstruction function of Shamir secret-sharing, dubbed

as FinOpen, returns the secret s . For our use-case of Refresh, we
enrich the construction with further ingredients:

(1) an algorithm, which we denote as PVReshare which, on input a

ciphertext under one’s key, decrypts it then generates (i) a publicly

verifiable sharing of the decryption (ii) appended with, roughly,

a NIZK of correctness. We denote the data structure output as a

publicly verifiable resharing (PVR).

(2) parties will need to linearly combine t+1 such PVRs. To this

end, we instantiate PVSS with any public key encryption scheme,

denoted LHE, supporting at least one homomorphic linear combi-

nation.

(3) to guarantee robust re-sharing and reconstruction, we specify the

LHE to be committing, i.e., perfectly correct, in the following sense.

We require that after at least one homomorphic linear combination

of verifiably encrypted plaintexts under a public key, the holder

of the public key cannot possibly exhibit two conflicting verifiable

decryptions. This analysis, which is concluded in Prop. 4, may be

of independent interest in that it provides detailed specifications

for proactive schemes based on PVSS [MZW+19; BGG+20; Gro21].

(4) we provide an elementary gadget, denoted ShSim , that takes as

input any t opening shares (of corrupt parties) along with any

s ∈ Fp (bogus shared secret) and perfectly simulates the t +1
remaining opening shares (of honest parties). It is enabled by

perfect correctness of Shamir Sharing and of the LHE.
(5) Finally, the function denoted ShInfer perfectly infers the opening

shares of corrupt parties from the honest shares. ShInfermay of in-

dependent interest, since it is not formalized in classical references

on IT-secure MPC, to our knowledge.

In order to define perfect correctness, we specify determinized

versions of the algorithms (highlighted in color with a tilde, e.g.,�KeyGen and Ẽnc, for convenience), i.e., those taking the randomness

as input. Their randomness inputs are specified, for simplicity, to

vary uniformly in some finite sets denoted R
key

and Renc, which
emulates arbitrary spaces and distributions. This formalism also

eases the description of the relations proven in NIZK.

3.2 Linearly Homomorphic Encryption. We now specify require-

ments on the public key encryption used, which we denote LHE.
It has plaintext space Fp , and roughly speaking, it should enable

one homomorphic linear combination on t+1 ciphertexts, such that

the decryption returns the linear combination of plaintexts. Such

schemes over Fp supporting a limited number of linear operations

were coined as “Semi-HE” by [BDOZ11], which should not be con-

fused with “Somewhat HE”. LHE is defined as the following list of

spaces and algorithms.

• sK and pK the spaces of secret and public keys, R
key

the set of
key randomness, Renc the set of encryption randomness and C the

ciphertext space;

• KKeyGen(ρ
key
∈ R

key
) → sK ×pK the determinized key generation

function;

• KeyGen() :=�KeyGen(ρ
key

$
←− Rkey

)
the key generation algorithm;

• ˜Enc
(
pk ∈ pK, ρenc ∈ Renc, x ∈ Fp

)
→ C the determinized encryp-

tion function;
5
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• Enc(pk, x) := Ẽnc
(
pk, ρenc

$
←− Renc, x

)
is the encryption algorithm

• Dec(sk ∈ sK, c ∈ C) → Fp the decryption function;
• ⊞ :C × C → C and ⊡ :Fp × C → C the linearly homomorphic

addition and scalar multiplication.

We require IND-CPA, i.e., any PPT A has negligible advantage

in distinguishing whether it is interacting with the “left” oracle OL

which, when queried on a pair (xL, xR ) ∈ F2

p , returns Enc(x
L) or,

with the “right” one, OR , which returns Enc(xR ).

Perfect Correctness. For c ∈ C, we say that x ∈ Fp is an explain-
able plaintext of c under some pk ∈ pK , if there exists ρenc ∈ Renc
such that c = Ẽnc(pk, ρenc, x).

We say that x ′ ∈ Fp is an explainable decryption of c under

some pk ∈ pK , if there exists ρ
key
∈ R

key
such that we have

(sk, pk) = �KeyGen(ρ
key
) for some sk, such that Dec(sk, c) = x ′.

Definition 3. Perfect correctness after one linear combination of
size t+1 is the guarantee that, for any pk ∈ pK , for any up to

t+1 ciphertexts (ci )i ∈[t+1] ∈ C
t+1

, for any explainable plaintexts

(xi )i ∈[t+1] ∈ Ft+1p of them under pk, for any (λi )i ∈[t+1] ∈ Ft+1p ,

then, if there exists an explainable decryption y′ under pk (not nec-

essarily, if pk is incorrectly generated) of the homomorphic linear

combination ⊞i ∈[t+1](λi ⊡ ci ), then we must have y′ =
∑t+1
i=1 λimi .

Instantiations. The scheme of Paillier supports one linear com-

bination of size n as long as np2 < N /2, where N is the plaintext

modulus. The variant of el Gamal, with plaintext in the exponent,

supports one linear combination as long as the discrete logarithms

up to index np are efficiently computable. A variant with optimized

decryption is constructed in [CL15]. Finally, we have the scheme

BGV and also, a fortiori, the fully homomorphic ones. Notice that

these latter schemes have correctness only if the randomness is

sampled with low norm, although the distribution allows large

norms with nonzero (but exponentially small) probability. Thus we

have to further specify these schemes with randomnesses within

explicit bounds, e.g., as required in [GLS15, §4.2].

3.3 Shamir Secret Sharing over Fp . A dealer having a secret s , in
order to distribute it to n parties, such that any t-subset of them re-

ceives uniform randomness, does as follows. It generates a random

polynomial Q ∈ Fp [X ]
(0)
t of degree at most t evaluating to 0 at 0.

Then for each i ∈ [n], it distributes to Pi the evaluation (Q + s)(i),
denoted as a share. Reconstruction of s from any t +1 shares follows
from polynomial interpolation.

• EvalU : P ∈ Fp [X ]t → (P(i))i ∈U , for any subsetU ⊂ [0, . . . ,n] is
the map returning the evaluations of P at the points ofU.

Conversely, any t+1 evaluations uniquely determine the polyno-

mial P . More precisely, for every t+1-sized U ⊂ [0, . . . ,n], the

linear map defined below and denoted PolRecoU is an inverse to

EvalU .

• PolRecoU : Ft+1p −→ Fp [X ]t , for any t+1-sized U ⊂ [0, . . . ,n],

denoted polynomial reconstruction. It is defined as: for each i ∈ U,

set λUi (X ) :=
∏

j ∈U\{i }
X−j
i−j denoted as the Lagrange polynomial.

Then, PolRecoU
(
((si )i ∈U

)
:=

∑
i ∈U si .λ

U
i (X ). The rest follows all

at once:

• JShare(Q ∈ Fp [X ]
(0)
t , s ∈ Fp ) := Eval[n](s +Q), denoted the deter-

minized Shamir secret sharing.
Any n-sized vector of the form (P(i))i ∈[n] is denoted as a vector of
shares of P(0), the latter being denoted the “secret”. In particular,�Share(s) outputs a vector of shares of s . In particular, we have lin-
earity: a linear combination coordinate-wise of vectors of shares, is

a vector of shares of the linear combination of the secrets.

• Share(s ∈ Fp ) := �Share(Q $
←− Fp [X ]

(0)
t , s ∈ Fp

)
the secret-sharing

algorithm.

By surjectivity of EvalU onto any t + 1-subset U ⊂ [0, . . . ,n],
we have in particular that, for any fixed s ∈ Fp : the linear map�Share(∗, s), followed by projection onto any t out of [n] coordinates,
is a surjection onto Ftp . Thus, any t shares produced by Share(s)
vary uniformly at random in Ftp .

• SRecoU := Eval{0}◦PolReco
U
, for any t+1-sized U ⊂ [n], de-

noted the reconstruction of secret function. Concretely, on input

(si )i ∈U , it outputs s :=
∑
i ∈U λUi si , where λ

U
i := λUi (0) are desig-

nated as the Lagrange coefficients. s is the unique secret of which
the (si )i ∈U belong to a vector of shares.

• ShSimV
:= Eval[n]\V ◦ PolReco

{0}⊔V
for any t-sized V ⊂ [n],

denoted the simulation of shares function. On input any s ∈Fp and

(si )i ∈ V ∈ Ftp , it outputs the unique (si )i ∈ [n]\V such that the

concatenation (si )i ∈ [n] forms a vector of shares of s .

• ShInferU := Eval[n]\U ◦PolReco
U
, for any t+1-sizedU ⊂ [n], de-

noted the inference of shares function. On input any (si )i ∈ U ∈Ft+1p ,

it outputs the unique (si )i ∈[n]\U such that the concatenation (si )i ∈[n]
forms a vector of shares.

3.4 Publicly Verifiable Secret Sharing (PVSS) and Resharing (PVR).
PVShare, on input s ∈ Fp , returns a PVSS of it, i.e., a vector of

Shamir shares encrypted under the list of public keys given as

parameter pk = (pki )i ∈[n] ∈pKn
. PVReshare, on input c in ∈ C,

decrypts it with skin then proceeds as in PVShare. PVPartOpen, on
input cin ∈ Cn , with parameter i , returns a decryption, under some

secret key skin, of the i-th coordinate of cin. All three algorithms

also append, to their output, a NIZK explaining it.

• KPVShare
(
(pki )i ∈[n] ∈ pK

n, ρenc ∈ R
n
enc
,Q ∈Fp [X ]

(0)
t , s ∈Fp

)
∈ Cn

denoted the determinized public secret sharing function: set (si )i ∈[n] :=�Share(Q, s), output c :=
(
Ẽnc

(
pki , ρenc,i , si

) )
i ∈[n]

.

• PVShare
(
pk∈pKn, s ∈ Fp

)
∈ (Cn,Π) ∈ PVSS, denoted the pub-

licly verifiable secret-sharing algorithm: sample ρenc
$
←− Rn

enc
and

Q $
←− Fp [X ]

(0)
t , set c := �PVShare(pk, ρenc,Q, s )∈ Cn . Output (c, π )

where π is a proof of secret knowledge for c , as specified below.

• KPVReshare
(
pk∈pKn, skin ∈ sK, ρenc ∈ R

n
enc
,Q ∈Fp [X ]

(0)
t ,

c in ∈ C
)
∈ Cn , denoted the determinized public re-sharing function:

set s := Dec(sk, c in), output cout := �PVShare(pk, ρenc,Q, s ) .
• PVReshare

(
pk∈pKn, pk

in
∈pK, skin ∈ sK, c in ∈ C

)
∈ (Cn,Π), de-

noted the publicly verifiable re-sharing algorithm: sample ρenc
$
←− Rn

enc

and Q $
←− Fp [X ]

(0)
t , then output (cout, π ), where

cout := �PVReshare
(
pk, skin, ρenc,Q, c

in
)
. And π is a NIZK proof
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of decryption-then-reshare, specified below [which NIZK proves,

in particular, correct generation of (pk
in
, skin)].

• PVPartOpen
(
i ∈ [n], pk

in
∈pK, skin ∈ sK, cin=(c inj )j ∈[n] ∈ C

n )
, de-

noted publicly verifiable partial opening of the i-th coordinate of cin

under key pkin. Output (i, si , π ), where si := Dec(sk, c ini ) and π ∈Π
is a NIZK of correct decryption of c ini ∈ C into si ∈ Fp .

• FinOpenU
:=SRecoU , for any t+1-subset U ⊂ [n], dubbed as

final opening.

3.5 Definitions of Explainable Secret/Shares/Partial openings, and of
the NIZKs. In the following definitions we leave implicit the public

parameter of pk ∈ pKn
, which will be the keys of the entering

committee, in Refresh.
For any c ∈ Cn , we say that s ′ ∈ Fp is an explainable plaintext

secret of c if there exists such ρ ′enc ∈ R
n
enc

and Q ′ ∈ Fp [X ]
(0)
t such

that c := �PVShare((pki )i ∈[n], ρ ′enc,Q ′, s ′) . For such Q ′ and s ′, we

then denote the

(
s ′i := (Q ′ + s ′)(i)

)
i ∈[n] as explainable plaintext

shares of c .
For any c ∈ Cn , we define as a NIZK of plaintext secret, (and thus

automatically of plaintext shares), for c , as a NIZK of such s ′ ∈ Fp ,

ρ ′enc ∈ R
n
enc

and Q ′ ∈ Fp [X ]
(0)
t .

For cout ∈ Cn , pk
in
∈pK and c in ∈ C, we say that s ′ ∈ Fp is an

explainable decrypted-then-reshared secret of c in into cout if there

exists some

{
sk′

in
∈ sK , (ρ

key
)′ ∈ R

key
, s ′ ∈Fp , (ρenc)

′ ∈ Rn
enc

and

Q ′ ∈ Fp [X ]
(0)
t , such that (skin, pkin ) = �KeyGen(ρ

key
), letting s ′ :=

Dec(sk′
in
, c in), then cout = �PVReshare(pk, skin, ρ ′enc,Q ′, c in)

}
.

We then denote the (s ′i )i ∈[n] ∈ Fnp as explainable re-sharing shares
of c in into cout.
Notice that such s ′ is then, in particular, an explainable decryption

of c in under pk
in
.

We define as a NIZK of decrypted-then-reshared secret of c in into
cout, under key pkin, and thus automatically of plaintext re-sharing
shares, a NIZK of such sk′

in
, (ρ

key
)′, s ′, (ρenc)

′
and Q ′ ∈ Fp [X ]

(0)
t .

For cin = (c ini )i ∈[n] ∈ C
n
, si ∈ Fp and pk

in
∈ pK , we dub: “si is

an explainable decryption of ci under pkin”, as: “si is an explainable
opening share of the i-th coordinate of cin under pkin”

3.6 Data Structures. The following are meant to capture the well-

formed outputs of PVShare, PVReshare and PVPartOpen.

• PVSS is the data structure of pairs (c ∈ Cn, π ∈ Π) where π is a

proof of secret knowledge for c .
• PVR

(
pk

in
, c in ∈ C

)
: publicly verifiable resharings of c in under key

pkin, is the pairs: (c
out ∈ Cn, π ∈ Π)where π is a NIZK of re-shared

secret knowledge for cout, from c in, under key pk
in
.

• PVPO
(
i ∈ [n], cin=(c ini )i ∈[n] ∈ C

n )
: publicly verifiable opening shares

of the i-th coordinate ofcin under key pkin, is the triples (i, si ∈Fp , π ∈Π)

where π is a proof of correct decryption of c ini into si , under key
pk

in
. In particular, si is an explainable opening share of the i-th

coordinate of cin under pk
in
. We deliberately omit the opening key

pk
in
in the notation, since in our use-case it will the public key of

the i-th party of the opening committee.

Notice that a PVR proves in particular knowledge of a plaintext

secret, thus is a fortiori a PVSS.

3.7 Properties. From black-box linearity of Shamir secret sharing

and perfect correctness of LHE after one homomorphic combina-

tion, we have:

Property 4 (Homomorphic Combination Commutes with Thresh-

old Opening). For any set of t+1 PVR: from ciphertexts (c(i))i ∈[t+1],
under pk ∈ pKn

, into vectors of ciphertexts, of which we denote

(c(i) ∈ (Cn ))i ∈[t+1] the vectors of ciphertexts. Consider, for every i:
si ∈Fp an explainable decrypted then re-shared secret of c(i), along

with a vector s(i) ∈ Fnp of explainable plaintext shares of it. Then

we have that for any coefficients (λi )i ∈[t+1],

(1) the coordinates-wise linear combination s := ⊞t+1i=1 (λi ⊡ c
(i)) has

a unique explainable decryption s ∈ Fnp , which is furthermore a

vector of shares, for the secret

∑t+1
i=1 s

(i)
.

(2) In particular, for any t-sizedV ⊂ [n], we have ShSim(s, (sj )j ∈V ) =
(sj )j ∈[n]\V .

(3) In particular, for any t+1-sizedU ⊂ [n], we have ShInfer((sj )j ∈U ) =
(sj )j ∈[n]\U .

The following is given a more detailed statement and proof in

Appendix B, which might be of independent interest.

Property 5 (IND-CPA). Any PPT machine has negligible advan-

tage in distinguishing between the PVShare of two chosen secrets.

4 PROTOCOL DP-AVSS
In §4.1 we give an overview of DP-AVSS. Then we detail DP-AVSS:
sharing §4.2, then Refresh §4.3 and opening §4.5. In §4.6 we state

liveness and UC security of DP-AVSS, and prove them.

4.1 Overview
DP-AVSS revolves around the secure generation of objects, in each

epoch e , which we denote as Verified Proactivized Sharing: VPS
(e)

(Def. 6). A VPS
(e)

simply consists of (i) a n-sized vector of LHE
ciphertexts, encrypted under then public keys of committeeC(e), (ii)

appended with the signatures of a quorum of t+1 parties ofC(e). In

each committeeC(e), each party P
(e)
i forms a local list, denotedV

(e)
i ,

of the various VPS
(e)

’s it has received or formed so-far. DP-AVSS
maintains the [Correctness] invariant, that every VPS ever formed

in the execution, is equal to encryptions of a consistent set of n
Shamir shares of the same secret s , this secret being furthermore the

one of the secret owner SO if it is honest. DP-AVSS maintains the

[Liveness] invariant that, as soon as epochs take at least 3 actual

messages delay, then in each committeeC(e), the intersection of all

local listsV
(e)
i of the t+1 honest parties is nonempty. Together these

two invariants guarantee that s can be reconstructed in any epoch

e . Remarkably, parties are not aware of which VPS
(e)

s they have in

common, since agreement on a common subset is impossible for

t ≥ n/3. Before we proceed withDP-AVSS step by step, let us finally
mention that, unlike a PVSS or a PVR , a VPS is not appended with

any NIZK proof. Instead, what will guarantee its correctness, is that

in the quorum of t+1 signers, at least one honest party verified that
the VPS had been correctly formed.
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To share its secret, SO generates a PVSS of it, encrypted under

the keys of the first committee C(1), broadcasts it to them, then

goes offline. At this point, all honest parties in C(1) have the same

view on one single n-sized vector of ciphertexts, and furthermore

the NIZK appended guarantees that their plaintexts constitute a

well-formed set of n Shamir shares of some given secret s . We thus

abuse notations and also designate this initial PVSS as (the unique)

VPS of epoch e = 1.

For each e ≥ 1, we now describe DP-AVSS-Refresh between

exiting committee C(e) and entering committee C(e+1). The goal

is that at the end, all honest parties in C(e+1) receive at least one

vps(e+1) ∈VPS(e+1) in common. To this end, parties of C(e+1) en-
gage into n parallel instances of a protocol denoted Leader-Based-

Refresh. Each instance is led by a party P
(e+1)
k of C(e+1), denoted

leader, which will drive LB-refresh in just 2 messages. They are also

depicted in Figure 2.

Contribution Phase. Each party P
(e)
i of C(e), for each vps(e) ∈

VPS
(e)

which it has: decrypts its i-th share of vps(e) then gener-

ates a publicly verifiable re-sharing of it, i.e., a PVR. It sends it
to the leader P

(e+1)
k , wrapped in a “contribution message”. This is

the only action required from parties in C(e). P
(e+1)
k waits until it

receives t+1 correct contributions from t+1 distinct parties, such

that they furthermore all originate from the same vps(e) (which is

publicly verifiable from the contributions). Then, it computes homo-

morphically the linear Lagrange reconstruction formula on these

t+1 vectors of encrypted shares. It thus obtains a n-sized vector

of encrypted shares of the same secret s . Notice that this formula,

which is the one of SReco, is also the same as in the baseline of the

Introduction, except that now it is computed homomorphically on

all n shares at once. We denote this task as Reshare.Combine.

Verification Phase. P (e+1)k then multicasts to C(e+1) the pre-

viously obtained combined n-sized vector of encrypted shares. It

appends to it the concatenation of the t+1 input PVRs . Upon receiv-
ing thewhole, each party inC(e+1) checks: that all the t+1 appended

PVRs originate from the same vps(e), and correctness of the ho-

momorphic linear combination of them. It then, signs the n-sized
vector of encrypted shares (but not the t+1 input PVRs) then multi-

casts it. Any party, upon collecting any t+1 signatures, on the same

vector of encrypted shares, thereby obtains a vps(e+1) ∈VPS(e+1),
as desired.

Final Remark: LB-refresh Does Not Have Consistency. A corrupt

leader could well generate two correctly formed n-sized vectors of

encrypted shares from the contributions of two (possibly equal) sets

of t+1 partiesU andU ′ in C(e). Then it would send each vector

separately to two honest parties P
(e+1)
i and (P

(e+1)
i )′ of C(e+1) to

obtain their signatures. Since corrupt parties can sign twice, this

is enough to obtain a quorum of t+1 signatures on each of these

two distinct vectors. Nevertheless, existence of the signature of at

least one honest party on each of them, certifies both of them to be

correct combinations of t+1 encrypted re-sharings.

4.2 DP-AVSS-Share
At the beginning of the protocol, i.e. at epoch e=1, every party

P
(1)

i ∈ C
(1)

generates (pk(1)i , sk
(1)

i ) ← KeyGen() then registers it to

FCA. Next, when all n keys have been published, the Secret Owner

(SO) retrieves them, denoting them as pk(1) = {pk(1)i }i ∈[n] (in-
cluding ⊥ for non correctly published ones) and generates pvss←
PVShare(pk(1), s) from its secret input s . Then, SO broadcasts pvss
toC(1) and shuts-off. [This broadcast is the only one in the protocol,

it could be actually traded for a simple asynchronous multicast,

without downgrading any guarantee of DP-AVSS for a honest SO.
However, for a corrupt SO, then we would not have anymore con-

sistency of the reconstructed secret, which is unavoidable since

asynchronous consistent broadcast is impossible for t ≥ n/3.]

Each party P
(1)

i ∈ C
(1)
, upon receiving an output of the broadcast

of SO: if it is a pvss ∈ PVSS, then it sets its local list of VPS(1)i of

epoch 1 as {pvss}. Else, it sets it as {pvss
0
} where pvss

0
is a fixed

predefined PVSS of 0.

4.3 Leader-Based-refresh: LB-refresh
Data Structures.

Definition 6 (Verified proactivized sharing). A verified proac-

tivized sharing (VPS) is a triple

(
e , c , qvc

)
, where c is a vector

of ciphertexts. If e ≥ 2, then qvc is a Quorum verification certificate,
i.e. a set (or a short aggregation) of t+1 signatures from members

of C(e) on (e,c). Else if e = 1, then vps(1) is a PVSS from SO (thus

qvc = ⊥).

For any e ∈ N∗ we denote the subset of VPS with first argu-

ment equal to e the “VPS’s related to epoch e”, denoted VPS
(e)

.

We abuse the notations in that, for vps(e) =
(
e , c , qvc

)
, we often

designate the c enclosed also as “vps(e)” . Likewise, we say that two
vps(e) ∈VPS(e) are the same as soon as the c enclosed are the same,

nonwithstanding they can carry different sets of t+1 signatures.
We also formalize the following intermediary data structures:

contribMsgi is the data structure of triples (e, vps(e), pvr(i)), where:

vps(e) ∈VPS(e) and pvr(i) ∈ PVR
(
pk(e)i , ci := vps(e)[i]

)
.

combineMsg is the data structure of quadruples

(
c, vps(e), {pvr(i)}i ∈U,

U
)
, where: c ∈ Cn , vps(e) ∈ VPS

(e)
, each pvr(i) ∈ PVR(pk(e)i ,

ci := vps[i]), andU ⊆ [n] is a subset of t+1 indices of parties.
verifMsgi is the data structure of triples (e,c, siдni ), where: e ∈ N∗

denotes the epoch counter, c ∈ Cn , and siдni is a signature of

P
(e)
i on (e,c) .

openMsgi related to some eo ∈ N∗ are PVPO(i, vps(eo ) ∈VPS(eo ))

under key pk(eo )i .

LB-refresh. Let us define the LB-refresh sub-protocol between

an “exiting” committee C(e) and an “entering” committee C(e+1),

and a designated leader in C(e+1). Parties will locally compute the

following functions:

Reshare.Contrib(i, vps(e), pk(e+1), sk(e)i ): On input a vps(e) = (e,

c,qvc) and a set of keys pk(e+1) = {pk(e+1)i }i ∈[n], compute

pvr(i) = PVReshare(pk(e+1), sk(e)i ,c), output (e, vps
(e), pvr(i)) ∈

contribMsgi .
8
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Reshare.Combine ({(e, vps(e), pvr(i) = (c(i), π (i))) ∈ contribMsgi }i ∈U ):
On input a set of any t+1 contributions from a (t+1)-subset
U ⊂ [n] of parties, compute coordinate-wise the homomorphic

linear combination

c ′ := ⊞i ∈U
(
λUi ⊡ c

(i) )
(1)

(which is none other than the one defining SReco in §3.3). Output
(c ′, vps(e), {pvr(i)}i ∈U,U) ∈ combineMsg.

Verify.Contrib((c, vps(e), {pvr(i)}i ∈U,U) ∈ combineMsg, sk(e+1)i ):
Test if the combineMsg is well formed, test if Eq. 1 is true. If one

of the test fails, output “reject”, else, create a signature siдni on
(e + 1,c ∈ Cn ) and output (e + 1,c, siдni ) ∈ verifMsgi .

Verify.Combine
(
{(e + 1,c ∈ Cn, siдni ) ∈ verifMsgi }i ∈U′

)
for any

t+1-subsetU ′ ⊂ [n], for the samec ∈ Cn , output
(
e+1,c,qvc ←

Sign.Combine({siдni }i ∈U′)
)
∈ VPS(e+1).

The Leader-Based-refresh subprotocol is described in Algorithm 1.

4.4 DP-AVSS-Refresh
We can now present in Figure 3 the overall Refresh phase between

an exiting committee C(e) and an entering committee C(e+1).

4.5 DP-AVSS-Open
Each P

(eo )
i ∈ C(eo ), upon receiving the signal “open”, for each for

each vps(eo ) ∈V (eo )i , generates a publicly verifiable opening share

(i, di , πi ) ← PVPartOpen(i, pk(eo )i , sk(eo )i ,c) , and sends a message

(vps(eo ),di , πi ) ∈ openMsgi to SR through FAUTH. Next, SR upon

receiving any t + 1 openMsgi on a same vps(eo ) from a set U of

t + 1 indices, computes s = FinOpen({di }i ∈U ) and terminates.

4.6 Analysis
Theorem 7. Consider committees of n = 2t+1 parties, in each of
which t are maliciously corrupt by a polynomial mobile adversary,

Algorithm 1 LB-refresh
(
C(e),C(e+1), P

(e+1)
k ∈C(e+1)

)
The following set of instructions apply to all parties in C(e)

and C(e+1). Party P
(e+1)
k ∈ C(e+1), denoted “leader”, follows

additional instructions.

Inputs: Each P
(e)
i ∈C

(e)
has (pk(e)i , sk

(e)
i ) and computed a list

M
(e)
i :=

{
(e, vps(e), pvr(i)) ∈ contribMsgi , for vps(e) ∈V (e)i

}
.

Each P
(e+1)
i ∈C(e+1) has a pair (pk(e+1)i , sk(e+1)i ).

Output: Each P
(e+1)
i ∈C(e+1) outputs at most one vps(e+1).

Contribution Phase

1: Each P
(e)
i ∈C

(e)
sends eachmi ∈ Mi to the leader P

(e+1)
k .

2: Leader P
(e+1)
k , upon receiving, for the first time, a set of mes-

sages CU :=
{
(e, vps(e), pvr(i)) ∈ contribMsgi for i ∈U

}
for

some (t+1)-subsetU⊂ [n], all with the same vps(e) ∈VPS(e):
3: Multicast Reshare.Combine(CU )

Verification Phase

4: Each party P
(e+1)
i ∈ C(e+1), upon receiving a combineMsgm

from P
(e+1)
k :

5: Compute Verify.Contrib(m, sk(e+1)i ) and, if the output is

not “reject”, multicast the output.

6: Each party P
(e+1)
i ∈ C(e+1), upon receiving a setV of messages

of the type verifMsgi for the same (e +1,c ∈ Cn ) from a subset

U ′ ⊂ [n] of t+1 parties in C(e+1):

7: Append Verify.Combine(V) to V (e+1)i .

in an asynchronous communication network in the bulletin board
PKI model. Then protocol DP-AVSS UC implements FDP-AVSS with
refresh latency in 3 messages.

4.6.1 Proof of Liveness.

C(e) C(e+1)

verifMsgi

verifMsg
1

verifMsgn

t + 1

contribMsgjs
combineMsg

verifMsgi

Party P
(e)
1

. . .

Party P
(e)
i

Verify.Combine
({(e , c , siдnj )}j∈U′, |U′ |=t+1)

Reshare.Contrib

(i , vps(e ), pk(e+1), sk (e )i )

. . .

Party P
(e)
n

.
.
.

.
.
.

.
.
.

Leader P (e+1)k

Reshare.Combine

({e , vps(e ), pvr(j ) }j∈U, |U|=t+1)

Party P
(e)
1

. . .

Party P
(e)
i

. . .

Party P
(e)
n

Party P
(e+1)
1

. . .

Party P
(e+1)
i

. . .

Party P
(e+1)
n

Party P
(e+1)
1

. . .

Party P
(e+1)
i

Verify.Contrib

(c , vps(e ), {pvr(j ) }j∈U , U, sk (e+1)i )

. . .

Party P
(e+1)
n

.
.
.

.
.
.

.
.
.

Contribution phase Verification phase

Epoch e Epoch e + 1

Figure 2: LB-refresh for a party P (e )i in a committee C (e ). It received a set of t+1 verifMsg from at least t+1 parties in C (e ). Together they form a verified

proactivized sharing vps(e ) for epoch e . It then computes a resharing contribution. A leader P (e+1)k collects t+1 such contributions, verifies their correctness and

combines them. Finally, a party P (e+1)i in a new committeeC (e+1) verifies the output of the contribution phase, signs it and multicasts the signed output to parties
in C (e+1).
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Refresh(C(e),C(e+1))

Inputs: Each party P
(e)
i inC(e) has 1) a key pair (pk(e)i , sk

(e)
i ),

and 2) a set V
(e)
i of at most n vps(e) ∈VPS(e).

Each party P
(e+1)
i ∈C(e+1) starts with an empty state.

(PKI) At signal start, each party P
(e+1)
i ∈C(e+1): gener-

ates a key pair (sk(e+1)i , pk(e+1)i ) ← KeyGen(), pub-

lishes (pk(e+1)i ) to FCA, then starts n parallel instances of

LB-refresh(C(e),C(e+1),k) for k ∈ [n]. It plays in addition

the role of the leader for k = i .

(Reshare) At signal refresh, each P
(e)
i ∈C

(e)
:

waits until all keys have been published,

then for each vps(e) ∈V (e)i , generates

Reshare.Contrib(i, vps(e), pk(e+1), sk(e)i ) ∈ contribMsgi ,

and stores them in a listM
(e)
i . Then for each party P

(e+1)
k

of C(e+1), it executes LB-refresh(C(e),C(e+1),k), i.e. sends
to it allmi ∈M

(e)
i . Then it shuts-off.

(Output): At signal refresh (for epoch e + 1), each party

P
(e+1)
i ∈ C(e+1) stops all n pending instances of

LB-refresh(C(e),C(e+1),k) for k ∈ [n]. Its set V
(e+1)
i of

VPS
(e+1)

is thus the concatenation of the outputs (if any)

obtained in each of the instances.

Figure 3: Refresh(C(e),C(e+1))

Lemma 8. For any e ≥ 1, if all t+1 honest parties in C(e) own a
vps(e) when they receive the signal refresh, consider an execution of
Refresh uninterrupted during at least 3δ , then, it will exist at least
one vps(e+1) ∈ VPS(e+1) that all parties P (e+1)i ∈C(e+1) will have in

their local lists V (e+1)i .

Proof. A honest leader P
(e+1)
k is guaranteed to receive t + 1

correct contributions on vps(e) within δ . The combineMsg that

it makes from them, will be received by all t+1 honest parties in

C(e+1) within δ . All their t+1 signatures on it will be received by

all t+1 honest parties inC(e+1) within δ , enabling them to form the

same VPS
(e+1)

(possibly with different sets of t+1 signatures). □

4.6.2 Proof of Security, i.e., of UC implementation of FDP-AVSS. We

describe a simulator S, whose behavior depends on whether SO is

corrupt or honest (and on SR, to a much lesser extend). We noteSh
the behavior ofS in the case of an honest SO, andSc in the case of

a corrupt SO. We start with a description ofSh . The simulator runs

an internal copy of FBC, FAUTH, FNIZK and FCA. It simulates a

correct behavior of them, except that FNIZK does not check validity

of the witness given by honest parties, nor from SO if it is honest.

Importantly,S erases from its memory the witnesses received from

the simulated corrupt parties on behalf of FNIZK, straight after

having verified them. Thus, S does not perform any extraction.

Sh

Setup S collects the public keys (pk(1)i )i ∈I(1) of corrupt
parties in C(1) on behalf of the simulated FCA. Non-

correctly received keys are set to ⊥. For every simulated

honest party P
(1)

i ∈ C(1), it generates (sk(1)i , pk
(1)

i ) ←

KeyGen(), which it registers on FCA. It sets pk =
(pk(1)

1
, . . . , pk(1)n ).

Share Sh assigns input s̃ := 0 to the simulated honest SO,

which correctly does theDP-AVSS.Share, i.e., broadcasts
a PVSS of 0 encrypted under pk.

Refresh For e = 1: if the Refresh signal is received before

A allows the delivery of the broadcast from the simu-

lated honest SO to all simulated honest parties, then Sc
stops. For each epoch e: S receives a signal start from
all honest parties and simulates the Setup as above.

Open : PartOpen Upon receiving a receiving a request

from FDP-AVSS to deliver the delayed output s ∈ Fp
of “open”, while in some epoch eo , Sh waits that all

simulated honest parties receive a ṽps(eo ) ∈VPS(eo ). Sh
then generates false opening shares of honest parties on
ṽps(eo ) into s . [We could have specified private channels,

in order to avoid simulation for a honest SR, but in any

case this simulation is required for a corrupt SR]. This
simulation is computed as follows:

(1) First Sh does an inference of corrupt shares: from the

t+1 opening shares d̃i ∈H of ṽps(eo ) held by simulated

honest parties, it applies ShInfer to deduce the t cor-

rupt opening shares d̃i ∈I of ṽps(eo ).
(2) Second to simulate consistent opening shares from

these d̃i ∈I and the plaintext s , it applies ShSim to

deduce the (unique) corresponding t + 1 honest open-
ing shares di ∈Heo of s . Simulated honest parties

P
(eo )
i ∈ H (eo ) then query FNIZK for proofs of cor-

rect decryption for the (di )i ∈H(eo ) under their keys

pk(eo )i without providing any witness.

Open : Output We distinguish two cases:

(1) If SR is honest, S sends the opening shares gener-

ated in the previous step to the simulated copy of SR
through the simulated FAUTH on behalf of honest par-

ties. Once the simulated SR has received t+1 opening
shares from FAUTH, S allows FDP-AVSS to deliver to

SR the output of “open”.

(2) If SR is corrupt,S sends the simulated opening shares

generated in the previous step to the simulated cor-

rupt SR through FAUTH on behalf of honest parties.

We now define Sc . The simulations of the Setup, Refresh and

Output are identical to the ones of Sh , thus we only present the

differences with Sh .
10
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Sc

Setup Exactly as for Sh .

Share Sc waits for the broadcast from SO, via the simu-

lated FBC, to deliver an output to the simulated honest

parties in C(1). If this output is not a PVSS then it sets

s̃ := 0. Otherwise, Sc internally performs an opening of

it [using the secret keys of the simulated honest parties

in C(1) to generate t+1 opening shares] to obtain some

s̃ ∈ Fp . Sc sends (share, s̃) to FDP-AVSS.
Refresh Exactly as forSh [in the case e = 1: the precision

“simulated honest SO” is replaced by “simulated corrupt

SO”.]
Open : PartOpen Simulated honest parties follow the

protocol. [Namely: when some simulated honest P
(eo )
i

receives “Open ” in some epoch eo , for all ṽps(eo ) in
its list V

(eo )
i , it generates the opening shares of ṽps(eo )

using its simulated secret key.]

Open : Output Exactly as for Sh .

4.6.3 Indistinguishability with a Real Execution for a Corrupt SO,
i.e., Correctness of DP-AVSS. Since the simulated honest parties

follow the protocol, if SR is corrupt, then the view of E is identical

to one of an actual execution. If SR is honest, then there are only two

remaining variables based on which E can possibly distinguish the

simulated execution from the real one: the moment when the real
dummy SR outputs, and, in case it outputs, the value of this output.
Since Sc sends “open” to FDP-AVSS exactly when t+1 opening

shares are delivered to the simulated SR, we have that the real

dummy SR is delivered its output, by FDP-AVSS, exactly at the same

moment. Thus it remains to prove that the value received by the real

dummy SR is the same as the one opened in the simulated execution.

Thus we are brought back to proving correctness of DP-AVSS, i.e.,
that the (unique, if any) explainable secret of the PVSS of SO, is
equal to the opening of any VPS in the opening epoch eo .

Lemma 9 (Correctness of Refresh). For any e ≥ 1, any vps(e+1) ∈
VPS

(e+1) has exactly one threshold opening, furthermore there exists
a vps(e) ∈ VPS(e) such that both have the same threshold opening.

Proof. vps(e+1) =
(
e + 1 , c ′ , qvc

)
is signed by t+1 parties, thus

of which at least one is honest. This implies that this party ver-

ified that: there exists (i) a vps(e) =
(
e , c , qvc

)
; (ii) t+1 reshar-

ing contributions from parties in a set U computed from this

vps(e), i.e., all of the form (e, vps(e),c(i), π (i)) ∈ contribMsgi ; (iii)
such that Reshare.Combine is correctly evaluated, i.e. c(e+1) =

⊞i ∈U (λ
U
i ⊡ c

(i)). By Proposition 4 (1), denoting, for each i ∈ U: si

the unique explainable decryptions of the i-th coordinate of vps(e)

(of which knowledge is proven in the contribMsgi ), then we have

that c(e+1) has threshold opening into

∑
i ∈U (λ

U
i si ), which is a

threshold opening of vps(e). □

Lemma 10 (Correctness of DP-AVSS). For any epoch e ≥ 1, the
threshold opening of any vps(e) ∈ VPS(e) is equal to the (unique) one
of the PVSS(1) broadcast by SO.

Proof. By Lemma 9, the unique threshold opening of any vps(e) ∈
VPS

(e)
is equal to the one of some vps(e−1) ∈ VPS(e−1). We conclude

by induction down to e = 1, where the only vps(1) ∈ VPS(1) is the
PVSS(1) broadcast by SO. Furthermore it has one single explainable

opening, by perfect correctness of LHE. □

4.6.4 Proof of indistinguishability with a real execution for an honest
SO. We go through a series of hybrid games that will be used to

prove the indistinguishability of the real and ideal worlds. The

output of each game is the output of the environment.

The Game REALA . This is the actual execution of the protocol

DP-AVSSwith environment E and adversaryA (and ideal function-

alities (FCA, FN IZK )). We make the change that FNIZK does not

check validity of witnesses (if any) received from honest parties

nor from SO. This does not change its outputs, since honest partic-

ipants always provide correct witnesses when querying FNIZK in

the actual protocol.

The Game HybShSim . This game differs from the REAL proto-

col, in that the opening shares of every vps(eo ) ∈VPS(eo ), of honest
parties in the opening committee eo , which are sent to SR, are
now simulated as ShSim(s, (si )i ∈I(eo ) ), of which the arguments are

computed as follows. s is the input of SO. The opening shares of

corrupt parties: (si )i ∈I(eo ) , are obtained by tracing back the t+1

contributions (pvri ∈ PVR)i ∈U originating from C(eo−1), from

which vps(eo ) is formed. We compute their plaintext resharings

shares (s
(i)
i )i ∈U as follows, then apply the Lagrange reconstruc-

tion formula (equation (1)) on their coordinates in I(eo ). The ones

(s
(i)
i )i ∈U∩H(eo−1) from honest parties are those generated by them.

The ones: (s
(i)
i )i ∈U∩I(eo−1) from corrupt parties, are those given by

them to FNIZK, when generating their (pvri )i ∈U∩I(eo−1) .

Claim 10.1. REALA ≡ HybShSim

Proof. By correctness of the protocol (Lemma 10), s is equal

to the (unique) explainable threshold opening of any vps(eo ). By
perfect correctness of LHE, the (sj )j ∈I(eo ) are the unique explain-

able decryptions of the coordinates j ∈ I(eo ) of the vps(eo ). The
conclusion follows from Proposition 4 (2). □

The Game Hyb0Refresh. During the Refresh between C(e) and

C(e+1), the only place where the secret keys of honest parties of

C(e) are used is when they decrypt their coordinate of a vps(e) into
their plaintext share. We make the modification that they do not

decrypt but instead set to 0 (or any arbitrary value) this plaintext

coordinate. Notice that FNIZK still issues proofs of correct resharing,

since it does not check any witness from honest parties.

Claim 10.2. HybShSim ≡ Hyb0Refresh

Proof. We make a backward induction with a cascade a sub-

gamesHyb0Refresh[e, i] for each e ∈ {1, . . . , eo−1} and i ∈ [0, . . . ,n],
in which the modification has been made from committees e + 1
up to eo , and for honest parties up to i (so no modification is done

yet in C(e) if i = 0). In particular for any index [e, i] in this cascade,

we have the invariant that the decryption keys of parties in later

committeesC(≥e+1) are not used anymore. This invariant holds for

11
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the starting point of the induction, i.e., e := eo − 1, since parties in

C(eo ) do not use their decryption keys since HybShSim. We are thus

brought back to showing indistinguishability of Hyb0Refresh[e, i]
with Hyb0Refresh[e, i + 1] when P

(e)
i+1 is honest. The difference be-

tween the two is that, in the former, the PVR is generated by P
(e)
i+1

with plaintext equal to its actual decrypted share, while in the latter,

it is a PVR of 0. Since the PVR’s are encrypted under the keys of

parties of C(e+1), of which the secret keys are not used anymore,

we conclude by IND-CPA of PVSS (Prop 5). [To further set ideas,

this latter conclusion would not change even if E had been given

the secret key of P
(e)
i+1]. □

The Game Hyb0Share. This game is just like an execution of

Hyb
ShSim

except in the Share stage, where SO plays the protocol as

if it had input 0, even though it still sends s to FDP-AVSS. Notice
that FNIZK still issues proofs of correct sharing, since it does not

check any witness from SO.

Claim 10.3. Hyb0Refresh ≡ Hyb0Share

Proof. Since the private keys of honest parties of C(1) are not

used anymore since Hyb0Refresh, we can apply IND-CPA (Prop 5)

to the PVSS of SO, which is encrypted under their public keys. □

The Game HybDecRefresh . We make the reverse operation of

Hyb0Refresh: honest parties use again their secret keys and correctly

compute theRefresh. The same induction, this time in forward order

up to eo − 1, gives:

Claim 10.4. Hyb0Refresh ≡ HybDecRefresh

Note that up to this point, in all the previous games sinceHybShSim,
we still have that the corrupt opening shares, which are fed into

ShSim, are obtained by extracting the NIZKs of plaintext resharing

shares of the PVRs generated by corrupt parties of C(eo−1).

The Game HybShInferOpen . We now change the method to infer the

opening shares of corrupt parties fed into ShSim . We now use the

secret keys of parties in C(eo ) to correctly compute their opening

shares, but these are not the ones that we send to SR (otherwise

this would lead to an opening of 0, instead of s). Instead, we use
them as input of ShInfer to infer the opening shares of corrupt

parties.

Claim 10.5. HybDecRefresh ≡ HybShInferOpen

Proof. Both methods to infer corrupt shares produce the same

result, by Proposition 4 (3). □

Claim 10.6. HybShInferOpen = IDEALFDP-AVSS,S

Proof. This follows since the behavior of the ideal functionali-

ties (FN IZK , FCA, FAUTH, FBC) and of the honest parties inHybShInferOpen ,

are identical to the simulation done by S. □

5 OPTIMIZATIONS AND EXTENSIONS
5.1 Refresh in 2 Messages Instead of 3
Each P

(e+1)
k sends the reshare combineMsg directly to C(e+2). Par-

ties inC(e+2) then verify the combined n-sized ciphertext and, if the
verification passes: (i) generate a signature on it, (ii) and generate a

PVR of their share, then send both (i) and (ii) to leaders in C(e+2).

Each P
(e+2)
k forms both: a vps(e+1) out of t+1 signatures, and a

combined n-sized vector of ciphertexts out of the t+1 PVRs.

5.2 Communication in O(n3) per Refresh
In each of the 3 steps of DP-AVSS.Refresh, honest parties send a

worst-case total number of O(n4) bits. Indeed, each party sends

messages to all n parties, each consisting in a concatenation of a

worst-case number of n messages (each related to a vps(e)), each
containing a n-sized vector of ciphertext. We can bring down the

complexity of all three steps down to O(n3), as follows.
First, we pre-pend to each LB-refresh the following round-trip:

[pre-LB-refresh] Each P (e)i ∈ C(e) chooses one of its vps(e) ∈ V (e)i
and sends it to the leader P

(e+1)
k ∈C(e+1). Then P

(e+1)
k , upon re-

ceiving a vps(e) ∈VPS(e) for the first time, multicasts it to C(e).

Each P
(e)
i ∈C

(e)
, upon receiving for the first time from P

(e+1)
k some

vps(e) ∈ VPS(e), then executes LB-refresh(C(e),C(e+1),k) by send-

ing to P
(e+1)
k a single resharing contribution, generated from this

specific vps(e), instead .

Then, we have that the combineMsgs are appended with t+1
PVRs, in order to enable public verification that the combined ci-

phertext is a linear combination taking into account contributions

from at least t+1 distinct parties. We reduce their size down toO(n),
by the following easy adaptation of the technique of [GJM+21, p 13].

Each party appends, to every PVR that it generates (i) a n-sized vec-
tor of additively homomorphic commitment to the shares (ii) and

to the polynomial evaluation at 0, i.e., the plaintext re-shared share,

(iii) its signature on (ii). The leader then exhibits (i) the combined n-
sized vectors of commitments, obtained by Lagrange homomorphic

combination of the t+1 received vectors of commitments, along

with (ii) (iii) the t+1 signed commitments to the evaluations at 0.

Parties then verify that the Lagrange homomorphic combination

of (ii) are equal to the commitment to the secret of the n-sized
combined vector (i).

Finally, we can bring down the complexity of the last step by

having each player send its signature, on a combined vector of

ciphertexts, only to the leader P (e+1)k ∈C(e+1) fromwhich it received

it. Indeed, P
(e+1)
k will be able to form a vps(e+1) from the signatures

received. Thus, it will be able to hand-off this vps(e+1) to all leaders
inC(e+2) when performing pre-LB-refresh(or to all parties ofC(e+1),
in case this is the opening committee).

5.3 Adapting DP-AVSS to the Yoso Model
The computation model denoted “you only speak once” (“yoso”)

[GHK+21] was first introduced by [BGG+20] for proactive secret

sharing. As in our model, they consider a possibly infinite sequence

of committees, of which the members are uniquely determined
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by their public key, nonwithstanding several of them could run

on the same physical machine. Their corruption model is that the

adversary corrupts parties at random [GHM+21], and thus that the

choices of corruptions can be made by the simulator. This model is

very close to our static corruption model, although our methods

carry over adaptive corruptions.

The main requirement of “yoso” is that each party only speaks

once then erases its memory. On the face of it, DP-AVSS imposes

parties in C(e+1) to speak three times in a row, thus is not “yoso”.

But DP-AVSScan be easily compiled into “yoso” (although not the

improvement inO(n3) of §5.2), since the roles in each step are state-
less. In detail, we replace the entering committee by 3 committees:

C(e+1) the “secret holders”, C(e+1),k the “leaders” and C(e+1),v the

“verifiers”. At each Refresh, the exiting secret holdersC(e) generate
PVRs of the shares of the vps(e)s that they have, under the list of

public keys of C(e+1), i.e. of the entering “secret holders”. They

send them to each leader of C(e+1),k . Leaders combine then send

their combineMsg to the verifiers. The latter sign and send their

signatures to the secret holders C(e+1), enabling them to form lists

of vps(e+1) ∈ VPS(e+1).

5.4 Other Optimizations and Generalizations
NIZKs. UC NIZKs have size linear in the circuit proven. But

actually, the simulator in our proof in Section 4.6.2, does not per-

form any straight-line extraction of witnesses. Then, for the the

hybrid games, we need only simulation-sound extractability, not in

straight-line. The consequence is that, e.g., Bulletproofs [BBB+18],

which were recently shown to satisfy this property [GOP+22] under

the algebraic group assumption, are thus applicable in DP-AVSSin
place of FNIZK. Bulletproofs have logarithmic size in the circuit

proven, require no more setup than a random oracle, and their

usage in PVSS is optimized in [GHL22].

Efficient aggregation of k signatures out of n signers. In our bare

bulletin board PKI model: [BDN18] aggregate k signatures into one

group element, appended with the list of the k signing public keys.

[ACR21] prove (zero)-knowledge of k out of n signatures onm, in

size O(log(n)).

Changes of Sizes of Committees, of Threshold. To accommodate

an entering committee of size n′ = 2t ′ + 1, change accordingly the

parameters of PVReshare. Also, setting n > 2t+1 enables not to
wait for honest parties taking a very long time to respond, at the

cost of lowering the privacy threshold: this trade-off is denoted

“churn-tolerance” in [MZW+19].
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A COMPLEMENTS ON THE MODEL
We present in Fig. 4 the ideal functionality of a Bulletin Board of

Public Keys introduced in §2.2.1 as FCA.

FCA

1. Upon receiving the first message (Register, v) from party P,

send (Registered, P, v) to A; upon receiving ok from A, and

if this is the first request from P , then record the pair (P, v).

2. Upon receiving a message (Retrieve, P) from party Q , send

(Retrieve, P, Q ) to A, and wait for an ok from it. Then, if

there is a recorded pair (P, v) output (Retrieve, P, v) to Q. Else

output (Retrieve, P, ⊥) to Q .

Figure 4: The certification authority functionality, FCA.

We present in Fig. 5 the ideal functionality of Non-interactive

Zero-Knowledge proofs of knowledge, introduced in §2.2.3 asFN IZK .

FN IZK

The functionality is parameterized with an NP relation R of

an NP language L and a prover P .

Proof: On input (prove, sid, ssid, x,w) from P , ignore if

(x,w) < R. Request (network,proo f , x) to A. Upon

receiving (activate, π ) from A, store (x, π ) and send

(proo f , sid, ssid, π ) to P.

Verification: On input (veri f y, sid, ssid, x, π ) from any

party V , check whether (x, π ) is stored. If not, send

(network,veri f y, x, π ) to A and wait for an answer

(activate,witness,w). Upon receiving of the answer, check

whether (x,w) ∈ R and in that case, store (x, π ). If (x, π )
is stored, return (verification, sid, ssid, 1) to V , else return
(verification, sid, ssid, 0).

Figure 5: Non-Interactive Zero-knowledge functionality

B IND-CPA OF PVSS
Property 11 (IND-CPA of PVSS). Any PPT adversary A has neg-

ligible advantage in the following game with an oracle O, for any

threshold 1 ≤ t . A selects t indices I ⊂ [n], and gives to O a set

of t public keys (pki )i ∈I of its choice. Then O correctly generates

n − t public keys for the remaining indices (pki )i ∈[n]\I which it

shows to A. Then O tosses a bit b and subsequently responds to

equests from A as follows. Either (b = 1) then O returns to A,

upon each query s ∈ Fp , a PVShare(s), or, if (b = 0), a sample of

the following distribution over Cn , which we denote D:
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- the coordinates in I are LHE encryptions of uniform independent

values in Fp ;

- the remaining entries are LHE encryptions of 0.

Proof. We are going to bound the advantage of any adversary

A, by themaximum advantage of an adversaryALHE against oracle

OLHE of the following (t +1)-keys variant indistinguishability game

for LHE. The latter is upper-bounded by n − t times the advantage

for one-message indistinguishability, see e.g. [BS20, Thm 5.1]. OLHE
samples (n − t) LHE public keys (pkh )h∈H which it gives to ALHE.

OLHE tosses a bit b ∈ {0, 1} and subsequently has the following

behavior: When ALHE submits (n − t) chosen plaintexts (sh )h∈H
to OLHE either (b = 0) then OLHE returns (n − t) encryptions of 0:
(Enc(pkh, 0))h∈H , or: (b = 1) then OE returns actual encryptions

of the plaintexts (Enc(pkh, s
h ))h∈H .

The reduction is as follows. Upon receiving a set of keys (pkh )h∈H
from OLHE, then AE samples itself t key pairs (ski , pki )i ∈I , initi-
ates A, reorganizes the indices so that the indices chosen by A

correspond to I, receives from A the t corrupt keys and gives to

A the n − t ones (pkh )h∈H received from OLHE.

Upon receiving one challenge plaintext s from A, ALHE com-

putes the first step of PVShare on it, namely: (s1, ..., sn ) ← Share(s).

It then sends the challenge (n − t) plaintexts:
(
sh )h∈H to OLHE.

Upon receiving the response ciphertexts (ch )h∈H from OLHE, it

then computes the n-sized vector c ∈ Cn consisting of:

• The entries inI equal to correct encryptions

{
Enc(pki , si )i ∈I

}
that ALHE generates itself.

• The remaining entries are set to the {ch }h∈H received from

OE .

And sends c to A as response to its challenge. Upon answer a bit b
from ALHE, then AE outputs the same bit b to OE . Analysis:

• in the case where the ciphertexts {ch }h∈H are encryptions

of the actual n − t shares {sh }h∈H , then A receives from

ALHE a correctly generated PVSS of s;
• in the case where the ciphertexts {ch }h∈H are encryptions

of 0, then, by uniform independence of the t plaintext shares(
(si )i ∈I , we have that whatA receives fromAE is indistin-

guishable from a sample in the distribution D;

Thus in both cases b ∈ {0, 1} ,A is faced with the same distribution

as would have been generated by oracle O for the same b, thus the
distinguishing advantage of ALHE is the same as the one of A.

□
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