
Feel the Quantum Functioning: Instantiating
Generic Multi-Input Functional Encryption from

Learning with Errors (extended version)?

Alexandros Bakas, Antonis Michalas, Eugene Frimpong and Reyhaneh
Rabbaninejad

Tampere University of Technology, Tampere, Finland
{alexandros.bakas,antonios.michalas,eugene.frimpong,reyhaneh.rabbaninejad}@tuni.fi

Abstract. Functional Encryption (FE) allows users who hold a speci�c
decryption key, to learn a speci�c function of encrypted data while the
actual plaintexts remain private. While FE is still in its infancy, it is
our strong belief that in the years to come, this remarkable cryptograhic
primitive will have matured to a degree that will make it an integral
part of access-control systems, especially cloud-based ones. To this end,
we believe it is of great importance to not only provide theoretical and
generic constructions but also concrete instantiations of FE schemes from
well-studied cryptographic assumptions. Therefore, in this paper, we un-
dertake the task of presenting two instantiations of the generic work
presented in [8] from the Decisional Di�e-Hellman (DDH) problem that
also satisfy the property of veri�able decryption. Moreover, we present
a novel multi-input FE (MIFE) scheme, that can be instantiated from
Regev's cryptosystem, and thus remains secure even against quantum
adversaries. Finally, we provide a multi-party computation (MPC) proto-
col that allows our MIFE construction to be deployed in the multi-client
model.

Keywords: Functional Encryption · LearningWith Errors · Multi-Party
Computation · Veri�able Decryption

1 Introduction

In contrast to traditional cryptographic techniques, Functional Encryption (FE)
is an emerging cryptographic primitive enabling selective computations over en-
crypted data. FE has been described [11] as generalized public-key cryptography
that o�ers modern encryption capabilities such as cryptographic access control
through Attribute-Based Encryption (ABE) [23] where the decryption algorithm
results vary according to the decryption key used each time. Each decryption
key skf is connected to a function f . Unlike traditional public-key cryptography,

? This work was funded from the Technology Innovation Institute (TII), Abu Dhabi,
United Arab Emirates, for the project ARROWSMITH: Living (Securely) on the
edge.

2 A. Bakas et al.

the use of skf on a ciphertext Enc(x) does not recover x but a function f(x).
In this way, the actual value x remains private. A more recent work [19] has
introduced the general and promising notion of multi-input FE (MIFE). Here,
when ciphertexts Enc(x1), . . . ,Enc(xn) are provided, skf can be used to recover
f(x1, . . . , xn). MIFE appears to be a perfect match for real-life applications,
particularly cloud-based, as multiple users store large volumes of data in remote
and possibly corrupted entities. However, the majority of research in the topic
revolves around building generic schemes that do not support speci�c functions
except for sums [8], inner-products [1�3] and quadratic polynomials [24]. Though
practically FE could lead to innovative, hands-on and creative applications, it
still fails to meet those goals. We are persuaded that FE is of great impor-
tance and that only a group of modern encryption schemes can lead us into an
uncharted technological terrain. We hence attempted to narrow inconsistencies
between theory and practice.

Functional Encryption in Access Control FE is a cryptographic primitive
providing high-level access control and selective computations on encrypted data.
In traditional cryptography access to encrypted data is all-or-nothing. With FE
there is partial access to a function of the encrypted data and hence, limited ac-
cess to actual plaintexts. Medical records are typical examples that require cryp-
tographic access control, where the release of sensitive data involves ecnrypted
statistical databases and data mining. Additionally, the computed function does
not necessarily have to be a strict mathematical function. We could also consider
a scenario in which decrypting encrypted images with a cropping key, results in
a cropped version of the original image and nothing else. We are positive that
in the years to come, FE will play a signi�cant role in access control systems,
especially cloud-based.

Quantum-Secure Constructions Along with the numerous advantages that
technological evolution has to o�er, it is no secret that we are slowly moving
towards quantum age, where quantum computers will eventually replace today's
digital, machines. Quantum computers should not be seen simply as more pow-
erful supercomputers since they represent a whole new paradigm in computing.
In particular, quantum computers are, at least in theory, capable of performing
computations not attainable by traditional computer, no matter their process-
ing power. To this end, it is important to start replacing quantum-vulnerable
mathematical problems, used in traditional public-key encryption, with math-
ematical problems that are believed to be intractable from both classical and
quantum machines. As a result, over the past years, researchers have begun
showing great interest in designing encryption schemes based on such problems.
This is particularly evident in the case of Homomorphic Encryption [18], where
state-of-the-art constructions rely on the hardness assumption of the �Learn-
ing with Errors" (LWE) problem and its variation over rings of polynomials in
�nite �elds (RLWE) [12, 14]. With this in mind, in this paper we present a de-
tailed construction of a MIFE scheme that can be instantiated from a public-key
encryption scheme that remains secure under the LWE hardness assumption.

FQF 3

1.1 Contributions

Our contribution can be summarized as follows:

C1: The �rst contribution of this paper is an instantiation of the MIFE scheme
presented in [8] from the Decisional Di�e-Hellman Problem (DDH). Our
instantiation is based on a variation of the ElGamal cryptosystem [15], called
additively homomorphic ElGamal, whose IND-CPA security is proven under
the hardness assumption of DDH.

C2: We prove that our instantiation from DDH satis�es the property of veri�-
able decryption in a zero-knowledge fashion. In particular, using our DDH
instantiation, a user can verify that the functional decryption was honestly
computed without having access to the decryption key. This is extremely
important in cases where the decryptor is an untrusted third party such as a
Cloud Service Provider (CSP). Satisfying the property of veri�able decryp-
tion in FE, is an important step towards assuming stronger threat models,
by removing trust from, traditionally, fully trusted entities.

C3: The main contribution of our work is a modi�ed version of the generic scheme
from [8] that can be instantiated from LWE. More precisely, similarly to [8],
the main building block of our modi�ed scheme is an IND-CPA secure public-
key encryption scheme PKE. However, our work shows that Regev's cryp-
tosystem can be used as the PKE. While this modi�cation may seem like a
trivial extension, it needs to be treated carefully, because, in contrast to [8],
where the multiplication of the public keys (and the ciphertexts) is feasible,
in Regev's cryptosystem the public keys are non-squared matrices of equal
dimensions, therefore multiplication is not possible. To overcome this chal-
lenge, we provide novel de�nitions and properties in the place of Linear Key
Homomorphism (LKH) and Linear Ciphertext Homomorphism (LCH) used
in [8]. Finally, we present a formal proof of security for our novel construc-
tion.

C4: We also present a secure Multi-Party Computation (MPC) that can be used
as a generic compiler that turns a single-client MIFE, whose functional de-
cryption key is formed as a linear combination of n di�erent secret keys, to
a multi-client one. The idea is that instead of having one user generating
n public/private key pairs (pki, ski), to distribute the process to n di�erent
users where each user generates a unique (pki, ski). Then, using our MPC
construction, users cooperate with each other and send a masked version of
the functional decryption key to an untrusted third party, responsible for
executing functional decryption. Upon reception the untrusted party can re-
cover the functional decryption key without learning anything about each
individual ski, assuming that at least two users are honest.

1.2 Organization

The rest of the paper is organized as follows: In section 2, we discuss impor-
tant published works in the �eld of FE and MIFE. In section 3, we present all

4 A. Bakas et al.

the important background required for this work. Moreover, we brie�y recall
Regev's LWE-based cryptosystem on which we base our quantum-secure MIFE
construction. In section 4, we present the generic construction from [8] for which
we give an instantiation from DDH in section 5, and we further prove that our in-
stantiation satis�es the important property of veri�able decryption. In section 6
we present a novel construction, based on [8], a formal proof of security, and
an instantiation from the quantum-secure Regev cryptosystem. Subsequently, in
section 7, we provide a generic MPC-based transformation that transforms our
MIFE construction from the single-client to the multi-client model along with
a proof of security. section 8 comprises of our experimental results and �nally,
section 9 concludes the paper.

2 Related Work

The most direct ancestor of FE is undoubtedly ABE. In [23], Sahai and Wa-
ters presented a ground-breaking idea according to which the data owner could
express how they wish to share data directly in the encryption algorithm. In
particular, the data owner would provide a predicate f1 describing how the
data will be shared. Moreover, each user would receive a list of credentials L.
Then, decryption of a ciphertext encrypted with predicate f is possible if and
only if f(L) = 1. Another �relative" of FE can be found in the �eld of Search-
able Encryption (SE)(both in the symmetric and asymmetric cases) [5,6,10,16].
In an SE scheme, users can search directly on encrypted data for speci�c key-
words, withouht decrypting them. Functional encryption was then formalized as
a generalization of public-key encryption and [23] in [11]. Since then, numerous
studies with general de�nitions and generic constructions of FE have been pro-
posed [19,20,22,25]. Despite the promising works published, there is a clear lack
of research proposing FE schemes to support speci�c functions. This step would
be necessary to allow FE to transcend its limitations and provide the foundations
to reach its full potential. To the best of our knowledge, currently the number
of supported functionalities is limited to sums [4, 7], inner products [1�3] and
quadratic polynomials [24]. In this work, we �st present an instantiation from
DDH for the generic scheme presented in [8] and then we propose a MIFE scheme
for the sum of a vector's components that can be instantiated from LWE.

3 Preliminaries

In this section, we present the necessary notation and de�nitions needed to follow
this paper. The section is divided into �ve parts: We start by describing the basic
notations, then we give de�nitions about Public-Key Encryption, Functional
Encryption, Homomorphic Encryption and di�erential privacy.

1 In mathematical logic, a predicate is a a function that tests for some condition
involving its arguments and returns 1 if the condition is true and 0 otherwise.

FQF 5

Notation If Y is a set, we use y
$←− Y if y is chosen uniformly at random from Y.

The cardinality of a set Y is denoted by |Y|. For a positive integerm, [m] denotes
the set {1, . . . ,m}. Vectors are denoted in bold as x = [x1, . . . , xn]. A PPT
adversary ADV is a randomized algorithm for which there exists a polynomial
p(z) such that for all input z, the running time of ADV(z) is bounded by p(|z|).
A function negl(·) is called negligible if ∀ c ∈ N,∃ ε0 ∈ N such that ∀ ε ≥ ε0 :
negl(ε) < ε−c.

De�nition 1 (Inner Product). The inner product (or dot product) of Zn, for
two vectors x,y ∈ Zn is a function 〈·, ·〉 de�ned by:

f(x,y) = 〈x,y〉 = x1y1 + · · ·+ xnyn

De�nition 2 (`2 norm). The `2 norm of Zn for a vector x ∈ Zn is a function
‖·‖2 de�ned by:

f(x) = ‖x‖2 =

√√√√i=n∑
i=1

x2i

3.1 Public-Key Encryption

De�nition 3 (Public-Key Encryption scheme). A public-key encryption
scheme PKE for a message spaceM, consists of three algorithms PKE = (Gen,Enc,Dec).
A PKE scheme is said to be correct if:

Pr[Dec(sk, c) 6=m | [(pk, sk)← Setip(1λ)]∧ [m ∈M]∧ [c← Enc(pk,m)]] = negl(λ)

To formalize the security of a PKE scheme, we follow the IND-CPA paradigm.

De�nition 4 (Indistinguishability-Based Security). Let PKE = (Gen,Enc,Dec)
be a public-key encryption scheme. We de�ne the following experiments:

Exps−IND−CPA−β(ADV)

Initialize(λ, x0, x1)

(pk, sk)
$←− Gen(1λ)

Return pk
Challenge()

cβ
$←− Enc(pk,mβ)

Finalize(β′)
β′ = β

The advantage ε of ADV is de�ned as:

ε =

∣∣∣∣Pr[Exps−ind−CPA−0(ADV) = 1

−Pr[Exps−ind−CPA−1(ADV) = 1]

∣∣∣∣
We say that PKE is s-IND-CPA-β secure if

ε = negl(λ)

6 A. Bakas et al.

De�nition 5 (Linear Ciphertext Homomorphism (LCH)). We say that
a PKE scheme has linear ciphertext homomorphism if:

n∏
i =1

Enc(pki, xi) = Enc

(
n∏
i=1

pki,
n∑
i=1

xi

)

De�nition 6 (Linear Key Homomorphism (LKH)). Let (pk1, sk1) and
(pk2, sk2) be two public/private key pairs that have been generated using PKE.Gen.
We say that PKE has linear key homomorphism if sk1 + sk2 is a private key to
a public key computed as pk1 · pk2.

A direct result of de�nitions 5 and 6 is that if a PKE scheme is linear ci-
phertext and key homomorphic, then the public keys of PKE live in multi-
plicative group Gpub = (G, ·, 1Gpub

) and the private keys in an additive group
Hpriv = (H,+, 0Hpriv

).

3.2 Multi-Input Functional Encryption

De�nition 7 (Multi-Input Functional Encryption).

A Multi-Input Functional Encryption scheme MIFE for a message spaceM
is a tuple MIFE = (Setup,Enc,KeyGen,Dec) such that:

� Setup(1λ): The Setup algorithm is a probabilistic algorithm that on input the
security parameter λ, outputs a master public/private key pair (mpk,msk).

� Enc(mpk, x): The encryption algorithm Enc is a probabilistic algorithm that
on input the master public key mpk and a message x = {x1, . . . , xn} ∈ M,
outputs a ciphertext c = {c1, . . . , cn}.

� KeyGen(msk, f): The key generation algorithm KeyGen is a deterministic al-
gorithm that on input the master secret key msk and a function f , outputs
a functional key skf .

� Dec(skf , c): The decryption algorithm Dec is a deterministic algorithm that
on input a functional key skf and a ciphertext c, outputs f(x1, . . . , xn).

A MIFE scheme is said to be correct if:

Pr[Dec(skf , c) 6= f(x) | [(mpk,msk)← Setup(1λ)]

∧ [c← Enc(mpk,x)] ∧ [skf ← KeyGen(msk, f)]] = negl(λ)

Just like in the case of PKE we base our security de�nition on the selective-
IND-CPA formalization:

De�nition 8 (MIFE Indistinguishanility-Based Security).

For a MIFE scheme MIFE = (Setup,Enc,KeyGen,Dec) we de�ne the follow-
ing experiments:

FQF 7

Exps−IND−FE−CPA−β(ADV)

Initialize(λ, x0, x1)

mpk,msk
$←− Setup(1λ)

L← ∅
Output mpk
Key Generation(f)
L← L ∪ {f}
skf

$←− KeyGen(msk, f)
Output skf

Challenge()

cβ
$←− Enc(mpk,xβ)

Finalize(β′)
If ∃ f ∈ L :
yoyo f(x0) 6= f(x1)
yoyo Output ⊥
Else
β′ = β

The advantage ε of ADV is de�ned as:

ε =

∣∣∣∣Pr[Exps−ind−FE−CPA−0(ADV) = 1

−Pr[Exps−ind−FE−CPA−1(ADV) = 1]

∣∣∣∣
We say that PKE is s-IND-FE-CPA-β secure if

ε = negl(λ)

3.3 Background on LWE

For a real number x ∈ R, we denote by bxc the largest integer not greater than
x and by bxe = bx+ 1/2c the integer closest to x with ties broken upward.

De�nition 9 (Hermite Normal Form (HNF)). Let A ∈ Zn×mq . Assume that
the leftmost n columns A1 ∈ Zn×nq of A = [A1|A2] ∈ Zn×mq form an invertible
matrix over Zq. We can then replace A with its HNF as:

(1)A−11 ·A = [In|A = A−11 ·A2]

De�nition 10 (LWE Distribution). Let G be a discrete Gaussian of width
κ · q for some κ < 1 (error rate). For a vector s ∈ Znq called the secret, the LWE
distribution D over Znq ×Zq is sampled by choosing a ∈ Znq uniformly at random,
choosing e← G and outputting (a,b = 〈s,a〉+ e mod q).

De�nition 11 (Decision-LWE). Givenm independent samples (ai, bi) ∈ Znq×
Zq, where every sample is sampled either from D or from the uniform distribu-
tion, distinguish which is the case with non-negligible advantage.

Regev's cryptosystem Regev's cryptosytem is parametrized by an LWE di-
mension n, a modulus q and an error distribution G over Z. Note that public-keys
are Õ(n2) bits and ciphertexts Õ(n) bits where the Õ notation ignores logarith-
mic factors.

8 A. Bakas et al.

� The private key is a uniformly random LWE secret s ∈ Zn, and the public
key is m samples (ai, bi = 〈s,ai + ei) ∈ Zn+1

q drawn from D and collected as
the columns of a matrix

(2)A =

[
A
bT

]
∈ Z(n+1)×m

q

By de�nition, the private and the public keys satisfy the relation:

(3)(−s, 1)T ·A = eT ≈ 0(mod q)

� To encrypt a bit m ∈ Z2 using the public key A, a user �rst chooses a
uniformly random r ∈ {0, 1}m and outputs:

(4)c = A · r+
(
0,m ·

⌊q
2

⌉)
∈ Zn+1

q

� To decrypt a ciphertext using a secret key s the user computes:

(5)

(−s, 1)T · c = (−s, 1)T ·A · r +m ·
⌊q
2

⌉
= eT · r +m ·

⌊q
2

⌉
≈ m ·

⌊q
2

⌉
(mod q)

where the relations holds because s, eT and r are small. Upon calculating
m ·

⌊
q
2

⌉
the user simply checks whether the result is close to 0 or 1.

In [21] Regev proved that his cryptosystem is semantically secure, assuming
that the decision LWE is hard. More speci�cally, Regev proved that the hard-
ness of decision LWE is implied by the worst-case quantum hardness of lattice
problems.

4 Base Construction

In this Section, we brie�y recall the generic construction from [8].

Construction Let PKE = (Gen,Enc,Dec) be an IND-CPA secure cryptosystem,
that also ful�ls the LCH and LKE properties. Then de�ne MIFE as MIFE =
(Setup,Enc,KeyGen,Dec) where:

1. Setup(1λ, n): The setup algorithm invokes the PKE's key generation algo-
rithm Gen and generates n public/private key pairs as (pk1, sk1), (pk2, sk2) . . . , (pkn, skn).
The public keys are then used to create and output a master public/private
key pair (mpk,msk), wherempk = (params, pk1, . . . , pkn) andmsk = (sk1, . . . , skn)

2.

2 The public parameters params depend on the choice of the PKE scheme.

FQF 9

2. Enc(mpk,x): The encryption algorithm Enc, takes as input the master public
keympk and a vector x and outputs c = {c1, . . . , cn}, where ci = Enc(pki, xi).

3. KeyGen(msk): The key generation algorithm, takes as input the master secret
key msk and outputs a functional key sk as sk =

∑n
1 ski

3.
4. Dec(sk, c): The decryption algorithm takes as input the functional key sk

and an encrypted vector c and outputs PKE.Dec(sk,
n∏
i=1

c).

Correctness Correctness follows directly since:

MIFE.Dec (sk, c) = PKE.Dec

(
sk,

n∏
i=1

PKE.Enc(pki, xi)

)

= PKE.Dec

(
sk,PKE.Enc(

n∏
i=1

pki,
n∑
i=1

xi)

)
=

n∑
i=1

xi

where we used the LCH property. Since the LKE property holds, we know

that sk is a valid secret key that decrypts

n∏
i=1

c.

Theorem 1. Let PKE be an IND-CPA secure public key cryptosystem that is
additive key and additive ciphertext homomorphic. Moreover, let MIFE be the
base Multi-Input Functional Encryption construction from [8] which is obtained
though PKE. Then MIFE is s-IND-FE-CPA secure.

A detailed proof can be found in [8].

5 Instantiation from DDH

We are now ready to present an instantiation of the generic construction from [8]
from DDH. In particular, we will present an instantiation using the Additively
Homomorphic El Gamal cryptosystem as the public-key encryption scheme PKE.
For the needs of our proof, we rely on the fact that El Gamal remains secure
under randomness reuse, as proven in [9].

Theorem 2. Let MIFE be the generic construction from Section 4. Then MIFE
can be instantiated from El Gamal's cryptosystem.

Proof. It su�ces to prove that El Gamal satis�es the LCH and LKH properties
de�ned in de�nitions 5 and 6 respectively.

Let q be a prime and G a group of order q where the DHH assumption is
hard. Moreover, let g be a generator of G. Then we have that the private key

3 We omit the description of the function since in this case we are only focusing on
the sum

10 A. Bakas et al.

space is the group (Zq,+, 0Z) while the public key space is the group (G,×, 1G).
Then, an El Gamal ciphertext for a message x is:

c = (gr, pkr · gx)

where r is a random value used to ensure that the encryption algorithm is
probabilistic.

� LCH: If Enc is the Encryption algorithm of El Gamal, then we have:

Enc(pk1, x1) · Enc(pk2, x2) = grsk1gx1 · grsk2gx2 = gr(sk1+sk2) · gx1+x2

= Enc(pk1pk2, x1 + x2).

� LKH In the El Gamal cryptosystem we have that for a public/private key
pair (pk, sk) the following condition holds:

pk = gsk

Let (pk1, sk1), (pk2, sk2) be two public/private key pairs for an El Gamal
instantiation such that pk1, pk2 ∈ (G, ·, 0G) and sk1, sk2 ∈ (Z,+, 0Z). Then
we have:

pk1 · pk2 = gsk1 · gsk2g(sk1+sk2)

Moreover, since the groups (G, ·, 0G) and (Z,+, 0Z) are closed with respect
to multiplication and addition operations respectively, we conclude that
(pk1pk2, sk1 + sk2) is a valid public/private key pair.

5.1 Veri�able Decryption

As already mentioned, instantiating the generic MIFE construction from Sec-
tion 4 using DDH, allows users to verify the decryption result in an zero-
knowledge manner. This is extremely important as it allows us to considers
a stronger threat models. In particular, assuming a malicious curator of a cloud
database colludes with the CSP, could result to publishing modi�ed statistics
in an attempt to mislead data analysts. Hence, we show that an analyst that
only possess a function f(x) along with the public parameters of the encryp-
tion scheme, can verify that f(x) is indeed the decryption of Enc(mpk, (x =
x1, . . . , xn)) under the function f , without having access neither to the master
secret key, nor the functional decryption key for the underlying function. This is
done by simply calculating and verifying the equality of two discrete logarithms.
More precisely, and given that the �nal ElGamal ciphertext is given by:

(6)(u, v) = (gr, pkr · gf(x)),

the analyst needs to verify that:

FQF 11

(7)logpk

[(
gf(x)

)−1
· pkr · gf(x)

]
= logg(g

r)

as follows:

logpk

[(
gf(x)

)−1
· pkr · gf(x)

]
= logg(g

r)⇒ logpk

[
��

����1

gf(x)
· gf(x) · pkr

]
= logg(g

r)⇒

logpk (pk
r) = logg(g

r)⇒ r = r

(8)

Indeed, it can be seen that if a malicious party tampers with the result f(x)

and replaces it with f(x)′, then the term
(
gf(x)

′
)−1

will not cancel out along

with gf(x) and hence, the equality will not hold.

5.2 Instantiation from CL Framework

In the previous section, we presented an additively homomorphic instantiation
which was obtained by encoding the message in the exponent of an ElGamal
encryption (gr, pkr · gf(x)) where g is a generator of a cyclic group G. However,
this instantiation only supports a limited (logarithmic) number of additions. The
reason is that one has to recover f(x) from gf(x) and since Discrete Logarithm
(DL) problem must be intractable in G, it is essential to limit the size of message
in the exponent to ensure an e�cient decryption.

To enable an unbounded number of additions modulo prime q from the ci-
phertexts, Castagnos and Laguillaumie proposed the CL framework [13]. They
assume a group G where the Decisional Di�e-Hellman (DDH) assumption holds
and there exists a subgroup H of G in which the DL problem is easy. In the
introduced cryptosystem, the message space is Zq, where the prime q can be
scaled to meet the application needs, as its size is independent of the security
parameter.

5.2.1 Background on CL Framework CL framework is based on a DDH
group with an easy DL subgroup which is de�ned as a pair of algorithms (Gen,Solve)
described as:

� CL.Gen(1λ, q): this algorithm inputs security parameter λ and q as a µ-bit

prime for λ ≤ µ, and outputs public parameters as pp = (q, Ĝ,G,Gq,H, s̃, g, h, gq),
where

• Ĝ is a �nite group of order n̂ = q · ŝ, such that gcd(q, ŝ) = 1. Besides,
s̃ is de�ned to be an upper bound for ŝ with the condition that the

distribution of {gr, r $−→ {0, . . . s̃·q}} is computationally indistinguishable

from uniform distribution on Ĝ.
• G is a cyclic group of order n = q ·s with generator g, such that s divides
ŝ.

12 A. Bakas et al.

• Gq := {xq|x ∈ G} is a cyclic group of order s with generator gq.

• H is a unique cyclic group of order q with generator h, where g = gq · h.
� CL.Solve(q, pp, X): this is a deterministic polynomial time algorithm that
solves the DL problem in subgroup H:

Pr
[
x = x′

∣∣∣pp $←− Gen(1λ, q), x
$←− Zq, X ← hx, x′ ← Solve(q, pp, X)

]
= 1,

.

De�nition 12 (Hard Subgroup Membership Problem (HSM)). Let λ be
a positive integer and q be a µ-bit prime for λ ≤ µ. Also (Gen,Solve) generates
a DDH group with an easy DL subgroup. The advantage of a PPT adversary A
is de�ned as:

ε = |Pr

b = b′

∣∣∣∣∣∣∣
pp

$←− Gen(1λ, q), x
$←− D, x′ $←− Dq

b
$←− {0, 1}, X0 ← gx, X1 ← gx

′

q

b′ ← A(q, pp, Xb,Solve(.))

− 1/2|,

where distribution D is such that the distribution of {gx, x $←− D} is computa-

tionally indistinguishable from uniform distribution on G (same for Dq,{gxq , x
$←−

Dq}, and Gq). HSM −CL assumption holds for (Gen,Solve), if for all PPT ad-
versay A, AdvHSM−CLA ≤ negl(λ), where negl(λ) is a negligible function.

� CL.KeyGen(pp) this algorithm samples α
$←− Dq and computes gαq . It then

returns the key pair (sk, pk), where sk := α and pk := gαq .

� CL.Enc(pk,m) on inputm from the message space Zq and the public key, this
algorithm samples randomness r

$←− Dq and returns (c1, c2) = (grq , h
m · pkr).

� CL.Dec(sk, (c1, c2)) this algorithm computes M ← c2/c
sk
1 . It then runs m←

Solve(q, pp,M), and returns m.

The CL PKE scheme described above is proven to be semantically secure
under chosen plaintext attacks (IND-CPA) under the HSM − CL assumption
[13].

Theorem 3. Let MIFE be the generic construction from Section 4. Then MIFE
can be instantiated from CL.PKE scheme.

Proof. Similarly to our initial naive instantiation from DDH, we prove that CL
satis�es the LCH and LKH properties.

Let λ be a positive integer and q be a µ-bit prime for λ ≤ µ. Also (Gen,Solve)
generates a DDH group with an easy DL subgroup where the HSM − CL as-
sumption holds. Moreover, let gq, h be generators of groups Gq,H, respectively.

FQF 13

� LCH: If CL.Enc is the encryption algorithm of CL cryptosystem, then we
have:

CL.Enc(pk1, x1) · CL.Enc(pk2, x2) = grsk1q hx1 · grsk2q hx2

= gr(sk1+sk2)
q · hx1+x2

= CL.Enc(pk1pk2, x1 + x2).

� LKH In the CL cryptosystem we have that for a public/private key pair
(pk, sk) the following condition holds:

pk = gskq

Let (pk1, sk1), (pk2, sk2) be two public/private key pairs for a CL instanti-
ation such that pk1, pk2 ∈ (Gq, ·, 1Gq) and sk1, sk2 ∈ (Dq,+, 0Dq

). Then we
have:

pk1 · pk2 = gsk1q · gsk2q = g(sk1+sk2)
q

Since the groups (Gq,×, 1Gq) and (Dq,+, 0Dq
) are closed with respect to

multiplication and addition operations respectively, we conclude that (pk1 ·
pk2, sk1 + sk2) is a valid public/private key pair.

5.2.2 Veri�able Decryption Similarly to our previous instantiation, an an-
alyst can verify the correctness of the computations (i.e. verify that f(x) is the
correct decrypted plaintext) by checking if the following equality holds:

(9)e(u · hf(x), pk) ?
= e(v, gq)

Where e(·, ·.) is a bilinear map e : G × G → GT over multiplicative cyclic
groups G and GT. The veri�cation works as follows:

e(u · hf(x), pk)
= e(grq · hf(x), gskq)

= e(gr·skq · hf(x), gq)

= e(pkr · hf(x), gq)
= e(v, gq)

More information on bilinear maps can be found in [17].

14 A. Bakas et al.

6 MIFE for sums

We will now present a modi�ed version of the base construction from Section 4
that can be instantiated from LWE. In particular, our construction will use
Regev's cryptosystem as the public-key encryption scheme PKE. For the purposes
of our version we �rst need to de�ne new properties in the place of de�nitions 5
and 6. The reason for this is that in Regev's cryptosystem, the public keys (and
the ciphertexts) are non-squared matrices of equal dimensions and hence, we
cannot de�ne multiplication between two public keys or ciphertexts respectively.

De�nition 13 (Additive ciphertext homomorphism (ACH)). We say
that a PKE scheme has additive ciphertext homomorphism if:

n∑
i =1

Enc(pki, xi) = Enc

(
n∑
i=1

pki,
n∑
i=1

xi

)
De�nition 14 (Additive Key Homomorphism (AKH)). Let (pk1, sk1) and
(pk2, sk2) be two public/private key pairs that have been generated during PKE.Gen.
We say that PKE has additive key homomorphism if sk1+ sk2 is a private key to
a public key computed as pk1 + pk2.

De�nition 15 (Modi�ed MIFE for the summation of a vector's com-
ponents (mMIFE)). Let PKE = (Gen,Enc,Dec) be an IND-CPA secure cryp-
tosystem, that also ful�ls the ACH and AKE properties. Then we de�ne our
mMIFE as mMIFE = (Setup,Enc,KeyGen,Dec) where:

1. Setup(1λ, n): The Setup algorithm invokes the PKE's Gen algorithm and gen-
erates n public/private key pairs as (pk1, sk1), . . . , (pkn, skn). It outputs a
master public/private key pair as mpk,msk, where mpk = (params, pk1, . . . , pkn)
and msk = (sk1, . . . , skn).

2. Enc(mpk,x): The Encryption algorithm Enc, takes as input the master public
key mpk and a vector x and outputs c = {c1, . . . , cn}, where ci = Enc(pki, xi).

3. KeyGen(msk): The Key Generation algorithm, takes as input the master se-
cret key msk and outputs a functional key sk as sk =

∑n
1 ski.

4. Dec(sk, c): The Decryption Algorithm takes as input the functional key sk

and an encrypted vector c and outputs PKE.Dec(sk,
n∑
i=1

c)

Correctness The correctness of our construction follows directly since:

Dec (sk, c) = PKE.Dec

(
sk,

n∑
i=1

c

)
= PKE.Dec

(
sk,

n∑
i=1

PKE.Enc(pki, xi)

)

= PKE.Dec

(
sksk,PKE.Enc

(
n∑
i=1

pki,
n∑
1

xi

))
=

n∑
1

xi

FQF 15

Where we used the ACH property of PKE. Moreover, since the AKH property

holds, we know that sk‖·‖ is a valid secret key that decrypts

n∑
i=1

c.

Theorem 4. Let PKE be an IND-CPA secure public key cryptosystem that is
additive key and additive ciphertext homomorphic. Moreover, let mMIFE`1 be our
modi�ed Multi-Input Functional Encryption scheme for the `1 norm of a vector
space which is obtained though PKE. Then mMIFE`1 is s-IND-FE-CPA secure.

Proof Sketch: To prove Theorem 4 we will rely on a combination of the games
presented in de�nitions 4 and 8. In particular, we assume two algorithms A and
B are executed simultaneously but independently in which B is the adversary
in game 4 and A is the both the adversary in game 8 and the challenger in
game 8. Hence, A needs to simulate a perfect view of game 8. We prove that the
advantage of B is bounded by the advantage of A and hence, if B wins then A
also wins. However, this contradicts with the assumption that PKE is IND-CPA.

Proof. The proof begins with B sending (0, z) to the challenger C, where z is
an element sampled at random from the message space of PKE. Upon receiving
(0, µ), C generates a public/private key pair (pkC , skC), �ips a truly random coin
b and encrypts either 0 or µ under pkC according to the result of the random coin
to produce cb. Finally, C forwards the pair (pkC , cb) back to B. Upon reception,
B invokes A and as a result, receives two messages x0 and x1 such that ‖x0‖1=
‖x1‖14. To make sure that B only issues functional decryption keys queries for
vectors such that ‖x0‖1= ‖x1‖1, we impose the restriction that B only issues
queries to a vector space V ⊂M of dimension n such that ∀x ∈ V, ‖x‖1= 0 and
is not able to decrypt in other vector spaces. As a next step, B produces a basis
of V as (x1 − x0, r1, . . . , rn−1).

Key Generation The �rst thing B needs to do, is to generate the master public
key mpk. To do so, B samples n−1 linearly independent vectors r1, . . . , rn−1 such
that ∀i ∈ [1, n− 1] : ri ∈ V and each ri is also linearly independent to x1 − x0.

The canonical vectors of the basis are then e =
[
α · (x1 − x0) +

∑n−1
1 zj

]
, where

α = (α1, . . . , αn) and αi =
x1,i−x0,i

‖x1,i−x0,i
‖22
. Subsequently, B executes (pkzj , sksj) ←

PKE.Gen,∀j ∈ [1, n− 1] and sets:

pki = αi · pkC +

n−1∑
j

pkzj and mpk = (pk1, . . . , pkn). (10)

Note that while skC is not known to B, due to the AKH property of PKE B
is unknowingly setting ski = αi · skC +

∑n−1
1 skzj

4 Note here that we abuse the notation of the `1 norm to denote the sum
∑n

1 xi where
x = (x1, . . . , xn)

16 A. Bakas et al.

Functional Decryption Keys B receives queries for functional decryption
keys from A. To reply to such a query, all B has to do, is set sk =

∑n−1
1 skzj .

Challenge Ciphertexts At some point A outputs two messages x0 and x1

such that ‖x0‖ to B. According to the game in the de�nition 8, B is supposed
to �ip a random coin β ∈ {0, 1}, and reply to A with cβ . However, recall that
B not only needs to simulate a perfect view for A, but also extract as much
information as possible in order to win its own indistinguishability game of the
public-key encryption scheme PKE. To do so, B �ips the truly random coin β
but instead of replying with cβ , sets the challenge ciphertext to be:

c = α · cb + PKE.Enc

(
n−1∑
i=1

pkzj , 0

)
+ PKE.Enc(0el,xβ) (11)

where 0el in equation 11 denotes the zero element of the space in which the
public keys live.

Finally, A outputs a guess for β. If A correctly guess �, then B guesses that C
encrypted 0. Otherwise, if A fails to guess β, then B guesses that C encrypted µ.
For a clearer presentation, we distinguish between two cases based on C's choice.

C1: C encrypted 0: Assuming that C encrypted 0, then equation 11 becomes:

c = PKE.Enc(α · pkC , 0) + PKE.Enc

(
n−1∑
i=1

pkzj , 0

)
+ PKE.Enc(0el,xβ)

= PKE.Enc(α · pkC +
n−1∑
i=1

pkzj + 0el, 0 + 0 + xβ) = PKE.Enc(pki,xβ)

It is evident, that in this case,
mathcalB simulates a perfect view of the environment for A, and hence, if
A can guess β with advantage εA, then the advantage of B, εB in guessing
that C wil be exaclty the same. Thus:

εA = εB (12)

C2: C encrypted µ: Following the same procedure as in the previous case, if C
encrypted µ instead of 0, then the challenge ciphertext from equation 11
becomes:

c = PKE.Enc(α · pkC , α · µ) + PKE.Enc

(
n−1∑
i=1

pkzj , 0

)
+ PKE.Enc(0el,xβ)

= PKE.Enc(α · pkC +
n−1∑
i=1

pkzj + 0el, α · µ+ 0 + xβ)

= PKE.Enc(pki, α · µ+ xβ) = PKE.Enc(pki,x
′)

However, recall that α is de�ned as: α = x1−x0

‖x1−x0‖22

FQF 17

Hence, x′ is:

x′ = xβ + α · µ =
µ

‖x1 − x0‖22
(x1 − x0) + xβ

=
µ

‖x1 − x0‖22
(x1 − x0) + x0 + β(x1 − x0)

If we now set v = µ
‖x1−x0‖22

+β, we see that the challenge message x′ becomes:

x′ = v · x1 + (1− v)x0 (13)

which is exactly the message that corresponds the the challenge ciphertext.
Note that x′ ∈ V since it is a linear combination of elements that live in V
and whose coe�cients sum up to one. Hence, x′ is well de�ned. Finally, β is
information theoretically hidden as the distributions of u is independent of
β. Hence, in this case we have that:

εB = 0 (14)

Combining equations 12 and 14 we end up with εB = εA. Hence, the best
advantage one can get against the CPA security of our construction presented in
de�nition 15, is bounded by the best advantage one can get against the IND-CPA
security of the public key encryption scheme PKE. In other words, we proved
that if A breaks our MIFE construction, then there exists a PPT algorithm B
that that wins the IND-CPA game of PKE and hence, PKE cannot be IND-CPA
secure, which contradicts with our initial assumption that PKE is IND-CPA
secure. ut

Functional Keys for Vectors in Di�erent Vector Spaces: As mentioned,
A is only allowed to request functional keys for vectors living in a vector space
V ⊂M , where ∀x ∈ V : ‖x‖1= 0. Notice that by allowing A to obtain functional
decryption keys for vectors x /∈ V , our scheme can be trivially broken. However,
this would imply that B can generate such functional decryption keys, which
is impossible since B does not know skC . Hence, the generated functional keys
can only decrypt ciphertexts whose plaintexts are elements of V . This is a valid
assumption since otherwise, we would demand security in a scenario where the
master secret key is known to the adversary.

6.1 Instantiation from LWE

What remains to be done to show that our novel construction can be instantiated
from LWE is proove the following theorem:

Theorem 5. Let mMIFE be our modi�ed construction for the summation of a
vector's components. Then our construction can be instantiated using Regev's
cryptosystem.

Proof. To prove our theorem, it su�ces to show that Regev's cryptosystem is
both additive-ciphertext and key homomorphic. Just like in the case of the DDH
instantiation, we rely on the fact that the randomness is shared between users,
and hence, two users can use the same randomness to produce their ciphertexts.

18 A. Bakas et al.

ACH A ciphertext from Regev's cryptosystem is of the form c = Ar+(0, x·
⌊
q
2

⌉
).

For visual clari�cation, we can write the above relation as c = Ar+ g(x), where
g(x) = x ·

(
b q2
⌉
). Hence, for two ciphertexts c1, c2 we get:

c1 + c2 = A1r + g(x1) +A2r + g(x2) = (A1 +A2)r + g(x1 + x2) (15)

And thus, Regev's cryptosystem is additive ciphertext homomorphic.

AKH The secret keys on Regev's cryptosystem are samples uniformly from Znq .
Since Znq is closed under addition, we know that

∑n
1 ski =

∑n
1 si ∈ Znq . What

remains to be done, is to show that
∑n

1 ski is a valid private key for a public
key of the form

∑n
1 (Aski + ei), which is true as long as

∑n
1 ei remains small.

This can be seen from the fact that a private/public key pair needs to satisfy
the following:

(16)

(
−

n∑
1

ski, 1

)T
·A =

n∑
1

eT ≈ 0(mod q)

Hence, we see that Regev's cryptosystem satis�es both the ACH and AKH
properties and as a result, it can be used to instantiate our modi�ed construction
mMIFE.

Security of the instantiation A direct result of theorems 4 and 5 is that by
instantiating our construction using Regev's cryptosystem, then our scheme is
quantum-secure.

7 From Single-Client to Multi-Client MIFE

In this section, we present a generic tranformation that tranforms our construc-
tion from being solely multi-input to also being multi-client. The main challenge
in this setting is the generation of the functional decryption key. Our solution
relies on an MPC in which all users input a masked version of their secret key
ski. Then, they send the masked keys to a central authority, that outputs the
functional decryption key as the sum of all ski's without learning anything about
each individual ski. More precisely, the problem we are trying to solve is formally
described below:

Probelm Statement 1 (MIFE`1 with Multi-Client Support) Let U = {u1, . . . , un}
be a set of users. Each user uj ∈ U generates a public/private key pair (pkj , skj)
for a public-key encryption scheme satisfying the properties de�ned in de�ni-
tions 5 and 6, and uses pkj to encrypt a message xj. Additionally, assume that
all generated ciphertexts are outsourced and stored in a remote location operated
by an untrusted (i.e. possible malicious) CSP. Furthermore, we assume that an
analyst A (e.g. a user from U) wishes to perform statistics on the data stored
on the CSP. Our multi-client construction shows how a legitimate analyst can
do this without learning any valuable information about the individual values xj.

FQF 19

MPC Upon request of A, each user ui ∈ U generates a random number ri and
breaks it into n shares as ri = ri,1+· · ·+ri,n. Each share will be sent to a di�erent
user from the set U = {u1, . . . , un}. Upon receiving n− 1 di�erent shares, each
user ui mask her private key ski as bi = ski + ri −

∑n
j=1 rj,i, and sends the

masked key to A. When A has gathered all the masked keys, she computes the
functional decryption key sk as sk =

∑n
1 bi. The MPC is illustrated in �gure 1.

MPC

A generates rA
$−→ Z

A writes rA as rA = ri,1 + · · ·+ ri,n
for j ∈ [1, n− 1] do:
yoyo Send ri,j to uj
for uj ∈ U/{A} do:
yoyo uj generates rj

$−→ Z
yoyo Express rj as rj = rj,1 + · · ·+ rj,n
yoyo Send rji to ui, ∀ui ∈ U/{A}
yoyo Compute masked version of the key as bj = skj + rj −

∑n
`=1 rki after

having received every share from the rest of the users
yoyo Send bj to A
A computes the functional decryption key as

∑n
1 bj =

∑n
1 skj = sk

Fig. 1: Functional Decryption Key Generation in the Multi-Client Setting

It is important to highlight that splitting and distributing the random num-
bers to the di�erent users, allows the users to work in parallel for the MPC and
hence, we overcome the limitations that would emerge by using a ring topology.

Theorem 6. Let ADV be an adversary that corrupts at most n − 2 users out
of those in U . Then, ADV cannot infer any information about the secret keys of
the legitimate users.

Proof. Recall that each user receives n − 1 shares from the remaining users.
Assuming that ADV has colluded with n− 2 users, we conclude that ADV will
know the n · (n− 2) shares of the compromised users. Moreover, ADV will also
know the n−4 shares sent from the legitimate users ul and u` to the compromised
ones. In other words, ADV knows all the exchanged shares except from the ones
that ul and u` keep for themselves as well as the ones exchanged between ul and
u`. More speci�cally, the shares rl,l and r`,` are kept with ul and u` respectively,
while the shares r`,l and rl,` are exchanged between ul and u`. We notice that:

(17)sl = skl + rl − (r1,l + · · ·+ rl,l + · · ·+ r`,l + · · ·+ rn,l)

and
(18)s` = sk` + r` − (r1,` + · · ·+ rl,` + · · ·+ r`,` + · · ·+ rn,`)

Where the underlined terms are the ones that ADV does not know. Equa-
tions 17 and 18 can also be written as:

sl = skl+
n∑

j 6=l,`

(rl,j−rj,l)+rl,` − rl,` and s` = sk`+
n∑

j 6=`,l

(r`,j−rj,`)+r`,l − r`,l

20 A. Bakas et al.

We see that for ADV to �nd the the secret keys skl and sk`, she needs to
solve a system of two equations with four unknown terms. Hence, we conclude
that even in the extreme scenario where n− 2 users are corrupted, ADV cannot
infer any information about the keys of the legitimate users. ut

8 Experimental Results

In this section, we present a brief evaluation of an implementation of the instance
of the generic construction described in Section 5. To this end, we implement the
core functions of the construction on a standalone Linux machine, and measure
the performance when applied to a real dataset. Our evaluations focused on
the Setup, Encryption, and KeyGen functions. The experiments described in
this section were conducted on an Intel Core i5-8279U CPU @ 2.40 GHz x2
Ubuntu 20.04 Desktop with 2GB RAM. Additionally, we utilized an Additive
EC-Elgamal C library5 to implement the basic cryptographic operations needed
to implement the proposed construction. To closely mimic the multi-party nature
of our construction,we perform our experiments on a real-world dataset obtained
from the European Centre for Disease Prevention and Control6, and conduct
each experiment 50 times to �nd an average.

Setup Phase: Experiments in this phase focused on analyzing the processing
time for generating a unique pair of keys for each row, and encrypting a speci�c
chosen value on that row. In this instance, we chose the number of deaths as
our value of interest. In total, the selected dataset has 61901 rows, however
to provide a comprehensive evaluation of the setup process, we performed our
experiments on a varying number of rows from 10000 to the maximum number
of rows. The number of rows directly corresponds to the number of unique key
pair and ciphertexts being computed. The processing time for generating 10,000
unique keypairs and computing 10,000 ciphertexts was 2.353 seconds while the
processing time was 12.791 seconds for 60,000 ciphertexts (Figure 2).

Functional Key Generation: In this phase, we measured the execution time
for computing the Functional Decryption key in the KeyGen function and time
taken to compute the �nal ciphertext in the Encryption algorithm. As with the
Setup function, we evaluated both functions for a varying number of keys and
ciphertexts from 10,000 to 60,000 based on the unique keys and ciphertexts gen-
erated. For 10,000 keys, it took 0.226 seconds to compute the function decryption
key (Figure 3a) and 0.415 seconds to generate the �nal ciphertext (Figure 3b).
While for 60,000 keys and ciphertexts, it took 1.316 seconds and 2.379 seconds
respectively (Figure 3a and Figure 3b).

5 https://github.com/lubux/ecelgamal
6 https://www.ecdc.europa.eu/en/publications-data/download-todays-data-
geographic-distribution-covid-19-cases-worldwide

FQF 21

0 1 2 3 4 5 6

·104

0

2

4

6

8

10

12

14

Number of Rows

P
ro
ce
ss
in
g
T
im

e
(s
ec
o
n
d
s)

Fig. 2: Setup Phase

0 1 2 3 4 5 6

·104

0

0.5

1

1.5

2

2.5

3

Number of Rows

P
ro
ce
ss
in
g
T
im

e
(s
ec
o
n
d
s)

(a) KeyGen Function

0 1 2 3 4 5 6

·104

0

0.5

1

1.5

2

2.5

3

Number of Rows

P
ro
ce
ss
in
g
T
im

e
(s
ec
o
n
d
s)

(b) Encryption Function

Science & Reproducible Research: To support open science and repro-
ducible research, and provide other researchers with the opportunity to use,
test, and hopefully extend our scheme, we have anonymized our source code and
made it publicly available online7.

9 Conclusion

The future will inevitably bring to the fore the need to exploit the power and
functionality of a modern cryptographic technique such as FE. It is our �rm
belief that future access-control systems, especially cloud-based ones will rely
less on traditional encryption and more on computations over encrypted data.
To this end, it is of great signi�cance, to start designing schemes that remain
secure even against quantum attackers, an imminent threat closer than ever
before.

7 https://anonymous.4open.science/r/FeelQuantum-A4C4

22 A. Bakas et al.

References

1. Abdalla, M., , D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption
for inner products: Function-hiding realizations and constructions without pairings.
In: Advances in Cryptology � CRYPTO 2018 (2018)

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryp-
tion schemes for inner products. In: IACR International Workshop on Public Key
Cryptography. pp. 733�751. Springer (2015)

3. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer

4. Bakas, A., Michalas, A.: Multi-input functional encryption: e�cient applications
from symmetric primitives. In: 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). pp. 1105�
1112. IEEE (2020)

5. Bakas, A., Michalas, A.: Power range: Forward private multi-client symmetric
searchable encryption with range queries support. In: 2020 IEEE Symposium on
Computers and Communications (ISCC). pp. 1�7. IEEE (2020)

6. Bakas, A., Michalas, A.: Nowhere to leak: A multi-client forward and backward
private symmetric searchable encryption scheme. In: IFIP Annual Conference on
Data and Applications Security and Privacy. pp. 84�95. Springer (2021)

7. Bakas, A., Michalas, A., Ullah, A.: (f) unctional sifting: A privacy-preserving rep-
utation system through multi-input functional encryption. In: Nordic Conference
on Secure IT Systems. pp. 111�126. Springer (2020)

8. Bakas, A., Michalas, A., Dimitriou, T.: Private lives matter: A di�erential pri-
vate functional encryption scheme. In: The 12th ACM Conference on Data and
Application Security and Privacy (2022)

9. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient en-
cryption schemeas. In: International Workshop on Public Key Cryptography. pp.
85�99. Springer (2003)

10. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: International conference on the theory and applications
of cryptographic techniques. pp. 506�522. Springer (2004)

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: De�nitions and challenges.
In: Theory of Cryptography Conference. pp. 253�273. Springer (2011)

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS '12 (2012)

13. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Cryptographers' Track at the RSA Conference. pp. 487�505. Springer (2015)

14. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology
� ASIACRYPT 2017. pp. 409�437. Springer International Publishing, Cham (2017)

15. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469�472 (1985)

16. Frimpong., E., Bakas., A., Dang., H., Michalas., A.: Do not tell me what i cannot
do! (the constrained device shouted under the cover of the fog): Implementing sym-
metric searchable encryption on constrained devices. In: Proceedings of the 5th In-
ternational Conference on Internet of Things, Big Data and Security - IoTBDS,. pp.
119�129. INSTICC, SciTePress (2020). https://doi.org/10.5220/0009413801190129

https://doi.org/10.5220/0009413801190129

FQF 23

17. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryp-
tographers. Discrete Appl. Math. 156(16), 3113�3121 (sep 2008).
https://doi.org/10.1016/j.dam.2007.12.010, https://doi.org/10.1016/j.dam.

2007.12.010

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing. p. 169�178.
STOC '09, Association for Computing Machinery, New York, NY, USA (2009)

19. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 578�
602. Springer (2014)

20. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Annual Cryptology Conference. pp.
536�553. Springer (2013)

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6) (Sep 2009), https://doi.org/10.1145/1568318.1568324

22. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Proceedings of the 17th ACM conference on Computer and communica-
tions security. pp. 463�472 (2010)

23. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) Ad-
vances in Cryptology � EUROCRYPT 2005. pp. 457�473. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2005)

24. Sans, E.D., Gay, R., Pointcheval, D.: Reading in the dark: Classifying encrypted
digits with functional encryption. IACR Cryptology ePrint Archive 2018, 206
(2018)

25. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Annual Cryptology Conference. pp. 678�697. Springer (2015)

https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1145/1568318.1568324

