
Post-Quantum Secure Boot on Vehicle Network
Processors

Joppe W. Bos∗, Brian Carlson∗, Joost Renes∗, Marius Rotaru∗, Daan
Sprenkels†, and Geoffrey P. Waters∗

NXP Semiconductors
∗ firstname.lastname@nxp.com

† daan@dsprenkels.com

Abstract. The ability to trust a system to act safely and securely
strongly relies on the integrity of the software that it runs. To guaran-
tee authenticity of the software one can include cryptographic data such
as digital signatures on application images that can only be generated
by trusted parties. These are typically based on cryptographic prim-
itives such as Rivest-Shamir-Adleman (RSA) or Elliptic-Curve Cryp-
tography (ECC), whose security will be lost whenever a large enough
quantum computer is built. For that reason, migration towards Post-
Quantum Cryptography (PQC) is necessary. This paper investigates the
practical impact of migrating the secure boot flow on a Vehicle Network
Processor (S32G274A) towards PQC. We create a low-memory fault-
attack-resistant implementation of the Dilithium signature verification
algorithm and evaluate its impact on the boot flow.

Keywords: Post-Quantum Cryptography · Digital Signatures · Secure Boot ·
Automotive Processors · S32G274A

1 Introduction

The concept of digital signatures, invented by Diffie and Hellman [6], is one of the
core cryptographic building blocks to construct secure protocols. Its main goal
is to provide message authentication against (the public key of) a sender. Given
a signature with respect to a message and public key, it should be impossible
(i.e., computationally infeasible) to modify either message or public key without
verification of the signature failing. Typical use cases include verifying a signature
over a software update, or over firmware installed on a device during the boot
process, to prevent any malicious modification of the intended image. These
serve as the basis of trust for any other applications running on a system. For
example, modern cars feature service-oriented gateways that are responsible for
transfering data between various vehicle networks, handle Over-The-Air (OTA)
updates, communicate with the cloud, etc.



2 Bos, Carlson, Renes, Rotaru, Sprenkels, Waters

Secure Boot. The goal of secure boot is to guarantee integrity and authenticity
of the software running on a system. Although there are different ways in which to
achieve this, ultimately the confidence in a system leads back to a so-called Root
of Trust (RoT). For example, an RoT can consist of executable code and (hashes
of) keys in Read-Only Memory (ROM) that performs various initializations,
verifies the authenticity of the firmware, and finally passes control to the (now
authenticated) firmware. The requirements on RoTs are well-documented by
various organizations, e.g., see TCG [4, Part 1 §9.5.5] or GlobalPlatform [10],
and its implementation should hold up against strong testing and certification
(e.g., ISO 26262) requirements. In particular, in order to prevent any of the
ROM code being modified, or executable instructions skipped altogether, the
RoT should be protected against physical fault attacks [3,2].

Since both security requirements as well as cost of implementation for RoTs
are high, their design typically aims to provide the necessary security require-
ments with minimal footprint. As such, in most modern systems the boot flow is
not completed when the ROM code passes on control. Instead, more advanced
features are offloaded to a (second-stage) boot loader, which is verified by ROM
code and made responsible for the remainder of the boot sequence. Of course,
this boot loader can in turn verify and advance control to the next stage, creating
a chain of trust. In complex ecosystems distinct parties can be responsible for
the different stages in the chain: while immutable hardware such as ROM needs
to be established at manufacturing time by a Tier-1 or Tier-2 supplier, second
(or higher) stage boot loaders can rely on memory that is programmed only later
in the process by Original Equipment Manufacturers (OEMs), for example. This
chain can extend all the way to end users running their Operating System (OS)
of choice.

Post-Quantum Digital Signatures. All widely used and deployed approaches
to realize digital signatures are either based on Elliptic Curve Cryptography
(ECC) [21,29] or the Rivest–Shamir–Adleman (RSA) [36] algorithm. However,
with the steady progress in the development of a quantum computer, the secu-
rity of these approaches is threatened. If large-scale quantum computers are to
become a reality, Shor’s algorithm [40] will be able to recover ECC/RSA pri-
vate keys in polynomial time. To prepare for this threat, alternative public-key
algorithms are necessary. These are typically referred to as post-quantum, or
quantum-safe, algorithms.

As opposed to the already well-established state of classical digital signatures,
post-quantum alternatives are still very much in development. One promising di-
rection is that of hash-based signatures, which is arguably the most mature vari-
ant. The two instantiations eXtended Merkle Signature Scheme (XMSS) and
Leighton-Micali Signatures [28] (LMS) have been established as Requests For
Comments (RFCs) by the Internet Engineering Task Force (IETF) [15,28], and
have recently been published as a NIST Special Publication 800-208 [5]. They
are based on well-established cryptographic primitives (i.e., hash functions) and
have very fast signature verification times. The main downside is that both signa-



Post-Quantum Secure Boot on Vehicle Network Processors 3

ture schemes are stateful on the end of the signer, which can seriously complicate
key management. Their stateless counterpart SPHINCS+ [14] solves this issue,
but at the cost of significantly increasing the signature size. Other alternatives
explore digital signatures based on the hardness of multivariate quadratic equa-
tions, most notably the Rainbow scheme [7], or based on error-correcting codes
and isogenies. Unfortunately either their keys or signatures are extremely large,
or they are relatively inefficient, making them difficult to apply in embedded
scenarios.

We focus instead on lattice-based digital signatures, which have a rich his-
tory and a wide variety of options relying on different (but related) hardness
assumptions. One approach in lattice-based cryptography is based on Regev’s
work introducing the Learning With Errors (LWE) problem [35], which relates
to solving a “noisy” linear system modulo a known integer. This problem can
be used as the basis for a signature scheme, as shown by Lyubashevsky [25], by
improving on his idea to apply Fiat-Shamir with aborts [24] to lattices. A more
specialized version is based on the Ring Learning With Errors (R-LWE) prob-
lem [27,32], which works in a special ring (more specifically the ring of integers of
a cyclotomic number field) that offers significant storage and efficiency improve-
ments compared to LWE. Although R-LWE has additional algebraic structure
and relies on the (worst-case) hardness of problems in ideal lattices, no signifi-
cant concrete improvements in cryptanalysis are known. Finally, a combination
of many of these ideas (plus various improvements) resulted in CRYSTALS–
Dilithium [8] based on Module-LWE.

In an effort to standardize such algorithms the US National Institute of
Standards and Technology (NIST) put out a call for proposals [30] to submit
candidate algorithms in 2016. As of July 2020, seven out of fifteen remaining
candidates have been marked as finalists of which a subset is expected to be
standardized in 2022.

Related work. Sanwald, Kaneti, Stöttinger and Böhner performed a thor-
ough investigation of secure boot in the automotive domain [37]. Integration of
post-quantum secure key exchange and digital signature verification has been
studied before. The main investigations have been around hash-based signature
schemes, since they have already been standardized by NIST [5]. They come
with some potential disadvantages of requiring to keep a state during signature
generation. An impact assessment of hash-based post-quantum secure schemes
on secure boot is studied by Kampanakis, Panburana, Curcio and Shroff [19].
Hermelink, Pöppelmann, Stöttinger, Wang and Wan perform an investigation
into Authenticated Key Exchange (AKE) combining XMSS and NewHope [13],
while Feritzmann, Vith, Flórez and Sepúlveda analyze lattice-based Key Encap-
sulation Mechanisms (KEMs) for automotive systems [9]. Also, Kumar, Gupta,
Chattopadhyay, Kasper, Krauß and Niederhagen [23] investigate how hash-based
schemes can be integrated into a secure SoC platform around RISC-V cores and
evaluated on an FPGA.



4 Bos, Carlson, Renes, Rotaru, Sprenkels, Waters

As far as we are aware, integration of lattice-based schemes into the secure
boot flow has been not investigated before. In this work we focus on the NIST
signature finalist Dilithium. Dilithium is often considered for embedded appli-
cations due to its favorable runtime and relatively small size, for example the
embedded implementation from [12,34] and the improvements presented in [11].

Our contributions. We investigate the practical impact of protecting the se-
cure boot flow for vehicle network processors against quantum attacks. This is
realized by integrating the Dilithium digital signature scheme into the secure
boot process of the S32G platform. As part of this work we created a fault-
attack resistant (against single-targeted faults) Dilithium signature verification
algorithm, which uses significantly less memory than the state of the art. This
implementation was integrated in the S32G Hardware Security Engine (HSE)
secure boot flow (cf. Section 4). We have measured the latency of our Dilithium
verification algorithm in a regular setting and using pre-hashing with SHA-256.
Our results (Section 4.3) make it clear that the use of post-quantum cryptogra-
phy does have an impact on the (one-time) installation time of an application
image. However after installation, the S32G uses a reference proof instead of
verifying the original signature, which means that the boot time is not affected
by the signature scheme. We evaluate these results and find that the impact
is fairly minimal: a transition to post-quantum secure boot can be considered
practical for this application.

Organization. We begin with a description of the Dilithium digital signature
scheme in Section 2. We describe the S32G and its (secure) boot flow in Section 3,
and the integration results of Dilithium in Section 4. Finally, we present our
conclusions in Section 5.

2 Preliminaries

The goal of this section is to provide some background information on the
Dilithium digital signature scheme, For a full description we refer to its specifi-
cation [8,26].

The security of Dilithium is based on hard problems related to ideal lattices,
as opposed to popular classical schemes based on the difficulty of factoring (RSA)
or solving discrete logarithms (e.g., DSA, ECDSA, EdDSA). More precisely, it
relies on the hardness of Module Learning With Errors (M-LWE) [27], or (vari-
ants of) Module Short Integer Solution (M-SIS). Intuitively, the first underlies
the key generation where the public part of the key t is computed as

t = As1 + s2 ,

where the secrets s1 and s2 are generated from a small centered binomial dis-
tribution and A a random k × ` matrix (where k and ` depend on the security
level). Recovering s1 and/or s2 from t is by definition as hard as solving M-LWE.



Post-Quantum Secure Boot on Vehicle Network Processors 5

On the other hand, the M-SIS assumption can be used to show that forging sig-
natures is infeasible.

Although the underlying mathematical structures are very different from
their classical counterparts, the design of the signature scheme itself is interest-
ingly enough quite similar. The construction works by first defining an interac-
tive sigma protocol, consisting of a commitment, challenge and response. This is
turned into a non-interactive signature scheme using the Fiat-Shamir heuristic.
Analogous to variants of Schnorr identification and signature schemes, the re-
ponse for Dilithium is generated as z = y+ cs1. However, crucially, this relation
holds over the integers as opposed to a prime field as is the case for Schnorr. This
has the particular consequence that the distribution of z (which is part of the
signature) is not necessarily independent of s1, potentially leaking information
about the secret key. It can be shown that z is independent from s1 if and only
if ‖z‖∞ is large enough, which is explicitly checked before outputting z. If this
fails, the signing procedure is aborted and restarted with an updated counter.
This design is called Fiat-Shamir with aborts and leads to variable-time signa-
ture creation [24]. Fortunately, this does not impact the constant-time signature
verification.

Dilithium supports signatures on messages M of abritrary length by initi-
ating the signing procedure with µ = SHA3(SHA3(pk)‖M). That is, a hash over
the message prepended with a hash over the public key, binding the message to
the public key. However, there are limitations to directly applying this to the
message (e.g., a large application image). Firstly, by design of Dilithium this
fixes the choice of SHA3 as the message hash algorithm. For large messages
the initial hash can be the deciding factor for the efficiency of signing, mak-
ing efficient implementation critical. However, especially on existing platforms,
hardware acceleration for SHA3 is not necessarily available, while it might be
for other hash functions. As we shall see in Table 1, for an image of 128KiB
on the S32G274A processor the choice between µ = SHA3(SHA3(pk)‖M) and
µ = SHA3(SHA3(pk)‖SHA2(M)) is the difference between the initial hash causing
a huge slowdown or having negligible impact.

The scheme can be instantiated for three security levels as defined by NIST.
Its lowest security level (Level 2) is designed such that the computational re-
sources required to break the security are at least as high as those needed to
those needed for finding collisions on a 256-bit hash function. Its medium (Level
3) and high (Level 3) security levels are constructed such that they are at least as
hard to break as recovering a key for a 192-bit and 256-bit (ideal) block cipher,
respectively. The respective signatures consist of 2420, 3293 and 4595 bytes,
while the public keys are 1312, 1952 and 2592 bytes long. This is relatively small
compared to most other digital signature finalists in the NIST standardization
effort. However, when we compare this to the size of RSA and ECC keys and
signatures the post-quantum equivalents are still significantly larger compared
to what we are used to.



6 Bos, Carlson, Renes, Rotaru, Sprenkels, Waters

3 S32G Vehicle Network Processors

3.1 Platform Description

In this work we use an S32G vehicle network processor as the target platform for
the impact assessment of integrating post-quantum cryptography in the secure
boot flow. This high-end automotive processor is developed by NXP Semicon-
ductors and part of a larger S32 automotive platform which includes the S32K,
S32R and S32V and is designed to meet the safety and security requirements in
the automotive and industrial domains (i.e., compliance with IEC 61508 [16] and
ASIL-D classification in ISO 26262 [17]). Typical uses include service-oriented
gateways, domain controllers, vehicle computers and safety processors. The S32G
consists of a combination of microcontrollers (MCUs) based on the Arm Cortex-
M7, and microprocessors (MPUs) based on Arm Cortex-A53. These Application
CPUs are combined with several types of memory (SRAM, DRAM, NOR/NAND
Flash) and various hardware accelerators. Most notably, it contains a Hardware
Security Engine (HSE) which supports both symmetric and (classical) asymmet-
ric cryptography accelerators, a random number generator, and dedicated secure
memory. The HSE serves both as a secure environment for host applications, as
well as being responsible for (part of) the boot flow if secure boot is enabled.

The precise configuration depends on the choice of model: we deploy the
S32G274A which contains 3 Arm Cortex-M7 cores, 4 Arm Cortex-A53 cores, and
8 MB of system RAM. Each of the MCUs runs in a delayed lockstep configuration
at a maximum frequency of 400 MHz and has 32 KB instruction and data caches.
The MPUs are configured as 2 clusters of 2 cores each running at a maximum
frequency of 1 GHz. Every core has access to 32 KB L1 instruction and data
caches, while each cluster shares another 512 KB of L2 cache. Optionally, the A53
clusters can be configured to also run in a delayed lockstep setting, effectively
removing one of the clusters from an application’s point of view but increasing
the fault tolerance.

3.2 Secure Boot on the S32G274A

The S32G274A provides two modes of startup, a normal-start-up sequence (also
referred to as “normal boot”) and a secure start-up sequence (also referred to as
“secure boot”). The secure boot process involves a series of stages. In each stage,
a new piece of code is executed after passing all necessary checks for authenticity
and optionally decryption of the protected content. In case the authentication
fails, the related CPU subsystem remains in reset, potentially rendering the
device inoperant, or at least not operating as originally designed for the targeted
application

In the secure startup process, the S32G starts operating a trusted-boot stored
Read-Only Memory (ROM) firmware (BootROM), that is responsible for veri-
fying, decrypting, and loading the HSE Security firmware (HSE-FW) into HSE
secure memory before handing over the control to it. Once HSE-FW is up and
running, it is responsible for initiating the next boot stage, by verifying and



Post-Quantum Secure Boot on Vehicle Network Processors 7

Fig. 1. Secure boot flow for the S32G274A.

optionally decrypting the Application (Bootloader), before starting the Appli-
cation CPUs. The authenticity check is based on cryptographic primitives. In
particular, digital signatures schemes that are supported for authenticating ap-
plication images are RSA [36] with various padding schemes [33], ECDSA [38],
and EdDSA [1,31].

The HSE requires three essential components for the boot sequence, which
need to be installed before enabling secure boot. For example, this can be done
by executing an application that performs the installation via the normal boot
sequence, or through the serial interface. Firstly, any user keys (i.e., those not
already in ROM) that are to be used by the HSE-FW to check the authenticity
of the application need to be provisioned. Secondly, the application images need
to be installed in non-volatile memory. This is done with the use of Secure
Memory Regions (SMRs), which are regions in Non-Volatile Memory (NVM)
defined by an address, a length, and an (initial) proof of authenticity (e.g., a
digital signature linked to a previously provisioned key). Finally, the user has
to specify the Application CPUs for which SMRs require verification before
continuing with the boot flow (and which sanctions are applied on failure). The
Application (Bootloader) and the Application can be associated with one or
more SMRs. The HSE secure boot configuration can be locked by advancing the
device lifecycle, disabling any future changes to the configuration.

It should be noted that the above description is a very high-level view: in real-
ity, the S32G274A boot sequence is highly configurable and supports a multitude
of options. A particularly interesting one is the ability to use reference proofs of
authenticity for SMRs. On initial SMR installation, the HSE-FW will check the
initial authenticity proof that was stored in non-volatile memory (e.g., the digital
signature). If the initial authenticity proof verifies correctly, the HSE-FW com-
putes a reference authenticity proof that is stored internally in the HSE. As the
application has already been authenticated with an initial proof of authenticity,
the requirements on the reference proof are lighter. Therefore verification of the
reference proof can be much faster than the initial one. During secure boot, the
HSE-FW only verifies the SMRs by checking the reference proofs, significantly
speeding up the boot procedure. The S32G also supports runtime (periodically or
on-demand) attestation, meaning that SMRs can be verified (initial or reference)
during the execution.



8 Bos, Carlson, Renes, Rotaru, Sprenkels, Waters

Fig. 2. Overview of booting using Secure Memory Regions.

4 S32G274A Post-Quantum Secure Boot

In Section 3 we summarized the S32G platform and its boot flow. In this section,
we describe our Dilithium implementation for the HSE core and how this was
integrated into the HSE-FW to support its signature verification in the boot
flow. Finally, we discuss the installation of the secure memory regions selecting
features that are most appropriate for our setting.

4.1 Dilithium Software

The Dilithium submission to the NIST standardization effort is accompanied by
various implementations [26]. Some of the parameter sets for Dilithium have also
been integrated and optimized for pqm4 : a testing and benchmarking framework
for the Arm Cortex-M4 [20]. The implementations supported in pqm4 provide
a good overview of the state-of-the-art performance of the post-quantum algo-
rithms within some constraints related to the Arm Cortex-M4 platform. For
example, the total memory available is 112 + 16 KB (SRAM1 and SRAM2).
Moreover, it should be noted that these implementations ensure a runtime in-
dependent of any secret key material but are not protected against active [3,2]
(faults) or passive [22] (side-channel) attacks. For critical applications, such as
secure boot on vehicle network processors, protection against these advanced
attacks is often a minimal requirement.

We implemented the Dilithium algorithms for all parameter sets from scratch
and ensured they comply with the proposed specification and pass the Known-
Answer-Tests provided in [26]. Our main focus is on the signature verification
since this is the only functionality required in the secure boot flow. For verifica-
tion the protection against passive attacks is not relevant; a side-channel attack



Post-Quantum Secure Boot on Vehicle Network Processors 9

tries to deduce information about the bits of the secret key material used during
execution based on, for instance, the observed power consumption of the device.
However, no secret key material is used during signature verification. Protection
against fault attacks is required since it would be trivial to force acceptance of a
wrong signature by introducing a well-targeted fault in the implementation. Our
implementation includes countermeasures against single-targeted fault attacks:
this is achieved by both adding countermeasures protecting the control flow as
well as algorithmic checks to ensure no steps are skipped or memory regions have
been altered.

As can be observed from the pqm4 benchmarking framework, the stack con-
sumption of Dilithium is significantly larger compared to the classic public-key
counterparts (such as RSA and ECC). The stack requirement for signature ver-
ification for Dilithium 3 reported by pqm4 is around 58 KB. Recent work [11]
has shown how to reduce this stack to around 10 KB. Our fault attack resistant
Dilithium verification code requires less than 3 KB of additional stack for all
parameter sets. This is a huge improvement over previous works: still, it is an
order of magnitude larger compared to signature verification based on elliptic
curves.

There are two variants of Dilithium specified in the supporting documen-
tation: the main version where symmetric primitives for matrix expansion are
instantiated with SHAKE, and a second version where AES is used. The lat-
ter was included mostly to demonstrate the efficiency of Dilithium on platforms
which do not have support for SHAKE yet or have dedicated hardware sup-
port for AES. In this work we only focus on the recommended variant using
SHAKE. For the SHAKE implementation we use (a slightly modified version of)
the assembly code published in the eXtended Keccak Code Package1 (XKCP).

4.2 Firmware Integration

Given a functional Dilithium implementation, the next step is to update the
HSE-FW to support its use. This is made easy by the fact that the Dilithium
signature verification API (as mandated by NIST) is virtually identical to that of
RSA and elliptic-curve-based signature schemes. The main complications arise
from the fact that the memory use of Dilithium is higher, both in terms of key
and signature size as well as stack. However, keys still easily fit into the key
catalog, while 3 KB stack can be handled by the HSE. Hence we observed no
significant obstacles in adding Dilithium support to the boot flow.

In order to evaluate and benchmark the integration, we created a simple
demo application. For this purpose we require the compiled application images
to be accompanied by a Dilithium signature, for which we wrote a stand-alone
command-line tool. This tool was written in C, and was built around the avx2
implementation of Dilithium from the CRYSTALS team.2 Using our signing

1 https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/
KeccakP-1600-inplace-32bi-armv7m-le-armcc.s

2 https://github.com/pq-crystals/dilithium

https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/KeccakP-1600-inplace-32bi-armv7m-le-armcc.s
https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/KeccakP-1600-inplace-32bi-armv7m-le-armcc.s
https://github.com/pq-crystals/dilithium


10 Bos, Carlson, Renes, Rotaru, Sprenkels, Waters

tool, we pack the compiled application code into a flash image, together with
a Dilithium signature and the public key under which the code was signed,
and load it together with our demo application image into flash. We also use
the demo application as boot loader. On first boot, when secure boot is still
disabled, the demo application loads the Dilithium key and signature into the
HSE. Following the description in Section 3.2, it installs our application code
in a Secure Memory Region using the attached digital signature, and enables
secure boot on the device. To verify whether the secure boot configuration was
effective, we can query the HSE Core Boot status, which contains the info on
which SMRs were correctly verified during boot. In our development setup we
do not advance the lifecycle of the device, as that would brick our development
setup.

4.3 Performance Results

Beyond validating that a functional Dilithium-based secure boot setup is feasible,
it is of course interesting to compare its performance to the status quo. When
secure boot is enabled, the boot latency is dominated by signature verification.
Therefore, it is sufficient to measure Dilithium verification latency, and compare
it to the verification latencies of a selection of other signature schemes.

The latency is not only determined by the choice of signature scheme, but
also by the length of the application image. All relevant schemes sign and verify
in essentially two steps. First, the variable-length message is pre-hashed down to
a fixed-size digest, possibly including padding, a public key, a commitment, etc.
Afterwards the digest is processed to create the final digital signature. Unfor-
tunately, although this step is essentially independent of the signature scheme,
the choice of hash function does slightly differ. For example, for ECDSA [41] a
hash function specified in FIPS 180 [39] should be used (e.g., SHA-256) that is
applied only on the message itself, while in EdDSA [18] pre-hashing is optional.
The Ed25519 instantiation does not pre-hash, reducing the message size implic-
itly together with a prefix in an application of SHA-512, while Ed25519ph first
explicitly reduces the input message using SHA-512. On the other hand, the
Dilithium signature scheme signs arbitrary-length messages by hashing them
together with the public key, using SHAKE-256. Although the choice of hash
function (assuming appropriate length is chosen) is independent of the security
of the public-key signature scheme, it can have significant impact on the per-
formance. More concretely, by offering hardware support for SHA-2 and not for
(variants of) SHA-3, the S32G274A offers a clear performance benefit for SHA-2.
Therefore we investigate two variants: DilithiumX for X ∈ {2, 3, 5} where ap-
plication images are signed directly with Dilithium, and DilithiumX-ph where
a SHA-256 hash over the image is signed instead. To investigate the impact of
hashing, we measure the verification of a signature on both a small image (1 KiB)
and a larger image (128 KiB).

We distinguish between the installation time of an application image where
the digital signature of Dilithium is verified (the original proof of authenticity)
and boot time where only the reference proof is verified. Of course, a user can opt



Post-Quantum Secure Boot on Vehicle Network Processors 11

to also verify the proof authenticity on each boot, but the performance impact
is large (even in a classical setting), while there are no (significant) security
benefits. Because verification of the reference proof does not depend on the choice
of digital signature scheme, the boot time is actually not affected by switching to
a post-quantum variant. Although the installation for Dilithium is slower than
for RSA and elliptic-curve based variants, it is only performed once (or a few
times) and its runtime is not as critical. We summarize all of our measurements
in Table 1.

Table 1. Latencies of installation (inst.) and boot in milliseconds for supported algo-
rithms on the S32G274A. Key sizes are reported in bytes. The pre-hash (ph) variants
of Dilithium first hash the image using SHA-256, and verify the Dilithium signature
over the hash.

Alg. Size 1KiB 128KiB

PK Sig. Inst. Boot Inst. Boot

RSA 4K 512 512 2.6 0.0 2.7 0.2
ECDSA-p256 64 64 6.2 0.0 6.4 0.2

Dilithium2 1312 2420 12.1 0.0 158.9 0.2
Dilithium3 1952 3293 17.8 0.0 164.4 0.2
Dilithium5 2592 4595 26.6 0.0 173.3 0.2

Dilithium2-ph 1312 2420 11.1 0.0 11.3 0.2
Dilithium3-ph 1952 3293 16.7 0.0 16.9 0.2
Dilithium5-ph 2592 4595 25.5 0.0 25.7 0.2

From our benchmarks, we see that Dilithium verification of small images
is 5–10 times slower than RSA 4K and 2–5 times slower than ECDSA-p256,
depending on the chosen post-quantum security level. The security level for
Dilithium2, Dilithium3 and Dilithium5 is as at least as high as AES-128, AES-
192 and AES-256 respectively, for both classical as well as quantum adversaries,
which can help guide in choosing the appropriate security level for a use case.

When verifying small images, the Dilithium signature verification completes
in less than 30 ms for all variants. Looking at the results for the verification
of larger images without pre-hashing, we see latencies up in the hundreds of
milliseconds. As mentioned, this is almost completely attributed to the SHAKE-
256 hash has that is applied to the image. With additional SHA-256 pre-hashing,
the large-image verification latencies are almost equal to the latencies we measure
for small images (actually even lower). It is clear that without hardware support
for SHAKE-256, the image verification is dominated by the hashing of the image.
In fact, even with pre-hashing the dominating cost in Dilithium is the pseudo-
random matrix generation using the SHAKE-128 eXtendable Output Function
(XOF). Hence, improved latencies for SHAKE variants would significantly help
for low-latency signature verification using Dilithium. We do not observe this in



12 Bos, Carlson, Renes, Rotaru, Sprenkels, Waters

the case of RSA 4K and ECDSA-p256, since they hash the image using SHA-
256 (for which hardware acceleration is present). However, we re-iterate that the
signature verification only impacts installation time of the SMR and is irrelevant
for the boot time, for which low latency is much more crucial.

5 Conclusions

The main challenges that can be expected when migrating from classical signa-
ture verification schemes such as RSA or ECC to post-quantum variants such
as Dilithium, are an increase in memory (keys, signatures as well as stack) and
runtime. The significantly larger public keys and signatures do not cause any
real practical problems on our target platform in the setting of vehicle network
processors. Moreover, we showed that in this setting of signature verification
the amount of stack space required for cryptographic operations needs to be
increased only marginally. The performance of Dilithium signature verification
is indeed worse than that of ECC/RSA verification. However, as this is only
performed during installation time, there is no impact on the boot time itself.
We believe a transition to post-quantum secure boot can be considered practical
for this application.

References

1. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (Sep / Oct 2011). https://doi.org/10.1007/
978-3-642-23951-9_9

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (Aug 1997). https://doi.org/10.1007/BFb0052259

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults (extended abstract). In: Fumy, W. (ed.) EURO-
CRYPT’97. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (May 1997). https:
//doi.org/10.1007/3-540-69053-0_4

4. Challener, D., Goldman, K.: Trusted Platform Module Library Specification, Fam-
ily “2.0”, Level 00, Revision 01.59 (2019), https://trustedcomputinggroup.org/
work-groups/trusted-platform-module/

5. Cooper, D., Apon, D., Dang, Q., Davidson, M., Dworkin, M., Miller, C.: Recom-
mendation for stateful hash-based signature schemes. SP 800-208, National Insti-
tute of Standards and Technology (2020)

6. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

7. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y., Kannwis-
cher, M., Patarin, J.: Rainbow. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


Post-Quantum Secure Boot on Vehicle Network Processors 13

8. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES
2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268,
https://tches.iacr.org/index.php/TCHES/article/view/839

9. Fritzmann, T., Vith, J., Flórez, D., Sepúlveda, J.: Post-quantum cryptography
for automotive systems. Microprocessors and Microsystems 87, 104379 (2021).
https://doi.org/https://doi.org/10.1016/j.micpro.2021.104379, https://
www.sciencedirect.com/science/article/pii/S0141933121005299

10. GlobalPlatform Technology: Root of Trust Definitions and Requirements Ver-
sion 1.1 (GP_REQ_025) (2018), https://globalplatform.org/specs-library/
globalplatform-root-of-trust-definitions-and-requirements/

11. Greconici, D.O.C., Kannwischer, M.J., Sprenkels, D.: Compact dilithium im-
plementations on cortex-M3 and cortex-M4. IACR TCHES 2021(1), 1–
24 (2021). https://doi.org/10.46586/tches.v2021.i1.1-24, https://tches.
iacr.org/index.php/TCHES/article/view/8725

12. Güneysu, T., Krausz, M., Oder, T., Speith, J.: Evaluation of lattice-based signature
schemes in embedded systems. In: International Conference on Electronics, Circuits
and Systems (ICECS). pp. 385–388. IEEE (2018)

13. Hermelink, J., Pöppelmann, T., Stöttinger, M., Wang, Y., Wan, Y.: Quantum safe
authenticated key exchange protocol for automotive application. In: 18th escar
Europe : The World’s Leading Automotive Cyber Security Conference (Konferen-
zveröffentlichung) (2020). https://doi.org/10.13154/294-7549

14. Hulsing, A., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag,
S.L., Kampanakis, P., Kolbl, S., Lange, T., Lauridsen, M.M., Mendel, F., Nieder-
hagen, R., Rechberger, C., Rijneveld, J., Schwabe, P., Aumasson, J.P., West-
erbaan, B., Beullens, W.: SPHINCS+. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

15. Hülsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS: Extended
Hash-Based Signatures. RFC 8391 (2018)

16. International Electrotechnical Commission (IEC): Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. IEC 61508 (2010)

17. International Organization for Standardization (ISO): Road vehicles - functional
safety. ISO 26262 (2018)

18. Josefsson, S., Luisvaara, I.: RFC 8032: Edwards-Curve Digital Signature Algorithm
(EdDSA). Internet Research Task Force (IRTF) (Jan 2017)

19. Kampanakis, P., Panburana, P., Curcio, M., Shroff, C.: Post-quantum hash-based
signatures for secure boot. In: Silicon Valley Cybersecurity Conference. Springer
(2020). https://doi.org/10.1007/978-3-030-72725-3

20. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
benchmarking NIST PQC on ARM Cortex-M4. Workshop Record of the Second
PQC Standardization Conference (2019)

21. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–
209 (1987)

22. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (Aug 1999).
https://doi.org/10.1007/3-540-48405-1_25

23. Kumar, V.B., Gupta, N., Chattopadhyay, A., Kasper, M., Krauß, C., Niederha-
gen, R.: Post-quantum secure boot. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE). pp. 1582–1585. IEEE (2020)

https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/https://doi.org/10.1016/j.micpro.2021.104379
https://www.sciencedirect.com/science/article/pii/S0141933121005299
https://www.sciencedirect.com/science/article/pii/S0141933121005299
https://globalplatform.org/specs-library/globalplatform-root-of-trust-definitions-and-requirements/
https://globalplatform.org/specs-library/globalplatform-root-of-trust-definitions-and-requirements/
https://doi.org/10.46586/tches.v2021.i1.1-24
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://doi.org/10.13154/294-7549
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-72725-3
https://doi.org/10.1007/3-540-48405-1_25


14 Bos, Carlson, Renes, Rotaru, Sprenkels, Waters

24. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 598–616. Springer, Heidelberg (Dec 2009). https://doi.org/10.1007/
978-3-642-10366-7_35

25. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4_43

26. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé,
D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 1–23. Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/
978-3-642-13190-5_1

28. McGrew, D.A., Curcio, M., Fluhrer, S.R.: Hash-Based Signatures. RFC 8554, RFC
Editor (04 2019), https://www.rfc-editor.org/rfc/rfc8554.txt

29. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO’85. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (Aug 1986).
https://doi.org/10.1007/3-540-39799-X_31

30. National Institute of Standards and Technology: Post-quantum cryptography stan-
dardization. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization

31. National Institute of Standards and Technology: Digital signature standard (dss)
(draft) (October 2019), fIPS PUB 186-5 Federal Information Processing Standards
Publication

32. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM
STOC. pp. 461–473. ACM Press (Jun 2017). https://doi.org/10.1145/3055399.
3055489

33. PKCS #1: RSA cryptography standard. RSA Data Security, Inc. (Sep 1998), ver-
sion 2.0

34. Ravi, P., Gupta, S.S., Chattopadhyay, A., Bhasin, S.: Improving speed of
Dilithium’s signing procedure. In: Belaïd, S., Güneysu, T. (eds.) Smart Card
Research and Advanced Applications – CARDIS. LNCS, vol. 11833, pp. 57–73.
Springer (2019). https://doi.org/10.1007/978-3-030-42068-0_4

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005). https://doi.org/10.1145/1060590.1060603

36. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the Association for Computing
Machinery 21(2), 120–126 (1978)

37. Sanwald, S., Kaneti, L., Stöttinger, M., Böhner, M.: Secure boot revisited: chal-
lenges for secure implementations in the automotive domain. SAE International
Journal of Transportation Cybersecurity and Privacy 2(11-02-02-0008), 69–81
(2020)

38. Certicom research, standards for efficient cryptography group (SECG) — sec 1:
Elliptic curve cryptography. http://www.secg.org/secg_docs.htm (Sep 20, 2000),
version 1.0

39. Secure hash standard. National Institute of Standards and Technology, NIST FIPS
PUB 180-4, U.S. Department of Commerce (Aug 2015)

https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://www.rfc-editor.org/rfc/rfc8554.txt
https://doi.org/10.1007/3-540-39799-X_31
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1145/3055399.3055489
https://doi.org/10.1145/3055399.3055489
https://doi.org/10.1007/978-3-030-42068-0_4
https://doi.org/10.1145/1060590.1060603
http://www.secg.org/secg_docs.htm


Post-Quantum Secure Boot on Vehicle Network Processors 15

40. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS. pp. 124–134. IEEE Computer Society Press (Nov 1994).
https://doi.org/10.1109/SFCS.1994.365700

41. Public Key Cryptography For The Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA). American National Standards Institute
(ANSI), X9.62-1998 (Nov 2015)

https://doi.org/10.1109/SFCS.1994.365700

	Post-Quantum Secure Boot on Vehicle Network Processors

