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Abstract. Random sampling from specified distributions is an impor-
tant tool with wide applications for analysis of large-scale data. In this
paper we study how to randomly sample when the distribution is parti-
tioned among two parties’ private inputs. Of course, a trivial solution is
to have one party send a (possibly encrypted) description of its weights
to the other party who can then sample over the entire distribution (pos-
sibly using homomorphic encryption). However, this approach requires
communication that is linear in the input size which is prohibitively
expensive in many settings. In this paper, we investigate secure 2-party
sampling with sublinear communication for many standard distributions.
We develop protocols for L1, and L2 sampling. Additionally, we investi-
gate the feasibility of sublinear product sampling, showing impossibility
for the general problem and showing a protocol for a restricted case of the
problem. We additionally show how such product sampling can be used
to instantiate a sublinear communication 2-party exponential mechanism
for differentially-private data release.

1 Introduction

Random sampling is an important tool when computing over massive data sets.
It has wide application in generating small summaries of data, and serves as a key
building block in the design of many algorithms and estimation procedures. In
particular, Lp sampling has been used to develop important streaming algorithms
such as the heavy hitters, Lp norm estimation, cascaded norm estimation, and
finding duplicates in data streams [2,37,28,6].

In this work, we introduce and explore the problem of private two-party
sampling. We consider a setting in which two parties would like to sample from a
distribution whose probability mass function is distributed across the two parties.
Specifically, we assume parties P1 and P2 each hold n-dimensional vectors w1 =
(w1,1, . . . , w1,n) and w2 = (w2,1, . . . , w2,n) respectively where every wb,j is non-
negative. These vectors each represent a (possibly non-normalized) probability
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mass function of a distribution. Specifically, for b ∈ {1, 2}, i ∈ [n], the non-
negative value

wb,i
||wb||1 represents the probability mass placed by distribution Db

on element i. We assume that the dimension n is very large, and our goal is to
obtain secure sampling protocols with communication that is sub-linear in n.

We consider various ways of deriving the probability mass function D of the
joint distribution from the two individual probability mass functions. Specifically,
we consider:

– L1 distribution: Sample item i with probability
w1,i+w2,i

||w1+w2||1 =
w1,i+w2,i∑
j(w1,j+w2,j)

.

– L2 distribution: Sample item i with probability
(w1,i+w2,i)

2

||w1+w2||22
=

(w1,i+w2,i)
2∑

j(w1,j+w2,j)2
.

– Product distribution: Sample item i with probability
w1,i·w2,i

〈w1,w2〉 =
w1,i·w2,i∑
j(w1,j ·w2,j)

1.

Realizing these sampling functionalities securely is immediate via generic
2PC techniques, but the resulting protocols will require communication that is
linear in the input length. With sublinear communication, however, it is unclear
how to perform some of these tasks (or whether it is even possible to do so),
even with an insecure protocol. We give a (partial) characterization of when
such sublinear sampling is possible, and give secure protocols for realizing these
functionalities where possible.

Product sampling and the exponential mechanism. While L1 and L2

sampling are well-studied, to the best of our knowledge, we are the first to
consider the notion of product sampling. We describe a concrete, independent
application for this new notion: product sampling can be used to implement a
distributed version of the well-known exponential mechanism for differentially-
private data release [35].

1.1 Our Work

We explore the problems described above, providing multiple two-party proto-
cols, all with sub-linear communication, in the semi-honest security model. We
note that our protocol for product sampling has additional leakage, beyond what
is revealed by the sampling functionality. We characterize exactly what this leak-
age is, and provide evidence that similar leakage is necessary to achieve sublinear
communication. Specifically, we show the following.

L1 sampling. We begin by constructing a two-party protocol for L1 sampling
that relies on fully homomorphic encryption (FHE). The main idea behind the
protocol is to obliviously sample from each of the two parties inputs indepen-
dently, and then to securely choose one of the two samples using an appropriately
biased coin toss. The results are described in Section 2.

L2 sampling. We also provide a protocol for secure L2 sampling that relies on
fully homomorphic encryption (see Section 3). In this case, however, achieving

1 Of course, if 〈w1,w2〉 = 0, the probability space is not well-defined, and in this case,
we require the protocol to simply output ⊥.
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L2 sampling is non-trivial. In fact, even relying on FHE, it is not immediately
clear how to compute ‖w1 + w2‖22 with sublinear communication.

Surprisingly, our L2 sampling protocol runs in constant rounds and with Õ(1)
communication2. Interestingly, it does not require us to compute ‖w1 + w2‖22.
To achieve this, we developed a novel technique called “corrective sampling”,
which we overview in the next subsection. We note that our techniques straight-
forwardly extend to Lp sampling, for constant p.

Product sampling. We then turn to product sampling. We assume, without
loss of generality, that the vectors wb are normalized (see Section 4 for justifica-
tion).

We first begin with a communication lowerbound, demonstrating that prod-
uct sampling with sublinear communication is impossible, even without pri-
vacy guarantees, if the two input distributions are insufficiently correlated (i.e.,
〈w1,w2〉 = o( 1

n2 )). We show this through a reduction from the Set Disjointness
problem.

Knowing this lowerbound, we consider the problem under a promise that the
input vectors are sufficiently correlated. Assuming that 〈w1,w2〉 = ω( logn

n ), we
provide a two-party protocol for secure product sampling leaking (at most) the
inner product of the two parties’ inputs. We note that the promise itself leaks
some information, so some leakage here is inevitable. Interestingly, we observe
that the protocol can be modified to provide a trade-off between the communi-
cation cost and the leakage. We also discuss why this trade-off is inherent.

Constant round product sampling. Our product sampling protocol has a
round complexity that depends on the inner product. In Section 5, we show
how to make our construction constant round while incurring small additional
leakage. Importantly, we must do this without computing the exact inner product
which itself requires O(n) communication [3].

Two party exponential mechanism. As mentioned previously, one impor-
tant application of product sampling is the exponential mechanism for providing
differential privacy [35]. In Section 6, we describe this application in detail.

For this particular application we face an additional challenge: the leakage
of 〈w1,w2〉 that we relied on for achieving sub-linear communication in product
sampling does not preserve differential privacy. To overcome this issue, we con-
struct a new, differentially-private approximation for inner product, and show
how to use this for building a sub-linear communication secure computation of
the exponential mechanism.

1.2 Technical Overview

In the following, we overload notation and let D denote a distribution as well
as its probability mass function. As discussed previously, we consider the case

2 Throughout the paper, we will describe the round and communication complexi-
ties using the asymptotic notation only based on n. That is, all other parameters
(e.g., security parameter) independent on n will be suppressed in the asymptotic
expressions.
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where a probability mass function is distributed across two parties, and the
parties would like to securely sample from the corresponding distribution. We
consider several ways in which the probability mass function can be distributed
across the two parties.

L1 sampling of convex combinations. In this case, party 1 (resp. party 2)
holds a vector w1 (resp. w2), indexed from 1 to n. For i ∈ [n], w1,i/||w1||1
(resp. w2,i/||w2||1) corresponds to the probability mass of i under distribution
D1 (resp. D2). The goal of the parties is to sample from the distribution D,
defined as follows for i ∈ [n]:

D[i] :=
||w1||1

||w1||1 + ||w2||1
· w1,i

||w1||1
+

||w2||1
||w1||1 + ||w2||1

· w2,i

||w2||1

=
||w1||1

||w1||1 + ||w2||1
· D1[i] +

||w2||1
||w1||1 + ||w2||1

· D2[i]

Note that the target distribution D is a convex combination of the distributions
D1 and D2 held by the two parties.

A potentially straightforward sampling protocol is to therefore have party 1
locally draw a sample i1 from D1, party 2 locally draw a sample i2 from D2,
and then run a secure two party computation that outputs i1 with probability

||w1||1
||w1||1+||w2||1 and i2 with probability ||w2||1

||w1||1+||w2||1 .

This protocol clearly has sublinear communication, but it unfortunately does
not securely realize the ideal functionality. The reason is as follows: conditioned
on the ideal functionality outputting a certain index i∗, the probability that i∗

was drawn by party 1 (resp. party 2) is
w1,i∗

w1,i∗+w2,i∗
(resp.

w2,i∗

w1,i∗+w2,i∗
). Thus,

if the simulator receives i∗ from the ideal functionality and has to simulate the
view of party 1, it needs to set i1 = i∗ with probability

w1,i∗

w1,i∗+w2,i∗
and set i1 6= i∗

with probability
w2,i∗

w1,i∗+w2,i∗
. However, the simulator is not able to simulate these

probabilities correctly, since it does not know w2,i∗ .
To get around this issue we therefore have the parties sample i1 and i2 obliv-

iously. To do this with sublinear communication, we can use fully homomorphic
encryption (FHE). Specifically, to sample i1, player 1 first encrypts his input w1

using an FHE scheme for which he does not know the secret key. The players
then jointly choose a random value r ∈ [0, ||w1||1). Player 1 then uses the ho-
momorphic operations to find the value i1 chosen by this r, and the parties use
threshold decryption to recover a secret sharing of i1. The parties reverse roles
to sample i2. Details of this construction are provided in Section 2.

Additionally, an alternative construction that uses sub-linear OT for the
oblivious sampling is provided in Appendix D.

L2 Sampling of component-wise sum. In this case, party 1 (resp. party 2)
holds a vector w1 (resp. w2), indexed from 1 to n. For i ∈ [n]. The goal of the
parties is to sample from the distribution D defined as follows for i ∈ [n]:

D[i] :=
(w1,i + w2,i)

2

||w1 + w2||22
.



Secure Sampling with Sublinear Communication 5

We present a protocol that samples from this distribution with Õ(1) com-
munication. This protocol relies on a novel technique that we call “corrective
sampling”, which is an interesting type of rejection sampling. In what follows,
we describe an insecure version of our protocol to give the intuition behind it.
To make it secure, we carry out the corrective sampling under FHE as described
in Protocol 4.

The main challenge that we face here, unlike in the case of L1 sampling, is
that it is impossible to compute ||w1+w2||22 (and therefore impossible to compute
D[i] for each i) with sublinear communication [3]. Instead, we sample index i
from a different, related, distribution, which is easy to sample with sub-linear
communication. We then show that we can efficiently correct this distribution by
rejecting with the appropriate probability. Interestingly, we show that corrective
rejection, which depends on the index i, doesn’t require us to explicitly compute
||w1 + w2||22. In fact, the parties never learn the corrective term at all!

First, as in rejection sampling, corrective sampling proceeds in trials and
in each trial, for every i, the probability that the protocol successfully samples
index i is α ·D[i] for some unknown constant 0 < α < 1. Since the same constant
α is applied to every index i, by repeating the trials, the protocol samples index
i correctly without skewing the distribution D. The expected number of trials is
1/α. We therefore need to keep 1/α ∈ O(1) to reach our target communication
complexity.

As mentioned above, we observe that the protocol never has to explicitly
compute α. Towards describing how this is done, first note that in D[i], the
denominator, ||w1+w2||22 – which we assume for purposes of this exposition is at
least 1 – is the same for every i, so it can be pushed into α without impacting the
discussion above: letting α′ = α/(||w1 +w2||22), it suffices to implement rejection
sampling with a protocol that samples index i with probability α′ · (wi,1 +wi,2)2

= α · D[i]. This protocol would only need to explicitly compute (wi,1 + wi,2)2

(which can be done efficiently given i), but not α′.

Unfortunately, this does not quite work. ||w1+w2||22 can be very large, which
would then make 1/α′ large. We therefore must combine the above with another
idea to ensure that our corrective term introduces at most a O(1) overhead.

We achieve this by having each trial of the protocol work as follows:

1. It samples index i from distribution Dignore, which is easy to sample. We
note that the contribution of this distribution will be eventually canceled
out through rejection. In particular, we choose the following distribution for
Dignore:

Dignore[i] :=
w2

1,i + w2
2,i

denom
,

where we set denom = ||w1||22 + ||w2||22 to make the distribution well-defined.
Note that denom can be computed with Õ(1) communication.

2. After sampling i from Dignore, the protocol computes a “corrective bias”
for a coin flip that is dependent on (w1,i + w2,i)

2. We stress that once i is
determined, computing (w1,i +w2,i)

2 is easy. In particular, a coin is flipped
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with the following bias:

Pr[coin|i] :=
(w1,i + w2,i)

2

2 · Dignore[i] · denom

Overall, this makes sure that the probability that each trial outputs index i is

Dignore[i] · Pr[coin|i] =
(w1,i + w2,i)

2

2 · denom
= αD[i],

where α =
||w1+w2||22
2·denom .

To conclude that this is a valid and efficient sampling procedure, we need to
show the following:

– α must be less than 1 for the procedure to be valid. This is implied by the
fact that ‖w1 + w2‖22 ≤ 2 · denom.

– 1/α must be in Õ(1) so that the procedure is efficient. We have 2 · denom ≤
2‖w1 + w2‖22, which implies that α is at least 1/2. So, the expected number
of trials is at most 2.

We extend our techniques to the setting of Lp sampling for constant p in
Section 3.3.

Product sampling. In this case, party 1 (resp. party 2) holds a normalized
vector w1 (resp. w2), indexed from 1 to n. For i ∈ [n], w1,i (resp. w2,i) corre-
sponds to the probability mass of i under distribution D1 (resp. D2).3 The goal
of the parties is to sample from the distribution D defined as follows for i ∈ [n]:

D[i] :=
w1,i · w2,i

〈w1,w2〉
.

We begin by noting (via a simple reduction from Set Disjointness) that it
is impossible to achieve sublinear product sampling when no restrictions are
placed on the inputs w1,w2. We further show (via a more complex reduction
from Set Disjointness) that for every protocol Π (parametrized by dimension
n) that correctly samples from D, there are inputs w1 := w1(n),w2 := w2(n),
with 〈w1,w2〉 ∈ Ω(1/n2), that require linear communication complexity. See
Section 4.1 for details.

This means that in order to achieve sublinear communication complexity,
we would need–at the minimum–a promise on the inputs that guarantees that
〈w1,w2〉 ∈ ω(1/n2). We then present a protocol that has the following proper-
ties:

– When 〈w1,w2〉 ∈ ω(log n/n), the protocol achieves expected communication
logn
〈w1,w2〉 .

– The execution of the protocol leaks nothing more than the sampled output,
and 〈w1,w2〉. This is formalized via an Ideal/Real paradigm simulation, in
which the simulator receives leakage of 〈w1,w2〉 in the Ideal world.

3 Here the assumption that w are normalized is without loss of generality.
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The idea for the protocol is the following. The protocol proceeds in rounds: in
round j, party 1 and 2 obliviously sample values i1, i2 from D1,D2, respectively
(as described for L1 sampling). Then the parties run a secure protocol that
checks whether i1 = i2. If yes, they output i1. Otherwise, the parties repeat the
process in the next round.

The main technical portion of our security analysis is to show that the number
of rounds (which is the only information leaked) is distributed as a geometric
distribution with success probability 〈w1,w2〉. This implies that the expected
number of rounds is 1/〈w1,w2〉, and furthermore, it implies that a simulator who
knows 〈w1,w2〉 can simulate the terminating round by making a draw from this
geometric distribution. See Section 4.2 for more details. There, we also describe
how we can pad the communication cost to the worst-case, which depends on
the given promise, thereby removing the leakage of 〈w1,w2〉.

Product sampling in constant rounds. The protocol presented above for
product sampling required a large number of rounds stemming from the iterative
rejection sampling procedure. We now consider how to parallelize this process.
To do so, we need to compute the inner product in order to determine, a priori,
how many samples will suffice. However, computing this value requires O(n)
communication [3]!

The natural thing to do is therefore to use an approximation to the inner
product that can be computed with sublinear communication. However, when
replacing an exact computation of a function f(w1,w2) with an approximation
f̃(w1,w2; r), one needs to be careful that more information is not leaked by the
output. Specifically, Ishai et al. [19,20] introduced the notion of secure multiparty
computation of approximations and, loosely speaking, their security definition
says that the approximate computation is secure if its output can be simulated
from the exactly correct output. While our result falls slightly short of that defi-
nition, we are still able to give a rigorous guarantee on the amount of additional
information leaked by our approximate functionality. Specifically, we present an
approximate functionality f̃ and prove that the output of f̃(w1,w2; r) can be
simulated given both the exactly correct output f(w1,w2) (where f is the inner
product), as well as the L2 norms of the individual inputs.

To achieve this, we use a sublinear protocol from the Johnson-Lindenstrauss
Transform (JLT) to approximate the dot product of the input vectors. This can
be done with sublinear communication by having the parties jointly sample a
k × n JLT matrix M for k � n by choosing a short seed and expanding it
under FHE. The rest of the computation is then done by communicating vectors
Mwb, which are of length k rather than n. Based on this approximation, the
parties can obliviously pre-sample a number of inputs that is sufficient with all
but negligible probability, and then input them into a constant round secure
computation protocol.

Our contribution here, is to show that this variant protocol only requires ad-
ditional leakage of ||w1||22, ||w2||22, beyond what is already leaked by the original
protocol (i.e., the inner product). Our analysis may be of independent interest,
since it shows that given 〈w1,w2〉, ||w1||22, ||w2||22, the values Mw1 and Mw2
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can be efficiently sampled from exactly the correct distribution, when M is a
JLT matrix, and is kept private from both parties. We prove this result by an-
alyzing the underlying joint multivariate normal distributions corresponding to
Mw1 and Mw2, and showing that the mean and covariance (which fully deter-
mine the distribution) depend only on the values ||w1||2, ||w2||2, and 〈w1,w2〉
See Section 5 for more details.

Applications to distributed exponential mechanism. We first briefly de-
scribe the connection between product sampling and the exponential mechanism.
Ignoring many details, the joint exponential mechanism M outputs a value i on
input X = (x1, . . . , xn) with probability proportional to

wi = ec·f(xi) = ec·f(x1,i+x2,i),

where c is some constant, f is some scoring function, and the data values xi
are partitioned between the two parties (as x1,i, x2,i). If the scoring function f is
linear, it holds that f(x1,i+x2,i) = f(x1,i)+f(x2,i), and, letting wb,i = ec·f(xb,i),
we can rewrite wi as follows:

wi = w1,i · w2,i.

Therefore, using product sampling, the parties can sample each item i with
probability proportional to wi.

Based on this connection, we present an application of our constant-round,
product sampling protocol to realize a two-party exponential mechanism in Sec-
tion 6. However, to use our sampling protocol in this application, we must show
that the leakage of our protocols preserves the differential privacy guarantee.
We indeed prove that our constant-round JLT-based protocol can achieve dif-
ferential privacy—even when the JLT matrix M is public—by adding correctly
distributed noise to 〈Mw1,Mw2〉. This allows parties to execute the exponen-
tial mechanism when the cost function is additively distributed across the two
parties, with sublinear communication, in the case that 〈w1,w2〉 ∈ ω(log n/n).

1.3 Related Work

Sampling from streaming data. Many prior papers (e.g. [10,22,29,37,46])
have studied the problem of sampling data from a data stream. In this setting
the goal is to achieve Lp sampling for arbitrary p without having to process or
store all the streaming data, thus requiring sublinear computation. These works
generally operate in the one-party setting and do not consider privacy.

Secure multiparty sampling. A few prior works [41,42] have investigated the
problem of two and multi-party private sampling in the information theoretic
setting. These works focus on identifying the necessary setup to enable sampling
from various distributions. We instead focus on the computational setting, and
focus on reducing communication. Recently, Champion et al. [7] also considered
the computational setting, but they focus on sampling from a publicly-known
distribution whereas we sample from a private one.
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Secure multiparty computation of differentially private functionalities.
Starting with the work of Dwork et al. [13] there has been a good amount of work
(e.g. [1,9,17,23,39,40]) on using MPC to realize differentially private functional-
ities to protect the privacy of individual inputs given the output of the MPC.
These works have focused on building efficient, private applications in machine
learning and other fields, whereas we focus on reducing the communication nec-
essary for the specific functionalities of sampling.

Secure sketching. A long line of work [16,26,36,45,8] has investigated building
secure sketches for securely estimating statistics of Tor usage, web traffic, and
other applications. These works focus on building sublinear communication and
computation protocols for computing specific statistics such as unique count,
median, etc.

2 Two-party L1 Sampling

In this section, we describe a secure two-party L1 sampling protocol. Given two
n-dimensional vectors w1 = (w1,1, . . . , w1,n) and w2 = (w2,1, . . . , w2,n) as the
private inputs from parties P1 and P2 respectively, the protocol samples from
the L1 distribution according to w1 + w2.

Notation: Lp norm. Let w = (w1, . . . , wn) ∈ Rn be a non-zero vector. The

Lp norm ‖w‖p of w is defined as ‖w‖p :=
(∑

j |wj |p
)1/p

. When there is no

subscript, it means L2 norm; that is, ‖w‖ := ‖w‖2
Assumptions. Throughout the paper, we assume that the values wb,i are repre-
sented by fixed-point precision numbers, and consider the cost of communicating
such a number to be independent of n. We assume all weights in vectors w1 and
w2 are non-negative.

Ideal functionality. We first define an ideal functionality for the two-party L1

sampling. Slightly abusing the notation, let L1(w1,w2) be a two-input sampling
procedure based on the L1 distribution of w1 + w2:

Pr[L1(w1,w2) samples i] =
w1,i + w2,i

‖w1 + w2‖1
.

We give a more formal description of the functionality FL1
in the figure below.

In Section 2.2, we present a protocol that securely realizes this functionality.

FL1 : Ideal functionality for two-party L1 sampling

The functionality has the following parameter:

– n ∈ N. The dimension of the input weight vectors w1 and w2.

The functionality proceeds as follows:

1. Receive inputs w1 and w2 from P1 and P2 respectively.
2. Sample i ∈ [n] with probability

w1,i+w2,i

‖w1+w2‖1
3. Send i to P1 and P2.
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2.1 A toy protocol towards securely realizing FL1

We describe our first attempt, which is insecure, but provides good intuition on
how we construct a secure protocol. In fact, the attack on this broken protocol,
as well as the fix presented in the next sub-section, remain relevant when we
move to product sampling and L2 sampling as well. Since we assume that all the

weights are non-negative, we observe that letting p = ‖w1‖1
‖w1‖1+‖w2‖1 , the above

measure can be re-written as follows:

Pr[L1(w1,w2) samples i] =
w1,i

‖w1‖1
· p+

w2,i

‖w2‖1
· (1− p). (1)

Equation (1) leads us to the following natural approach.

1. Party P1 samples i1 from the L1 distribution according to w1, such that
Pr[P1 samples i1] =

w1,i1

‖w1‖1 .

2. Party P2 samples i2 from the L1 distribution according to w2, such that
Pr[P2 samples i2] =

w2,i2

‖w2‖1 .

3. Then, P1 and P2 execute a secure protocol for the following procedure:

(a) Execute a coin toss protocol with bias p. Let b be the output of the
coin-flip.

(b) If b = 0 (resp., b = 1), output i1 (resp., i2).

The output of the protocol will achieve correct sampling.

Insecurity of the protocol. However, this protocol has a subtle security issue.
For example, let i be the eventual output index of the protocol. Then, we have
the following:

– If the coin flip b is 0, which happens with probability p, it holds that i is
always the same as i1.

– On the other hand, if the coin flip b is 1, then i will be the same as i1 if and
only if i2 = i1, which happens with probability

w2,i1

‖w2‖1 .

This implies that we have

Pr[i = i1|i1] = p+ (1− p) · w2,i1

‖w2‖1

Now consider a distinguisher that corrupts P1, chooses inputs w1 and w2, and
checks the above conditional probability, which is possible since the distinguisher
can also see i1 through the corrupted P1. To prove security, we should be able to
construct a simulator for P1 that fools this distinguisher. However, a simulator
for P1 doesn’t know w2, which causes the above conditional probability to be
unsimulatable.

In a sense, by having P1 choose i1, the protocol allows P1 to measure the
conditional probability Pr[i = i1|i1], which depends on the value w2,i1 thereby
leaking information about P2’s input to P1.
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2.2 Secure L1 sampling protocol

Oblivious sampling. We address the insecurity of the toy protocol by having
the parties sample obliviously from w1, w2. This way, each party would not know
whether the final output index matches the sample taken from its own vector,
or the sample taken from the other party’s vector. Specifically, we will construct
our protocol under the framework described below:

1. The parties obliviously sample i1 according to L1 distribution of w1. The
output index i1 is secret shared between the two parties. Let 〈i1〉 denote the
secret share of i1. Likewise, they obliviously sample 〈i2〉 from L1 distribution
of w2.

2. Execute a secure two-party protocol to compute the following:
(a) Flip a coin b with bias p.
(b) If b = 0, output the decryption of i1; otherwise output the decryption of

i2.

Ideal functionalities. Formally, we define an ideal functionality Fosample(L1) as
follows:

Fosample(L1): Ideal functionality for oblivious L1 sampling.

The functionality considers two participants, the sender and the receiver. The
functionality is parameterized with a number n.

Inputs: The sender has an n-dimensional weight vector w. The receiver has
no input.

The functionality proceeds as follows:

1. Receive w from the sender.
2. Sample i ∈ [n] with probability wi

‖w‖1
3. Choose a random pad π ∈ {0, 1}`, where ` = dlog2 ne.
4. Send π to the sender and i⊕ π to the receiver.

We also give an ideal functionality FbiasCoin for the biased coin tossing.

FbiasCoin: Ideal functionality for biased coin tossing.

The functionality considers two participants P1 and P2 and proceeds as follows:

1. Receive a number s1 as input from P1 and s2 from P2.
2. Flip a coin b with bias p = s1

s1+s2
.

3. Choose a random bit r ∈ {0, 1}.
4. Send r to P1 and r ⊕ b to the receiver.

L1 sampling protocol. Based on the above functionalities, we describe a pro-
tocol securely realizing FL1

in the (Fosample(L1),FbiasCoin)-hybrid.

Theorem 1. Protocol 1 securely realizes FL1 with semi-honest security in the
(Fosample(L1),FbiasCoin)-hybrid.
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Protocol 1 Two-party L1 sampling in the (Fosample(L1),FbiasCoin)-hybrid.

Inputs: Party Pb has input wb.

1. Execute Fosample(L1) with P1 as a sender with input w1 and P2 as a receiver. Let
〈i1〉 be the secret share of the output index.

2. Execute Fosample(L1) with P2 as a sender with input w2 and P1 as a receiver. Let
〈i2〉 be the secret share of the output index.

3. Execute FbiasCoin where P1 has input ‖w1‖1 and P2 has input ‖w2‖1. Let 〈b〉 be the
secret share of the output bit.

4. Execute F2PC for the following circuit:
(a) Input: 〈i1〉, 〈i2〉, 〈b〉.
(b) Output: i1 · (1− b) + i2 · b.

The proof is found in Appendix C.1.

Securely realizing Fosample(L1) with threshold FHE. The main idea of the
protocol is having the parties securely sample a random number r from [s], where
s := ‖w‖1. Our construction is found in Protocol 2.

Protocol 2 Oblivious sampling from threshold FHE

Inputs: The sender has input w = (w1, . . . , wn).

1. The sender computes s := ‖w‖1.
2. The sender and the receiver execute F2PC to uniformly sample r from the range

[0, s). This is possible, since s has a fixed point representation. Let r1 and r2 be
the secret share of r given to P1 and P2 respectively.

3. The sender and the receiver set up a threshold FHE scheme. The plaintext space
of the FHE is GF (2), which allows homomorphic bitwise-xor and bitwise-AND
operations. Let JmK denote an FHE encryption of plaintext m which can be a bit
or bits depending on the context.

4. The receiver sends Jr2K so that the sender can compute JrK := Jr1K⊕ Jr2K.
5. The sender homomorphically evaluates the following circuit:

(a) Let cnt0 = 0. For j = 1, ..., n, let cntj = cntj + wj .
(b) Output i ∈ [1, n] such that r ∈ [cnti−1, cnti].
Let JiK be the output encryption from the above homomorphic evaluation.

6. The sender chooses a random pad π, and then it sends JcK = JiK ⊕ JπK to the
receiver.

7. The two parties perform threshold decryption so that c is decrypted to the receiver.
8. The sender outputs π and the receiver outputs the decryption of c.

Theorem 2. Assuming the existence of threshold FHE with IND-CPA security,
Protocol 2 securely realizes Fosample(L1) in the semi-honest security model.

The proof is found in Appendix C.2.
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We note that we give another construction that relies on sub-linear 1-out-of-
m oblivious transfer (OT), but requires computation that is exponential in the
bit precision in Appendix D.

Securely realizing FbiasCoin. The secure construction for FbiasCoin is straight-
forward and can be found in Appendix B.

3 Two Party L2 Sampling

In this section we consider the two-party L2 sampling functionality. Given input
vectors w1,w2, this functionality samples from the distribution DL2

(w1,w2)
with the following probability mass function:

Pr[DL2(w1,w2) samples i] =
(w1,i + w2,i)

2∑
j(w1,j + w2,j)2

=
(w1,i + w2,i)

2

‖w1 + w2‖22
.

We begin by presenting a non-private protocol for two-party L2 sampling with
Õ(1) communication in Section 3.1, the construction is found in Protocol 3. We
then show how to implement the protocol securely in Section 3.2.

3.1 A non-private L2 sampling protocol with Õ(1) communication

We begin by defining and showing how to sample from a helper distribution
Dignore.

Definition 1. For input vectors w1,w2, let Dignore(w1,w2) be the distribution
that “ignores” the cross term in DL2

(w1,w2). I.e. Dignore(w1,w2) samples index

i ∈ [n] with probability
w2

1,i+w
2
2,i

||w1||22+||w2||22
.

Lemma 1. There exists a protocol Πignore for sampling from Dignore(w1,w2)

with Õ(1) communication.

Proof. Let w′b = (w2
b,1, . . . , w

2
b,n). The lemma follows by observing the following:

Dignore(w1,w2) = DL1
(w′1,w

′
2).

ut

Definition 2. For i ∈ [n], let the corrective parameter function be defined as

fc(w1,w2, i) :=
w2

1,i + 2w1,iw2,i + w2
2,i

||w1||22 + ||w2||22
.

Definition 3. The constant c := c(w1,w2) is defined as

c(w1,w2) :=
||w1 + w2||22
||w1||22 + ||w2||22

This ensures that for every i, fc(w1,w2, i) = c · PrDL2
(w1,w2)[i].
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The following lemma will be useful for arguing the validity of the final pro-
tocol.

Lemma 2. For all i ∈ supp(DL2
(w1,w2)), PrDL2

(w1,w2)[i] ≤ 2/c·PrDignore(w1,w2)[i].

Proof.

Pr
DL2

(w1,w2)
[i] =

w2
1,i + 2w1,iw2,i + w2

2,i

||w1||22 + 2〈w1,w2〉+ ||w2||22

=
w2

1,i + 2w1,iw2,i + w2
2,i

c · (||w1||22 + ||w2||22)

≤
2 · (w2

1,i + w2
2,i)

c · ||w1||22 + ||w2||22

=
2

c
· Pr
Dignore(w1,w2)

[i]

The inequality holds since

2(w2
1,i + w2

2,i)− (w2
1,i + 2w1,iw2,i + w2

2,i) = w2
1,i − 2w1,iw2,i + w2

2,i

= (w1,i − w2,i)
2

≥ 0.

ut
We now present the L2 sampling protocol ΠL2

, which is described in Proto-
col 3. We show the correctness and efficiency of the protocol.

Lemma 3. With all but negligible probability, on inputs w1,w2, ΠL2
samples

exactly correctly from DL2(w1,w2), and has communication Õ(1).

Proof. Note that ΠL2 simply performs rejection sampling in a distributed setting
where sampling from Dignore(w1,w2) and computing the probabilities is done in
a distributed manner. It is therefore well-known that as long as for all i ∈ [n],

Pr
DL2

(w1,w2)
[i] ≤ 2/c · Pr

Dignore(w1,w2)
[i], (2)

then ΠL2
samples from the exact correct distribution, and the number of samples

required from Dignore(w1,w2) in protocol ΠL2 follows a geometric distribution
with probability c/2. Thus, if condition (2) is met, the protocol samples exactly
correctly and completes in an expected 2/c (with 2/c ≤ 2, since c ≥ 1) number
of rounds. Further, it can be immediately noted that condition (2) is met due
to Lemma 2. Finally, each round has Õ(1) communication, since Πignore has

communication Õ(1) (by Lemma 1) and since, in addition to that, only a constant
number of length Õ(1) values are exchanged in each round. Combining the above,
we have that ΠL2

has expected communication Õ(1) and worst case (with all
but negligible probability) communication Õ(1). ut
Remark 1. Note that the protocol and analysis above did not require that vectors
w1,w2 are normalized. I.e. we do not require that ||w1||1 or ||w2||1 are equal to
1 or to each other.
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Protocol 3 Protocol for exact L2 sampling (ΠL2)

Inputs: Parties P1 and P2 have inputs w1 and w2 respectively.

The protocol proceeds as follows:

1. Parties run Πignore with inputs w1,w2 that samples from Dignore(w1,w2) and obtain
output i.

2. For b ∈ {1, 2}, Pb sends wb,i, ||wb||22. Both parties compute

Pr
Dignore(w1,w2)

[i] =
w2

1,i + w2
2,i

||w1||22 + ||w2||22
and fc(w1,w2, i) =

w2
1,i + 2w1,iw2,i + w2

2,i

||w1||22 + ||w2||22

3. Parties output i with probability

fc(w1,w2, i)

2 · PrDignore(w1,w2)[i]
=

c · PrDL2
(w1,w2)[i]

2 · PrDignore(w1,w2)[i]

=
PrDL2

(w1,w2)[i]

2/c · PrDignore(w1,w2)[i]

and otherwise return to step 1.

3.2 Secure L2 Sampling From FHE

L2 sampling protocol. We present our secure L2 sampling protocol in Pro-
tocol 4. For two n-dimensional vectors w1 and w2, we denote by w1 �w2 the
n-dimensional vector whose i-th entry is equal to w1,i · w2,i.

Our L2 sampling protocol uses ideal functionality FssL1
, which works essen-

tially the same as FL1 except that the output index is secret shared among
both parties. We can securely realize this functionality with semi-honest secu-
rity through a trivial change in the protocol ΠL1

; for the sake of completeness,
we provide the details in Appendix E.

Efficiency and correctness. It is clear that the total communication complex-
ity of the protocol is Õ(1), since each step in the loop has complexity Õ(1) and
the loop iterates B ∈ Õ(1) number of times. Correctness is also immediate, since
the protocol simply implements the ΠL2

sampling procedure, which was proven
in Section 3.1 to be correct, and to require at most B ∈ Õ(1) samples, with all
but negligible probability,

Security. Security of our protocol is stated through the following theorem.

Theorem 3. Assuming the existence of threshold FHE with IND-CPA security,
Protocol 4 securely realizes the L2 sampling functionality in the {FssL1

,F2PC}-
hybrid model with semi-honest security.

We provide the proof in Appendix C.3.
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Protocol 4 Two-party L2 sampling in the (FL1 , F2PC)-hybrid.

Inputs: Party Pb has input wb.

1. Let B ∈ Õ(1). The parties perform the following steps for j ∈ [B]:

(a) Sample from Dignore(w1,w2) by doing the following: Invoke ideal functionality
FssL1

with P1’s input set to w1 �w1 and P2’s input set to w2 �w2. Let 〈ij〉
be the secret share of the output index.

(b) Parties compute encryptions of w1,ij , w2,ij using a threshold FHE scheme as
follows.
– Parties compute an encryption of ij by exchanging encryptions of their

shares and adding them.
– Party b encrypts wb and uses FHE to locally compute an encryption of
wb,ij .

– The parties then send these ciphertexts to each other.
(c) Rejection Sampling. Compute a threshold FHE ciphertext b̂iasj that encrypts

fc(w1,w2)ij
2 · PrDignore(w1,w2)[ij ]

=
w2

1,ij + 2w1,ijw2,ij + w2
2,ij

2(w2
1,ij

+ w2
2,ij

)
.

Invoke ideal functionality F2PC that takes encrypted bias b̂iasj , the threshold
decryption keys, index ij , and random bits. The functionality executes a circuit

that flips a coin with bias b̂iasj and returns a ciphertext ôutj , which is an
encryption of ij if the coin evaluates to 1 and an encryption of 0 otherwise.

2. Execute F2PC for the following circuit:
(a) Input: (ôut1, . . . , ôutB) and threshold decryption keys.
(b) Output: ij corresponding to the minimum j such that ôutj decrypts to ij 6= 0.

Or ⊥ if no such j ∈ [B] exists.

3.3 A non-private Lp sampling protocol with Õ(1) communication

In this section we present a Õ(1) sampling protocol for Lp sampling for constant
p. We present only the insecure version, extending it to a secure sampling proto-
col can be done entirely analogously to the construction for L2 sampling given
in Section 3.2.

Given input vectors w1,w2, Lp sampling refers to sampling from the distri-
bution DLp(w1,w2) with the following probability mass function:

Pr[DLp(w1,w2) samples i] =
(w1,i + w2,i)

p∑
j(w1,j + w2,j)p

=
(w1,i + w2,i)

p

‖w1 + w2‖pp
.

We begin by defining and showing how to sample from a helper distribution
Dignore,p.

Definition 4. For input vectors w1,w2, let Dignore,p(w1,w2) be the distribution
that “ignores” the cross term in DLp(w1,w2). I.e. Dignore,p(w1,w2) samples in-

dex i ∈ [n] with probability
wp1,i+w

p
2,i

||w1||pp+||w2|pp .
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Protocol 5 Protocol for exact Lp sampling (ΠLp)

Inputs: Parties P1 and P2 have inputs w1 and w2 respectively.

The protocol proceeds as follows:

1. Parties run Πignore with inputs w1,w2 that samples from Dignore,p(w1,w2) and
obtain output i.

2. For b ∈ {1, 2}, Pb sends wb,i, ||wb||pp. Both parties compute

Pr
Dignore,p(w1,w2)

[i] =
wp1,i + wp2,i

||w1||pp + ||w2||pp
and fc(w1,w2, i) =

(w1,i + w2,i)
p

||w1||pp + ||w2||pp

3. Parties output i with probability

fc(w1,w2, i)

2p−1 · PrDignore,p(w1,w2)[i]
=

c · PrDL2
(w1,w2)[i]

2p−1 · PrDignore,p(w1,w2)[i]

=
PrDL2

(w1,w2)[i]

2p−1/c · PrDignore,p(w1,w2)[i]

and otherwise return to step 1.

Lemma 4. There exists a protocol Πignore for sampling from Dignore,p(w1,w2)

with Õ(1) communication.

Proof. Let w′b = (wpb,1, . . . , w
p
b,n). The lemma follows by observing the following:

Dignore(w1,w2) = DL1
(w′1,w

′
2).

ut

Definition 5. For i ∈ [n], let the corrective parameter function be defined as

fc(w1,w2, i) :=
(w1,i + w2,i)

p

||w1||pp + ||w2||pp
.

Definition 6. The constant c := c(w1,w2) is defined as

c(w1,w2) :=
||w1 + w2||pp
||w1||pp + ||w2||pp

This ensures that for every i, fc(w1,w2, i) = c · PrDLp (w1,w2)[i].

The following lemma will be useful for arguing the validity of the final pro-
tocol.

Lemma 5. For all i ∈ supp(DLp(w1,w2)),

Pr
DLp (w1,w2)

[i] ≤ 2p−1/c · Pr
Dignore,p(w1,w2)

[i].
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The proof is found in Appendix C.4.
We now present the Lp sampling protocol ΠLp in Protocol 5. We show the

correctness and efficiency of the protocol below.

Lemma 6. With all but negligible probability, on inputs w1 and w2, protocol
ΠLp samples exactly correctly from DLp(w1,w2). Further, for any constant p,

the protocol has communication Õ(1).

The proof is found in Appendix C.5. We note that this result strictly gen-
eralizes Lemma 3. In particular, setting p = 2 in the above protocol yields a
protocol with exactly the same parameters as the L2 sampling protocol.

4 Two-party Product Sampling

We next consider the problem of two-party sampling from a product distribu-
tion. Specifically, given n-dimensional vectors w1 = (w1,1, . . . , w1,n) and w2 =
(w2,1, . . . , w2,n) as the private inputs from P1 and P2 respectively, we wish to
sample from the distribution Dprod defined by

Pr[Dprod(w1,w2) = i] =
w1,i · w2,i∑n
j=1 w1,j · w2,j

=
w1,i · w2,i

〈w1,w2〉

Of course, if 〈w1,w2〉 = 0, the probability space is not well-defined, and in
this case, we require the protocol to simply output ⊥.

As before, we assume that all weights in w1 and w2 are non-negative.

Ideal functionality. We now define an ideal functionality Fprod for two-party
product sampling. This functionality is parametrized by a function fLeak captur-
ing the leakage that the functionality gives to the adversary.

Fprod: Ideal functionality for two-party product sampling

The functionality has the following parameters:

– n ∈ N. The dimension of the input weight vectors w1 and w2.
– A function fLeak describing the leakage.

The functionality proceeds as follows:

1. Receive inputs w1 and w2 from P1 and P2 respectively.
2. Compute leak = fLeak(w1,w2)
3. If 〈w1,w2〉 = 0, send leak to the adversary and ⊥ to P1 and P2.
4. Otherwise, sample i with probability

w1,i·w2,i

〈w1,w2〉
, send leak to the adversary,

and send i to P1 and P2.

4.1 Impossibility of sublinear product sampling

Our goal is to find a protocol for two-party sampling with sublinear (in n)
communication. However, unlike the case for L1 sampling, we show that this goal
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is actually impossible. Roughly speaking, if parties are allowed to have arbitrary
input vectors, then a sublinear communication solution to product sampling
implies a sublinear communication solution to the disjointness problem, which
is known to be impossible.

For our impossibility result, we first define the two-party disjointness prob-
lem.

Disjointness problem. The disjointness problem checks if two input sets S
and T are disjoint (i.e., S ∩ T = ∅). Specifically, we consider a function DISJn :
{0, 1}n × {0, 1}n → {0, 1} defined as:

DISJn(vS , vT ) =

{
1 if 〈vS , vT 〉 = 0
0 otherwise

In the above, vS and vT are the characteristic vectors of S and T respectively.
The communication complexity of the solution to the disjointness problem is
known to have a linear lowerbound, as shown in the following Theorem:

Theorem 4 ([43,31,4]). For any (even non-private) two-party protocol Π where
each party holds vS and vT respectively, if Π computes DISJn(vS , vT ) correctly
with probability at least 2/3, the communication complexity of Π is Θ(n).

Our impossibility result. We first observe that a simple reduction from Dis-
jointness gives us that is impossible to achieve sublinear product sampling.
Specifically, disjointness can be directly learned from whether the product sam-
pling protocol outputs ⊥ or not.

Our impossibility result is stronger. We show that it is impossible to achieve
sublinear product sampling even when the product sampling protocol is executed
with input vectors w1 and w2 in which all coordinates are bounded away from
0, which in particular guarantees that 〈w1,w2〉 is bounded away from 0.

Before stating a formal theorem below, for 0 < γ < 1, we first define γ-
heaviness; we say that a vector w is γ-heavy when each coordinate of w is a
number contained in [γ, 1].

Theorem 5. Let w1 and w2 be γ-heavy vectors of length n, each respectively
held by P1 and P2. Assume there exists a two-party protocol Πprod for the product
sampling from w1 and w2, with communication at most C := C(n, γ).

Then, for any γ ≤ 1/2n, there exists a constant ρ and a probabilistic protocol
computing DISJn correctly with probability at least 2/3 that has communication
at most log(n) + 1 + ρ · (C + 1).

Proof of Theorem 5 We construct a protocol computing DISJn by taking
advantage of Πprod as follows:

The protocol for DISJn

Parties A and B each get as input a vector ã, b̃ ∈ {0, 1}n. The goal is to output
1 if the vectors are “disjoint” and 0 otherwise.
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Edge Case: If one of the parties’ inputs has Hamming weight 0, then they
output 1 and send 1 to the other party. From now on, we assume that the
Hamming weight of each party’s input is at least 1.

Preamble: We call the party with the lower Hamming weight input the des-
ignated party. To determine this, A sends to B the Hamming weight of its
input vector ã. If B’s input has higher Hamming weight, it sends back the
bit 1 to A; otherwise it sends 0.

Input Transformation: Let gγ : {0, 1} → R be a boosting function defined as
gγ(0) = γ and gγ(1) = 1. Each party A, B locally transforms their input

vector ã, b̃ to a, b by applying the boosting function in order to ensure
γ-heaviness. That is, for i ∈ [n], set ai = gγ(ãi) and bi = gγ(b̃i).

Sampling Protocol: The parties run the sampling protocol Πprod(a,b) and both
receive some output i∗.

Output Computation: The designated party checks the i∗th bit of its input by
which we denote x (i.e., x = ãi∗ or x = b̃i∗ depending on which party is
the designated party). It sends 1−x to the other party. Both parties output
1− x.

The following lemmas give the completeness and soundness of the protocol.

Lemma 7. If ã, b̃ are disjoint, then the parties both output 1 with probability
at least 1

2+n·γ .

Lemma 8. If ã, b̃ are not disjoint, then the parties both output 1 with probability
at most 1− 1

1+n·γ .

Before we prove the lemmas, we briefly describe how we can use these lemmas
to achieve a protocol that correctly computes DISJ with probability at least 2/3.
Note that we can get a gap by setting γ = 1

2n . In other words, parties output
1 when disjoint with probability at least 2

5 . Parties output 1 when not disjoint
with probability at most 1

3 . Since we have a constant gap between completeness
and soundness, this can be amplified to 2/3 and 1/3 by running the protocol a
constant number of times.

Remarks. We would like to characterize the sublinearity condition for product
sampling protocols using the normalized input vectors. We can do this since
without loss of generality we can assume that input vectors to the product sam-
pling protocols are normalized; in particular, for any (non-normalized) vectors
w1 and w2, we have

Pr

[
Dprod

(
w1

‖w1‖1
,

w2

‖w2‖1

)
= i

]
=

w1,i

‖w1‖1 ·
w2,i

‖w2‖1
〈 w1

‖w1‖1 ,
w2

‖w2‖1 〉
= Pr[Dprod(w1,w2) = i].

Specifically, we show below that the impossibility theorem implies that in
order to achieve sublinear communication complexity for product sampling, we
would need, at the minimum, a promise on the inputs that guarantees that

〈w1,w2〉 ∈ Ω(1/n2),
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when w1,w2 are normalized vectors.
To do this, first note that the theorem implies that sublinear communication

product sampling needs to have γ ∈ Ω(1/n). Now, in the proof, any non-disjoint
binary vectors ã, b̃ to the DISJ problem has 〈ã, b̃〉 ≥ 1, and these vectors are
transformed to gγ(ã) and gγ(b̃). Let w1 and w2 be the normalized vectors gγ(ã)

and gγ(b̃); that is, w1 := gγ(ã)/‖gγ(ã)‖1 and w2 = gγ(b̃)/‖gγ(b̃)‖1. Since each

entry of gγ(ã) and gγ(ã) is at most 1, we have ‖gγ(ã)‖1 ≤ n and ‖gγ(b̃)‖1 ≤ n.
Therefore, we have

〈w1,w2〉 ≥
〈gγ(a), gγ(b)〉

n · n
≥ 1

n2
.

Proof (Proof of Lemma 7). Assume that ã, b̃ are disjoint, and moreover, assume
WLOG that A is the designated party, and its input vector has Hamming weight
w. Recall that ai = gγ(ãi) and bi = gγ(b̃i). Let

W0,0 :=
∑

i:ãi=0,b̃i=0

ai · bi, W1,0 :=
∑

i:ãi=1,b̃i=0

ai · bi

W0,1 :=
∑

i:ãi=0,b̃i=1

ai · bi, W1,1 :=
∑

i:ãi=1,b̃i=1

ai · bi

Note that W0,0 ≤ n · γ2. Further, W1,1 = 0, since the vectors are disjoint,
and W1,0 = w ·γ since the Hamming weight of ã is exactly w. Additionally, note
that W0,1 ≥W1,0, since A is the designated party, so the Hamming weight of ã

is less than or equal to the Hamming weight of b̃.
Note that when the designated party is A, then the output of the protocol

is 1− ai∗ . Using the above facts, the probability of outputting 1 is

W0,0 +W0,1

W1,1 +W0,0 +W0,1 +W1,0
≥ W0,1

W0,0 +W0,1 +W1,0

≥ W0,1

nγ2 + 2W0,1

=
w · γ

nγ2 + 2w · γ
=

w

nγ + 2w

≥ 1

nγ + 2
,

where the last inequality follows since w ≥ 1, due to the Edge Case step of the
protocol. ut

Proof (Proof of Lemma 8). Assume that ã, b̃ are not disjoint. As before, consider
W0,0, W1,0, W0,1, and W1,1. Note that W1,1 ≥ 1 since the inputs are not disjoint.
We also have W0,0 +W0,1 +W1,0 ≤ n · γ, since ai or bi is γ in these cases.
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Using the above facts, the probability of outputting 0 is

W1,0 +W1,1

W1,1 +W0,0 +W0,1 +W1,0
≥ W1,1

W1,1 + n · γ

≥ 1

1 + n · γ
.

ut

4.2 Product sampling while leaking at most the inner product

Assumptions. As before, we assume that all weights in w1 and w2 are non-
negative. As discussed in the previous subsection, we also assume, without loss
of generality, that

‖w1‖1 = ‖w2‖1 = 1.

Overview. We now show that the impossibility result of Section 4.1 can be
bypassed if we make some assumptions on the inputs. Specifically, if we restrict

ourselves to the case when 〈w1,w2〉 = ω
(

logn
n

)
, then we can achieve a sublinear

communication protocol for product sampling on inputs w1,w2
4. Of course, by

observing that the protocol uses sub-linear communication, due to our lower-
bound, both parties will learn that such a promise on the inputs is satisfied; the
lower bound implies that some leakage about the inputs is necessary. In our
protocol, we show that the information leaked is at most the inner product
〈w1,w2〉. (Formally, we set fLeak(w1,w2) = 〈w1,w2〉.) Interestingly, we show
that this is the case even though our protocol does not, and cannot,5 actually
compute 〈w1,w2〉.

Product sampling protocol. Roughly, the protocol works as follows. The
protocol proceeds in rounds where in each round P1 and P2 use the oblivious L1

sampling with a single input vector (Fosample(L1)) to produce two secret-shared
sampled indices, one from P1’s input vector, and one from P2’s input vector.
The parties then run a secure 2-PC protocol to securely compare these values,
and if they are equal, output the sampled index. If the two sampled indices are
not equal, the parties move to the next round.

We describe a private two-party protocol for product sampling leaking at
most the inner product (see Protocol 6). This protocol is in the {Fosample(L1),F2PC}-
hybrid model.

Security. We will prove the following theorem.

4 Regarding 〈w1,w2〉, there is a gap between the lowerbound result (i.e., Ω( 1
n2 )) and

our construction (i.e., ω( logn
n

)). Resolving the gap is left as an interesting open
problem.

5 This can be shown by a simple modification of the lower bound proof from Sec-
tion 4.1.
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Protocol 6 Product sampling (ΠIP
prod) in the {Fosample(L1),F2PC}-hybrid.

Inputs: Party Pb has input wb of length n.

1. Invoke the Fosample(L1) ideal functionality with P1 as the sender with input w1 and
P2 as the receiver. Let i1,1 and i1,2 be the output from the ideal functionality to
P1 and P2 respectively.

2. Invoke the Fosample(L1) ideal functionality with P2 as the sender with input w2 and
P1 as the receiver. Let i2,1 and i2,2 be the output from the ideal functionality to
P1 and P2 respectively.

3. Invoke the F2PC ideal functionality with the following circuit:
Input: (i1,j , i2,j) for j = 1, 2.
(a) Let i1 = i1,1 ⊕ i1,2, i2 = i2,1 ⊕ i2,2.
(b) If i1 is equal to i2, output i1 to both P1 and P2. Otherwise, output ⊥.

4. If the output from the ideal functionality is ⊥, go back to Step 1. Otherwise, output
whatever F2PC outputs.

Output: Both parties output the sampled value i.

Theorem 6. Protocol ΠIP
prod securely realizes Fprod with leakage fLeak(w1,w2) =

〈w1,w2〉 in the {Fosample(L1),F2PC}-hybrid model with semi-honest security.

Proof. We describe the simulator Sim in the {Fosample(L1),F2PC}-hybrid model
for the case that Party 1 is corrupted. The simulator and proof of security are
analogous in the case that Party 2 is corrupted.

Sim receives as input w1, the output i∗, and 〈w1,w2〉. Sim samples r∗ from
a geometric distribution with success probability p = 〈w1,w2〉.

Sim invokes Party 1 on input w1. For i ∈ [r∗ − 1], Party 1 sends its input to
the first invocation of Fosample(L1) and Sim returns to it a random value in Zn.
Party 1 sends its input to the second invocation of Fosample(L1) and Sim returns to
it a random value in Zn. Party 1 sends its input to the F2PC functionality and
Sim returns to it ⊥. For i = r∗, Party 1 sends its input to the first invocation of
Fosample(L1) and Sim returns to it a random value in Zn. Party 1 sends its input
to the second invocation of Fosample(L1) and Sim returns to it a random value in
Zn. Party 1 sends its input to the F2PC functionality and Sim returns to it i∗.

It is clear that the view of Party 1 is identical in the ideal and real world,
assuming that Sim samples the first succeeding round, r∗, from the correct dis-
tribution. In the following, we argue that this is indeed the case.

First, note that on any given round, we have

pc := Pr[collision] =
∑
i

Pr[ii = i ∧ i2 = i] =
∑
i

w1,i · w2,i = 〈w1,w2〉.
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Let FirstSuccess(r) denote an event in which the protocol succeeds for the
first time on the r-th round. Now, for r ∈ N, we have

Pr[FirstSuccess(r) AND the output is i∗]

= Pr[no collision in first r − 1 rounds] · Pr[i1 = i∗ ∧ i2 = i∗ on the rth round]

= (1− pc)r−1 · Pr[i1 = i∗ ∧ i2 = i∗]

Now, the probability that the protocol eventually outputs i∗ is:

Pr[protocol eventually outputs i∗ after some number of rounds]

=

∞∑
j=1

Pr[FirstSuccess(j) AND the output is i∗]

= Pr[i1 = i∗ ∧ i2 = i∗]

∞∑
j=1

(1− pc)j−1 = Pr[i1 = i∗ ∧ i2 = i∗] · 1

pc
.

Thus, the probability of FirstSuccess(r) conditioned on the output being i∗ is:

Pr[FirstSuccess(r)| the output is i∗]

=
Pr[FirstSuccess(r) AND the output is i∗]

Pr[protocol eventually outputs i∗ after some number of rounds]

=
(Pr[i1 = i∗ ∧ i2 = i∗]) · (1− pc)r−1

Pr[i1 = i∗ ∧ i2 = i∗] · 1
pc

= pc · (1− pc)r−1.

The above is exactly the probability of the number of Bernoulli trials (with
probability pc = 〈w1,w2〉) needed to get one success. Sampling the number of
rounds is therefore equivalent to sampling the random variable corresponding
to the number of rounds from a geometric distribution with success probability
pc = 〈w1,w2〉, which is exactly what Sim does. ut

Performance. As shown above, the number of rounds r needed by this protocol
is distributed as the number of Bernoulli trials (with probability p = 〈w1,w2〉)
needed to get one success. Thus, the expected number of rounds is r = 1

〈w1,w2〉 . In

each round, the communication consists of a secure 2-PC of equality on O(log n)-
bit inputs, which can be done in O(log n) communication and O(1) rounds. Thus,
in total, this protocol has expected communication O( logn

〈w1,w2〉 ) and O( 1
〈w1,w2〉 )

rounds. This communication is sublinear in n when 〈w1,w2〉 = ω
(

logn
n

)
.

Trading efficiency for privacy. In the proof above, the simulator requires
the value of 〈w1,w2〉, which is not revealed by the output. However, a slight
modification to the protocol allows us to remove this leakage at the cost of
additional, though still sub-linear, communication. Instead of terminating the
protocol the first time there is a collision in the L1 samples, we can pad the
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communication cost by making O( n
logn ) calls to Fosample(L1). Under the promise of

〈w1,w2〉 = ω( logn
n ), this ensures a collision in the outputs (with all but negligible

probability). The parties can then use O( n
logn ) communication to obliviously find

and output the collision, without revealing the index, and avoiding the leakage
of 〈w1,w2〉.

Generalizing this idea, we arrive at a set of similar protocol modifications
that support a continuous set of tradeoffs: instead of choosing between leaking
〈w1,w2〉 to the simulator, or padding to the maximum communication, we can
choose to leak some lower bound on 〈w1,w2〉, and modify the protocol to make a
proportionate number of calls to Fosample(L1), search (obliviously) for a collision,
and repeat if necessary.

Without a full proof, we provide some intuition for the fact that this tradeoff
between leakage and communication is inherent. We can do that by generalizing
the statement of Theorem 5. We first modify the definition of γ-heavy defined
previously: for any t(n) = O(n), we say that a vector w of length n is γt,n-
heavy if each of the t := t(n) coordinates of w is a number contained in [γ, 1].
In particular, we now allow t(n) = o(n). Then, with a small modification to
the reduction, we can prove that if w1 and w2 are γt,n-heavy, and if there
exists a protocol Πprod for product sampling with communication at most C :=
C(n, γ), then there exists a protocol for computing DISJt with communication
log(n)+O(C). In the modified reduction, the parties simply increase the weights
of the t input slots (as before), and append n − t entries containing 0 at the
end. Since we know that DISJt requires O(t) communication, the implication
is that we have increasingly weaker communication bounds as we are provided
increasingly strong promises on the inner product. Conversely, for a certain set of
input vectors, observing the communication of the sampling protocol gives you
a bound on the inner product of the inputs. The less communication observed,
the tighter that bound, and the greater the leakage.

5 Product Sampling in Constant Rounds

Achieving constant rounds through parallel repetition. In Sections 4, we
showed a sublinear communication protocol for product sampling when 〈w1,w2〉
is sufficiently large. Moreover, this protocol provably leaked no more information
than the inner product. However, this protocol required O(1/〈w1,w2〉) rounds
of communication. This raises the question of whether constant-round sublinear
product sampling is possible under the same restrictions on the inputs.

Our protocol to achieve this takes a relatively standard approach. Suppose
that we are given the value of 〈w1,w2〉. Then, since the expected number of
samples until a collision is a function of 〈w1,w2〉, we can just run the inner
loop of protocol Πprod in parallel sufficiently many times to guarantee that the
protocol would terminate with all but negligible probability.

How many times to repeat? However, there is one catch. It is not actually
possible to compute 〈w1,w2〉 in sublinear communication! One simple solution
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is to use our promise on the input: we could run the inner loop enough times to
guarantee termination for any inputs satisfying the promise (e.g. ω( n

logn ) times).
However, this forces us to adopt the worst-case communication cost, which might
be undesirable. (Recall, it also offers the least leakage, which might be desirable.)
Instead, we re-establish the trade-off between leakage and efficiency as follows.
We begin by computing an approximation of the inner product in sublinear
communication (see Section 5.1). Using this approximation, we can then realize
our sublinear communication, constant round protocol for product sampling as
follows in the next subsection.

5.1 Secure approximation of the inner product

We achieve a protocol that securely approximates the inner product with sub-
linear communication. In particular, we take advantage of the well known John-
son–Lindenstrauss Transform (JLT) [27,24] sketch.

Additional assumptions about w1 and w2. We assumed that w1 and w2 are
normalized and correlated such that 〈w1,w2〉 = ω(log n/n). In a similar vein,
we assume that the cosine similarity of the two vectors w1 and w2 is not small,
e.g., ω(1/ log n).

Recall the cosine similarity between the two vectors w1 and w2 is defined

as cos(w1,w2) = 〈w1,w2〉
‖w1‖2·‖w2‖2 . Since the L1 norm of each vector is equal to 1,

their L2 norms will typically much smaller than 1, which implies that the cosine
similarity is usually much larger than 〈w1,w2〉.

Approximating the inner product using JLT sketches. The JLT sketch
of x is equal to Mx, where M is a random k × n matrix with k � n. More
specifically, the inner product of the two vectors is approximated as follows:

approxIP(w1,w2): B w1 and w1 are n dimensional vectors.
1. Choose k × n matrix M such that each entry Mi,j is chosen from an inde-

pendent Gaussian distribution of mean 0 and variance 1.
2. Output 1

k · 〈Mw1,Mw2〉. (Here, we slightly abuse the notation and treat the
vectors w1 and w2 as column vectors.)

Lemma 9. (cf. [30, Corollary 3.1]) For all w1,w2 such that cos(w1,w2) ≥ t, the
procedure approxIP(w1,w2) approximates 〈w1,w2〉 up to a 1± ε approximation
factor with all but negligible probability (over the choice of the JLT matrix), using

JLT dimension k = ω
(

log(n)
t2·ε2

)
.

Privacy of the approximate output. What is interesting is that the approx-
imate inner product doesn’t reveal anything more than the inner product itself.
In this sense, it satisfies the notion of private approximation introduced in [21].
In particular, we prove the following:

Lemma 10. The output of approxIP(w1,w2) can be simulated perfectly given
only 〈w1,w1〉, 〈w2,w2〉, and 〈w1,w2〉.
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The proof is found in Appendix C.6.

Private protocol via JLT. Using the JLT sketch, we can design a private
protocol approximating the inner product. See Protocol 7. The protocol uses
threshold FHE (e.g., [38]).

Protocol 7 Private protocol for computing approximate inner product

Inputs: Parties P1 and P2 has inputs w1 and w2 respectively.

The protocol proceeds as follows:

1. Parties set up a threshold FHE scheme.
2. They securely sample k×n matrix M described in the above with in the threshold

FHE. In particular, they jointly generate an encrypted random seed JsK. Using
this randomness, parties homomorphically evaluates JPRG(s)K, where PRG is a
pseudorandom generator, to obtain the JLT matrix JMK.

3. Each party Pb homomorphically evaluates Jw̃bK = JMwbK.
4. Party P1 sends Jw̃1K to P2.
5. Party P2 homomorphically evaluates J〈w̃1, w̃2〉K and sends it to P1.
6. Parties execute threshold decryption to obtain and output 1

k
· 〈w̃1, w̃2〉.

Security. Since every protocol message is a ciphertext, based on semantic se-
curity of the threshold FHE, it is easy to see that the protocol securely realizes
a functionality for computing approxIP. Based on Lemma 10, the leakage profile
of the functionality is 〈w1,w1〉, 〈w2,w2〉, and 〈w1,w2〉.

5.2 Constant-round protocol for product sampling

Note that the Protocol 6 has the following structure. In particular:

– The probability that Protocol 6 samples a good index and halts in a given
trial is p = 〈w1,w2〉.

We need to repeat r trials in parallel so that the probability that all r trials
fail is negligible. In other words, we should have

(1− p)r ≤ e−p·r ≤ e−ω(log λ).

This means that we should have r > ω(log λ)
p .

Moreover, in the previous subsection, we discussed how to obtain a good
estimate p̃ = (1± ε)p. Therefore, we should have

r >
(1 + ε) · ω(log λ)

p̃
>
ω(log λ)

p
.
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In summary, by running (1+ε)·ω(log λ)
p̃ instances in parallel, we achieve con-

stant round protocols for product sampling with negligible failure probability.
The final protocol should perform extra steps to hide from which trial the output
comes from, and these changes can made in a straightforward way.

6 Two-party Exponential Mechanism

Recall that one of our main motivations for this work is to instantiate a two-party
version of the exponential mechanism to achieve differential privacy. We observe
that for many natural loss functions (i.e., when the loss function is additive
across the two parties), the exponential mechanism on two parties is essentially
equivalent to product sampling. We explain this further with a concrete example
in Section 6.1.

6.1 A concrete example

Suppose we want to choose a classifier minimizing the L2 error over a test dataset
while preserving differential privacy of the labeled examples. Suppose there are
n machine learning classifiers (c1, . . . , cn), and a test dataset D = (d1, . . . , d|D|)
consists of |D| rows. Let `j ∈ {0, 1} be the label of the j-th row dj of the dataset.
For a machine learning classifier ci, we define its L2 loss function as follows:

f ciloss(D) :=
∑
j∈|D|

(ci(dj)− `j)2/|D|.

Now, consider a two-party federated setting in which the parties would like to
perform computation on the aggregation of their local datasets. In particular, we
assume party P1 (resp., party P2) holds dataset D1 (resp., D2) with |D1| = |D2|.
Let D = D1||D2.

DP mechanism in the central curator model. In our mechanism, the cen-
tral curator would receive input from parties P1 and P2 and choose classifier ci
with a (ε, 0)-DP guarantee using the exponential mechanism.

We observe that the L2 loss function f ciloss(D) over the entire dataset D can
be computed by each party Pb first locally computing

f ciloss(Db) :=
∑
j∈|Db|

(ci(db,j)− `b,j)2/|D|,

and then computing f ciloss(D) = f ciloss(D1) + f ciloss(D2).
Based on the above observation, in our mechanism, each party Pb computes

a vector vb as follows:

For b ∈ {1, 2}, let vb = (vb,1, . . . , vb,n), where vb,i = e−ε·
f
ci
loss

(Db)

2∆u and ∆u =
ε

40(logn+t) , and λ is the security parameter.
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Then, each party Pb computes wb := vb
||vb||1 (i.e., the normalization of vb), and

sends wb to the central curator. Finally, the curator will choose classifier ci with
the probability

wi,i·wi,2
〈w1,w2〉 .

Lemma 11. If |D| ≥ 40(log n+ λ)/ε, our mechanism provides (ε, 0)-DP.

Proof. Let qi(D) =
−fciloss(D)

2∆u . We first show that drawing a sample from the
product distribution of w1,w2 is identical to running the exponential mechanism
to select classifier ci with probability

eεqi(D)∑
j∈[n] e

εqj(D)
.

Recall that product sampling on inputs w1,w2 returns index i with probability
w1,i·w2,i

〈w1,w2〉 . Since wb,i =
vb,i
||vb||1 , we can rewrite the previous equation as

w1,i · w2,i

〈w1,w2〉
=
v1,i · v2,i
〈v1,v2〉

=
eε·qi(D1) · eε·qi(D2)∑

j∈[n] e
ε·qj(D1) · eε·qj(D2)

=
eε·qi(D)∑

j∈[n] e
ε·qj(D)

Note that the loss functions have global sensitivity of 1/|D| since a change
to the j-th row of Db can cause f ciloss(Db) to change by ±1/|D|. Instead of using
1/|D|, our mechanism uses a larger value ∆u. Since the ∆u is larger than the
sensitivity whenever |D| ≥ 40(log n + λ)/ε, and our mechanism is a simple ex-
ponential mechanism, (ε, 0)-DP holds. ut

Utility. Although using a larger value ∆u deteriorates the utility of the mecha-
nism, we show that the utility is still acceptable. Applying Theorem 3.11 in [15]
to our setting, we have

Pr

[
f ciloss(D) ≤ f coptloss (D)− 2∆u

ε
· (log n+ λ)

]
≤ e−λ.

Noting that ∆u = ε
40(logn+λ) , we have

Pr
[
f ciloss(D) ≤ f coptloss (D)− 1/20

]
≤ e−λ.

Viewing f
copt
loss (D) as the optimal accuracy for the chosen classifier. This implies

that our mechanism returns a classifier that is at most 5% less accurate than the
optimal classifier. We note that an even smaller loss in accuracy can be achieved
by increasing ∆u and the minimum size of D accordingly.

Jumping ahead, we use this larger ∆u in order to achieve differential privacy
of the approximate inner product evaluation to be described in the next section.
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6.2 Differentially-Private Inner Product for the Exponential
Mechanism

Issue: DP is broken due to leakage 〈w1,w2〉. Based on the result of the
previous subsection, we can simply run the product sampling protocol to achieve
a two-party exponential mechanism without the central curator. However, there
is one issue we need to address. In particular, the leakage from the previously
described protocols for product sampling violates the DP guarantee of the expo-
nential mechanism; the leakage 〈w1,w2〉 is clearly not differentially private with
respect to P2’s input.

Thus, to instantiate the exponential mechanism, we give an alternative in-
ner product approximation protocol that achieves differential privacy. Using this
approximation, we can build a protocol that is able to sample from exactly the
product distribution while additionally leaking a value leak that is differentially-
private and thus does not violate the DP guarantee of the exponential mecha-
nism. We build such a protocol based on the approximate inner product using
the JLT given in Section 5.1.

Approximating the inner product differentially privately. We now de-
scribe a mechanism, executed by a trusted curator, to approximate the inner
product on inputs w1 and w2 with wb,i =

vb,i
||vb||1 for b ∈ {1, 2} and i ∈ [n] as

described above. This mechanism is essentially the approxIP algorithm described
in Section 5.1 with noise added in the exponent to guarantee differential privacy.

DP-approxIP(w1,w2):

1. Choose k×nmatrix M such that each entryMi,j chosen from an independent
Gaussian distribution of mean 0 and variance 1. The dimension k (with
k � n) is determined appropriately according to Lemma 9.

2. Choose a value x from the Laplace distribution Lap(1/(∆u · |D|)).
3. Output ex · 〈Mw1,Mw2〉.

Public sampling of M. Contrary to Section 5 where M was sampled inside the
FHE, here, the matrix M can be publicly sampled (e.g., through a commonly
chosen random PRG seed), since DP is achieved through adding a Laplace noise.

Differential privacy. We say that two datasets D and D′ are neighboring if
they differ in exactly one row.

Recall that, as in the application described in Section 6.1, the parties’ inputs

to the product sampling are of the form wb where wb,i ∝ e−ε·
f
ci
loss

(Db)

2∆u for some
additive loss functions f ciloss.

Theorem 7. If |D| ≥ 40 · (log n + λ)/ε, the mechanism DP-approxIP is ε-
differentially private w.r.t a database D1 (resp., D2) when the loss functions
f ciloss(D) have low sensitivity 1/|D|.
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Proof. We prove differential privacy with respect to D1 (i.e., the adversary knows
D2 and the differential privacy guarantee holds relative to rows of D1). The
reverse case is analogous.

Note that the change of a single row in D1 causes the values v1,i (for i ∈
[n]) and the value ‖v1‖1 to change by at most a multiplicative factor of α :=
e±ε/(2∆u·|D|). Thus, letting M` be the `-th row of the JLT matrix (which is
fixed and public), for each ` ∈ [k], the value 〈M`,wb〉 can change by at most a
multiplicative factor of α2. Therefore, the dot product 〈Mw1,Mw2〉 can change
by at most a multiplicative factor of α2.

Ultimately, this means that we have additive sensitivity of ε/(∆u · |D|) in
the exponent. To achieve differential privacy, we thus need to multiply the dot
product estimate by ex, where x is drawn from Lap(1/(∆u · |D|)). ut

Correctness. We briefly analyze the estimation error due to the added noise.
Since x is drawn from Lap(1/(∆u · |D|)), the probability that |x| ≥ ε is at
most e−∆u·|D|. When |D| > ∆u · λ/ε, this probability is at most e−λ, which is
negligible.

In other words, when D is a sufficiently large dataset, with overwhelming
probability, the incurred multiplicative error is e|x| ≤ eε < 1 + 2ε. Thus, differ-
ential privacy adds at most a 1 ± 2ε multiplicative error on top of the error of
the approximation algorithm.

Removing the curator. We described the inner product approximation proto-
col as being run by a trusted curator. As is standard, we can replace this curator
with a secure 2-PC evaluating the mechanism to achieve computational DP.

6.3 Instantiating the Exponential Mechanism

We now have all the necessary pieces to instantiate a sublinear communication
protocol to evaluate the exponential mechanism for a database D held jointly
by two parties.

The two-party exponential mechanism protocol. We now describe the
distributed exponential mechanism where Pb has input Db and the loss functions
have low sensitivity. This protocol is in the Fosample(L1)-hybrid model.

Security. We will prove the following theorem.

Theorem 8. If |D| ≥ 40 · λ(log n+ λ)/ε2, protocol ΠEM is (2ε, negl(λ))-DP.

It is easy to see that this protocol runs an enough number of product sam-
plings in parallel so that it does not output abort, except with negligible prob-
ability (see Section 5.2). Therefore, for the proof, we assume that the protocol
does not output abort.

Proof. We first consider where P1 is corrupted by the adversary A. Let viewA(D)
be the view of the protocol to A (consisting of input, output and transcript) in
the {F2PC ,Fosample(L1)}-hybrid model. In the j-th invocation of Fosample(L1), the
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Protocol 8 Exponential Mechanism Protocol (ΠEM) in the {F2PC ,Fosample(L1)}-
hybrid model

Inputs: Party Pb has input Db

1. Pb computes vb = (vb,1, . . . , vb,n) such that vb,i = e−ε·
f
ci
loss

(Db)

2∆u , where ∆u =
ε

40(logn+λ)
. Let wb = vb

||vb||1
.

2. Invoke the F2PC ideal functionality to evaluate η = DP-approxIP(w1,w2). Note
that η is an (1 + 2ε)-approximation of the inner product.

3. The parties execute the following steps m = (1+2ε)·ω(log λ)
η

times in parallel.

(a) Invoke the Fosample(L1) ideal functionality with P1 as the sender with input w1

and P2 as the receiver. Let ij1,1 and ij1,2 be the output of the jth execution to
P1 and P2 respectively.

(b) Invoke the Fosample(L1) ideal functionality with P2 as the sender with input w2

and P1 as the receiver. Let ij2,1 and ij2,2 be the output of the jth execution to
P1 and P2 respectively.

4. Invoke the F2PC ideal functionality for the following circuit:
Input: (ij1,1, i

j
2,1, i

j
1,2, i

j
2,2) for j = 1, . . . ,m.

(a) Let ij1 = ij1,1 ⊕ i
j
1,2, ij2 = ij2,1 ⊕ i

j
2,2.

(b) Find the smallest j such that ij1 equals ij2, and output ij1 to both P1 and P2.
If no such j exists, output abort.

Output: Both parties output the sampled index i or abort.

outputs {ij1,1, i
j
2,1}j , i) sent to A by the ideal functionality are uniformly dis-

tributed and independent of D. Thus, WLOG, we assume that A’s view consists
of its input, transcript η, and output i. Let viewtrans

A (D) (resp., viewout
A (D)) be

the transcript (resp., output) contained in A’s view during a random execution
of the protocol with input D.

For all neighboring database D and D′, and for all η and i, we have:

Pr[viewtrans
A (D) = η, viewout

A (D) = i]

= Pr[viewtrans
A (D) = η] · Pr[viewout

A (D) = i|η]

≤ eε Pr[viewtrans
A (D′) = η] · Pr[viewout

A (D) = i|η]

≤ eε Pr[viewtrans
A (D′) = η] · eε Pr[viewout

A (D′) = i|η]

= e2ε Pr[viewtrans
A (D′) = η, viewout

A (D′) = i],

The first inequality holds form the DP of protocol DP-approxIP, and the
second inequality holds from the DP of the exponential mechanism.

The case when P2 is corrupted can be proved similarly. ut
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A Definitions

We assume that readers are familiar with security notions of standard crypto-
graphic primitives [32] and formal definitions of a protocol securely realizing an
ideal functionality (cf. [18]).

A.1 Ideal functionality F2PC

The ideal functionality works as follows:

F2PC : Ideal functionality for evaluating two-party circuits.

The functionality has the following parameter:

– Two party binary circuits C1(·, ·) and C2(·, ·).

The functionality proceeds as follows:

1. Receive inputs x1 and x2 from P1 and P2 respectively.
2. Send C1(x1, x2) to P1 and C2(x1, x2) to P2.

It is well know that Yao’s protocol securely realizes F2PC in the semi-honest
security setting with a constant round and O(|C1|+ |C2|) communication [33].

A.2 Differential privacy

We say that two vectors d = (d1, d2, . . .) and d′ = (d′1, d
′
2, . . .) are neighboring if

they have the same length, and there exists only one index i s.t. di 6= d′i.

Definition 7 (Differential privacy with a trusted curator [12,14]). A
mechanism M satisfies (ε, δ)-differential privacy if for all neighboring data sets
d and d′, and all sets S ⊆ Range(M)

Pr[M(d) ∈ S] ≤ eε · Pr[M(d′) ∈ S] + δ

Differential privacy in the two-party setting. Our presentation here follows
the similar definitions given in prior work [5,44,8]. For a two-party protocol Π
and an input (d1,d2), we let Π(d1,d2) denote the execution of Π on this input.
For an adversary A (corrupting either P1 or P2), we define Let viewΠA (d1,d2) be
the view of the protocol to A (consisting of input, the random tape, the protocol
transcript, and the output).

Definition 8. Let ε > 0 and 0 ≤ δ < 1. A (randomized) protocol Π preserves
computational two-party (ε, δ)-Differential Privacy, if for any PPT distinguisher
D, for any PPT adversary A, and for all neighboring inputs d := d1‖d2 and
d′ := d′1‖d′2, there exists a negligible function negl(·) such that,

Pr[D(viewΠA (d1,d2), 1λ) = 1] ≤ eε · Pr[D(viewΠA (d′1,d
′
2), 1λ) = 1] + δ + negl(λ)
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B Securely Realizing FbiasCoin with Semi-honest Security

We can securely realize FbiasCoin, by executing F2PC for the following circuit
Ccoinflip. Since we just execute F2PC with a circuit, security of the protocol is
immediate.

Ccoinflip(‖w1‖1, {r1,j}λj=1, b1, ‖w2‖1, {r2,j}λj=1, b2) B rj , bj are random bits.
1. P1’s input is (‖wb‖1, {r1,j}, b1) and P2’s input is (‖w2‖1, {r2,j}, b2). We re-

quire ‖w1‖1, ‖w2‖1, {r1,j}, {r2,j} ∈ {0, 1}λ, and b1, b2 ∈ {0, 1}.
2. Let s1 = ‖w1‖1 and s2 = ‖w2‖1. Let s = s1 + s2. Compute mask = 0λ−h1h

such that s&mask = s and s|mask = mask where & (resp., |) denotes bitwise
AND (resp., bitwise OR) operation. Note that there is a single h satisfying
the above conditions, i.e., the effective bit-length h of s with 2h−1 ≤ s < 2h.
This computation can be done by checking all possible candidates of h one
by one in O(λ) steps.

3. For j = 1, ..., λ, let rj = (r1,j ⊕ r2,j)&mask. Note that it holds rj < 2h.
4. Find the first j∗ such that rj∗ ≤ s. If there is no such j∗ output error.
5. Compute b = b1 ⊕ b2.
6. If rj∗ ≤ s1, output b to both P1 and P2. Otherwise, output b to P1 and b⊕ 1

to P2.

Note that Pr[rj > s] = 1 − s/2h < 1/2. Therefore, with λ repetitions, we
have a good j∗ with probability 1− 2−λ. Finally, we have Pr[rj∗ ≤ s1|rj∗ ≤ s] =
s1
s = p.

C Proofs

C.1 Proof of Theorem 1

We describe the simulator Sim in the {Fosample(L1),F2PC}-hybrid model for the
case that Party 1 is corrupted. The simulator and proof of security are analogous
in the case that Party 2 is corrupted.

Sim receives as input w1, the output i∗, and ||w1 + w2||2. Sim samples r∗

from a geometric distribution with success probability p = ||w1 + w2||22.
Sim invokes Party 1 on input w1. For i ∈ [r∗−1], Party 1 sends its input to the

first three invocations of Fosample(L1) and Sim returns to it three random values
in Zn. Party 1 sends its input to the second three invocations of Fosample(L1) and
Sim returns to it three random values in Zn. Party 1 sends its input to the F2PC

functionality and Sim returns to it ⊥. For i = r∗, Party 1 sends its input to the
first three invocation of Fosample(L1) and Sim returns to it three random values
in Zn. Party 1 sends its input to the second three invocations of Fosample(L1) and
Sim returns to it three random values in Zn. Party 1 sends its input to the F2PC

functionality and Sim returns to it i∗.
It is clear that the view of Party 1 is identical in the ideal and real world,

assuming that Sim samples the first succeeding round, r∗, from the correct dis-
tribution. In the following, we argue that this is indeed the case.
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As was shown in the correctness analysis, if the protocol has not already
halted before round r, then the probability of halting (and outputting some
valid index) in round r is:

||w1||2 + 2〈w1,w2〉+ ||w2||2 = ||w1|w2||22.

Since r∗ is defined as the round in which the protocol halts, the distribution on
r∗ is exactly the distribution on the number of Bernoulli trials (with probability
p = ||w1|w2||22) needed to get one success. Sampling the number of rounds
is therefore equivalent to sampling the random variable corresponding to the
number of rounds from a geometric distribution with success probability p =
||w1|w2||22, which is exactly what Sim does.

C.2 Proof of Theorem 2

We first give the simulation of the sender. The simulator proceeds as follows:

– Send w to Fosample(L1) and receive π as the output. Place π on the random
tape of the sender.

– Simulate the output of F2PC by sending a random r1 to the sender.
– Simulate the key generation protocol honestly.
– Send a random encryption for Jr2K in Step 4.

Due the semantic security of the underlying FHE scheme, the simulation is
indistinguishable. Next, we give the simulation of the receiver.

– The simulator receives output i⊕ π from Fosample(L1).
– The simulator works as functionality F2PC sending a random r2 as the output

to the receiver.
– The simulator runs the key generation protocol honestly, and stores the

threshold decryption key of the sender.
– In step 6, the simulator computes c := Ji⊕ πK and sends it to the receiver.
– The simulator runs the threshold decryption protocol honestly.

The simulation is perfect.

C.3 Proof of Theorem 3

We describe the simulator Sim in the {FssL1
,F2PC}-hybrid model for the case

that Party 1 is corrupted. The simulator and proof of security are analogous in
the case that Party 2 is corrupted.

Sim receives as input w1 and the output i∗. Sim invokes Party 1 on input
w1. For j ∈ [B], the simulator works as follows:

– Upon Party 1 sending its input to FL1
, Sim returns a uniformly random

share r
– In place of the encryption of w2,ij from Party 2, Sim sends Party 1 an FHE

ciphertext encrypting 0.
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– Upon Party 1 sending its input to F2PC , Sim returns to Party 1 an FHE
ciphertext encrypting 0.

The only differences in the view of Party 1 in the ideal and hybrid worlds, are
that (1) In the hybrid world it gets a secret share of ij , whereas in the ideal world
it gets a uniformly random value; (2) In the hybrid world it gets an encryption
of w2,ij from Party 2, whereas in the ideal world it gets an encryption of 0; (3)
In the hybrid world it gets encryptions of ij or 0 from the ideal functionality
F2PC , whereas in the ideal world it always gets encryptions of 0.

Receiving uniformly random values instead of correct secret shares does not
affect the view of Party 1, since the additive secret sharing used has perfect
secrecy. Further, switching from encryptions of w2,ij and ij to encryptions of 0
is indistinguishable due to the semantic security of the threshold FHE scheme.
Thus, the view of Party 1 is computationally indistinguishable in the hybrid
world and the ideal world.

This concludes the proof of security of the L2 sampling protocol.

C.4 Proof of Lemma 5

We want to show that

Pr
DLp (w1,w2)

[i] =
(w1,i + w2,i)

p

||w1 + w2||pp

=
(w1,i + w2,i)

p

c · (||w1||pp + ||w2||pp)

≤
2p−1(wp1,i + wp2,i)

c · (||w1||pp + ||w2||pp)
= 2p−1/c · Pr

Dignore,p(w1,w2)
[i].

The inequality holds due to Jensen’s inequality with convex function f(x) = xp:

1/2p · (w1,i + w2,i)
p = f(1/2 · wi,1 + 1/2 · wi,2)

≤ 1/2 · f(wi,1) + 1/2 · f(w2,i)

= 1/2(wpi,1 + wpi,2).

This completes the proof of Lemma 5.

C.5 Proof of Lemma 6

Note that ΠLp simply performs rejection sampling in a distributed setting where
sampling from Dignore,p(w1,w2) and computing the probabilities is done in a
distributed manner. It is therefore well-known that as long as for all i ∈ [n],

Pr
DLp (w1,w2)

[i] ≤ 2p/c · Pr
Dignore,p(w1,w2)

[i], (3)
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then ΠL2 samples from the exact correct distribution, and the number of samples
required from Dignore,p(w1,w2) in protocol ΠL2

follows a geometric distribution
with probability c/2p. Thus, if condition (3) is met, the protocol samples exactly
correctly and completes in an expected 2p/c ≤ 2p ∈ Õ(1) number of rounds (since
c ≥ 1 and p ∈ O(1)). Further, it can be immediately noted that condition (3) is
met due to Lemma 5. Finally, each round has Õ(1) communication, since Πignore

has communication Õ(1) (by Lemma 4) and since, in addition to that, only a
constant number of length Õ(1) values are exchanged in each round. Combining
the above, we have that ΠLp has expected communication Õ(1) and worst case

(with all but negligible probability) communication Õ(1).

C.6 Proof of Lemma 10

We will show that the joint distribution over the i-th entries of w̃1 := Mw1 =
(w̃1,1, . . . , w̃1,k), w̃2 = Mw2 = (w̃2,1, . . . , w̃2,k) can be sampled perfectly, given
only 〈w1,w1〉, 〈w2,w2〉, and 〈w1,w2〉.

Due to independence of each of the coordinates of w̃1, w̃2, this immediately
implies that the entire approxIP(w1,w2) can be simulated perfectly given only
〈w1,w1〉, 〈w2,w2〉, and 〈w1,w2〉.
We begin by noting that

w̃1,i = w1,1Mi,1 + w1,2Mi,2 + · · ·+ w1,nMi,n

w̃2,i = w2,1Mi,1 + w2,2Mi,2 + ·+ w2,nMi,n

In the following, we show how to jointly sample (w̃1,i, w̃2,i).

Step 1: We begin by sampling from the marginal distribution over the first
element of the tuple w̃1,i. Note that w̃1,i is distributed exactly as a Gaussian
random variable with mean 0 and variance 〈w1,w1〉. Thus, we can perfectly
sample from the marginal distribution over w̃1,i given only 〈w1,w1〉. Let z
be the resulting sample.

Step 2: We would now like to sample from the conditional distribution w̃2,i,
conditioned on w̃1,i = z.
First, the conditional distribution of Mi,1, . . . ,Mi,n conditioned on
w1,1Mi,1 + w1,2Mi,2 + · · · + w1,nMi,n = z is defined by the multivariate
Gaussian distribution with the following mean µ and covariance matrix Σ
(see Corollary 7 in [11]):

µ =
z

〈w1,w1〉
·w1, Σ = I− w1w

T
1

〈w1,w1〉

Now, w̃2,i is a linear combination of the variables Mi,1, . . . ,Mi,n with coeffi-
cients w2,1, . . . , w2,n. Therefore, w̃2,i is distributed as a univariate Gaussian
with mean µ′ and variance σ′ as follows (see [34] for example).

µ′ = 〈w2, µ〉 =
z〈w1,w2〉
〈w1,w1〉
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and

σ′ = wT
2 Σw2 = wT

2 w2 −
wT

2 w1w
T
1 w2

〈w1,w1〉
= 〈w2,w2〉 −

(〈w1,w2〉)2

〈w1,w1〉

Note that the mean and variance depend only on 〈w1,w1〉, 〈w2,w2〉, and
〈w1,w2〉, so we can sample from this distribution given only those values.
Let y be the resulting sample.

Step 3: Output (z, y)

D Realizing Fosample(L1) with OT with Less Precision

We implement oblivious sampling using a 1-out-of-m OT scheme. In particular,
the receiver, as an OT receiver, chooses a random index from [m], and the sender,
as an OT sender, prepares an m-dimensional input vector that encodes the L1

distribution of w in a way that we will describe soon.

Assumption about the level of precision of the input. With this approach,
each element from the prepared OT input vector will be chosen uniformly with
probability 1

m . Therefore, the size m affects the level of precision of the sampling.
In particular, we set µ := 1/m as a precision unit, and we assume the following:

For each i ∈ [n], it holds that wi
‖w‖1 is a multiple of µ.

If the input vector w is not consistent with the above requirement, one can round
it by using the following function roundingµ(w):

roundingµ(w)
1. Let w = (w1, . . . , wn). For i = 1, . . . , n, compute w′i = truncµ(wi). Here, for

any real number x with x ∈ [0, 1], denote truncµ(x) = x̃ · µ where x̃ is an
integer that minimizes ∆ := x − x̃ · υ subject to ∆ ≥ 0. Typically, we have
µ = 2−q for a certain positive integer q, and truncµ(x) is simply truncating
the lower order bits in the binary representation of x.
Let w′ = (w′1, . . . , w

′
n).

2. Repeat the following until L1 norm of w′ becomes 1.
Find j = arg maxi∈[n](wi − w′i), and increase w′j by µ.

3. Output w′.

The above algorithm makes sure that for all i, it holds |w′i − wi| < µ, which
means w′ is a good approximation of w, with each element having an additive
error of at most µ. To see why, note that in step 1, some w′is will get truncated
leading to small difference, i.e., wi−w′i < µ. In step 2, since the truncated weights
are added back to the elements in decreasing order of difference (wi −w′i), only
some of the truncated w′is will be updated to w′i + µ (which will still be close to
wi) until the L1 norm of w′ becomes 1.

In a situation where the low precision is acceptable, this OT-based solutions
could be more efficient. However, if one needs a higher level of precision, we
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recommend using the FHE-based solution described in the next subsection. We
also observe that by using an OT protocol with O(logm) communication [25,
Theorem 2.2], we expect we could support fairly large values ofm. The bottleneck
on larger m is likely to be storage, and the computation time needed for the OT.

Protocol 9 Oblivious sampling protocol realizing Fosample(L1) based on 1-out-of-
m OT
Inputs: The sender has input w. We require every wi/‖w‖1 is a multiple of µ := 1

m
.

1. The sender computes the following:

(a) Given w, the sender prepares an m-dimensional input vector as follows:
(b) For i = 1, . . . , n, do:

Let ki = wi
‖w‖1

·m. Insert ki copies of the index i into the m-dimensional

vector v; that is, there should be ki slots (out of m) whose value is i in
the m-dimensional vector v.

Note that for each i, the fraction of the slots containing the index i in v is
ki
m

= wi
‖w‖1

.

(c) The sender chooses a random pad π uniformly at random.
(d) Let v = (v1, . . . , vm). The sender shuffles v and blinds it by updating vi :=

vi ⊕ π with a randomly chosen π.

2. Execute an OT protocol where the sender is the OT sender with input v and the
receiver is the OT receiver with a randomly chosen number from [m]. Let u be the
output to the OT receiver.

3. Output π to the sender and output u to the receiver.

Oblivious sampling protocol. With the assumption about the level of preci-
sion of the input vector w, we can implement oblivious sampling. See Protocol 9.

Due to security of the OT protocol, the OT sender won’t know the OT
receiver’s choice. However, since the OT receiver does know the sampled index,
which leaks information about the data array, we hide this information from the
OT receiver by having the OT sender shuffle the input vector.

At the end of the OT protocol, the sender and receiver will hold the sampled
index i in a secret shared form; that is, the sender will hold π and the receiver
π⊕ i. Note that the sender re-uses the same π across all inputs, in order to fix its
share, independently of the receiver index. Security holds even with the re-use
of this value because the receiver learns only a single element.

Security. We will prove the following theorem.

Theorem 9. Protocol 9 securely realizes Fosample(L1) in the semi-honest security
model.

Proof. We first give the simulation of the sender. This is trivial in the OT-hybrid
model, as the sender receives no messages in this protocol. The simulator submits
the sender’s input to Fosample(L1), and recieves π as output. It places π on the
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sender’s random tape, accepts the sender’s input to the OT functionality, and
terminates.

Next, we give the simulation of the receiver. The simulator submits input to
Fosample(L1), and receives output u. Upon receiving OT choice from the adversary,
it feeds u to the adversary as the OT output. The simulation is perfect, since
the view of the adversary contains nothing more than u.

E L1 Sampling Protocol with Secret Shared Output

We give a more formal description of the functionality FssL1
.

FL1 : Ideal functionality for two-party L1 sampling

The functionality has the following parameter:

– n ∈ N. The dimension of the input weight vectors w1 and w2.

The functionality proceeds as follows:

1. Receive inputs w1 and w2 from P1 and P2 respectively.
2. Sample i ∈ [n] with probability

w1,i+w2,i

‖w1+w2‖1
3. Choose a random number π consisting of dlogne bits.
4. Send π to P1 and i⊕ π to P2.

We describe a protocol securely realizing FssL1
in the (Fosample(L1),FbiasCoin)-

hybrid.

Protocol 10 Protocol securely realizing FssL1
in the (Fosample(L1),FbiasCoin)-hybrid.

Inputs: Party Pb has input wb.

1. Execute Fosample(L1) with P1 as a sender with input w1 and P2 as a receiver. Let
〈i1〉 be the secret share of the output index.

2. Execute Fosample(L1) with P2 as a sender with input w2 and P1 as a receiver. Let
〈i2〉 be the secret share of the output index.

3. Execute FbiasCoin where P1 has input ‖w1‖1 and P2 has input ‖w2‖1. Let 〈b〉 be the
secret share of the output bit. In addition, P1 chooses random bits π.

4. Execute F2PC for the following circuit:
(a) Input: 〈i1〉, 〈i2〉, 〈b〉, π.
(b) Compute i = i1 · (1− b) + i2 · b.
(c) Output π to P1 and π ⊕ i to P2.

Security of the protocol can be shown similarly to Theorem 1.
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