
Practical UC-Secure Zero-Knowledge Smart
Contracts

Jayamine Alupotha1 and Xavier Boyen1

Queensland University of Technology, Australia

Abstract. Zero-knowledge defines that verifier(s) learns nothing but
predefined statement(s); e.g., verifiers learn nothing except the program’s
path for the respective transaction in a zero-knowledge contract program.
Intra-Privacy or insiders’ zero-knowledge — ability to maintain a secret
in a multi-party computation — is an essential security property for
smart contracts of Confidential Transactions (CT). Otherwise, the users
have to reveal their confidential coin amounts to each other even if it is
not a condition of the contract, contradicting the idea of zero-knowledge.
For example, in an escrow contract, the escrow should not learn buyers’
or sellers’ account balances if the escrow has to pay into their accounts.
Current private computational platforms, including homomorphic en-
cryption and (ZK-)SNARK, can not be used in CT’s smart contracts
because homomorphic encryption requires secret key sharing, and (ZK-
)SNARK requires a different setup for each computation which has to
be stored on the blockchain. Existing private smart contracts are not
intra-private even though they are inter-private — participants can main-
tain secrets from verifiers but not from other participants, accordingly.
To fill this research gap, we introduce the notion of “Confidential Inte-
ger Processing” (CIP) with two intra-private single-setup zero-knowledge
programming protocols, (1) “CIP-DLP” from the Discrete Log Problem
(DLP) targeting Ring/Aggregable CT like Monero and Mimblewimble,
and (2) “CIP-SIS” from Approximate (Ring-Modular-) Shortest Integer
Solution Problem (Approx-SIS) aiming at lattice-based Ring/Aggregable
CT. To the best of our knowledge, our CIP protocols are the first practical
public zero-knowledge contract protocols that are also secure under the
Universal Composability (UC) framework without any hardware magic
or trusted offline computations.

Keywords: Zero-Knowledge · Smart Contracts · Confidential Transac-
tions · Universal Composability.

1 Introduction

Confidential Transactions (CT) are interesting cryptographic protocols that hide
senders’ and receivers’ coin amounts from the verifiers yet provide tools to verify
that (1) coins are not stolen, and (2) hidden coins are non-negative and do not
overflow, e.g., that coins are in [0, 264). There are two types of CTs;
– Ring-CTs that obfuscate the real sender(s) and receiver(s) with shadow par-

ticipants, e.g., Monero [45,52] and Lattice-based [1, 24,25] and

2 Jayamine Alupotha and Xavier Boyen

– Aggregable CTs that allow the deletion of history (spent coin records) from
the blockchain, e.g., Mimblewimble [28,33,35,53] and Lattice-based [2, 57].

However, there are no practical smart contracts for these confidential transac-
tions; hence the advantages of confidentiality can not be used in decentralized
applications. Let us explain our claim.

What is a smart contract? A smart contract is a Boolean program that can
be attached to a coin record like an Unspent Transaction Output (UTXO) or
account. When the coin record is being spent in a transaction, blockchain ver-
ifiers execute the program by giving the transaction as the program’s input. If
the program outputs TRUE, then the verifiers accept that the transaction meets
the conditions of the contract. Otherwise, or for a FALSE, the verifiers reject the
transaction. Due to these programmable contracts, many decentralized applica-
tions can be built on top of blockchains, e.g.,

– online-shopping with secure escrow mechanisms and
– federated machine learning with fair combiners.

Traditional Contracts are not confidential. Traditional smart contracts like
Solidity [27] provide advanced features for decentralized applications. However,
they are not confidential, i.e., hidden coin amounts have to be revealed in order
to use these contracts. Therefore, these smart contracts can not be used for CTs.

Homomorphic Encryption is not suitable for CTs’ smart contracts. Homo-
morphic encryption (HEnc) [10, 30, 54] is a popular private computation mech-
anism. Evidently, Zkay [51] and Zeestar [50] are contract languages built on
HEnc, mainly for account-based Ethereum [56]. However, in HEnc, all the con-
fidential values should be hidden using the same (root-)encryption key, which
is not compatible with confidential coins since each confidential coin must be
protected with a random independent key. Thus, HEnc or its variants can not
provide private computations for confidential transactions.

Private Circuit Computations (PCC) are not practical for smart contracts.
PCCs’ objective is to show that some confidential numbers satisfy a given arith-
metic circuit (see Table 1 for references of PCCs). Most PCCs are based on Suc-
cinct Non-interactive ARguments of Knowledge (SNARK) protocols [31,38,42].
Typically, PCC follows these steps; (1) identify the circuit; (2) generate the setup
(a.k.a. public parameters) for the circuit; (3) generate zero-knowledge proofs for
the input confidential values if they satisfy the circuit; (4) verify the gener-
ated zero-knowledge proofs against the input confidential values. In theory, if
the CT’s confidential coins are generated as same as PCC’s confidential values,
PCC could be used to do private computations for CT. However, using PCC
directly as smart contracts is impractical since each contract requires a large
setup that should be stored in the blockchain, e.g., while the setup size is linear
in the size of the circuit, typically, it is in Kilobytes (DLP) or Mega/Gigabytes
(lattices) excluding the proof. For example, Zether [13] states that their protocol
is impractical for confidential transactions due to the storage cost.

Efficient private contracts exist but need trusted components. Private smart
contracts such as Hawk [39], Arbitrum [37], Ekiden [19], Zkay [51], ZEXE [9],
ZoKrates [23], and ZeeStar [50] are not fully trustless since either they depend

Practical UC-Secure Zero-Knowledge Smart Contracts 3

on Trusted Execution Environments (TEE) or do private computations offline
using a trusted executors(s) to reduce the computational cost. While hackers
have challenged the security of TEE throughout history, offline computations
are also not endorsed in decentralized systems since the main blockchain cannot
guarantee the validity of an offline computation unless its consensus verifiers
fully verify the computation.

1.1 Our Contribution

As a solution, we propose “Confidential Integer Processing” (CIP), the first
practical zero-knowledge integer programming protocol from DLP and Approx-
SIS with the following properties.

1. Single-setup - All contracts use the same setup, and it is less than a Megabyte.
2. Inter-private - Participants hide secrets from the verifiers.
3. Intra-private - Participant(s) can maintain secrets from other participants

of the same contract.
4. Zero-Knowledge - Verifiers learn nothing except the contract path for the

given transaction.
5. Non-Interactive - No interactions between verifiers and participants.
6. Trustless - No trusted hardware or executor is used.
7. Universally Composable - Both CIP-DLP and CIP-SIS are secure according

to the UC framework (this is our main technical contribution!).

Universal Composability. The framework [15, 16] guarantees strong security for
multi-party composed protocols like our CIPs since the interactions between the
multiple parties and multiple protocols must be thoroughly modeled to realize
the security. Informally, UC says that if there is an ideal function with the
desired security properties, and a real protocol that acts the same as the ideal
function, then the real protocol also has the ideal function’s security properties.
This paper’s main contributions are the followings.
– The first ideal system for zero-knowledge programming according to the UC

framework of [16] — Achieving our security properties (zero-knowledge,
knowledge soundness, and intra-privacy) is well known to be tedious in UC
even for simple protocols, not only complex protocols like ours. We show
how to define clear UC models easily with these properties, which can be
used for future zero-knowledge protocols.

– Practical CIP-DLP and CIP-SIS protocols that realize the UC model — Our
CIP-DLP and CIP-SIS’s operations and conditionals are novel protocols ex-
cept Bulletproof range proofs [14] used in CIP-DLP (we use [14] due to its
logarithmic size while CIP-SIS uses a novel range proof protocol). Our CIP
supports typical (1) integer operations: “addition”, “multiplication”, “signed
or unsigned division”, and (2) conditionals: “equal”, “not equal”, “less than
and equal” and “greater than and equal”.

Let us explain how CIPs work at a higher level.

4 Jayamine Alupotha and Xavier Boyen

Confidential Integers. CIP supports confidential integers denoted cint(v,

k) where the actual integer v is hidden under a secret key k. Let g and h be
generators (the DL of h to g is unknown) of a prime-order q group G such
that the DL of g and h are unknown. In CIP-DLP, a confidential integer is a
Pedersen commitment cint(v, k) = gkhv ∈ G. Assume that X is a polynomial
ring such as Zq[X]/[XN+1], and Approx-SIS of (n,m, q, γ, γ′, N) is hard for

V⃗ ∈ Xn
q and K⃗ ∈ Xn×m−1

q (see Definition 4). In CIP-SIS, cint(v, k⃗ ∈ Xm−1) is

highbitsγ′(V⃗ [v, 0, ..0] + K⃗k⃗) ∈ Xn
q when [v, 0, ..0] ∈ X, and the infinity norms

of v and k⃗ are smaller than γ. Here, highbitsγ′() drops the last ⌊log2 γ′⌋ bits
of each coefficient.

Confidential Integer Processing for Smart Contracts. CIP can be used for any
CT if their confidential coins are generated the same as confidential integers or if
there is a way to prove that a confidential coin’s value is equal to a confidential
integer’s value. For example, CIP-DLP can be directly1 used for Monero [45] and
Grin-Mimblewimble [53] since they store confidential coins as Pedersen commit-
ments. Also, confidential coins of lattice-based MatRiCT [25] and LACTx [2]
can be converted into confidential integers even though the confidential coins
commits binary values, not the full integer 2.

Modularity and Intra-Privacy. CIP’s operations are modular, — a proof for
each operation or conditional is computed solely based on its inputs — which
is the opposite of creating a single proof for an arithmetic circuit. Also, CIP
supports “multi-party equal” statements required for intra-privacy. As a result,
two participants can show that they have the same integer without disclosing any
of the secret keys. We will explain how our “multi-party equal” protocol works.
Assume that two participants P1 and P2 have two DLP confidential integers
c1 = gk1hv1 and c2 = gk2hv2 , respectively. They do not want to share secret
keys, but they want to show that the confidential integers hold the same integer.

– Each participant i picks a secret nonce k′i from [0, q) and computes a confi-

dential integer of zero : ti = gk
′
i ∈ G. They each share ti. Let t = {t1, t2} be

the shared values.
– They both compute: t = t

hash(t,t1)
1 × (t

hash(t,t2)
2)−1.

– Then each participant i computes a challenge x by hashing c1, c2, t, e.g.,
x = hash(c1, c2, t) ∈ [0, q) and computes si = hash(t, ti)k

′
i + xki ∈ [0, q).

Then they share s1 and s2.
– Finally, they compute the proof π = (t, s=(s1 − s2)) ∈ (G2, [0, q)) for the

input confidential integers (c1, c2). Any one of them can send π to the verifier.

We illustrate the diagram of the protocol in Figure 1. The verification is, t ×
(c1 × c−1

2)hash(c1,c2,t)
?
= gs ∈ G. Then we can verify that c1 and c2 have the

1 CIPs have to change public parameters according to the applications’ public param-
eters which can be easily done.

2 One may wonder why we do not define confidential integers similar to MatRiCT [25]
and LACTx [2]. The reason is that these coins are not additively homomorphic like
ours due to the binary form of v.

Practical UC-Secure Zero-Knowledge Smart Contracts 5

same integer without sharing keys (Note: these “multi-party equal” proofs are
indistinguishable from “equal” proofs which will be discussed later in the paper).

Multi-Party Equality Check

P1 P2

k′
1

$←− [0, q)⇒ t1 = gk
′
1 k′

2
$←− [0, q)⇒ t2 = gk

′
2

t = {t1, t2} t1 t2 t = {t1, t2}

t = t
hash(t,t1)
1 × (t

hash(t,t2)
2)−1 t = t

hash(t,t1)
1 × (t

hash(t,t2)
2)−1

x = hash(c1, c2, t) x = hash(c1, c2, t)

s1 = hash(t, t1)k
′
1 + xk1

s1 s2 s2 = hash(t, t2)k
′
2 + xk2

π = (t, s=(s1 − s2)) π = (t, s=(s1 − s2))

Fig. 1. Multi-Party Equal Proofs such that t× (c1 × c−1
2)hash(c1,c2,t)

?
= gs ∈ G

CIP provides intra-privacy since any contract can be separated into multiple
contracts due to this modularity and combined back by using “multi-party equal”
statements. For example, two participants want to prove that their coin amounts
are ≥ some limit and to keep limit hidden from the public. They:

– separately compute two confidential integers for limit with different keys:
cint(limit, k1) and cint(limit, k2);

– secretly compute “larger than and equal” proofs for their coin amounts;
– together create a “multi-party equal” proof to show that cint(limit, k1)

and cint(limit, k2) have the same integer value without revealing k1 and
k2 to each other; and

– combine all three proofs into a single proof which is the zero-knowledge proof
for the contract.

In that way, participants do not learn others’ coin amounts but ensure that both
participants used the same limit. We can use “multi-party equal” statements
to achieve intra-privacy at a minimal cost since these “multi-party equal” proofs
are relatively smaller (even in Approx-SIS, it is only a hash challenge and a short
polynomial vector of Xm−1).

Why do not we use a common confidential integer for limit? CIPs’ opera-
tions and conditionals are modular, and some operations like multiplication and
division are inspired by sigma protocols with Fiat-Shamir challenges [26, 49].
Hence, even knowing a secret key of one input is sufficient to identify the real
value or characteristics of other inputs, which is a violation of the zero-knowledge
argument, e.g., using a common confidential integer for limit may reveal hidden
integers of other confidential integers. CIP solves this problem via “multi-party
equal” statements which do not require any secret key sharing.

Modularity and Running-Time Verification Cost.Our CIPs also provide “out-
put as soon as possible” property, unlike arithmetic circuit computations where
no outputs are returned until the end of the program. Therefore, a contract can
be stopped if it has early returns, and the verifiers do not need to run the
entire circuit. Another advantage is that the cost of computation can be easily

6 Jayamine Alupotha and Xavier Boyen

calculated by weighing each modular operation at running time, i.e., the cost
will be only computed for that particular path, not for the whole contract if the
program terminates early.

Escrow Mechanisms are the most common contract type in blockchains. The
escrow holds a buyer’s coins until either the seller sends the goods to claim the
coins or refunds the buyer while taking a small commission. First, the buyer
sends coins to the escrow with a contract stating the buyer’s and seller’s account
addresses (mostly public keys) and the commission. The escrow can keep the
commission and sends (coins - commission) either to the buyer or the seller.
However, the escrow is prohibited from spending those (coins - commission)
anywhere else. When the contract protocol is not intra-private, the seller or the
buyer has to reveal their input account balances to the escrow to compute the
proof for the contract. A naive solution would be to create an account for each
contract, but it overloads the blockchain with unnecessary data. Our CIPs solve
this privacy problem easily, i.e., whoever (seller/buyer) receives the coins shows
that (coins - commission) is equal to received coins or (output account balance
- input account balance) by computing a “multi-party equal” statement with
the escrow. Therefore, the users do not have to create multiple accounts to hide
their coin amounts, and the blockchain will not be unnecessarily overloaded.

Federated Learning. CIP can be used for other multi-party applications out-
side blockchains, e.g., federated learning [41] since CIPs are generic programming
languages. Federated learning introduces a multi-party learning model with the
freedom to hide individuals’ raw data. Each individual trains their raw data into
a partial model, and then a trusted combiner aggregates those partial models
into a single trained model. However, these unverifiable combiner/individuals can
be malicious, i.e., a malicious combiner can aggregate corrupted partial models,
to get a biased trained model, e.g., for market manipulation. A CIP program
can mitigate this by setting accepted ranges [7, 36] to data without showing
individual raw data.

Other Applications. Also, CIP can be used for outsourced-security manage-
ment software like URL defense [55] to protect the privacy of users without
disrupting the functionalities of the software, e.g., “not equal” proofs for black-
listed URLs. Verifiable private computations on cloud data equally benefit from
CIP since users do not have to reveal original data but the characteristics of
their data. Many more applications are possible, including more privacy-friendly
verification for Distributed Apps (DApps) and Decentralized Finance (DeFi).

Related Work. We summarize the previously discussed related work; HEnc,
PCC, and previous private smart contract protocols in Table 1. Here, “Trustless”
means it provides

– public verification - anyone can verify proofs that is opposite to a designated
verifier who requires some secret knowledge, and

– transparency - no trusted setup is needed to create a Common Reference
String (CRS), nor is there any language-dependent CRS or hardware magic.

From Table 1, most of the existing smart contracts (except Zether [13]) re-
quire some trusted components like off-line executions or trusted hardware.

Practical UC-Secure Zero-Knowledge Smart Contracts 7

Work Type Trustless
Inter-
private

Intra-
private

Quantum-
Safe

Ring-CT
Aggregable

-CT
UC
Safe

[10,30,54]
Homomorphic
Encryption

✓ - - ✓ - - -

Scripts [47] Fixed Scripts ✓ ✓ - ✗ - ✓ ✗

Ligero [3] Computations ✓ ✓ ✗ ✓ - - -

Fractal [20] Computations ✓ ✓ ✗ ✓ - - -

Aurora [5] Computations ✓ ✓ ✗ ✓ - - -

zk-STARK [4] Computations ✓ ✓ ✗ ✓ - - -

Gennaro [29] Computations ✗ ✓ ✗ ✓ - - -

Nitulescu [44] Computations ✗ ✓ ✗ ✓ - - -

Boschini [8] Computations ✓ ✓ ✗ ✓ - - -

Ishai et al. [34] Computations ✗ ✓ ✗ ✓ - - -

Zilch [43] Computations ✓ ✓ ✗ ✓ - - -

Enigma [58] Contracts ✗ ✓ ✗ ✗ ✗ ✗ ✗

Hawk [39] Contracts ✗ ✓ ✗ ✗ ✗ ✗ ✗

Arbitrum [37] Contracts ✗ ✓ ✗ ✗ ✗ ✗ ✗

Ekiden [19] Contracts ✗ ✓ ✗ ✗ ✗ ✗ ✗

Zether [12] Contracts ✓ ✓ ✗ ✗ ✗ ✗ ✗

ZEXE [9] Contracts ✗ ✓ ✗ ✗ ✗ ✗ ✗

ZoKrates [23] Contracts ✗ ✓ ✗ ✗ ✗ ✗ ✗

ZKay [51] Contracts ✗ ✓ ✗ ✗ ✗ ✗ ✗

SodsMPC [22] Contracts ✗ ✓ ✗ ✓ ✗ ✗ ✗

ZeeStar [50] Contracts ✗ ✓ ✗ ✗ ✗ ✗ ✗

Our CIP-DLP Contracts ✓ ✓ ✓ ✗ ✓ ✓ ✓

Our CIP-SIS Contracts ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of Private Computational Platforms, Homomorphic Encryption,
and Private Smart Contracts (“Intra-privacy” means “Insiders’ Zero-Knowledge”).

Private computations that are plausibly suitable as contracts are not actually
intra-private or single-setup protocols. Script-less scripts [47] proposed for Mim-
blewimble [53] are not generic and only do addition-based operations. HEnc-
based computations are inherently insecure for confidential transactions since
confidential coins must have independent keys. Therefore, we claim CIP-DLP
and CIP-SIS are the first practical generic programming languages for Ring and
aggregable CTs that are also trustless and intra-private.

Also, for the interest of cryptographers, we formally define insiders’ zero-
knowledge, or intra-privacy, and we show how to build UC models easily for
complex zero-knowledge protocols by expanding the discussion started in [17].

Road-map. First, we define the preliminaries of the paper, including the UC
framework in Section 2. Then we explain our UC model and the expected security
properties of CIP in Section 3. Operations and conditionals of CIP-DLP and
CIP-SIS are stated in Section 4, and their UC security is described in Section 5.
Note that readers unfamiliar with the UC framework can find nicely explained
simple examples in [16, 17, 21] or directly go to the real protocols (Section 4)
that are meaningful without their ideal functions.

2 Preliminaries

Notation. ∧ is the “and” operation and ∨ is the “or” operation. | · | returns the
number of elements or rows in a array or vector.

8 Jayamine Alupotha and Xavier Boyen

For a cyclic group G = ⟨g⟩, g denotes a generator of the group G. Z+
q = Z/qZ

is a ring of modular integers with representations assumed in the range [0, q− 1]
for a modulus q. Similarly, Zq = Z/qZ is a ring of modular integers in the range
[− q−1

2 , q−1
2] for an odd q. For an even q, the range is (− q

2 ,
q
2]. X is a polynomial

ring of Z[X]/[XN + 1] with degree N = 2k for some integer k > 0. Xq is a fully
splitting ring of Zq[X]/[XN + 1] for a prime q such that q ≡ 1 (mod 2N). A
polynomial aN−1X

N−1+ ..+a1X +a0 ∈ Xq is denoted as a⃗ = [a0, ..aN−1] when
each coefficient is in Zq. From here on, we assume q to be prime.

Simple bold letters like a denotes integer vectors. Similarly, a⃗ denotes a vec-
tor of polynomials, and A⃗ denotes a matrix of polynomials. The ith element of
a vector a is ai or we can denote the entire vector as a = [a0, .., an−1] = [ai]

n−1
i=0

when a has n elements. Also, A = [A0, ..,Am−1] when A has m vectors. a⃗⃗b

denotes the polynomial multiplication of a⃗ and b⃗. Also, a⃗a⃗ = a⃗2. When x is
an integer, xa denotes that every element in a is multiplied by x. x⃗a⃗ denotes
that every polynomial in a⃗ is multiplied by x⃗. We use “+”, “−”, and “◦” for
element-wise or polynomial-wise addition, subtraction, and multiplication re-
spectively, e.g., a⃗ ◦ b⃗ = [⃗a0⃗b0, .., a⃗n−1⃗bn−1]. The norms are defined as follows,

∥a⃗∥ = max([|ai|]N−1
i=0) and ∥a⃗∥1 =

∑N−1
i=0 |ai|. For a vector of polynomials a⃗,

∥a⃗∥ = max([∥a⃗i∥]n−1
i=0). Note that 0n ∈ Zn

q is a zero vector and 0⃗ ∈ Xq is the
polynomial with all zero coefficients. rot(val, i ∈ [0, N − 1]) is a polynomial

whose ith coefficient is val, and all other coefficients are zeros. bin(v) = b⃗ ∈ Xq

such that v =
∑N−1

i=0 2ibi. lowbitsp(v) keeps the ⌊log2 p⌋ low-bits of v, and
highbitsp(v) is v − lowbitsp(v). Also, upp(v) = v · 2⌊log2 p⌋. We use the above-

mentioned functions for polynomials vectors as well. m
$←−M denotes that m is

drawn uniformly at random from a (finite) set M. We use λ as the security
parameter throughout the paper unless otherwise mentioned. ϵ(λ) = 1/o(λc)
is a negligible function which vanishes faster than any polynomial of degree c,
∀c ∈ N. We use pp to denote public parameters, A for real adversaries, and S
for simulated adversaries in a formal security reduction.

Throughout the paper, we casually use “hiding” or “indistinguishability” to
mean computational hiding unless otherwise mentioned.

Definition 1 (Computational Hiding). Two distributions generated from
some public parameters ppλ; D0(ppλ) and D1(ppλ) are indistinguishable or D0 ≈
D1 if for any p.p.t. distinguisher A,

AdvHIDA = 2

∣∣∣∣12 − Pr
[
i

?
= j

∣∣i $←− [0, 1]; k
$←− Di; j ← A(ppλ, k)

]∣∣∣∣ ≤ ϵ(λ)

Definition 2 (Discrete Log Problem). For G = ⟨g⟩ of prime order q, AdvDL
G

for an adversary A is defined as, AdvDL
G,A := Pr[y

?
= gx| y $←− G, x

$←− A(y)]. The
DL problem is (τ, e)-hard if A(τ, e) runs it at most τ times and AdvDL

G,A ≤ e.

Definition 3 (Inhomogeneous Module Short Integer Solution Problem
(iMSIS)). The advantage of an adversary A solving an special instance of iMSIS
of pp = (n,m, q, γ,N) after one execution is given by,

Practical UC-Secure Zero-Knowledge Smart Contracts 9

Adv
iMSIS
pp,A = Pr

∥s⃗∥ ≤ γ ∧ H⃗s⃗ = y⃗ ∈ Xn
q

∣∣∣ H⃗
$←− Xn×m

q ; y⃗
$←− Xn

q

(s⃗ ∈ Xm)← A(ppλ,L, H⃗, y⃗)

Definition 4 (Approximate Inhomogeneous Module Short Integer So-
lution Problem (Approx-SIS)). The advantage of an algorithm A solving
Approx-SIS of pp = (n,m, q, γ, γ′, N) after one execution is given by,

Adv
Approx−SIS
pp,A = Pr

∥s⃗∥ ≤ γ ∧ ∥H⃗s⃗− y⃗ ∈ Xn
q ∥ ≤ γ′

∣∣∣ H⃗
$←− Xn×m

q ; y⃗
$←− Xn

q

(s⃗ ∈ Xm)← A(ppλ,L, H⃗, y⃗)

Theorem 1. From [18], Approx-SIS and iMSIS are tightly bound such that

AdviMSIS(n,n+m,q,γ,N)≥Adv
Approx−SIS

(n,m,q,γ,γ+γ′,N) and AdviMSIS(n,n+m,q,γ+γ′,N)≤Adv
Approx−SIS

(n,m,q,γ,γ′,N).

Hints. For constructions based on Approx-SIS, only the higher bits are taken
for computations. Hence, large errors can occur during the polynomial multipli-
cations. To fix those errors, we use hints similar to [48]. These hint polynomials
are {−1, 0, 1} polynomial vectors that hold at most χ number of ±1. Creating
and using hint polynomials are stated below.

1: hints(χ, a⃗ ∈ Xn
q , b⃗ ∈ Xn

q):

2: h⃗ = a⃗− b⃗ ∈ Xn
q

3: if ∥h⃗∥ > 1 ∧ ∥h⃗∥1 > χ: return ⊥
4: return h⃗

5: use hints(χ, a⃗ ∈ Xn
q , h⃗ ∈ Xn

q):

6: if ∥h⃗∥ > 1 ∧ ∥h⃗∥1 > χ: return ⊥
7: return b⃗ = a⃗− h⃗ ∈ Xn

q

Universal Composability - Hybrid Model

P(uid1 , L)

P(uidi , L)

P(uidn , L)

A
D(uid1)

D(uidi)

D(uidn)

E

Real System: R : (L, A) Ideal System: I : (F
L
, S)

A

F
L

E’s interactions
A’s interactions

S

communication channels

Fig. 2. Interactions of UC-Framework

The Universal Composability (UC)
model [15–17, 21] is a framework
used to analyze the security of com-
posed protocols that combine mul-
tiple protocols together. In the UC
model, there are an ideal system,
a real system, and an environment
E (challengee). E ’s task is to iden-
tify which system it is interacting
with; ideal or real (the way E in-
teracts with systems is discussed in
the latter part of the section). We say the real system realizes the ideal system
if E can not identify the correct system with more than 1/2 + ϵ(λ) probability.
In that case, informally, Universal Composability says that the real system pro-
vides the security properties of the ideal system. Formally, E executes a program
on interactive Turing Machines (iTMs), which have multi-tapes for inputs
and outputs. “Image” is the state of all iTMs’ tapes at any step of the program
which is subjected to change throughout the program. E can stop the program
and read the image at any time. The real system R : (L,A) of real participants

10 Jayamine Alupotha and Xavier Boyen

[P(uidi, L)]∗i=0 consists of the protocol L and the real adversary A. Similarly, the
ideal system I : (FL,SA) of dummy participants [D(uidi)i]∗i=0 has an ideal func-
tion FL (it is trusted, has infinite computational power, and can serve infinite
numbers of participants at the same time) and a simulated adversary SA. In the
UC model, real or dummy participants are the iTMs whose input tapes can be
written by E . Also, E can instruct A to attack the system like corrupting real
participants, eavesdropping a communication between two real participants, or
altering a message that is being sent from a participant to another.

S
L

F
L

D(uid)
(1) req

(2)
log

(3)
ack

D(uid’)

(4) res

Fig. 3. Single Partici-
pant Protocol

S
L

F
L

D(uid)
(1) req
(8) res

(2)/(6)
log

(3)/(7)
ack

D(uid’)

(5) req
(4) res

Fig. 4. Multi-Party
Computations

S
L,L’

F
L

D(uid)
(1) req
(6) res

(4) ack

(3) log

(5) res

F
L’

(2) req

Fig. 5. Composed Pro-
tocol Computations

The ideal system is modelled as follows to simulate what is happening in the
real system. Initially, all participants are honest. If A is instructed to corrupt
P(uidi, L) by E then SA corrupts D(uidi)i at the same time and saves D(uidi)i’s
state as corrupt. There are three types of communication in ideal systems.

The first type is “Single-Participant Protocol” (see Figure 4) which only
involves a single participant and a protocol. If E writes into P(uid)’s input tape
instructing to execute a sub-function of L, in the ideal system:
– D(uid) sends a request (req) to FL asking to execute the sub-function,
– FL sends a backdoor request (log) to SA with req’s data,
– SA executes the sub-function according to req’s data and sends acknowledge-

ment (ack) to FL which may include the sub-function’s output and D(uid)’s
state: honest or corrupt,

– FL sends the response (res) according to ack which will be written into
D(uid)’s output tape.
The second communication type is “Multi-party Computations”. When E

writes into P(uidi)’s input tape ordering a multi-party computation with P(uid′),
FL, follows the steps in Figure 4, and both D(uid)’s and D(uid)’s tapes will be
updated. Note that prior to any response, FL communicates with SA to identify
whether A is corrupting/eavesdropping the communication. For example, SA
alters (3)ack and (7)ack accordingly if A corrupts the communication channel.

The final communication type is “Composed Protocol Computations” which
requires multiple protocols a.k.a. a hybrid model. In the hybrid model, FL and
FL′ share the same simulated adversary which is denoted as SL,L′ . As shown in
Figure 5, FL communicates with FL′ when E forces a participant to execute a
sub-function of L which requires a sub-function(s) of L′.

Universal composability says that the real system provides the same security
properties as the ideal system if E with any p.p.t. adversaryA can not distinguish

Practical UC-Secure Zero-Knowledge Smart Contracts 11

whether it is interacting with the ideal or real system by reading the images of
iTMs for any execution. We recall the formal definition from [16].

Theorem 2. For a real system R : (L,A) and an ideal system I : (FL,SA),
L uc-realizes FL if and only if no environment E can tell whether it is in-
teracting with R or I more than with negligible probability. Execute(E ,R :
(L,A)) ≈ Execute(E , I : (FL,SA)) meaning that after each step i of the program,
the images of I and R are the same, i.e., ∀i :

[
ImageiR,E,A → Imagei+1

R,E,A
]
≈[

ImageiI,E,SA
→ Imagei+1

I,E,SA

]
.

We emphasize that we follow the original UC framework of [16] where SA is
stateful — SA keeps a log for each dummy party. Thus, a corruption of a real
participant can be simulated exactly the same in the ideal system by sharing
past states of the respective dummy party, not only the future states.

3 Confidential Integer Processing

A confidential integer is an additively homomorphic commitment of an integer
and a secret key. Let CIP be a generic commitment scheme. Here, “additively ho-
momorphic” means, cint(v, k)±c cint(v

′, k′) = cint(v± v′ (mod q), k±k k
′).

We use ±c/k to denote the homomorphic operations casually, e.g., ±c becomes
multiplication in DLP and modular polynomial vector addition in Approx-SIS,
and ±k is the typical addition in DLP and polynomial addition in Approx-SIS.

Let CIP be a generic “Confidential Integer Processing” protocol with pre-
defined public parameters ppλ,L where L denotes the recommended bit range
for integers, e.g., CIP-SIS’s public parameters will be computed for integers
in (−2L, 2L) when q ≫ 22L+5. CIP-DLP’s secure range is [−2L, 2L) such that
q > 2L+5. We only check the range during confidential integer generation but
provide range proofs up to (2L+ 5)-bits if users want to prevent overflowing.

CIP’s object is to prove that a set of confidential integers holds a rela-
tion r of the language L. For example, r([vi]

∗
i=0) = 1/0 indicates whether

the integers hold the relation or not. We can categorize these relations into
either (1) modular relations or primitive relations like range, addition, mul-
tiplication, or (2) composed relations or sequentially combined modular rela-

tions. For example, the relation of range is rangeL(v) = (v
?
∈ (−2L, 2L)), the

relation of multiplication is mul([vi]
∗
i=0) = (v0

?
=

∏∗
i=1 vi) (mod q), and the

equality’s relation is eq(v0, v1) = (v0
?
= v1). An exemplary composed relation

is {mul([vi]3i=0) ∧ rangeL(v0)}. CIP provides proving and verification functions
for common modular relations, e.g., prove(eq, c0, v0, k0, c1, v1, k1) gets the con-
fidential integers and their openings and outputs π. Then ver(eq, c0, c1, π) takes
the same confidential integers and π and outputs 1 (or 0). A composed relation
also can be seen as a sequential proving and verification functions of modular
relations, e.g., a single party CIP program can be{

mul([vi]
2
i=0)

∧eq(v0, v3)

}
⇒

{
prove(mul, [ci, vi, ki]

2
i=0)→ π0

prove(eq, c0, v0, k0, c3, v3, k3)→ π1

}
⇒

{
ver(mul, [ci]

2
i=0, π0)

∧ver(eq, c0, c3, π1)

}
.

12 Jayamine Alupotha and Xavier Boyen

However, CIP is a multi-party protocol, i.e., multiple participants own confi-
dential integers of these raw integers, and they may not exchange the openings
with others. For example, a participant P2 who has (k3) does not want to share
k3 with P1 but both want to compute the equality proof π1. In that case, we
can use “multi-party equal” proofs rather than “equal”. As we explained in the
introduction, a “multi-party equal” can be seen as a protocol where provers
keep computing individual public inputs, a.k.a. transcripts and combining them
into partial proofs until they come up with the final proof. Similarly, we can
generalize proving functions of complex composed relations as follows.

The initial partial proof π0 = [ci]
∗
i=0 is a list of input confidential integers of

the initial transcript set θ0 = {ci}∗i=0. Each prover j computes his/her transcript
θt,j by taking previous partial proof πt−1 and secret knowledge kt−1,j that he/she
used to generate θt−1,j , e.g., the secret key of ci for the first transcript. More
specifically, we can denote the (t)th transcript generation as follows,

(kt,j , θt,j)← provet(r, πt−1,kt−1,j).

Each partial proof πt is generated according to πt−1 and input transcripts of
participants θt such that πt ← combinet(r, πt−1,θt). The final partial proof
πfinal is the relation proof π. For example, we can rewrite the composed proving
function in Figure 1 as follows,

prove(mul, [ci, vi, ki]
2
i=0)→ π0

∀j ∈ {0, 3} : prove1(eq, π1,0=[c0, c3],k0,j={vj , kj})→ (k1,j=(kj , k
′
j), θ1,j=tj ∈ G)

combine1(eq, π1,0,θ1)→ π1,1 = [c0, c3, t, x]

∀j ∈ {0, 3} : prove2(eq, π1,1,k1,j)→ (k2,j = (kj , k
′
j), θ2,j=sj)

combine2(eq, π1,1,θ2)→ π1,2 = (s, t)→ π1

and the composed verification process will be the same since “multi-party equal”
verification is equivalent to “equal” verification. More specifically, CIP supports
the following functionalities:

1. CIP.setup() : return ppλ,L ▷ Reading public parameters
2. CIP.cint(v) : return (k, c)▷ Commitment c of (v, k) when v ∈ (−2L, 2L)
3. CIP.open(c, v, k) : return 1/0 ▷ Opening or decommitment
4. CIP.provet(r ∈ L;πt−1,kt−1) : return (kt, θt) ▷ The (t)th public tran-

script θt and its secret knowledge kt when the (t − 1)th partial zero-
knowledge argument is πt−1, and the secret knowledge used in the
(t− 1)th public transcript is kt−1.

5. CIP.combinet(r ∈ L;πt−1,θt) : return πt ▷ A partial zero-knowledge
argument πt when users’ public input transcripts are θt and the (t−1)th
partial zero-knowledge argument is πt−1. Note that the initial partial
argument is π0 = [ci]

∗
i=0 for input confidential integers, and the final

partial argument πfinal is the proof the relation r ∈ L
6. CIP.ver(r ∈ L;π0 = [ci]

∗
i=0, π) : return 1/0 ▷ Verification of a final zero-

knowledge argument π for a given set of confidential integers [ci]
∗
i=0

Practical UC-Secure Zero-Knowledge Smart Contracts 13

3.1 Security Properties

Our target is to build binding confidential integers (Definition 6), and zero-
knowledge arguments (Definition 8) that are also secure under simulation ex-
tractability (Definition 7). Let us explain these expected security definitions.

Completeness of CIP states that honestly generated confidential integers can
be opened against the same openings, and honestly generated arguments are
always considered valid for all relations in the language L.

Definition 5 (Completeness). CIP is complete for any p.p.t. adversary A and
ppλ,L ← CIP.Set() if,

Pr
[
CIP.open(c, v, k)| v $←− (−2L, 2L); (k, c) := CIP.cint(v)

]
≥ 1− ϵ(λ)

Pr

CIP.ver(r, [ci]∗i=0, π)

∣∣∣∣∣
r

$←− L; [vi]∗i=0
$←− (−2L, 2L) s.t. r([vi]

∗
i=0) = 1

[(ki, ci) := CIP.cint(vi)]
∗
i=0

π := CIP.prove(r, [ci]
∗
i=0, [vi, ki]

∗
i=0)

 ≥ 1− ϵ(λ).

Binding means that no p.p.t. adversary can find two different openings; the
integer and the key, for the same confidential integer. Hence, a different opening
can not be claimed after the publication of the confidential integer.

Definition 6 (Binding). When ppλ,L ← CIP.Set(), CIP is binding for any
p.p.t. adversary A if AdvBIDCIP,A is ,

Pr

[
(v0, k0)

?

̸=(v1, k1) ∧ v0, v1 ∈ (−2L, 2L)
∧CIP.open(c, v0, k0) ∧ CIP.open(c, v1, k1)

∣∣∣ A(ppλ,L)→ (c, v0, k0,

v1, k1)

]
≤ ϵ(λ).

Simulation Extractability is a stronger notion of Knowledge Soundness (KS),
which says that the probability of finding a valid argument for a set of confi-
dential integers that do not hold the relation is negligible. Hence it can not be
checked in the real world; general security models use a simulation extractor who
can extract witnesses given the argument and the commitments in a simulated
world, e.g., public parameters or language-dependent CRSs with trapdoors or
general Forking Lemma with rewinding adversaries [11]. If CIP is simulation
extractable, the probability of any p.p.t. adversary A finding a valid argument π
for a relation r and a set of confidential integers such that the simulated extrac-
tor can not extract a set of witnesses that holds r from the confidential integers
is negligible. Considering DLP and Approx-SIS problems, we define a simulator
K(ppλ,L, T , r ∈ L; [ci]∗i=0, π) who can extract values of [ci]

∗
i=0 using π of r ∈ L if

it is given a trapdoor T for ppλ,L. We define simulation extractability as follows.

Definition 7 (Simulation Extractability). Let ppλ,L ← CIP.Set(), and T
be a trapdoor of ppλ,L. Here, r(·) ∈ L is a relation. CIP is simulation extractable
for any p.p.t. A if,

AdvKSCIP,A=Pr

[
r

?
∈L ∧ CIP.ver(r; [ci]∗i=0, π)

∧¬r(K(ppλ,L, T , r; [ci]∗i=0, π))

∣∣∣ A(ppλ,L)→ (r; [ci]
∗
i=0, π)

]
≤ ϵ(λ).

14 Jayamine Alupotha and Xavier Boyen

Zero-Knowledge Argument (Computational) implies that a p.p.t. adversary
can not extract any information about the witnesses other than the relation
given the argument and the confidential transactions. Formally, it is captured
by giving the adversary challenging inputs from a randomly chosen distribution
of (1) a real distribution and (2) a simulated distribution and asking the adver-
sary to distinguish which distribution it is. The simulated distribution depicts
the real distribution with valid arguments. If the adversary cannot identify the
distribution correctly with a more than 1/2+ ϵ(λ) probability, then we conclude
that our protocol is zero-knowledge. Here, S(ppλ,L, T ,L) generates the simulated
distribution given a trapdoor T of ppλ,L.

Definition 8 (Zero-Knowledge Argument). Let, ppλ,L ← CIP.Set() and
T be a trapdoor of ppλ,L. D0 = D(S(ppλ,L, T ,L)) is a simulation distribution
generated by a simulator S(ppλ,L, T ,L), and D1 = D(CIP(ppλ,L,L)) is the real
distribution of any relation in L and its confidential integers. CIP provides zero-
knowledge arguments for any p.p.t. adversary A if AdvZKCIP,A is,

2

∣∣∣∣12 − Pr
[
b

?
= b′

∣∣b $←− [0, 1]; ([ci]
∗
i=0, π)

$←− Db; b
′ ← A(ppλ, [ci]∗i=0, π)

]∣∣∣∣ ≤ ϵ(λ).

Intra-Privacy. Informally, intra-privacy is the ability to maintain secrets dur-
ing the proving phase. For example, during the “multi-party equal” statements,
none of the provers learns others’ secret keys. Therefore, intra-privacy is the
insiders’ zero-knowledge property. Recall that our CIP’s proving phase is an in-
teractive multi-party protocol where the participants interact with each other
on several occasions. Hence, we define intra-privacy to be zero-knowledge with
multiple transcripts (or for multiple interactions). We consider a system with
only one honest participant and A acts as the other participants since the ad-
versary A is an insider. Also, for all transcripts, the honest participant chooses
its transcripts θt,0 first and gives them to A allowing to choose its transcripts
[θt,j]

∗
j=1 according to θt,0. Here, the adversary wins the game if it identifies sim-

ulated transcripts over properly generated transcripts with more than 1/2+ϵ(λ)
probability. We formally define intra-privacy below.

Definition 9 (Intra-Privacy). Let the honest participant’s simulated input
distribution be D0,t = D(S(ppλ,L, T ,L;πt−1)) and real input distribution be
D1,t = D(CIP(ppλ,L,L;πt−1)) for transcript t when S has access to a trapdoor
T of ppλ,L. CIP provides intra-privacy for any p.p.t. adversary A if AdvIPCIP,A is,

2

∣∣∣∣∣∣∣∣
1

2
−Pr

b ?
=b′

∣∣∣∣b $←−[0, 1];∀t :

{
θt,0

$←− Db,t; [θt,j]
∗
j=1 ← A(ppλ,L, πt−1, θt,0)

πt := CIP.combinet(r, πt−1, θt,0, [θt,j]
∗
j=1)

}
b′ ← A(ppλ, π0, πfinal)

∣∣∣∣∣∣∣∣ ≤ ϵ(λ).

3.2 Hybrid Model of CIP

Building universally composable protocols from scratch is known to be hard
due to UC’s strict security notions, and complex protocols like ours commonly

Practical UC-Secure Zero-Knowledge Smart Contracts 15

Algorithm 1 Ideal Function FCIP (Part I)

Records: This ideal function keeps a table C for records.

Extracting Setup: We consider an instance of a generic CIP where the setup is
predefined including the security parameter, λ and the public parameters, ppλ,L.
Hence, the setup is read-only, participants can get public parameters by sending
a request to FCIP. Upon receiving reqset(set, uid) from a valid uid, FCIP sends
logset(set, uid) to SA, and gets ackset(set, uid, ppλ,L) from SA. Finally, FCIP sends
resset(set, uid, ppλ,L) to D(uid).
Sending Data: Since CIP is a multi-party system which has multiple provers and
multiple verifiers (or both at once), we define a method to send data, e.g., confidential
integers, openings, or arguments from a dummy participant D(uid) to D(uid′). The
simulated adversary can delay, stop, eavesdrop or alter the communication according
to the real adversary.

1) Sending Confidential Integers or Arguments: When FCIP gets reqc/psend(
c/psend, uid, uid′, c/π) for valid (uid, uid′), it forwards logc/psend = reqc/psend to
SA, and gets ackc/psend(c/psend, uid, uid

′′, c′/π′) from SA. If uid′′ is invalid or ⊥,
halts. Otherwise, FCIP sends resc/psend(c/psend, uid, uid

′′, c′/π′) to D(uid′′).
2) Sending Openings: Dummy parties send the commitment when they want to

send the opening. Upon receiving reqop send(op send, uid, uid′, c) for valid (uid, uid′),
FCIP sends logop send=reqop send to SA, and gets ackop send(op send, uid, uid′′, c′). If
c′ ̸=⊥ and uid′′ is valid, sends resop send(op send, uid, uid′′, c′) to D(uid′′).
Confidential Integer Generation: We can use this to commit an integer. When
FCIP receives reqcint(cint, uid, v) from a valid uid, sends logcint(cint, uid, v) to
SA, and receives ackcint(cint, uid, v, k, c) from SA. FCIP identifies whether there are
[(∗, ci, vi, ki) ∈ C]i=0∗ such that

∑∗
i=0±ci = c, i.e., c has an additive relation to the

previously generated confidential integers.
(Hamiltonicity) if (∗, ∗, ∗, k) ∈ C: sends rescint(cint, uid, v,⊥) and halt.
(Binding) if (c0 ±c ..±c c∗) = c s.t. (

∑∗
i=0±vi ̸= v ∨ (k0 ±k ..±k k∗) ̸= k):

sends rescint(cint, uid, v,⊥) and halt.
else sends rescint(cint, uid, v, c) and adds (uid, v, k, c) to C if c ̸=⊥.

If b = 0, FCIP sends rescint(cint, uid, v, c).

Confidential Integer Opening: We can open a confidential integer with the open-
ing. After receiving a request reqopen(open, uid, c), FCIP sends logopen(open, uid, c) to
SA, and receives ackopen(open, uid, c, v, k, b) from SA. Checks if c has a relation with
previous confidential integers such that

∑∗
i=0±ci = c for some [(∗, ci, vi, ki) ∈ C]∗i=0.

(Completeness) if (c0 ±c ..±c c∗) = c s.t. (
∑∗

i=0±vi = v ∨ (k0 ±k ..±k k∗) = k):
sends resopen(open, uid, c, 1) and halts.

(Binding) if b = 1∧ (c0 ±c ..±c c∗) = c s.t. (
∑∗

i=0±vi ̸= v ∨ (k0 ±k ..±k k∗) ̸= k):
sends resopen(open, uid, c, 0) and halts.

else sends resopen(open, uid, c, b) and adds (uid, v, k, c) to C if b = 1.

use “helping functionalities”. Zero-knowledge and simulation extractability are
popular examples of helping functionalities since commitments can not achieve
zero-knowledge or simulation extractability in the plain UC model. This hy-
brid model was first explained in [17] showing that a UC commitment can be
built on Blum’s Graph Hamiltonicity [6]. A Hamiltonian path, a.k.a., a traceable

16 Jayamine Alupotha and Xavier Boyen

Algorithm 2 Ideal Functionality of FCIP: FL
ZK,KS,IP (Part II)

Records: This ideal function keeps tables Θ and Π for records.

Independent Public Transcript Generation: Since some of these proving func-
tions are multi-party computations, we use sid to identify each of these multi-party
computation separately. A dummy participant D(uid) can generate transcripts by
sending reqprove(provet, uid, sid, t, r, πt−1) for the (t)th transcript of session sid.

After receiving the request, FL
ZK,KS,IP sends logprove(provet, uid, sid, t, r, πt−1) to SA,

and gets ackprove(ackt, uid, sid, t, r, πt−1, θt,uid).
(Hamiltonicity) if (∗, ∗, θt,uid, ∗) ∈ Θ: sends resprove(provet, uid, sid, t, r, πt−1,⊥).

Else sends resprove(provet, uid, sid, t, r, πt−1, θt,uid). Also, FL
ZK,KS,IP adds (sid, t, θt,uid,

πt−1) to Θ if θt,uid is not ⊥.
(Partial-)Argument Generation: Once a participant collects all of public tran-
scripts for the session, that participant can combine them into a argument or partial
argument. Assume FL

ZK,KS,IP receives reqcombine(combinet, uid, sid, t, r, πt−1,θt) from
a valid uid. Then FL

ZK,KS,IP sends logcombine(combinet, uid, sid, t, r, πt−1,θt) to SA and
gets ackcombine(combinet, uid, sid, t, r, πt−1,θt, πt).

(Consistency) if (sid, t, πt−1,θt, π
′
t ̸= πt) ∈Π:

sends rescombine(combinet, uid, sid, t, r, πt−1,θt, π
′
t).

else: sends rescombine := ackcombine and adds (sid, t, πt−1,θt, πt) to Π if πt ̸=⊥.
Final Relation Argument Verification: Once a final argument for a rela-
tion r ∈ L is given with its input confidential integers, we should be able to
verify whether the committed values of confidential integers hold r or not with-
out actually seeing them. Note that all verification functions are single-party
computations; hence, we do not need session identities. Assume FL

ZK,KS,IP receives
reqver(ver, uid, r, [ci]

∗
i=0, π). Then FL

ZK,KS,IP sends logver(ver, uid, r, [ci]
∗
i=0, π) to SA

and gets ackver(ver, uid, r, [ci]
∗
i=0, π, b).

(Completeness) if (sid, 0, ∗, [c′i]∗i=0, ∗, ∗) ∧ (sid, final, ∗, ∗, π) ∈Π for some sid

or (−, final, [ci]∗i=0,−, π) ∈Π: sends resver(ver, uid, r, [ci]
∗
i=0, π, 1)

else: sends logver(ver, uid, r, [ci]
∗
i=0, π, b) and adds (−, final, [ci]∗i=0,−, π) if b = 1.

path of a graph, visits each vertex exactly once and is used to create indistin-
guishable distributions for cheating provers, i.e., provers who want to break the
zero-knowledge argument. However, this method does not work when the com-
mitment is malleable, like additively homomorphic commitments. There are a
few alternatives; (1) a “catalyst” [32] which acts as a primitive function and can
be used without any precautions between the systems, or (2) setting trusted se-
tups like trapdoors. We use Blum’s Graph Hamiltonicity for relations’ transcripts
and secret keys, not for commitments.

Our ideal system has three components; (1) an ideal function FCIP in Algo-
rithm 1 that is binding with Hamiltonian keys (or one-time keys) for confiden-
tial integers, (2) a helping ideal functionality FL

ZK,KS,IP in Algorithm 2 to ensure
Hamiltonicity of transcripts, and (3) a simulated adversary SA who creates an
opportunity for E to identify the system if the real CIP is not a zero-knowledge
argument with intra-privacy and knowledge soundness by exposing FL

ZK,KS,IP.

Practical UC-Secure Zero-Knowledge Smart Contracts 17

Algorithm 1 explains the generic properties of FCIP like how dummy par-
ties extract the setup and share data among each other in an environment that
can be intervened by an adversary. In Algorithm 1, FCIP answers reqcint and
reqopen. Dummy participants can generate confidential integers for some integer
by sending reqcint. The ideal function replies with a confidential integer with-
out the secret key. During the generation, the ideal function makes sure that
honestly generated confidential integers are valid (the completeness), and secret
keys are one-time. The most important property is the binding property. The
ideal function treats the first confidential integer and its opening as valid, and
any other opening(s) for the same commitment is considered invalid. Note that
the binding property is not limited to identifying two openings for the same
commitment but any additive commitment created from previously generated
commitments. Therefore, the ideal function checks if the given confidential in-
teger can be recreated from the previously generated commitments or not. If it
can be recreated, but the recreated commitment’s opening is different, then the
ideal function rejects the confidential integer.

We describe FL
ZK,KS,IP in Algorithm 2. Recall that our proving algorithm can be

multi-party and have multiple steps, e.g., composed relations. Therefore, FL
ZK,KS,IP

allows reqprove requests to be multi-party by defining a unique session identity
sid. Explicitly, FL

ZK,KS,IP shows that if a relation’s argument is created through the
proving function, it is always valid, and the transcripts are Hamiltonian. Before
explaining other security properties, we need to understand how SA works for
the composed system {FCIP,FL

ZK,KS,IP}.

Simulated Adversary SA. In the real system, the adversaries can act as nor-
mal participants yet try to exploit the system’s weakness. SA’s objective is to
simulate those malicious participants in the ideal world. As we have shown in
Figure 2, SA runs a copy of A’s iTM inside the ideal system and acts accord-
ingly when E interacts with the ideal system. We formally define each action of
SA in Figure 3, i.e., general actions and acknowledgements. The main objective
of SA is to show whether CIP is zero-knowledge, knowledge sound, and intra-
private or not. We start with the zero-knowledge argument (Definition 8). SA
simulates the same scenario by sending randomly chosen simulated arguments
and properly generated arguments when the prover is corrupted. Similarly, SA
sends randomly chosen simulated transcripts and properly generated transcripts
to corrupted provers imitating the scenario in intra-privacy (Definition 9). SA
creates the behavior of simulation extractability (Definition 7), which says that
cheating provers can not create valid arguments for invalid relations by asking
the extractor K to check validity with its trapdoor if the prover is corrupt, and
the argument is not simulated. However, SA acts properly for honest participants
(uses CIP’s functions), forcing the protocol to be correct.

In the next section, we will explain CIP-DLP’s and CIP-SIS’s concrete pro-
tocols that realize the defined ideal function.

18 Jayamine Alupotha and Xavier Boyen

Algorithm 3 The Simulated Adversary

1) General Actions. SA keeps the public parameter set ppλ,L, a trapdoor T for
ppλ,L, and two tables; K and Θ. If A corrupts a real participant of P(CIP, uid),
then SA corrupts (gives the access to all input and output tapes) the dummy
participant D(uid) and remembers that D(uid)’state is corrupt. When SA re-
ceives logset(set, uid) from FCIP, it replies ackset(set, uid, ppλ,L). If SA gets
logc/psend(c/psend, uid, uid

′, c/π) it checks if A delays/eavesdrops/alters the com-
munication, SA sends delayed/open/altered ack to FCIP, e.g., if A changes c to c′,
the acknowledgement is ackc/psend(c/psend, uid, uid

′, c′). For an opening sharing log;
logop send(op send, uid, uid′, c), SA checks if c is stored in K with its opening (v, k)
such that (b, c, v, k, uid) ∈K. SA works as follows.
– if A does intervene: sets out = (uid′′, c′) according to A. If (b, c′, v′, k′, ∗) ∈ K

then adds (b, c′, v′, k′, uid′′) to K. Else, adds (0, c′, v′, k′, uid′′) to K.
– if (1, c, v, k, uid) ∈K: sets out = (uid′, c) and adds (1, c, v, k, uid′)
– else (1, c, v, k, uid) ̸∈K: sets out = (uid′,⊥).

Then SA sends ackop send(op send, uid, out) to FCIP. When A changes any openings
saved in real participants, SA changes K accordingly, e.g., if (c, v, k) is deleted from
P(CIP, uid), SA removes (∗, c, v, k, uid) from K. Similarly, if (c, v, k) is changed into
(c′, v′, k′) such that (1, c′, v′, k′, uid′) ̸∈K for any corrupt uid′ then (0, c′, v′, k′, uid′)
will be added and (∗, c, v, k, uid) will be deleted from K.

2) Actions for Confidential Integers. For logcint(cint, uid, v), SA sets b = 1

when uid is honest or else picks b
$←−{0, 1}. If b = 1, computes CIP.cint(v)→(k, c)

or else gets (k, c)
$←−S(ppλ,L, T ,L, v). Sends ackcint(cint, uid, v, k, c) to FCIP, and

adds (1, c, v, k, uid) to K. For logopen(open, uid, c), SA check if (∗, c, v, k, uid) ∈ K
for some v and k then computes CIP.open(c, v, k) = b and sends logopen(open,
uid, c, v, k, b) to FCIP. Otherwise, SA sends logopen(open, uid, c, v, k, 0).

3) Actions for Relations. The simulated adversary treats corrupted provers dif-
ferently. When SA gets logprove(provet, uid, sid, t, r, πt−1) from FL

ZK,KS,IP, if t = 1 and

sid does not have corrupted participant(s), sets b = 1. Else, picks b
$←−{0, 1} if t = 1.

– if (b′, sid, uid, t, ∗, ∗, ∗) ̸∈ Θ ∧ t ̸= 0: sets θt−1, =⊥ and b := b′

– if t = 1 ∧ b = 1: tries to find the opening for the dummy party’s confidential
integer cuid ∈ π0 such that (1, cuid, v, k, uid) ∈K. If SA can’t find the opening,
sets θt =⊥. If SA finds the opening, sets k0 = (v, k), computes (k1, θ1) =
CIP.provet(r; π0,k0) and adds (1, sid, uid, 0, π0, θ1,k1) to Θ.

– if t = 1 ∧ b = 0: sets θ1
$←−S(ppλ,L, T ,L, π0) and adds (0, sid, uid, 0, π0, θ1,−).

– if b = 0: sets θt
$←−S(ppλ,L, T ,L, πt−1) and adds (0, sid, uid, t, πt−1, θt,−) to Θ.

– else: tries to find secret keys of the previous transcript such that (1, sid, uid, t−
1, πt−2, θt−1,kt−1). If SA cannot find the opening, sets θt= ⊥. Else, computes
(kt, θt) = CIP.provet(r; πt−1,kt−1) and adds (1, sid, uid, t, πt−1, θt,kt) to Θ.

Finally, SA sends ackprove(provet, uid, sid, t, r, πt−1, θt) to FL
ZK,KS,IP.

The simulated adversary combines transcripts of both distributions exactly the same
way, i.e., SA replies with ackcombine(combinet, uid, sid, t, r, πt−1,θt, πt=CIP.provet(r;
πt−1,θt)) for logcombine(combinet, uid, sid, t, r, πt−1,θt). SA works as follows for
logver(vert, uid, r, π0, π). When there are (0, sid, ∗, t, πt−1, ∗)∈Θ and (0, sid, ∗,
final, ∗, π)∈Θ, sets b = 1. SA sets b = r(K(ppλ,L, T , r;π0, π)) if D(uid) is corrupt.
Otherwise, b = CIP.ver(r;π0, π). Finally, SA sends ackver(vert, uid, r, π0, π, b).

Practical UC-Secure Zero-Knowledge Smart Contracts 19

4 Confidential Integer Processing Protocols

Many confidential blockchains are either based on the Discrete-Logarithmic
Problem (DLP) or Shortest Integer Solution Problem (SIS). Therefore, we pro-
pose two implementations; CIP-DLP from DLP and CIP-SIS from Approx-SIS.

We compute public parameters for integers in (−2L, 2L). However, the range
proofs can be created for any customized range up to (2L+ 5)-bits since range
proofs are used in “not equal” and “signed division”. All the relations are mod-
ular operations, e.g., the addition of v0 = v1 + v1 means v0 = v1 + v2 (mod q)
when q > 22L+5 is the modulus of the system. Hence, the integers can exceed
the range (−2L, 2L) during the operations. However, the users can restrict the
range to the desired range by creating range proofs, e.g., a composed relation of
an addition and a range proof for the output. We leave this option to the users.

We use hash() to denote a hash function family with co-domains of Z+
q for

CIP-DLP and CNβ for CIP-SIS, which will be clearly defined at each step.

CIPDLP.setup():
▷ G = ⟨g⟩ = ⟨h⟩ is a group of prime
order q ≥ {0, 1}λ, and the discrete log-
arithms of g and h relative to each
other are unknown — or g and h are
“nothing-up-my-sleeve” (NUMS) group
generators. g and h are generator vec-
tors of G where |g| = |h| = 2L+ 5.
return pp = (q > 22L+5, g, h, g,h, L).

CIPSIS.setup():

Parameters n,m, q, γ,N, γ′, CNβ , α, α1, τ,
τ1, τ2, τ3, p0, p1,X are chosen such that

prime q ≡ 1 (mod 2N)
▷ for negligible soundness error
log2

(
N
β

)
+ β ≥ 2λ,

▷ for rejection sampling in proofs

2≪α, 2L≪α1, βτ+β2τ1≪τ2≤γ,
0<4β2τ + βτ1≪τ2≤γ, 0<βτ≪τ3
▷ for computational hiding
mN log2(2τ) ≥ 6λ,
22(L+1)α≪ γ, Nα2

1 + 2Nβα2 < γ,
▷ to keep error within γ and facilitate

232 transactions
p0 · 232 ≤ γ′ ∧ β ∗N ∗ p1 ≤ γ′

▷ to generate hints within a reason-
able time (heuristically)
X ≪ n ∗N

K⃗
$←−Xn×m

q , V⃗
$←−Xn

q , R⃗
$←−Xn

q such that

H⃗ = [K⃗, V⃗ , R⃗]
▷ challenge space
CNβ = [x ∈ Xq s.t. ∥x∥ = 1, ∥x∥1 = β]
return ppλ = (L, n,m, q,N, γ, γ′, CNβ , α,

τ, τ1, τ2, τ3, p0, p1, K⃗, V⃗ , R⃗)

Confidential Integers. We define two confidential integers from Pedersen com-
mitments and multiplications of Approx-SIS hard matrices when the range is
limited to (−2L, 2L) (Appendix B explains how to prove that a confidential
integer holds the same value as a binary lattice confidential coin).

CIPDLP.cint(v) :

if v ̸∈ (−2L, 2L) : return ⊥
k

$←− Z+
q ; return gkhv (mod q) ∈ G

CIPDLP.open(c, v, k) :

return c
?
= gkhv (mod q) ∧ v

?
∈ (−2L, 2L)

CIPSIS.cint(v) :

if v ̸∈ (−2L, 2L) : return ⊥
k⃗

$←− [−τ, τ]m×N ; return c⃗=upp0(

highbitsp0(V⃗ [v, 0, .., 0]+K⃗k⃗)) ∈ Xn
q

CIPSIS.open(c⃗, v, k⃗) : return v
?
∈(−2L, 2L)

∧∥k⃗∥ ≤ τ ∧ c⃗
?
= upp0(highbitsp0(

V⃗ [v, 0, .., 0] + K⃗k⃗))

20 Jayamine Alupotha and Xavier Boyen

As we show in confidential integers, the range of a confidential integers can
not be verified unless it is opened. However, we do not want to open confidential
integers during public verification. Therefore, we use range proofs to verify the
range of a confidential integer. Not only that, range proofs are heavily used in the
following proofs; “not equal”, “greater/less than equal”, and “signed division”.
Therefore, we configure range proofs for integers in [0, 22L+5), i.e., the custom
range L′ can be in [0, 2L+5]. For example, the recommended range (−2L, 2L) of
an confidential integer c(v, k) can be verified through a range proof of (c(v, k) +
c(2L, 0)) when L′ = L+ 1 and c(2L, 0) does not have a secret key.

We use a non-interactive version of Bullet-proof Range Proofs (BRP) [14] for
CIPDLP (Appendix C), and define a novel range proof scheme for CIPSIS.

▷ Range Proof Generation
CIPDLP.prove(rangeL′ ;π0=c,k={v, k}) :
return π := BRP.prv(ppλ,L′ , c, v, k)

▷ Range Proof Verification
CIPDLP.ver(rangeL′ ; c, π) :

return BRP.ver(ppλ,L′ , c, π)

▷ Range Proof Generation

1: CIPSIS.prove(rangeL′ ;π0=c⃗,k={v, k⃗}):
2: b⃗ = bin(v) s.t.

∑L′−1
i=0 2ibi = v

3: k⃗1
$←−[−τ1, τ1]m×N ; k⃗2

$←−[−τ2, τ2]m×N

4: ▷ Lazy Sampling

5: a⃗
$←−[[−(α−(1−bi)), (α−(1−bi))]N]L

′−1
i=0]

6: s⃗0 =
∑L′−1

i=0 a⃗irot(2bi − 1, i) ∈ X
7: t⃗1 = highbitsp1(K⃗k⃗1 + R⃗s⃗0) ∈ Xn

q

8: ▷ Challenge 1
9: x⃗1 = hash(c⃗, t⃗1) ∈ CNβ
10: s⃗1 =

∑L′−1
i=0 2ia⃗i ∈ X

11: s⃗2 = x⃗1(
∑L′−1

i=0 (a⃗irot(1, i))
2) ∈ X

12: t⃗2=highbitsγ′(K⃗k⃗2+V⃗ s⃗1+R⃗s⃗2)∈Xn
q

13: ▷ Challenge 2
14: x⃗2=hash(x⃗1, t⃗2) ∈ CNβ
15: [z⃗i = x⃗2rot(bi, 0) + a⃗i]

L′−1
i=0 ∈ XL′

16: s⃗ = x⃗2(k⃗ + x⃗1k⃗1) + k⃗2 ∈ Xm

17: if ∥z⃗∥>(α−1)∨∥s⃗∥ > (τ2−βτ−β2τ1):

18: go to Step 3 ▷ Rejection Sampling

19: s⃗′1 =
∑L′−1

i=0 2iz⃗i ∈ X
20: z⃗′ = [zirot(1, i)]

L′−1
i=0 ∈ XL′

21: s⃗′2=x⃗1

∑L′−1
i=0 z′i(z

′
i − x⃗2rot(1, i))∈X

22: if ∥s⃗′1, s⃗′2∥ > γ : go to Step 3
23: ▷ Hints for t⃗2
24: t⃗′2=highbitsγ′((K⃗s⃗+V⃗ s⃗′1+R⃗s⃗′2

25: −x⃗2(c⃗+x⃗1upp1(t⃗1)))∈X
n
q

26: h⃗ = hints(t⃗′2, t⃗2)

27: if h⃗ =⊥: go to go to Step 3
28: return π = (z⃗, s⃗, t⃗1, x⃗2, h⃗)

▷ Range Proof Verification
CIPSIS.ver(rangeL′ ; c⃗, π) :

(z⃗, s⃗, t⃗1, x⃗2, h⃗) := π
if ∥z⃗∥ > α : return 0
x⃗1 = hash(c⃗, t⃗1) ∈ CNβ
s⃗1 =

∑L′−1
i=0 2iz⃗i ∈ X

z⃗′ = [zirot(1, i)]
L′−1
i=0] ∈ XL′

s⃗2=x⃗1

∑L′−1
i=0 z′i(z

′
i − x⃗2rot(1, i))∈X

▷ Recreate t⃗2
t⃗′2=highbitsγ′(K⃗s⃗+V⃗ s⃗1+R⃗s⃗2

−x⃗2(c⃗+x⃗1upp1(t⃗1)))∈X
n
q

t⃗2 = use hints(t⃗′2, h⃗)
return t⃗2 ̸=⊥ ∧x⃗2

?
=hash(x⃗1, t⃗2)∧

∥s⃗∥ ≤ τ2 ∧ ∥s⃗1, s⃗2∥ ≤ γ

The most primitive operations are additions and subtractions. Additions and
subtractions are inherently intra-private computations, and input confidential
integers are sufficient to prove the relation. Hence, these proofs only check the
malleability to prevent the other party from changing the inputs. Note that
addition and subtraction do not guarantee the range of the inputs or the outputs.

Practical UC-Secure Zero-Knowledge Smart Contracts 21

▷ Addition and Subtraction
CIPDLP.prove(add/sub;π0 = {c0, c1, c2})
if c0 ̸= c1 × c±1

2 ∈ G:
return ⊥

return π = hash(c0, c1, c2) ∈ Z+
q

▷ Argument Verification
CIPDLP.ver(add/sub;π0 = {c0, c1, c2}, π)
return c0=c1 × c±1

2 ∧π ?
=hash(c0, c1, c2)

▷ Addition and Subtraction
CIPSIS.prove(add/sub;π0 = {c⃗0, c⃗1, c⃗2})
if c⃗0 ̸= upγ′(highbitsγ′(c⃗1 ± c⃗2)):

return ⊥
return π = hash(c⃗0, c⃗1, c⃗2) ∈ CNβ
▷ Argument Verification
CIPSIS.ver(add/sub;π0 = {c⃗0, c⃗1, c⃗2}, π)
return c⃗0 = upγ′(highbitsγ′(c⃗1 ± c⃗2))

∧π ?
=hash(c⃗0, c⃗1, c⃗2)

Our multiplication proofs check v0 = v1v2 (mod q(> 22+1)) in CIP-DLP and
v0 = v1v2 in CIP-SIS for the given v0, v1, v2.

▷ Proving Confidential Multiplication
CIPDLP.prove(mul;π0 = {c0, c1, c2}

k = {v0, k0, v1, k1, v2, k2}):
if v0 ̸=v1v2 (mod q)∨

v0, v1, v2 ̸∈(−2L, 2L) : return ⊥
k′
1

$←− Z+
q ; k

′
2

$←− Z+
q

a1
$←− Z+

q ; a2
$←− Z+

q

t1 = gk
′
1hv1a2+v1a2 ∈ G

▷ Challenge 0
x0 = hash(c0, c1, c2, t1) ∈ Z+

q

▷ Challenge 1
x1 = hash(x0) ∈ Z+

q ▷ Challenge 2

t2 = gk
′
2ha1a2+x0a1+x1a2 ∈ G

x2 = hash(x1, t2) ∈ Z+
q

z1 = a1 + x2v1; z2 = a2 + x2v2 ∈ Z+
q

s=x2
2k0+x2(k

′
1+x0k1+x1k2)+k′

2 ∈ Z+
q

return π = (z1, z2, s, t1, t2)

▷ Verifying Confidential Multiplication
CIPDLP.ver(mul;π0 = {c0, c1, c2}, π)
(z1, z2, s, t1, t2) := π
x0 = hash(c0, c1, c2, t1) ∈ Z+

q

x1 = hash(x0) ∈ Z+
q

x2 = hash(x1, t2) ∈ Z+
q

return gshz1z2+x0z1+x1z2 ?
= c

(x2)
2

0

×(t1 × cx0
1 × cx1

2)x2 × t2 ∈ G

▷ Proving Confidential Multiplication

1: CIPSIS.prove(mul;π0 = {c⃗0, c⃗1, c⃗2}
2: k = {v0, k⃗0, v1, k⃗1, v2, k⃗2}):
3: if v0 ̸=v1v2 ∨ v0, v1, v2 ̸∈(−2L, 2L):
4: return ⊥
5: k⃗′

1
$←− [−τ1, τ1]m×N

6: k⃗′
2

$←− [−τ2, τ2]m×N

7: ▷ Lazy Sampling w = 2L−1
8: a⃗1

$←−[−(α1−(w−v1)), (α1−(w−v1))]N∈X

9: a⃗2
$←−[−(α1−(w−v2)), (α1−(w−v2))]N∈X

10: t⃗1 = highbitsp1(V⃗ (v1a⃗2 + v2a⃗1)

11: +K⃗k⃗′
1) ∈ Xn

q

12: ▷ Challenge 0
13: x⃗0 = hash(c⃗0, c⃗1, c⃗2, t⃗1) ∈ CNβ
14: ▷ Challenge 1
15: x⃗1 = hash(x⃗0) ∈ CNβ
16: a⃗′ = a⃗1a⃗2 + x⃗0a⃗1 + x⃗1a⃗2 ∈ X
17: t⃗2 = highbitsγ′(V⃗ a⃗′ + K⃗k⃗′

2) ∈ Xn
q

18: ▷ Challenge 2
19: x⃗2 = hash(x⃗1, t⃗2) ∈ CNβ
20: z⃗1 = v1x⃗2 + a⃗1, z⃗2 = v2x⃗2 + a⃗2 ∈ X
21: s⃗=x⃗2

2k⃗0+x⃗2(k⃗
′
1+x⃗0k⃗1+x⃗1k⃗2)+k⃗′

2 ∈Xm

22: s⃗1 = (z⃗1z⃗2 + x⃗0z⃗1 + x⃗1z⃗2) ∈ X
23: if ∥s⃗1∥ > γ ∨ ∥z⃗1∥ > (α− (2L − 1))
24: ∨∥z⃗2∥ > (α− (2L − 1))∨
25: ∥s⃗∥>(τ2−3β2τ−βτ1) : go to Step 5

▷ Hints for t⃗2
26: t⃗′2 = highbitsγ′(K⃗s⃗+ V⃗ s⃗1 − x⃗2

2c⃗0

27: −x⃗2(upp1(t⃗1) + x⃗0c⃗1 + x⃗1c⃗2)) ∈ Xn
q

28: h⃗ = hints(t⃗′2, t⃗2)

29: if h⃗ =⊥: go to go to Step 5
30: return π = (z⃗1, z⃗2, s⃗, t⃗1, x⃗2, h⃗)

▷ Verifying Confidential Multiplication
CIPSIS.ver(mul;π0 = {c⃗0, c⃗1, c⃗2}, π)
(z⃗1, z⃗2, s⃗, t⃗1, x⃗2, h⃗) := π
x⃗0 = hash(c⃗0, c⃗1, c⃗2, t⃗1) ∈ CNβ
x⃗1 = hash(x⃗0) ∈ CNβ
s⃗1 = (z⃗1z⃗2 + x⃗0z⃗1 + x⃗1z⃗2)) ∈ X
if ∥[z⃗1, z⃗2]∥ > α ∨ ∥s⃗∥ > τ2 ∨ ∥s⃗1∥ > γ:

return 0
t⃗2 = highbitsγ′(K⃗s⃗+ V⃗ s⃗1 − x⃗2

2c⃗0

−x⃗2(upp1(t⃗1) + x⃗0c⃗1 + x⃗1c⃗2)) ∈ Xn
q

t⃗2 = use hints(t⃗′2, h⃗) ▷ Recreate t⃗2

return t⃗2 ̸=⊥ ∧x⃗2
?
= hash(x⃗1, t⃗2)

22 Jayamine Alupotha and Xavier Boyen

Before the division; we will explain conditionals. In “equal” statements, the
prover shows that the subtraction of the two commitments produces a commit-
ment of a zero. However, checking the “not equal” requires some work. Assume
we want to check that x ?

̸= 3. When x ̸= 3, −(x − (3 + 1))((3 − 1) − x) will
be always positive. We can check it by asking to compute a range proof for
−(x − (3 + 1))((3 − 1) − x). Our “smaller or larger than or equal” statements
subtract confidential integers and asks to compute range proofs accordingly. For
example, if c⃗1’s committed integers are larger than c⃗2’s committed integers,
then the prover can create a non-negative range proof for c⃗1 − c⃗2. We state our
confidential conditionals below.

▷ Confidential Equal Argument
CIPDLP.prove(eq;π0 = {c1, c2}

k = {v1, k1, v1, k2}):
if v0 ̸= v1 (mod q) : return ⊥
k′ $←− Z+

q ; t = gk
′
∈ G

x=hash(c1, c2, t)
return π = (s = (k′+x(k1−k2))∈Z+

q , t)

▷ Confidential Equal Verification
CIPDLP.ver(eq;π0 = {c1, c2}, π = (s, t))

return gs
?
= t× (c1c

−1
2)hash(c1,c2,t) ∈ G

▷ Confidential Not Equal Proving
CIPDLP.prove(neq;π0 = {c1, c2}

k = {v1, k1, v1, k2}):
if v1 = v2 (mod q) : return ⊥
v0 = −(v1 − (v2 + 1))((v2 − 1)− v1)
(k0, c0) := CIPDLP.cint(v0)
π′ = CIPDLP.prove

(
mul;

π0={c0, (c1)−1c2e, (c2(hc1)
−1}

k = {v0, k0,−v1+v2+1,−k1+k2,
((v2 − 1)− v1), (k2 − k1)}

)
π′′ = CIPDLP.prove

(
range2L+5;

c0, {v0, k0}) ▷ 2L+ 1 not L
return π = (c0, π

′, π′′)

▷ Confidential Not Equal Verification
CIPDLP.ver(neq;π0 = {c1, c2}, π)
(c0, π

′, π′′) := π

π′
0={c0, (c1)−1c2e, (c2(hc1)

−1}
return CIPDLP.ver

(
mul;π′

0, π
′)

∧CIPDLP.ver
(
range2L+5; {c0}, π

′′)

▷ Confidential Less Than and Equal
CIPDLP.prove(leq;π0 = {c1, c2}

k = {v1, k1, v1, k2}):
if v1 > v2 : return ⊥
π = (hash(c1, c2), CIPDLP.prove

(
rangeL;

π0={c2(c1)−1},k={v2−v1, k2−k1}))
return π

▷ Confidential Less Than and Equal
CIPDLP.ver(leq;π0 = {c1, c2}, π = (x, π′))

return CIPSIS.ver
(
rangeL; c2(c1)

−1, π′)
∧x = hash(c1, c2)

▷ Confidential Greater Than and Equal
CIPDLP.prove(geq;π0 = {c1, c2}

k = {v1, k1, v1, k2}):
if v1 < v2 : return ⊥
π = (hash(c1, c2), CIPDLP.prove

(
rangeL;

π0={c1(c2)−1},k={v1−v2, k1−k2}))
return π

▷ Confidential Greater Than and Equal
CIPDLP.ver(geq;π0 = {c1, c2}, π = (x, π′))

return CIPSIS.ver
(
rangeL; c1(c2)

−1, π′)
∧x = hash(c1, c2)

1: ▷ Confidential Equal Argument
2: CIPSIS.prove(eq;π0 = {c⃗1, c⃗2}
3: k = {v1, k⃗1, v2, k⃗2}):
4: if v1 ̸= v2 : return ⊥
5: k⃗′ ← [−τ3, τ3]m×N ;

6: t⃗ = highbitsγ′(K⃗k⃗′) ∈ Xn
q

7: x⃗ = hash(c⃗0, c⃗1, t⃗) ∈ CNβ ;

8: s⃗ = x⃗(k⃗1 − k⃗2) + k⃗′ ∈ Xm

9: if ∥s⃗∥ > (τ3 − 2βτ) : go to Step 5
10: ▷ Hints for t⃗
11: t⃗′ = highbitsγ′(K⃗s⃗− x⃗(c⃗1− c⃗2)) ∈ Xn

q

12: h⃗ = hints(t⃗′, t⃗)

13: if h⃗ =⊥: go to Step 5
14: return π = (s⃗, x⃗, h⃗)

Practical UC-Secure Zero-Knowledge Smart Contracts 23

▷ Confidential Equal Verification
CIPSIS.ver(eq;π0 = {c⃗1, c⃗2}, π = (s⃗, x⃗, h⃗))

▷ Recreate t⃗
t⃗′ = highbitsγ′(K⃗s⃗− x⃗(c⃗1 − c⃗2)) ∈ Xn

q

t⃗ = use hints(t⃗′, h⃗)

return t⃗ ̸= ⊥ ∧x⃗ ?
=hash(c⃗0, c⃗1, t⃗)∧∥s⃗∥≤γ

▷ Confidential Not Equal Argument

1: CIPSIS.prove(neq;π0 = {c⃗1, c⃗2}
2: k = {v1, k⃗1, v2, k⃗2}):
3: if v1 = v2 : return ⊥
4: e⃗ = V⃗ rot(1, 0) ∈ Xn

q

5: v0 = −(v1 − (v2 + 1))((v2 − 1)− v1)

6: (k⃗0, c⃗0) := CIPSIS.cint(v0)
7: π′ = CIPSIS.prove

(
mul;

8: π0={c⃗0,−c⃗1+c⃗2+e, (c⃗2−e)−c⃗1}
9: k = {v0, k⃗0,−v1+v2+1,−k⃗1+k⃗2,

10: ((v2 − 1)− v1), (k⃗2 − k⃗1)}
)

11: π′′ = CIPSIS.prove
(
range2L+5;

12: c⃗0, {v0, k⃗0}) ▷ 2L+ 1 not L
13: return π = (c⃗0, π

′, π′′)

▷ Confidential Not Equal Verification
CIPSIS.ver(neq;π0 = {c⃗1, c⃗2}, π)
(c⃗0, π

′, π′′) := π
π′
0={c⃗0,−c⃗1+c⃗2+e, (c⃗2−e)−c⃗1}

return CIPSIS.ver
(
mul;π′

0, π
′)

∧CIPSIS.ver
(
range2L+5; {c⃗0}, π

′′)

▷ Confidential Less Than and Equal

1: CIPSIS.prove(leq;π0 = {c⃗1, c⃗2}
2: k = {v1, k⃗1, v2, k⃗2}):
3: if v1 > v2 : return ⊥
4: π = (hash(π0), CIPSIS.prove

(
rangeL;

5: π0={c⃗2−c⃗1},k={v2−v1, k⃗2−k⃗1}))
6: return π

▷ Confidential Less Than and Equal
CIPSIS.ver(leq;π0={c⃗1, c⃗2}, π=(x⃗, π′))

return CIPSIS.ver
(
rangeL; c⃗2 − c⃗1, π

′)
x⃗ = hash(π0)

▷ Confidential Greater Than and Equal

1: CIPSIS.prove(geq;π0 = {c⃗1, c⃗2}
2: k = {v1, k⃗1, v2, k⃗2}):
3: if v1 < v2 : return ⊥
4: π = (hash(π0), CIPSIS.prove

(
rangeL;

5: π0={c⃗1−c⃗2},k={v1−v2, k⃗1−k⃗2}))
6: return π

▷ Confidential Greater Than and Equal
CIPSIS.ver(geq;π0={c⃗1, c⃗2}, π=(x⃗, π′))

return CIPSIS.ver
(
rangeL; c⃗1 − c⃗2, π

′)
x⃗ = hash(π0)

We provide two divisions: unsigned integer division and signed integer divi-
sion. Let v0, v1, v2, and v3 be such that v1 = v0v2 + v3. If v’s is unsigned (or
non-negative) the remainder v3 should be less than the divisor v2. When the
numbers are signed, we instead check v23 < v22 and v3 ≥ 0 (in CIP-DLP, v23 and
v22 are in [0, q] but they will not overflow since q > 22L+5). We use these facts to
compute zero-knowledge proofs for signed and unsigned divisions. Our protocols
are stated in Appendix A.

Note that CIP-DLP’s “multi-party equal” proofs were explained in Figure 1.
Finally, we explain “multi-party equal” for CIP-SIS below. Here, a participant
P1 has a confidential integer c⃗1 of (v, k⃗1), and another participant P2 has c⃗2 of

(v, k⃗2). None of them wants to share their secret keys but they want show that
the integers are the same. They compute a “multi-party equal” proof as follows.

– Each participant i picks a secret k⃗′
i ∈ [−τ3/2β, τ3/2β]m×N and computes

a confidential integer of zero, t⃗i = highbitsγ′−2β(K⃗k⃗′
i) ∈ Xn

q . They share

each t⃗i. Let t = (t⃗1, t⃗2) be the shared values.
– They both compute; t⃗ = highbitsγ′(hash(t, t⃗1)t⃗1 − hash(t, t⃗2)t⃗2) ∈ Xn

q .

– Then each participant i computes a challenge x⃗ = hash(c⃗1, c⃗2, t⃗) ∈ CNβ and

s⃗i = hash(t, t⃗i)k⃗
′
i + x⃗k⃗i ∈ Xm.

24 Jayamine Alupotha and Xavier Boyen

– However, before sharing them, they perform rejection sampling. If ∥s⃗i∥ >
[τ3/2−τβ], both restart the protocol. Otherwise, they share s⃗i and compute
s⃗ = s⃗1 − s⃗2 ∈ Xm.

– Then compute hints for t⃗ such that h⃗ = hints(hightbitsγ′(K⃗s⃗−c⃗1+c⃗2), t⃗).

– They compute the proof π = (s⃗, x⃗, h⃗) and send π to the verifier.

The verification works as follows. The verifier recomputes t⃗ from hints such that

t⃗ = use hint(hightbitsγ′(K⃗s⃗ − c⃗1 + c⃗2), h⃗) ∈ Xn
q . If x⃗

?
= hash(c⃗1, c⃗2, t⃗) and

t⃗ ̸=⊥, the verifier accepts the proof.

5 Security Realization

With these concrete protocols, we can state the following security theorem.

Theorem 3. R:(CIPDLP,A) and R:(CIPSIS,A) realize I:({FCIP,FL
ZK,KS,IP},SA) if

and only if CIPDLP and CIPSIS are complete, DLP is hard for (G, q), and Approx-
SIS is hard for (n,m+ 1, q, γ, γ′, N), respectively.

Correctness of the Ideal System. Proving security in the UC framework has
two major steps; identifying the proper ideal system and finding a real protocol
that realizes the ideal function(s). UC realization stated in Theorem 4 shows
whether we have come up with a proper ideal system or not before going to the
second step. First, we define the trapdoors of simulated adversaries.

– In CIPDLP, SA has a trapdoor TDLP which solves the discrete logarithms of g,

e.g., given y
$←− G, S(ppλ,L, TDLP,L, π) can get k ∈ Z+

q such that y = gk ∈ G.

– CIPSIS’s SA is given TSIS to solve iMSIS of K⃗ for τ , e.g., given y⃗
$←− Xn

q ,

S(ppλ,L, TSIS,L, π) can sample k⃗ ∈ Xm such that y⃗ = K⃗k⃗ ∈ Xn
q and ∥k⃗∥ ≤ τ .

Note that, in real implementations, public parameters are securely generated
and will not have these trapdoors, e.g., g and K⃗∥V⃗ will be hash extensions of
some public seed strings to prevent intentional trapdoors.

Theorem 4 (“Only If” Directions). R : (CIP,A) realizes an ideal system I :
({FCIP,FL

ZK,KS,IP},SA) only if CIP is complete, binding, zero-knowledge, intra-
private, and witness-extractable.

Proof. The environment E can identify the real system over the ideal system
if CIP is not complete or honestly generated confidential integer/arguments are
not always valid since FCIP always considers previously generated confidential
integer or arguments as valid. Thus, CIP must be complete if R realizes I.

Assume, CIP is not binding or a p.p.t. adversary can find two different open-
ings for the same confidential integer with more than non-negligible probability.
The real system CIP considers these non-binding confidential integers as valid
while FCIP considers them invalid. Therefore, CIP must be at least computation-
ally binding; or else, E correctly identifies the system it is interacting with.

Practical UC-Secure Zero-Knowledge Smart Contracts 25

SA sends simulated or properly generated proofs when the prover is cor-
rupted. SA generates these simulated proofs using the trapdoor3.

Therefore, E can identify the ideal system over the real system if CIP is not
zero-knowledge or intra-private since only the ideal system replies with simulated
proofs or transcripts to its cheating provers (Definition 8). Hence, CIP must be
zero-knowledge and intra-private if it realizes {FCIP,FL

ZK,KS,IP}.
The ideal system and real system work differently for “cheating yet valid”

proofs (“valid” according to the verification function) because the ideal system
uses the extractor K to extract the hidden integers of π0. K(ppλ,L, T , r;π0, π)
is also given a trapdoor, (i.e., T = TDLP or T = TSIS) which does not exist
or is unknown the real protocol 4. Therefore, “cheating yet valid” proofs are
considered invalid in the ideal system. If E ’s A adversary can create “cheating
yet valid” proofs with some probability, E can identify the real system over the
ideal system with the same probability due to K’s responses. Hence, CIP must
be simulation extractable; otherwise, E wins the game, and CIP does not realize
{FCIP,FL

ZK,KS,IP}.

Therefore, CIP realizing {FCIP,FL
ZK,KS,IP} means that CIP must be complete,

binding, zero-knowledge, intra-private, and knowledge sound. Finally, we can
conclude that Theorem 4 is valid.

3 For example, S(ppλ,L, TSIS,L, v) simulates DLP-Confidential integers as follows;

c
$←−G and returns (k, c) when gk = c(hv)−1. Also, S(ppλ,L, TSIS,L, π) generates

“equal” proofs as follows,

– picks random c1, c2, t
$←− G, computes x := hash(c1, c2, t), and

– finds s such that t× (c1c2)
x = gs ∈ G.

– Then the simulated proof is (s, t) for simulated π0 = [c1, c2].
Similarly, in CIP-SIS, S(ppλ,L, TSIS,L, π) simulates “equal” proofs as follows,

– picks random c⃗1, c⃗2, t⃗
′, h⃗

$←− Xn
q such that ∥h⃗∥1 ≤ χ and ∥h⃗∥ = 1,

– gets random s⃗′ ∈ [−τ3 + τ + 2β, τ3 − τ − 2β]m×N

– computes [c⃗i = upp1(highbitsp1(c⃗i))]
2
i=1 and t⃗ = highbitsγ′(t⃗

′ + K⃗s⃗′) + h⃗,

– computes x⃗ := hash(c⃗1, c⃗2, t⃗), and

– finds k⃗ ∈ Xm such that K⃗k⃗ = t⃗′ − x⃗(c⃗1 − c⃗2)) ∈ Xn
q and ∥k⃗∥ ≤ τ .

– The simulated proof is π = (x⃗, s⃗ = (s⃗′ + k⃗), h⃗) for simulated π0 = [c⃗1, c⃗2].
Likewise, S(ppλ,L, TSIS,L, π) can simulate any primitive relation. Hence the language
only has primitive relations and their composed relations, it can simulate the entire
language L at random. Not only the proofs, S(ppλ,L, TSIS,L, π) can also simulate
transcripts, e.g., the simulated transcripts (t1, t2) will be randomly picked in “multi-
party equal” proofs.

4 Let us show an example of extracting values for “equal” proofs in CIP-DLP.
– Let π0 := [c1, c2] and the proof π = (s, t).

– K gets k′ of t when t = gk
′
∈ G and computes k := (s− k′)x−1 ∈ Z+

q .
– Then K tries to find k1 and k2 such that k = (k1 − k2) and c1 = gk1hv and

c2 = gk2hv for some v ∈ (0, q).
– If K returns (v, v) if it find the values; otherwise, sends ⊥.

26 Jayamine Alupotha and Xavier Boyen

Informally, Theorem 4 proves that we have defined the ideal system: FCIP,
FL
ZK,KS,IP, and SA, properly to capture the expected security properties of CIP.

Theorem 5. Confidential integers of CIPDLP and CIPSIS are hiding and binding
if DLP and Approx-SIS is hard, respectively, for the same public parameters.
(see [46] and [18]).

Theorem 6. Bullet-proof range proofs, BRP, is hiding, zero-knowledge, and sim-
ulation extractable when DLP is hard (see [14]).

Theorem 7 (“If” Direction). R : (CIPDLP,A) and R : (CIPSIS,A) realize
I : ({FCIP,FL

ZK,KS,IP},SA) if CIPDLP and CIPSIS are complete, DLP is hard for
(G, q), and Approx-SIS is hard for (n,m+ 1, q, γ, γ′, N), respectively.

Completeness. All of our proofs try to show the knowledge of some multi-variable
equations. For multiplication, the equation is (a1 + x2v1)(a2 + x2v2) + x0(a1 +
x2v1)+x1(a2+x2v2) which is (x2)

2v1v2+x2(v1a2+v2a1+x0v1+x1v2)+x0a1+
x1a2 + a1a2). Since v1v2 should be equal to v0, the equation can be written as,
(x2)

2v0 + x2(v1a2 + v2a1 + x0v1 + x1v2) + x0a1 + x1a2 + a1a2). Also, CIP-SIS’s
range proofs try to show the following equation for some bit b that should be

either 1 or 0; (a1+x2b)((a1+x2b)−x2)
?
= x2a1(2b−1)+a21. The equality checks

a simple equation, v1 − v2
?
= 0. The division of v1 = v0v2 + v3 is similar to the

multiplication which is (a0 + x2v0)(a2 + x2v2) + x0(a0 + x2v0) + x1(a2 + x2v2).
Once the equation is expanded with the remainder v3, it is (x2)

2(v1 − v3) +
x2(v0a2 + v2a0 + x0v0 + x1v2) + x0a0 + x1a2 + a0a2). Therefore, we claim that
our protocols are complete.

Hiding and Binding of Confidential Integers. Theorem 5 proves that confiden-
tial integers are hiding and binding when DLP is hard for (G, q), and Approx-SIS
is hard for (n,m+ 1, q, γ, γ′, N).

Zero-Knowledge and Intra-Privacy. Theorem 6 proves zero-knowledge of CIP-
DLP’s range proofs. We prove zero-knowledge and intra-privacy by contradiction
for the rest of primitive relations. Let CIPDLP and CIPSIS not be zero-knowledge
and intra-private. Each proof and transcript has two types of components in
(Z+

q ,G) for CIP-DLP and (X∗,Xn
q) for CIP-SIS. Here, all Z+

q and X∗ are sta-
tistically hiding due to modular operations and rejection sampling in CIP-DLP
and CIP-SIS. Therefore, if an adversary breaks zero-knowledge and intra-privacy
of CIP-DLP and CIP-SIS, then the adversary distinguishes properly generated
Xn

q and G over randomly simulated components; meaning that the adversary
breaks the hiding property of DLP and Approx-SIS. Hence, CIPDLP and CIPSIS
are zero-knowledge and intra-private if DLP and Approx-SIS is hard.

Knowledge Soundness. Recall that our proofs check some kind of equation with
hash challenges, e.g., the “multiplication” proof checks that; RHS’s exponent
is (x2)

2v0 + x2(v1a2 + v2a1 + x0v1 + x1v2) + x0a1 + x1a2 + a1a2) and LHS’s
exponent is (a1+x2v1)(a2+x2v2)+x0(a1+x2v1)+x1(a2+x2v2). If a cheating
verifier computes LHS and RHS to be equal according to the equation (see

Practical UC-Secure Zero-Knowledge Smart Contracts 27

confidential multiplication of CIPDLP and CIPSIS) but v0 ̸= v1v2 then the cheating
prover breaks the biding property of DLP or SIS since they find a commitment
with two different openings. Similarly, if cheating verifier creates “cheating but
valid” proofs for any primitive relation in L then this cheating verifier can break
the binding property of CIPDLP and CIPSIS. Since our composed relations are
sequential proofs of primitive relations, “cheating but valid” proofs are created
by breaking the binding property once or multiple times. Therefore, we claim
CIPDLP and CIPSIS are knowledge sound (more specifically simulation extractable)
if DLP and Approx-SIS is hard (see Theorem 5).

Finally, we claim that Theorem 7 is valid since CIPDLP and CIPSIS are com-
plete, binding, zero-knowledge, simulation extractable, and intra-private if DLP
and Approx-SIS are hard, respectively.

With Theorem 4 and Theorem 7, we have proven that Theorem 3 is valid.

Conclusion Confidential Integer Processing (CIP) enables computations of hid-
den integers while proving that the computations were performed correctly. We
propose two CIP protocols based on the Discrete Logarithmic Problem (DLP)
and Approximate Modular Ring Shortest Integer Solution Problem (Approx-
SIS). Our CIP protocols are zero-knowledge — the verifiers learn nothing except
the program’s path for the given inputs — and intra-private — participants can
do multi-party computations without sharing all of their hidden integers with
others. Also, our protocols are proven to be Universally Secure according to the
Universal Composability (UC) framework, and our UC model can be used as
an exemplary model for complex zero-knowledge protocols. Our CIP protocols
have a wide range of applications, e.g., (1) zero-knowledge smart contracts for
Ring Confidential Transactions and Aggregable Confidential Transactions, and
(2) private multi-party computations for federated machine learning, outsourced-
security software, and multi-party cloud computing.

References

1. Alberto Torres, W., Kuchta, V., Steinfeld, R., Sakzad, A., Liu, J.K., Cheng, J.:
Lattice ringct v2.0 with multiple input and multiple output wallets. In: Jang-
Jaccard, J., Guo, F. (eds.) Information Security and Privacy. pp. 156–175. Springer
International Publishing, Cham (2019)

2. Alupotha, J., Boyen, X., Mckague, M.: Aggregable confidential transactions for
efficient quantum-safe cryptocurrencies. IEEE Access 10, 17722–17747 (2022)

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Proceedings of the 2017 acm sigsac
conference on computer and communications security. pp. 2087–2104 (2017)

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Annual international cryptology conference. pp. 701–732.
Springer (2019)

5. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Au-
rora: Transparent succinct arguments for r1cs. In: Annual international conference
on the theory and applications of cryptographic techniques. pp. 103–128. Springer
(2019)

28 Jayamine Alupotha and Xavier Boyen

6. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians. vol. 1, p. 2. Citeseer (1986)

7. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V.,
Kiddon, C., Konečnỳ, J., Mazzocchi, S., McMahan, B., et al.: Towards federated
learning at scale: System design. Proceedings of Machine Learning and Systems 1,
374–388 (2019)

8. Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N.: Efficient post-quantum
snarks for rsis and rlwe and their applications to privacy. PQCrypto 12100, 247–
267 (2020)

9. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: Enabling
decentralized private computation. In: 2020 IEEE Symposium on Security and
Privacy (SP). pp. 947–964. IEEE (2020)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing 43(2), 831–871 (2014)

11. Brickell, E., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for discrete
logarithm based signature schemes. In: International Workshop on Public Key
Cryptography. pp. 276–292. Springer (2000)

12. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart
contract world

13. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart
contract world. In: International Conference on Financial Cryptography and Data
Security. pp. 423–443. Springer (2020)

14. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bul-
letproofs: Efficient range proofs for confidential transactions. IEEE SP cita-
tion publication date= May 2018 (2017)

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science. pp. 136–145. IEEE (2001)

16. Canetti, R.: Universally composable signature, certification, and authentication.
In: Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004. pp.
219–233. IEEE (2004)

17. Canetti, R., Fischlin, M.: Universally composable commitments. In: Annual Inter-
national Cryptology Conference. pp. 19–40. Springer (2001)

18. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and
smaller hash-and-sign signatures. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 3–32. Springer (2019)

19. Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., Juels, A., Miller,
A., Song, D.: Ekiden: A platform for confidentiality-preserving, trustworthy, and
performant smart contracts. In: 2019 IEEE European Symposium on Security and
Privacy (EuroS&P). pp. 185–200. IEEE (2019)

20. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 769–793. Springer (2020)

21. Damg̊ard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally compos-
able commitment schemes with constant expansion factor. In: Annual International
Cryptology Conference. pp. 581–596. Springer (2002)

22. Dolev, S., Wang, Z.: Sodsmpc: Fsm based anonymous and private quantum-safe
smart contracts. In: 2020 IEEE 19th International Symposium on Network Com-
puting and Applications (NCA). pp. 1–10. IEEE (2020)

Practical UC-Secure Zero-Knowledge Smart Contracts 29

23. Eberhardt, J., Tai, S.: Zokrates-scalable privacy-preserving off-chain computations.
In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData). pp. 1084–
1091. IEEE (2018)

24. Esgin, M.F., Steinfeld, R., Zhao, R.K.: Matrict+: More efficient post-quantum
private blockchain payments. Cryptology ePrint Archive (2021)

25. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: Matrict: efficient, scalable
and post-quantum blockchain confidential transactions protocol. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security.
pp. 567–584 (2019)

26. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Conference on the theory and application of cryptographic
techniques. pp. 186–194. Springer (1986)

27. Foundation, E.: The solidity contract-oriented programming language ((accessed
on 2022-01-24)), https://github.com/ethereum/solidity

28. Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: A cryptographic
investigation of mimblewimble. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 657–689. Springer (2019)

29. Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based zk-snarks from
square span programs. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. pp. 556–573 (2018)

30. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

31. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Proceedings of the forty-third annual ACM symposium
on Theory of computing. pp. 99–108 (2011)

32. Hofheinz, D., Müller-Quade, J., Unruh, D.: Universally composable zero-knowledge
arguments and commitments from signature cards. In: 5th Central European Con-
ference on Cryptology (2005)

33. https://www.beam.mw/: Scalable confidential cryptocurrency - mimblewimble im-
plementation ((accessed on 2021-01-27)), https://www.beam.mw/

34. Ishai, Y., Su, H., Wu, D.J.: Shorter and faster post-quantum designated-verifier
zksnarks from lattices. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. pp. 212–234 (2021)

35. Jedusor, T.E.: Mimblewimble (2016), https://docs.beam.mw/Mimblewimble.pdf

36. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N.,
Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning
14(1–2), 1–210 (2021)

37. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbi-
trum: Scalable, private smart contracts. In: 27th USENIX Security Symposium
(USENIX Security 18). pp. 1353–1370. USENIX Association, Baltimore, MD (Aug
2018), https://www.usenix.org/conference/usenixsecurity18/presentation/
kalodner

38. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing. pp. 723–732
(1992)

30 Jayamine Alupotha and Xavier Boyen

39. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
symposium on security and privacy (SP). pp. 839–858. IEEE (2016)

40. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 598–616. Springer (2009)

41. McMahan, B., Ramage, D.: Federated learning: Collaborative machine learn-
ing without centralized training data ((accessed on 2021-12-05)), https://ai.

googleblog.com/2017/04/federated-learning-collaborative.html

42. Micali, S.: Cs proofs. In: Proceedings 35th Annual Symposium on Foundations of
Computer Science. pp. 436–453. IEEE (1994)

43. Mouris, D., Tsoutsos, N.G.: Zilch: A framework for deploying transparent zero-
knowledge proofs. IEEE Transactions on Information Forensics and Security (2021)

44. Nitulescu, A.: Lattice-based zero-knowledge snargs for arithmetic circuits. In: In-
ternational Conference on Cryptology and Information Security in Latin America.
pp. 217–236. Springer (2019)

45. Noether, S., Noether, S.: Monero is not that mysterious. Technical report
(2014), online available at: https://web.getmonero.org/ru/resources/research-
lab/pubs/MRL-0003.pdf

46. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual International Cryptology Conference. pp. 129–140. Springer
(1991)

47. Poelstra, A.: Scriptless scripts (accessed on 2022-4-21), https://download.

wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/

slides.pdf

48. PQ-Crystals: Dilithium signature scheme (2019), https://github.com/

pq-crystals/dilithium

49. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Conference
on the Theory and Application of Cryptology. pp. 239–252. Springer (1989)

50. Steffen, S., Bichsel, B., Baumgartner, R., Vechev, M.: Zeestar: Private smart con-
tracts by homomorphic encryption and zero-knowledge proofs. In: 2022 IEEE Sym-
posium on Security and Privacy (SP). pp. 1543–1543. IEEE Computer Society
(2022)

51. Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., Vechev, M.: zkay:
Specifying and enforcing data privacy in smart contracts. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. pp.
1759–1776 (2019)

52. Sun, S.F., Au, M.H., Liu, J.K., Yuen, T.H.: Ringct 2.0: A compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency monero. In:
European Symposium on Research in Computer Security. pp. 456–474. Springer
(2017)

53. grin tech.org: Minimal implementation of the mimblewimble protocol ((accessed
on 2021-01-27)), https://github.com/mimblewimble/grin

54. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 24–43. Springer (2010)

55. Whitworth, M.: Outsourced security–the benefits and risks. Network Security
2005(10), 16–19 (2005)

56. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, 1–32 (2014)

Practical UC-Secure Zero-Knowledge Smart Contracts 31

57. Zhang, H., Zhang, F., Wei, B., Du, Y.: Implementing confidential transactions with
lattice techniques. IET Information Security 14(1), 30–38 (2019)

58. Zyskind, G., Nathan, O., Pentland, A.: Enigma: Decentralized computation plat-
form with guaranteed privacy. arXiv preprint arXiv:1506.03471 (2015)

A Division

▷ Proving Confidential Division
CIPDLP.prove((u)div;π0={c0, c1, c2, c3}

k = {v0, k0, v1, k1, v2, k2, v3, k3}):
e = h1 ∈ G
if v0

?
=v1//v2 ∨ v3

?
=v1 − v0v2 (mod q):

return ⊥
k′
1

$←− Z+
q k′

2
$←− Z+

q

if “div” ▷ signed numbers
if v0, v1, v2, v3 ̸∈(−2L, 2L): return ⊥
(k′

2, c
′
2) = CIPDLP.cint((v2)

2)
(k′

3, c
′
3) = CIPDLP.cint((v3 − 1)2)

π′
1=CIPDLP.prove

(
mul; π0={c′2, c2, c2},

k = {(v2)2, k′
2, v2, k2, v2, k2}

)
π′
2=CIPDLP.prove

(
mul;

π0={c′3, c3e−1, c3e
−1},

k={(v3−1)2, k′
3, v3−1, k3, v3−1, k3}

)
π′
3=CIPSIS.prove

(
leq; π0={c′3, c′2},

k={(v3−1)2, k′
3, (v2)

2, k′
2}
)

▷ leq proof is for (2L+1)-bits
π′
4 = CIPSIS.prove

(
rangeL;

π0={c3}, k = {(v3, k3}
)

π′ = (c′2, c
′
3, π

′
1, π

′
2, π

′
3, π

′
4)

if “udiv” ▷ unsigned numbers
if v0, v1, v2, v3 ̸∈ [0, 2L): return ⊥
π′=CIPSIS.prove

(
leq; π0={c3e−1, c2},

k = {(v3−1), k3, v2, k2}
)

a0
$←− Z+

q ;a2
$←− Z+

q ▷ Masks

t1 = gk
′
1hv0a2+v2a0 ∈ G

▷ Challenge 0
x0 = hash(c0, c1, c2, c3, t1) ∈ Z+

q

x1 = hash(x0) ∈ Z+
q ▷ Challenge 1

t2 = gk
′
2ha0a2+x0a0+x1a2 ∈ G

x2 = hash(x1, t2) ∈ Z+
q ▷ Challenge 2

z0 = v0x2 + a0 ∈ X; z2 = v2x2 + a2 ∈ X
s = x2

2(k1−k3)+x2(k
′
1+x0k0+x1k2)+k′

2

return π = (z0, z2, s, t1, t2, π
′)

▷ Confidential Division Verification
CIPDLP.ver((u)div;π0={c0, c1, c2, c3}, π)
(z0, z2, s, t1, t2, π

′) := π
e = h1 ∈ G
x0 = hash(c0, c1, c2, t⃗1) ∈ Z+

q

x1 = hash(x0) ∈ Z+
q

s⃗1 = (z0z2 + x0z0 + x1z2) ∈ Z+
q

if “div” ▷ signed numbers
(c′2, c

′
3, π

′
1, π

′
2, π

′
3, π

′
4) := π′

if ¬CIPSIS.ver(mul; {c′2, c2, c2}, π′
1)

∨¬CIPSIS.ver
(
mul;

{c′3, c3e−1, c3e
−1}, π′

2)
∨¬CIPSIS.prove

(
leq; {c′3, c′2}, π′

3

)
∨¬CIPSIS.prove

(
rangeL; {c3}, π

′
4

)
:

return 0
if “udiv” ▷ unsigned numbers

if ¬CIPSIS.prove
(
leq; π0={c3e−1,

c2}, π): return 0

return gshz0z2+x0z0+x1z2 ?
= (c1c

−1
3)(x2)

2

+(t1 × cx0
0 × cx1

2)x2 × t2 ∈ G

1: ▷ Proving Confidential Division
2: CIPSIS.prove((u)div;π0={c⃗0, c⃗1, c⃗2, c⃗3}
3: k = {v0, k⃗0, v1, k⃗1, v2, k⃗2, v3, k⃗3}):
4: e⃗ = V⃗ rot(1, 0) ∈ Xn

q

5: if v0
?
=v1//v2∨v3

?
=v1−v0v2: return ⊥

6: k⃗′
1

$←− [−τ1, τ1]m×N

7: k⃗′
2

$←− [−τ2, τ2]m×N

8: if “div” ▷ signed numbers
9: if v0, v1, v2, v3 ̸∈(−2L, 2L): return ⊥

10: (k⃗′
2, c⃗

′
2) = CIPSIS.cint((v2)

2)

11: (k⃗′
3, c⃗

′
3) = CIPSIS.cint((v3 − 1)2)

12: π′
1=CIPSIS.prove

(
mul; π0={c⃗′2, c⃗2, c⃗2},

13: k = {(v2)2, k⃗′
2, v2, k⃗2, v2, k⃗2}

)
14: π′

2=CIPSIS.prove
(
mul;

15: π0={c⃗′3, c⃗3 − e⃗, c⃗3 − e⃗},
16: k={(v3−1)2, k⃗′

3,

17: v3−1, k⃗3, v3−1, k⃗3}
)

18: π′
3=CIPSIS.prove

(
leq; π0={c⃗′3, c⃗′2},

32 Jayamine Alupotha and Xavier Boyen

19: k = {(v3−1)2, k⃗′
3, (v2)

2, k⃗′
2}
)

20: ▷ leq proof is for (2L+1)-bits
21: π′

4 = CIPSIS.prove
(
rangeL;

22: π0={c⃗3}, k = {(v3, k⃗3}
)

23: π′ = (c⃗′2, c⃗
′
3, π

′
1, π

′
2, π

′
3, π

′
4)

24: if “udiv” ▷ unsigned numbers
25: if v0, v1, v2, v3 ̸∈ [0, 2L): return ⊥
26: π′=CIPSIS.prove

(
leq; π0={c⃗3−e⃗, c⃗2},

27: k = {(v3−1), k⃗3, v2, k⃗2}
)

28: ▷ Lazy Sampling when w = 2L − 1

29: a⃗0
$←−[−(α1−w+v0), α1−w+v0]

N ∈ X
30: a⃗2

$←−[−(α1−w+v2), α1−w+v2]
N ∈ X

31: t⃗1 = highbitsp1(V⃗ (v0a⃗2 + v2a⃗0)

32: +K⃗k⃗′
1) ∈ Xn

q

33: ▷ Challenge 0
34: x⃗0 = hash(c⃗0, c⃗1, c⃗2, c⃗3, t⃗1) ∈ CNβ
35: ▷ Challenge 1
36: x⃗1 = hash(x⃗0) ∈ CNβ
37: a⃗′ = a⃗0a⃗2 + x⃗0a⃗0 + x⃗1a⃗2 ∈ X
38: t⃗2 = highbitsγ′(V⃗ a⃗′ + K⃗k⃗′

2) ∈ Xn
q

39: ▷ Challenge 2
40: x⃗2 = hash(x⃗1, t⃗2) ∈ CNβ
41: z⃗0 = v0x⃗2 + a⃗0 ∈ X
42: z⃗2 = v2x⃗2 + a⃗2 ∈ X
43: s⃗ = x⃗2

2(k⃗1−k⃗3)+x⃗2(k⃗
′
1+x⃗0k⃗0+x⃗1k⃗2)

44: +k⃗′
2 ∈ Xm

45: s⃗1 = (z⃗0z⃗2 + x⃗0z⃗0 + x⃗1z⃗2) ∈ X
46: if ∥z⃗0∥>(α−w) ∨ ∥z⃗2∥>(α− w)∨
47: ∥s⃗1∥>γ ∨ ∥s⃗∥>(τ2 − 4β2τ − βτ1) :
48: go to Step 6
49: ▷ Hints for t⃗2

50: t⃗′2=highbitsγ′(K⃗s⃗+V⃗ s⃗1−x⃗2
2(c⃗1−c⃗3)

51: −x⃗2(upp1(t⃗1) + x⃗0c⃗0 + x⃗1c⃗2)) ∈ Xn
q

52: h⃗ = hints(t⃗′2, t⃗2)

53: if h⃗ =⊥: go to Step 6
54: return π = (z⃗0, z⃗2, s⃗, t⃗1, x⃗2, h⃗, π

′)

1: ▷ Confidential Division Verification
2: CIPSIS.ver((u)div;π0={c⃗0, c⃗1, c⃗2, c⃗3}, π)
3: (z⃗0, z⃗2, s⃗, t⃗1, x⃗2, h⃗, π

′) := π
4: e⃗ = V⃗ rot(1, 0) ∈ Xn

q

5: x⃗0 = hash(c⃗0, c⃗1, c⃗2, t⃗1) ∈ CNβ
6: x⃗1 = hash(x⃗0) ∈ CNβ
7: s⃗1 = (z⃗0z⃗2 + x⃗0z⃗0 + x⃗1z⃗2) ∈ X
8: if ∥[z⃗0, z⃗2]∥ > α∨∥s⃗∥ > τ2∨∥s⃗1∥ > γ:
9: return 0
10: if “div” ▷ signed numbers
11: (c⃗′2, c⃗

′
3, π

′
1, π

′
2, π

′
3, π

′
4) := π′

12: if ¬CIPSIS.ver(mul; {c⃗′2, c⃗2, c⃗2}, π′
1)

13: ∨¬CIPSIS.ver
(
mul;

14: {c⃗′3, c⃗3 − e⃗, c⃗3 − e⃗}, π′
2)

15: ∨¬CIPSIS.prove
(
leq; {c⃗′3, c⃗′2}, π′

3

)
16: ∨¬CIPSIS.prove

(
rangeL; {c⃗3}, π

′
4

)
:

17: return 0
18: if “udiv” ▷ unsigned numbers
19: if ¬CIPSIS.prove

(
leq; π0={c⃗3−e⃗,

20: c⃗2}, π) : return 0
21: ▷ Recreate t⃗2
22: t⃗′2=highbitsγ′(K⃗s⃗+V⃗ s⃗1−x⃗2

2(c⃗1−c⃗3)
23: −x⃗2(upp1(t⃗1) + x⃗0c⃗0 + x⃗1c⃗2)) ∈ Xn

q

24: t⃗2 = use hints(t⃗′2, h⃗)

25: return t⃗ ̸=⊥ ∧x⃗2
?
= hash(x⃗1, t⃗2)

B Binary Commitments to Confidential Integers

This section explains how to verify whether a binary lattice commitment holds
the same integer as a confidential integer or not. For iMSIS (n′,m′+L, q′, B,N),

let a binary commitment be b⃗ = V⃗ ′[b] + K⃗′k⃗′ ∈ Xn′

q′ when [V⃗ ′, K⃗′] is a random

matrix and v =
∑L−1

i=0 bi. Then the proof work as follows when τ ′ ≪ τ ′3 ≤ B and
LNα ≤ B.
– Pick random y⃗ ∈ [τ ′3, τ

′
3]

m×N and y⃗′ ∈ [τ ′, τ ′]m
′×N ′

.
– For all b get random a⃗ ∈ [−(α− (1− bi)), α− (1− bi)]

L×N .

– Get t⃗ = hightbitsp1
(V⃗

∑L−1
i=0 a⃗i + K⃗y⃗) ∈ Xn

q and t⃗′ = V⃗ ′a⃗+ K⃗′y⃗ ∈ Xn′

q′

– Compute x⃗ = hash(c⃗, b⃗, t⃗, t⃗′) ∈ CNβ .

– Set z⃗ = [⃗ai+rot(i, bi)x⃗]
L−1
i=0 ∈ XL, s⃗ = y⃗+x⃗k⃗ ∈ Xm, and s⃗′ = y⃗′+x⃗k⃗′ ∈ Xm′

.
– Perform rejection sampling if ∥z⃗∥ > (α−1), ∥s⃗∥ > (τ3−τ) or ∥s⃗′∥ > (τ ′3−τ ′).

If samples are rejected, go to the first step.

Practical UC-Secure Zero-Knowledge Smart Contracts 33

– Compute hints h⃗ = hints(V⃗
∑L−1

i=0 z⃗i + K⃗s⃗− c⃗, t⃗).

– The proof is (x⃗, z⃗, s⃗, s⃗′, h⃗).
The verification works as follows.
– Recompute t⃗ = use hints(hightbitsp1

(V⃗
∑L−1

i=0 z⃗i+K⃗s⃗− c⃗), h⃗) ∈ Xn
q and

t⃗′ = V⃗ ′z⃗ + K⃗′s⃗′ − b⃗ ∈ Xn′

q′ . If t⃗ is ⊥, return 0.

– Check ∥z⃗∥ ?
≤γ, ∥s⃗∥ ?

≤γ and ∥s⃗′∥ ?
≤B. Otherwise, return 0.

– Return x⃗ ?
=hash(c⃗, b⃗, t⃗, t⃗′).

Security. This protocol is equal to Fiat-Shamir lattice signatures [40, 48] where
we compute two signatures instead of one to prove the knowledge of v. Therefore,
we claim this protocol is complete and knowledge sound when iMSIS of (n′,m′+
L, q′, B,N) is hard and Approx-SIS of (n,m+1, q, γ, γ′, N) is hard based on [40].

C Bullet-Proof Range Proofs

▷ BP [14] with strong Fiat Shamir chal-
lenges. Here, H : {0, 1}∗ → Z+

q and
δ(y, z) = (z− z2) · ⟨1l,yl⟩ − z3⟨1l,2l⟩ ∈
Z+
q

BRP.Prv(pp, C, v, k):

aL ∈ {0, 1}l s.t. ⟨aL,2
l⟩ = v

aR := aL − 1l

sL, sR
$←− (Z+

q)
l

α, ρ
$←− Z+

q

A← gαhaLgaR ∈ G
S ← gρhsLgsR ∈ G
y ← H(C,A, S), z ← H(A,S, y)
L(X) := (aL − z · 1l) + sL ·X
R(X) := yl ·(aR+z ·1l+sR ·X)+z2 ·2l

▷ computes t(X) := ⟨L(X), R(X)⟩
t(X) := t0 + t1 ·X + t2 ·X2

τ1, τ2
$←− Z+

q

T1 ← ht1gτ1 , T2 ← ht2gτ2

x← H(A,S, y, z, T1, T2)
l := L(x) = (aL−z ·1l)+sL ·x ∈ (Z+

q)
l

r := R(x) = yl · (aR + z · 1l + sR · x) +
z2 · 2l ∈ (Z+

q)
l

t̂ := ⟨l, r⟩ ∈ Z+
q

τx := τ2 · x2 + τ1 · x+ z2 · k ∈ Z+
q

µ := α+ ρ · x
xIP ← H(A,S, y, z, T1, T2, τx, µ, t̂)
πIP := IP.Prove(pp,h, g, u, xIP, C,h

lgr,
t̂, l, r)
return π := (A,S, T1, T2, τx, µ, t̂, πIP)

BRP.Ver(pp, C, π): ▷ verification

(A,S, T1, T2, τx, µ, t̂, πIP) := π
y := H(C,A, S), z := H(A,S, y), x :=
H(A,S, y, z, T1, T2)

g′ := g(y−l) //g′ = {g1, g
y−1

2 , gy−2

3 , .., gy−l+1

l }
if ht̂gτx ̸= Cz2 · hδ(y,z) · T x

1 · T x2

2 :
return 0

P = A · Sx · h−z · (g′)z·y
l+z2·2l

xIP ← H(A,S, y, z, T1, T2, τx, µ, t̂)
return IP.verify(pp,h, g′, u, xIP, C,
Pg−µ, t̂, πIP)

▷ Inner Product Argument - Prove
IP.Prove(pp, g,h, u, xIP, C, P, c,a, b)

P ′ ← P · uxIP·c

(g, h, C, c, P, a, b, l, r) := IP.Prove(pp,
h, g, C, c, P ′,a, b, {}, {})

// Here l, r ∈ Glog2 |a|

return πIP = (a, b, l, r)

▷ A recursive function
a[:n] = {a1, ..,an−1}
a[n:] = {an, ..,a|a|}
IP.ComputeProof(pp, g,h, C, c, P,
a, b, l, r)
if |g| ≠ |h| ̸= |a| ̸= |b|: return ⊥
n = |g|
if n = 1: return (g,h, C, c, P,a, b, l, r)
else:

34 Jayamine Alupotha and Xavier Boyen

n′ := n/2
cL ← ⟨a[:n′], b[n′:]⟩ ∈ Z+

q

cR ← ⟨a[n′:], b[:n′]⟩ ∈ Z+
q

L← ⟨g
a[:n′]
[n′:] ,h

b[n′:]
[:n′] ⟩ ∈ G

R← ⟨g
a[n′:]
[:n′] ,h

b[:n′]
[n′:] ⟩ ∈ G

▷ add L,R to l, r
l := l∥L, r := r∥R
x← H(C,L,R)
▷ element-wise
g′ := gx−1

[:n′] ⊙ gx
[n′:] ∈ Gn′

h′ := hx
[:n′] ⊙ hx−1

[n′:] ∈ Gn′

P ′ := Lx2

PR−x2

∈ G
a′ = a[:n′]x+ a[n′:]x

−1 ∈ (Z+
q)

n′

b′ = b[:n′]x
−1 + b[n′:]x ∈ (Z+

q)
n′

(g,h, C, c, P,a, b, l, r) := (g′,h′,
C, c, P ′,a′, b′, l, r)

run recursively IP.ComputeProof(pp,
g,h, C, c, P,a, b, l, r)

▷ Inner Product Argument - Verify
IP.Verify(pp, g,h, u, xIP, C, P, c, πIP)
P ← P · uxIP·c

(a, b, l, r) := πIP

if log2 |g| ≠ log2 |h| ̸= |l| ≠ |r|:
return ⊥

n′ = |g|
for (L,R) ∈ (l, r)

n′ := n′/2
x← H(C,L,R)
▷ element-wise product ⊙
g := gx−1

[:n′] ⊙ gx
[n′:] ∈ Gn′

h := hx
[:n′] ⊙ hx−1

[n′:] ∈ Gn′

P := Lx2

PR−x2

i ∈ G
▷ Note that |g| = 1 −→ g = g and
|h| = 1 −→ h = h

return P
?
= gahbuxIP·a·b

