
Practical Delegatable Anonymous Credentials From
Equivalence Class Signatures

Omid Mir1, Daniel Slamanig2, Balthazar Bauer3, and René Mayrhofer1

1 LIT Secure and Correct Systems Lab, Institute of Networks and Security,
Johannes Kepler University Linz, Austria

mir@ins.jku.at, rm@ins.jku.at
2 AIT Austrian Institute of Technology, Vienna, Austria

daniel.slamanig@ait.ac.at
3 IRIF, Université de Paris Cité, France

Balthazar.Bauer@ens.fr

Abstract. Anonymous credentials systems (ACs) are a powerful cryptographic tool for
privacy-preserving applications and provide strong user privacy guarantees for authentication
and access control. ACs allow users to prove possession of attributes encoded in a credential
without revealing any information beyond them. A delegatable AC (DAC) system is an
enhanced AC system that allows the owners of credentials to delegate the obtained credential
to other users. This allows to model hierarchies as usually encountered within public-key
infrastructures (PKIs). DACs also provide stronger privacy guarantees than traditional AC
systems since the identities of issuers and delegators are also hidden. A credential issuer’s
identity may convey information about a user’s identity even when all other information
about the user is protected.
We present a novel delegatable anonymous credential scheme that supports attributes, pro-
vides anonymity for delegations, allows the delegators to restrict further delegations, and
also comes with an efficient construction. In particular, our DAC credentials do not grow
with delegations, i.e., are of constant size. Our approach builds on a new primitive that
we call structure-preserving signatures on equivalence classes on updatable commitments
(SPSEQ-UC). The high-level idea is to use a special signature scheme that can sign vectors
of set commitments which can be extended by additional set commitments. Signatures ad-
ditionally include a user’s public key, which can be switched. This allows us to efficiently
realize delegation in the DAC. Similar to conventional SPSEQ signatures, the signatures and
messages can be publicly randomized and thus allow unlinkable showings in the DAC system.
We present further optimizations such as cross-set commitment aggregation that, in combi-
nation, enable selective, efficient showings in the DAC without using costly zero-knowledge
proofs. We present an efficient instantiation that is proven to be secure in the generic group
model and finally demonstrate the practical efficiency of our DAC by presenting performance
benchmarks based on an implementation.

Keywords: Equivalence-class signatures, set commitments, delegatable anonymous credentials

1 Introduction

Anonymous credentials (ACs) [CL03, CL04, PS16, ILV11, San20, FHS19, HS21, CLP22] provide
a means to strong authentication with built-in authorization (access control) and play an essential
role in privacy-preserving applications. In such a system credentials encode a set of attributes and
are issued by some trusted issuer(s). A credential holder can then show a credential to a verifier by

selectively revealing attributes (or proving more general relations about hidden attributes) in a way
that multiple showings of the same credential cannot be linked. This should hold even if issuers and
verifiers collude and ideally even when the issuer is allowed to generate its key material maliciously.
Technologies related to ACs found numerous applications such as PrivacyPass [DGS+18] by Cloud-
flare (available as extensions for Chrome and Firefox), an enhanced variant by Google [KLOR20]
being integrated into the Trust Tokens API4 or the PrivateStats proposal by Facebook.5 A recent
large scale real-world application of ACs is the realization of private groups within the popular
Signal messenger [CPZ20].

When using credentials in our daily lives, we frequently run into a difficult problem: delegation.
We often need to delegate our tasks, responsibilities, and permissions to someone else, or we simply
want to share our access to resources and services with another person or among our different
electronic devices. Indeed, in practice, credentials are usually issued in a hierarchical manner, e.g.,
in a public key infrastructure (PKI) there is a chain of certificates between the user certificate
and a trusted root authority. An easy way to achieve delegation is credential sharing. However,
giving away the full and unlimited power of a credential is often not what we want. Consider the
example of a manager of a company who wants to delegate a task that requires filling and signing
of documents to their secretary. Providing the secretary with the signing keys gives away the power
to sign arbitrary documents in the name of the manager – which is obviously not what the manager
intended. Even worse, since the actual signing key was shared, the only way to revoke these powers
from the secretary is to revoke and invalidate the whole credential. This problem clearly carries
over to anonymous credentials.

As also highlighted in [BCC+09, CDD17, CL19], traditional anonymous credentials in which
we assume that the verifying party (or a service provider) knows the public key of the credential
issuers do not provide strong privacy when used in a hierarchical structure.6 That is, this chain
of issuers may reveal sensitive information about the issuer’s organizational structure or the cre-
dential holder. Consequently, in this setting it is desirable to provide anonymity guarantees even
if there is a certain type of collusion of issuers and/or delegators.

Delegatable anonymous credentials. Chase and Lysyanskaya in [CL06] introduced the no-
tion of delegatable anonymous credentials (DACs). DAC schemes, later improved in [BCC+09],
are particularly interesting for applications such as (physical) access control [MSM+18], root of
trust [CL19], or authorizing transactions in permissioned blockchains [CDD17, BCET21]. Follow-
ing the notion of levels by Belenkiy et al. [BCC+09], an initial credential is issued for a level L = 1.
Any level L credential can then be used to delegate a level L+1 credential to another user. As with
traditional anonymous credentials, users can then show a credential (i.e., prove possession of their
credential) without disclosing their identity and without revealing anything about non-disclosed
attributes to a verifying party. Thereby, only the identity (i.e., public key) of the root issuer but
none of the intermediate levels is revealed during the verification. The construction of [BCC+09] is
based on a commitment scheme and a signature scheme with randomizable non-interactive zero-
knowledge (NIZK) proofs. This approach can be instantiated from Groth-Sahai (GS) commitments
and GS NIZK proofs [GS08] resulting in credentials and showings of size linear in the chain length
L. Unfortunately, using tools like GS proofs make this scheme inefficient for practical use as the
quite expensive statements result in poor computational performance and large credential size. Sev-
eral other DAC constructions have been proposed afterwards, e.g. [CKLM13, Fuc11, CKLM14],

4 https://web.dev/trust-tokens/
5 https://research.fb.com/privatestats
6 Concealing the credential issuer has recently also been shown to have value in a setting of anonymous
credentials without credential delegation [BEK+21, CLP22].

2

https://web.dev/trust-tokens/
https://research.fb.com/privatestats

which follow roughly the same techniques as [BCC+09], i.e., using malleable proof systems (based
on GS) as the main building block, and thus have similar performance characteristics.

Camenisch et al. [CDD17] propose a much more practical approach towards DAC in which one
can prove possession of a credential chain in a privacy-preserving manner, but one cannot obtain
credentials anonymously. Indeed, credential holders can see all attributes and public keys on all
levels in plain, i.e., not offering an anonymous delegation phase. They present an efficient instan-
tiation of their DAC scheme based on the structure-preserving signature (SPS) by Groth [Gro15]
(we provide a comparison with [CDD17] in Appendix B). This approach has recently been inte-
grated into Hyperledger Fabric [BCET21]. Later Blömer and Bobolz (BB) [BB18] proposed another
practical DAC approach using dynamically malleable signatures (DMS) and NIZK proofs, which
conceptually is similar to the approach in [CKLM14]. A DMS can sign messages and “placeholders”,
where during delegation “placeholders” can be replaced by concrete messages and thus enabling
to add attributes during delegation in the DAC. Unfortunately, [BB18] only details the underly-
ing signature scheme, which is based on Pointcheval-Sanders signatures [PS16], but the remaining
parts of their generic constructions are not detailed, making concrete performance estimates hard.
But since their showing must conceal the DMS signature and prove the verification relation of the
DMS (resulting in a size linear in the number of undisclosed attributes), this imposes a rather
complex NIZK statement. Finally, BB requires a trusted setup (and more particular a trapdoor in
their parameters), something that is important to avoid in privacy-preserving primitives.

DAC using equivalence-class signatures. Crites and Lysyanskaya [CL19] provide probably the
most efficient and conceptually most simple construction of DACs. Their construction does not rely
on any computationally complex systems such as NIZK proofs. The main building block of their
construction is a new type of signature scheme, called a mercurial signature. It extends structure-
preserving signatures on equivalence classes (SPSEQ) [HS14, FHS19] to equivalence classes on the
key space. SPSEQ in addition to randomizing signatures also provides randomization of signed
messages (modeled as equivalence classes). Thus, SPSEQ allow similar applications as SPSs, but
unlike the latter they do not need NIZK proofs on top, thereby yielding more efficient schemes.
Mercurial signatures extend SPSEQ in the sense that it adds the property of transforming public
keys into an equivalent one, i.e., additionally supports randomization of public keys.

Unfortunately, existing DAC schemes based on mercurial signatures [CL19, CL21] have some
shortcomings: 1) They do not support attributes in a meaningful way. [CL19] does not support
attributes at all and while Crites and Lysyanskaya in [CL21] show how to support attributes, it is
only possible in a way where all attributes are always revealed during showings and thus no selective
disclosure is supported. This feature is not very attractive for privacy-preserving applications. 2)
Bauer and Fuchsbauer [BF20] point out a significant drawback of the weak form of anonymity
provided by their DAC construction. That is, if Alice delegates a credential to Bob, she can identify
Bob whenever he shows the credential, which indicates a severe violation of Bob’s privacy. This is
because, when Alice delegates a credential to Bob, she uses her secret key to sign Bob’s pseudonym
under her pseudonym (the randomized public key), which becomes part of Bob’s credential (see
[BF20] for more details). Moreover, 3) similar to [CDD17], the credential size depends on the
delegation chain length L, and consequently, the size of the credential grows linearly with L.

Summarizing, the state-of-the-art in existing DAC schemes is that the ones that are conceptually
simple and practically efficient do not provide all the desirable properties of supporting selective
showing of attributes, being compact, and providing sufficiently strong anonymity guarantees at
the same time.

3

1.1 Our Contribution

Our contribution is to formalize and present a construction and implementation of DAC that mit-
igate the aforementioned problems:

Delegatable Anonymous Credentials. We propose a novel delegatable anonymous credentials
scheme (DAC). Our scheme provides the following key characteristics: i) It represents a simple, and
practical construction without requiring zero-knowledge proofs (for complex statements), which
makes it well-suited for real-world applications. ii) It is constant-size in two aspects. First, the
bandwidth required for the credential showing protocol is independent of the number of the at-
tributes, but only depends on the delegation depth. Second, unlike the schemes in [CL19, CDD17]
and similar to [BB18] the credential size is independent of the length of the credential (delegation)
chain. iii) Credentials are attribute-based in a sense that every level in the delegation chain is
associated with a set of attributes that are certified by the respective delegator. Credential holders
can then decide for every level whether and which attributes should be selectively revealed during
a showing of a credential. Moreover, every delegator can restrict delegation in how many further
levels can be delegated and whether attributes associated to previous levels should be valid (show-
able) or invalidate them (making them unshowable). iv) It provides strong anonymity which means
that it not only supports an anonymous showing phase but also provides an anonymous delegation
phase under a reasonable corruption model and anonymity holds even for maliciously generated
issuer keys. Finally, v) our DAC comes with an implementation and evaluation that demonstrates
its practical efficiency.

Novel Building Block. Our DAC scheme is based on a novel cryptographic building block that
we call structure-preserving signatures on equivalence classes on updatable commitments (SPSEQ-
UC). This primitive draws inspiration from structure-preserving signatures on equivalence classes
(SPSEQ) [HS14, FHS19] as well as the set commitment scheme in [FHS19]. Loosely speaking their
idea is to use SPSEQ to sign a randomizable set commitment and showing a credential amounts to
randomizing the message (set commitment), randomizing and adapting the signature to the new
message and providing the signature, randomized commitment and an opening to the randomized
commitment. While in SPSEQ the message space is simply group element vectors, in SPSEQ-UC the
message space is viewed as a vector (of length at most ` as an upper bound for the message vector)
of randomizable set commitments. This concept is somewhat similar to signatures on randomizable
ciphertexts (SoRC) [BFPV11, BF20]. However, in contrast to SoRC which does not allow to reveal
a subset of the encrypted message, here it is also possible to reveal only a subset of the committed
values of each commitment in the vector while guaranteeing the privacy of the non-revealed ones.
Thereby, SPSEQ-UC needs to be unlinkable, which means the same commitment-signature pair can
be revealed multiple times without being linkable to each other. One key feature is that SPSEQ-UC
allows to extend signed vectors by additional set commitments. More precisely, in SPSEQ-UC sign-
ing of a commitment vector of length k also produces an update key ukk′ corresponding to an
integer k′ with k ≤ k′ ≤ `. Given the update key ukk′ one can update a commitment vector C
to a vector C ′ (i.e., extending it). Another key feature is that in a SPSEQ-UC scheme the signing
process is tied to a user public key. It allows a signer to bind a signature to a given user public key
such that this signature can then be adapted into another valid signature for a new user public
key by anyone knowing the corresponding old user secret key.

We provide a rigorous security model for SPSEQ-UC which carefully crafts privacy notions
similar to SPSEQ [FHS19] in order to guarantee that adapted (i.e., re-randomized) signatures, sig-
natures after extending commitment vectors as well as signatures after switching user public-keys
are distributed identically to new signatures and thus are all unlinkable to fresh signatures. This is

4

important for our application in DAC and other potential applications in privacy-preserving proto-
cols. Moreover, we provide a provably secure construction of an SPSEQ-UC based on the SPSEQ
scheme in [FHS15], which is proven secure in the generic group model, and the set commitment
scheme in [FHS19]. We chose this path as our main focus is on efficiency, but we consider construct-
ing SPSEQ-UC from standard assumptions, i.e., relying on the recent approach in [CLP22](building
upon and improving the SPSEQ in [KSD19]), as an interesting avenue for future work.7 Another
direction would also be to adopt the modified set commitment scheme in [CLP22], which in ad-
dition to selective disclosure also supports non-membership proofs for disjoint sets, which would
directly increase the expressiveness of the DAC scheme.

1.2 High Level Idea of Our Approach

On a very high level, our approach to construct DAC takes inspiration from the anonymous cre-
dentials in [FHS19] as well as the approach based on DMS in [BB18] but in contrast to the latter
and similar to [CL19, CL21] avoids the use of NIZK for complex statements.

The idea in our DAC, omitting some details for the sake of brevity, is that in a hierarchy of
delegations the root authority issues a SPSEQ-UC signature on a vector of commitments of length
two, where the first one is a dummy commitment that is there for technical reasons and not assigned
any or simpy some fixed attributes. The second commitment in the vector carries the attributes
for the first delegatee and the public key included in the signature is the one of the delegatee. The
delegatee if allowed to perform further delegations is then given an update key for this signature.
This update key allows to further extend the commitment vector and thus delegating a credential
for the next level in the delegation hierarchy. Again the public key of the delegatee, now playing
the role of the delegator, is switched to the one of the next delegatee. This process keeps on going
until the end of the delegation chain is reached (if no further delegations are allowed, then no
update key is provided). One issue that is worth mentioning is that every delegator can control
how far delegations can go by further restricting the update key and a delegator can also restrict
the possibility to show attributes from a certain level in the hierarchy (which corresponds to a
commitment in the commitment vector) by not providing the opening of the commitment to the
delegatee.

Now showing a credential simply amounts to adapting the signature to a re-randomized sig-
nature for a re-randomized commitment vector and providing subset openings of the respective
commitments. As we show in Section 3.4 we can realize a cross-commitment aggregation technique
to make the opening of multiple commitments compact. Due to the properties of SPSEQ-UC such
showings are unlinkable. More so, the properties of SPSEQ-UC also allow to realize an anonymous
delegation process so that delegations cannot be tracked and all credentials in a delegation are
indistinguishable from fresh SPSEQ-UC signatures on vectors of identical length.

1.3 Comparison with Previous Work

In Table 1, we provide a comparison of our approach with other existing efficient DAC schemes in
the literature [BB18, CDD17, CL19, CL21]. We compare our DAC with these schemes in terms of
the following criteria: Attr which means whether credentials include attributes that can at least
be selectively revealed. We use ≈ to indicate that [CL21] supports attributes, but as all attributes

7 However, there is an inherent issue when relying on the constructions in [KSD19, CLP22]. To cope with a
malicious issuer in the DAC, something that we consider, they require a trusted generation of a common
reference string (CRS). Knowledge of the respective trapdoor could be exploited to break anonymity.

5

always need to be revealed it does not support selective disclosure. Expr which compares the
expressiveness of the supported showing policies, where R stands for arbitrary computable relations
over attributes and S denotes the selective disclosure of a subset of attributes. We note that by
avoiding NIZK proofs for complex statements, it seems necessary to be restricted to selective
disclosure (S), which is however sufficient for most practical applications. Rest means whether it
is possible to apply a restriction on the delegator’s power during the delegation. Here, our scheme
allows such restrictions in which a (superior) delegator can decide i) how many additional levels of
delegation can be made, ii) to make all attributes of selected levels "invalid" by not providing the
opening of the respective commitments, and, iii) how many attributes in each level (commitment)
can be delegated by setting (potentially removing) key components in ukk′ . BB [BB18] provides
a type of restriction on the attributes such that delegators can prevent changing some attributes
during delegation. However, one still can use these attributes in showings of a credential. Also, BB
does not have a delegation-level concept and thus one can not control and restrict the delegation-
level number (power). (SAnon) refers to strong anonymity guarantees meaning that no one can
trace or learn information about the user’s identity or anything beyond what they suppose to
show during both the issuing/delegation and showing of credentials. Moreover, anonymity holds
without relying on a trusted setup (and thus a potential trapdoor breaking anonymity) as well as
the assumption of a malicious key generation by a (corrupted) root authority and user’s key leaks
8. Here means that the respective scheme satisfies all of these conditions, and G# means that it
loses one or more of them.

Table 1. Comparison of practical DAC schemes (L: Delegation chain depth; n: Attributes; u: Undisclosed
attributes).

Scheme Attr Expr Rest SAnon |Cred| |Show|

BB [BB18] X S/R ≈ G#† O(1) O(u)

CDD [CDD17] X S/R × G#♣ O(nL) O(uL)
CL [CL21] ≈ × × G#∗ O(nL) O(uL)

Ours X S X ‡ O(1) O(L)

† Requires a trusted setup and have a trapdoor associated to their parameters.
♣ It does not support an anonymous delegation phase.
‡ We consider a malicious issuer key CA and all delegators keys can be exposed.
∗ It also allows an adversarial CA but no delegators’s keys leaks.

With |Cred|, we denote the size of the credential. L indicates the length of the delegation
chain. As it turns out, BB [BB18] (2 group elements) and our scheme (5 group elements) provide
constant-size credentials. But as already mentioned, our scheme provides a simpler construction by
avoiding potentially costly linear-sized (in the number of attributes) zero-knowledge proofs. With
|Show|, we denote the size of the credential showing. Our showing is more efficient as it needs only
a constant number of group elements (5 elements) and the commitment vector with the size of
delegation L. BB needs to send the signature (2 elements) and the elements of proving knowledge
8 We note that CL and our model require a credential credb of the anonymity challenge is on a delegation
path from a (corrupted) root credential where all delegations have been performed honestly. However, we
additionally allow the adversary to access the user corruption oracle in which we reveal the (delegators)
user’s secret keys to the adversary. CL cannot support this type of corruption as then the anonymity of
their construction breaks down. This makes our model stronger than the one of CL.

6

of undisclosed attributes (|ZKPoK| = u). Note that for practical use-cases, we assume L < u. For
other schemes, this cost is much higher as their credentials grow linearly in the number of attributes
and L.

2 Preliminaries and Notation

For a relation R let [x]R = {y|R(x, y)}. If R is an equivalence relation, then [x]R denotes the
equivalence class of which x is a representative. We mention that a relation R is parameterized if
it is well-defined as long as some other parameters are well-defined. Let G1 = 〈P 〉, G2 = 〈P̂ 〉, and
GT be groups of prime order p. A bilinear map e : G1 ×G2 → GT is a map, where it holds for all
(A, B̂, a, b) ∈ G1×G2×Z2

p that e(Aa, B̂b) = e(A, B̂)ab, and e(P, P̂) = gT 6= 1GT , and e is efficiently
computable. We will write G∗i = Gi \ {1Gi} and use BG = (p,G1,G2,GT , e, P, P̂) ← BGGen(1λ)
to denote a bilinear group generator where p is a prime of bitlength λ. Given a finite set S, we
denote by x← S the sampling of and an element uniformly at random in S. For an algorithm A,
let y ← A(λ, x) be the process of running A on input (λ, x) with access to uniformly random coins
and assigning the result to y. We usually omit to mention the λ-input and to make the random
coins r explicit, we write A(x; r). With AB we denote that A has oracle access to B. We use O to
denote oracles defined in games and use ε to indicate a negligible function. For a positive integer
N , we denote the set {1, . . . , N} by [N] and use v = (v1, . . . , vn) to denote a vector. Given two
vectors v and w, we write (v,w) for appending w to v. Whenever we have vectors w and v of
identical dimension whose components are sets, then by v ⊆ w we mean that the relation is applied
componentwise.

2.1 Set Commitments

Fuchsbauer et al. in [FHS19] introduced the notion of a set commitment SC with subset openings.
SC allows committing to a set S ⊂ Zp by committing to a monic polynomial whose roots are
the elements of S and supports openings for sets T ⊆ S. We defer the abstract definition to Ap-
pendix A.1 and then recall their construction below. We thereby make one property that is satisfied
by the set commitment construction in [FHS19] explicit. Namely, we require that the randomness
space forms a group and the existence of an algorithm RndmzC such that set commitments and
opening information can be perfectly randomized. More formally, we require that for all ppsc and
S ∈ SppSC as well as randomness ρ and µ we have that:

SC.RndmzC(SC.Commit(S; ρ);µ) = SC.Commit(S; ρµ)

Set Commitment Construction of [FHS19]. To simplify our description, we ignore the case
that a set S contains the trapdoor α. For a non-empty set S, [FHS19] defines the polynomials
fS(X) :=

∏
s∈S(X − s) =

∑|S|
i=0 fi · Xi. Note that for P , since P fS(α) =

∏|S|
i=0 P

(fi·αi), one can

efficiently compute P fS(α) when given
(
Pα

i
)|S|
i=0

:

SC.Setup(1λ, 1t) → sppsc: On input a security parameter λ and a maximum set cardinality t,
run BG = (p,G1,G2,GT , P, P̂ , e) ← BGGen(1λ), pick α ← Zp and output ppsc ← (BG, (Pα

i

,

P̂α
i

)i∈[t]), which defines message space SppSC = {S ⊂ Zp|0 < |S| ≤ t}. ppsc will be an implicit
input to all algorithms.

SC.Commit(S) → (C,O): On input a set S ∈ SppSC : pick ρ ← Z∗p , compute C ← (P fS(α))ρ ∈ G∗1
and output (C,O) with O ← ρ.

7

SC.Open(C, S,O)→ 0/1: On input a commitment C, a set S, and an opening information O = ρ:
if C /∈ G∗1 or ρ /∈ Z∗p or S /∈ SppSC then return ⊥. Otherwise if O = ρ and C = (P fS(α))ρ, return
1; else return 0.

SC.OpenSubset(C, S,O, T)→ W : On input a commitment C, a set S, an opening information O
and a set T , if 0 ← SC.Open(C, S,O) or T 6⊆ S or T = ∅ then return ⊥. If O = ρ, output
W ← (P fS\T (α))ρ.

SC.VerifySubset(C, T,W)→ 0/1: On input a commitment C, a set T and a witness W : if C /∈ G∗1
or T /∈ SppSC , return 0. Else if W ∈ G∗1 and e(W, P̂ fT (α)) = e(C, P̂), return 1; else return 0.

SC.RndmzC(C,O, µ)→ (C ′, O′): On input a set commitment C, an opening information O and a
randomness µ ∈ Zp, output C ′ = Cµ and O′ = µ ·O.

On computing commitments. We note that with the knowledge of the trapdoor α, we can
compute a commitment when externally provided with the randomness ρ in the group as P ρ. If
required, we will therefore modify the commitment computation to SC.Commit(S, α, P ρ), which
then computes C ← (P ρ)fS(α) and sets O ← ⊥.9

3 SPSEQ on Updatable Commitments

As our primary building block, we introduce equivalence-class signatures on updatable commit-
ments called (SPSEQ-UC). It can be viewed as a variant of SPSEQ with the following modifications:
1) It considers the message space as vectors of randomizable set commitments, i.e., one can adapt a
signature on a commitment vector to a randomized version of the signed commitments. This means
that equivalence classes are defined on vectors of commitments. 2) SPSEQ-UC not only considers
signing representatives of classes of a single projective equivalence relation R, but a family of rela-
tions as we allow to extend signed vectors by additional commitments. Thus we consider a family
of such relations IR` such that Rk ∈ IR` for any 1 ≤ k ≤ `. More precisely, in SPSEQ-UC signing
of a commitment vector of length k also produces an update key ukk′ corresponding to an integer
k′ with k ≤ k′ ≤ `. Given the update key ukk′ , in addition to adapt a signature on a commitment
vector C in class [C]Rk to another representative of the given class, one also can update a com-
mitment vector C (i.e., extending it) to a vector C ′ being in a class [C ′]Rk′ of a new equivalence
relation. Then one can adapt the signature accordingly to the updated commitment vector. 3) In
a SPSEQ-UC, a signature is bound to a user public key. The signer produces a signature bound to
a user public key, but this signature can be adapted into another valid signature for a new user
public key by anyone knowing the old user secret key.

3.1 Formal Definitions

We recall that in an SPSEQ scheme, one can sign vectors of group elements and it is possible to
jointly randomize messages and signatures in public. The messages space consists of representatives
of projective equivalence classes defined on one source group of a bilinear group, i.e, G`1 (for some
fixed ` > 1 and prime-order group G1), and randomization of a message represents a change to
another representative in the signed class. In case of SPSEQ-UC the message space consists of a
vector of group elements of set commitments (a commitment vector) from (G∗1)`. In contrast to
SPS-EQ, we require updating, i.e., extending, the commitment vector and thus we consider a family
of equivalence relations IR` so that for any k with 1 < k ≤ `, we can define the following equivalence
9 Here we assume that ρ is honestly chosen, i.e., the discrete logarithm w.r.t. P is known. This can be
enforced by requiring to provide a ZKPoK of the discrete logarithm ρ w.r.t. element P .

8

relation Rk ∈ IR` and the equivalence class [C]Rk of a set commitment vector C = (C1, . . . , Ck).
More concretely, for a fixed bilinear group BG and (k, `), we define Rk ∈ IR` as follows:

Rk =
{
(C,C ′) ∈ (G∗1)k × (G∗1)k ⇔ ∃µ ∈ Z∗p : C ′ = Cµ

}
.

Definition 1 (SPSEQ-UC scheme). A SPSEQ-UC scheme for a set commitment scheme SC and
a parameterized family of equivalence relations IR` consists of the following PPT algorithms:

PPGen(1λ, 1t, 1`) → (pp): On input the security parameter λ and an upper bound t for the
cardinality of committed sets and a length parameter ` > 1, this probabilistic algorithm outputs
the public parameters pp. The message set space SppSC is well-defined from pp. pp will be an
implicit input to all algorithms.

KeyGen(pp) → (vk, sk): On input the public parameters pp, this probabilistic algorithm outputs
a verification and signing key pair (vk, sk).

UKeyGen(pp) → (sku, pku): On input the public parameters pp, this probabilistic algorithm out-
puts a key pair (sku, pku) for a user u.

RndmzC(C,O, µ) → (C ′,O′): This deterministic algorithm takes as input a commitment vec-
tor C of size 1 < k ≤ `, corresponding openings O and randomness µ. It runs (C ′i, O

′
I) ←

SC.RndmzC(Ci, Oi, µ) for all i ∈ [k] and outputs a new representative of the set commitment
vector C ′ ∈ [C]Rk and corresponding openings O′.

Sign(sk,M , k′, pku;ρ) → (σ, (C,O), ukk′): This probabilistic algorithm takes as input a signing
key sk, a vector of set messages M = (M1 . . . ,Mk), an index k′ with k ≤ k′ ≤ `, a user public
key pku and a vector of randomness ρ. It computes (Cj , Oj)j∈[k] ← SC.Commit(Mj ; ρj) for all
j ∈ [k], sets C = (C1 . . . , Ck) and O = (O1, . . . , Ok). It outputs a signature (σ,C) for pku, and
also an update key ukk′ in case k′ 6= `.

Verify(vk, pku,C, σ, (T ,U))→ 0/1: On input a verification key vk, a user public key pku, a com-
mitment vector C = (C1, . . . , Ck), the purported signature σ, and a pair (T ,U), it outputs 0
if any of the following checks fail and 1 otherwise:
– Check whether σ is a valid signature for (C, pku).
– For all (Ti, Ui) ∈ (T ,U): if Ui =Wi check

1
?
= SC.VerifySubset(Ci, Ti,Wi). Else if Ui = Oi, check 1

?
= SC.Open(Ci, Ti, Oi).

UKVerify(vk, ukk′ , k
′, σ)→ 0/1 : On input a verification key vk, an update key ukk′ , an integer k′

and a signature σ, this deterministic update key verification algorithm outputs 0 or 1.
RndmzPK(pku, ψ, χ)→ pk′u: On input a user public key pku and randomness ψ, χ, this public key

randomization algorithm outputs the randomized public key pk′u.
ChangeRep(pku, ukk′ , (C,O), σ, µ, ψ)→ (σ′, (C ′,O′), (uk′k′ or ⊥), pk

′
u, χ): This algorithm takes as

input the user public key pku, a commitment vectorC = (C1, . . . , Ck) in equivalence class [C]Rk
and corresponding openings O, a signature σ for C, randomness ψ, µ and optionally an update
key ukk′ . It returns an updated signature σ′ for a new commitment vector and corresponding
openings (C ′,O) ← RndmzC(C,O, µ) such that C ′ ∈ [C]Rk as well as a randomized user
public key pk′u ← RndmzPK(pku, ψ, χ) for uniform randomness χ. In case that ukk′ 6=⊥, it
additionally outputs a randomized update key uk′k′ .

ChangeRel(Ml, σ,C, ukk′ , k
′′) → (σ′, (C ′, Ol), ukk′′): On input a message set Ml ⊂ SppSC for l =

k + 1 ∈ [k′], a signature σ for a vector of commitments representative C = (C1, . . . , Ck) of
equivalence class [C]Rk , an updatable key ukk′ , and an index k′′ ≤ k′. This algorithm adapts a
signature σ′ for a new commitment vector C

′
= (C, Cl) of equivalence class [C ′]Rl , where Cl

is a set commitment for Ml with the related opening information Ol. Also, for k′′ ∈ [l + 1, k′],
updates the updatable key for the range [l + 1, k′′] into ukk′′ .

9

SendConvertSig(vk, sku, σ) → (σorph): It is an algorithm run by a user who wants to delegate a
signature σ. It takes as input the public verification key vk, a secret key sku and the signature
σ. It outputs an orphan signature σorph.

ReceiveConvertSig(vk, sku′ , σorph)→ σ′: It is an algorithm run by a user who receives a delegatable
signature. It takes as input the verification key vk, a secret key sku′ , an orphan signature σorph.
It outputs a new signature σ′ for pku′ .

For simplicity, when we write ConvertSig(vk, sku, sku′ , σ) we mean [SendConvertSig(vk, sku, σ) ↔
ReceiveConvertSig(vk, sku′)]→ σ′, where σ′ is a valid signature.

3.2 Security Definitions

Similar to a standard signature scheme, a SPSEQ-UC scheme should also be correct and unforgeable.
And similar to SPSEQ we need some additional properties regarding the distribution of modified
signatures.

Correctness. As usual we require that honest signatures verify as expected. Moreover, each of
the algorithms ConvertSig,ChangeRep and ChangeRep outputs valid signatures for the respective
parameters. We provide a formal correctness definition in Appendix C.1.

Unforgeability. For unforgeability, we consider an adversary that has access to signatures for
message set vectors of its choice, controls randomness of commitments and is allowed to create as
well as corrupt user keys. We require that it cannot come up with a signature on a commitment
vector that opens to non-signed message (sub-)sets where we need to consider that the adversary
is allowed to extend commitment vectors. In addition, the adversary needs to specify the used user
secret and public key (sk∗, pk∗) for the forgery, which we require to make it useful in the application
to DAC. Note that since the output of ChangeRel and ChangeRep is distributed identical to Sign, we
do not require to provide access to such oracles as it can be done by the adversary on its own. To
detect that signatures derived with ukk′ are obtained from ChangeRel or are generated freshly in
the Sign oracle, we define the following relation Rk′ . Consequently, signatures that can be legally
derived using ConvertSig and ChangeRep are not considered as forgeries.

Definition 2. Let k, ` be integers. For any ` ≥ k′ > k, we define the relation Rk′ for two vectors
M = (M1, . . . ,Mk) and M∗ = (M∗1 , . . . ,M

∗
k′) as follows:

(M ,M∗) ∈ Rk′ ⇐⇒ ∀i ≤ k :M∗i ⊆Mi

We formally define the unforgeability game as follows:

Definition 3 (Unforgeability). A SPSEQ-UC scheme is unforgeable if, for all (λ, t) ∈ N, and ` >
1, for any PPT adversary A, there exists a negligible function ε(λ) such that Pr[ExpUnfSPSEQ-UC,A(
λ, `, t) = 1] ≤ ε(λ) , where the experiment ExpUnfSPSEQ-UC,A(λ, `, t) is defined in Fig 1 and Q is
the set of queries that A has issued to the signing oracle.

Note that unforgeability allows the adversary to either output a full opening (U∗i = Oi) or subset
opening (U∗i = Wi) for each commitment in the commitment vector. This is also used to make it
useful in the application to DAC.

Privacy notions. Subsequently, we define privacy properties that are similar in vein to origin-
hiding or signature adaption in previous works [CL19, FHS19]. However, since SPSEQ-UC supports
more functionality for the sake of reduced complexity we present three notions. Firstly with origin-
hiding we want to guarantee that fresh and randomized signatures are indistinguishable. Secondly,

10

ExpUnfSPSEQ-UC,A(λ, `, t):

– Q := ∅;UL := ∅, pp← PPGen(1λ, 1t, 1`);
– (vk, sk)← KeyGen(pp);
– ((sk∗u, pk

∗
u)(C

∗,T ∗,U∗), σ∗) ← A<O>(vk, pp)
return:∀(pku, sku) 6∈ UL,∀(M , k′, pku) ∈ Q :

(M ,T ∗) /∈ Rk′ ∧ (sk∗, pk∗) ∈ UKeyGen(pp)

∧ Verify(vk, pk∗u,C
∗, σ∗, (T ∗,U∗)) = 1

OSign(M , k′, pku,ρ):

– If ` ≥ k′ ≥ k:
– Then (σ, (C,O), ukk′)← Sign(sk,M , k′, pku;ρ)
– Q = Q ∪ {(M , k′, pku)},
– return ((C,O), σ, ukk′)
– Else return ⊥

OCreate(i):

– (pku, sku)← KeyGen()
– UL ← UL ∪ {(i, pku, sku)}
return (pku)

OCorrupt(i):

– If ∃i ∈ UL such that
(pku, sku) ∈ UL

– Then delete the item from the list and return
(sku, pku)

– Else return ⊥

Fig. 1. Experiment ExpUnfSPSEQ-UC,A(λ, `, t).

with derivation-privacy we want to guarantee that signatures for extended commitment vectors
are indistinguishable from fresh ones. Thirdly, with conversion-privacy we want to guarantee that
when switching a user key in the signature, the resulting signature is indistinguishable from a fresh
signature. Subsequently, we use ≈ to denote perfect indistinguishability.

Origin-hiding (also called signature adaptation [FHS15, FHS19]) formalizes the fact that sig-
natures for well-formed commitments and well-formed update keys the output of ChangeRep is
distributed identical to fresh signatures on the new representative.

Definition 4 (Origin-hiding). For all (λ, t, `) and pp ∈ PPGen(1λ, 1t, 1`), for all vk, pku, C,
M , O, T , U , ukk′ , k′ and σ. If SC.Open(pp, Cj ,Mj , Oj)j∈k = 1 ∧ UKVerify(vk, ukk′ , k

′, σ) =
Verify(vk, pku,C, σ, (T ,U)) = 1, then for all µ, ψ, the algorithm ChangeRep(pku, ukk′ , (C,O),
σ, µ, ψ) outputs a uniformly random C ′ ∈ [C]Rk and uniformly random pk′u, and σ′ in the re-
spective spaces.

Since we support the extension of the signed commitment vector, with derivation privacy we guar-
antee that signatures derived on a message vector C∗ output by ChangeRel are indistinguishable
from signatures freshly created with sk by Sign on the extended vector.

Definition 5 (Derivation-privacy). For all (λ, t, `), pp ∈ PPGen(1λ, 1t, 1`), all (vk, sk) ∈ KeyGen
(pp), pku,M , O = ρ, T , U , ukk′ , k′, and σ. If SC.Open(pp, Cj ,Mj , Oj)j∈k = 1 ∧ Verify(vk, pku,C, σ,
(T ,U)) = 1 ∧ UKVerify(vk, ukk′ , k

′, σ) = 1, then, for all k′′ ∈ [k+1, k′],Ml, we have (σ′, (C ′, Ol), ukk′′)
← ChangeRel(Ml, σ,C, ukk′ , k

′′) and the following holds:

(vk, sk, pku, ukk′ , (σ
′, (C ′,O′), ukk′′)) ≈

(vk, sk, pku, ukk′ ,Sign(sk,M
′, k′′, pku;ρ))

where M ′ = (M ,Ml) and O′ = (O, Ol).

11

With conversion-privacy we require that a converted signature, i.e., a signature where the public
key has been switched, is identically distributed to a fresh signature using the new public key.

Definition 6 (Conversion-privacy). For all (λ, t, `), pp ∈ PPGen(1λ, 1t, 1`), and for all (vk, sk) ∈
KeyGen(pp), (sku, pku) ∈ UKeyGen, C,T ,M , U ,O = ρ, ukk′ , k′, and σ. If SC.Open(pp, Cj ,Mj , Oj)j∈k
= 1 ∧ Verify(vk, pku,C, σ, (T ,U)) = 1 ∧ UKVerify(vk, ukk′ , k

′, σ) = 1, then for all (pku′ , sku′) ∈
UKeyGen, the following holds:

(vk, sk, pku′ , (ConvertSig(vk, sku, sku′ , σ), (C,O), ukk′)) ≈
(vk, sk, pku′ ,Sign(sk,M , k′, pku′ ;ρ)).

Remark 1. We can also define a class-hiding notion in the vein of [CL19, FHS19]. For complete-
ness we include it in Appendix C.2, but analogous to what is shown in [FHS15] (Proposition 1),
the origin-hiding notion together with the indistinguishability of the message space (which holds
under the DDH assumption), we achieve a stronger notion. We will use the above properties in
combination with the DDH assumption later directly in the proof of anonymity of the DAC.

3.3 Construction

We now present our SPSEQ-UC construction and start with an intuition behind our approach. We
start from the SPSEQ signature scheme in [FHS15]. Inspired by their implicit use of SC in [FHS19]
to construct traditional ACs, we make the message space of the scheme a vector of set commitments
in a way that meets our requirements. Consequently, SPSEQ-UC encodes each message setMi ⊂ Ztp
into a set commitment Ci and signs a commitment vector of size k ≤ ` being a vector in (G∗1)k. The
randomization of the set commitment vector is identical to a change of representative in the SPSEQ.
More specifically, we use the algorithm SC.Commit to encode a message set to a set commitment in
Sign and also an algorithm RndmzC to change a set commitment representative. Note that as made
explicit in the unforgeability game, we allow the adversary to control the randomness (opening
information) used in commitments. So we choose this randomness externally and pass it to Sign
which then passes it to SC.Commit. The most significant change compared to SPSEQ is the update
of the commitment vector (appending more set commitments to the vector), and the support to
adapt a signature to this updated commitment vector. We can use the elements from the set
commitment parameters {P ai}0<i<t and bind them to the signing key of the respective position of
the vector and the randomness used in the Sign. We do this for all indices from k to k′ and finally
use these elements as the update key. Now, one can insert a new commitment (message set) to
the signature by another algorithm ChangeRel that receives a signature with new message sets and
the update key. It first encodes this set to the set commitment. Then, it uses the update key to
create another set commitment value for the new message set, which can be easily aggregated into
the signature (element Z) and get the new signature for new message sets. For the user’s public
key bound to a signature, instead of singing the user’s public key like the commitment vector, we
define the extra element T to tie the signature to the user’s public key. This allows us to update the
user’s public keys by only locally updating the T element in the signature but still guaranteeing
unforgeability. The RndmzPK then allows to randomize a public key consistently with the signature
and in a way to achieve a new independent user public key for each call to ChangeRep.

PPGen(1λ, 1t, 1`) → (pp): Run BG = (p,G1,G2,GT , P, P̂ , e) ← BGGen(1λ). Pick α ← Z∗p and
run ppSC = (Pα

i

, P̂α
i

)i∈[t] ← SC.Setup(1λ, 1t;α), and define SppSC ← {M ⊂ Zp|0 < |M | ≤ t}.
Output pp = {BG, ppSC, SppSC , I}.

12

KeyGen(pp) → (vk, sk): For 0 ≤ i ≤ ` pick xi ← (Z∗p)
`, set the signing key sk = (x0, . . . , x`).

Compute the related verification key vk = (X0, X̂0, . . . , X̂`), where X0 = P x0 and X̂i = P̂ xi

for 0 ≤ i ≤ `. Output (vk, sk).
UKeyGen(pp) → (sku, pku): Pick wu ← Z∗p , set pku ← Pwu and sku = wu, and finally return

(sku, pku).
RndmzC(C,O, µ) → C ′: On input a set commitment vector C ∈ [C]Rk corresponding openings
O and randomness µ, produces a new representative of the set commitment vector C ′ = Cµ

and corresponding openings O′ = µO.
Sign(sk,M , k′, pku;ρ) → (σ, (C,O), ukk′): On input the signing key sk, a vector of message sets
M = (M1 . . . ,Mk), an index k′, k ≤ k′ ≤ `, a user public key pku and a vector of randomness
ρ. For all j ∈ [k] run (Cj , Oj)j∈[k] ← SC.Commit(Mj ; ρj), and get a vector of set commitments
C = (C1 . . . , Ck) related to a vector of sets M and opening information O = (O1, . . . , Ok).
More precisely, SC.Commit computes a set commitment for each Mj in M as follows: define a
polynomial fMj (X) :=

∏
m∈Mj

(X −m) =
∑|Mj |
i=0 fi ·Xi and with ρj ∈ ρ, compute:

Cj =

|Mj |∏
i=0

(
Pα

i
)fiρj

and Oj = ρj ,

where Pα
i

are group elements in pp. Then, compute a signature σ for (pku,C) as follows: Pick
a random y ← Z∗p and compute σ =Z ←

∏
j∈[k]

C
xj
j

 1
y

, Y ← P y, Ŷ ← P̂ y, T ← P x1·y · pkx0
u

Also, if k 6= `, compute an update key for a range between k and k′ as:

ukk′ =

((
usignj =

(
(Pα

i

)xj
)y−1)

j∈[k+1,k′],i∈[t]

)
.

Output (σ, (C,O), ukk′).
Verify(vk, pku,C, σ, (T ,U))→ 0/1: On input a verification key vk, a user public key pku, a com-

mitment vector C = (C1, . . . , Ck), the purported signature σ, and a pair (T ,U), it outputs 0
if any of the following checks fail and 1 otherwise:
– Check whether σ is a valid for (C, pku), i.e., output 0 if one of the following checks fails:

k∏
j=1

e(Cj , X̂j+1) = e(Z, Ŷ) ∧ e(Y, P̂) = e(P, Ŷ)

∧ e(T, P̂) = e(Y, X̂1) · e(pku, X̂0).

– For all (Ti, Ui) ∈ (T ,U) if Ui = Wi, then Wi is a witness for Ti being subset of the set
committed to Ci: run SC.VerifySubset(Ci, Ti,Wi), i.e., output 1 if the following equation
holds; else 0: ∏

i∈[|W |]

e(Wi, P̂
fTi (α)) =

∏
i∈[|W |]

e(Ci, P̂)

13

Else Ui = Oi, then Ti = Mi is a message set and Oi is a valid opening of Ci to Ti: run
SC.Open(Ci, Ti, Oi), i.e., output 1 if the following holds; else 0:

∀i ∈ [k] : Oi = ρi ∧ Ci = (P fMi (α))ρi

UKVerify(vk, ukk′ , k
′, σ)→ 0/1. On input a vk, ukk′ , index k′, a signature σ = (Z, Y, Ŷ , T) output

1 if the following holds; else 0:∏
j∈[k′]

∏
i∈[t]

e(Pα
i

, X̂j) =
∏
j∈[k′]

e(usignj , Ŷ)

RndmzPK(pku, ψ, χ) → pk′: On input a user public key pku and randomness ψ, χ ∈ Z∗p , output
the randomized public key pk′u = (pku · Pχ)ψ, related to the secret key (χ+ sku)ψ.

ChangeRep(pku, ukk′ , (C,O), σ, µ, ψ)→ (σ′, (C ′,O′), (uk′k′ or ⊥), pk
′
u, χ): On input a user public

key pku, optionally an update key ukk′ , a commitment vector C = (C1, . . . , Ck) in equivalence
class [C]Rk with corresponding openings O, a valid signature σ for C and randomness ψ, µ ∈
Z∗p . Pick χ← Z∗p and compute a new commitment representative (C ′,O′)← RndmzC(C,O, µ)

as well as a randomized user public key pk′u ← RndmzPK(pku, ψ, χ) and update signature as
σ′ = (Z

µ
ψ , Y ψ, Ŷ ψ, (T ·Xχ

0)
ψ). Moreover, if ukk′ 6=⊥, check if UKVerify(vk, ukk′ , k′, σ) = 1, then

randomize the update key as

uk′k′ =
(
(usignµ·ψ

−1

j)j∈[k+1,k′]

)
,

and output (σ′, (C ′,O′), (uk′k′ or ⊥), pk
′
u, χ).

ChangeRel(Ml, σ,C, ukk′ , k
′′) → (σ′, (C ′, Ol), ukk′′): On input a message set Ml ⊂ SppSC for l =

k + 1 ∈ [k′], a valid signature σ for commitment vector C = (C1, . . . , Ck) in equivalence class
[C]Rk , a valid update key ukk′ , and an index k′′ ≤ k′. First it creates a set commitment
(Cl, Ol = ρl)← SC.Commit(Ml). Then, it performs the following steps to update the signature
for a commitment vector including Cl:
– First, compute a set commitment ϑl as in SC.Commit, but using keys of the l-component

of ukk′ as

usignl =
(
(Pα

i

)xl
)y−1

for i ∈ [t] :

fMl
(X) =

∑
fiX

i ⇒ ϑl = (
∏
i∈[t]

usignfili)
ρl =

∏
i∈[t]

((Pα
i·xl·y−1︸ ︷︷ ︸
usignli

)fi)ρl

– Second, update σ for a commitment vector C ′ = (C, Cl) as follows:

σ′ =
(
(Z · ϑl) , Y, Ŷ , T

)
.

– Finally for k′′ ∈ [l + 1, k′], update the update key ukk′ for j ∈ [l + 1, k′′]:

ukk′′ =
(
usignj

)
j∈[l+1,k′′]

.

Output (σ′, (C ′, Ol), ukk′′).
SendConvertSig(vk, sku, σ)→ σorph: On input vk = (X0, X̂0, . . . , X̂`), a user secret key sku for the

public key pku, and a valid signature σ = (Z, Y, Ŷ , T). Output an orphan signature σorph =(
Z, Y, Ŷ , T ′ = T · (Xsku

0)−1
)

14

ReceiveConvertSig(vk, sku′ , σorph) → σ′: On input the verification key vk, a secret key sku′ , an
orphan signature σorph =

(
Z, Y, Ŷ , T ′

)
. Output a signature σ′ for pku′ as:

σ′ =
(
Z, Y, Ŷ , T ′′ = T ′ ·Xsku′

0 = P x1·y · pkx0

u′

)
.

The correctness of our SPSEQ-UC construction follows form inspection. We formally show the
following:

Theorem 1 (Unforgeability). Our SPSEQ-UC construction is unforgeable in the generic group
model for type-3 bilinear groups.

The proof of Theorem 1 is provided in Appendix D.1.

Theorem 2 (Privacy). Our SPSEQ-UC construction is origin-hiding, conversion-privacy and
derivation Privacy based on definitions 4, 5 and 6, respectively.

The proof of Theorem 2 is provided in Appendix D.2.

3.4 Cross-Set Commitment Aggregation

In this section, we introduce an aggregatable set commitment CSCA that allows non-interactive
aggregation of witnesses across multiple commitments. We use a technique inspired by [BDFG20,
GRWZ20] to batch different subset opening witnesses into one and to improve the efficiency of the
verification operation with batching pairing equations. Functionality-wise, we require that witnesses
for multiple subsets of multiple commitments can be aggregated into a single value called proof.
This allows us to use the CSCA in the DAC scheme in order to open any subset of attributes in
each set commitment efficiently. CSCA adds two additional algorithms in SC to aggregate witnesses
across k-commitments and verify them:

AggregateAcross({Cj , Tj ,Wj}j∈[k]) → π. Takes as input a collection {Cj , Tj}j∈[k] along with the
corresponding subset opening witnesses {Wj}j∈[k] (computed using OpenSubset) and outputs
an aggregated proof π.

VerifyAcross({Cj , Tj}j∈[k], π) → b. Takes as input a collection ({Cj , Tj}j∈[k]) along with a cross-
commitment-aggregated proof π, and checks: for all j ∈ [k], Cj is a set commitment to a
message set consistent with the subset Tj .

On computing commitments. Similar to SC in Section 2.1, with the knowledge of the trapdoor
α, we can compute a commitment when externally provided with the randomness ρ in the group
as P ρ. So, we add the commitment computation to CSCA.Commit2(Sj , α, P

ρ) with addition input
to commit group elements.

Construction A Cross Set commitment aggregation scheme CSCA consists of the following PPT
algorithms:

CSCA.Setup(1λ, 1t)→ ppCSCA: On input a security parameter λ and a maximum set cardinality t,
run BG = (p,G1,G2,GT , P, P̂ , e) ← BGGen(1λ), choose H : {0, 1}∗ → Zp, pick α ← Zp, store
α as a trapdoor and output ppCSCA ← (BG, H, (Pα

i

, P̂α
i

)i∈[t]), which defines message space
SppCSCA = {S ⊂ Zp|0 < |S| ≤ t}. ppCSCA will be an implicit input to all algorithms.

CSCA.Commit(Sj) → (Cj , Oj): On input a set Sj ∈ SppSC : pick ρj ← Zp, compute Cj ←
(P fSj (α))ρj ∈ G∗1 and output (Cj , Oj) with Oj ← ρj .

15

CSCA.Commit2(Sj , α, P
ρj) → (Cj , Oj): On input a set Sj ∈ SppSC , α, and P ρj : compute Cj ←

(P ρj)fSj (α) ∈ G∗1 and output (Cj , Oj) with Oj ←⊥.
CSCA.Open(Cj , Sj , Oj) → 0/1: On input a commitment Cj , a set Sj , and opening Oj = ρj : if
Cj /∈ G∗1 or ρj /∈ Z∗p or Sj /∈ SppCSCA then return ⊥. Otherwise if Oj = ρj and Cj = (P fSj (α))ρj ,
return 1; else return 0

CSCA.OpenSubset(Cj , Sj , Oj , Tj)→Wj : On input a commitment Cj , a set Sj , opening Oj and a
subset Tj , if CSCA.Open(Cj , Sj , Oj) or Tj 6⊆ Sj or Tj = ∅ then return ⊥. If Oj = ρj , output
Wj ← (P fSj\Tj (α))ρj .

CSCA.VerifySubset(Cj , Tj ,Wj) → 0/1: On input the commitment Cj , the subset Tj and the wit-
ness Wj : if Cj /∈ G∗1 or Tj /∈ SppSC , return 0. Else if Wj ∈ G∗1 and e(Wj , P̂

fTj (α)) = e(Cj , P̂),
return 1; else 0.

CSCA.AggregateAcross({Cj , Tj ,Wj}j∈[k]) → π. Takes as input a collection ({Cj , Tj}j∈[k]) along
with the corresponding subset opening witnesses {Wj}j∈[k] and outputs an aggregated proof
π as follows:

π :=
∏
j∈[k]

W
tj
j , where tj = H(j, {Cj , Tj}j∈[k]).

CSCA.VerifyAcross({Cj , Tj}j∈[k], π)→ 0/1. Checks that the following equation holds:

∏
j∈[k]

e(Cj , P̂
tj ·ZS\Tj (α)) = e(π, P̂ZS(α))

where S =
⋃
j Tj , and ZS(α) =

∏
i∈S(α− i).

We require the same correctness of opening as before, extended to cross-commitment aggregation
in a natural way. To fit with the DAC, one provides one group element in G1 proof π of the current
values of the attributes required for the showing. When multiple subsets of disclosed attribute sets
are used, cross-commitment aggregation allows us to compress witnesses (W1, . . . ,Wk) into a single
proof π. This can help to reduce the bandwidth overhead significantly and improves verification
efficiency by saving k pairing equations. Note that without aggregation verification has the form:∏
i∈[k] e(Wi, P̂

fTi (α)) =
∏
i∈[k] e(Ci, P̂).

Randomization. We can randomize π and commitments Cj as (πµ,Cµ) and verification works
out.

Security. We can view the set commitment from Section 2.1 used for the cross-commitment
aggregation as an instantiation of [BDFG20], but restricted to monic polynomials. So their analysis
carries over. Note that in AggregateAcross, to be non-interactive, we aggregate witnesses using tj
using a hash function H modeled as a random oracle (as done in [GRWZ20]), meaning that their
analysis carries over.

4 Delegatable Anonymous Credentials

We now define our delegatable anonymous credentials DAC application. Our definition is similar
to [CL19, FHS19] but splits up the issuing protocol for issuing a root credential (CreateCred) and
a delegatable credential (IssueCred). Our model works as follows: A root issuer (called CA) issues
a level-0 credential (a root credential) to intermediate issuers using the CreateCred protocol. The
credential is assigned for a user sku (whom it knows with a pseudonym nymu) with an attribute

16

vector A and the related set commitments C rooted at pkCA. CA also creates a delegation key dkk′
which determines how the credential can be delegated any further regarding an index k′. With
this key, a user U can replace an old pseudonym with a new one and also delegate their credential
further to another user, say R, by signing/updating the R’s public key and (possibly another) set of
attributes A′. More precisely, to delegate a credential, the issuer U (user) needs to derive a signature
on the receiver’s skR without being given skR itself by signing/updating the receiver’s pseudonym
nymR and removing her pseudonym nymu and the corresponding sku. Showing the credential consists
of the user proving possession of the secret key sku associated with his pseudonym and a signature
with attributes fulfilling subsets D.

Definition 7 (Delegatable anonymous credentials). DAC includes algorithms (Setup,KeyGen,
NymGen) and protocols CreateCred/ReceiveCred, IssueCred/ReceiveCred for issuing a credential and
CredProve/CredVerify for possession of a credential as:

Setup(1λ, 1t, 1`) → (pp, skCA, pkCA): Takes as input the security parameters λ, an upper bound t
for the cardinality of committed sets and a length parameter ` > 1. It generates the public
parameters pp for the system as well as a signing key skCA and public key pkCA for all i ∈ [`]
for CA. Outputs the pp and CA key pair (pp, skCA, pkCA). pp will be an implicitly input to all
algorithms.

KeyGen(pp)→ (pk, sk): Generates a key pair (pk, sk), where sk is referred to the user’s secret key,
while pk is a public key (or an initial pseudonym).

NymGen(pk)→ (nym, aux): Takes as input a user’s public key pk, and outputs a pseudonym nym
for this user and the auxiliary information aux needed to use nym.

Issuing a root credential:

[CreateCred(k′,A, skCA)↔ ReceiveCred(pkCA, sku,A)]→ (cred, (C,O), dkk′): This is an interactive
protocol between a user (issuer) who is known by nymu and CA. The common inputs are the
pp, the CA ’s public key pkCA and the arbitrate vector A. CA creates a root credential, i.e. the
(powerful) delegatable credential for a set commitment vectorC corresponding to the attributes
vector A = (A1, . . . , Ak) and the related opening information O as well as a delegatable key
dkk′ regarding the index k′ for a user nymu (nymu is sent to the CA), rooted at pkCA.

Issuing/delegating a credential:

[IssueCred(pkCA, dkk′ , sku, credu, Al, k
′′) ↔ ReceiveCred(pkCA, skR, Al)] → (credR, dk

′
k′): It is an in-

teractive protocol between an issuer who is known by nymu and runs the IssueCred algorithm,
and a receiver, who is known by nymR and runs the ReceiveCred side. The common inputs are
the pp, the CA ’s public key pkCA, and the attributes set Al. Also, the issuer takes as input the
issuer’s secret key sku and his own credential credu (a signature) together with all information
associated with it (e.g. A, the delegatable key dkk′ , the pseudonym nymu and its associated
auxiliary information auxu), and (optionally) an index k′′ < k′. The receiver takes as input her
own secret key skR, and creates a nymR (and sends to nymu), and the auxiliary information
auxR associated with her pseudonym nymR. At the end of the protocol, the receiver side outputs
her credential credR that is issued for A′ = (A, Al) and dk′k′ (if the delegation is intended to
happen more) or ⊥.

Proof of possession of a credential:

[CredProve(pkCA, skP, nymP, auxP, credP, D) ↔ CredVerify(pkCA, nymP, D)] → (0, 1): It is an inter-
active protocol among a prover, who proves possession of a credential and runs the CredProve

17

side of the protocol, and a verifier, who runs the CredVerify side. The common inputs are the
pp, the CA ’s public key pkCA, and subsets D over attributes sets. The prover takes as input his
user secret skP and his credential together with all information associated with it (i.e., A, the
prover’s pseudonym nymP and corresponding auxiliary information auxP). The verifier takes
common inputs and receives nymP, output 1 if it accepts the proof of possession of a credential
for D and 0 otherwise.

Note that the nym’s can be derived from the respective secret key and algorithms (KeyGen,
NymGen), we avoid passing nym’s as an explicit input whenever possible.

Definition 8 (Correctness of DAC). DAC is correct if Setup, KeyGen, and NymGen are run
correctly and also the CreateCred and issuing/receiving protocols are executed correctly on honestly
generated inputs, the receiver outputs a credential credR, when used as input to the prover in an
honest execution of the proving/verifying protocol, is accepted by the verifier with probability 1.

4.1 Security of DAC

We define our security model based on the game-based framework in [FHS19], with some modifica-
tions to harmonize their definition with the one on SPSEQ-UC. The adversary A has access to ora-
cles that describe the possible ways to interact with the system. We use 〈O〉 to denote the collection
of oracles in the games. For the anonymity game we have 〈O〉 = (OUser,OCorrupt,OCreateRoot,OObtIss,
OObtain,ORootObt,OCredProve) and for the unforgeability game 〈O〉 = (OUser,OCreateRoot,OCorrupt,OObtIss,
ORootIss,OIssue,OCredProve).

We define four global lists that are shared among oracles as HU a list of honest users, CU a list
of corrupted users, Luk a list of user’s keys, and Lcred a list of user-credential pairs which includes
issued credentials and corresponding attributes and to which user they were issued. Note that dkk′
implicitly shows k′ and subsequently Rk′ . Moreover, in each issuing query (OObtIss,OIssue) only
one commitment (and attributes set) is added in the commitment vector. Also, for simplicity, we
assume that credi contains (σ, (C,O, pki = nymi), auxi).

OUser(i): Takes as input a user identity i. If i ∈ HU or i ∈ CU it returns ⊥, else it creates a fresh
entry i in lists HU and Luk by running (ski, pki)← KeyGen(pp) and adding i and (ski, pki) to
the list HU and Luk, receptively. It returns pki = nymi.

OCorrupt(i, pki): Takes as input a user identity i and (optionally) a user public key pki. If i /∈ HU ,
a new corrupt user with public key pki (or nymi) is registered and add i ∈ CU , else it moves the
entry corresponding to i from the list of honest users HU and adds it to the list of corrupted
users CU . Then, it returns ski and all the associated credentials items (i,A, dkk′ , credi) of Lcred[i].
Finally, it sets the form (⊥,A, k′,⊥) ∈ Lcred for all A and i in this case.

OCreateRoot(i, k′,A): Takes as input a user identity i, an index k′ and attributes A. If i /∈ HU it
returns ⊥, else it creates a root credential by running[

CreateCred(k′,A, skCA)↔
ReceiveCred(pkCA, ski,A)

]
→ (credi, dkk′)

with a user i for an attribute set A and appends (i,A, dkk′ , credi) to Lcred.
ORootIss(k′,A): Takes as input an index k′ and attributes A. It creates a root credential by running

the CreateCred protocol with A: CreateCred(k′,A, skCA)↔ A for an attribute set A and appends
(⊥,A, k′,⊥) to Lcred. This oracle allows an adversary represented by nymi to play a corrupted
user to get a root credential from a CA.

18

ORootObt(i, k′,A): On input a user identity i, an index k′ and attributes A. If i /∈ HU it re-
turns ⊥, else it creates a root credential by running the Receive protocol with A who im-
personates a malicious CA to issue a root credential to an honest user i by running: A ↔
ReceiveCred(pkCA, ski,A). If credi =⊥ the oracle returns ⊥. Else it stores the resulting (i,A, dkk′ ,
credi) ∈ Lcred.

OObtIss(i, j, Al, k
′′): Takes as user identities i and j, a set of attributes Al, and (optionally) an index

k′′. It makes user i delegate a credential to user j. If i, j /∈ HU or (i,A, dkk′ , credi) /∈ Lcred it
returns ⊥, else finds entries (ski, credi), skj , and runs the issuing protocols as:[

IssueCred(pkCA, dkk′ , ski, credi, Al, k
′′)

↔ ReceiveCred(pkCA, skj , Al)

]
→ (credj , dk

′
k′)

and adds the entry (j,A′, dk′k′ , credj) to Lcred, where A′ = (A, Al).
OObtain(j, Al, k

′′): On input a user identity j ∈ HU and a set of attributes Al, and (optionally)
an index k′′. If j /∈ HU it returns ⊥. Else, the oracle runs the Receive protocol with A:
A ↔ ReceiveCred(pkCA, skj , Al). If credj =⊥ the oracle returns ⊥. Else it stores the resulting
output (credj , dk

′
k′ ,A

′) and it appends (j,A′, dk′k′ , credj) to Lcred. This oracle is used by A,
whom it knows by nymi impersonating an issuer to issue a credential to an honest user j.

OIssue(i, Al, k
′′): On input a user identity i, a set of attributes Al, and (optionally) an index

k′′. If i /∈ HU it returns ⊥. Also it checks if 6 ∃(i,A, dkk′ , credi) ∈ Lcred, returns ⊥. Else,
it runs: IssueCred(pkCA, dkk′ , ski, credi, Al, k′′) ↔ A. The elements (⊥,A′ = (A, Al), k

′,⊥) are
then added to Lcred. This oracle is used by a corrupted user with adversarial nymj to get a
credential from honest issuer i.

OCredProve(j,D): On input an index of an issuance j and subsets D. This oracle first parses
Lcred[j] as (i,A′, dk′k′ , credi). Let credi be the credential issued on A′ for a user i during the
i-th query to OObtIss or OObtain (or it can be outputs of OCreateRoot when directly issued by
CA). If i /∈ HU returns ⊥. Else, it retrieves (auxi, nymi, ski) for i from lists credi and Luk, and
runs: CredProve(pkCA, ski, nymi, auxi, credi, D)↔ A, with the adversary playing the role of the
verifier.

ExpAnobDAC,A(λ, `, t):

– (pp, pkCA, st)← A(1λ, 1`, 1t)
– b′ ← A〈O

Anon
b ,O〉(st)

– return(b = b′)

OAnon
b (j0, j1, D):

– If j0 or j1 > |Lcred| the oracle returns ⊥.
– Else, it parses Lcred[j0] as (i0,A′0, dk0, cred0)

and Lcred[j1] as (i1,A′1, dk1, cred1).
– If D(A′0) 6= D(A′1) ∨ |C0| 6= |C1| ∨ credb 8 OObtIss,
return ⊥.

– Otherwise run:
A ↔ CredProve(pkCA, skb, nymb, auxb, credb, D)

ExpUnfDAC,A(λ, `, t):

– (pp, (skCA, pkCA))← Setup(1λ, 1`, 1t)
– (D∗, nym∗)← A〈O〉(pp, pkCA)
– b← (A ↔ CredVerify(pkCA, nym

∗, D∗))
– ∀(⊥,A′, k′,⊥) ∈ Lcred: If (D∗,A′) ∈ Rk′ ,
return 0

– Else return b

Fig. 2. Experiments ExpAnoDAC,A(λ, `, t) and ExpUnfDAC,A(λ, `, t).

19

Anonymity. Anonymity requires that a malicious verifier cannot distinguish between any two
users. The adversary has adaptive access to an oracle that on the input of two distinct user indexes
i0 and i1, acts as one of the two credential owners (depending on bit b) in the verification algorithm.
Note that D(A′) = 1 if attributes in A′ satisfies the policy subset and D(A′) = 0 otherwise.
Moreover, credb 8 OObtIss requires that credentials cred0 and cred1 are on a delegation path from a
(corrupted) root credential where all delegations have been performed honestly, but the respective
users might all be corrupted. We note that this requirement is similar to the anonymity model of
CL in [CL19], however, we additionally allow the adversary to access the user corruption oracle in
which we reveal the user’s secret keys to the adversary. CL can not support this type of corruption
as then the anonymity of their construction breaks down.This makes our model stronger than the
one of CL. The essence of the game is captured by the oracles OAnon

b in Fig 2. To make the game
non-trivial, we impose restrictions that the policy is either satisfied or not by both credentials and
they have commitment vectors of equal length. Note this also implies unlinkability for delegation
anonymity.

Definition 9 (Anonymity). A DAC is anonymous, if for all (λ, `, t) ∈ N, any PPT adversary A
there exists a negligible function ε(λ) so that |Pr[ExpAno0DAC,A(λ, `, t) = 1]−Pr[ExpAno1DAC,A(λ, `, t) =
1]| ≤ 1

2 + ε(λ), experiments are defined in Fig 2, respectively.

Unforgeability. Unforgeability requires that no adversary can convince a verifier into accepting a
credential for a set of attributes for which he does not possess credentials. Intuitively, an adversary
wins the unforgeability experiment (cf. Fig 2) if he is able to convince an honest verifier that he
satisfies a certain policy while does not have an appropriate credential.

Definition 10 (Unforgeability). A DAC is unforgeable if, for all (λ, `, t) ∈ N, for any PPT
adversary A, there exists a negligible function ε(λ) such that Pr[ExpUnfDAC,A(λ, `, t) = 1] ≤ ε(λ),
where the experiment ExpUnfDAC,A(λ, `, t) is defined in Fig 2.

4.2 Construction of DAC

We provide a concrete instantiation of DAC based on SPSEQ-UC signature (which we denote by
Σ) defined in Section 3 and CSCA schemes 3.4 (see Fig 3). For a more comprehensive description,
we use the following notation: Assume U = SppSC , A =M , the updatable key as a delegatable key
ukk′ = dkk′ and the root authority’s public key pkCA = vk. Then each credential is parameterized
with a set A = (A1, . . . , Ak) ⊆ U , and consider the relation in Definition 2 for attributes which
defines how a user can use their credentials. For the sake of compactness we write ZKPoK(w, x) (or
NIZK(w, x)) for an (non-interactive) zero-knowledge proof of knowledge of witness w for statement
x and ZKPoK(w, x) = 1 if the verifier accepts (see Appendix A.2 for a more formal treatment). In
Fig 3 we replace SC by CSCA (cf. Section 3.4) to improve the communication bandwidth by aggre-
gating witnesses and also verification efficiency due to batching of pairing equations. We stress that
CSCA is fully compatible with SC and provides identical functionality. Note that in order to get a
credential in IssueCred and CreateCred protocols, a user needs to send one of his pseudonyms to the
CA (or an issuer respectively) and use some mechanism to authenticate with the real identity (e.g.,
physically showing a driving license). This is outside the protocol and we omit it here. Regarding
the first two commitments in CreateCred protocol, we can assume the first dummy commitment
for a fixed set (used by all credentials) and the second commitment for the respective attribute set
A. We only require this for the first delegation.

On compactness of credentials. We note that credentials are constant-size as the SPSEQ-UC

20

signature is constant size. Although a delegation key depends on parameter k, it only applies to
intermediate issuers and not to end-users who do not hold such a key. Another aspect is the com-
mitment randomness, which represents auxiliary data. Each commitment randomness represents
a scalar that allows recomputing the commitment. So it is sufficient to store the randomness. In
the extreme case where the whole commitment vector comes from one party, one can compute all
randomness for the commitments via a PRF function and just store a seed.

Theorem 3. The DAC construction in Fig 3 is correct, unforgeable, and anonymous.

The proof is presented in Appendix D.3, where we note that in our formal proof, we consider our
core SPSEQ-UC which is based on SC. Unforgeability follows from the ZKPoK and unforgeability
of SPSEQ-UC. While anonymity follows from the ZKPoK, privacy properties of SPSEQ-UC and the
DDH assumption. Note that when using CSCA instead of SC and NIZK obtained via the Fiat-Shamir
heuristic, then the proofs are in the random oracle model (ROM).

Remark 2. We note that except for the NIZK in Setup, we require multiple-extractions in the
security proofs. Thus we opted to rely on interactive ZKPoK. We however note that when willing
to pay some extra costs, one could instead use straight-line extractable NIZK, e.g., obtained via
Fischlin’s transformation [Fis05, Kas22].

5 Implementation and Performance Evaluation

This section presents our evaluation results in terms of computation and communication overhead
based on an implementation of the proposed SPSEQ-UC and DAC schemes.

Experimental Results. We implement a Python library for our DAC system and the underlying
SPSEQ-UC. Our implementation is based upon the bplib library10 and petlib11 with OpenSSL
bindings12. We use the popular pairing friendly curve BN256 which provides efficient type 3 bilinear
groups at a security level of around 100 bit.

We present a benchmark of SPSEQ-UC (including the cross-commitment aggregation provided
by the CSCA scheme) and the DAC scheme described in Section 4. DAC uses Schnorr-style discrete-
logarithm zero-knowledge proofs (using Damgard’s technique [CDM00] for obtaining malicious-
verifier interactive zero-knowledge proofs of knowledge) during the showing and issuing/delegating
of credentials. It also uses non-interactive zero-knowledge proofs of knowledge obtained via the
Fiat-Shamir heuristic for proofs of knowledge of pkCA. Our measurements have been performed on
an Intel Core i5-6200U CPU at 2.30GHz, 16GB RAM running Ubuntu 20.04.3. For our evaluation,
we take the execution time of each algorithm for the following parameters: ` represents an upper
bound for the length of commitment vector, t an upper bound for the cardinality of committed sets,
ni < t stands for the number of attributes in each attribute set Ai in the respective commitment
Ci of the commitment vector, which we set to be the same for every level (in each commitment)
for simplicity. Moreover, k represents the length of attributes set vector A = (A1, . . . , Ak) and thus
commitment vector C and k′ is the number of attribute sets which can be delegated.

The results are shown in Table 2, where µAV is the mean and SD the standard deviation of 100
executions of each algorithm. Delegation assumes that each time one more attribute set is added
to the credential. More precisely, in Table 2, we set the above parameters as t = 25, ` = 15, k = 4,
k′ = 7 and n = 10 to cover many different use-cases. ChangeRep/uk represents the randomization
10 https://github.com/gdanezis/bplib
11 https://github.com/gdanezis/petlib
12 https://github.com/dfaranha/OpenPairing

21

https://github.com/gdanezis/bplib
https://github.com/gdanezis/petlib
https://github.com/dfaranha/OpenPairing

Setup(1λ, 1t, 1`): Pick α ← Zp and run ppΣ ← Σ.Setup(1λ, 1t, 1`;α). Generate a key pair (skCA, pkCA)
for CA as (vk, sk) ← Σ.KeyGen(ppΣ), and set pkCA = (vk, Pα), and skCA = (sk, α), and run
NIZK(skCA, pkCA). Output pp = (ppΣ , pkCA,NIZK(skCA, pkCA)). The attribute space is U = SppΣ of
ppΣ .

KeyGen(pp): A user u picks wu ← Z∗p , sets pku ← Pwu and sku = wu, and finally returns (sku, pku).
NymGen(pku): Pick randomness ψ, χ ← Z∗P and compute nymu = pk′u ← Σ.RndmzPK(pku, ψ, χ). Set

auxu = (χ, ψ), and output pairs (nymu, auxu).

Issuing a root credential:

U picks ρj ← Z∗p for a commitment with attributes set Aj ∈ A for j ∈ [k], with k ≥ 2, creates nymu

and sends ((P ρj)j∈[k], nymu) to CA.a Also, it proves via running an interactive ZKPoK(ρ, Pρ), that it
knows randomness (opening information).

CA checks if proofs are correct, then runs (σ, (C,O), ukk′) ← Σ.Sign(sk,A, k′, pku; (P
ρj)j∈[k]), where

(C,O) ← CSCA.Commit2(Ai, α, P
ρj)i∈[k] for the attribute vector A = (A1, . . . , Ak) and nymu = pku.

CA sets dkk′ = ukk′ and outputs (σ, dkk′) as well as (C,O). Note thatO =⊥, since opening information
have been selected already by U.

Finally, U sets O = ρ and runs (σ′, (C′,O′), dk′k′ , nym
′
u, χ) ← Σ.ChangeRep(nymu, dkk′ , (C,O), σ, µ, ψ)

for µ, ψ and update auxu with χ, ψ and saves credu = σ′, as a credential cred as well as (dk′k′ ,C
′,O′).

Issuing/delegating a credential (an issuer U and a receiver R):

R creates his pseudonym nymR and sends it to U.
U parses (credu = σ, dkk′) for (A,C,O) and prepares a delegated credential by replacing nymu with nymR.

It issues the credential regarding an attribute set Al and nymR as:
– First U and R run σ′ ← Σ.ConvertSig(vk, sku, sku′ , σ) together to switch pseudonyms. Then, to

issue A′ = (A, Al), U runs (σ′′, (C′, Ol), ukk′′)← Σ.ChangeRel(Ml, σ
′,C, ukk′ , k

′′), where k′′ is an
index, ukk′ = dkk′ and Ml = Al for C′ = (C, Cl).

– U sends (σ′′,C′,O′ = (O, Ol)) to R. If delegation is allowed, then it additionally sends dkk′′ =
ukk′′ .

R checks Σ.Verify(pkCA, nymR,C
′, σ′′, (A′,O′)) = 1, then for µ, ψ runs (σ′′′, (C′′,O′′), uk′k′′ , pk

′
u, χ) ←

Σ.ChangeRep(nymR, dkk′′ , (C
′,O′), σ′′, µ, ψ) and updates auxR with χ, ψ and stores the resulting as

credentials (credR = σ′′′, (C′′,O′′)) and the delegatable key uk′k′′ = dk′k′′ .

Proof of possession of a credential (a prover P and a verifier V):

P who already knows a credential like σ = credR for nymR and (C,O) receives subsets D = {dj}j∈[k] and
prepares a credential on pseudonym nymP and {Aj}j∈[k]:
– Run (σ′, (C′,O′), pk′u, χ) ← Σ.ChangeRep(pku,⊥, (C,O), σ, µ, ψ) for µ, ψ, where σ = credR and

pku = nymR. Set σ
′ = credP and pk′u = nymP, and update auxP with ψ, χ.

– Run Wj ← CSCA.OpenSubset(Cj , Aj , Oj , dj) for j ∈ [k]. Aggregate witness π ←
CSCA.AggregateAcross({Cj , dj ,Wj}j∈[k]), randomize π′ ← πµ.

– P sends (credP,C
′, nymP, π

′) to V, and runs an interactive protocol ZKPoK(skP, nymP) with V
which denote zero knowledge proof of (skP, auxP).

V outputs 1, if ZKPoK(skP, nymP) ∧ Σ.Verify(pkCA, pku,C, σ, (T,U)) is verified, else outputs 0, where
σ = credP, T = D, U = π′ and pku = nymP.

a Note that for issuing a root credential k = 2 is sufficient (one can encode all attributes in just two
commitments). But for the sake of generality and since it is supported we present it for arbitrary k ≥ 2.

Fig. 3. Our DAC scheme (Σ denotes SPSEQ-UC)

22

Table 2. Execution times for SPSEQ-UC and DAC algorithms and protocols in milliseconds

SPSEQ-UC DAC

S
et
u
p

K
ey
G
en

S
ig
n

C
h
an

g
eR

ep
/u

k

C
h
an

g
eR

ep

C
h
an

g
eR

el

C
o
n
ve
rt
S
ig

V
er
if
y

C
re
at
eC

re
d

D
el
eg
Is
su
e

C
re
d
P
ro
ve

C
re
d
V
er
if
y

µAV 385 21 73 50 6 15 2 38 82 21 35 195
SD ±3 ±1 ±2 ±1 ±2 ±2 ±1 ±1 ±1 ±2 ±2 ±3

of signature along with ukk′ and ChangeRep represents the randomization of signatures only. In
the CredProve and CredVerify protocols, we use di to denote the subset of each attribute set Ai
that will be disclosed. Here, D denotes the set of di as D = (di)i∈[k]. We thereby assume that
each subset di contains approximately half of the attributes in Ai. Let us provide an example for
the showing part to clarify our notation: Assume k = 2, we have two commitments C1, C2 (for
simplicity we can say each commitment is the output of one delegation level e.g., L = 2 is the
delegation level) such that each includes 5 attributes. Then D = (d1, d2) means that each d1 and
d2 includes two attributes of sets of C1 and C2, respectively and |D| = 4. In this case, we say that
the total number of (messages) attributes is |M | = |A| = k · n (we also use this interpretation in
Figs 4 and 5).

In Fig 4 we show the effect on the computation time of SPSEQ-UC when increasing the parameters
(k, k′, n). Since the Setup algorithm runs only once, we do not consider the computation time of
Setup. We measure the computation time for a message (or an attribute) set of size n from 5 to 20,
k from 2 to 10 (so that the total messages |M | is from 10 to 200), and k′ from 4 to 20. Since the
runtime of the algorithms KeyGen, ChangeRep, and ConvertSig is independent of the parameters
(k, k′, n) we omit them.

Fig. 4. The running times of SPSEQ-UC (ms)

In Fig 5 we show the effect of increasing the parameters (k, k′, d, n) on the computation time
of DAC. We measure the computation time of CredProve and CredVerify protocols for n, k and d (a

23

disclosed attribute subset) varying from 5 to 16, 2 to 6 and 2 to 5, respectively. The total disclosed
attributes length |D| = d ·k and the total attributes length |A| = n ·k range from 4 to 30 and 10 to
96, respectively. The CredProve and CredVerify are independent of k′. Meanwhile, the computation
time of CreateCred and IssueCred change when k′ varies from 4 to 16 in addition to being dependent
on n and k. These algorithms are independent of d. As can be seen in Fig 5, the pairing product

(a) The running times of IssueCred (b) The running times of ProveCred

Fig. 5. The running times of DAC (ms)

operations in the verification produce the largest overhead. Though, in absolute terms verification
is still highly efficient. For example, it is less than a second, in the maximum parameters setting
with almost 100 attributes and disclosing 30 attributes. This efficiency makes our implementation
suitable for time-critical applications like public transportation, ticketing, etc.

Theoretical Analysis of Performance and Comparison. We analyze the computational and
communication complexity compared with Camenisch et al. [CDD17] (CDD), one of the most
efficient and fully specified approaches, in Appendix B.

6 Conclusion

In this paper we first present a new primitive called structure-preserving signatures on equivalence
classes on updatable commitments SPSEQ-UC in which one can sign vectors of set commitments
that can be extended by additional set commitments. Moreover, signatures contain a user’s pub-
lic key, which can be switched. Second, we present an efficient delegatable anonymous credential
scheme DAC that supports attributes, provides strong privacy under a reasonable corruption model,
and allows the delegators to restrict further delegations. We show the practical efficiency of our
DAC by presenting performance benchmarks based on an implementation.

Acknowledgements. This work has in part been carried out within the scope of Digidow, the
Christian Doppler Laboratory for Private Digital Authentication in the Physical World and has par-
tially been supported by the LIT Secure and Correct Systems Lab. Omid Mir and René Mayrhofer
gratefully acknowledge financial support by the Austrian Federal Ministry for Digital and Eco-
nomic Affairs, the National Foundation for Research, Technology and Development, the Chris-
tian Doppler Research Association, 3 Banken IT GmbH, ekey biometric systems GmbH, Kepler
Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH and Co KG, Österreichische

24

Staatsdruckerei GmbH, and the State of Upper Austria. Daniel Slamanig was supported by the
European commission through ECSEL Joint Undertaking (JU) under grant agreement n◦826610
(Comp4Drones), the European Union’s Horizon 2020 research and innovation programme under
grant agreement n◦861696 (Labyrinth) and by the Austrian Science Fund (FWF) and netidee
SCIENCE under grant agreement P31621-N38 (Profet).

References

BB18. Johannes Blömer and Jan Bobolz. Delegatable attribute-based anonymous credentials from
dynamically malleable signatures. In Bart Preneel and Frederik Vercauteren, editors, ACNS
18, volume 10892 of LNCS, pages 221–239. Springer, Heidelberg, July 2018.

BCC+09. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and
Hovav Shacham. Randomizable proofs and delegatable anonymous credentials. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer, Heidelberg, August
2009.

BCET21. Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn Tackmann. Anonymous
transactions with revocation and auditing in hyperledger fabric. In Mauro Conti, Marc Stevens,
and Stephan Krenn, editors, Cryptology and Network Security - 20th International Conference,
CANS 2021, Vienna, Austria, December 13-15, 2021, Proceedings, volume 13099 of Lecture
Notes in Computer Science, pages 435–459. Springer, 2021.

BDFG20. Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Report 2020/081,
2020. https://eprint.iacr.org/2020/081.

BEK+21. Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin. Issuer-
hiding attribute-based credentials. In Mauro Conti, Marc Stevens, and Stephan Krenn, editors,
CANS 2021, volume 13099 of LNCS, pages 158–178. Springer, 2021.

BF20. Balthazar Bauer and Georg Fuchsbauer. Efficient signatures on randomizable ciphertexts. In
Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 359–
381. Springer, Heidelberg, September 2020.

BFPV11. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on ran-
domizable ciphertexts. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi,
editors, PKC 2011, volume 6571 of LNCS, pages 403–422. Springer, Heidelberg, March 2011.

CDD17. Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-secure delegatable
credentials with attributes and their application to blockchain. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 683–699. ACM
Press, October / November 2017.

CDM00. Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. Efficient zero-knowledge proofs
of knowledge without intractability assumptions. In Hideki Imai and Yuliang Zheng, editors,
PKC 2000, volume 1751 of LNCS, pages 354–372. Springer, Heidelberg, January 2000.

CKLM13. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Succinct mal-
leable NIZKs and an application to compact shuffles. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 100–119. Springer, Heidelberg, March 2013.

CKLM14. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Malleable signa-
tures: New definitions and delegatable anonymous credentials. In IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages 199–213. IEEE
Computer Society, 2014.

CL03. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio
Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS, pages
268–289. Springer, Heidelberg, September 2003.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
56–72. Springer, Heidelberg, August 2004.

25

https://eprint.iacr.org/2020/081

CL06. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 78–96. Springer, Heidelberg, August 2006.

CL19. Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous credentials from mercurial
signatures. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 535–555.
Springer, Heidelberg, March 2019.

CL21. Elizabeth C. Crites and Anna Lysyanskaya. Mercurial signatures for variable-length messages.
PoPETs, 2021(4):441–463, October 2021.

CLP22. Aisling Connolly, Pascal Lafourcade, and Octavio Perez-Kempner. Improved constructions of
anonymous credentials from structure-preserving signatures on equivalence classes. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, volume 13177 of LNCS, pages
409–438. Springer, 2022.

CPZ20. Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private group system and
anonymous credentials supporting efficient verifiable encryption. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1445–1459. ACM Press,
November 2020.

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy
pass: Bypassing internet challenges anonymously. PoPETs, 2018(3):164–180, 2018.

FHS15. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind sig-
natures in the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 233–253. Springer, Heidelberg, August
2015.

FHS19. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Journal of Cryptology, 32(2):498–
546, April 2019.

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extrac-
tors. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer,
Heidelberg, August 2005.

Fuc11. Georg Fuchsbauer. Commuting signatures and verifiable encryption. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 224–245. Springer, Heidelberg, May
2011.

Gro15. Jens Groth. Efficient fully structure-preserving signatures for large messages. In Tetsu Iwata
and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 239–259.
Springer, Heidelberg, November / December 2015.

GRWZ20. Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Pointproofs: Aggregating
proofs for multiple vector commitments. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 2007–2023. ACM Press, November 2020.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
Heidelberg, April 2008.

HS14. Christian Hanser and Daniel Slamanig. Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 491–511. Springer, Heidelberg, December
2014.

HS21. Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends: Constructing practical
anonymous credentials. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors,
CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, Republic of Korea, November 15 - 19, 2021, pages 2004–2023. ACM, 2021.

ILV11. Malika Izabachène, Benoît Libert, and Damien Vergnaud. Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In Liqun Chen, editor, 13th IMA
International Conference on Cryptography and Coding, volume 7089 of LNCS, pages 431–450.
Springer, Heidelberg, December 2011.

26

Kas22. Yashvanth Kondi and abhi shelat. Improved straight-line extraction in the random oracle model
with applications to signature aggregation. Cryptology ePrint Archive, Report 2022/393, 2022.
https://ia.cr/2022/393.

KLOR20. Ben Kreuter, Tancrède Lepoint, Michele Orrù, and Mariana Raykova. Anonymous tokens with
private metadata bit. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 308–336. Springer, Heidelberg, August 2020.

KSD19. Mojtaba Khalili, Daniel Slamanig, and Mohammad Dakhilalian. Structure-preserving signa-
tures on equivalence classes from standard assumptions. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 63–93. Springer,
Heidelberg, December 2019.

MSM+18. Sinisa Matetic, Moritz Schneider, Andrew Miller, Ari Juels, and Srdjan Capkun. DelegaTEE:
Brokered Delegation Using Trusted Execution Environments. In 27th USENIX Security, pages
1387–1403, 2018.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue Sako, editor,
CT-RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Heidelberg, February / March
2016.

San20. Olivier Sanders. Efficient redactable signature and application to anonymous credentials. In
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part II, volume 12111 of LNCS, pages 628–656. Springer, Heidelberg, May 2020.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997.

A Additional Preliminaries

A.1 Set Commitments

Definition 11 (Set commitment [FHS19]). A set commitment scheme SC consists of the fol-
lowing PPT algorithms.

SC.Setup(1λ, 1t) → ppsc: This probabilistic algorithm takes as input a security parameter λ and
an upper bound t for the cardinality of committed sets, both in unary form. It outputs public
parameters ppsc (which include a description of an efficiently samplable message space SppSC
containing sets of maximum cardinality t). ppsc will be an implicit input to all algorithms.

SC.Commit(S) → (C,O): This probabilistic algorithm takes as input a non-empty set S ∈ SppSC .
It outputs a commitment C to set S and opening information O.

SC.Open(C, S,O) → 0/1: This deterministic algorithm takes as input a commitment C, a set S
and opening information O. If O is a valid opening of C to S ∈ SppSC , it outputs 1, and 0
otherwise.

SC.OpenSubset(C, S,O, T) → W : Takes as input a commitment C, a set S ∈ SppSC , opening
information O and a nonempty set T . It returns ⊥ if T 6⊆ S; else it returns a witness W for T
being a subset of the set S committed to in C.

SC.VerifySubset(C, T,W)→ 0/1 : This deterministic algorithm takes as input a commitment C, a
non-empty set T and a witness W . If W is a witness for T being a subset of the set committed
to in C, it outputs 1, and 0 otherwise.

We refer the reader to [FHS19] for a formal definition of the correctness, binding, hiding and
subset-soundness notions.

27

https://ia.cr/2022/393

A.2 Zero-Knowledge Proofs of Knowledge

We define zero-knowledge proofs of knowledge (ZKPoK) and discuss non-interactive versions thereof
(NIZK). In our DAC, we require protocols to prove knowledge of discrete logarithm relations. This
can be efficiently realized by relying on Sigma protocols (i.e., three-round public-coin honest-
verifier zero-knowledge proofs of knowledge). Sigma protocols are efficient instantiations of ZKPoK
which can be converted to (malicious-verifier) zero-knowledge proofs of knowledge, using Damgard’s
Technique [CDM00] and made non-interactive using different techniques (discussed below).

ZKPoK. Let LR = {x | ∃w : (x,w) ∈ R} ⊆ {0, 1}∗ be a formal language, where R ⊆ {0, 1}∗ ×
{0, 1}∗ is a binary, polynomial-time (witness) relation. For such a relation, the membership of
x ∈ LR can be decided in polynomial time (in |x|) when given a witness w of length polynomial
in |x| certifying (x,w) ∈ R. We assume an interactive protocol (P,V) between a prover P and
a PPT verifier V and denote the outcome of the protocol as (·, b) ←

(
P(·, ·),V(·)

)
where b = 0

indicates that V rejects and b = 1 that it accepts the conversation with P. We require the following
properties:

Definition 12 (Completeness). We call an interactive protocol (P,V) for a relation R complete
if for all x ∈ LR and w such that (x,w) ∈ R we have that (·, 1)←

(
P(x,w),V(x)

)
with probability

1.

Definition 13 (Zero knowledge (ZK)). An (P,V) for a language L is ZK if for any (malicious)
verifier V∗ , there exists a PPT algorithm S (the simulator) such that:

{S(x)}x∈L ≈ {< (P,V?)(x) >}x∈L,

where h(P,V∗)(x)i shows the transcript of the communication between P and V? on the common
input x.

Definition 14 (Knowledge soundness). We say that (P,V) is a proof of knowledge (PoK)
relative to an NP relation R if for any malicious prover P∗ such that (·, 1)←

(
P∗(x),V(x)

)
with

probability greater than ε there exists a PPT knowledge extractor K (with rewinding black-box access
to P∗) such that KP

∗
(x) returns a value w satisfying (x,w) ∈ R with probability polynomial in ε.

If all properties hold, then we denote this interactive protocol as a zero-knowledge proofs of knowl-
edge (ZKPoK).

Non-Interactive Zero-Knowedge Proofs (of Knowledge). One can use the Fiat-Shamir
heuristic to transform any Sigma protocol into a non-interactive zero-knowledge proof of knowledge
(NIZK). Whenever one requires multiple-extractions in a security proof, a standard measure is to
opt for interactive ZKPoK. We however note that when willing to pay some extra costs, one could in-
stead use straight-line extractable NIZK, e.g., obtained via Fischlin’s transformation [Fis05, Kas22].

B Theoretical analysis

In this section, we compare the asymptotic efficiency of our DAC with CDD [CDD17].

28

Table 3. Computational complexity

CDD [CDD17] Our DAC
CredProve odd:

∑L
i=1,3 1G2 + (ni + 2)G1 + (1 + di)G2

t

(
(k + 3)G1 +G2 +G2

1

)
+

+(1 + ui)G3
t + (2 + ni)G2

1

even:
∑L
i=2,4 1G1 + (ni + 2)G2 + (1 + di)G2

t

(
G|D|1

)
+
(∑|D|

i=1 (G
ui
1 +G1)

)
+(1 + ui)G3

t + (2 + ni)G2
2

CredVerify (1 + d1)E + (3 + u1 + dL)E
2 + uLE

3
(
Ek + E2 + 4E

)
+

+(4 + n1 + dL){Gt}+∑L
i=1((1 + di)E

2 + (1 + ui)E
3 + (1 + di){Gt})

(
E + Ek +G|S|2 +

∑|D|
i=1

(
G|S−di|2 +G2

))

B.1 Computational Complexity

To analyze the efficiency of our DAC scheme, we consider the number of (multi)-exponentiations
required for the IssueCred (issuing or delegating), CredProve (the showing of a credential), and
CredVerify (verifying a credential). We summarize the following efficiency analysis comparing our
DAC and the CDD scheme [CDD17] in Table 3. We use notations that are used in [CDD17], where di
and ui denote the amount of disclosed and undisclosed attributes at delegation level i, respectively,
such that ni = di + ui; and X{Gj1}, X{G

j
2}, and X{G

j
t} denote X j-multi-exponentiations in the

respective group; j = 1 denotes a simple exponentiation. Ek denote a k-pairing product with k = 1
denoting a single pairing. Assume z = |[k + 1, k′]| and k′′ = k′ (the worst case), where k is length
of messageM and commitment C vectors and n < t is size of a message (attributes) setM s.t.Mi

includes ni messages. Moreover, we assume that a ni number of elements for each j ∈ [z] can be
delegated and put into ukk′ . We summarize the efficiency analysis as follows, where we also count
the cost of the C randomization in ChangeRep, but ignore the cost of proving knowledge of the
secret key, as a Schnorr NIZK induces an insignificant cost:

CreateCred: CA creates the first level of the credential. To do this, CA runs Sign and a user runs
ChangeRep/ukk′ : ((

k∑
i=1

(Gni1 +G1)

)
+G2

1 +G1 +Gk+1
1 +

z∑
i=1

niG1 +G2

)

+

(
(k + 3)G1 +G2 +G2

1 +

z∑
i=1

niG1

)

IssueCred: Delegation of a credential includes running the ConvertSig, ChangeRel, and ChangeRep.
We have: (

2G2
1

)
+
(
2(Gn1 +G1) +G2

1

)
+
(
(k + 3)G1 +G2 +G2

1

)
.

If a further delegation is needed, then the randomization of ukk′ adds
∑z
i=1 niG1.

CredProve: Proving possession of a credential by a user includes ChangeRep, AggregateAcross, and
OpenSubset: Let D = (di)i∈[k], we have:

(
(k + 3)G1 +G2 +G2

1

)
+
(
G|D|1

)
+

 |D|∑
i=1

(Gui1 +G1)

29

CredVerify: The credential verification includes SPSEQ-UC.Verify (using CSCA.VerifyAcross): Let
S =

⋃
i di, where i ∈ [k], we have

(
Ek + E2 + 4E

)
+

E + Ek +G|S|2 +

|D|∑
i=1

(
G|S−di|2 +G2

)
Although we do not have a concept of delegation chain length, in order to compare our scheme
with [CDD17], we assume that each commitment is the output of one delegation-level, e.g., if k =
2 such that C = (C1, C2), the L = 2 is delegation level. In other words, at each delegation level, we
add one attribute set and the related commitment. Also, unlike [CDD17] where their underlying
signature construction needs switching G1 and G2 of message space throughout, we do not need
it. Note that operations in G1 are faster than G2 and also the length of elements in G1 is smaller.
We only consider the number of (multi)exponentiations required to show a credential since this
will be the most frequently executed operation. The result of CDD scheme is taken from Table 1
in [CDD17].

Credential size. The size only counts the cryptographic components of the credential; the meta-
data and attribute values are assumed to be the same for all systems. In particular, the credential
size (σ, skp and pseudonym nymp) in SPSEQ-UC is independent of the delegation chain length and
number of attributes. In SPSEQ-UC, credentials have constant size which is four G1, one G2 and
one Zp element. Let |G1| = |Zp| = 256 and |G2| = 512 in bit, we have a size of 1792 bits. While, in
CDD the credential size grows linearly with the number of attributes and delegation levels. Also,
the size of the related ukk′ in our scheme is z · 256.

B.2 Communication Complexity

We analyze the communication complexity and the size of each element exchange involved in DAC.
More precisely, the IssueCred protocol depends on the number of keys in ukk′ (if delegation is
requested), while the CredProveprotocol is independent of the number of attributes, delegation
levels and keys. In the CredProve, we have: ((k+5)|G1|+ |G2|+Zp), where k is the size of C (that
is, the delegation level L) that we send for verification and Zp with one G1 element that belong to
the ZKPoK. In the IssueCred, we have ((k+3)|G1|+ |G2|+ k|Zp|+ z|G1|), where z = |[k, k′]| is the
number of keys in this range. In CDD, this communication cost grows linearly with the number of
attributes and delegation levels (see Table 4.) Here, for the CDD scheme, we take a proof generated
from an even Level-L credential.

Table 4. Communication Complexity

Schemes CredProve

Our DAC ((k + 5)|G1|+ |G2|+ Zp)

CDD [CDD17] (2L+
∑L−1
i=1,3(ni + ui))|G1|+

(2L− 1 +
∑L
i=2,4(ni + ui))|G2|+ 2Zp

30

C Additional Definitions

C.1 Correctness of SPSEQ-UC

Subsequently, we state all the single correctness requirements.

Definition 15 (Correctness). A SPSEQ-UC scheme for a set commitment scheme SC and a
parameterized family of equivalence relations IR` for all ` > 1, is correct if it satisfies the following
conditions for all t, λ, k, k′ with k ≤ k′ ≤ `, for all pp ∈ PPGen(1λ, 1t, 1`), (vk, sk) ∈ KeyGen(pp),
pku ∈ UKeyGen(pp), all M , ρ, T ⊆M , all (σ, (C,O), ukk′) ∈ Sign(sk,M , k′, pku;ρ), any U with
1 = SC.VerifySubset(Cj , Tj , Uj)j∈k (for Uj being a subset opening) and 1 = SC.Open(Ci, Ti, Ui)j∈k
(for Uj being an opening):

Verification: We have that:

Verify(vk, pku,C, σ, (T ,U)) = UKVerify(vk, ukk′ , k
′, σ) = 1.

Change of set commitments representative: For all (µ, ψ), (σ′, uk′k′ , χ) ∈ ChangeRep(pku, ukk′ ,
(C,O), σ, µ, ψ), all (C ′,O′)← RndmzC(C,O, µ), pk′u ← RndmzPK(pk, ψ, χ) and any U ′ s.t. either
U ′j ← SC.OpenSubset(C ′j , O

′
j , Tj) or U ′j = O′j we have:

Verify(vk, pk′u,C
′, σ′, (T ,U ′)) = 1 and C ′ ∈ [C]Rk .

Signature conversion: For all (pku′ , sku′) ∈ UKeyGen(pp), σ′ ← ConvertSig(vk, sku, sku′ , σ) it
holds that

Verify(vk, pku′ ,C, σ
′, (T ,U)) = 1.

Change of set commitments relation: For any iterative application of pkul ∈ UKeyGen(pp),
(ukk′′l , σ

′
l) ← ChangeRel(Ml, σl−1,C, ukk′l−1

, k′′) for any Ml, with C
′
= (C, Cl ∈ SC.Commit(Ml))

and M ′ = (M ,Ml), any U ′ s.t. U ′j ← SC.OpenSubset(C ′j , O
′
j , Tj)j∈l ∨ U ′j = O′j with l < k′′ ≤ k′

and T ′ ⊆M ′, we have:
Verify(vk, pkul ,C

′
, σ′l, (T

′,U ′)) = 1

whenever l ∈ [k + 1, k′] and also we have [C ′]Rl .

C.2 Class-Hiding

By class-hiding, we mean that, for all k, 1 < k ≤ `, given two messages vectors C1 and C2 of size
k, it should be hard to tell whether or not C1 ∈ [C2]Rk .

Definition 16 (Class-hiding). A SPSEQ-UC scheme for parameterized equivalence relations Rk
is class-hiding if for all λ and polynomial-length `(λ) and all probabilistic polynomial-time (PPT)
adversaries A, there exists a negligible function ε such that:

Pr

pp← PPGen(1λ, 1`, 1t);C1 ← (G∗1)k;
C0

2 ← (G∗1)k;C1
2 ← [C1]Rk ; b← {0, 1};

b′ ← A(pp,C1,C
b
2) : b

′ = b

 ≤ 1

2
+ ε(λ)

31

ExpUnfSPSEQ-UC,A(λ, `, t, u):

– u← A()
– Q := ∅;UL := ∅, pp← PPGen(1λ, 1t, 1`);
– UL ← UKeyGenu();
– (vk, sk)← KeyGen(pp);
– ((sk∗u, pk

∗
u), (C

∗,T ∗,U∗), σ∗)← AO
Sign (

vk, pp, {pku}(pku,sku)∈UL
)

return:(
∀(pku, sku) 6∈ UL, ∀(M , k′, pku) ∈ Q : (M ,T ∗) /∈ Rk′
∧ Verify(vk, pk∗u,C

∗, σ∗, (T ∗,U∗)) = 1

)

OSign(M ,ρ, k′, pku):

– If ` ≥ k′ ≥ k:
– Then (σ,C, ukk′)← Sign(sk, k′,M ,ρ, pku)
– Q = Q ∪ {(M , k′, pku)},
– return ((C,O), σ, ukk′)
– Else return ⊥

Fig. 6. Experiment ExpUnfStatSPSEQ-UC,A(λ, `, t).

D Proofs

D.1 Unforgeability of SPSEQ-UC

Our main technical result is to prove that our scheme satisfies unforgeability (Def. 3) in the generic
group model (GGM) [Sho97] for asymmetric (“Type-3”) bilinear groups (for which there are no
efficiently computable homomorphisms between P and P̂). In this model, the adversary is only given
handles of group elements, which are just uniform random strings. To perform group operations,
it uses an oracle to which it can submit handles and is given back the handle of the sum, inversion,
etc of the group elements for which it submitted handles. Here, we will use the additional notation
for the group law. Let analyze the unforgeability game in the GGM.

Theorem 4. A generic adversary that computes at most q group operations and makes up to k
queries to i ts signature oracle cannot win the semi-static game from Fig 1 for the scheme defined

in 3.3 with probability greater than
(
o+q(4+`·t)

)2
(2q+1)

p .

Proof. First we consider an adversary against the static game defined in Fig 6 that only uses
generic group operations on the group elements it receives. After getting the public parameter
(αoP, αoP̂)0≤o≤t, a verification key

(
X0, X̂1 = x1P̂ , . . . , X̂` = x`P̂

)
, public keys (P1, . . . , Pb), vector

commitments
(
C

(i)
1 , . . . , C

(i)

k(i)

)q
i=1

and signatures
(
Zi, Si, Ŝi, Ti

)q
i=1

computed with randomness si
on queries((

M
(i)
1 , . . . ,M

(i)

k(i)

)
,
(
ρ
(i)
1 , . . . , ρ

(i)

k(i)

)
, k(i)′, pk(i)

)q
i=1

, with opening: table keys
((
U

(i)
j,o

))
j∈[k(i)+1,k′(i)],o∈[t]

the adversary outputs a public user key pk(q+1), a vector of commitments
(
C

(∗)
1 , . . . , C

(∗)
k(∗)

)
and a

corresponding signature
(
Z∗, S∗, Ŝ∗, T ∗

)
. As it must compute any new group element by combin-

ing received group elements, it must choose coefficients that we will represent here by using greek
letters, which define

C∗h = κ(h)P +
q∑
j=1

(
κ
(h)
z,jZj + κ

(h)
s,j Sj + κ

(h)
t,j Tj +

t∑
o=0

k′(j)∑
m=k(j)+1

κ
(h)
m,j,oU

(j)
m,o

)
+

t∑
o=1

κ
(h,q+1)
a,o aoP + κ

(h)
x,0X0 +

b∑
u=1

κ
(h)
pk,uPa

32

Z∗ = ζP +
q∑
j=1

(
ζz,jZj + ζs,jSj + ζt,jT

′
j +

t∑
o=0

k′(j)∑
m=k′(j)+1

ζm,j,oU
(j)
m,o

)
+

t∑
o=1

ζa,oa
oP + ζx,0X0 +

b∑
u=1

ζpk,uPa

S∗ = σP +
q∑
j=1

(
σz,jZj + σs,jSj + σt,jTj +

t∑
o=0

k′(j)∑
m=k′(j)+1

σm,j,oU
(j)
m,o

)
+

t∑
o=1

σa,oa
oP + σx,0X0 +

b∑
u=1

σpk,uPa
)

T ∗ = τP +
q∑
j=1

(
τz,jZj + τs,jSj + τt,jTj +

t∑
o=1

k′(j)∑
m=k′(j)+1

τm,j,oU
(j)
m,o

)
+

t∑
o=1

τa,oa
oP +

b∑
u=1

τpk,uPa
)

pk(i) = ψ(i)P +
i−1∑
j=1

(
ψ
(i)
z,jZj + ψ

(i)
s,jSj + ψ

(i)
t,jTj +

t∑
o=0

k′(j)∑
m=k′(j)+1

ψ
(i)
m,j,oU

(j)
m,o

)
+

t∑
o=1

ψ
(i)
a,oaoP + ψ

(i)
x,0X0 +

b∑
u=1

ψ
(i)
pk,uPa

Ŝ∗ = φP̂ +
∑̀
j=0

φx,jX̂j +
q∑
j=1

φs,jŜj +
t∑

o=1
φa,oa

oP̂

Using this, we can write, for all 1 ≤ i ≤ q, the discrete logarithms c(i)j , zi and ti in basis P of the

elements C(i)
j =

∏
e∈M(i)

j
(α − e)P , Zi =

k(i)∑
j=1

xjC
(i)
j

si
, Ti = X1si + x0pk

(i) and U (i)
m,o =

aoxm
si

P from
the oracle answers.

c
(i)
j = ρ

(i)
j

∏
e∈M(i)

j

(α− e)P (1)

zi =
1

si

(
k(i)∑
h=1

xhc
(i)
h

)
(2)

ti = x1si + x0pk
(i) (3)

u(i)m,o =
aoxm
si

(4)

33

A successful forgery (Z∗, S∗, Ŝ∗, T ∗) on
(
pk(q+1), (C∗1 , . . . , C

∗
k(q+1))

)
satisfies the verification

equations

e(Z∗, Ŝ∗) =

k(q+1)∏
h=1

e(C∗h, X̂h)

e(P, Ŝ∗) = e(S∗, P̂)

e(T ∗, P̂) = e(S∗, X̂1)e(pk
(q+1), X̂0)

We interpret these values as multivariate rational fractions in variables x0, x1, . . . , x`, s1, . . . , sq, a, p1, . . . , pb.
Using the coefficients defined above and considering the logarithms in base e(P, P̂) we obtain:(

ζ +
q∑
j=1

(
ζz,jzj + ζs,jsj + ζt,jtj +

t∑
o=0

k′(j)∑
m=k(j)+1

ζm,j,ou
(j)
m,o

)
+

t∑
o=1

ζa,oa
o + ζx,0x0 +

b∑
u=1

ζpk,upa

)
(
φ+

∑̀
j=0

φx,jxj +
q∑
j=1

φs,jsj +
t∑

o=1
φa,oa

o
)
=
k(q+1)∑
h=1

xhc
∗
h (5)

σ +
q∑
j=1

(
σz,jzj + σs,jsj + σt,jtj +

t∑
o=0

k′(q+1)∑
m=k(q+1)+1

σm,j,ou
(q+1)
m,o

)
+

t∑
o=1

σa,oa
o + σx,0x0 +

b∑
u=1

σpk,upa

=φ+
∑̀
j=0

φx,jxj +
q∑
j=1

φs,jsj +
t∑

o=1
φa,oa

o (6)

τ +
q∑
j=1

(
τz,jzj + τs,jsj + τt,jtj +

t∑
o=0

k′(q+1)∑
m=k(q+1)+1

τm,j,ou
(j)
m,o

)
+

t∑
o=1

τa,oa
o + τx,0x0 +

b∑
u=1

τpk,upa

=x1

(
σ +

q∑
j=1

(
σz,jzj + σs,jsj + σt,jtj +

t∑
o=0

k′(q+1)∑
m=k(q+1)+1

σm,j,ou
(q+1)
m,o

)
+

t∑
o=1

σa,oa
o + σx,0x0 +

b∑
u=1

σpk,upa

)
+ x0

(
ψ(q+1) +

q∑
j=1

(
ψ
(q+1)
z,j zj + ψ

(q+1)
s,j sj + ψ

(q+1)
t,j tj

+
t∑

o=0

k′(q+1)∑
m=k(q+1)+1

ψ
(q+1)
m,j,o u

(j)
m,o

)
+

t∑
o=1

ψ
(q+1)
a,o ao + ψ

(q+1)
x,0 x0 +

b∑
u=1

ψ
(q+1)
pk,u pa

)
(7)

We follow the standard proof technique for results in the generic group model and now consider
an “ideal” game in which the challenger treats all the (handles of) group elements as elements of

34

Zp(s1, . . . , sq, x0, x1, . . . , x`, a, p1, . . . , pb), that is, rational fractions whose indeterminates represent
the secret values chosen by the challenger.

We first show that in the ideal game if the adversary’s output satisfies the verification equations,
then the first winning condition is not satisfied, which demonstrates that the ideal game cannot
be won. We then compute the statistical distance from the adversary’s point of view between the
real and the ideal game at the end of the proof.

In the ideal game we thus interpret the three equalities (5), (6) and (7) as polynomial equalities
over the field Zp(s1, . . . , sq, x0, x1, . . . , x`, a, p1, . . . , pb). More precisely, we consider the equalities in
the ring Zp(s1, . . . , sq)[x0, x1, . . . , x`, a, p1, . . . , pb], that is, the polynomial ring with x1, . . . , x`, a, p1,
. . . , pb as indeterminates over the field Zp(s1, . . . , sq). (Note that this interpretation is possible
because neither any xi’s and pu nor a never appear in the denominators of any expressions.)
As one of our proof techniques, we will also consider the equalities over the ring factored by
(x0, x1, . . . , x`), the ideal generated by the xi’s:13

Zp(s1, . . . , sq)[x0, x1, . . . , x`, a, p1, . . . , pn]/(x0, x1, . . . , x`)
∼=Zp(s1, . . . , sq)[a, p1, . . . , pn] .

From (2) and (3), over this quotient we have and ti = zi = u
(j)
m,o = 0 and thus (5)–(7) become

(
ζ +

q∑
j=1

ζs,jsj +
t∑

o=1
ζa,oa

o +
b∑

u=1
ζpk,upa

)
(
φ+

q∑
j=1

φs,jsj +
t∑

o=1
φa,oa

o
)
= 0 (8)

σ +
q∑
j=1

σs,jsj +
t∑

o=1
σa,oa

o +
b∑

u=1
σpk,upa

= φ+
q∑
j=1

φs,jsj +
t∑

o=1
φa,oa

o (9)

τ +
q∑
j=1

τs,jsj +
t∑

o=1
τa,oa

o +
b∑

u=1
τpk,upa = 0 (10)

By looking the coefficients of the monomials sj ’s, pu’s, ao’s and 1 of (10), we deduce:

∀j, o, u : τ = τs,j = τa,o = τpk,u = 0 (11)

And by looking the coefficients of the sj , 1
sj
, ao’s of (9), we deduce:

σ = φ,∀o : σa,o = φa,o, ∀j : σs,j = φs,j ∀u : σpk,u = 0 (12)

13 Considering an equation of rational fractions over this quotient can also be seen as simply setting
∀i, xi = 0. Everything we infer about the coefficients from these modified equations is also valid for the
original equation, since these must hold for all values (s1, . . . , sq, x0, x1, . . . x`, a, p1, . . . , pb) and so in
particular for (s1, . . . , sq, 0, 0, . . . , 0, a, p1, . . . , pb).

Yet another interpretation when equating coefficients in equations modulo (x0, x1, . . . , x`) is that one
equates coefficients only of monomials that do not contain any xi.

35

Now we can reuse (12) in (6) and look the equation modulo (x0).

q∑
j=1

(
σz,jzj + σt,jsjx1+

t∑
o=0

k′(q+1)∑
m=k(q+1)+1

σm,j,ou
(q+1)
m,o

)
mod (x0) =

∑̀
j=1

φx,jxj (13)

By looking the coefficient in the monomials xj ’s, for j > 0 and because for all j, degsj (zj) =
degsj (um,j,o) = −1, we deduce:

∀j > 0 : φx,j = 0. (14)

Then the equation (13) becomes:

q∑
j=1

(
σz,j

(
k(j)∑
m=2

xm
∏
e∈M(j)

m
(a−e)

sj

)
+ σt,jsjx1+

t∑
o=0

k′(q+1)∑
m=k(q+1)+1

σm,j,ou
(q+1)
m,o

)
= 0 (15)

By looking all the monomials in x1sj , we deduce:

∀j : σt,j = 0 (16)

Now, for all j, we look all the monomials of degree −1, in sj , we deduce:

∀j : σz,j

(
k(j)∑
m=1

xm
∏
e∈M(j)

m
(a−e)

sj

)
+

t∑
o=0

k′(j)∑
m=k(j)+1

σm,j,o
aoxm
sj

= 0 (17)

Then, by looking the monomials in aoxj for all j > k(j):

∀m, j, o : σm,j,o = 0 (18)

Then (17) becomes:

∀j : σz,j

(
k(j)∑
m=1

xm
∏
e∈M(j)

m
(a−e)

sj

)
= 0 (19)

Then without any loss of generalities, we deduce:

∀j : σz,j = 0 (20)

Now we look the equation (5) modulo (x1, . . . , x`):

(
φ+ φx,0x0 +

q∑
j=1

φs,jsj +
t∑

o=1
φa,oa

o

)(
ζ +

q∑
j=1

(
ζs,jsj + ζt,jtj

)
+

t∑
o=1

ζa,oa
o + ζx,0x0 +

b∑
u=1

ζpk,upa

)
mod (x1, . . . , x`) = 0

36

Now, because Ŝ∗ 6= 0, we can deduce: φ+ φx,0x0 +
q∑
j=1

φs,jsj +
t∑

o=1
φa,oa

o 6= 0, then because

tj mod (x1, . . . , x`) =
x0
sj

pk(j) mod (x1, . . . , x`)

we have: (
ζ +

q∑
j=1

(
ζs,jsj + ζt,j

x0

sj
pk(j)

)
+

t∑
o=1

ζa,oa
o+

ζx,0x0 +

b∑
u=1

ζpk,upa

)
mod (x1, . . . , x`) = 0 (21)

Then, by looking constant coefficient in x0, we deduce:

∀j : ζs,j = 0, ∀o : ζa,o = 0, ζ = 0 ∀u : ζpk,u = 0 (22)

Then we by noticing for all j, pk(j) is constant in sj . By looking coefficient constant in sj , but of
degree 1 in x0.

ζx,0 = 0. (23)

Now, let’s look equation (7) modulo (x0, x1)

q∑
j=1

(
τz,jzj +

t∑
o=0

k′(q+1)∑
m=k(q+1)+1

τm,j,ou
(j)
m,o

)
mod (x0, x1) = 0

Now, for all j, we look all the monomials of degree −1, in sj , and degree 0 in sk for k > j:

∀j : τz,j

(
k(j)∑
m=2

xm
∏
e∈M(j)

m
(a−e)

sj

)
(24)

+
t∑

o=0

k′(j)∑
m=k(j)+1

τm,j,o
aoxm
sj

mod (x0, x1) = 0

Then, by looking the monomials in aoxm
sj

for m > k(j):

∀m, j, o : τm,j,o = 0 (25)

Then (7) modulo (x0) becomes:

q∑
j=1

(
τz,jzj + τt,jx1sj

)
mod (x0)

=x1

(
σ +

q∑
j=1

(
σs,jsj

)
+

t∑
o=1

σa,oa
o

)
(26)

By looking the monomials constant in si, ∀i, we deduce:

∀o : σ = σa,o = 0 (27)

37

(26) becomes thus:

q∑
j=1

(
σz,jzj +

t∑
o=0

k′(q+1)∑
m=k(q+1)+1

σm,j,ou
(q+1)
m,o

)
+ σx,0x0 = φx,0x0 (28)

By looking monomials constant in si, ∀i:

σx,0 = φx,0 (29)

Then, by using (27),in (26), we deduce:

q∑
j=1

(
τz,jzj + τt,jx1sj

)
mod (x0) = x1

(
q∑
j=1

σs,jsj

)
(30)

If we look in this equation for all j, all the monomials of degree −1, in sj , and degree 0 in sk for
k > j. We deduce

∀j : τz,jzj = 0

Then without any loss of generality, we can assume:

∀j : τz,j = 0 (31)

Then by looking monomials in x1sj , for all j, we deduce:

∀j : σs,j = τt,j (32)

Then, (7) becomes:

q∑
j=1

σs,jtj + τx,0x0 = x1

(
q∑
j=1

σs,jsj + σx,0x0

)
+ x0pk

(q+1) (33)

Now, if we look the monomial x0x1, we deduce

σx,0 = 0 (34)

And (29) implies:

φx,0 = 0 (35)

Now, let’s look (5) by using (35), (14), (12):

(q∑
j=1

(
ζz,jzj + ζt,jtj +

t∑
o=0

k′(j)∑
m=k(j)+1

ζm,j,ou
(j)
m,o

))
(q∑
j=1

φs,jsj

)
=
k(q+1)∑
h=1

xhc
∗
h (36)

Let i0 be the maximum of the i’s such that φi 6= 0.

Then
(q∑
j=1

φs,jsj

)
=
(i0∑
j=1

φs,jsj

)
is of degree 1 in si0 and in si1 .

38

Now we can notice that in
k(q+1)∑
h=1

xhc
∗
h, there is neither monomial of degree −1 in si and of

degree 1 in sk with k 6= i nor monomials in sisk, nor in s2i

Because,
(i0∑
j=1

φs,jsj

)
is of degree 1 in si0 .

We deduce that the left term has no term of degree 1 or −1 in any indeterminate si in
{s1, . . . , sq}.

In particular, there is no monomials in x1si in this term,
Then

∀i : ζt,iti = 0 (37)

∀j 6= i0 : ζz,jzj +
t∑

o=0

k′(j)∑
m=k(j)+1

ζm,j,ou
(j)
m,o = 0 (38)

Then (36) becomes:

(
ζz,i0zi0 +

t∑
o=0

k′(i0)∑
m=k(j)+1

ζm,j,ou
(i0)
m,o

)(i0∑
j=1

φs,jsj
)
=
k(q+1)∑
h=1

xhc
∗
h (39)

By noticing
k(q+1)∑
h=1

xhc
∗
h has no monomial in s sjsi0 , for j < i0, we deduce:

∀j < i0 : φs,j = 0 (40)

We can now transform (39) in:

ζz,i0
k(i0)∑
m=1

xmc
(i0)
m +

t∑
o=0

k′(i0)∑
m=k(j)+1

ζm,j,oxma
o =

k(q+1)∑
m=1

xmc
∗
m (41)

We can deduce by looking for all the monomials in xi:

∀m ≤ k(i0) : ζz,i0c(i0)m = c∗m (42)

∀m ∈ {k(i0) + 1, . . . , k′(i0)} :
t∑

o=0
ζm,j,oa

o = c∗m (43)

Now, we can use all the equalities found to deduce from (7):

σs,i0ti0 + τx,0x0

=x1σs,i0si0

+ x0

(
ψ(q+1) +

q∑
j=1

(
ψ
(q+1)
z,j zj + ψ

(q+1)
s,j sj + ψ

(q+1)
t,j tj

+
t∑

o=0

k′(q+1)∑
m=k(q+1)+1

ψ
(q+1)
m,j,o u

(j)
m,o

)
+

t∑
o=1

ψ
(q+1)
a,o ao + ψ

(q+1)
x,0 x0 +

b∑
u=1

ψ
(q+1)
pk,u pa

)
(44)

39

It becomes:

σs,i0x0pk
(i0) + τx,0x0 =

x0

(
ψ(q+1) +

q∑
j=1

(
ψ
(q+1)
z,j zj + ψ

(q+1)
s,j sj + ψ

(q+1)
t,j tj

+
t∑

o=0

k′(q+1)∑
m=k(q+1)+1

ψ
(q+1)
m,j,o u

(j)
m,o

)
+

t∑
o=1

ψ
(q+1)
a,o ao + ψ

(q+1)
x,0 x0 +

b∑
u=1

ψ
(q+1)
pk,u pa

)
(45)

Then

σs,i0pk
(i0) + τx,0 = pk(q+1). (46)

Because, the adversary should output the secret key associated to pk(q+1). pk(q+1) = ψP .
Then, recall that because σs,i0 6= 0

pk(i0) =
(ψ − τx,0)
σs,i0

. (47)

We deduce that pk(i0) 6∈ UL.
It implies that (Mi0 ,T

∗) 6∈ Rk(i0) , thus ∃j0 ∈ {1, . . . , k(i0)}, such that Tj0 6⊂ M
(i0)
j0

. Then, it
exists e′ ∈ Tj0 \M

(i0)
j0

Now, let’s look how W ∗h has been built by the adversary:

W ∗j0 = ωP +
q∑
j=1

(
ωz,jZj + ωs,jSj + ωt,jTj +

t∑
o=0

k′(j)∑
m=k(j)+1

ωm,j,oU
(j)
m,o

)
+

t∑
o=1

ω
(h,q+1)
a,o aoP + ω

(h)
x,0X0 +

b∑
u=1

ω
(h)
pk,uPa

Because VerifySubset outputs 1 then:

(
ω +

q∑
j=1

(
ωz,jzj + ωs,jsj + ωt,jtj +

t∑
o=0

k′(j)∑
m=k(j)+1

ωm,j,ou
(j)
m,o

)
+

t∑
o=1

ω
(h,q+1)
a,o ao + ω

(h)
x,0x0 +

b∑
u=1

ω
(h)
pk,upa

)
(48)(∏

e∈T∗j0

(α− e)
)

= ζz,i0
∏

e∈M(i0)
j0

(α− e)

This equation modulo (a− e′):

ζz,i0
∏

e∈M(i0)
j

(a− e) mod (a− e′) = 0

40

Then, we have a contradiction, because e′ 6∈M (i0)
j .

We have thus shown that in the “ideal” model, the attacker cannot win the game. It remains to
upper-bound the statistical distance from the adversary point of view between these two models.

Difference between ideal and real game. We can upper bound the degree of the denominators
of all the rational fractions by (2q+ t+ 1). If the adversary computes at most o group operations,
then there are at most o + q(4 + ` · t) group elements. Using the union bound, we conclude that

the adversary can distinguish the two models with probability at most
(
o+q(4+`·t)

)2
(2q+t+1)

p .

Difference between static and adaptative game. If we consider a deterministic adaptative
adversary (which can make adaptative corruption like in the real game).

If there is no collision before the first corruption (it happens with probability
(
o+q(4+`·t)

)2
(2q+t+1)

p),
the challenger can guess the traitor and then can make it static.

It can do it for c corruption if there is no collision, and this could happen with probability
c
(
o+q(4+`·t)

)2
(2q+t+1)

p.

D.2 Privacy Notions of SPSEQ-UC

We now prove that our SPSEQ-UC construction from Section 3.3 is Origin-hiding (Def. 4) and
provides Conversion-privacy (Def. 5) and Derivation-privacy (Def. 6).

Lemma D1 (Origin-hiding) The construction described in Section 3.3 is Origin-hiding.

Proof. Origin-hiding of ChangeRep follows from the perfect adaptation of SPSEQ [FHS19]. The
only main difference here is the additional element T in a signature as well as elements (pku, ukk′)
which we show that they are correctly randomized in both algorithms. Let C ∈ (G∗1)k, T ⊆ M ,
any O,U s.t. SC.Open(Cj ,Mj , Oj)j∈k = 1, pku ∈ G1, and (x0, x1, . . . , x`) ← (Z∗p)

` be such that
vk = ((P̂ xi)i∈[0,`], P

x0). For some y ∈ Z∗p , a signature (Z, Y, Ŷ , T) ∈ G1 ×G∗1 ×G∗2 ×G1 satisfying
Verify(vk, pku,C, (Z, Y, Ŷ , T), (T ,U)) = 1 along with ukk′ is of the form

σ =

(k∏
i=1

Cxii

)y−1

, P y, P̂ y, P x1·y · pkx0
u

 .

For µ, ψ ∈ Z∗p , ChangeRep(pku, ukk′ , (C,O), (Z, Y, Ŷ , T), µ, ψ) outputs

σ′ =

(k∏
i=1

Cµ·xii

)y−1·ψ

, P y·ψ, P̂ y·ψ, P x1·y·ψ ·Xψ(sku+χ)
0

 ,

which is a uniformly random element σ′ in G1 × G∗1 × G∗2 × G1. That is, all elements of the
signature σ′ are perfectly randomized using randomness µ, ψ, χ and conditioned on Verify(vk, (pku ·
Pχ)ψ,Cµ, σ′, (T ,U)) = 1. Now we show that ukk′ (in the case that it is requested for further
delegation), and pku are also randomized perfectly using ψ, χ and µ. For all k′, an update key
ukk′ ∈ (G∗1)[k+1,k′] s.t. UKVerify(vk, ukk′ , k′, σ) = 1 and pku ∈ G∗1 are the from

ukk′ =

(
usignj =

(
(Pα

i

)xj
)y−1

j∈[k+1,k′]∧i∈[t]

)
and pku = P sku .

41

For µ, ψ ∈ Z∗p , ChangeRep outputs the following form, so we have

uk′k′ =
(
(usignj)

ψ−1·µ
)
j∈[k+1,k′]

and pk′u = P (sku+χ)·ψ,

where χ ← Z∗p is randomness selected locally for RndmzPK. It is not difficult to see that all
elements of the ukk′ are distributed as expected and also pku is perfectly randomized with ψ, χ
and represents a uniform element in G∗1. So, ChangeRep clearly produces signatures with the same
distribution as Sign:

(σ,C, ukk′ , pku) ≈ (σ′,C ′, uk′k′ , pk
′
u)

Lemma D2 (Conversion-privacy) The construction described in Section 3.3 provides Conversion-
privacy.

First of all, let us assume that ConvertSig(vk, sku, sku′ , σ) includes [SendConvertSig(vk, sku, σ) ↔
ReceiveConvertSig(vk, sku′)]→ σ′, where σ′ is a valid signature.

Proof. For all (vk, sk) ∈ KeyGen(pp), (sku, pku) ∈ UKeyGen, C,T , M , U ,O s.t. SC.Open(Cj ,Mj ,
Oj)j∈k = 1 and σ. If Verify(vk, pku,C, σ, (T ,U)) = 1. The signature σ in G1×G∗1×G∗2×G1 is the
form of:

σ =

(k∏
i=1

Cxii

)y−1

, P y, P̂ y, P x1·y ·Xsku
0 = P x1·y · pkx0

u

 .

Then for (sku′ , pku′) ∈ UKeyGen(pp), ConvertSig(vk, sku, sku′ , σ) outputs a new signature with the
form of:

σ′ =

(k∏
i=1

Cxii

)y−1

, P y, P̂ y, P x1·y ·Xsku′
0 = P x1·y · pkx0

u′

 .

It is clear that this looks like a fresh signature σ′ in G1 ×G∗1 ×G∗2 ×G1 for pku′ with randomness
y. So the output of ConvertSig is distributed the same as the output of Sign. ut

Lemma D3 (Derivation-privacy) The construction described in Section 3.3 provides Derivation-
privacy.

Proof. For all (vk, sk) ∈ KeyGen(pp), pku,M , O = ρ, k′, k′′, T , U , ukk′ , and σ. If SC.Open(Cj ,Mj ,
Oj)j∈k = 1 ∧ Verify(vk, pku,C, σ, (T ,U)) = 1 ∧ UKVerify(vk, ukk′ , k

′, σ) = 1, then for an index
l = k + 1 ∈ [k + 1, k′], let Ml be a message set such that the message vector is M∗ = (M ,Ml)
and the related commitment vector is C∗ = (C, Cl). We intend to show that ChangeRel produces
outputs with the same distribution as Sign for vectors M∗ and C∗: Sign(sk,M∗, k′, pku;ρ) ≈
ChangeRel(Ml, σ,C, ukk′ , k

′′). More precisely, for some y ∈ Z∗p , a signature σ = (Z, Y, Ŷ , T) ∈
G1 ×G∗1 ×G∗2 ×G1 satisfying Verify(vk, pku,C

∗, σ, (T ,U)) = 1 is of the form

σ =

(k∏
i=1

(C∗i)
xi

) 1
y

, P y, P̂ y, P x1·y · pkx0
u

42

ConvertSig outputs the element Z of the signature as:

Z =

 k∏
i=1

(Cxii)
1
y ·

 ∏
i∈[t]∧l∈[k+1,k′]

Pα
i·xl·y−1

fi
 =

∏(
(Cxii)

1
y · Cxl·

1
y

l

)
=
∏

(Cxii · C
xl
l︸ ︷︷ ︸∏l

i=1(C
∗
i)
xi

)
1
y

So for the whole signature, it outputs the signature as:

σ′ =

(l∏
i=1

(C∗i)
xi

) 1
y

, P y, P̂ y, P x1·y · pkx0
u

which looks like a fresh signature σ in G1 × G∗1 × G∗2 × G1 for M∗ using the randomness y. This
is, for vectors C∗,M∗, ConvertSig produces signatures with the same distribution as Sign. ut

D.3 Security of DAC

Lemma D4 (Unforgeability) Let ZKPoK be a ZKPoK and let SPSEQ-UC be unforgeable, then
the DAC construction in Fig 3 is unforgeable.

Proof. We show that an adversary performing an incompatible showing for a dishonest user can
be used to forge an SPSEQ-UC signature. Assume a PPT adversary A that wins the unforgeability
game (Definition D.1) with non-negligible probability and let (C∗, nym∗P ,A

∗, σ∗) be the message-
signature pair it uses and W ∗ be the witness for an attribute set (D∗,A′) /∈ Rk′ (this implies
D∗ 6⊆ A′), for all i = ⊥ where i,A′, dkk′ ∈ Lcred; moreover, the ZKPoK(sk∗P, nym

∗
p) verifies. We

construct an adversary B that breaks the unforgeability of SPSEQ-UC. We note that we extract
from ZKPoK and assume this will only fail with negligible probability. Then, we are ready to reduce
to the unforgeability of SPSEQ-UC:

Reduction. The reduction is straightforward. B interacts with a challenger C in the unforgeability
game for SPSEQ-UC and B simulates the DAC-unforgeability game for A. C runs (pp, skCA, pkCA)←
Setup(1λ, 1t, 1`) and gives (pkCA, pp) to B. Then, B sets pp = ppSPSEQ-UC, vk = pkCA and sends them
to A. It next simulates the environment and oracles. All oracles are executed as in the real game,
except for the following oracles, which use the signing oracle instead of using the signing key skCA:

– When the oracles OCorrupt and OUser are called, B queries OCorrupt and OCreate of the SPSEQ-UC
scheme, respectively. Note that when B queries OCorrupt of the SPSEQ-UC, it gets ski and finally
returns ski and all the associated credentials items to A.

– OCreateRoot(i, k′,A): On input a user identity i, an index k′, and an attribute vector A. If i /∈ HU
it returns ⊥, else it picks ρ for an attributes vector. Then it submits (nymi, k

′,A,ρ) to the
signing oracle OSign. Receives a signature (σ = (Z, Y, Ŷ , T), (C,O), ukk′). It sets σ = credi,
ukk′ = dkk′ and appends (i,A, dkk′ , credi) to Lcred.

– ORootIss(k′,A): On input an index k′ and an attribute vector A. It extracts ρ from the proof of
knowledge ZKPoK(ρ, Pρ) produced byA for an attributes vector. Then it submits (nymi, k

′,A,ρ)
to the signing oracle OSign, where nymi is an adversary pseudonym of a corrupted user. Re-
ceives a signature (σ = (Z, Y, Ŷ , T), (C,O), ukk′). It sets (σ,C,O, nymi) = credi, ukk′ = dkk′
and appends (⊥,A, k′,⊥) to Lcred and outputs the results.

43

– The oracles (OIssue,OObtIss): In bothOObtIss andOIssue, all executions of ChangeRel and ConvertSig
for credentials (i, dkk′ ,A′, σi) ∈ Lcred are replaced by the oracle Sign(skCA,A

′, k′, pki,ρ), where
pki = nymi = 1 for the OIssue and pki = nymj for the OObtIss.

As it is clear, B can handle any oracle query and never aborts. So, at the end of the game, B
simulates all oracles perfectly for A who is able, with some probability, to prove possession of a
credential on A∗. To do this, B interacts with A as verifier in a showing protocol. If A outputs
a valid showing proof as (C∗, σ∗ = (Z∗, Y ∗, Ŷ ∗, T ∗), D∗, nym∗p,W

∗) and conducting ZKPoK(sk∗P,
nym∗p) then B extracts from the proof of knowledge contained in the Show protocol the value sk∗p
related to the nym∗P and stores all elements. Moreover, no credential owned by corrupt users can
be valid on this set of messages D∗ (as A can win the unforgeability game). This means that,
for any credential on (ski) with all i = ⊥, we have (D∗,A′) /∈ Rk′ . In all cases, this means that
(sk∗p, (C

∗, D∗,W ∗), σ∗) is a valid forgery against our signature scheme, B breaks thus unforgeability
of SPSEQ-UC which concludes our proof. ut

Lemma D5 (Anonymity) Let ZKPoK be a ZKPoK, NIZK be knowledge sound, the DDH assump-
tion holds and the SPSEQ-UC provides Origin-hiding, Conversion-privacy and Derivation-privacy,
then the DAC construction in Fig 3 is anonymous.

Proof. The proof follows a sequence of games until a game where answers for the query to OAnon
b

is independent of the bit b. In Game1 we use the knowledge soundness of NIZK to extract the
signing key. Then, in Game2 we replace all ChangeRep, ChangeRel and ConvertSig calls with freshly
generated signatures. In Game3 we simulate all ZKPoKs and in Game4 we guess a user to be
asked in OAnon

b . Finally, in Game5 we replace the respective commitment vectors with random
vectors.

Game0: The original game as given in Definition 9.
Game1: As Game0, except when A outputs the pkCA and corresponding NIZK(skCA, pkCA), the

experiment runs the knowledge extractor for NIZK, which extracts a witness ((xi)i∈[0,`], α) sets
them as skCA including the SC trapdoor. If the extractor fails, we abort.

Game0 → Game1: The success probability in Game1 is the same as in Game0, unless the extractor
fails, i.e., using knowledge soundness we have

|Pr[S0]− Pr[S1]| ≤ εks(λ).

Game2: As Game1, except that the experiment runs OAnon
b as follows: Like in Game1, but for µ, ψ ∈

Z∗p , all executions of ChangeRep(pku, ukk′ , (C,O), σ, µ, ψ) for the credential (ib, dkk′ ,A′, σb)←
Lcred[jb] are replaced by Sign(skCA,A

′, k′, pku;ρ). Oracles are simulated as in Game1 , except
for the following oracles as:
– OObtIss: all executions of ChangeRel and ConvertSig for credentials (j, dkk′ ,A

′, σj) ∈ Lcred

are replaced by Sign(skCA,A
′, k′, pkj ,ρ).

Game2 → Game1: By Origin-hiding, Derivation-privacy and Conversion-privacy, replacing sig-
natures from ChangeRep, ChangeRel and ConvertSig with ones from Sign are identically dis-
tributed for all (A,C). We thus have

Pr[S1] = Pr[S2]

Game3: As Game2, except that the experiment runs OAnon
b as follows: All proofs ZKPoK(skp, nymp)

and ZKPoK(ρ, Pρ) in CredProve and CreateCred respectively, are simulated.

Game2 → Game3: By perfect zero-knowledge of ZKPoK, we have that

Pr[S2] = Pr[S3]⇒ Pr[S1] = Pr[S2] = Pr[S3]

44

Game4: Same as Game3, except for the following changes. Let qu be (an upper bound on) the
number of queries made to OUser. At the beginning Game4 picks ω ← [qu] (it guesses that
the user who owns the index jb credential is registered at the ω-th call to OUser) and runs
OUser,OCorrupt and OAnon

b as follows:
– OUser(i): As in Game3, except if this is the ω-th call to the oracle then it additionally defines
i∗ ← i.

– OCorrupt(i, pku): If i ∈ CU or i ∈ OAnon
b , it returns ⊥ (as in the previous games). If i = i∗

then the experiment stops and outputs a random bit b′ ← {0, 1}. Otherwise, if i ∈ HU , it
returns user i’s ski and credentials and moves i from HU to CU ; and if i /∈ HU ∪ CU , it
registers and adds i to CU a new corrupt user with public key pki.

– OAnon
b (j0, j1, D): As in Game3, except that if i∗ 6= ib ← Lcred[jb], the experiment stops and

outputting b′ ← {0, 1}.
Game3 → Game4: By assumption, OAnon

b is called at least once with some input (j0, j1, D) such
that i0 ← Lcred[j0], i1 ← Lcred[j1] ∈ HU . If i∗ = ib then OAnon

b does not abort and neither does
OCorrupt (it cannot have been called on ib before that call to OAnon

b (otherwise ib /∈ HU); if called
afterwards, it returns ⊥, where i∗ ∈ OAnon

b). Since i∗ = [ib] with probability 1
qu
, the probability

thaft the experiment does not abort is at least 1
qu
, and thus

Pr[S4] ≥ (1− 1

qu
)
1

2
+

1

qu
· Pr[S3]

Game5: As Game4, except that for OAnon
b (j0, j1, D): it picks C ← (G∗1)k and performs the showing

using cred′ ← (C,Sign(sk,M , . . .)), with D = (di)i∈[k] and Wi ← fdi(a)
−1 ·Ci for i ∈ [k]. Note

that the only difference is the choice of C; while W is distributed as in Game4, in particular,
they are unique elements satisfying VerifySubset(Ci, Di,Wi)i∈[k].

Game4 → Game5: Let (BG, P x, P y, P z) be a DDH instance (not to be confused with SPSEQ-UC
elements) for BG = BGGen(1λ) where x, y ← Zp and Z is equal to P x·y or a random element.
The extended version of DDH that we consider here is given by (P, P x1 , . . . , P xk , P y, Z1, . . . , Zk)
where Zi = P xi·y or random for all ∈ {1, . . . , k}. One can easily show that this extended
version of DDH follows from DDH itself (with some polynomial security loss) as long as k is a
polynomial. Oracles are simulated as in Game4, except for the following oracles as:
– OObtIss(i,A): As in Game4, except for the computation of the following values if i = i∗. Let

this be the i-th call to this oracle. Since α /∈ A, it computes Ci ← fAi(a) · P xi for Ai ∈ A
(all Ci are thus distributed as in the original game.)

– OCredProve(j,D): As in Game4, with the difference that if i∗ = i ← Lcred[j], it computes
the witness Wi ← fAi/di(a)

µ · P xi . (Wi is thus distributed as in the original game and
D = (di)i∈[k].)

– OAnon
b (j0, j1, D): As in Game4, with the following difference. Using self-reducibility of DDH,

it picks s, t ← Z∗p and computes Y ′ ← P t·y · P s = P y
′
with y′ ← t · y + s, and Z ′i ←

P t·zi · P s·xi = P (t(zi−xi·y)+xi·y′). (If zi 6= xi · y then Y ′ and Z ′i are independently random;
otherwise Z ′i = y′ ·Xi) It performs the showing using the following values. Since a /∈ D :
Ci ← fAi(a) · Z ′i and Wi ← fAi/di(a)

−1 · Ci.

Apart from an error event happening with negligible probability, we have simulated Game4 if the
DDH instance was “real” and Game5 otherwise. If during the simulation of OAnon

b it occurs that any
Y ′i = 0G1

or Z ′i = 0G1
then the distribution of values is not as in one of the two games. Otherwise,

we have implicitly set ρi ← xi and µ ← y′ (for a fresh value y′ at every call of OAnon
b). In case of

45

a DDH instance, we have for all Ci ← (P fAi (a))ρi·µ; otherwise all Ci are independently randoms.
Let εDDH(λ) denote the advantage of solving the DDH problem and ql the number of queries to the
OAnon
b , we have
|Pr[S4]− Pr[S5]| ≤ εDDH(λ) + (1 + 2ql)

1
p

In Game5 the OAnon
b oracle returns a fresh signature σ on random elements C ← (G∗1)k and a

simulated proof; the bit b is thus information-theoretically hidden from A, so we have Pr[S5] =
1
2 .

From this and the above equations we have

Pr[S4]≤Pr[S5]+εDDH(λ)+(1 + 2ql)
1

p
=

1

2
+εDDH(λ) + (1 + 2ql)

1

p
,

Pr[S3]≤
1

2
+qu · Pr[S4]−

1

2
· qu ≤

1

2
+qu · (εDDH(λ)+(1 + 2ql)

1

p
),

Pr[S0]≤Pr[S1]+ks(λ)≤
1

2
+ks(λ)+qu · (εDDH(λ) + (1 + 2ql)

1

p
)

where Pr[S1] = Pr[S3]; qu, qo and ql are the number of queries to the Ouser, OObtain and the OAnon
b

oracle, respectively. Assuming security of ZKPoK, NIZK and DDH, the adversary’s advantage is
thus negligible. ut

46

	Practical Delegatable Anonymous Credentials From Equivalence Class Signatures

