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Abstract

Regev’s Learning with Errors (LWE) problem (STOC 2005) is a fundamental hardness assump-
tion for modern cryptography. The Learning with Rounding (LWR) Problem was put forth by
Banarjee, Peikert and Rosen (Eurocrypt 2012) as an alternative to LWE, for use in cryptographic
situations which require determinism. The only method we currently have for proving hardness of
LWR is the so-called “rounding reduction” which is a specific reduction from an analogous LWE
problem. This reduction works whenever the LWE error is small relative to the noise introduced
by rounding, but it fails otherwise. For this reason, all prior work on establishing hardness of LWR
forces the LWE error to be small, either by setting other parameters extremely large (which hurts
performance), or by limiting the number of LWR samples seen by the adversary (which rules out
certain applications). Hardness of LWR is poorly understood when the LWE modulus (q) is polyno-
mial and when the number of LWE samples (m) seen by the adversary is an unbounded polynomial.
This range of parameters is the most relevant for practical implementations, so the lack of a hardness
proof in this situation is not ideal.

In this work, we identify an obstacle for proving the hardness of LWR via a reduction from LWE
in the above parameter regime. Specifically, we show that any “point-wise” reduction from LWE to
LWR can be used to directly break the corresponding LWE problem. A reduction is “point-wise”
if it maps LWE samples to LWR samples one at a time. Our argument goes roughly as follows:
first we show that any point-wise reduction from LWE to LWR must have good agreement with
some affine map; then we use a Goldreich-Levin-type theorem to extract the LWE secret given
oracle access to a point-wise reduction with good affine agreement. Both components may be of
independent interest.

1 Introduction
Regev’s learning with errors (LWE) problem [Reg05] is fundamental for modern cryptography due to
its versitility and strong security guarantees. LWE asks an algorithm to solve a random noisy linear
system of equations mod q: given integers n, q,m, an “error” distribution χ on Zq and a uniform
s „ Znq , recover s given samples

 

pai, bi “ xai, sy ` eiq
(

Ă
`

Znq ˆ Zq
˘m
, (1)
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where the ai are drawn uniformly from Znq and the ei are drawn according to χ. It is known that
when q is sufficiently large compared to n, there are error distributions which make solving LWE effi-
ciently given any number of samples as hard as solving computational problems on lattices in the worst
case [Reg05, Pei09, BLP`13]; such problems are conjectured to be hard even for quantum computers.
In addition to the strong hardness guarantees, LWE has proven to be extremely useful for cryptography.
Since its introduction 15 years ago an immense research effort has established LWE-based construc-
tions for most known cryptographic primitives (e.g., [GPV08, ACPS09, BGV11, CHKP12, MP12,
BNS13, GSW13, GVW15, GKW18, PS19] and many, many more).

The randomness inherent to the LWE problem (i.e., the randomness used to draw the ei „ χ)
precludes constructing certain cryptographic primitives which require determinism, such as PRFs. Ba-
narjee, Peikert and Rosen [BPR12] introduced the learning with rounding (LWR) problem in order to
overcome this obstacle. LWR asks an algorithm to solve a random linear system with “deterministic
noise”: given n, p, q,m with p ă q and a uniform s „ Znq , recover s from

 

pai, bi “ txai, syspq
(

Ă
`

Znq ˆ Zp
˘m
, (2)

where each ai „ Znq and where t¨sp : Zq Ñ Zp is the function which, given x P Zq, outputs the nearest
integer to px{q. Since its introduction, LWR has been used in numerous works to give cryptographic
constructions where determinism is mandatory (e.g., [BPR12, BLL`15, BV15], and more).

Hardness of LWR is established via the following reduction from LWE: given an LWE sample
pa, bq P ZnqˆZq, round the second value and output pa, tbspq P ZnqˆZp. In [BPR12], it is shown that this
reduction is valid whenever q{p “ nωp1q (n the security parameter), and so establishes hardness of LWR
for this parameter regime. In practice we would like to be able to use small q as this lends itself better
to efficient implementations. So establishing hardness for LWR in the “polynomial modulus” setting,
where q “ polypnq, was an important open problem left by [BPR12]. This direction was pursued in the
follow-up works [AKPW13, BGM`16, AA16] where it is shown that if the number of LWR samples
given to the solver (i.e., m) is bounded, then the correctness proof of the above reduction goes through
and one can establish hardness of LWR with polynomial modulus in the “bounded sample” setting.
This is good enough for some cryptographic applications [AKPW13], but not for all, e.g., PRFs.

The problem with the above reduction when q{p is small is that the error in the LWE sample might
cause the rounding function to make a mistake. The reason for this is that the “threshold points” of the
rounding function1 t¨sp : Zq Ñ Zp have density p{q in Zq, and so when q{p ! m, some of the ai’s
chosen will be such that their secret inner product xai, sy is close to a threshold point. Whenever this
occurs, the reduction will make an error if xai, sy ` ei is on the opposite side of the threshold from
xai, sy. Prior work handles this issue by forcing q{p to be large relative to m (either by setting q{p to
be superpolynomial, or by bounding m).

Getting a version of the above reduction to yield a hardness proof for LWR in the case when m is
large compared to q{p is challenging because it requires dealing with situations where the LWE error
creates a rounding problem. By definition, a reduction from LWE to LWR is an oracle algorithm which
solves LWE when instantiated with access to any LWR solver, including the pathological LWR solver
who aborts whenever it sees a rounding error. Specifically, suppose S is an algorithm which takes m
LWR samples

 

pai, b
1
iq
(

Ă ZqˆZp, (somehow) recovers the hidden secret s, then scans the m samples
to make sure that b1i “

X

xai, sy
T

p
for all i, aborting if it finds an error, outputting s otherwise. It is clear

that S will solve LWR when it is given true LWR samples, however in order for the reduction to make

1By threshold points we mean the half integer multiples of q{p where the rounding function switches from rounding to
adjacent values in Zp.
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use of S’s solving power to solve LWE, it must produce m LWR samples without making an error. This
is the core challenge in proving hardness of LWR with polynomial modulus and unbounded samples.

1.1 Our Contribution
In this work we convert the above difficulty into a lower bound for proving hardness of LWR with
polynomial modulus and an unbounded number of samples via reductions from LWE. Our barrier
applies to any “pointwise” reduction from LWE to LWR, i.e., any function f : Znq ˆ Zq Ñ Znq ˆ Zp.
This includes and broadly extends the reduction pa, bq ÞÑ pa, tbspq mentioned above. The starting
observation for our work is that any pointwise reduction f which works in this parameter regime must
implicitly be able to handle the “problematic” LWE pairs which are close to a rounding threshold.
What we prove is essentially that f ’s understanding of how to handle these threshold samples can be
extracted in the form of knowledge about the LWE secret. Our main theorem is the following.

Theorem 1 (Informal). Let n, q, p P N be integers such that q “ polypnq is prime and such that
q2{3`c ă p ă q for a small constant c ą 0. Let χ be an error distribution on Zq. Suppose an efficient
function f : Znq ˆ Zq Ñ Znq ˆ Zp is a pointwise reduction from LWEn,q,χ to LWRn,q,p. Then f can be
used to design an efficient algorithm which solves LWEn,q,χ.

The Hypotheses of our Theorem. We view the requirements that q be prime and especially that
q2{3`c ă p as shortcomings of our work, and we believe it should be possible to improve our result to
remove these extra hypotheses. Our proof requires q to be prime so that linear algebra works on the
set Znq . The lower bound on p comes from one place in the proof where we use two LWE samples
pa0, b0q, pa1, b1q P Znq ˆ Zq to generate three LWR samples:

pa10, b
1
0q “ fpa0, b0q; pa

1
1, b

1
1q “ fpa1, b1q; pa

1
2, b

1
2q “ fpa0 ` a1, b0 ` b1q P Znq ˆ Zp,

and we require essentially that the three output values b10, b
1
1, b

1
2 P Zp contain more information than

the input values b0, b1 P Zq. We suspect that a different proof technique could be used to improve the
lower bound required of p or remove it altogether. We note however that our result does not require
the amount of LWR “noise” (i.e., q{p) to be small relative to the amount of LWE noise. In particular,
our theorem applies in situations where q{p is much larger than the standard deviation of the discrete
Gaussian used for the LWE noise.

Our Reduction Model. A natural question is whether our theorem holds for relaxations of our re-
duction model. For example, does our theorem hold for pointwise reductions between problems with
different dimensions and moduli (i.e., reductions from LWEn,q,χ to LWRn1,q1,p1)? Moreover, we might
hope that our main result would hold even for pointwise reductions which are allowed to abort on some
inputs. We actually consider such reductions and note that part of the proof of our main theorem goes
through even when the pointwise reduction is allowed to abort. However, we were only able to prove
some of the steps for non-aborting pointwise reductions so our main theorem inherits this restriction.
We believe that it should be possible to prove our main theoem even for pointwise reductions which are
allowed to abort.

In a similar vein, our notion of pointwise reductions does not allow the reduction to use two or
more LWE samples to produce an LWR sample. One might hope that a similar theorem to ours would
hold for any “k´to´one” function f :

`

Znq ˆ Zq
˘k
Ñ Znq ˆ Zp as long as k is small enough to

ensure that s has sufficient entropy given k LWE samples. If k is large enough so that k LWE samples
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determine s information theoretically, then one could imagine a function f which takes k LWE samples
and (somehow) recovers s and outputs a single LWR sample with secret s. While it feels like such a
function is breaking LWE, it would be hard to prove a theorem like the above since it seems that in
order to extract any knowledge about the LWE secret, one would have to solve LWR.

Interpreting our Result. Our main theorem identifies a barrier to proving the hardness of LWR in
certain practical parameter regimes via reductions from LWE. This explains, to some extent, why this
problem has remained open for so long. Our result does not suggest that LWR is easy. Rather, it speaks
to the fact that the current techniques we have available for deriving hardness from worst-case lattice
problems are inherently probabilistic. Our work indicates that a reduction from a hard lattice problem to
LWR with these parameter settings would be extremely interesting as it would likely contain significant
new ideas.

2 Preliminaries
Throughout this work, the integer n will denote the security parameter. We use boldface lower case for
vectors, and boldface capitals for matrices (e.g., v or M). Given a distribution χ on a set X , we write
x „ χ to indicate that x P X is drawn according to χ; we write x „ X as shorthand for x „ UnifpXq,
the uniform distribution on X .

2.1 Learning with Errors/Rounding
Definition 1 (The LWE/LWR Distributions). Let n, q P N be positive integers, let s P Znq , let χ be a
distribution on Zq, and let X Ĺ Zq be a proper subset.

‚ The LWE Distribution: The learning with errors distribution LWEn,q,s,χ works as follows:

´ draw a „ Znq , e „ χ, set b “ xa, sy ` e and output pa, bq P Znq ˆ Zq.

‚ The LWR Distribution: The learning with rounding distribution LWRn,q,s,X is:

´ draw a „ Znq , set b “ argminxPX
 

|xa, sy ´ x|
(

(breaking ties arbitrarily) and output
pa, bq P Znq ˆX .2

Given m P N, the distributions distributions LWEn,q,m,χ (resp. LWRn,q,m,X) work by drawing s „ Znq
once and for all and then outputting m independent samples from LWEn,q,s,χ (resp. LWRn,q,s,X).

Definition 2 (The LWE/LWR Problems). Let n, q,m P N be positive integers, χ be a distribution on
Zq, and X Ĺ Zq be a proper subset. The search/decisional version of the learning with errors{rounding
problems refer to the following computational tasks.3

‚ Search LWE{LWR: Given pa1, b1q, . . . , pam, bmq „ LWEn,q,m,χ{LWRn,q,m,X , output s.

‚ Decisional LWE: Distinguish LWEn,q,m,χ from Unif
`

Znq ˆ Zq
˘m.

2Here |α´ β| for α, β P Zq denotes mint|α̂´ β̂| : α̂, β̂ P Z st pα̂, β̂q ” pα, βq pmod qqu; | ¨ | the real absolute value.
3We will not need the decisional version of LWR in this work, so we do not give the definition.
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Error Distributions and Rounding Subsets. The most common choice for the error distribution
χ is a discrete Gaussian on Zq, centered at 0 with standard deviation αq for some α “ 1{polypnq.
Hardness of decisional LWE with this error distribution is known assuming worst-case hardness of
computational problems on lattices which are believed to be hard even for quantum computers [Reg05,
Pei09, BLP`13]. The arguments in this work will apply equally well to any bounded error distribution
which gives output in t´B, . . . , Bu Ă Zq for B ! q with overwhelming probability 1 ´ 2´n. The
rounding set for LWR will be X “ Zp, the set of nearest integers to the multiples of q{p in Zq. We
write tbsp instead of argminxPX

 

|b´ x|
(

, and we write LWRn,q,p instead of LWRn,q,Zp .

Solvers and Distinguishers. Given ε ą 0 and m P N, we say an algorithm S is an pε,mq´solver for
LWEn,q,χ (resp. LWRn,q,X) if it solves search LWE (resp. search LWR) with probability at least ε, given
m samples:

Prtpai,biqumi“1„LWEn,q,m,χ

”

S
`

tpai, biqu
m
i“1

˘

“ s
ı

ě ε,

and similarly for LWRn,q,m,p except the probability is over tpai, biqui“1m „ LWRn,q,m,p. Likewise, we
say that an algorithm D is an pε,mq´distinguisher for LWEn,q,χ if

Prtpai,biqumi“1„LWEn,q,m,χ

”

D
`

tpai, biqui
˘

“ 1
ı

ě Prtpai,biqumi“1„UnifpZnqˆZqqm
”

D
`

tpai, biqu
˘

“ 1
ı

` ε.

Definition 3 (Reduction from LWE to LWR). Let n, q, p P N be integers with p ă q, and let χ be a
distribution on Zq, and let `err : Rą0 Ñ Rą0 and `samp : NÑ N be functions. We say that a PPT oracle
algorithm A is an p`err, `sampq´reduction from LWEn,q,χ to LWRn,q,p if the following holds: if S is an
pε1,m1q´ solver for LWRn,q,p, thenAS (i.e.,A instantiated with oracle access to S) is an pε,mq´solver
for LWEn,q,χ, where pε,mq “

`

`errpε
1q, `samppm

1q
˘

.

Remark. We are interested in noticeable solvers which run in polynomial time; i.e., pε1,m1q´solvers
for ε1 “ poly

`

1{n
˘

and m1 “ polypnq. In order to preserve this, our reductions will always have
`errpε

1q “ poly
`

1{n, ε1
˘

and `samppm
1q “ polypn,m1q. Thus, our reduction model requires AS to be

a polynomial time noticeable solver for LWE whenever S is a polynomial time noticeable solver for
LWR. As mentioned in the introduction, several prior works [AKPW13, BLL`15, BGM`16] prove
hardness results for LWR with q “ polypnq via LWE hardness as long as there is a bound B on the
overall number of samples given to the LWR solver. In the above language, these works give a reduction
A such that AS is a polytime noticeable solver for LWE whenever S is a polytime noticeable solver for
LWR which uses m1 ď B samples.

2.2 Pseudorandomness
Definition 4 (Statistical Distance). Let X and Y be random variables, both supported on the same
set Ω. The statistical distance between X and Y , denoted ∆pX, Y q, is equal to both of the following
expressions:

max
TĂΩ

ˇ

ˇ

ˇ
Prx„X

“

x P T
‰

´ Pry„Y
“

y P T
‰

ˇ

ˇ

ˇ
“

1

2
¨
ÿ

zPΩ

ˇ

ˇ

ˇ
Prx„X

“

x “ z
‰

´ Pry„Y
“

y “ z
‰

ˇ

ˇ

ˇ
.

We will use a version of the the fact that the inner product mod q is a good two-source extractor.
Results of this type originated with the work of Goldreich and Chor [CG88], the proof of this next
claim is similar.
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We will use the mod q version of the the fact that the inner product is a good two-source extractor.
Results of this type originated with the work of Goldreich and Chor [CG88].

Fact 1. Let n, q P N be such that q is prime, let X Ă Znq be a subset, and let D be the distribution on
Zn`1q which draws a „ Zq, x „ X and outputs

`

a, xa,xy
˘

. Then

∆
`

D,UnifpZn`1q q
˘2
ď

q

4|X|
.

The following corollary will be used several times throughout the paper. Intuitively, it says that any
property which holds with good probability over pa, bq „ Znq ˆ Zq holds with similar probability over
pa, bq „ LWEn,q,s,χ for almost all s P Znq .

Corollary 1 (Sampling of LWE). For any test set T Ă Znq ˆZq of size |T | “ τ ¨ qn`1, and any e P Zq,

Prs„Znq

„

ˇ

ˇ

ˇ
Pra„Znq

“

pa, xa, sy ` eq P T
‰

´ τ
ˇ

ˇ

ˇ
ą q´n{4



“ q´Ωpnq.

In particular,

Prs„Znq

„

ˇ

ˇ

ˇ
Prpa,bq„LWEs

“

pa, bq P T
‰

´ τ
ˇ

ˇ

ˇ
ą q´n{4



“ q´Ωpnq.

Proof. Fix T Ă Znq ˆ Zq of size |T | “ τ ¨ qn`1, and let S Ă Znq be the set of s P Znq such that
Pra„Znq

“

pa, xa, sy ` eq P T
‰

ą τ ` q´n{4 for some e P Zq. We will prove |S| ă qn{2`3 “ q´pn{2´3q ¨ qn;
the result follows since we can argue similarly for the set of s P Znq such that for some e P Zq,
Pra„Znq

“

pa, xa, sy ` eq P T
‰

ă τ ´ q´n{4. For the part of the claim about LWE samples, note that if
s R S then

Prpa,bq„LWEs

“

pa, bq P T
‰

“
ÿ

ePZq

Pr
“

χ “ e
‰

¨ Pra„Znq
“

pa, xa, sy ` eq P T
‰

ď τ ` q´n{4.

So it suffices to bound |S|. Let Se Ă S be the s P S such that Pra„Znq
“

pa, xa, sy ` eq P T
‰

ą τ ` q´n{4.
For all e P Zq, we have

τ ` q´n{4 ă Prs„Se,a„Znq
“

pa, xa, syq ` p0, eq P T
‰

ď τ `

c

q

4|Se|
,

where the inequality on the second line is Fact 1. Thus, |Se| ď qn{2`1{4 holds for all e P Zq, and so
|S| “

ˇ

ˇ

Ť

e Se
ˇ

ˇ ď qn{2`2. The result follows.

3 Our Reduction Model and Main Theorem

3.1 Pointwise Reductions and Main Theorem Statement
In this section we define pointwise reductions from LWE to LWR, which are the reductions ruled out by
our main theorem. To say that A is a pointwise reduction is to require that the LWE solver AS uses
its oracle access to S in a precise way. First, AS must map its input LWE samples to LWR samples in
a pointwise fashion (i.e., using f : Znq ˆ Zq Ñ pZnq ˆ Zpq Y tKu, applied pointwise on each of the
input samples). Then AS invokes S on the “non-bot” outputs obtaining an LWR secret. Finally, AS

outputs an LWE secret computed using the original LWE samples and the LWR secret. All LWE to
LWR reductions in the literature fit into this pointwise model.
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Definition 5 (Point-Wise Reduction from LWE to LWR). Let n, p, q P N be integers such that
p ă q, let χ be a distribution on Zq, and let `err : Rą0 Ñ Rą0 and `samp : N Ñ N be functions.
We say the PPT oracle algorithm A is an p`err, `sampq´pointwise reduction from LWEn,q,χ to LWRn,q,p
if it is a reduction per Definition 3 and, moreover, if there exists an efficiently computable function
f : Znq ˆ Zq Ñ

`

Znq ˆ Zp
˘

Y tKu and a PPT algorithm B such that for any pε1,m1q´solver S for
LWRn,q,p, the pε,mq´solver AS for LWEn,q,χ works as follows where pε,mq “

`

`errpε
1q, `samppm

1q
˘

.

1. Given tpai, biqumi“1 Ă Znq ˆZq, compute pa1i, b
1
iq “ fpai, biq P

`

Znq ˆZp
˘

YtKu for i “ 1, . . . ,m.

2. Call S
`

tpa1i, b
1
iquztKu

˘

obtaining s1 P Znq Y tKu (S reads only the first m1 pairs; if fewer than m1

pairs are given, S outputs K).

3. Compute B
`

tpai, biqu, s
1
˘

obtaining s P Znq Y tKu; output s.

We say A “ pf,Bq is a ν´non-aborting pointwise reduction if Prpa,bq„ZnqˆZq
“

fpa, bq ‰ K
‰

ě ν.
We say A is a non-aborting pointwise reduction if it is a 1´non-aborting pointwise reduction; i.e., if
fpa, bq ‰ K for all pa, bq P Znq ˆ Zq.

Theorem 2 (Main). Let n, p, q P N be integers such that such that q “ polypnq is prime and such that
q2{3`c ă p ă q “ polypnq for a constant c ą 0, and let χ be a distribution on Zq. Let `err : Rą0 Ñ Rą0
and `samp : NÑ N be functions so `errpε

1q “ poly
`

1{n, ε1
˘

and `samppm
1q “ polypn,m1q. Then any non-

aborting p`err, `sampq´pointwise reduction A “ pf,Bq from LWEn,q,χ to LWRn,q,p can be used to build
an efficient pε,mq´distinguisher for LWEn,q,χ for some non-negligible ε ą 0 and some m “ polypnq.

We also state as a conjecture, our main theorem without the lower bound requirement on p, and where
the pointwise reduction is allowed to abort.

Conjecture 1. Let n, p, q P N be integers such that such that q “ polypnq is prime. Let ν “ νpnq ą 0
be non-negligible in n, and let χ be a distribution on Zq. Let `err : Rą0 Ñ Rą0 and `samp : N Ñ N be
functions such that `errpε

1q “ poly
`

1{n, ε1
˘

and `samppm
1q “ polypn,m1q. Then any ν´non-aborting

p`err, `sampq´pointwise reductionA “ pf,Bq from LWEn,q,χ to LWRn,q,p can be used to build an efficient
pε,mq´distinguisher for LWEn,q,χ for some non-negligible ε ą 0 and some m “ polypnq.

If the error distribution χ on Zq is such that LWEn,q,m,χ is hard for all m “ polypnq (e.g., if χ is
a discrete Gaussian), then these results say that it is impossible to reduce LWEn,q,χ to LWRn,q,p in a
pointwise fashion. The only difference between Theorem 2 and Conjecture 1 is that Theorem 2 makes
two additional assumptions about the parameters:

‚ q2{3`c ă p;

‚ ν “ 1 (i.e., f is non-aborting).

The first assumption is needed in one specific point of the proof of Theorem 2; we will indicate this
point when we get to it. We make use of the second assumption throughout. Occasionally, it is possible
to rework the proofs to some of our supporting lemmas to allow f to abort, but since there is more than
one point where we require it, we just assume it everywhere; this will simplify our overall proof. Nev-
ertheless, as mentioned in the introduction, we believe it should be possible to remove the dependence
on these extra hypotheses.
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3.2 The LWR Secret Recovery Algorithm and Proof of Theorem 2
Notation. Let n, p, q P N be integers such that q is prime such that q2{3`c ă p ă q for a small constant
c ą 0. Let f : Znq ˆ Zq Ñ Znq ˆ Zp be part of a pointwise reduction from LWEn,q,χ to LWRn,q,p. Since
n, p, q, χ are fixed throughout the remainder of the paper, we write LWEs and LWRs1 , respectively,
instead of LWEn,q,s,χ and LWEn,q,s,p. The lemmas in this section make reference to non-negligible
quantities η, δ ą 0 which will be specified in the next section.

Lemma 1 (Main Technical Lemma). Let notations be as above. There exists an efficient algorithmA
with the following syntax and correctness guarantees.

‚ Syntax: A takes no input, gets oracle access to a
`

Znq ˆ Zq
˘

´oracle and to f , and outputs a
vector s1 P Znq .

‚ Correctness: If A is run when given oracle access to LWEs for a random s „ Znq , then with
non-negligible probability (over s „ Znq and the random coins of A), A outputs s1 P Znq such
that:

Prpa,bq„LWEs

”

b1 “
X

xa1, s1y
T

p

ı

ě 1´ η. (3)

Lemma 2. Assume pf,Bq is a pointwise reduction from LWEn,q,χ to LWRn,q,p. If there exists s1 P Znq
such that

Prpa,bq„ZnqˆZq

”

b1 “
X

xa1, s1y
T

p

ı

ě 1´
η

2
,

then B is a pδ,mq´solver for LWEn,q,χ for m “ np1` log qq{η.

Proof of Theorem 2 Assuming Lemmas 1 and 2. Let A denote the algorithm promised by Lemma 1.
Consider the following distinguishing algorithm D, which gets oracle access to a

`

Znq ˆZq
˘

´oracle O
and works as follows.

1. D instantiates A with oracle access to O, obtaining output s1 P Znq . If A fails to give output of
the proper type, D outputs a random bit.

2. Now D draws samples pa1, b1q, . . . , paN , bNq „ O for N “ n{η, and computes an approximation
P̂ of the probability

P :“ Prpa,bq„O

”

b1 “
X

xa1, s1y
T

p

ı

.

If P̂ ě 1´ 3η{4, D outputs 1, otherwise D outputs a random bit.

Note D either outputs 1 or a random bit. We show that it outputs a random bit with probability 1´2´Ωpnq

when O is a random oracle, and outputs 1 with non-negligible probability when O is an LWE oracle.
The theorem follows.

Uniform Samples. Consider the execution of D when O is a random oracle, and let s1 P Znq be the
vector obtained by A in Step 1 (if A outputs K during this step then D outputs a random bit). In this
case, the Chernoff-Hoeffding inequality ensures that |P̂´ P| ă η{4 holds with probability 1´ 2´Ωpnq.
Thus by Lemma 2, P̂ ă 1 ´ 3η{4 occurs with probability 1 ´ 2´Ωpnq, and so D outputs a random bit
with high probability.
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LWE Samples. Now consider the execution of D when instantiated with a LWEs´oracle for a random
s „ Znq . In this case, Lemma 1 ensures that with non-negligible probability,A outputs s1 P Znq such that
P ě 1´η. In this case, P̂ is again accurate to within˘η{4 by the Chernoff bound, and so P̂ ě 1´3η{4
and D outputs 1 with non-negligible probability.

4 The Statistics of a Pointwise Reduction
In this section we begin to impose structure on f : Znq ˆ Zq Ñ Znq ˆ Zp which is part of a pointwise
reduction from LWEn,q,χ to LWRn,q,p. The fundamental intuition of this section is the following “meta”
statement: all statistics of the LWR distribution and the output distribution of f (given LWE samples
as input) must be the same. The reason for this is that any statistic which differs can be used to build a
“pathological solver” which solves LWR but which will be useless for solving LWE via f . The solver
simply draws enough samples to approximate the statistic, aborting if it decides it is being fed with
mapped LWE samples, solving if it decides it is being fed with true LWR samples.

4.1 Non-Degeneracy
We prove that the distribution which draws pa, bq „ Znq ˆ Zq and outputs a1 P Znq cannot give non-
negligible weight to any set T Ă Znq with negligible density.

Definition 6. Let ζ, ρ ą 0 be such that ζ ą ρ, and let f : Znq ˆ Zq Ñ Znq ˆ Zp be a function. We say f
is pζ, ρq´degenerate if there exists T Ă Znq of density |T |{qn “ ρ such that Prpa,bq„ZnqˆZq

“

a1 P T
‰

ě ζ ,
where pa1, b1q “ fpa, bq. We say that f is pζ, ρq´non-degenerate if it is not pζ, ρq´degenerate.

Claim 1 (Non-Degeneracy). Let n, q, p P N such that p ă q and χ be a distribution on Zq. Suppose
f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction pf,Bq from LWEn,q,χ to LWRn,q,p. Suppose f
is pρ ` ε, ρq´degenerate for ρ, ε ą 0 with ε non-negligible. Then B is an pε,mq´solver of LWEn,q,χ
for m “ max

 

qnp1` log qq, ρn{ε2
(

.

Proof. Let ε ą 0 be non-negligible and suppose pf,Bq is a pointwise reduction from LWEn,q,χ to
LWRn,q,p which is pρ`ε, ρq´degenerate. LetD be the distribution on Znq which draws pa, bq „ Znq ˆZq
and outputs a1. By definition, there exists T Ă Znq of density ρ such that PrD

“

a1 P T
‰

ě ρ ` ε. Let
S be the pathological p1 ´ 2´Ωpnq,m1q´solver for LWRn,q,p which, on input tpa1i, b

1
iqu

m1

i“1 Ă Znq ˆ Zp,
computes t :“ #ti : a1i P T u and outputs K if t ě

`

ρ`ε{2
˘

m1; otherwise if t ă
`

ρ`ε{2
˘

m1, S outputs
the unique s1 P Znq such that b1i “

X

xa1i, s
1y
T

p
for all i “ 1, . . . ,m1 (if no such s1 exists or if more than one

such s1 exists, S outputs K). Note that when S is fed with LWR samples t “ ρm1 in expectation as the
a1i „ Znq are uniform. By the Chernoff-Hoeffding inequality, t ă

`

ρ ` ε{2
˘

m1 holds with probability
1´2´Ωpnq (since m1 ě ρn{ε2). As m1 ě nqp1` log qq, with probability at least 1´2´Ωpnq, there exists
exactly one s1 P Znq such that b1i “

X

xa1i, s
1y
T

p
for all i “ 1, . . . ,m1. Therefore, when S is fed with LWR

samples it outputs the LWR secret s1 with high probability.
On the other hand, when m ě 2m1{ν LWE samples are chosen and S is fed with

 

fpai, biq
(

,
t ě pρ ` εqm1 in expectation, and so by the Chernoff-Hoeffding inequality, t ě

`

ρ ` ε{2
˘

m1 holds
with probability 1 ´ 2´Ωpnq. Therefore, S outputs K with high probability when fed with mapped
LWE samples. As pf,Bq is a pointwise reduction from LWEn,q,χ to LWRn,q,p, B outputs the LWE
secret with non-negligible probability when fed with

`

tpai, biqu,K
˘

, where the pai, biq are LWE samples
and the K is the output of S on their images under f . Thus B solves LWEn,q,m,χ with non-negligible
probability.
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4.2 Good LWE Secrets
We now identify a non-negligible subset G Ă Znq of good LWE secrets, where s P G guarantees some
good behavior from f when fed with samples from LWEn,q,s,χ.

The Secret Graph. The secret graph is a weighted complete bipartite graph whose left and right
vertex sets (X and Y , respectively) are both Znq , and where the weight of the edge ps, s1q P X ˆ Y is
pps,s1q :“ Prpa,bq„LWEs

“

b1 “ txa1, s1ysp
‰

. We write Yεpsq “ ts1 P Y : pps,s1q ě 1 ´ εu for s P X and
ε ą 0. Likewise, given s1 P Y and ε ą 0, Xεps

1q “ ts P X : pps,s1q ě 1´ εu. So intuitively, Yεpsq is the
subset of s’s neighborhood which is connected to s by an edge with weight at least 1´ ε; and similarly
for Xεps

1q.

Parameters. In addition to the parameters mentioned above, the good secrets are defined in terms of
three non-negligible values δ, η, σ ą 0. The quantity δ is defined using the error loss function `err of the
pointwise reduction pf,Bq. Specifically, 2δ “ `errp1{3q, so that if S is a 1

3
´solver for LWRn,q,p, BS is a

2δ´solver for LWEn,q,χ. Given δ, we set σ “ δ{2nqp1` log qq and η ď min
 

σ,
`

1{3nq
˘3(. The reader

is encouraged on a first pass to think of δ, η, σ all as arbitrarily small, but non-negligible, quantities.

Definition 7 (Good LWE Secrets). With the above notation and conventions, we say that s P Znq is
good, and write s P G, if the following three conditions hold:

p1q |Yηpsq| ě 1; p2q |Yσpsq| ď 1; p3q |Xηps
1q| “ 1.

In point (3), s1 P Znq is the LWR secret for which Yηpsq “ ts1u.

Note that as η ď σ, points (1) and (2) combine to imply that for every s P G there is a unique s1 P Znq
such that pps,s1q ě 1´ η. Thus, point (3) additionally says that the edges in the secret graph with weight
above 1´ η induce a matching between good LWE secrets and (a subset of) LWR secrets.

Claim 2. Suppose pf,Bq is a pointwise reduction from LWEn,q,χ to LWRn,q,p. Then either |G| ě δ ¨ qn,
or B is a pδ,mq´solver for LWEn,q,χ for m “ 2np1` log qq{η.

Proof. Let m “ np1 ` log qq{η, and let S be the pathological solver for LWRn,q,p which, on input
 

pa1i, b
1
iq
(m

i“1
, does the following:

(i) it looks at the first nqp1 ` log qq samples (this is less than m since η ď 1{q) and checks
whether there exist distinct s1, s2 P Znq such that

X

xa1i, s
1y
T

p
“ b1i “

X

xa1i, s
2y
T

p
holds for all

i “ 1, . . . , nqp1` log qq; if so, S outputs K;

(ii) S computes the unique s1 P Znq such that b1i “
X

xa1i, s
1y
T

p
holds for all i “ 1, . . . ,m, if no such s1

exists, S outputs K;

(iii) using the s1 P Znq just computed, S checks if #ts P Znq : |Yηpsq| “ 1 & pps,s1q ě 1´ ηu ě 2; if so
S outputs K;

(iv) if it has not already aborted, S outputs s1 P Znq recovered in Step (ii).

Assume |G| ă δ ¨ qn. We will prove the following two points.

1. if S is called on tpa1i, b
1
iqu „ LWRn,q,m,p, then S outputs the secret s1 with probability at least 1{3;
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2. if S is called on tpa1i, b
1
iqu for tpai, biqu „ LWEn,q,m,χ and pa1i, b

1
iq “ fpai, biq, then S outputs K

with probability at least 1´ δ.

Just as in Claim 1, these two points suffice. Point 1 says that S is a
`

1
3
,m

˘

´solver for LWRn,q,m,p. As
pf,Bq is a pointwise reduction, with probability at least 2δ “ `errp1{3q over tpai, biqu „ LWEn,q,m,χ, B
outputs the LWE secret given tpai, biqu and S

`

tpa1i, b
1
iqu

˘

. By point 2, the probability that B recovers
the LWE secret without the second argument is at least δ. It remains to establish the two points.

Point 1´ S on LWR samples: If S is fed with LWR instances, then certainly there exists s1 P Znq such
that b1i “

X

xa1i, s
1y
T

p
for all i (namely, the LWR secret). So S will solve LWR in step (ii) and give correct

output as long as it does not abort in steps (i) or (iii). Just as in the proof of Claim 1, the probability
that S outputs K in Step (i) because it finds distinct s1 ‰ s2 such that

X

xa1i, s
1y
T

p
“ b1i “

X

xa1i, s
2y
T

p
for

i “ 1, . . . ,m is 2´Ωpnq. Moreover, note that

#
ts P Znq : |Yηpsq| “ 1 & pps,s1q ě 1´ ηu ě 2

holds for at most half of the s1 P Znq . Therefore S aborts given LWR samples with probability at most
1{2` 2´Ωpnq ď 2{3, and otherwise solves LWR.

Point 2´ S on mapped LWE samples: If S is fed with mapped LWE instances, then some s „ Znq is
chosen, tpai, biqumi“1 „ LWEn,q,s,χ are drawn, and pa1i, b

1
iq “ fpai, biq are computed and fed to S. With

probability at least 1´ δ, s R G in which case one of the properties (1), (2) and (3) does not hold. If (1)
does not hold, then pps,s1q ă 1´ η for all s1 P Znq and so

Prtpai,biqumi“1„LWEn,q,s,χ

”

D s1 P Znq st b1i “
X

xa1i, s
1
y
T

p
@ i “ 1, . . . ,m

ı

ă qn ¨
`

1´ η
˘m
ď 2´n,

(since m “ np1` log qq{η) and so S outputs K in Step (ii) with high probability 1´ 2´n. On the other
hand, if (2) does not hold then there exist distinct s1, s2 P Znq such that pps,s1q, pps,s2q ě 1´ σ both hold.
In this case,

Prtpai,biqumi“1„LWEn,q,s,χ

”

X

xa1i, s
1
y
T

p
“ b1i “

X

xa1i, s
2
y
T

p
@ i

ı

ě 1´ 2nqp1` log qqσ ě 1´ δ,

(using σ ď δ{2nqp1 ` log qq) and so S outputs K in Step (i) with probability 1 ´ δ. Finally, suppose
that (1) and (2) both hold and that S does not abort in Steps (i) or (ii) but that (3) does not hold. Note
that |Xηps

1q| ě 1 since s P Xηps
1q, thus if (3) does not hold then it must be that |Xηps

1q| ě 2. In this
case S simply outputs K in Step (iii). So we have shown that when s R G, S outputs K with probability
at least 1´ δ, as desired.

4.3 Proof of Lemma 2
Claim 2 imposes quite a lot of structure on a pointwise reduction. We will refer to Claim 2 repeatedly
throughout the remainder of the paper. Additionally, we can already derive Lemma 2 as a corollary.
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Lemma 2 (Restated). Assume pf,Bq is a pointwise reduction from LWEn,q,χ to LWRn,q,p. If there
exists s1 P Znq such that

Prpa,bq„ZnqˆZq

”

b1 “ txa1, s1ysp

ı

ě 1´
η

2
,

then B is a pδ,mq´solver for LWEn,q,χ for m “ np1` log qq{η.

Proof. Suppose there exists s1 P Znq such that Prpa,bq„ZnqˆZq
“

b1 “ txa1, s1ysp
‰

ě 1 ´ η{2. Then by
Corollary 1, Prpa,bq„LWEs

“

b1 “ txa1, s1ysp
‰

ě 1´η{2´q´n{4 ě 1´η holds for all but a q´Ωpnq´fraction
of s P Znq . In other words, |Xηps

1q| ě p1´ q´Ωpnqq ¨ qn, so the degree of s1 is way too high to have any
neighbors in G. However, this means that G Ă Znq zXηps

1q, and so |G| ď q´Ωpnq ¨ qn and so by Claim 2,
B is a pδ,mq´solver for LWEn,q,χ.

5 Outline of the Rest of the Paper
At this point we have reduced our main result (Theorem 2) to proving Lemma 1; namely we must
design an algorithm which, given oracle access to LWEs for some uniform secret s „ Znq , reconstructs
the LWR secret s1 P Znq of the mapped LWE pairs. We have also already proved a key claim, Claim 2,
which specifies a notion of “good” behavior from an LWE secret s and proves that the set of good
secrets G Ă Znq comprises a non-negligible fraction of the entire space. Intuitively, s P G if there exists
a unique s1 P Znq such that

pps,s1q :“ Prpa,bq„LWEs

”

b1 “
X

xa1, s1y
T

p

ı

ě 1´ η,

and, moreover, if this s1 is unique to s (i.e., so pps˚,s1q ă 1´η for all s˚ ‰ s). The algorithm of Lemma 1
will aim to recover s1 whenever s P G.

The bulk of the technical work of the remainder of the paper will go into proving the following
lemma. Recall the notation of Lemma 1: n, p, q P N are integers such that q is prime and q2{3`c ă
p ă q; ν “ νpnq ą 0 is non-negligible and f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction
from LWEn,q,χ to LWRn,q,p. Recall also that we inherited the non-negligible parameters δ, η, σ ą 0 from
Claim 2.

Lemma 3. Assume the above setup. There exists an efficient algorithm AAffRec which takes no input,
gets oracle access to f , and outputs a pair pH,Vq where H P Znˆnq and V Ă Znq is a constant
dimensional vector space such that with non-negligible probability (over the random coins of AAffRec)
the following holds:

Prpa,bq„ZnqˆZq

”

a1 P SpanpHaq `V
ı

ě 1´ τ,

where τ “ 8q2n4η1{3t, and t P N minimal such that t ě logqp1{δq`2

3c
holds.

Using Lemma 3 to Prove Lemma 1. Once we know that a1 has good agreement with Ha, we can
recover s1 using a Goldreich-Levin-type argument. Let us assume for simplicity in this discussion that
a1 “ Ha occurs with good probability, rather than a1 P SpanpHaq ` V. The key point is that when
s P G is good,

b1 “
X

xa1, s1y
T

p
“
X

xa,Hts1y
T

p

occurs with high probability. Thus, if we simply output a random x „ Zq such that txsp “ b1 we will
be predicting the inner product xa,Hts1y with non-negligible advantage over guessing. The Goldreich-
Levin machinery can then be used to recover Hts1, and this will be good enough to prove Lemma 1.

11



Proving Lemma 3. The proof of Lemma 3 is broken into two parts. In the first part of the proof of
Lemma 3, we prove that for any pointwise reduction from LWEn,q,χ to LWRn,q,p, there exists a constant
dimensional V Ă Znq such that the following property test accepts with good probability:

´ choose pa0, b0q, pa1, b1q „ Znq ˆ Zq and non-zero α, β „ Zqzt0u;

´ compute pa10, b
1
0q “ fpa0, b0q, pa11, b

1
1q “ fpa1, b1q, and pa12, b

1
2q “ fpαa0 ` βa1, αb0 ` βb1q;

´ output 1 if a12 P Span
`

ta10, a
1
1u
˘

`V; output 0 if not.

The logic behind this property test is the following. Let us pretend for this discussion that V “ t0u,
in which case the property tests whether ta10, a

1
1, a

1
2u is linearly independent or not. If ta10, a

1
1, a

1
2u were

linearly independent, then tb10, b
1
1, b

1
2u would represent three different linear relations about the LWR

secret s1. Since ta0, a1, a2u is linearly dependent (writing a2 “ αa0 ` βa1), tb0, b1, b2u represents only
two linear relations about the LWE secret s. The key point is that a pointwise reduction cannot allow
you to generate many linear relations about s1 using only a few linear relations about a good s P G,
since otherwise it would mean that there would be many good s P G which correspond to the same
LWR secret s1, contradicting that good LWE secrets form a perfect matching with their corresponding
LWR secrets. It is here that we need the bound q2{3`c ă p, since each b1i does not decrease the number
of possible secrets by 1{q, but rather by 1{p, since there are q{p different possibilities for xa1, s1y which
satisfy b1 “

X

xa1, s1y
T

p
. Thus, when ta10, a

1
1, a

1
2u is linearly independent, only p´3´fraction of the LWR

secrets will satisfy the linear constraints, whereas q´2´fraction of the LWE secrets will satisfy the
linear constraints corresponding to ta0, a1, a2u. We need p´3 ! q´2 to ensure that the set of remaining
LWR secrets is shrinking faster than the set of remaining LWE secrets.

The final part of the proof of Lemma 3 involves proving that any function which passes the above
property test with good probability must have good agreement with a linear function. This part of
the proof follows the proof of the fundamental theorem of projective geometry (see e.g. Section 2.10
of [Art57]).

Proposition 1 (Fundamental Theorem of Projective Geometry). Let q be a prime and f : Znq Ñ Znq
be a function such that for any one-dimensional line ` Ă Znq , the set fp`q :“

 

fpxq : x P `
(

Ă Znq is
also a line. Then f is affine.

In our case, the hypothesis that fp`q Ă Znq is a line for all lines ` Ă Znq is replaced by the property test
passing with good probability over pa0, b0q, pa1, b1q, pa2, b2q „ Znq ˆZq, and α, β „ Zqzt0u. Likewise,
the conclusion is replaced by a1 P SpanpHaq `V with high probability over pa, bq „ Znq ˆ Zq. The
ideas we use for this part are similar to those used to prove Proposition 1.

6 Recovering the LWR Secret via Goldreich-Levin Inversion
In this section we show how to use the Goldreich-Levin (GL) inversion technique [GL89] to recover
the LWR secret. We begin by recalling the parameters and notations which we will use in this section.

Notations. We have integers n, p, q P N such that q is prime and q2{3`c ă p ă q for some small
constant c ą 0. Additionally, f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction from LWEn,q,χ
to LWRn,q,p. We have non-negligible parameters δ, η, σ ą 0 from Claim 2, and a set of “good” LWE
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secrets G Ă Znq from Section 4.2. Additionally, we have an additional non-negligible τ ą 0 and pH,Vq
where H P Znˆnq and V Ă Znq is a constant dimensional subspace such that

PpH,Vq :“ Prpa,bq„ZnqˆZq
“

a1 P SpanpHaq `V
‰

ě 1´ τ.

For s P Znq and e P Zq, let us define Ps,epH,Vq :“ Pra„Znq
“

a1 P SpanpHaq ` V
‰

, where pa1, b1q “
fpa, xa, sy ` eq. It follows immediately from Corollary 1 that for at most a q´Ωpnq´fraction of s P Znq ,
there exists an e P Zq such that Ps,epH,Vq ă 1 ´ 2τ . So let us remove all such s from G; G will
still comprise a non-negligible fraction of Znq . At this point what we will need from s P G is that the
following points both hold:

p1q D unique s1 P Znq st pps,s1q ě 1´ η; p2q Ps,epH,Vq ě 1´ 2τ @ e

6.1 A Goldreich-Levin Theorem for LWE Samples
In this section, we state and prove a Goldreich-Levin-type theorem which will allow us to recover Hts1

given oracle access to LWEs for unknown s.

Lemma 4 (A Goldreich-Levin Theorem for LWE Samples). Let n, q P N be such that q “ polypnq is
prime, ζ P p0, 1q. For a function Pred : Znq ˆZq Ñ Zq, and quantities ps, e, s̄, γq P Znq ˆZq ˆZnq ˆZq,
let

Ps,eps̄, γq :“ Pra„Znq
“

Predpa, xa, sy`eq “ xa, s̄y`γ
‰

; Psps̄, γq :“ Prpa,bq„LWEs

“

Predpa, bq “ xa, s̄y`γ
‰

.

Then there exists a randomized algorithm Inv which takes tpai, biqumi“1 P pZnq ˆ Zqqm as input, out-
puts s̄˚ P Znq , runs in time polypn, q, 1{ζ,TPredq where TPred is the running time of Pred, and has the
following correctness guarantee.

‚ Correctness: Suppose that s, s̄ P Znq are such that both of the following hold:

¨ for all e P Zq such that Pr
“

χ “ e
‰

ě
4ζ

5qn2 , and non-zero γ P Z˚q , Ps,eps̄, 0q ě Ps,eps̄, γq´ζ;

¨ for all non-zero γ P Z˚q , Psps̄, 0q ě Psps̄, γq ` 10ζ .

Then

Prtpai,biqumi“1„LWEs,χ

“

Inv
`

tpai, biqu
˘

“ s̄
‰

ě
8ζ6

9n4q6
.

Remark. Intuitively, the requirement Psps̄, 0q ě Psps̄, γq`10ζ means that the most likely output of the
predictor on samples from LWEs is s̄. The additional requirement that Ps,eps̄, 0q ě Ps,eps̄, γq´ ζ means
that the predictor performs pretty well regardless of the LWE error. Note that the most likely output of
the “trivial” predictor Predpa, bq “ b is xa, sy (assuming e “ 0 is the most likely LWE error, which is
standard). However, as soon as e ‰ 0, the trivial predictor starts performing extremely badly, always
outputting the wrong value. Clearly if s could be recovered from the trivial predictor then LWE would
be efficiently solvable. Thus the requirement that the predictor perform well for all errors is a critical
hypothesis for the above lemma.

Proof. Let m “ n2{4ζ and k “ 1` rlogqp3mq{ζ
2qs; Inv works as follows.

Input: Inv gets input tpai, biqumi“1 P pZnq ˆ Zqqm and uses an algorithm for Pred as a subroutine.
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Output: Inv outputs s̄˚ P Znq .

1. Choose x1, . . . ,xk „ Znq , g1, h1, . . . , gk, hk „ Zq. For all u “ pu1, . . . , ukq P Zkq , let

xu :“
k
ÿ

j“1

ujxj P Znq ; gu :“
k
ÿ

j“1

ujgj P Zq; and hu :“
k
ÿ

j“1

ujhj P Zq.

2. For all i “ 1, . . . ,m, do the following:

¨ for each β P Zq, compute p̂ipβq :“ Pru„Zkq zt0u

”

Predpai ` xu, bi ` guq ´ hu “ β
ı

;

¨ if there exists β P Zq such that p̂ipβq ě p̂ipβ
1q ` 3ζ for all β1 ‰ β, set wi “ β; otherwise

set wi “ K.

3. Finally, let W “
 

i P t1, . . . ,mu : wi ‰ K
(

, and let ti1, . . . , inu Ă W be such that
tai1 , . . . , ainu is linearly independent (if no such subset exists, output the failure symbol K).
Let pA,wq P Znˆnq ˆ Znq be such that the t´th row (resp., coordinate) of A (resp., w) is ait
(resp., wit). Output s̄˚ “ A´1w P Znq .

It is clear that Inv runs in time polypn, q, 1{ζ,TPredq. Assume that s, s̄ P Znq are such that both
correctness hypotheses hold. We will show that Inv outputs s̄˚ “ s̄ with probability at least 1{2q2k.
Consider first the random choices pxj, gj, hjq „ Znq ˆ Zq ˆ Zq drawn during Step 1. Let us say that
these random choices are correct if:

gj “ xxj, sy and hj “ xxj, s̄y @ j “ 1, . . . , k.

Note these random choices are correct with probability q´2k. When the random choices are correct, we
have gu “ xxu, sy and hu “ xxu, s̄y for all u P Zkq . Consider now the values p̂ipβq for β P Zq and
i P t1, . . . ,mu computed in Step 2, and let us interpret the p̂ipβq as random variables over xj „ Znq .
Note that if the choices are correct, then pai ` xu, bi ` guq is a random LWEs pair with the same error
as pai, biq; thus the expectation of p̂ipxai, s̄y ` γq is Ps,eips̄, γq for all γ P Zq and i P t1, . . . ,mu, where
ei “ bi ´ xai, sy. We will prove a concentration bound using the pairwise independence of pxu,xu1q

for u ‰ u1 P Zkq which will guarantee that with probability at least 2{3 (conditioned on correctness),
ˇ

ˇp̂ipxai, s̄y ` γq ´ Ps,eips̄, γq
ˇ

ˇ ă ζ holds for all i “ 1, . . . ,m and γ P Zq. Let us first show how this
completes the analysis of Inv.

Assume that the error term ei is such that Pr
“

χ “ ei
‰

ě 1
5qm

; by the union bound the probability
that this holds for all i “ 1, . . . ,m is at least 4{5. The first observation is that for all i P t1, . . . ,mu and
non-zero γ P Z˚q , we have

p̂ipxai, s̄yq ą Ps,eips̄, 0q ´ ζ ě Ps,eips̄, γq ´ 2ζ ą p̂ipxai, s̄y ` γq ´ 3ζ.

This means that Step 2 never sets wi to be any value other than xai, s̄y. Likewise, we have the bound
Psps̄, 0q ´ Psps̄, γq ě 10ζ for non-zero γ P Z˚q means that Ps,eps̄, 0q ´ Ps,eps̄, γq ě 5ζ holds with
probability at least 5ζ over e „ χ. By Chernoff, the probability that Ps,eips̄, 0q ´ Ps,eips̄, γq ě 5ζ holds
for at least 4ζm “ n2 of the input LWE pairs pai, biq is 1 ´ 2´Ωpnq. The probability that n2 random
vectors in Znq span a proper subspace is at most q´Ωpnq; thus with probability at least 1 ´ 2´Ωpnq, there
exist n input samples pai1 , bi1q, . . . , pain , binq such that Span

`

tai1 , . . . , ainu
˘

“ Znq and such that each
error term e satisfies Ps,eps̄, 0q ´ Ps,eps̄, γq ě 5ζ for all non-zero γ P Z˚q . For each i P ti1, . . . , inu,

p̂ipxai, syq ą Ps,eips̄, 0q ´ ζ ě Ps,eips̄, γq ` 4ζ ą p̂ipxai, sy ` γq ` 3ζ,
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and so Inv sets wi “ xai, s̄y during Step 2. So we have shown that, conditioned on the random choices
in Step 1 being correct, Inv never sets wi equal to anything but xai, s̄y in Step 2, and furthermore, with
probability at least 4{5 ´ 2´Ωpnq ě 3{4, Inv sets wi “ xai, s̄y for at least n values of i P t1, . . . ,mu
such that the corresponding ai’s span Znq . Thus, once we show that

ˇ

ˇp̂ipxai, s̄y ` γq ´ Ps,eips̄, γq
ˇ

ˇ ă ζ
holds simultaneously for all i “ 1, . . . ,m and γ P Zq with probability at least 2{3, we will have shown
that Inv recovers s̄ with probability at least q´2k{2, as desired.

So fix an LWE sample pa, bq and γ P Zq, and let 11puq be the 0{1 random variable which outputs 1
if Predpa`xu, b`guq´hu “ xa, s̄y`γ and 0 otherwise. Let Q :“ Pr

“

|p̂pxa, s̄y`γq´Ps,eps̄, γq| ą ζ
‰

be shorthand. We have

ζ2Q ď E
”

p̂pxa, s̄y ` γq2
ı

´ Ps,eps̄, γq
2

“
1

pqk ´ 1q2
¨

ÿ

u‰u1PZkq zt0u

E
“

11puq ¨ 11pu1q
‰

´ Ps,eps̄, γq
2
`

1

pqk ´ 1q

ď
1

pqk ´ 1q
,

and so Q ď 1
ζ2pqk´1q

ď 1
3mq

. So the concentration bound holds simultaneously for all i P t1, . . . ,mu
and q P Zq with probability at least 2{3 by the union bound. The result follows.

6.2 The Natural Predictor
Let notations be as specified at the beginning of this section. So, f : Znq ˆ Zq Ñ Znq ˆ Zp is part
of a pointise reduction, and pH,Vq are such that H P Znˆnq and V Ă Znq is a constant dimensional
vector space such that PpH,Vq ě 1 ´ τ . Let tv1, . . . ,vdu be a basis for V. Given such setup, we
now describe the “natural predictor”, which given samples pa, bq „ LWEs for sufficiently good s P G,
predicts the inner product xa,Hts1y well enough so that it is possible to use Lemma 4 to recover Hts1.

The Natural Predictor. The predictor function Pred : Znq ˆ Zq Ñ Zq works as follows.

• The natural predictor is parametrized by α1, . . . , αd P Zq.

• Given pa, bq P Znq ˆ Zq, Pred computes pa1, b1q “ fpa, bq; if a1 “ αHa ` v for α P Z˚q and
v “

řd
i“1 civi P V, then output α´1

`

x´
řd
i“1 ciαi

˘

where x „ Zq is random such that txsp “ b1.

• If a1 R SpanpHaq `V, output a random x „ Zq.

Note that whenever b1 “
X

xa1, s1y
T

p
and a1 “ αHta ` v both hold, b1 “

X

αxa,Hts1y ` xv, s1y
T

p

also holds; so when the natural predictor draws x, a random rounding preimage of b1 and outputs
α´1

`

x´
ř

i ciαi
˘

, it has probability roughly p{q " 1{q of outputting xa,Hts1y as long as αi “ xvi, s1y
for all i “ 1, . . . , d. The following claim proves that this predictor satisfies the hypotheses of Lemma 4,
and so can be used to recover Hts1.

Claim 3. Let notations be as above. Suppose that the natural predictor is fed with inputs from an
LWEs´oracle for some unknown s P G such that for all β P Zq, Pr

“

Ds “ β
‰

ě 1
q2

, where Ds is the
distribution which draws pa, bq „ LWEs such that a1 P SpanpHaq `V, and outputs xa,Hts1y. Assume
furthermore that the parameters of the predictor are αi “ xvi, s1y for all i “ 1, . . . , d. Then both of the
correctness hypotheses of Lemma 4 are satisfied for s̄ “ Hts1.
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Proof. Fix ζ “ 1´2τ´q2η
10q3

. We must show two points:

¨ for all e P Zq with Pr
“

χ “ e
‰

ě
4ζ

5qn2 and all non-zero γ P Z˚q , Ps,epH
ts1, 0q ě Ps,epH

ts1, γq ´ ζ;

¨ for all non-zero γ P Z˚q , PspH
ts1, 0q ´ PspH

ts1, γq ě 10ζ;

where Ps,epH
ts1, γq and PspH

ts1, γq are the notations from Lemma 4:

Ps,epH
ts1, γq :“ Pra„Znq

“

Predpa, xa, sy ` eq “ xa,Hts1y ` γ
‰

,

and PspH
ts1, γq is the same except the probability is over pa, bq „ LWEs. Let us simplify the shorthand

by writing P
p1q
e pγq and Pp1qpγq instead of Ps,epH

ts1, γq and PspH
ts1, γq. Note

Pp1qe pγq “
`

1´Ps,epH,Vq
˘

¨
1

q
`Pra„Znq

“

Predpa, xa, sy` eq “ xa,Hts1y` γ & a1 P SpanpHaq`V
‰

.

So if we shorthand the second term by P
p2q
e pγq, then P

p1q
e p0q ´ P

p1q
e pγq “ P

p2q
e p0q ´ P

p2q
e pγq. Now let

Pp3qe pγq :“ Pra„Znq
“

Predpa, xa, sy ` eq “ xa,Hts1y ` γ & b1 “
X

xa1, s1y
T

p
& a1 P SpanpHaq `V

‰

.

Note that when e P Zq is such that Pr
“

χ “ e
‰

ě
4ζ

5qn2 , Pp2q3 ´
5qn2η
4ζ

ď P
p3q
e pγq ď P

p2q
e pγq, since s P G and

so pps,s1q ě 1´η. Therefore, Pp2qe p0q´P
p2q
e pγq ě P

p3q
e p0q´P

p3q
e pγq´ζ , using η ď 4ζ2

5qn2 . To bound the Pp3q

terms, recall that when a1 “ αHa`v for v “
ř

i civi P V, Pred outputs α´1
`

x´
ř

i ciαi
˘

for a random
x „ Zq such that txsp “ b1. Therefore, when b1 “

X

xa1, s1y
T

p
“

X

αxa,Hts1y ` xv, s1y
T

p
, Pred outputs

xa,Hts1y with probability roughly p{q when
X

αpxa,Hts1y ` γq ` xv, s1y
T

p
“

X

αxa,Hts1y ` xv, s1y
T

p
,

and with probability 0 otherwise. It follows that Pp3qe p0q ´ P
p3q
e pγq is roughly

p

q
¨ Pra„Znq

”

X

αpxa,Hts1y ` γq ` xv, s1y
T

p
‰
X

αxa,Hts1y ` xv, s1y
T

p
& a1 P SpanpHaq `V

ı

ě 0.

Thus, Pep0q ě Pepγq ´ ζ for all non-zero γ P Z˚q , which establishes the first point.
For the second point, we can define Pp2qpγq analogously to how we defined P

p2q
e pγq (except prob-

ability is over pa, bq „ LWEs) and we get Pp1qp0q ´ Pp1qpγq “ Pp2qp0q ´ Pp2qpγq. Now, let us write
Pp2qpγq “

ř

βPZq Sβpγq where each Sβpγq is the product of the following four terms:

• Prpa,bq„LWEs

“

a1 P SpanpHaq `V
‰

“: PspH,Vq;

• Prpa,bq„LWEs

“

xa,Hts1y “ β
ˇ

ˇa1 P SpanpHaq `V
‰

;

• Prpa,bq„LWEs

“

b1 “
X

xa1, s1y
T

p

ˇ

ˇxa,Hts1y “ β & a1 P SpanpHaq `V
‰

;

• Prpa,bq„LWEs

“

Predpa, bq “ xa,Hts1y`γ
ˇ

ˇb1 “
X

xa1, s1y
T

p
& xa,Hts1y “ β & a1 P SpanpHaq`V

‰

.

Let Qβpγq be shorthand for the fourth term; as noted above, Qβpγq is roughly equal to p
q
¨11pβ, γq where

11pβ, γq “ 1 if
X

αpβ ` γq `
ř

i ciαi
T

p
“

X

αβ `
ř

i ciαi
T

p
, and is zero otherwise. The second term is
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Pr
“

Ds “ β
‰

, where Ds is the distribution defined in the claim statement. Finally, note that the third
term is at least 1´ q2η

PspH,Vq
. Thus, for non-zero γ P Z˚q ,

Pp2qp0q ´ Pp2qpγq ě

ˆ

PspH,Vq ´ q
2η

˙

¨
ÿ

βPZq

Pr
“

Ds “ β
‰

¨
`

Qβp0q ´ Qβpγq
˘

ě

ˆ

PspH,Vq

q2
´ η

˙

¨
ÿ

β:11pβ,γq“0

1

q
ě

ˆ

1´ 2τ ´ q2η

q3

˙

“ 10ζ,

where the second inequality on the second line holds since when γ ‰ 0 there exists at least one β such
that 11pβ, γq “ 0. The second point follows.

6.3 Proving Lemma 1 Assuming Lemma 3
Lemma 1 (Restated). Assume the notations described in the beginning of the section. So specifically,
f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction and pH,Vq are such that PpH,Vq ě 1 ´ τ .
Then there exists an algorithm which, given oracle access to an LWEs´oracle for a random s „ G,
outputs Hts1 with non-negligible probability over s „ G and the random coins.

Proof. By Claim 3 and Lemma 4, it suffices simply to show that for an overwhelming fraction of the
s P G have Pr

“

Ds “ β
‰

ě 1
q2

for all β P Zq where Ds is the distribution which draws pa, bq „ LWEs

such that a1 P SpanpHaq `V and outputs xa,Hts1y. Since PspH,Vq ě 1´ 2τ , Ds is within statistical
distance 2τ of the distribution D̂s which simply draws a „ Znq and outputs xa,Hts1y. For β P Zq,
define the sets:

Xβ :“
 

s P G : Pra„Znq rxa,H
ts1y “ βs ă q´2

(

; and Yβ :“
 

Hts1 : s P Xβ

(

,

and consider the distribution Dβ , which draws a „ Znq , s „ Xβ and outputs xa,Hts1y. We have

1

q
´

1

q2
´ 2τ ă ∆

`

Dβ,UnifpZqq
˘

ď qc∆
`

xUnifpZnq q,UnifpYβqy,UnifpZqq
˘

ď

c

q

4|Yβ|
.

The first inequality used the definition of Xβ; the second used that H has rank n´ c for some constant
c (since otherwise f would be degenerate), and that G induces a perfect matching between LWE secrets
and LWR secrets; and the last inequality is Fact 1. It follows that |Yβ| “ qOp1q, and thus so are |Xβ|,
and

Ť

βXβ . Therefore, Pr
“

Ds “ β
‰

ě 1
q2

holds for all β P Zq for an overwhelming fraction of the
s P G. Lemma 1 follows.

7 Proving Lemma 3
Notations. Recall we have integers n, p, q P N such that q is prime and q2{3`c ă p ă q for some
small constant c ą 0. Additionally, f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction from
LWEn,q,χ to LWRn,q,p. Recall from Section 4.2, we have a set G Ă Znq of “good secrets”; this set has
size at least |G| ě δqn for non-negligible δ ą 0 and for each s P G there exists a unique s1 P Znq such
that pps,s1q ě 1 ´ η for non-negligible η ą 0. It was also shown in Claim 1 that for all subset S Ă Znq
of size |S| “ ρqn, and non-negligible ν ą 0, Prpa,bq„ZnqˆZq

“

a1 P S
‰

ď ρ` ν. We have been calling this
the “non-degenerate” property of f ; this will play a major role in this section. Our goal in this section
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is to algorithmically recover pH,Vq such that H P Znˆnq and V Ă Znq is a constant dimensional vector
subspace such that

PpH,Vq :“ Prpa,bq„ZnqˆZq
“

a1 P SpanpHaq `V
‰

ě 1´ τ,

for τ “ 8n4q2η1{3t, where t P N is a new parameter; it is the minimal integer such that t ě logqp1{δq`2

3c

holds. Note t “ Op1q.

The Function h. We introduce the function h : Znq Ñ Znq which is derived from f as follows. Most
of the time, if given a P Znq , h simply draws b „ Zq uniformly, computes pa1, b1q “ fpa, bq and outputs
a1. However, we will occasionally need to assume that h uses previously drawn values of b to produce
a new b, rather than drawing b „ Zq fresh each time. For example, in this section we will be interested
in the experiment which draws a0, a1 „ Znq , pα0, α1q „ Z2

qztp0, 0qu, then sets a2 “ α0a0 ` α1a1 and
computes a1j “ hpajq for j “ 0, 1, 2. The computations of h in this context will draw b0, b1 „ Zq and
then set b2 “ α0b0 ` α1b1, rather than drawing b2 „ Zq. It will be considerably simpler to work with
h rather than f . The non-degeneracy property for h says that for all S Ă Znq of size |S| “ ρqn, and
non-negligible ν ą 0, Pra„Zq

“

hpaq P S
‰

ď ρ` ν.

7.1 Recovering V

The Algorithm to Recover V. Let notations be as above. We recover V as follows.

1. Initialize V “ t0u; choose r „ t1, . . . , tu; for i “ 1, . . . , r, do the following:

¨ choose ai,0, ai,1 „ Znq and pαi,0, αi,1q „ Z2
qztp0, 0qu;

¨ compute a1i,j “ hpai,jq for j “ 0, 1, 2, where ai,2 “ αi,0ai,0 ` αi,1ai,1;

¨ update V :“ V ` Span
`

ta1i,0, a
1
i,1, a

1
i,2u

˘

.

2. Output V.

Claim 4. Let Dr denote the random procedure used to generate the vectors
 

a1i,0, a
1
i,1, a

1
i,2ui“1,...,r.

Suppose the function h : Znq Ñ Znq is such that PrDt
“

dim Span
`

ta1i,jui,j
˘

“ 3t
‰

ă η1{3. Then with
non-negligible probability, the vector space V output above satisfies PpVq ě 1´ 4η1{3t, where

PpVq :“ Pr a1,a2„Znq
pα1,α2q„Z2

qztp0,0qu

”

hpα1a1 ` α2a2q P Span
`

thpa1q, hpa2qu
˘

`V
ı

.

Proof. Let ν ą 0 be such that ν3t “ η. Consider an execution of Dt; for i “ 0, . . . , t, let Vi denote the
vector space V after the i´th iteration, and let di “ dimpViq. We are given that Pr

“

dt “ 3t
‰

ă νt; let
r P t1, . . . , t´ 1u be maximal such that Pr

“

dr “ 3r
‰

ě νr. We have

νr`1 ą Pr
“

dr`1 “ 3pr ` 1q
‰

“ Pr
“

dr`1 “ 3pr ` 1q
ˇ

ˇdr “ 3r
‰

¨ Pr
“

dr “ 3r
‰

ě Pr
“

dr`1 “ 3pr ` 1q
ˇ

ˇdr “ 3r
‰

¨ νr,

and so Pr
“

dr`1 ă 3pr`1q
ˇ

ˇdr “ 3r
‰

ě 1´ν. Let a0, a1 P Znq and pα0, α1q P Z2
qztp0, 0qu be the vectors

and scalars drawn during the pr ` 1q´th round of Dt. Note if dr`1 ă 3pr ` 1q then it must be that at
least one of the following occurs:

p1q a10 P Vr; p2q a11 P Vr ` Spanpa10q; p3q a12 P Vr ` Span
`

ta10, a
1
1u
˘

.
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By non-degeneracy, the first two points happen with probability at most ν ` q´Ωpnq. Thus, the third
point holds with probability at least 1´ 3ν ´ q´Ωpnq ě 1´ 4ν, and so

PpVrq “ Pr a0,a1„Znq
pα0,α1q„Z2

qztp0,0qu

”

hpα0a0 ` α1a1q P Span
`

thpa0q, hpa1qu
˘

`Vr

ı

ě 1´ 4ν.

The probability that the above algorithm chooses this r is 1{t. The claim follows.

Claim 5. Let notations be as above. Then PrDt
“

dimpVq “ 3t
‰

ă η1{3.

Remark. This is the only place in the paper where we need to use the assumption that q2{3`c ă p ă q.

Proof. Let D be the distribution which runs the same random procedure as in Dt except which also
outputs the tai,ju, and additionally which outputs the tbi,ju and tb1i,ju used to compute h. So specifically,
D outputs

!

pai,j, bi,jq, pa
1
i,j, b

1
i,jq

)

i“1,...,t
j“0,1,2

Ă
`

Znq ˆ Zq
˘3
ˆ
`

Znq ˆ Zp
˘3

where for all i “ 1, . . . , t:

‚ pai,0, bi,0q, pai,1, bi,1q „ Znq ˆ Zq;

‚ pαi,0, αi,1q „ Z2
qztp0, 0qu and pai,2, bi,2q “ pαi,0ai,0 ` αi,1ai,1, αi,0bi,0 ` αi,1bi,1q;

‚ pa1i,j, b
1
i,jq “ fpai,j, bi,jq.

Consider a draw
`

tpai,j, bi,jqu, tpa
1
i,j, b

1
i,jqu

˘

„ D, let d :“ dim
`

Span
`

ta1i,ju
˘˘

, and let S, S 1 Ă Znq be
the following subsets of LWE and LWR secrets:

S :“
 

s P G : bi,j “ xai,j, sy @ i, j
(

; and S 1 :“
 

s1 P Znq : b1i,j “
X

xa1i,j, s
1
y
T

p
@ i, j

(

.

Consider the following three events:

‚ E1: d “ 3t;

‚ E2: |S| ě q´2t´1 ¨ |G|;

‚ E3: Prs„S
“

s1 P S 1
‰

ě 1´
?

3tqη, where s1 P Znq is the unique LWR secret st pps,s1q ě 1´ η.

Note that all three events cannot occur simultaneously. Indeed, the events E2 and E3 together imply
that #ts P S : s1 P S 1u ě p1 ´

?
3tqηq ¨ q´2t´1 ¨ |G| ě 1

2
¨ q´2t´1 ¨ |G|, while E1 implies that

|S 1| “
`

q{p
˘3t
¨ q´3t ¨ qn “ p´3t ¨ qn. If all three hold then

#ts P S : s1 P S 1u

|S 1|
ě
q´2t´1 ¨ δ

2 ¨ p´3t
ą
q3tc´1 ¨ δ

2
ą 1,

which violates property 3 of G since it means some s1 P S 1 has #ts P S : pps,s1q ě 1 ´ ηu ě 2.
We finish by showing that both E2 and E3 occur with high probability. Specifically, we show that
PrD

“

E2 & E3

‰

ą 1 ´ η1{3. Since all three events cannot occur simultaneously, PrD
“

E1

‰

ă η1{3 must
hold. So, Points 1 and 2 below complete the proof.
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Claim 6. PrD
“

E2

‰

ą 1´ q´n{3.

Proof. Recall E2 is the event that |S| ě q´2t´1 ¨ |G|. In this proof, it will be more convenient to label
the 2t pairs in Znq ˆ Zq drawn during D as pa1, b1q, . . . , pa2t, b2tq, rather than pai,j, bi,jq, i “ 1, . . . , t
and j “ 0, 1. Given a draw tpai, biqu2ti“1 during D, let Gr “ ts P G : bi “ xai, sy @ i “ 1, . . . , ru. So
G “ G0 and S “ G2t. We have

PrD
“

E2

‰

“ PrD

”

|S| ě q´2t´1 ¨ |G|
ı

ě PrD

”

|Gr| ě q´1´1{2t ¨ |Gr´1| @ r “ 1, . . . , 2t
ı

“

2t
ź

r“1

PrD

”

|Gr| ě q´1´1{2t ¨ |Gr´1|
ˇ

ˇ

ˇ
|Gi| ě q´1´1{2t ¨ |Gi´1| @ i “ 1, . . . , r ´ 1

ı

.

We will show that for all r “ 1, . . . , 2t, as long as |Gr´1| ě q´r ¨ |G|, then

Prpa,bq„ZnqˆZq

”

Prs„Gr´1

“

b “ xa, sy
‰

ě q´1´1{2t
ı

ě 1´ q´n{2 (4)

holds. This proves the claim as it gives PrD
“

E2

‰

ě
`

1 ´ q´n{2
˘2t
ą 1 ´ q´n{3, so it remains to prove

(4). For b P Zq, let
Xb :“

 

a P Znq : Prs„Gr´1rxa, sy “ bs ă q´1´1{2t
(

.

Clearly ∆
`

xXb,Gr´1y,UnifpZqq
˘

ą q´1 ¨ p1´ q´1{2tq ě q´2. Therefore, by Fact 1,

|Xb| ď
qn`1

|Gr´1| ¨ q´4
ď

qn`5

q´r ¨ |G|
ď
qn`5`2t

δ ¨ qn
“ q2t`5 ¨ δ´1.

We have

Prpa,bq„ZnqˆZq

”

Prs„Gr´1

“

b “ xa, sy
‰

ă q´1´1{2t
ı

ď Pra„Znq

”

D b P Zq st a P Xb

ı

ď q2t`6 ¨ δ´1 ¨ q´n ă q´n{2,

proving (4).

Claim 7. PrD
“

E3

‰

ě 1´
?

3tqη.

Proof. Recall E3 is the event that Prs„S
“

s1 P S 1
‰

ě 1 ´
?

3tqη, where s1 P Znq is the unique s1 P Znq
such that pps,s1q ě 1 ´ η. We prove PrD,s„S

“

s1 P S 1
‰

ě 1 ´ 3tqη; the claim then follows by averaging.
Note that Prpa,bq„LWEs

“

b1 “
X

xa1, s1y
T

p

ˇ

ˇb “ xa, sy
‰

ě 1 ´ qη, since χ outputs e “ 0 with probability at
least 1{q. It follows that

PrD,s„S
“

s1 P S 1
‰

“ PrD,s„G

”

b1i,j “
X

xa1i,j, s
1
y
T

p
@ i, j

ˇ

ˇ

ˇ
bi,j “ xai,j, sy @ i, j

ı

“ Prs„G,tpai,j ,bi,jqu„LWEs

”

b1i,j “
X

xa1i,j, s
1
y
T

p
@ i, j

ˇ

ˇ

ˇ
bi,j “ xai,j, sy @ i, j

ı

ě 1´ 3tqη,

by the union bound.
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7.2 Recovering H.
In the previous section we showed how to recover a constant dimensional subspace V Ă Znq such that
PpVq ě 1 ´ 4ν, where ν “ η1{3t. Here, we show how to use h such that PpVq ě 1 ´ 4ν holds, to
recover H P Znˆnq such that PpH,Vq ě 1 ´ τ holds where τ “ 8n4q2ν. This completes the proof
of Lemma 3, and thus also the proof of Theorem 2. Rather than directly recovering H P Znˆnq , our
algorithm will recover vectors tai, a1iu

n
i“1 Ă Znq such that taiui is linearly independent and such that

Prα1,...,αn„Zq

”

hpα1a1 ` ¨ ¨ ¨ ` αnanq P Spanpα1a
1
1 ` ¨ ¨ ¨ ` αna

1
nq `V

ı

ě 1´ τ. (5)

Given such tai, a1iui, we let H P Znˆnq be the linear map which sends ai to a1i for all i “ 1, . . . , n;
PpH,Vq ě 1´ τ follows from (5).

The Algorithm to Recover tai, a1iui. Let notations be as above. We recover tai, a1iui as follows.

1. Choose a1, . . . , an „ Znq uniformly such that ta1, . . . , anu is linearly independent.

2. For i “ 1, . . . , n, set a1i “ λihpaiq for scalars tλiuni“1 computed as follows:

¨ set λ1 “ 1;

¨ for i ě 2, let λi P Zq be the unique scalar such that hpa1 ` aiq P Span
`

a11 ` λihpaiq
˘

`V;
if no such λi exists, or if more than one such λi exists, halt and give no output.

3. Output tai, a1iu
n
i“1.

Note that hpa1 ` aiq P Span
`

ta11, hpaiqu
˘

` V holds for all i P t2, . . . , nu with probability at least
1 ´ 4pn ´ 1qq2ν, since PpVq ě 1 ´ 4ν. In this case, for all i, there exist scalars pβ1, βiq such that
hpa1 ` aiq P β1a

1
1 ` βihpaiq `V. If β1 “ 0 then hpa1 ` aiq P Span

`

hpaiq
˘

`V; this happens only
with negligible probability since h is non-degenerate. If β1 ‰ 0 then there exists some scalar λi P Zq
such that hpa1 ` aiq P Span

`

a11 ` λihpaiq
˘

`V. Note, it is only possible for there to exist two such
scalars, λi ‰ λ1i such that

hpa1 ` aiq P
´

Span
`

a11 ` λihpaiq
˘

`V
¯

X

´

Span
`

a11 ` λ
1
ihpaiq

˘

`V
¯

,

if hpaiq P Spanpa11q `V. This also occurs with negligible probability since h is non-degenerate. Thus,
the above algorithm completes and gives output without aborting with probability at least 1´ 4nq2ν.

Establishing (5). Given taiuni“1 which are linearly independent, define the quantities Pr
`

taiu
˘

for
r “ 3, . . . , n as

Pr
`

taiu
˘

:“ Prα1,...,αr„Zq

”

hpα1a1 ` ¨ ¨ ¨ ` αrarq P Spanpα1a
1
1 ` ¨ ¨ ¨ ` αra

1
rq `V

ı

.

It remains to show that with good probability over taiu, Pn
`

taiu
˘

ě 1 ´ τ holds. We will prove this
using induction on r. The following claim is key to this argument; it gives us our base case and will
also be crucial to our induction step. We prove this claim in Section 7.3.
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Claim 8. For all distinct i, j P t2, . . . , nu, and pα1, αi, αjq P Z3
qzt0u,

hpα1a1 ` αiai ` αjajq P Span
`

tα1a
1
1 ` αia

1
i ` αja

1
ju
˘

`V,

holds with probability at least 1´ 4q2n2ν over taiuni“1.

Let us now see how to use Claim 8 to establish (5). We will show that Pr ě 1 ´ 8r2n2q2 for all
r “ 3, . . . , n. We use induction; the base case of r “ 3 follows immediately from Claim 8, so fix r ą 3
and assume that Pr´1 ě 1´8pr´1q2n2q2ν. Draw linearly independent taiuni“1 from Znq . Additionally,
draw a non-zero ~α “ pα1, . . . , αrq „ Zrqzt0u. We group the sum α1a1 ` ¨ ¨ ¨ ` αnan in two ways:

pα1a1 ` ¨ ¨ ¨ ` αr´1ar´1q ` αrar “ pα1a1 ` αrarq ` pα2a2 ` ¨ ¨ ¨ ` αr´1ar´1q.

Consider what happens if the following things occur:

¨ hpα1a1 ` ¨ ¨ ¨ ` αr´1ar´1q P Spanpα1a
1
1 ` ¨ ¨ ¨ ` αr´1a

1
r´1q `V;

¨ hpα1a1 ` αrarq P Spanpα1a
1
1 ` αra

1
rq `V.

¨ hpαrarq P Spanpαra
1
rq `V;

¨ hpα2a2 ` ¨ ¨ ¨ ` αr´1ar´1q P Spanpα2a
1
2 ` ¨ ¨ ¨ ` αr´1a

1
r´1q `V.

Note the first and last events occur with probability Pr´1
`

taiu
˘

and Pr´2
`

taiu
˘

by the induction hy-
pothesis; the middle two events occur with probability 1 ´ 8q2n2ν by Claim 8. Moreover, note that
when all four of these events occur hpα1a1 ` ¨ ¨ ¨ ` αrarq is contained in

ˆ

Span
´

 

α1a
1
1 ` ¨ ¨ ¨ ` αr´1a

1
r´1, αra

1
r

(

¯

`V

˙

X

ˆ

Span
´

 

α1a
1
1 ` αra

1
r, z

(

¯

`V

˙

,

where z “ hpα2a2 ` ¨ ¨ ¨ ` αr´1ar´1q. It follows that there exist scalars A,B,A1, B1 P Zq such that

A ¨
`

α1a
1
1 ` ¨ ¨ ¨ ` αr´1a

1
r´1q `B ¨ αra

1
r P A

1
¨ pα1a

1
1 ` αra

1
rq `B

1
¨ z`V.

Thus either A1 “ A or else a11 P Span
` 

α2a
1
2 ` ¨ ¨ ¨ ` αr´1a

1
r´1, a

1
r, z

(˘

` V, which happens only
with negligible probability by non-degeneracy. Similarly, A1 “ B except with negligible probability. It
follows that except with probability 1´ 8rq2n4ν, A “ B and so

hpα1a1 ` ¨ ¨ ¨ ` αrarq P Span
`

tα1a
1
1 ` ¨ ¨ ¨ ` αra

1
ru
˘

`V

as desired.

7.3 Proof of Claim 8
Proof. We must show that for all distinct i, j P t2, . . . , nu and pα1, αi, αjq P Z3

qzt0u,

hpα1a1 ` αiai ` αjajq P Span
`

tα1a
1
1 ` αia

1
i ` αja

1
ju
˘

`V

holds with good probability over taiu. We will build up to analyzing hpα1a1`αiai`αjajq. To start out,
we know that hpa1q “ a11 and hpa1`aiq “ a11`a1i for all i P t2, . . . , nu; these are due to the algorithm
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specifications. So now consider hpa1`αiaiq for αi ‰ 0, 1. Note a1`αiai “ p1´αiqa1`αipa1`aiq,
and so

hpa1 ` αiaiq P Span
`

ta11, a
1
iu
˘

`V

holds for all i P t2, . . . , nu and αi P Zq with probability at least 1´4nqν (since PpVq ě 1´4ν). Now,
if hpa1 ` αiaiq P Span

`

ta11, a
1
iu
˘

`V holds for all pi, αiq, then we can define maps πi : Zq Ñ Zq so
that hpa1`αiaiq P Span

`

a11`πipαiqa
1
i

˘

`V always holds. Note πip0q “ 0 and πip1q “ 1 for all i. We
complete the proof of Claim 8 by showing the following both occur with good probability over taiu

Point 1: for all pα1, αi, αjq P Z3
qzt0u, and for all i, j P t2, . . . , nu,

hpα1a1 ` αiai ` αjajq P Span
`

tα1a
1
1 ` πipαiqa

1
i ` πjpαjqa

1
ju
˘

`V;

Point 2: every πi is the identity function.

Point 1 when α1 “ αj “ 0. Note αiai “ ´a1 ` pa1 ` αiaiq, and so hpαiaiq P Span
`

ta11, a
1
iu
˘

`V
holds with probability 1´ 4ν. This means that either

hpαiaiq P Spanpa1iq `V; or a11 P Span
` 

hpαiaiq, a
1
i

(˘

`V.

The latter happens with negligible probability since h is non-degenerate. Thus, hpαiaiq P Spanpa1iq`V
holds simultaneously for all i P t2, . . . , nu and αi P Zq with probability at least 1´ 4qnν over taiu.

Point 1 when α1 “ 1. Note αjaj ` pa1 ` αiaiq “ a1 ` αiai ` αjaj “ αiai ` pa1 ` αjajq, and so

hpa1 ` αiai ` αjajq P

ˆ

Span
`

ta1i, a
1
1 ` πjpαjqa

1
ju
˘

`V

˙

X

ˆ

Span
`

ta1j, a
1
1 ` πipαiqa

1
iu
˘

`V

˙

holds with probability 1 ´ 8ν. In case hpa1 ` αiai ` αjajq is in the intersection, there exist scalars
A,B,A1, B1 P Zq such that

Aa1i `B ¨
`

a11 ` πjpαjqa
1
j

˘

P A1a1j `B
1
¨ pa11 ` πipαiqa

1
i

˘

`V.

As we have seen a few times by now, either B “ B1 or else a11 P Span
`

ta1i, a
1
ju
˘

` V and the latter
happens with negligible probability by non-degeneracy. Therefore, B “ B1 except with negligible
probability. Similarly, A “ πipαiqB, and so hpa1`αiai`αjajq P Spanpa11`πipαiqa

1
i`πjpαjqa

1
jq`V

holds for all i, j P t2, . . . , nu and αi, αj P Z with probability at least 1´ 8q2n2ν over taiu.

Point 1 when α1 “ 0. Note hpαiai`αjajq P Span
`

ta1i, a
1
ju
˘

`V with probability 1´ 4ν over taiu.
Additionally, we can write αiai ` αjaj “ ´a1 ` pa1 ` αiai ` αjajq and so

hpαiai ` αjajq P Span
`

ta11, a
1
1 ` πipαiqa

1
i ` πjpαjqa

1
ju
˘

`V

holds with probability 1 ´ 8ν by the previous part. Thus, with probability at least 1 ´ 12ν, there exist
scalars A,B,A1, B1 P Zq such that

Aa1i `Ba1j “ A1a11 `B
1
pa11 ` πipαiqa

1
i ` πjpαjqa

1
jq.

By non-degeneracy, A1 “ ´B1, A “ B1πipαiq, and B “ B1πjpαjq hold except with negligible prob-
ability. So hpαiai ` αjajq P Span

`

tπipαiqa
1
i ` πjpαjqa

1
ju
˘

` V holds for all i, j P t2, . . . , nu and
αi, αj P Zq with probability 1´ 12q2n2ν over taiu.
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Point 2. We prove that πipαiq “ αi for all i “ 2, . . . , n and αi P Zq by induction on αi. We have
already seen that πip0q “ 0 and πip1q “ 1 for all i. So assume πipαi ´ 1q “ αi ´ 1, and write
a1 ` αiai ` aj in three different ways:

pa1 ` aiq ` ppαi ´ 1qai ` ajq “ aj ` pa1 ` αiaiq “ pa1 ` ajq ` αiai.

With probability 1´ 12ν over taiu, hpa1 ` αiai ` ajq is contained in:
ˆ

Span
`

ta11 ` a1i, pαi ´ 1qa1i ` a1ju
˘

X Span
`

ta1j, a
1
1 ` πipαiqa

1
iu
˘

X Span
`

ta11 ` a1j, a
1
iu
˘

˙

`V,

in which case there exist scalars A,B,A1, B1, A2, B2 P Zq such that hpa1 ` αiai ` ajq is equal to

Apa11 ` a1iq `Bppαi ´ 1qa1i ` a1jq “ A1a1j `B
1
pa11 ` πipαiqa

1
iq “ A2pa11 ` a1jq `B

2a1i.

Solving for a11 gives A2 “ B1 “ A. Solving for a1j gives A2 “ A1 “ B. In particular, A “ B “ B1.
Solving for a1i gives πipαiq “ αi, as desired. We incurred a loss of 12ν to take a single step in the
induction. Therefore, πipαiq “ αi for all i P t2, . . . , nu and αi P Zq occurs with probability at least
1´ 12nqν.

Point 1. Assume α1 ‰ 0 since we have already handled this case above. Writing

α1a1 ` αiai ` αjaj “ α1pa1 ` α
´1
1 αiai ` α

´1
1 αjajq,

we see that with probability at least 1´ 12ν over taiu, hpα1a1 ` αiai ` αjajq is contained in

Span
`

hpa1 ` α
´1
1 αiai ` α

´1
1 αjajq

˘

`V “ Span
`

a11 ` α
´1
1 αia

1
i ` α

´1
1 αja

1
j

˘

`V,

as desired. We have used point 2.
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