Multiparty Private Set Intersection Cardinality and Its Applications

Ni Trieu* Avishay Yanaif Jiahui Gao*

June 8, 2022

Abstract

We describe a new paradigm for multi-party private set intersection cardinality (PSI-CA)
that allows n parties to compute the intersection size of their datasets without revealing any
additional information. We explore a variety of instantiations of this paradigm. Our proto-
cols avoid computationally expensive public-key operations and are secure in the presence of a
malicious adversary.

We demonstrate the practicality of our PSI-CA protocol with an implementation. For n = 16
parties with data-sets of 220 items each, our server-aided variant takes 71 seconds. Interestingly,
in the server-less setting, the same task takes only 7 seconds. To the best of our knowledge, this
is the first ‘special purpose’ implementation of a multi-party PSI-CA (i.e., an implementation
that does not rely on a generic underlying MPC protocol).

Our PSI-CA protocols can be used to securely compute the dot-product function. The dot-
product function takes n binary vectors vy, ..., v,, each of m elements, and outputs the sum of
m entries, where the i-th entry is equal the product of the i-th entries in all n input vectors.
Importantly, the complexity of our protocol for secure dot-product (where party P; has a secret
vector v;) is linear only in the Hamming weight of the vectors, which is potentially sub-linear
in the input size.

We demonstrate that two interesting applications, namely, ‘COVID-19 heatmap’ and ‘as-
sociated rule learning (ARL)’, can be computed securely using a dot-product as a building
block. We analyse the performance of securely computing Covid-19 heatmap and ARL using
our protocol and compare that to the state-of-the-art.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to jointly invoke a distributed com-
putation while ensuring correctness, privacy, and more. Garbled circuit [Yao86, GMW87, BMRIO0]
is a popular generic technique for secure computation, which has been enjoyed notable optimiza-
tions in recent years (e.g. [RR21]). However, for concrete applications, special-purpose protocols
significantly improve performance compared to circuit-based approaches.

In this work, we study Private Set Intersection Cardinality (PSI-CA), a special case of MPC,
that allows multiple parties to compute the intersection size of their private sets without reveal-
ing additional information. PSI itself has been motivated by many real-world applications such
as contact discovery [KRST19]. Over the last several years PSI has become truly practical with
extremely fast cryptographically secure implementations [CM20, RS21, PRTY20, GPR'21]. In the
setting of two parties, PSI with post-processing (a.k.a circuit-based PSI), especially PSI-CA, has

*Arizona State University, {nitrieu, jhgao}@asu.edu
VMware Research, ay.yanay@gmail.com

recently drawn more attention with several applications, such as measuring the effectiveness of on-
line advertising [[KN"20], limiting the spread of Child Sexual Abuse Material (CSAM) [BBM*21],
and private contact tracing related to COVID-19 [BBV 20, DPT20, DIL*20]. However, the state-
of-the-art PSI-CA is only efficient in the two-party setting [IKN*20, DPT20, DIL"20]. This work
considers a natural generalization to the multi-party setting, which opens the opportunity for richer
applications, like the two we showcase below. The state-of-the-art protocol for PSI-CA in the multi-
party setting [CDG™21] relies on secret-shared computation [DN07], which might be not scale well
for a large number of parties. In this work we present, for the first time, a scalable protocol for
PSI-CA in the multi-party setting.

Moreover, we present a new protocol, called DotProd, where n parties may compute a sum of
element-wise products of their binary vectors without revealing any additional information. Mathe-
matically, suppose party P; holds the m-element vector x;, then the parties obtain Z;”:l [T, @ildl,

where ;5] is the j** element of the vector x;. Note that in the two-party case, the computation
is exactly of the dot product 1 - 5. We demonstrate the efficiency of our protocols through two
real-world applications: a COVID-19 heatmap computation based on PSI-CA and an associated
rule learning (ARL) based on DotProd.

1.1 State-of-the-Art for PSI Cardinality

Private Set Intersection Cardinality (PSI-CA) is a variant of PSI in which the parties learn the
intersection size and nothing else. In this work, we also focus on server-aided PSI-CA constructions.
By “server-aided”, we refer to cases where the parties perform PSI-CA computation with the help
of distrusted cloud server(s). To the best of our knowledge, this work proposes the first special-
purpose PSI-CA protocols that work in the multi-party setting.

We start with discussing PSI-CA works in the two-party setting. Clearly, one can use circuit-
based PSI [PSTY19] to implement PSI-CA. However, this generic solution is expensive due to the
secure computation inside the circuit. For the special-purpose two-party PSI-CA constructions, the
work [ITKNT20] extends the classic DH-based PSI protocol [Mea95] to support two-party PSI-CA by
having a sender shuffle the PRFs of their items before returning to the receiver. Epione [TSS™20]
also proposed a protocol that is suitable to the unbalanced, client-server setting, in which the server
has a large database of mj items and the client has a small database of mqy items. The protocol,
however, requires O(my + mg) expensive public-key operations (group exponentiation). Delegated
PSI-CA [DPT20] improves the efficiency of the two-party PSI-CA protocol on the client’s device,
Catalic [DPT20] proposes a delegated system in which the client (i.e. PSI-CA receiver) can shift most
of its PSI-CA computation to multiple untrusted servers while preserving privacy. However, Catalic
system requires a least two non-colluding cloud servers with a heavy computation/communication
cost. Dittmer et al. [DILT20] introduces a variant of two-party PSI-CA (so-called weighted PSI-CA)
in which each token of the client has an associated secret weight. The weighted PSI-CA is based
on cheap Function Secret Sharing (FSS) constructions [BGI15,BGI16], thus it is efficient on both
client’s and server’s sides. However, their construction assumes that there exist two non-colluding
servers, each holding an identical input set.

A multi-party PSI-CA protocol was first proposed by Kissner and Song [KS05]. The protocol
of [KS05] is based on oblivious polynomial evaluation which is implemented using additively homo-
morphic encryption. The basic idea is to represent a dataset as a polynomial whose roots are its
elements, and send the homomorphic encryptions of the coefficients to other parties so that they
can evaluate the encrypted polynomial on their inputs. The protocol of [KS05] has a quadratic
computation and communication complexity in both the size of dataset and the number of parties.

[MRR20] proposed several protocols for database joins and PSI, but on secret shared data
in the honest-majority three-party setting, which is different than the setting in this paper, as
we consider a setting with any number of parties, in which the input does not have to be in a
secret-sharing form.

Chandran et al. [CDG'21] proposed an efficient protocol for PSI (not PSI-CA), which can
be extended to circuit-based PSI. Hence, one could combine their extended protocol with a cir-
cuit that computes the size of the intersection to obtain a protocol for PSI-CA. At the technical
core, [CDG™21] is built on n-party secret-sharing functionalities introduced by [DN07]. Their use
of generic secure computation protocol for a specific problem (of PSI-CA) makes their extended
protocol less attractive. Specifically, their protocol involves many (parallel) invocations of secure
multiplication over shared secrets, which on its own incurs 5 communication rounds. We compare
the performance of our protocols and [CDG'21] in Section 6.2.

1.2 Secure Dot Product and Its Applications

Dot-product plays a key role in machine learning and data analysis tasks. Their implementation in
a privacy-preserving setting remains expensive as it requires either generating Beaver triples [Bea91]
or using fully homomorphic encryption (FHE). There is a long list of results for secure computation
of dot product or linear algebra in general [DGD18 HLL"16,SBS19,ZWH*16, ZWY 17, DSZ15,
BBHT'20]. For the applications that we consider in this paper, namely, Covid-heatmap and ARL,
dot-product of sparse vectors would be sufficient. Many algorithms for linear algebra operations, like
matrix multiplication, leverage an apriori knowledge of the operands being sparse, and sometimes
these algorithms can even be computed securely, without degrading their asymptotic complexity.
None of the above works, however, address the problem of dot product in a setting where the
vectors are sparse. The most relevant works to ours are [VC02, VC05, DC14, BBH"20, SGRP19],
on which we elaborate immediately.

To the best of our knowledge, Vaidya and Clifton [VC02] were the first to study secure com-
putation of scalar product of two m-element vectors in the two-party setting and its application
to privacy-preserving association rule learning (ARL). Their dot product protocol heavily relies
on public-key operations, and requires four communication rounds, communication complexity of
O(m) and computation complexity of O(m?).

Their follow-up work [VCO05] is based on PSI, which makes the complexity dependent only of ¢,
where t is the upper-bound on the Hamming weight of the vectors. They also propose a protocol for
the multi-party setting, which requires a commutative one-way hash function so that the input from
each party can be encrypted by a common set of keys. The resulting ciphertexts are the same if the
original values are the same. Although efficient, their protocol introduces an undesirable leakage;
specifically, it leaks the items in the intersection (rather only their sum). Moreover, their protocol
is insecure when the input domain is relatively small (e.g. of size 23°) as one party could easily
perform a brute force attack [PSZ14]. To handle the latter security issue, [DC14] studied a two-
party ARL and proposed a solution via a PSI protocol that is built on the Goldwasser-Micali (GM)
Encryption [GM82] and Oblivious Bloom Intersection (OBI) [DCW13]. Their protocol, however,
still leaks the items in the intersection, and became much more expensive than the protocol we
present in this paper. In addition, they did not consider an extension to the multi-party case.

Recently, Bampoulidis et al. [BBH"20] studies COVID-19 heatmap computation and proposes
secure dot product based on homomorphic encryption with several optimizations. However, the
number of required HE operations is O(m) (regardless of the Hamming weight of the vectors), which
makes their protocol expensive. Schoppmann et al. [SGRP19] presents efficient two-party protocols

for several common sparse linear algebra operations including sparse matrix-vector multiplication.
The main building block of their protocols is a new functionality — Read-Only Oblivious Map
(ROOM). Using ROOM, the cost of the secure matrix-vector multiplication is dependent only
on the number of non-zero entries, instead of the operands’ size. However, in all three ROOM
constructions the parties invoke generic secure computation in order to obtain a secret-shared
output. We compare the performance of our protocol to a ROOM-based dot-product in Section 6.1.

1.3 Owur Results and Techniques
1.3.1 Our PSI-CA Approach:

We present a new multi-party PSI-CA protocol paradigm with an assumption that a subset of
particular parties does not collude . We offer two variants of our protocol. The first protocol
relies on a distrusted non-colluding server that has no input. It is optimized for the number of
communication rounds between parties; that is, the protocol leverages a star network topology,
where parties mostly communicate with the server. The second protocol removes the need of a
server by reducing the problem of n-party PSI-CA to the problem of server-aided (n — 1)-party
PSI-CA with use of a distrusted party P, who may have an input. The base case with n = 2
can be instantiated efficiently by two-party server-aided PSI protocol of Kamara et al. [KMRS14].
However, [KMRS14] is only for PSI itself (not PSI-CA)*. Thus, we simply their PSI protocol and
present a new server-aided two-party PSI-CA in Section 4.1.

The main building blocks of our multiparty PSI-CA protocols are oblivious key-value store
(OKVS) data structure [GPR*21], and/or Oblivious Programmable PRF (OPPRF) [KMP*17].
To this end, we propose a very simple and efficient protocol for server-aided OPPRF, which we
believe to be of independent interest. Our server-aided OPPRF is based on a two-party server-aided
shufled OPRF, a functionality we formally define in Section 3.1.

We provide an implementation of server-aided and server-less variants of our PSI-CA approach
for n > 2. To the best of our knowledge, this is the first ‘special-purpose’ implementation of multi-
party PSI-CA that does not rely on generic secure computation. We find that multi-party PSI-CA
is practical, by evaluating our protocols over settings with million items sets and 16 parties. The
main reason for the efficiency of our protocol is its reliance on fast symmetric-key primitives. This is
in contrast with prior multi-party PSI-CA protocols, which require expensive public-key operations
for each item [KS05] or computation on secret-shared data [CDG™21].

Interestingly, the server-less PSI-CA variant is about 10x faster than the server-aided one. The
two variants, however, offer different security guarantees. Specifically, in the former we require that
neither of Py, P, nor P, is colluding, whereas in the latter we only require that P; and P> do not
collude. In some sense, one may look at the server-less variant as a multi-server-aided PSI-CA but
the servers have their private input. Hence, we can use our efficient server-aided OPPRF (instead
of the two-party OPPRF [KMP"17] in the server-less PSI-CA protocol, which may explain why it
is possible to get a better performance in this case. Concretely, in the server-less variant, we assign
the non-colluding party P; the role of a server in the server-aided OPPRF protocol.

Note that in practice, a server-aided model can be reasonable. Performance is critical and often
it makes sense given that the alternative has a weaker security guarantee. For example, in the
federated learning setting, there is a server and many clients where the server helps training a
machine learning model for the benefit of the clients (imagine an auto-complete enabled keyboard).

!Note that [KMRS14] has a protocol for multiparty PSI, but it reveals intersection items of each pair-wise parties
sets to the server and is non-trivial to support PSI-CA.

In this work, we motivate our protocols with two real-world applications in which using a non-
colluding, but distrusted server, makes complete sense. For example, in the Covid-19 heatmap
computation, an established company (e.g. Google or Apple) can play the role of the server.

1.3.2 Owur Multi-party Dot-Product (DotProd):

We propose a new protocol for computing the sum of element-wise products of n sparse binary
vectors (so-called multiple dot product, DotProd). Let us begin with the simpler case, where
n = 2, known as secure dot product. One would expect a solution for a dot product of m-elements
vectors to incur communication overhead of at least O(m), for the very fact that the parties need
to first input those elements (which usually involves some sort of encryption or secret sharing on
each element). In this work, we show that the communication and computation complexity is
independent of m and can be reduced to O(t), where ¢ is the upper bound on the Hamming weight
of the vectors. This improvement is significant when the vectors are sparse (i.e. t = o(m)).

For an m-element binary vector x we define idx(x) = {i € [m| | z[i] = 1} to be the set
of non-zero indices in x. Suppose the receiver Py and the sender P; hold an m-element binary
sparse vector xg and z1, respectively. The vectors are sparse and have the number of non-empty
elements bounded by ¢ = o(m). As a very simple warm-up, we consider a non-secure dot product
computation with the communication complexity cost of O(t). Given the input vector xg, the
receiver computes Ag = idx(z() and the sender computes A; = idx(z1). The sender then sends Ay
to the receiver, who is able to compute the dot product x -y by computing the intersection AgN Ay
and outputting its cardinality |Ag N Ay].

The main advantage of the above solution is to reduce dependency on the length of the vectors,
especially when the input vectors are sparse. To compute xq - 1 securely, the parties run a private
set intersection cardinality protocol (PSI-CA) where Py inputs Ap and P; inputs A;. This idea,
however, has received little attention due to the large overhead required to compute PSI-CA. In
this work, we propose a lightweight server-aided PSI-CA construction to improve the performance
of the secure dot product. Our two-party protocol relies on only PRF. As a result, our protocols
are simple and efficient, with a communication and computation complexity O(t), so is our secure
dot product DotProd.

We then extend DotProd to the multi-party case. Given an input vector z;, party P; computes
A; = idx(x;). It is easy to see that the sum of element-wise products of the vectors is equal to
the size of their intersection, namely, >0, [, #:[j] = [(iZ; Ai|. We implement the multi-party
DotProd using our multi-party PSI-CA.

1.3.3 Application to PSI-CA and DotProd:

We show that our PSI-CA and DotProd techniques can be used to implement and improve the
performance of several privacy-preserving applications. More specifically, we consider two running
examples: COVID-19 heatmap computation and associated rule learning (ARL).

In the COVID-19 heatmap problem, we consider a scenario where the Department of Health
and Human Services (HHS) wants to learn areas with a higher chance of getting infected with the
disease without knowing the travel route of infected individuals. The heatmap can be implemented
by computing the vector-matrix multiplication as 'Y, where z and Y are as follows: z is a binary
vector of size N, held by the HHS, such that x[i] = 1 if the ith user has tested positive to COVID-19
and z[i] = 0 otherwise; and Y = (y1,...,Ym) € Z3*™ is a user-location matrix, held by a network
operator, such that the ith element of the column vector y; indicates whether the i¢th user has

recently visited the jth location. In that case y;[i] = 1 and otherwise y;[i] = 0. Clearly, z = 2"Y is
an m-element vector where the ith element is equal to the number of users who have tested positive
and recently visited the ith location. [BBH'20] proposes different optimizations on HE to implement
a secure dot product, which still requires O(Nm) independent multiplications (regardless of the
Hamming weight of the vectors). In the heatmap example above, we observe that the vector x is
sparse because the proportion of diagnosed individuals per day among all N subscribed individuals
is small (e.g, 0.01-1% would be a large percentage [wor21]). Similarly, the matrix Y is also sparse
due to people’s localized travel habits. In Section 5.2, we apply our DotProd protocol to compute
COVID-19 heatmap. In addition, [BBH"20] only supports a two-party computation between the
HHS and a network provider. In real-world scenarios, there are many network providers. We modify
our two-party PSI-CA protocol to support heatmap computation between the HHS and multiple
network providers without revealing additional information.

Second, we study associated rule learning (ARL) as an application of DotProd. ARL is a rule-
based machine learning method that is used to discover rules/relations of the type (X = Y)
between variables X,Y in databases. As a typical example in the sales database of a supermarket,
a rule/relation {onions, potatoes = burger} indicates that if a customer buys onions and potatoes
together, they are likely to also buy hamburger meat. In market design, such information can be
used as the basis for decisions about product placements, promotional pricing, and more. However,
the ARL training process requires a large transaction database, which may be collected from
different sources. Thus, it is highly desirable to maintain the privacy of each source. We study
a common ARL training algorithm, called Apriori [AIS93, Rud12], and adapt it to the privacy-
preserving setting. Most steps in Apriori can be computed locally except a step in which the
parties want to compute a confidence score of how many transactions across a joint database that
contains all attributes/items in both X and Y. This step can be implemented by computing a sum
of bit-wise products of multiple binary vectors. We first apply multi-party DotProd for ARL and
make its learning process in a privacy-preserving manner.

2 Preliminaries

In this work, the computational and statistical security parameters are denoted by &, A, respectively.
We use [z] to denote the set {1,2,...,2z} and [z,y] to denote the set {z,x + 1,...,y}. We denote
the concatenation of two bit strings = and y by z||y. For a pseudorandom function (PRF) F, a key
k and a set A, we define F'(k, A) = {F(k,a) | a € A}. For an m-element binary vector x, we define
idx(x) = {i € [m] | z[i]] = 1} to be the set of non-zero indices in x.

Remark: Throughout the text we keep using the term PRF even though the actual imple-
mentation uses a pseudorandom permutation (PRP). Our use of a PRP is due to the fact that we
want to allow the simulator, in our proofs, to run F~!. We keep the term PRF mostly because the
underlying primitives that we use (like OPRF and OPPRF) are known by that name and we opt
to make it easier to the reader who is already familiar with them.

We define the functionality Fcein for coin tossing between any number of parties. The result from
Fcoin may be either a PRF key or a random value in any format, depending on the context. The
malicious Fcoin can be achieved by running a simulatable coin tossing protocols of [KOS03, Lin01],
which tolerate dishonest majority.

2.1 Security Model

Secure computation allows mutually untrusted parties to jointly compute a function on their private
inputs without revealing any additional information. There are two classical security models:
colluding model is modeled by considering a single monolithic adversary that captures the possibility
of collusion between the dishonest participants; and non-colluding model is modeled by considering
independent adversaries, each captures the view of each independent dishonest party. There are
also two adversarial models, which are usually considered. In the semi-honest model, the adversary
is assumed to follow the protocol, but may try to learn information from the protocol transcript. In
the malicious model, the adversary follows an arbitrary polynomial-time strategy to learn additional
information.

In this work, we consider various adversarial models and assume that a subset of particular
parties does not collude. In that sense, this work slightly deviates from the well-known ‘threshold
security’; instead, we consider a specific, but general enough access structure, in which we assume
that some specific subset of parties does not collude. While acknowledging this deviation, we do
believe our approach can be used as a stepping stone toward the achieving security in the ‘standard’
threshold access structure.

2.2 Oblivious Key-Value Store (OKVS)

A Key Value Store (KVS) consists of two algorithms: i) Encode takes as input a set of (k;,v;)
key-value pairs from the key-value domain, L x V, and outputs an object S (or, with negligible
probability, an error indicator L); ii) Decode takes as input an object S, a key x and outputs a
value y.

A KVS is correct if, for all A C K x V with distinct keys: i) Pr[Encode(A) = 1] is negligible,
and ii) if Encode(A) = S # L and (k,v) € A then Decode(S, k) = v.

We say that a KVS is oblivious if for all K1, Ky of size m and all PPT adversaries A: ‘ Pr[Epr(lCl)] —
Pr[Epr(ng)H < negl(k). In other words, if the values v; are chosen uniformly then the output of
Encode hides the choice of the keys k;. Oblivious Key-Value Store (OKVS) [GPR™21] is given in
Experiment 2.2.1.

EXPERIMENT 2.2.1. (Exp*(K = (k1,...,kn)))
1. for i € [m]: choose uniform v; <V
2. return A(Encode({(k1,v1), ... (km,vm)}))

2.3 Oblivious PRF (OPRF) and Programmable PRF (OPPRF)

An oblivious PRF (OPRF) [FIPRO05] is a 2-party protocol in which the sender learns a PRF key k
and the receiver learns F(k,q1),...,F(k,qn). Here, F is a PRF and (¢, ..., ¢m) are inputs chosen
by the receiver. Functionality 1 presents a variant of OPRF where the receiver obtains outputs of
multiple statically chosen queries.

FUNCTIONALITY 1. (Oblivious PRF - FI'.)

oprf
PARAMETERS: A PRF F, and a bound m on the number of queries.
BEHAVIOR: Wait for input (g1, ..., ¢m) from the receiver where ¢; € {0,1}". Sample a random

PRF key k and give it to the sender. Give {F(k,q1),..., F(k,qm)} to the receiver.
An oblivious programmable PRF (OPPRF) [KMP™17] functionality is given in Functionality
2. Tt is similar to the plain OPRF functionality except that (1) it allows the sender to initially

provide a set of points P which will be programmed into the PRF; (2) it additionally gives the
“hint” value to the receiver. OPPRF constructions for both the semi-honest and malicious setting
were proposed by Kolesnikov et. al. [KMP*17] and by Pinkas et. al. [PRTY20].

FUNCTIONALITY 2. (Oblivious Programmable PRF - Foomt -)
PARAMETERS: A PRF F', an upper bound m; on the number of points to be programmed, and

a bound mso on the number of queries.

BEHAVIOR: Wait for input P = {(a1,t1),...,(@m,,tm,)} from the sender & and input
(q1,--.,Qm,) from the receiver R. Run (k,hint) + KeyGen(x,P). Give (k, hint) to S and
(hint, F'(k, hint, ¢1), ..., F'(k, hint, ¢,)) to R.

2.4 Unconditional Zero Sharing

The unconditional zero sharing gives the parties with a sharing function S : {0,1}* x {0,1}* —
{0,1}" and a key K; for party P;, such that for every = € {0, 1}, we have that s; = S(K;, z) is P,’s
random share, and @ ; s; = 0. The functionality and its construction from [KMP*17] are given
in Functionality 3 and Protocol 7.

FUNCTIONALITY 3. (Zero-Sharing - Fzs)
PARAMETERS: n parties. The dictionary store is initialized to (.

BEHAVIOR: Upon an input z from P, if store[x] does not exist, generate random values sq, ..., Sy
s.t. @, s; = 0 and store store[z][i] = s; for ¢ € [n]. Output store[z][i] to P;.

2.5 Private Set Intersection Cardinality

Private set intersection cardinality (PSI-CA) allows n parties, each holding a set of m items, to
learn the intersection size of their private sets without revealing anything else. In the server-aided
PSI-CA, we assume there is an untrusted server that has no input and does not collude with either
of the parties. The server involves in the PSI-CA computation while learning nothing. PSI-CA and
server-aid PSI-CA are formally presented in Functionality 4. The highlighted text is required for
the server-aided case.

FUNCTIONALITY 4. (PSI Cardinality - Fpsi—ca)

PARAMETERS: n parties Pi,..., P,; an untrusted server C; the set size m.
FUNCTIONALITY:
e Wait for input set X; of size m from the party P,

e Give the server C nothing

e Give P; an intersection set size | (), X;]

2.6 Secure Dot Product

Secure dot product functionality allows n parties, each holding an m-element binary vector, to learn
the dot product of their private vectors without revealing any additional information. In this work,
we consider the problem of the secure dot product of n binary vectors, in a server-aided setting, in
which we make use of a non-colluding distrusted server. Our protocols are extremely efficient when
the upper bound on the Hamming weight of the vectors, denoted t, is in o(m). The dot product
of n vectors z1, ..., ¥, each with m elements, is defined by >, J[i_, ;[j] and is called DotProd.
DotProd is presented in Functionality 5. The highlighted text is required for the server-aided case.

FUNCTIONALITY 5. (Secure Dot Product - FpotProduct)

PARAMETERS: n parties: Pjcp,); an untrusted server C; an upper-bound ¢.
FUNCTIONALITY:

e Wait for input m-element binary vector x; from P;

e Give the server C nothing

o Give to 337" | [[i=, @:[j] the party P

3 Server-Aided OPRF and OPPRF

In this section, we introduce new constructions which make use of a semi-honest non-colluding
cloud server. The functionalities of OPRF and OPPRF are as described in Sections 2.3, except
that now the functionality involves a third party (the server) who has neither input nor output
(except the size of the other parties’ inputs).

3.1 Server-Aided Shuffled OPRF

The functionality (]-"ég:z) The server-aided OPRF functionality involves S, R and C and is
defined as follows: the sender S has a key K, the receiver R has a set of queries {yi}ie[m} and
the cloud server C has no input. S does not have an output whereas R obtains {y;r (1)7 73/; (m)}
where y, = F(K,y;) and 7 is a uniformly random permutation chosen by C. The output of C is
that permutation 7. Clearly, R cannot associate the response y; with the query y; as all responses
are pseudorandom.

The protocol. Define F'((ki,ke),x) = F(ko, F(k1,2)) where F is a PRF. It is easy to see that
F’ is a PRF. S has the key K = (k1,k2), R has an input set Y = {y1,...,ym} which serves as its
set of OPRF queries. Then,

1. S sends k1 to R and kg to C.
2. R computes Y’ = F(k1,Y) and sends Y’ to C.

3. C computes Y = F(ko,Y’) and sends a random permutation 7 of Y to R.

Correctness. It is clear that R obtains v/ = F'(K,y) = F(ka, F(k1,y)) for every query y € Y.
These values are given to R in a random order, chosen by C.

Security. Obviously S learns nothing because it does not receive any message during the protocol.
C learns nothing because it only receives n pseudorandom values as queries. R learns nothing but
a random permutation on the PRF results on its queries. R also learns one of two random PRF
keys K = (k1,k2). A simulator Sim for R picks K = (k1,k2), gives k1 to R and answers each
of R’s queries, ', by F(ka,y’). The distributions of the simulated and real views of the R are
indistinguishable.

3.2 Server-Aided OPPRF

mi,ma)

The functionality]-"épprf The server-aided OPRF functionality involves S, R and C and is
defined as follows: The sender S has a set of my points P = {(2i,v:) }igm,) With (pseudo)random
v;’s, R has a set Y = {¥; }icm,)], and the cloud server C has no input. Denote the set of first (resp.

second) entries of the pairs in P by X (resp. V). S and C do not have an output whereas R obtains
v; iff y; € V, and other pseudo-random value otherwise.

The protocol. The server-aided OPPRF is similar as above, except that the server does not do
the permutation and there is one extra message from S to R in which S gives a set of “corrections”
to R so it can adjust its pseudorandom results into results from V. Formally, the protocol is:

1. §, R, and C jointly invoke]:(m?) where:

opr

e S inputs a random key k = (ky, ko) < {0,1}?% for PRF F' (see section above).
e C inputs L

e R inputs Y, and obtains a set Y' = {y},...,y;,,} as output, where y; = F'(k,y;). Note
that we use a non-shuffled version of OPREF.

2. S constructs an OKVS over T' < Encode({(w;, F'(k, ;) © vi}icm,]) and sends T to R.

3. For every i € [mg], R outputs y; ® Decode(T, y;)

Correctness. For every y € X NY note that R obtains v = F'(k,y)) ® Decode(T, y) where v € V
is associated with y. For every other value it obtains F’(k,y) & r where r is a pseudo-random value
decoded from T'.

Security. Obviously S learns nothing because it does not receive any message during the protocol.
R learns nothing except the value associated with the items in X NY since it queries the OPRF
only on X and the decoding ‘makes sense’ only for those items in X NY.

4 PSI Cardinality Protocol

In this section we present three protocols:

e In Section 4.1, we simplify the server-aided PSI protocol of [KMRS14] and formally present a
new server-aided two-party PSI-CA protocol. Unlike previous “server-less” protocols (see Section
1.1) that rely on OT-based oblivious [DPT20] or DH-based [TSS*20, IKN*20] which, in turn,
are based on public-key operations, our two-party PSI-CA protocol uses only symmetric-key
operations. This is possible, among other improvements, due to the replacement of their OPRF
constructions with a server-aided version, which is much simpler and more efficient.

e In Section 4.2, we show an extension of the protocol to the multiparty case, where the adversary
may actively corrupt (almost) any strict subset of the parties or passively corrupt the server. To
the best of our knowledge, this is the first ‘special-purpose’ protocol for privately computing the
intersection cardinality of more than two parties, for which we present interesting applications
(see Section 5).

e In Section 4.3, we show that a server is not necessary when some parties are assumed to be
semi-honest and non-colluding.

10

PROTOCOL 1. (Server-Aided Two-party PSI-CA)

PARAMETERS:

e Set size mq, mo.

e A sender S, a receiver R, a non-colluding semi-honest server C

e A PRF F that is used by the F_, functionality (see Section 3.1). Let K be its key-space.

INPUTS:

e Sender S has input X = {z1,...,%m, }
e Receiver R has input Y = {y1,...,Ym, }
e Cloud server C has no input.

ProTOCOL:
1. S, R, and C jointly invoke F\"2) where:

oprf
e S inputs a random key k <+ K.

e (C inputs L
e R inputs Y, and obtains a set Y’/ = {y;(l), e ,y;(m2)} as output, where y;()= F(k,y;)

i
and 7 is a random permutation.

2. S sends a random permutation of X' = F(k, X) to R.

3. R outputs | X' NY’|.

4.1 Server-Aided Two-Party PSI-CA

We consider sender & and receiver R who want to compute the intersection size of their private
sets X = {z1,...,&m,} and Y = {y1,...,ym,}, respectively. To do so, they use a non-colluding,
semi-honest cloud server C. The formal description is given in Protocol 1. The protocol is inspired
by the size-hiding server-aided PSI of [KMRS14]. For completeness, a description of their PSI
protocol is given in Appendix D.

For correctness, notice that for a value z € X NY, the value F(k,z) appears in both X’ and
Y’. On the other hand, if z ¢ X then F(k,z) ¢ X'; and if 2 ¢ Y then F(k,z) ¢ Y.

Security follows since (see formal proof below):

e R cannot associate y;r (4) with y; since 7 is a secret random permutation.

e For a value z; € X, the value F(k,x;) looks random to R if R did not input it as a query to
the shuffled-OPRF functionality.

The protocol is extremely efficient because of the efficiency of the shuffled Fopr- I terms of
communication cost, it only requires S to send m; values to R. The construction for F__, in turn,
requires only ms messages from R to C and my messages back from C to R.

prf?

Theorem 1. Protocol 1 securely implements Functionality 4 for the case of two parties (i.e. n =2)
in the foprf—hybrid model, in the presence of an adversary who may actively corrupt either S or R,
or passively corrupt C.

Proof. We separate the proof to three cases, for each party that the adversary may corrupt. We
denote the simulator by Sim. Note that the set size m; and ms are known to Sim.

Corrupted S§. The simulator Sim runs § internally, in which it plays the role of the shuffled-
OPRF functionality. It receives k from S and later it observes the set X’ sent from S to R. The
simulator Sim computes L' = F~!(k,X’) and sends to the PSI-CA functionality the input set
L={iel|ie[mi]}.

11

Corrupted R. The simulator Sim runs R internally and plays the role of the shufled-OPRF
functionality. It obtains the set Y from R, picks a random PRF key k and sends Y/ = F(k,Y) to
R. Sim forwards Y to the PSI-CA functionality, from which it receives ¢ = |X N'Y|. Then Sim
constructs X' = {f,..., 27, } as follows: for i € [¢] set x; = y; and for i € [c 4+ 1,m1] set z] as
a uniformly random value chosen from the range of F. Finally, Sim sends a random permutation
of X’ to R. The view of R in the simulated view and in the real view are computationally
indistinguishable, since in both views it receives two messages with two sets of pseudo-random
values, where the intersection cardinality of the two sets is equal ¢ and the indices of items in the
intersection are uniformly random in [m;].

Corrupted C. The cloud server C has neither input nor output and therefore its simulated view
contains only the random permutation that is output from the OPRF functionality. This can be
simulated by picking a random permutation 7 : [ma] — [ma). O

4.2 Server-Aided Multi-Party PSI-CA

In this section, we assume that all parties have the same set size m. Protocol 2 may be seen as if
we have one receiver, who is P, and multiple senders, who are P, ..., P,. The role of the server is
to shuffle PRF results from the senders before delivering them to the receiver. As a simplification
to Protocol 2, suppose that we want the receiver to obtain n — 1 shares of zero for every each of
its items that is in the intersection. This can be done by querying the senders on each of its items
and collecting the results. Each sender programs the responses such that if the query is on one of
its items, then it responds with its (pseudorandom) share of zero, otherwise, it responds with some
other pseudorandom value. When given the senders responses on a query, if the responses are valid
shares of the value zero then the receiver knows that its query is in the intersection. Since the
server shuffles the responses to the queries, the receiver does not know, for a given set of responses
which are shares of zero, to which query it is associated, thus, the output leaks nothing but the
intersection size. Formally,

1. Py,..., P, (the senders) generate keys for a zero sharing function S, so P, obtains K; such
that for every z it holds that @ , S(Kj,z) = 0.

2. P; (the receiver) sends to the server its OPPRF queries Xj.

3. The server runs an OPPRF instance with every sender, using the queries X;. A sender P;
(i € [2,n]) programs the responses such that on query = € X; the response is S(K;, x) whereas
on any other query the response is another pseudorandom value.

4. The server obtains the set YZ.’E[2)’

chooses a random permutation 7 : [m] — [m] and sends to P; the set {Y;(l), . ,Y'(m)}.

of n — 1 OPPREF responses, on every query z; € Xp. It
™

5. P; checks for every response set Y; whether its values are valid shares of zero. If so, it adds
1 to the cardinality.

In the above simplification, there are several security issues: first, the server learns P;’s queries
in the clear; second, the server mediates all PRF responses and therefore it learns whenever there is
a set of responses that are valid shares of zero, thus it can learn the intersection size as well; third,
if the receiver colludes with one of the senders, together they can reverse the server’s permutation

12

PROTOCOL 2. (Server-Aided Multi-Party PSI-CA)
PARAMETERS:

e Parties Py,..., P, for n > 2, and a cloud server C.

e APRF F: ({0,1}*,{0,1}%) — {0,1}*.

e An OPPRF F, ¢ described in Section 2.3.

INPUTS:
L] Pz has Xl = {$i71,...,l’i,m}.
e Cloud server C has no input .

ProTOCOL:
1. Parties Ps,..., P, invoke Fzs (Functionality 3) and each party P; obtains the key K; for a
sharing function S.
2. Parties P, and P, agree on m random values I' = (y1,...,7m) using Fcoin-
3. Parties Py,..., P, agree on a random PRF key k using Fcoin-
4. Party P; for i € [2,n] computes the set of points P; where:

o Py = {(F(k,z2,;),S(K2,x2;) & ’yﬁ(j))}je[m] where 7 : [m] — [m] is a random permuta-
tion chosen by Ps.
e For i € [3,n], {((k,2i5), (Ki’xi’j))}je[m]'

Py sends X = (k’,Xl) ={F(k,21)};eim) to C.

6. C and P; (for every i € [2,n]) invoke Fopprf, where P; acts as a sender with input P; and C acts
as a receiver with input X{. C obtains the result y; ; on the query z1 ;.

7. For every j € [m], C computes w; = @;_,y;; and sets W to be a random permutation of
{wy,...,wy}. C sends W to Py.

8. Py outputs [WNT.

o

on items that are in the intersection and by that leak the intersection itself (rather than only its
size).

The first issue is easily solved by having all parties Py, ..., P, agree on a PRF key k, so instead
of computing |-, X;| their objective is to compute |\, F(k, X;)|. This way, the server does
not know P;’s set. Hiding the intersection size from the server (the second issue above) is trickier.
We solve it by having P; and P, agree on a set of random values I' = {71, ..., v} so that instead
of programming the responses with the ‘zero shares’, on a value z € X5, P> programs the response
S(Kg,z) @~ for some v € I'. Now, for items that are in the intersection, the server C sees a set of
responses that constitutes a valid share of some v € I', but since the C does not know I, this looks
random indistinguishable from the responses on values that are not in the intersection. Finally,
we propose a protocol under a relaxed setting, that solves the third issue above. Concretely, the
protocol is secure as long as P; and P» do not collude. This is done by adding one step to the above
description: before the server forwards the responses set W to P, it sums its items and forwards
only the sum to P;. This means that now P; (i > 3) could not trace back and learn the intersection
itself. On the other hand, if P; and P, collude then they can still learn the intersection. This is
formally presented in Protocol 2.

Correctness. We consider three following cases based on whether x is in the intersection of all
sets X[y

e Case 1: Suppose = € [Xj¢c[,- In other words, Vi € [n], 3z;;, € X;, such that x;j, = x. Thus,
we have (i) all PRF values x; ; = F(k,x;;,) = F(k,x) are equal, (ii) XORing all zero shares
S(Ki,xj,),1 € [2,n] is equal to zero. When querying the OPPRF programmed Pjc3) using
the common PRF value z| = F(k,z), the cloud server obtains y; ;. Based on the correctness of

13

OPPRF, we have y; j, = S(Kj, xj,). In addition, the cloud server obtains y3 j, = S(K2,zj,) B Vj,
when querying on z}. Therefore, the value w; = @', y; j, is equal to ~y;, which belongs to the
set I' known by P;. Thus, P, can count how many w; in I' to output the intersection size.

e Case 2: Suppose z is in X; and is not an element in some sets X;c[3 ;. Some OPPRF output y; ;
is a random value since F'(k,z) was never used in the OPPRF programming process. Therefore,
wj = @, yi; is random and does not belong to the set I'.

e Case 3: Suppose z is an element in some sets X;c[p], but not in X;. Some OPPRF output y; ;
is a random value. Therefore, w; = @], y;,; is random and does not belong to the set I'.

We note that, in our protocol, parties use zero shares to mask their actual input. This step is
similar to the one in malicious schemes [GPR21]. Thus, it is easy to prove that the use of Fzs in
our protocol is secure in the malicious model.

Theorem 2. Protocol 2 securely computes Functionality 4 (Fpsi—ca) for arbitrary n, in the (]:opprﬂ Fzs, FCoin)-
hybrid model, in the presence of an adversary who may actively corrupt any strict subset of { Py, P3, ..., Py}
or {Py, P3,...,P,} or passively corrupt the cloud server C.

The security proof of the above theorem is given in Appendix A.

4.3 Multi-party PSI-CA

In this section, we describe our “server-less” multi-party PSI-CA protocol. The main idea is to
convert the problem of n-party server-aided PSI-CA to the problem of (n — 1)-party with the use
of an untrusted party P, who, however, has a private input set X,,. Recall that in the server-aid
PSI-CA protocol, the cloud server C has no input, but obtains from P; the PRF values F(k, X1)
which are used to invoke an OPPRF with parties Pic[2,). In the problem of (n — 1)-parties,
however, the simulated cloud server/party P, does have input X,,. Thus, P, can compute its PRF
values F'(k, X,) on its own since it knows k. Similar to the server-aided version, P, computes the
exclusive-or of the OPPRF results and its zero share S(K,,, x, j), with the j-th result denoted by
wj. Note that w; is equal to ~; if all parties Pic,, has y,j, otherwise, w; is random. At this
point, if P, sends all values w; to P as before, P; can only compute the intersection size of n — 1
sets ()., X; since there was nothing to do with the input set Xj.

To have P output |();_; X;|, we propose the following steps. Instead of using a random set
I' in Step (2) of Protocol 2, P, uses PRF to compute v; - F(s,x2 ;) where s is known by only
Py and P,. We observe that if 2 ; is an intersection item, the corresponding PRF value F(s,z1 ;)
should be equal to a value wy hold by P, because of wy = v, = F(s,x2;) = F(s,21;). Therefore,
the intersection size |-, X;| can be computed by counting how many PRF values F(s,z; ;) are
in the set W = {wy,...,w,}. P1 and P, can do this by invoking a two-party PSI-CA, where P,
acts as a receiver with an input set {F'(s, X1)} and P, acts as a sender with an input set W.

We implement the two-party PSI-CA using our server-aid protocol described in Protocol 1 in
which any party Picpp,—1) (say %) can play the role of the cloud server. The two party PSI-CA
Protocol 1 requires that both sender and receiver do not collude with the semi-honest server. Thus,
in our multi-party protocol, we assume that P, is semi-honest and non-colluding with both P; and
P,,. In addition, given this assumption, we can improve the performance of our multi-party OPPRF.
Particularly, unlike Protocol 2 in the above section, we use our server-aided OPPRF construction
described in Section 3.2 to execute an OPPRF instance between P, and each Pic[p,,—1), where P
plays the role of the OPPRF server (thus, P; is non-colluding). We formally present our server-less
multi-party PSI-CA in Protocol 3.

14

PROTOCOL 3. (Multi-Party PSI-CA)
PARAMETERS:

e Parties Py,..., P, for n > 2.

e APRF F: ({0,1}*,{0,1}%) — {0,1}*.

e An server-aided]-'Opprf described in Section 3.2

INPUTS: P; has X; = {xi,17 ey zi,m}~

ProToOCOL:

1. Parties Ps,..., P, invoke Fzs (Functionality 3) and each party P; obtains the key K; for a
sharing function S.

2. Parties P, and P, agree on a random PRF key s using Fcoin.

3. Parties Ps,..., P, agree on a random PRF key k using Fcoin-

4. Party P; for i € [2,n — 1] computes the set of points P; where:

o Py={(F(k,a2;), S (K2, w2,5) & F(5,225)) } ;-
e Forie[3,n—1], P; = {(F(k,), S(Ki,zi;))}

j€lm]’

5. P, and P; (for every i € [2,n — 1]) invoke an instance of the server-aided OPPRF Fé;ﬁ;?)
where:

e P, acts as a sender with input P;,
e P; acts as a cloud server with no input

e P, acts as a receiver with input X/ = F(k, X,). P, obtains the result y; ; on the query
In,j-

6. For every j € [m], P, computes w; = @7, yi; ® S(Kn,x,;). Then, P, sets W to be
{wy, ..., wn}.
7. P, and P, invoke the server-aided Fps|_ca functionality with P, as a server, where

e P, acts as a sender with input W
e P acts as a cloud server with no input

e P acts as a receiver with input V' = F(s, X), and obtains |[W N V.

Correctness. We consider three following cases based on whether x is in the intersection of all

sets Xigppn)

e Case 1: Suppose z € []Xc,. In other words, Vi € [n],3v;; € X;, such that z;; = =
Thus, we have (i) all PRF values F(k,z; ;) = F(k,x) are equal, (ii) XORing all zero shares
S(Ki,xj,),1 € [2,n] is equal to zero. When querying the OPPRF points Pigjp) using the
common PRF value F(k,x), the party P, obtains y; ;,. Based on the correctness of OPPRF, we
have y; j, = S(K;,z) for ¢ € [3,n — 1] and y2 j, = S(K;,z) ® PRF(s,x). Therefore, the value
w = (@;:21 Yij,) ® S(Kn,) is equal to PRF(s,z) as @), S(K;,z) = 0. Step (7) allows P; to
count = to output the intersection set by checking whether w € F(s, X).

e Case 2: Suppose 7 is in X and is not an element in some sets X;c[p,). Clearly, w ¢ F(s, X1)
with the high probability.

e Case 3: Suppose z is an element in some sets X;c[5}, but not in Xj. The value w; might equal to
F(s,z2) for x9 € X or random. However, xo ¢ X1, thus w € F(s, X7) with the high probability.

Theorem 3. Protocol 3 securely computes Functionality 4 (Fpsi—ca) for arbitraryn, in the (F,y, ¢, Fcoin)-
hybrid model, in the presence of an adversary who may actively corrupt any subset from {Ps, ..., Py}
or passively corrupt one of P1,Py or P, (i.e. P1, Py and P, are non-colluding).

15

The security proof of the above theorem is given in Appendix A. Note that we can remove the
assumption of non-colluding corrupt P1 or P» in our server-less multi-party PSI-CA if we use a
standard two-party PSI-CA and/or standard two-party OPPRF to implement Step (5) and Step
(7), respectively.

5 Applications

We demonstrate that our PSI-CA can be used for several privacy-preserving applications by im-
plementing two running example applications which are built on our two-party and multi-party
PSI-CA protocols, respectively.

5.1 Secure Dot Product Construction

Given a secure protocol for computing the cardinality of the intersection of the parties’ sets, the
protocol for dot product is simple. Let x; be an m-element binary vector of party P;, and let
A; = idx(x;). It is easy to see that the dot product of the x;’s is exactly the cardinality of the
intersection of the A;’s, that is, 37", [TiL; #:[j] = [(iZ; Ail. Thus, to securely compute the dot
product, we can use the PSI-CA functionality described in the previous section. Note that even
though the input size is O(m), the communication complexity of the protocol is only O(t), which
makes it extremely efficient when ¢t = o(m), where t is the upper bound on the Hamming weight of
the vectors.

One subtle issue is that in the PSI-CA protocols the parties know the number of elements in each
other’s set, which leaks more information than required. Here, we assume that there is a known
upper bound, ¢, on the Hamming weight of the vectors X;’s, and require that the parties’ input to
the PSI-CA contains exactly ¢ items. That is, if the Hamming weight of X; is ¢’ < t then P; adds
random “dummy” items to its input to the PSI-CA protocol. Formally, for a given upper bound ¢,
P; inputs A; to the PSI-CA protocol where A; «+ idx'(X;,t) and idx/(X,t) is defined as follows:
let ¢’ be the Hamming weight of X, set A = idx(X), pick ¢t — ¢ random values D = {dy,...,d;_y}
from the domain D = {m+1,...,2*1°8®) £} and output A = AU D. The choice of the domain
D allows the collision probability of dummy items to be negligible and equals to 27*)

The formal description is given in Protocol 6 in Appendix B. Note that it is possible to compute
dot product DotProd with or without the help of a cloud server C, so both variants are presented.
The protocol’s correctness, complexity and security follow directly from the underlying PSI-CA
protocol presented in Section 4 with different corruption structures.

Theorem 4. Protocol 6 securely computes Functionality 5 (FpotProduct) in the (Fpsi—ca)-hybrid
model. In particular, if m is a protocol that securely computes Fpsi_ca in the presence of an
adversary A then, when instantiated with w, Protocol 6 is secure in the presence of adversary A as
well.

5.2 Heatmap Computation

As formally stated in [BBH"20], the heatmap can be considered as a two-party computation be-
tween HHS and a mobile network operator (MNO). HHS has a list of individuals who have reported
positive for the disease. MNO knows an approximated location data of their subscribers as the
subscriber connects to a certain cell tower when traveling (unless the user does not have a phone
or disconnects to their network provider). Mathematically, HHS generates a binary vector x € Zé\’

16

which indicates whether the user ¢ € [1, N] amongst N subscribed individuals has tested positive
(x[i] = 1) or not (z[i] = 0). For each cell tower j € [1,m], the MNO initializes a vector y; of
n elements, where y;[i] corresponds to the i-th subscriber (say that HHS and MNO agree on the
subscribers’ identifier and on their positions in the vectors). If the i-th subscriber connects to a
cell tower j within some period of time, then y;[i| = 1, and y;[i] = 0 otherwise. To learn how many
individuals visit a certain area (e.g. the area covered by the j-th cell tower, HHS and MNO run a
secure dot product protocol to obtain x - y;.

The solution proposed in [BBH20] relies on HE to implement the secure dot product for the
heatmap problem. Even with the HE optimizations, [BBH"20] requires O(NN) independent secure
multiplications to compute z - y; for each cell tower. Therefore, their protocol costs O(m/N) HE
multiplications to compute secure vector-matrix multiplications x-Y, where Y consists of m columns
Yl,---,Ym. Hach element of x - Y corresponds to how many diagnosed subscribers visited a cell
town.

In this work, we observe that the proportion of diagnosed individuals among all N subscribed
individuals is usually small (e.g. 0.01 —0.1% new positive cases per day [wor21]), thus, the vector z
is sparse. In addition, the vector y; is also sparse due to people’s localized travel habits. Therefore,
the heatmap computation is a perfect application for our DotProd where the input vectors are
sparse. By applying DotProd, we show that the computational complexity of the dot product in
the heatmap example can be reduced from O(N) to O(t), where t is the maximum between the
upper bound on the number of new positive test cases and the upper bound on the number of
individuals visiting a geographical area covered by a cell tower.

Multiple MNOs. We support a heatmap computation between one HHS, Py, and multiple
MNOs, Pi,...,P,. For a cell tower j € [1,m], the MNO Py (k € [n]) has the vector yf of N
elements. y;-“ [i] indicates whether a subscriber ¢ connects to a cell tower j of the MNO P (we
assume that the j-th cell tower of all MNOs covers the same geographical area, this should be
adjusted in practice). The sum of the dot products >";_,(z - yf) indicates how many individuals,
across different MNOs, visit a certain area. In our multi-party heatmap, if Py invokes DotProd with
each MNO Pj, where Fy’s input is and Pj’s input is y;-“ , Py learns extra information — each term
of the sum > }_,(z- yf) To address the issue, we modify the underlying shuffled-opprf protocol of
DotProd. At the high-level idea, C computes PRF values of all MNOs Py¢[,,], permutes them before
returning to the Fy. The formal description of our multi-party heatmap computation is presented
in Protocol 4.

In real-world scenarios, HHS prefers to minimize bandwidth cost and computation workload
on their side. Our protocol makes this happen by making use of the untrusted server. For the
heatmap computation, HHS only needs to compute nmt and 2nmt symmetric-key operations in
the two-party and multi-party settings, respectively. In terms of communication cost, HHS sends
and receives 3nmt elements. Finally, our heatmap protocol requires only 1-round communication.

5.3 Association Rule Learning

Association rules learning (ARL) aims to discover regularities/rules between variables in transaction
data. In this work, we use our DotProd protocol to mitigate information leakage in ARL when
training the model on a vertical partitioning of the private database between multiple parties. We
study the ARL definition in [AIS93] and adapt it to the privacy-preserving context (see Definition
1). We consider only a vertically-partitioned database since if the data is horizontally-partitioned,
each party can locally compute ARL.

17

PROTOCOL 4. (Server-aided Heatmap Construction)
PARAMETERS:
e Parameters k, N, t.
e A HHS and n MNO P4,...,P,, and a cloud server C
e APRF F:{0,1}* x {0,1}* — {0,1}"
INPUTS:
e A HHS Py has input a binary vector x of length N
e Each MNO Pjcp,) has input a binary matrix Y} of size N x m
e Cloud server C has no input.

PrROTOCOL n = 1: For each j € [m], the HHS and the MNO P, invoke DotProd where Py input
is x and P1 input is yjl The HHS outputs x - yjl

ProrTocorL n > 1:

1. HHS computes a set A < idx(z) and pads A with dummy items to the upper-bound set size
t.

2. Py, Py,..., P, agree on a random PRF key s using Fcein-

3. For each j € [m]:

(a) Pyen) computes a set By < idx(yf), and pads By, with dummy items to the upper-bound
set size t.
(b) Each MNO Py¢[,,}, the HHS, and the cloud server C jointly invoke a modified shuffled-
OPREF:
o P chooses two PRF keys sy 1, 8,2 ¢ {0,1}"
e P sends s 1 to HHS and sends s; 1 to C
e HHS computes and sends Aj, = F(sg,1,A) to C.
o C computes A} = F(sg2, A}).
C sends a permutation of A" < {AY,..., A’} to HHS
(c) Each Pyep, sends By = F(s, F(sk2, F(sk,1,Bi))) to C who sends a permutation of
B* « {B{,...,B!"} to HHS.
(d) HHS computes A* = F(s, A”) and outputs |A* N B*|.

Definition 1. In the privacy-preserving ARL (PPARL) problem, there are n parties Pi, ..., Py,
each holding a private vertically-partitioned database of transactions 11, ...,T,, respectively. Let
T =Ti||...||T,, be a jointed vertically database of n parties. Let I = {iy,ia,...,im} be a public set
of binary attributes, called items. Each transaction (row)t € T is represented as a binary vector,
with tlk] = 1 if the transaction contains item i € I, and t[k] = 0 otherwise. We say that the
transaction t satisfies idx(t). Denote an association rule by =. Let X,Y C [m], we consider the
following association rules:
1. The rule X =Y holds in T with support factor of 0 < s < 1 iff at least s% of transactions in
T satisfy X UY
2. The rule X =Y holds in T with confidence factor of 0 < ¢ < 1 iff at least ¢% of transactions
in T that satisfy X also satisfy Y.
3. The rule X =Y is global if every transaction in T has at least one item in X UY.
The goal of PPARL is to allow all parties Py, ..., P, to find all global rules having high support
and confidence on their jointed database T while maintaining the privacy of each individual database.

Generally speaking, the support factor indicates how frequently the itemset appears in the
dataset. The support of X with respect to T is defined as the proportion of transactions in the

18

PROTOCOL 5. (Privacy-Preserving ARL)
PARAMETERS:

A ARL threshold 7, a attributes, empty lists Ly, ..., L.
n parties: Pp,..., P,.

An DotProd functionality described in Functionality 5.
An apriori-gen algorithm described in Figure 1.

INPUTS: Pjc[p) has input a vertically-partitioned database Tjc(,)-

PRrROTOCOL: .

1. Pjcpp) locally computes a list L] of frequent itemsets that has only 1 attribute.

2. Parties Pic[,) invoke a DotProd execution with each attribute input j; € Li, and add j; into
a published list L,, if the output of the DotProd is great than 7 (e.g. a sum of element-wise
products of multiple sparse binary vectors T'[j;] as >, [Ti, Tlj:][v] > 7)

3. For k=n+1 to q, if Ly is empty, the parties do the following:

(a) Pigpn locally computes Cy = apriori-gen(Ly_1).
(b) For each candidate ¢ € Cy, let J = {j1,...,Jm} be a set of attributes in c.
e Assume that each Pic[, have h; attributes J; = {ji,,...,Ji, }. P locally computes
an element-wise product of multiple binary vectors T'[j;,] as X; < HZ:l Tj:,]
e Parties invoke a DotProd execution:
— P; inputs X;.
— P, obtains the output s, and adds ¢ to Lyyq if s > 7

dataset which contains the itemset X. That is, supp(X) = %

The confidence factor indicates how often the rule X = Y is true. The confidence value of a
rule, X = Y, in a set of transactions T, is the proportion of the transactions that contain X which
also contain Y. conf(X = Y) = %. Thus confidence can be interpreted as an estimate of
the conditional probability.

Given the definitions of support and confidence factors, the method for finding an association
rule [AIS93] can be decomposed into two subproblems.

1. Find the frequent itemset: The frequent itemset is defined as the itemset that appears in the
transaction set 7" at least 7 times, where 7 is predefined minimum support (also called a thresh-
old).

2. Use the frequent itemsets to generate the association rules: For every large itemset X, find all
non-empty subsets A of X. For every such subset A, output a rule of the form A = (X \ A) if
the ratio of supp(X) to supp(A4) is at least 7.

In PPARL, the second subproblem can be publicly solved since the frequent itemsets are a
part of the ARL result. According to [VCO02], one can reduce the first subproblem of PPARL to
securely computing the dot products of the binary vectors with minor leakage information. For
simplicity, consider the candidate itemset has only two attributes. Let x and y represent columns
in the database. i.e., x[i] = 1 iff row ¢ has value 1 for attribute X (similar for y and Y). Each
party P, and P, holds a vertically-partitioned database of the transaction z and y respectively.
The dot product of two m-element vectors z and y as z -y = > ;* x[i]y[i] is the support count
which indicates how many times the itemset XY appears in the joint transaction set. The dot
product computation requires the joint database from both parties, thus, it should be computed in
a privacy-preserving manner. Given s <— x -y, the parties can check whether the obtained support
count is greater or equal to the threshold 7. If yes, the candidate itemset is a frequent itemset. In
the ideal world, if s < 7, the exact value of s is not revealed to the parties. Thus, the information

19

is considered as leakage information in our PPARL scheme as well as previous work [VC02,DC14].
Note that [VC02,DC14] reveal more information than ours - they leak indexes that z[i| = y[i] = 1
(i.e. intersection items).

In this work, we consider global rules where every vertically-partitioned transaction database
Ticln) has at least one item in the frequent itemset. Protocol 5 presents our PPARL construction
which closely follows the Apriori algorithm [AIS93,VC02]. The first two steps aim to find a list of
itemsets that (1) appear in the transaction set T at least 7 times; and (2) every party has at least one
attribute in the itemset. We denote the obtained list to be L,,. Given L,,, the party locally computes
a list of candidates C), 41 for itemsets of size n+ 1 using the apriori-gen algorithm [AIS93]. At the
high-level idea, the function apriori-gen is done by generating a superset of possible candidate
itemsets and pruning this set. We present the apriori-gen algorithm in Figure 1, and refer the
reader to [AIS93] for more detail. Note that apriori-gen is computed on the public list L,,, thus
it leaks no additional information. The parties jointly execute Step (3) to compute L, until it is
empty. For whom are not familiar with ARL, we provide a detailed explanation of the algorithm in
Appendix E.

6 Implementation and Performance

We evaluate the performance of our PSI-CA (or DotProd) protocols and estimate the performance of
our applications: heatmap computation and ARL. Protocols are evaluated under different network
settings, number of parties, and input set sizes to demonstrate the performance and scalability.

Choice of Parameters. We run experiments on a single machine 2x 36-core Intel Xeon 2.30GHz
CPU and 256GB of RAM and simulated network using the Linux tc command. We consider two
network settings: the LAN setting has 0.02ms round-trip latency and 10 Gbps network bandwidth;
the WAN setting has 96ms round-trip latency and 200 Mbps network bandwidth. In our implemen-
tation, each party uses a separate thread to communicate with other parties. The computational
security parameter x = 128 and the statistical security parameter ¢ = 40. The number of parties
is in a range of {2,4,8,16}. The set size m of PSI-CA or the upper-bound Hamming weight ¢ of
DotProd is in {212,216 220 224},

Choice of PRF, OPPRF, and OKVS. We instantiate the PRF F using AES-NI. We use
OKVS and OPPRF as a black box in the implementation. Our implementation uses the table-
based OPPRF? code from [KMP"17]. While there are different OKVS constructions [GPR™21],
we choose the most efficient Encode and Decode of 3-cuckoo PaXoS data structure. The number of
bins in the cuckoo table is 1.3m with 3 hash functions.

PSI-CA and DotProd protocols. Recall that the steps of PSI-CA and DotProd protocols are
similar, except for a small cost overhead in Step (1) of DotProd where each party locally computes
a function idx(). In the DotProd protocol, we assume that there is a known upper bound, ¢, on the
Hamming weight of the party’s input vector X. To implement DotProd using PSI-CA, we require
that the parties’ input to the PSI-CA contains exactly ¢ items. Thus, we only report the detailed
computational and communication performance results of our PSI-CA protocols for the set size m.
It indicates that the DotProd protocols are evaluated with the upper bound ¢ = m.

ZNote that the table-based OPPRF which is secure in the semi-honest setting but is about 3x slower than the
state-of-the-art malicious PaXoS-based or vOLE-based OPPRF [RS21, GPR121].

20

DH-PSICA [IKNT20] ROOM [SGRP19] Catalic [DPT20] Ours

mi 216 220 216 220 216 220 216 220

ma 212 21() 216 220 212 216 216 220 212 21() 216 22() 212 216 216 220
LAN 8.31 | 10.21 | 112.51 | 191.87 | 14.3 | 144.17 - -] 6.41 | 8.92 85.1 | 166.12 | 0.1 | 0.13 1.01 1.5
WAN 11.26 11.5 | 150.14 | 248.32 - - - - - - - - | 1.54 | 237 | 4.85 8.24
Comm. | 2.82 4.78 | 46.14 | 77.59 | 863 | 13788 | 878 | 13837 | 6.29 | 6.29 | 100.66 | 100.66 | 1.18 | 3.15 | 18.87 50.33
System server-less two non-colluding servers one non-colluding server

Req. semi-honest parties semi-honest parties/servers malicious parties, semi-honest server

Table 1: Run time (in second), communication cost (in MB), and system requirement of the two-party
PSI-CA (or DotProd) protocols: DH-based PSICA [IKN'20,Mea95], Catalic [DPT20], ROOM as a building
block in DotProd [SGRP19], and ours (a simpler variant of the [KMRS14] PSI protocol) for the sender set
size my and receiver set size mso. Cells with — denote trials that are not supported by the protocol.

6.1 Performance of Two-party Protocols

PSI-CA Protocol. Table 5 (in Appendix) presents the performance of our two-party PSI-CA
protocol in both LAN and WAN settings. We consider both balanced and unbalanced set sizes as
our heatmap computation is built on the asymmetric two-party PSI-CA. In our protocol, the parties
do not need to involve in the entire protocol’s computation. The sender can send F'((k1, k2), X) and
k1 to the receiver, send ks to the server at the same time and complete its computation. Similarly,
the server does not need to be online during the whole process. Instead, the server can start his/her
computation when receiving the sender’s key PRF ko and the set of receiver’s queries. Therefore,
we report the performance of each participant separately. We find that our protocol scales well in
the experiments as it contains only AES calls. For instance, the total run time of our PSI-CA with
the input set size m; = mg = 220 is only 1.5 seconds.

Comparison with Prior Work. Both DH-based and delegated PSI-CA [DPT20] protocols are
secure against a semi-honest adversary, but the latter requires two non-colluding servers. Note that
one can use the protocol proposed in [MPR*20] to implement PSI-CA, however, the protocol is much
expensive compared to DH-based PSI-CA. The PSI-CA implementation of [TSS™20, DIL20] is not
available?, thus we omit to compare theirs with ours. In addition, we compare our protocol with
ROOM-based protocol [SGRP19]. The two-party DotProd of [SGRP19] consists of two expensive
steps: ROOM and a generic dense matrix multiplication. In Table 1, we only report the performance
of ROOM in settings where [SGRP19] performs best.

We use DH-based PSI code implemented by [RT21] with the fastest Curve25519 implementation
from libsodium. For a fair comparison, we run the implementation of delegated PSI-CA [DPT20]
and DH-based PSI on the same benchmark machine and network settings. Note that [DPT20] only
provides the implementation of their protocol building blocks, thus, there are no performance results
on the WAN setting. The times* for ROOM are taken from [SGRP19, Figure 17] and [LPR*20,
Table 2], initially provided for a database 50, 000 and a number of queries 5,000 and 50, 000. Table 1
presents the performance of each PSI-CA protocol. When comparing the protocols, we find that
the running time of our protocol is 10 — 100x faster than that of the prior works. In addition, our
protocol requires 2 — 5x less bandwidth cost compared to them. The results show the benefit of
using our protocols in a reasonable server-aided model.

3 [TSS™20] requires a non-colluding server that is similar to ours, but their protocol heavily replies on DH based
PSI. [DIL™20] requires two non-colluding senders, each holds an identical input set.
4Unknown benchmark machine

21

n=4 n=3~8 n =16

m P ‘ Plan) ‘ Server P ‘ Plan) ‘ Server P ‘ Plan) ‘ Server

Runtime | 212 0.19 0.18 0.19 0.35 0.28 0.35 0.54 0.39 0.54
LAN [276 1.38 1.02 1.37 2.31 1.22 2.3 4.56 1.97 4.55
(second) | 220 || 19.65 15.6 19.39 || 33.86 16.8 33.61 || 71.17 | 3236 | 70.89
Runtime | 212 1.89 1.15 1.84 2.47 1.16 2.08 3.04 1.25 2.66
WAN [216 6.9 3.18 6.01 || 14.07 4.1 13.28 [26.09 6.01 25.3
(second) | 277 || 106.08 | 23.98 97.49 | 197.35 | 39.43 | 196.87 || 409.13 | 71.26 | 408.65
Comm. | 22 0.13 1.64 5.05 0.13 1.64 11.61 0.13 1.64 | 24.73
Cost 216 2] 25.93 79.79 2] 2593 183.51 2| 25.93 | 390.95
(MB) | 2% 32 | 467.66 | 1434.98 32 | 467.66 | 3305.62 32 | 467.66 | 7046.9

Table 2: Run time (in second) and communication cost (in MB) of our server-aided multiparty PSI-CA

protocols for n parties on sets of size m.

m n=4 n=2_8 n =16
P | P | Panny| P P | P | Panyy| P P | P | Panny| P

Runtime | 27 0.07 | 0.07 0.06 0.07 0.07 | 0.07 0.06 0.07 0.08 | 0.08 0.06 0.08
LAN 216 0.40 | 0.37 0.21 0.33 0.40 | 0.38 0.22 0.34 0.430 | 0.39 0.23 0.36
(second) | 220 6.01 | 5.69 3.99 6.38 6.32 | 5.77 4.26 7.02 6.75 | 6.43 4.60 7.16
Runtime | 212 152 1.33 0.06 | 0.75 173] 1.54 0.06 | 0.96 174 | 1.55 0.06 0.97
WAN 216 4.21 3.61 0.98 2.37 4.59 | 4.00 1.17 2.76 6.09 | 5.49 1.46 4.26
(second) | 279 21.60 | 21.24 11.32 | 20.20 33.75 | 33.34 19.86 | 32.34 59.63 | 59.27 36.72 58.26
Comm. |27 0.52] 0.28 0.16 [0.71 1.02] 0.28 0.16 | 1.85 2.02] 0.29 0.16 4.12
Cost 216 8.27 | 4.54 2.54 | 11.35 16.27 | 4.54 2.54 | 29.51 32.27 | 4.54 2.54 65.83
(MB) 220 11'132.32 | 72.64 40.64 | 181.60 || 260.32 | 72.64 40.64 | 472.16 || 516.32 | 72.64 40.64 | 1053.28
Table 3: Run time (in second) and communication cost (in MB) of our “server-less” multiparty PSI-CA

protocols for n parties on sets of size m.

PSI [CDG'21] PSI-CA Protocol 2 PSI-CA Protocol 3
(server-less, semi-honest) | (server-aided, malicious) | (server-less, semi-honest)
my 912 | 916 920 912 | 916 920 912 | 916 920
LAN 023 | 1.6 23.8 || 0.19 | 1.38 19.65 || 0.07 | 0.4 6.38
WAN 1.9 7 108.2 || 1.89 6.9 106.08 || 1.52 | 4.21 21.6
Comm. 3.2 1494 790.2 || 3.41 | 53.86 967.32 || 0.84 | 13.35 213.6

Table 4: Run time (in second) and communication cost (in MB) of [CDG™21] and our protocols for 4 parties
and no collusion. Each party has a set size m. The numbers of [CDG*21] are for PSI itself (not, PSI-CA).

Performance of Heatmap Computation. In the two-party setting, executing the heatmap
computation essentially involves multiple DotProd or PSI-CA executions. Similar to [BBH'20], we
want to evaluate our protocol for smaller nation-states such as New York City or Singapore which
has a population around N = 223, Concretely, we consider a case in which the MNO has a matrix
Y of size N x m and the HHS has a vector 2 of N, where N = 223 and m = 2'5. The parties need to
perform m DotProd instances as « - y;e[,,,), where y; is the 4 column of Y. Recall the z and y; are
binary vectors that indicate whether an individual tested positive to COVID-19, and whether this
individual visited a place nearby the network town y;, respectively. Among N = 223 we assume
that there are to = 2!2 new positive cases per day [wor21], and each patient visits 4 places per day
on average. We run m = 2'° instances of our two-party PSI-CA protocol with the MNO'’s set size

22

t; = 2" and the HHS’s set size to = 2'2, and find that our protocol costs about 10 minutes using
a single thread. On the other hand, [BBHT20] reports about 90 minutes but using 96 threads
and stronger benchmark machine ®. Therefore, we estimate that our protocol is at least 50x
faster than [BBH'20]. It dues to the fact that our protocol is based on symmetric-key operations
while [BBH™20] heavily relies on public-key operations. In addition, [BBH™'20] requires that the
participants agree on database indices (i.e. data alignment before running heatmap computation).
Using PSI-CA, we can remove this requirement. The party’s input can be a set of patient/visitor
ids (instead of the vector/matrix).

Performance of ARL Based on the DotProd performance, we estimate the performance of our
ARL. In two-party setting, each party Pjc[g locally computes a list L of frequent itemsets that
has only one attribute. The parties sequentially invoke DotProd to compute lists L of frequent
itemsets that has exactly k attributes where Ljiq is empty (say Lp,+1 is empty). Assume that
each attribute/vector in Ljc[y ., has a Hamming weight ¢;. Also, assume that each Cj has [C}]

candidates. The performance of our ARL is) ", |CjHHgng)roduct]v where [H(Dtgﬁ))roduct] is the cost
of two-party DotProd with Hamming weight ¢;. According to Table 5, we estimate that our ARL

would take under hours to compute ARL of the database with million records.

6.2 Performance of Multi-party Protocols

PSI-CA Protocol. The running times and communication overhead of our server-aided multi-
party PSI-CA are shown in Table 2. The protocol is asymmetric with respect to the server, the
receiver Py and other parties Pic[p), thus, we report the performance results of these parties sep-
arately. In our protocol, the workload of the receiver is light as it only requires to call m AES
instances. The majority of the receiver’s running time is to wait for other parties to finish their
work. For example, P; takes 33.86 seconds to compute PSI-CA (or DotProd) with n = 8 and
m = 220 (or t = 22°) in the LAN setting. Also, the server plays the role of the receiver in most
OPPRFs, his communication cost is highest amongst other participants. For n = 8 and m = 2%°
(or t = 229), the protocol PSI-CA (or DotProd) requires 3305 MB on the server’s side.

Table 3 presents the performance of our “server-less” multiparty PSI-CA protocol in both LAN
and WAN settings. Similar to the server-aided protocol, we separately report the performance
results of Py, P», P, and other parties Pic[3,,—1). Unlike server-aided protocol, this protocol only
relies on OKVS (i.e. makes use of symmetric-key operations only). We find that our protocol scales
to large input sets (e.g. m = 22°) with a large number of participants (e.g. n = 16). For n = 16
and m = 220 (or t = 22Y), our protocol requires only 6 seconds with the total communication cost
1GB.

Comparison with Prior Work. As far as we know, [CDG™21]’s implementation is not publicly
available. Thus, we take their reported run times from [CDG™'21, Table 2-5]. For the most direct
comparison, we used the same configured machine (2x 36-core Intel Xeon 2.30GHz 256GB of RAM)
and network settings to evaluate their and our protocols. We compare our “server-less” protocol
with [CDG"21] for the case of n = 4, one dishonestly colluding (no collusion), each with m &
{212,216 2201 " We show an improvement of 1.6 —5x in the run time, and 3.5—4x in the bandwidth
cost. We report the performance numbers in Table 4.

From Table 3, our server-less protocol with n = 16 requires only 6.38s in the LAN setting
and m = 2?°. From Table 4, the [CDGT21] with n = 4 requires 23.8s in the same setting. Our

Pan c5.24xlarge AWS EC2 instance (96 vCPU @ 3.6 GHz, 192 GiB RAM)

23

protocol with n = 16 is already 3.74x faster than [CDG™'21] with n = 4, thus, we do not present
the comparison of the two protocols for larger n.

Performance of Heatmap Computation. The complexity of our heatmap protocol is linear
in the number of MNOs. Using the suitable parameters of the two-party heatmap where each MNO
has a matrix of size 223 x 215, and HHS has a vector of size 223, we estimate that our protocol takes
about one hour if there are 6 MNOs involved in the protocol execution. Note that our protocol
does not reveal additional information other than the output — how many patients visit a certain
area. In contrast, [BBH'20] only works in the two-party setting. In real-world scenarios, there
are many MNOs. If using only their protocol where the HHS executes vector-matrix multiplication
with each MNO and then computes the “global” heatmap, this solution leaks extra information —
the individual result of each vector-matrix multiplication.

Performance of ARL Similar to the two-party ARL, the performance of our multi-party ARL is

S]Cj\[Hgélcﬁ)mdu), where [H(Dtg;g)rodu <) 1s the cost of n-party DotProd with Hamming weight ¢;.
Here, we assume that each attribute/vector in Ljc[nm) has a Hamming weight ¢;. According to the
performance of our multi-party DotProd (or multi-party PSI-CA) shown in Table 2&3, we estimate

that our ARL would take under a day to compute ARL of the database with million records.

References

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between
sets of items in large databases. SIGMOD Rec., 22(2):207-216, June 1993.

[BBHT20] Alexandros Bampoulidis, Alessandro Bruni, Lukas Helminger, Daniel Kales, Christian
Rechberger, and Roman Walch. Privately connecting mobility to infectious diseases
via applied cryptography. Cryptology ePrint Archive, Report 2020/522, 2020. https:
//ia.cr/2020/522.

[BBM*21] Abhishek Bhowmick, Dan Boneh, Steve Myers, Kunal Talwar, and Karl Tarbe. The
apple psi system, 2021. [Online; accessed 18-Sept-2021].

[BBVT20] Alex Berke, Michiel Bakker, Praneeth Vepakomma, Ramesh Raskar, Kent Larson, and
AlexSandy’ Pentland. Assessing disease exposure risk with location histories and pro-
tecting privacy: A cryptographic approach in response to a global pandemic. arXiv
preprint arXiw:2003.14412, 2020.

[Bea9l] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan
Feigenbaum, editor, CRYPTO, volume 576 of LNCS, pages 420-432. Springer, 1991.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald
and Marc Fischlin, editors, FEUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
337-367. Springer, Heidelberg, April 2015.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and
extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292-1303. ACM Press, Octo-
ber 2016.

24

https://ia.cr/2020/522
https://ia.cr/2020/522

[BMRY0]

[CDG*21]

[CM20]

[DC14]

[DCW13]

[DGD18]

[DIL*20]

[DNO7]

[DPT20]

[DSZ15]

[FIPRO5)

[GM82]

[GMW87]

D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. STOC,
1990.

Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana Obbattu,
Sruthi Sekar, and Akash Shah. Efficient linear multiparty psi and extensions to cir-
cuit/quorum psi. CCS, 2021.

Melissa Chase and Peihan Miao. Private set intersection in the internet setting from
lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34-63. Springer, Heidelberg,
August 2020.

Changyu Dong and Liqun Chen. A fast secure dot product protocol with application
to privacy preserving association rule mining. In PAKDD, 2014.

Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big
data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 20183, pages 789-800. ACM Press, November 2013.

Outsourcing scalar products and matrix products on privacy-protected unencrypted
data stored in untrusted clouds. Information Sciences, 2018.

Samuel Dittmer, Yuval Ishai, Steve Lu, Rafail Ostrovsky, Mohamed Elsabagh, Nikolaos
Kiourtis, Brian Schulte, and Angelos Stavrou. Function secret sharing for psi-ca: With

applications to private contact tracing. Cryptology ePrint Archive, Report 2020/1599,
2020.

Ivan Damgard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty
computation. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
572-590. Springer, Heidelberg, August 2007.

Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: Delegated PSI cardinality with
applications to contact tracing. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part I1I, volume 12493 of LNCS, pages 870-899. Springer, Heidelberg,
December 2020.

Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for
efficient mixed-protocol secure two-party computation. In NDSS 2015. The Internet
Society, February 2015.

Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Joe Kilian, editor, T'CC, 2005.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption how to play mental poker
keeping secret all partial information. STOC ’82, 1982.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218-229. ACM Press, May 1987.

25

[GPR'21]

[HLL*16]

[TKN*20]

[KMP17]

[KMRS14]

[KOS03]

[KRST19]

[KS05]

[Lin01]

[LPR*20]

[Mea95]

Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Obliv-
ious key-value stores and amplification for private set intersection. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 395-425,
Virtual Event, August 2021. Springer, Heidelberg.

Chungiang Hu, Ruinian Li, Wei Li, Jiguo Yu, Zhi Tian, and Rongfang Bie. Efficient
privacy-preserving schemes for dot-product computation in mobile computing. PAMCO
16, 2016.

Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure com-
puting: Private intersection-sum-with-cardinality. In EuroSéP, pages 370-389. IEEE,
2020.

Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Prac-
tical multi-party private set intersection from symmetric-key techniques. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 1257-1272. ACM Press, October / November 2017.

Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed Sadeghian. Scal-
ing private set intersection to billion-element sets. In Nicolas Christin and Reihaneh
Safavi-Naini, editors, Financial Cryptography and Data Security - 18th International
Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected
Papers, volume 8437 of Lecture Notes in Computer Science, pages 195-215. Springer,
2014.

Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-party
computation with a dishonest majority. In Eli Biham, editor, FUROCRYPT 2003,
volume 2656 of LNCS, pages 578-595. Springer, Heidelberg, May 2003.

Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Christian
Weinert. Mobile private contact discovery at scale. In USENIX, August 14-16, 2019.

Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 241-257. Springer, Heidel-
berg, August 2005.

Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 171-189. Springer,
Heidelberg, August 2001.

Tancrede Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. Private
join and compute from pir with default. Cryptology ePrint Archive, Report 2020/1011,
2020. https://ia.cr/2020/1011.

Catherine Meadows. Formal verification of cryptographic protocols: A survey (invited
lecture). In Josef Pieprzyk and Reihaneh Safavi-Naini, editors, ASIACRYPT’9, volume
917 of LNCS, pages 135-150. Springer, Heidelberg, November / December 1995.

26

https://ia.cr/2020/1011

[MPR*20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided

[MRR20]

[PRTY?20]

[PSTY19]

[PSZ14]

[RR21]

[RS21]

[RT21]

[Rud12]

[SBS19]

[SGRP19]

[TSS*20]

malicious security for private intersection-sum with cardinality. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 3-33. Springer, Heidelberg, August 2020.

Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast database joins and PSI for
secret shared data. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 2020, pages 1271-1287. ACM Press, November 2020.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast,
malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 739-767. Springer, Heidelberg,
May 2020.

Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In Yuval Ishai and Vincent Rijmen,
editors, FUROCRYPT 2019, Part I1I, volume 11478 of LNCS, pages 122—-153. Springer,
Heidelberg, May 2019.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security
2014, pages 797-812. USENIX Association, August 2014.

Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating the half-
gates lower bound for garbled circuits. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 94-124, Virtual Event, August
2021. Springer, Heidelberg.

Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI
from vector-OLE. In Anne Canteaut and Francois-Xavier Standaert, editors, EURO-
CRYPT 2021, Part II, volume 12697 of LNCS, pages 901-930. Springer, Heidelberg,
October 2021.

Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small
sets. CCS, 2021. https://ia.cr/2021/1159.

Cynthia Rudin. Mit lecture notes: Machine learning and statistics,
2012. https://ocw.mit.edu/courses/sloan-school-of-management/
156-097-prediction-machine-learning-and-statistics-spring-2012/
lecture-notes/MIT15_097512_lecO1.pdf.

Babak Siabi, Mehdi Berenjkoub, and Willy Susilo. Optimally efficient secure scalar
product with applications in cloud computing. IEFE Access, 2019.

Phillipp Schoppmann, Adria Gascén, Mariana Raykova, and Benny Pinkas. Make some
ROOM for the zeros: Data sparsity in secure distributed machine learning. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 1335-1350. ACM Press, November 2019.

Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. Epione:
Lightweight contact tracing with strong privacy. arXiv, 2020.

27

https://ia.cr/2021/1159
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf

[VC02]

[VC05]

[wor21]

[Yao86]

[ZWH*16]

[ZWY*+17]

Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in verti-
cally partitioned data. KDD, 2002.

Jaideep Vaidya and Chris Clifton. Secure set intersection cardinality with application
to association rule mining. Journal of Computer Security, 13:593-622, 10 2005.

Covid-19 coronavirus pandemic, 2021. =https://www.worldometers.info/coronavirus/.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162-167. IEEE Computer Society Press, October 1986.

Youwen Zhu, Zhikuan Wang, Bilal Hassan, Yue Zhang, Jian Wang, and Cheng Qian.
Fast secure scalar product protocol with (almost) optimal efficiency. In Song Guo, Xi-
aofei Liao, Fangming Liu, and Yanmin Zhu, editors, Collaborative Computing: Network-
ing, Applications, and Worksharing, pages 234—242, Cham, 2016. Springer International
Publishing.

Jun Zhang, Xin Wang, Siu-Ming Yiu, Zoe Jiang, and Jin Li. Secure dot product of
outsourced encrypted vectors and its application to svm. 2017.

28

=

Comm. LAN WAN
mo | mq || Receiver ‘ Sender ‘ Server ‘ Receiver ‘ Sender ‘ Server ‘ Receiver ‘ Sender ‘ Server
28 0.012 0.004 [0.008 0.002 [0.001 | 0.002 0.481 [0.001 | 0.289
28 [210 0.025 0.016 | 0.008 0.002 | 0.002 | 0.002 0.482 [0.002 0.29
212 0.074 0.066 | 0.008 0.008 | 0.006 | 0.006 0.679 | 0.005 | 0.486
212 0.197 0.066 | 0.131 0.01 [0.005 | 0.008 1.066 | 0.005 | 0.681
212 [oT4 0.393 0.262 | 0.131 0.029 | 0.019 0.02 1.274 0.02 | 0.888
216 1.18 1.049 | 0.131 0.099 | 0.065 | 0.065 1.537 | 0.066 | 1.144
216 3.146 1.049 | 2.097 0.132 | 0.058 | 0.102 2.374 | 0.065 | 1.579
216 [T8 6.291 4194 | 2.097 0.315 | 0.209 | 0.203 2.924 1.42 | 2.097
270 18.874 | 16.777 | 2.097 1.007 | 0.583 | 0.553 4853 | 3.732 | 3.507
220 50.332 | 16.777 | 33.554 1.501 | 0.964 | 1.206 8.235 | 5.745 | 7.681
220 2227117100.663 | 67.109 | 33.554 4814 | 2.637 | 4.247 19.535 | 15.373 | 18.772
271 301.99 | 268.435 | 33.554 19.123 | 9.625 | 17.305 66.244 | 54.594 | 64.089

Table 5: Running time (in second) and communication cost (in MB) of our two-party PSI-CA
protocols for the sender set size mq and receiver set size ms.

A Security Proof

Theorem 2. Protocol 2 securely computes Functionality 4 (Fpsi—ca) for arbitraryn, in the (fopprﬁ Fzs, FCoin)-
hybrid model, in the presence of an adversary who may actively corrupt any strict subset of { Py, Ps, ..., Py}
or {Ps, P3, ..., P,} or passively corrupt the cloud server C.

Proof. We separate the proof to n cases, depending on what parties the adversary corrupts. We
will consider a maximal corruption (of n — 1 parties), from which security against a non-maximal
corruption can be easily derived. Thus, the following proofs address cases where the adversary
corrupts {F; })\ (s}~ Finally, we consider a passive corruption of the cloud server.

Corrupted {P;}iciy)\f13- The simulator Sim runs {F;}j,)\ 1) internally and plays the role of
the F ¢ and Fcoin functionalities. First Sim generates the keys {Ki}icg2,..ny for the sharing
function S and hands them to the corresponding parties. Sim also generates the random values
I'={v,...,7m} and k (from steps 2 and 3 of the protocol) and hands them to the corresponding
parties. Now, Sim observes the input P; from P, to the Fopprf functionality, from which it can
extract the corrupted parties’ inputs as follows: Sim adds to the input sets of the parties all items
a for which P; contains the key-value point (F(k,a),b;) where @ ,b; = v; B, S(K;,a) for
some j € [m]|. Then, Sim pads the corrupted parties’ sets with distinct items, so that their size
is exactly m. The simulator Sim sends the generated input sets, X;’s as the input of P;, to the
ideal Fpsi_ca functionality, from which only P; obtains the output. Since all incoming messages
to parties {B}ie[z’n] are from ideal functionalities, their views generated by Sim are distributed
identically as in the ideal world. In addition, P;’s output in the real and ideal worlds is identically
distributed, since the input sets generated by Sim contain all and only items that will end up in
the intersection between all parties.

Corrupted {Pi}ie[n]\{Q}. Similar to the above case, Sim runs the corrupted parties internally,
playing the role of Feoin and F, ¢ Sim generates the keys {K;} of the sharing function S and
hand them to the parties, as well as the set of values I' = {71,...,7,} that are handed to P,

29

and P». The simulator Sim extracts the input sets of Ps,..., P, as follows. Sim adds to the
input sets of the parties all items a for which P; contains the key-value point (F(k,a),b;) where
D, ;b = P, S(K;,a). Then, Sim pads the corrupted parties’ sets with distinct items, so that
their size is exactly m. To extract P;’s input set, Sim observes the set X/ sent from P; to C. Then,
it computes X; = F~1(k, X]). The simulator Sim sends the generated input sets, X;’s as the input
of P;, to the ideal Fps|_ca functionality, from which only P; obtains the output. Since all incoming
messages to parties Py, P3, ..., P, are from ideal functionalities, their views generated by Sim are
distributed identically as in the ideal world. Finally, given the output size, ¢, Sim randomly picks ¢
items from V and sends them to P;. P;’s view is indistinguishable from its view in the ideal world
since in both cases it receives ¢ random items from V. In addition, the output is of exactly the
same size as in the real world, as the adversary could not ‘artificially’ increase the intersection size.
Specifically, the adversary manages to incorrectly add an item to the intersection, say the item a, if
(1) @ was not input by P, and (2) computing the XOR of the OPRF results on a in the invocations
with P, ..., P, results with exactly v; & S(K2,a) @;_5 S(K;,a). Now, since the OPRF result, v,
results from the invocation with P, is pseudorandom (and w.h.p. different than v; & S(K>,a) for
all j € [m]) the probability that the adversary guesses y}, = is negligible.

Corrupted {Pi}ic,)\(;3 for j € {3,n}. Note that P;’s part of the protocol is the same for all
i € {3,n}, therefore, we treat all these cases at once. The simulator Sim runs the corrupted
parties internally, playing the role of the Fco;, and F opprf functionalities. As before Sim generates
the keys {K;} of the sharing function S, and the values I' = {71,...,7m} and hand them to the
corresponding parties. Sim constructs the sets of the corrupted parties as follows: Sim adds to the
input sets of the parties all items a for which P; contains the key-value point (F(k,a),b;) where
Dicpnp 1 i = Bicpnp sy SKira). Then, Sim pads the corrupted parties’ sets with distinct
items, so that their size is exactly m. To extract P;’s input set, Sim observes the set X/ sent
from P; to C. Then, it computes X1 = F~1(k, X1). The simulator Sim sends the generated input
sets, X;’s as the input of P;, to the ideal Fpgj_ca functionality, from which only P; obtains the
output. Since incoming messages to all corrupted parties are from ideal functionalities, their views
generated by Sim are distributed identically as in the ideal world. Finally, given the output size,
¢, Sim randomly picks ¢ items from I' and sends them to P;. P;’s view is indistinguishable from
its view in the ideal world since in both cases it receives ¢ random items from I'. The adversary
manages to “artificially” add an item to the intersection with negligible probability, using exactly
the same analysis as in the above case.

Corrupted C. Here there is no input to be extracted as C does not have an input. Note that
all the messages received by C in the real world are pseudorandom, so the simulator can simply
simulate them.

O]

Theorem 3. Protocol 3 securely computes Functionality 4 (Fpsi—ca) for arbitraryn, in the (fopprﬁ FCoin)-
hybrid model, in the presence of an adversary who may actively corrupt any subset from {Ps, ..., Py}
or passively corrupt one of P1,Py or P, (i.e. P1, Py and P, are non-colluding).

Proof. We separate the proof to multiple cases, depending on the adversary’s corruption. As before,
we assume maximal corruption and stress that the security in the case of a non-maximal corruption
can be easily derived.

30

Algorithm 1 apriori-gen(L;)

1: Find all pairs of itemsets in L; where the first ¢ — 1 items are identical.
e.g., t =5 and two pairs {a, b, c}, {a,b,d}

2: Union them (lexicographically) to get a list of candidates C}
e.g., {a,b,c},{a,b,d} = {a,b,c,d}

3: Prune Cyq = {c € C}, | Vs. € L.}, where s, is a t-subsets of c.

4: Return Cyyg

Figure 1: A Simplest apriori-gen Algorithm [AIS93, Rud12]

Corrupted {Pi}ie[gm,l]. The simulator Sim runs the corrupted parties internally, playing the
role of the Fcoin, Fzs and .Fopprf functionalities. Sim generates the keys {Kz'}ie[27n] and the PRF
keys s and k, and send them to the corresponding parties. Sim extracts the input sets of the
corrupted parties as follows: The corrupted parties use s and k to generate their set of points to
the]—"opprf invocations, from which they do not receive an output. Finally, P> is a server in the
invocation of the Fps_ca functionality between P, and P,, from which the semi-honest P, learns
nothing (except the set size, which is already known). This completes the simulation. The parties’

views are identically distributed in the ideal and real worlds.

Corrupted P;. The simulator Sim generates the PRF key s and hands it to P;. It obtains the
intersection cardinality, ¢, from the ideal execution, and forwards c to P; as its output. It is easy
to see that P;’s view in the ideal and real worlds are identically distributed.

Corrupted P,. The simulator Sim generates the keys {K;} for the sharing function S and the
PRF key k, and hands them to the corresponding parties. On every invocation of F opprf between
P; and P,, the simulator Sim sends P, a pseudorandom result. The distributions of the view of
P, in the real and ideal worlds are indistinguishable, as in both worlds all received messages are
pseudorandom.

O

B Owur Secure Dot Product Protocol
See Protocol 6.

C Zero Sharing Protocol

See Protocol 7.

D Server-Aided 2-Party PSI Protocol

See Protocol 8.

31

PROTOCOL 6. (Secure Dot Product - H&?@mduct)

PARAMETERS:

e An upper-bound t.

e n parties: Pi,..., P,; an untrusted server C;

e A PSI-CA functionality Fps)_ca in Functionality 4.

e A function idx’ : Z% x {0,1}* — ({0,1}*)* in Section 5.1
INPUTS:

® Picpy has Xy = {zi1,...,Zim}.

e Cloud server C has no input.

ProTOCOL:
1. Each party Pic[,) computes A; < idx'(X;,1).
2. All parties invoke Fpsi_ca where P; inputs A;, C inputs nothing , and P; obtains the output

[z Adl-
PROTOCOL 7. (Zero-Sharing - lzs [KMP'17])
PARAMETERS: There are n parties Pi,...,P, and an adversary A. There is a PRF

F:{0,1}* x {0,1}* — {0,1}".

ProTocoL:

1. Each party P; picks a random seed r; ; for j € [i +1,n] and sends 7, ; to P;. The key K;
of party P;is (K1,iy--. ki—1,i, Kijit1,-- -, Kin)-

2. To obtain its share for value x, party P; computes

S(B&ax):: GE)f%$KI) 53] {})}%Lj@ﬂ

j<i J>1

E Example of the ARL algorithm

For simplicity, we consider two parties P; and P», each holding a vertical-partitioned database
T; and T, respectively. Assume that 77 has 3 attributes/columns {aj,as,as}, and T has 2
attributes/columns {by, by }.

One important step of the ARL algorithm is to find all “global” frequent itemsets. For example,
we want to compute how many transactions that contain 2 attributes (aj,b;). If the number of
these transactions is greater than a threshold ¢, we say that (a1,b1) is a frequent itemset.

For a better protocol explanation. We define “global” vs “local” frequent itemset. A frequent
itemset is global if each party has at least one item in the frequent itemset (this aligns with the
global rule mentioned in Definition 1). A frequent itemset is local if the frequent itemset contains
only items belonging to one party.

If (a1,b1) is a “global” frequent itemset, the attribute a; itself should be a “local” frequent
itemset. Thus, before any interaction between parties, each party P; needs to locally compute a list
L% that has only 1 attribute. For example, if the attribute a; appears more than or equal ¢ times
in T, then a is a local frequent itemset, and thus a; is added to L%. In contrast, if the attribute
as appears less than ¢ times in the 77, then as is not a local frequent itemset, and thus as & L%.
Assume that from Step 1, we have L = {ay,a3}, and L} = {b1,bs}.

Step 2 of Protocol 5 aims to find a list L, of “global” frequent itemsets, where each item-
set has n items (n = 2 in the two-party setting). To do so, the parties run DotProd where

32

© P N e e W

10.

11.
12.

PROTOCOL 8. (Server-Aided 2-Party PSI [KMRS14])

PARAMETERS: There are 2 parties P;, P> and a third-party server S. P; and P, have sets X; and
X5 as input, respectively. The server S does not have input. Let F' be a PRF, and parameter d > 0.
ProTOCOL:

1.

Py chooses sets Dy, D1, Dy and a key k; such that |Dg| = |D1| = |D2| = d, sends them to
P2 and set Yl < X1 @] DO @] Dl.

Py sets Yo + Xo U Dy U Ds.
P, chooses a random key ko and sends it to the server S.
Party P; sends a shuffled version of Y{ = {F(k1,x)}zcy, to S.
The server returns a shuffled version 7 of Y{" = {F(k2,y)},ey; to P
Party P, sends a shuffled version of Yy' = {F(kq, F(k1,))}zey, to Pr.
Py computes I =Y{" NY;" and sends the result to Ps
Py computes I~ = {F~Y(ky, F~Y(ko,x))|Vz € I}
P, check that I has the right form and aborts if:
(a) Either Do ¢ I"Yor DoNI=t #£10)
(b) There exists z € X5 and «, 8 € [A] such that z|ja € I7! and z||3 ¢ I}

If P, does not abort, it notifies S who sends the shuffled function 7 to P;. P; uses 7 learns
the values in the set I~1

Py checks that I has the right form as in Step (9) and aborts if the check fails.
The parties output distinct items in 771\ Dy.

the party’s input is each itemset in L} and L?. For example, the parties check whether each
of pairs (a1,b1), (a1,b2), (as, b1), (a3, ba) are “global” frequent items. Assume that the column a; is
(1,1,1,0,0) and the column bl is (1,1,1,1,0). The dot product a; - b; is 3. E.g. a pair (a1,b1)
appears 3 times in the database. If the threshold ¢ = 2, the (a1,b1) is a “global” frequent itemset.

Step 3 of the protocol aims to find a list Ly of “global” frequent itemsets, where each itemset
has k items (here, k > 2). For example, the parties want to check whether (aj, as,b1) is a “global”
frequent itemset (in this case, k = 3). They first need to compute the dot product a; - as - b;. To
do so, P; locally computes a dot product of a; and ag before running a secure DotProd with P»
(see Step 3b). The function apriori-gen is for improving the computation — it helps to generate the

set of candidate itemsets for Ly.

33

	Introduction
	State-of-the-Art for PSI Cardinality
	Secure Dot Product and Its Applications
	Our Results and Techniques
	Our PSI-CA Approach:
	Our Multi-party Dot-Product (DotProd):
	Application to PSI-CA and DotProd:

	Preliminaries
	Security Model
	Oblivious Key-Value Store (OKVS)
	Oblivious PRF (OPRF) and Programmable PRF (OPPRF)
	Unconditional Zero Sharing
	Private Set Intersection Cardinality
	Secure Dot Product

	Server-Aided OPRF and OPPRF
	Server-Aided Shuffled OPRF
	Server-Aided OPPRF

	PSI Cardinality Protocol
	Server-Aided Two-Party PSI-CA
	Server-Aided Multi-Party PSI-CA
	Multi-party PSI-CA

	Applications
	Secure Dot Product Construction
	Heatmap Computation
	Association Rule Learning

	Implementation and Performance
	Performance of Two-party Protocols
	Performance of Multi-party Protocols

	Security Proof
	Our Secure Dot Product Protocol
	Zero Sharing Protocol
	Server-Aided 2-Party PSI Protocol
	Example of the ARL algorithm

