A Quantum Analysis of Nested Search Problems
with Applications in Cryptanalysis

André Schrottenloher and Marc Stevens

Cryptology Group, CWI, Amsterdam, The Netherlands
firstname.lastname@cwi.nl

Abstract. In this paper we study search problems that arise very often
in cryptanalysis: nested search problems, where each search layer has
known degrees of freedom as well as constraints. Classical nested searches
can be transformed into quantum algorithms, using Grover’s quantum
search or amplitude amplification by Brassard et al., obtaining up to a
square-root speedup. However, the nesting introduces technicalities in
the quantum complexity analysis that are complex to handle and have
been so far analyzed in previous works in a case-by-case manner. In this
paper, we aim to simplify the quantum transformation and corresponding
analysis.

We introduce a framework to transform classical nested searches into a
quantum procedure and to analyze its complexity. The resulting quan-
tum procedure is easier to describe and analyze compared to previous
works, both in the asymptotic setting and for concrete instantiations. Its
time complexity and success probability can be bounded using a generic
formula, or more precisely with numerical optimization.

Along the way to this result, we introduce an algorithm for variable-
time amplitude amplification of independent interest. It allows to obtain
essentially the same asymptotic complexity as a previous algorithm by
Ambainis (STACS 2012) using only several layers of amplitude amplifi-
cation, and without relying on amplitude estimation.

Moreover, we present some direct applications of our results in crypt-
analysis.

Keywords: Quantum search - Nested search - Quantum cryptanalysis - Ampli-
tude amplification - Symmetric cryptanalysis.

1 Introduction

In this paper we study quantum algorithms for classical nested search problems
with a unique solution, where each of the ¢ search layers has known degrees
of freedom as well as constraints as formalized in Algorithm 1. The degrees of
freedom for each layer are captured by sets C; of value choices for i = 1,...,¢.
Constraints are captured by functions f; that output a bit 0 (‘invalid partial solu-
tion’) or 1 (‘valid partial solution’). Our formalization also considers minimizing
cost and allows an auxiliary state to be passed to avoid redundant computations.

Moreover, we allow the filter functions f; to compute only a partial auxiliary
state to stop as early as possible, whereas a postprocessing function d; is used
to output the final auxiliary state of each layer. Every layer can access (but not
modify) the choice and auxiliary state of prior layers. These arise very often

Algorithm 1 Classical nested search problem with backtracking
Input: NESTEDSEARCHPROBLEM of ¢ layers defined by

Sets C; for i € {1, ..., ¢} representing possible values for ¢ variables
Filtering functions f, : Cl X ... X Cz X Sl X ... X Si—l — {O, 1} X S;
Postprocessing functions d; : C1 X ... x C; x S1 X ... x S;—1 X Sj = S;
Here sets S1,...,S;, S1,...,Se represent internal states of fi,d;.
Having a single solution soL = (c1,...,ce, 81, -, S¢) such that:

o (1,s) = fic1,---yCiy81,...,8i—1) fori=1,....¢

o s, =di(c1,...,¢i,81,...,8-1,8;) fori=1,...,¢
Problem: output soL

in cryptanalytic attacks (e.g., differential [27], impossible differential [3], linear,
zero-correlation, Square [16], DS-MITM [14] ...) that exploit structure to solve
cryptographic problems significantly faster than a simple exhaustive search. Our
constraint for a unique solution might seem arbitrary, but in many cases this
constraint occurs naturally: e.g., in key or state recovery attacks. When there
are multiple solutions and their expected number is known in advance, e.g., as
in hash function collision attacks, it is possible to more strongly filter in the
filtering functions f; such that only a single solution is expected to remain.

For classical computers this nested search problem has a clear and opti-
mal solution consisting of straightforward nested for-loops and if-statements.
However, the optimal solution is not always so clear in the case of quantum
computers. Classical nested searches can often be transformed into quantum
algorithms using Grover’s quantum search [19] or Quantum amplitude amplifi-
cation (QAA) [} obtaining up to a square-root speedup. However, contrary to
classical exhaustive searches, Grover’s algorithm and the QAA run for a fixed
number of iterations, which determines their success probability. Finding the
number of QAA iterations for each level, and optimizing the exact algorithm,
involves subtle technicalities that are complex to handle:

Loss factor per level: Applying Grover or QAA naively results in a multi-
plicative loss factor of 7/2 per level, totaling (w/2)‘. This can be reduced
by a more refined analysis using ‘undercooking’, i.e., under-amplifying the
‘good’ amplitudes in intermediate levels and only amplifying to the desired
success probability at the last level;

Cascading success probability errors: The success probabilities of each layer,
which guide the number of iterations to perform, may be estimations given
up to a certain variance. Further errors may arise at each level due to the
rounding to an integer number of iterations. These errors cascade through
the following levels and need to be properly estimated and controlled.

Uncertainly in success probabilities: When success probabilities for levels
are unknown or their variance is too large, they can either be estimated
via Quantum amplitude estimation [9], mitigated by performing the same
search multiple times in parallel, or handled via “overcooking”, i.e. intention-
ally using more, or a variable number of iterations to lead to a predictable
success probability. All three approaches induce further technicalities in the
complexity analysis.

Previous works dealing with quantum cryptanalysis often err on the safe side,
by performing the analysis layer by layer, counting the 7 factors and reducing
the intermediate error probabilities to negligible amounts. This leads to an over-
estimate of these complexities, which may be problematic for attacks close to
the bound of exhaustive search (e.g., in one of the attacks of [7], the difference
with Grover search is only of a factor 22). This also leads to descriptions more
focused on the quantum side, even though the classical nested search procedure
is often much easier to explain than its quantum version.

1.1 Our Contributions

In this work, we presume the nested search problem functions f;, d; are trans-
formed into corresponding quantum algorithms Ay, ..., A; and Dy, ..., Dy that
are deterministic and reversible and operate on a Hilbert space H =C1 ® ... ®
Co@W) ®... W, ® F, where

1. C; are quantum registers that encode the choice ¢; € Cj;

2. W; is a workspace register for search level ¢ that includes an encoding of the
auxiliary data s; € S;;

3. F is a sequence of flag qubits, where the i-th qubit is initially 0 and modified
only by the i-th level quantum algorithm A; to 1 if the corresponding partial
solution (c1, ..., ¢;) is not filtered; there is only one full solution (cy, ..., c);

4. A; implements f; and operates on the registers Cy,...,C;, Wy, ..., W;, F but
only modifies W; and the i-th qubit flag in F;

5. D; implements d; and operates on the registers Cy,...,C;, Wy, ..., W;, F but
only modifies W;.

The quantum nested search problem is then informally rephrased as: given A;,
D; construct a quantum algorithm optimizing for low cost and high success
probability, i.e., the probability to measure the unique solution SOL from the
output quantum superposition.

We present two simple solutions and a corresponding quantum complexity
analysis for two slightly different settings.

In Section 3, we first cover the special simpler case of a search with early
aborts, which corresponds to a single choice ¢; (the remaining choices are trivial
Cy =...=Cy ={0}) followed by a sequence of tests f1, ..., f¢ of increasing com-
plexities. We use the name variable-time amplitude amplification for this case,
because it also corresponds to a quantum amplitude amplification of a variable-
time algorithm. This problem was first studied by Ambainis [2], who showed that

when doing a search for a good element among N of them, when being “good”
is evaluated in time ¢; for element number 7, the solution can be found in time

(5(«/% +...+ t?\,) However, his solution relied on Quantum amplitude esti-

mation. We show that amplitude amplification is enough to tackle this problem,
and obtain the same asymptotic complexity with a simpler algorithm.

In Section 4 we cover the general case and present our main framework
combining early-abort and backtracking, assuming a certain knowledge on the
probabilities of success at each step. Our algorithm also relies on a recursive
nesting of QAAs, though its structure is different than for the above case.

In both cases in Sections 3 and 4, we perform detailed computations of the
probability of success of our algorithms, parameterized by the number of QAA
iterates that we will choose to perform. We obtain generic formulas in Lemma 10
and Lemma 16. These imply that with £ layers of QAA, we essentially lose a

. 0, . . .
factor O(v/¢) instead of (%) in the time complexity. Furthermore, we discuss
optimizing the complexity numerically for concrete instances in Sections 3.5
and 4.4, which leads not only to a simplified analysis, but also to improvements

on quantum attacks from the literature.

In Section 5 we take the key-recovery attacks on AES of [7] as an exam-
ple to demonstrate our framework. We are able to further optimize quantum
nested searches and gain up to a factor 2*. Further applications are given in-
Appendix. We show that quantum key search on any reasonable block cipher
FE)j. can be performed by repeating %2”/”0‘01 times a circuit that tests whether
trunc(Eg(p)) = trunc(c) for a given plaintext-ciphertext pair, where trunc is a
truncation to 20 bits. We study the case of a search with independent tests, where
we are looking for an x that satisfies several independent one-bit testing functions
fi(x), both asymptotically and with exact values. The code of our experiments
is available at: https://github.com/AndreSchrottenloher/quantum-search.

Related work. Over the time, there has been a few attempts at formalizing
the correspondence between classical and quantum nested search algorithms, by
seeing them as sampling algorithms for their solution set (or filtering algorithms
as in [7]). However these approaches were only intended to guide the design of
such algorithms, and did not provide a generic complexity analysis of the results.

The analysis done by Ambainis in [2,3], for the special case of variable-time

amplitude amplification, contains a reduction of the (%)z factor to O(v/2), but

it was only used in the context of asymptotic complexities.

Non-asymptotic complexity analyses holding at a rather generic level were
also performed, but were limited to a fixed number of nested searches, e.g. £ = 2
for the search with two oracles in [13,21].

https://github.com/AndreSchrottenloher/quantum-search

2 Preliminaries

In this work these upper and lower bounds for sin and arcsin are used:

Vo >0: m(l—x2/6)§sinm§x, and 72 (1—x2/3)§sin2x§x2 (1)
VO<z<1: z<aresinz <z (l+ (7/2—1)2%) (2)
2® <arcsin®z < 2” (14 (/4 — 1) 2?) < 2?n%/4 (3)

These are standard bounds deduced from the Taylor series approximations, and

the study of the function: z — arcsinx — z — (% — 1) x3.

Quantum Algorithms and Memory Models. We refer to [24] for an intro-
duction to quantum computing. In this paper, we study quantum algorithms in
the quantum circuit model. In this model, a quantum system consists of a certain
number n of qubits. A qubit is a 2-dimensional elementary quantum system, with
a state described by a vector of norm 1 in H = C2, on the canonical basis |0) , |1).
The (normalized) state of an n-qubit system lies in the space H®" = H?", with
the canonical (computational) basis made of all n-bit strings. Measuring the
state) = 3_,c10,13» i |§) collapses it to |i) with probability v).

A quantum circuit is a sequence of basic unitary operators of H®". These
basic operators (quantum gates) usually apply to one or two selected qubits. A
standard set of such gates is the Clifford+T set, which is often used for counting
gates in quantum algorithms (see e.g. [20] or [6]). The time complexity is then
the number of quantum gates in the circuit. We can either consider an ezact
time complexity, when the circuit is fixed, or an average complexity, when the
circuit is drawn (before being run) from a family of possible circuits.

We use G(A) to denote the gate count of a quantum circuit .4, and S(A) the
width of the circuit, i.e., the number of qubits on which it acts. Note that S(.A)
does not take into account the ancilla qubits.

Any quantum algorithm A without measurement is reversible, and admits
an inverse denoted A'. We also often say that we “uncompute” A. Uncomputing
A means applying the sequence of gates of A, inverted, and in reverse, so we
consider A" and A to have the same time complexity.

In symmetric cryptanalysis, time complexity estimates are often expressed
relatively to the cost of a cryptographic function. For example, the exhaustive
key search of a 128-bit block cipher is estimated as 2'2® evaluations of the cipher.
This principle remains true in quantum cryptanalysis. We can consider the eval-
uation of a quantum circuit for the cipher to be the benchmarking operation, or
alternatively, as in [7], we can single out some costly component of the cipher
(here an S-Box) and consider only the number of evaluations of this sub-circuit.

Memory Models. Depending on the model considered, a quantum algorithm can
access classical and quantum memory. The quantum memory requirement is the
number of qubits used by the circuit, including qubits used for intermediate
computations (ancilla) which are returned to the initial |0) state afterwards.

Given an array of M memory locations (qubit registers), any fized loca-

tion can be queried in polynomial time in the circuit model, as it amounts
Access;

only to apply quantum gates to specific pairs of qubits: |z) |y1, ...,y)
|z ® yi) |y1, - - -, yar). However, accessing a variable memory location (random ac-

cess) can a priori be done only by performing a sequence of 5(M) such queries,
Access
E—

which gives a cost O(M) for the following operation: |z) |y1,. .., yar) |i)
|z ®yi) |y1,...,yn) |i). In the QRAQM"' model, we assume that the operation

A . L
—% can be performed in polynomial time. In practice, we will consider its

cost to be comparable to a block cipher or an S-Box evaluation.

A quantum algorithm can also access classical memory. In that case, we
assume that a large classical memory y1,...,yn is stored outside the circuit.
The sequential access in time O(M) is still allowed by the quantum circuit
model, since it amounts to control at runtime the sequence of applied gates:

|) |4) Shccesslys,yn), |z @ y;)). In the QRACM? model, we assume that the
operation CAccess(yy, ...,y) can be performed in polynomial time. In practice,
its cost is considered to be comparable to a block cipher or an S-Box evaluation.

In the following, we will consider separately the classical and quantum mem-
ory costs and specify if we use QRAQM / QRACM (otherwise we are in the
“plain” quantum circuit model).

Probability of Success. Although there exists exact variants of amplitude am-
plification (see [9]), we will not use them in this paper. Consequently, all our
results will be statements of the form:

there exists a quantum algorithm of (exact or average) time complexity
T, (classical and / or quantum) memory complexity M, succeeding with
probability p

with p smaller than one, typically p > 0.5.

Amplitude Amplification. Quantum amplitude amplification [9], abbreviated
QAA in this paper, is a generalization of Grover search which allows to increase
the success probability of any measurement-free quantum algorithm by iterating
it. Let A be a quantum circuit such that

Al0) = (Xpeq 0w 12)) 10) + (Xpep Bo l2) 1) = vPIYG) + V1-plvs), (4)

where p is the success probability of A (real and positive); [¢g) is a superpo-
sition (not necessarily uniform) of good outcomes (the set G) and |¢5) of bad
outcomes (the set B), marked by their respective flags 1 and 0. Let Oy be the
inversion around zero operator, which flips the phase of the basis vector |0): it
does Oy y) = (=1)¥=="|y); and O be the operator which flips the phase of all
basis vectors |z,b) such that b = 1. The QAA computes a sequence of states
[1;:),0 < i < m, defined by the following iterative process:

b Quantum random-access quantum memory, following the terminology from [22].
2 Quantum random-access classical memory.

1. Start from [¢g) = .A10)
2. For i =1 tom:

3. [iv1) = AOOATO [vs)

Lemma 1 below describes the increase of the amplitude of good outcomes.
This implies that after ¢t = {

s
2

Lemma 1 (From [9]). Let 0 = arcsin(,/p), [vg) and 1) be such that |1g) =
sin(0) |vg) + cos(0) |Yp). Then: ;) = sin((2i + 1)0) |pa) + cos((2¢ + 1)0) |¥g).

mJ iterations, the value (2t 4 1)@ approaches

and the success probability is at least 1 —p [9].

In quantum search, and in the algorithms presented in this paper, the only
computational overhead with respect to the iterations of A comes from the
implementation of Oy and O. We implement Oy naively using an n-bit Toffoli
gate (see [24], Exercises 4.27-4.30; a better count for Oy is also given in [18]).

Lemma 2. The inversion around zero on n qubits can be implemented using
n — 1 ancilla qubits and 44n — 39 Clifford+T gates. The O operator can be
implemented using 1 ancilla qubit and 3 Clifford gates.

Nesting Many QAAs. Since each iteration of QAA contains two calls to A (one
reversed), a QAA needs approximately g% iterates instead of % for a classical
search. This multiplicative factor becomes problematic when we want multiple
nested QAAs (the algorithm 4 contains a QAA, which contains a QAA, and so

on), since we will pay a factor (g)e with ¢ levels of nesting.

Recall that sinx ~ = when z is small, so the probability of success of the
QAA initially grows almost as (2i+1)2p: it increases quadratically. The 5 factor
only steps in if we want to increase it all the way close to 1. Thus, and perhaps
counter-intuitively, to avoid piling up these factors we must under-amplify the
QA As, and keep their success probability artificially low. This fact is well-known

(see Lemma 9 in [1]) and it will appear naturally in our computations.

Unknown Success Probability and “Overcooking”. In this paper, we will
often encounter the situation where we have only a lower bound ppni, on p, and
we want to find a solution with constant success probability. This will take us an
expected time O(1//Pmin), by Theorem 3 in [9]. We settle for a simple method
which consists in running a QAA with a varying number of iterates, either in a
controlled, or random way.

Lemma 3. Let A be a quantum circuit defined as in Equation 4. Assume that
P > Pmin ond let M = [1.21/\/1@]. Then there exists a quantum procedure
that produces 1) with probability at least %, and performs 4(M — 1) controlled
iterations of QAA and a total of 4M applications of A.

Proof. The quantum algorithm does the following (twice):

1. Execute A and measure its output flag. If it is “1” then return |¢q).

2. Execute a controlled QAA with 7 < M —1 iterates, where M = {1.21/, /5minw
(and each iteration invokes A and A" once). Measure its output flag and the
control register. If a “1” flag is measured then return |¢¢q).

Here, each of the two controlled QAA consists in constructing a uniform super-
position over a control register i, then applying ¢ QAA iterates (i.e., actually a
circuit of M — 1 iterates controlled on the value of 7). In total four attempts are
made: 2 controlled QAA executions, and 2 single calls to A in case the success
probability is already very high. For each of these four executions, if a “1” flag
is measured, it means that the state has collapsed on |¢g), and we return it.
Otherwise we only obtain |tp) and we fail. Note that it contains measurements
and thus is not reversible.

If we wanted to do this without measurement, then we would have to return
a superposition of the four possible outcomes (and controls): [i1) [iz) ®j_; [1;)
where |¢;) € {|Ya), [¥B)}. The same analysis guarantees that the amplitude on

|1/)B>® in this superposition is lower than %

Analysis of the controlled QAA. The QAA success probability is given by:

— Zsm (20 + 1))

M—1
_ % _ ﬁ > (L(4i42)0 4 7L(4i+2)9) using sin? z = 1-—- C(;S(Qx)
11 [gpl—e™M0 1 — Mo
=5 I (T tC 1_9)
1 1 omeSin(2MO) 5 yesin(2M0)
T2 4M (sin(20) ¢ sin(26))
_ 1 1 sin(2M0)cos(2M6) S 1 1
2 2M sin(26) 2 2Msin(20)
1 1 1 1
=2 4Msinfcosf 2 4M p1—p)

If we combine this with a single call to A, which has a probability of failure equal
to 1 — p, then the probability of failure of the whole operation is bounded by:

1 1

1 1

A single such procedure is not enough to reach a success probability of at least
1/2. So we combine the results of two independent procedures. By choosing
M = (1.21/,/pminw, we have: M > 1.21/,/pmin which upper bounds the fail-
ure probability as: (1/2 + 1/(4.1.21))* < 1/2, concluding the proof. O

Actually, by running a QAA with a random number of iterates, rather than
a uniformly superposed number of iterates, we can obtain the same success
probability, but now we half the average time complexity.

Lemma 4. Let M = {1.21/%} and assumes that A acts on n qubits with a
ancillas. There exists a quantum procedure that makes on average 2M + 2 calls
to A and At (uncontrolled), uses max(a,n—1) ancillas and (M — 1) x (44n — 36)
Clifford+T gates, and returns a good result with probability %

Proof. We run a procedure similar to the above (see Lemma 3), but which selects
a uniformly random ¢ € [0; M — 1] and runs the QAA with i iterates, rather than
doing this for all possible ¢ in superposition. The success probability has the
exact same expression. The average number of calls to A is:

2 M 242 0) /M =4+4- (M-1OMp) /M =44+ 2(M—1)=2M +2 .

And the average number of additional Clifford+T gates is: (M — 1) x (44n —
39) + (M — 1) x 3. This finishes the proof. O

3 Amplitude Amplification with Variable Times

This section first considers a simpler special case of the quantum algorithms
specified in Section 1.1 that corresponds to the setting of variable-time amplitude
amplification, in which we try to amplify the success probability of an algorithm
which can stop at different times. Our core idea for this setting is to amplify
each level as much as possible, while avoiding any over-amplification. Previous
works used Amplitude Estimation for this [3,10]. However, we show that a simple
sequence of nested QA As never over-amplifies, if we know an upper bound on the
cumulative probability of success at each level. By taking a guess of the average
time complexity (in Ls) of the variable-time procedure, such upper bounds follow
using Markov’s inequality. While this represents essentially the worst case, it is
enough to reach the same asymptotic complexity as Ambainis in [3], with a much
simpler procedure.

In Section 3.5, we give a tighter way to estimate the complexity and success
probability of our method, which is more suited for cryptographic applications
where the behavior of the amplified algorithm is completely known.

3.1 Setting and Definitions

This setting corresponds to a special case of the quantum algorithms specified in
Section 1.1 where Cy = ...,Cy = {0} are trivial and only C; is non-trivial, and
thus all D; can be expressed as part of A;. To simplify notation in this section,
we instead use a definition of variable-stopping-time algorithms close to the ones
in [3,10]. Let £ > 2 be an integer (¢ = 1 would be covered by a simple QAA) and
t1 < ... <ty be a sequence of time stamps. A variable-stopping-time algorithm
A is given by: A = Ay - -- Ay where the gate count of A;--- Ay is t;, i.e., we set
to = 0 and each A; has gate count G(A;) =t; — t;—1. All the A; act on a space
of the form F ® W where:

e the first register is a sequence of ¢ qubit flags which are initialized to the
value 0, and the i-th flag is flipped to 1 by A; if the corresponding value
passes the i-th check;

e the second register is the “work” register of the A;.

Intuitively, each step A; writes the flag number i. A “0” flag indicates that we
must stop at this point, whereas a “1” flag means a potential solution and we can
continue on this path. This models an early abort technique, where the A; form
a sequence of tests of increasing complexities. We discard early on some chunks
of the search space with inexpensive tests, then move on to more expensive
ones. Only the last flag, written by 4y, determines if we have actually reached
the solution. In some applications, we may be able to detect solutions in earlier
steps; in that case, to fit in our framework, we still continue the computation
until Ay before “officially declaring” that we have the solution. If the algorithm
is correctly parameterized, this shouldn’t change significantly the average time
complexity.

In the following we use 1; to denote the bit-string 1---1 with ¢ bits, 0;
similarly, and *; to denote any bit-string of length i. We define amplitudes «;, 5;
and vectors |t;) , [¢i) such that:

lv0) = [0)
Vi > 1, |1,2100—it1) |[¥i-1) WAL 0 [1,00—3) |¥i) + Bi [1i—100—i41) |@4)
[1e-10) [the—1) AL o [1¢) [the) + Be [1e—10) |de)

Each A; acts on the work register, controlled on the i — 1-th flag being 1, and
it updates the i-th flag and the current work register (except A;, the first step,
which does not need to be controlled). Otherwise it does nothing. At the end
of the complete computation, i.e., after applying the complete A, the state is a
superposition of bad outcomes obtained at each level, and of good outcomes of
the final level. Finally, we assume that the «;, 8; are real, positive numbers.

Recursive QAAs. For a sequence of integers k1, . . ., k; that we choose afterwards,
we define recursively ¢ algorithms B;(k1, ..., k;). Like the A;, the B; work in the
space F @ W. Similarly as what we do classically, we use amplitude amplification
to rule out failure cases before we move on to the next stage. Our ultimate goal
is that, when we measure the output of By, we project the first register on |1)
with high probability, i.e., a good result. We denote by O; the test oracle that
simply flips the phase if the i-th flag is 1 (not finished, or finished and good).
Each O; costs 3 Clifford gates.

Oi : |*i,1b*g,i> |.’1?> — (—1)b |*i,1b*g,i> |$>
e B1(k1) does k; iterates of QAA on A, using the test oracle Oy
o for all i, B;(k1, ko, ..., k;) runs k; iterates of QAA on A;B;_1(k1, ko, ..., ki—1)

(this is indeed an algorithm that takes no input and makes no measure-
ments), using the test oracle O;

10

o By(ki,...,ke) is our complete algorithm.

For each 4, let 12 be the success probability of B;, i.e., the probability that
it projects the flag number 7 on |1). We express the v; using the framework of
QAA, in terms of the «;, using the lemma below. Now, it remains to choose
the parameters k; appropriately, to ensure a good lower bound on the success
probability 3.

Lemma 5. For i = 1 we have: v1 = sin[(2k1 + 1) arcsinay]. For all ¢ > 2 we
have:
v; = sin [(2k; + 1) arcsin o, v;1] . (5)

Proof. The algorithm A; outputs: Ay |0¢) = 1 [10p—1) |[¢1) + 51 |0¢) |#1), so the
output of Bi(k1) can then be written as:

By(k1)[0g) = v1[10p—1) [¢h1) + /1 — 7 [0¢) [¢1)

where 11 has the given expression by the properties of QAA (Lemma 1). Now,
assume that a given B; outputs a superposition of the form:

B 0g) = vi |1:00—4) [0i) + /1 — V7 [xi) (6)

where |x;) is a superposition of failed states from levels 1,...,4, with different
flags of the form |1,0,—;) depending on the level which failed; and v; has the
given formula. We show that this is the same for B;,;. Indeed, by definition,
Bii1(kit1, ..., k1) applies k;11 QAA iterates to the algorithm A;158;. We first
look at the output of A;15;:

Ait1B; 10g) = Aiq <Vi 11:00—s) |i) + /1 — V2 |Xi>)

= v (g1 |Lig100—i—1) [Yir1) + Biva [16) [00—i) [pit1)) + /1 — v [xi)
=111 |Lig100—i—1) |Vit1) + V1 — (Wicit1)? IXit1)

since |x;) has always 0 in the flag bit ¢, so A;41 leaves it unchanged, and we
define |x;+1) accordingly. By Lemma 1 again, we have that:

Biy110) = vig1 [Lix10p—io1) [Yig1) + /1 = v2 1 [Xit1) (7)

where v; 41 has the given definition. O

3.2 Analysis of the Algorithm

We now analyze the success probability of B, very precisely in terms of k; and «;.

Lemma 6. Let vp = 1, and s; = (2k; + 1)?a?. Let d = (%2 - 1). Then for all
17> 1 we have:

Sil/i2_1 (1 — siyf_l) < VZ-Q < Sil/?_l (1 + dsiyf_l) . (8)

11

Proof. Recall the recursive formula of Lemma 5: v; = sin [(2k; + 1) arcsin(o;v;—1)],
with the case i = 1 being the particular case of the first QAA. First we use the
bounds on sin, then on arcsin. In the lower bound we have:

2k; + 1)2 arcsin® (v
2> (2k; +1)% arcsin® (v 1) {1 _ (2ks + 1) aresin (air, 1)}

3

z@m+n%%wA>P;1@k+n<mwAf},

and the bound follows from 1/3-#%/4 < 1. In the upper bound we have:
v < (2k; + 1) arcsin®(oyvi_1) < (2k; + 1) (oyvi_1)? (1+(=*/a—1) (oz,;yi_l)z)
and the bound follows from d := (7*/2 — 1) < d(2k; + 1)%. O

Remark 1. Equation 8 remains valid even if some of the k; are zero, i.e., those
layers do not actually use a QAA. However the quality of the bounds is directly
related to ¢, so it is always better to use these formulas with all k; > 0.

From there, we bound the v from above to first ensure that they are always
smaller than 1. Our intuition is that when we expand recursively the upper bound
vi < syt (1 +ds;v2_) we obtain a sum of terms that contain products of the
sZ We do not need to upper bound the s; individually: we only need to upper
bound these products.
Lemma7 Forany 1 <i <€—1,let S; = [[;_; s = [[;= 1(2k; 4+ 1)%a2. Let
d = T - 1. Assume that all S; are bounded above by § for some constant c.
Then for all i, v? is upper bounded by:

2t -1
V<8 S i(de/ty 9)
j=0

In particular, if we assume ¢ < 4/z, then for all 1 <i < {—1 we have: v} < 1/e.

Proof. We prove the ﬁrst statement by recurrence over i. For ¢ = 1 we have imme-
diately by definition: v? < s1(1+ds;) < S1(1+dc). Now, assume that Equation 9
holds for some i. We have:

271 2'—1
vi, < simvi(L+dsipv?) < Sipa Z i (de/0)? 1+ Z i (de/0)7 T
j=0 j=0
< Sit Z (defey + | > il (defey | | Y7~ (de/)?
j=0 j=0 j=1
2'—1 21
< Sit1 i (de/t)? Z Zz] ko ik=Y(de/e)
j=0 j=1

12

2i+1_1 2i+1_1

< Sy > GET) (de/ey <ty > (i4 1) (deft)

Jj=0 Jj=0

which finishes the recurrence. Next, if ¢ < 4/x* then for all ¢ (including ¢ = 1)
we can deduce dci/l < dec <1 —4/x2 := d’. This simplifies the bound over v2:

2] 1 2
2 1 — G
vy <5 Zdj Ssil_d,—szx4)
7=0
and we use S; < ¢/¢ (by assumption) to conclude: v? < #°/1 x ¢/l = 1/e. O

If one can bound the cumulative probabilities of success (H;:1 a?), instead
of individual ones, then Lemma 7 implies we can maintain an upper bound on
the v? which is inverse-linear in ¢. In turn, this allows to lower bound V€2.

Lemma 8. Assume that Vi < {,S; = H;:1(2kj + 1)0(? < ¢ with ¢ < %. Then
we have:
vi>et.S, . (10)
Proof. From Lemma 7 we can deduce that for all ¢ < £:
20—t 72
SiViQfl g SiSi,1 Z ij(dc/E)J S ISz .

=0

Thus for all ¢ S < 3, we have: v > st (1 — siv?) >

>0 > 2,
siv2 1 (1 —1/e). And 1/12 2 y definition. Unfolding these inequations gives:

’ Nt
VZQE <Hsl> (1_6) ZgSg . O
i=1

Lemma 8 can be interpreted as follows. The value []; a7 is the probability of
success that we would get if we simply ran the composition of the algorithms A;,
without layers of QAA. When we define the algorithms B;, under the condition
that we do not overestimate the total probability of success of each layer, we can
amplify up to an inverse-linear (in £) probability of success.

Time Complezity. The time complexity of By is a function of the k; and the
gate counts of 4;. Recall that we note G(A;) = t; — t;_1 the gate count of A;,
that includes the controls on the flag qubit number ¢ — 1. Let w be the number
of qubits in the workspace of A (note that the A; could use additional ancilla
qubits between two successive steps).

Lemma 9. The gate complexity of Be(k1,. .., k) is given by:

14 14

GB) = | D[]k +1) | G(A) | + (44(w +) — H% +1) . (11)

i=1 \j=i j=1

It uses w + £ qubits and at least w+ £ — 1 ancillas.

13

Proof. This is a simple induction on the number of applications of each A;.
For all i, B, contains Hﬁzi(ij + 1) calls to A;. Each time O is called, it
is applied on w + ¢ qubits (the workspace and flags), so it contains less than
44(w +) — 39 Clifford+T gates. Also each O; contains 3 Clifford gates. Finally,

the total number of calls to Og (resp. the O;) is H§:1(2k‘j +1). O

Example 1. If we take two levels of QAA and one iterate at each level, we obtain
at the first level:
By = A0 Al 01 4

and at the second level:

Ba = A3B10g(A2B1) 02428,
= A3 A100AT01.4,00(A3 A1 00 AT O A1) 02 A4, 00 AT01 A
= A2 A1 00 AT 01 A1 00 AT 01 A1 00 AT ALO2 A3 4100 ATOL A,

So the algorithm looks like a QAA in which we stop earlier the amplified algo-
rithm at some iterations.

3.3 Choosing the Number of Iterates

Notions of average time. For our applications, we need proper definitions of the
average time complexity of A. We consider its Ly average Ty and its L average
T;. As stated above, we make the simplifying assumption that “good outcomes”
are decided at the last time step. In the end we are simply approximating the
“good” state |1y).

If we let run A on input |0), without any QAA iterates, we obtain the state:

A0) = B1(0¢) [¢1) + B2 [10,-1) |¢2>
+wHaz|u 10)) + Hazm) - (12)

i=1

We define then the quantities T» and T are then defined as the average stopping
time, i.e., the average time to decide 1f a computation path leads to a good result
or not. If we define: Vi, p; := 32 HJ p af and py = Hf 1 o, then:

TQ = lzpzt% and T1 = sztz . (13)

Here p; is the probability that the computation takes exactly time ¢;. By Jenssen’s
inequality, we have that: T7 < T,. We can also write T as:

¢ [i—1
T =11+ Z H ajz_ (ti —tiz1) (14)

i=2 \j=1

14

From the formula of T», because of the monotonicity of the ¢, we have that:

14 i—1
D opit; =13 = Vi>1, sz <1 = [[ed <15/t . (15)
2 Jj=1i Jj=1

Indeed, (Zf — pi) is the probability that the evaluation time is equal to or larger

than t;, so it is equal to H - 11a2 (and 1 if ¢ = 1, since every element needs at
least the first evaluation step). Similarly we have H;;ll a? <T/t;.

Setting the number of iterates. Let us assume that the total success probability
p = Hf 1 a? is known. Then using the inequalities on the products of a , wWe
can set the number of iterates as follows.

Lemma 10. Assume that k1, ..., kp are such that:

. 7 t?
Vi < €= LT, (2ky + 1) < max (2 1)
ke=0

then the layered QAA with iterates kq, . . . , k¢ has success probability lower bounded
by 2e H (2k + 1)

Proof. The result comes from Lemma 8. We just need to check that the condi-
tions of the lemma are satisfied. For all 1 < £ — 1 we have by Equation 15:

%

4 t2 4
— I I I | 2 141
e j:1(2k +U’ < % w20 T3 — 7r2£ ’

And Sy := (2k¢ + 1)2a%5’g,1 <SS < ﬁ for the final case. O

At this point, one can set the number of iterates only depending on our
knowledge of T5, p and the individual times ¢;, regardless of the exact distribution
of evaluation times. Besides, the knowledge of p is required only if one wants to
amplify correctly the final step, otherwise T, and the t; are sufficient information.

3.4 Variable-time Amplitude Amplification without Amplitude
Estimation

The number of QAA layers that we use should, in general, depend on the struc-
ture of the problem. However, in most cases, we can choose to stop the algorithm
A at any point. Let us assume that ¢; (the maximal running time of A), T, and
p are known. Here Ty is the actual average time complexity for A. Also, we
introduce u such that 3¢t —17, < ¢, < 36+uTy,.

We set the iteration numbers k; so that: k1 =...=ky_1 =1 and k, = 0. To
do this, we introduce new time stamps: ¢, = 37T} for all i < £. We consider

15

another variable-time algorithm A’ that stops only at these time stamps. In
particular, A’ has a bigger average time complexity, since the number of stopping
steps has been reduced: T > Ty. However our choice of steps also ensures that
T4 < 3T,. We then try to satisfy the conditions of Lemma 10 for A’, by choosing
appropriate values for u and ¢. The first constraint that we put on w is: u >
1+ [1og3 (%\/Z)—‘ . Indeed, this allows to satisfy the conditions of the lemma for

1 < ¢ —1, as we have:

2 2
4l 4 b o 4 ssigauga _goi

0 2 ,
— 81x (5vE) =82
w20 Ty2 — 9720 T2 — 9m2d or2¢ < 6\[-

We also have the constraint ¢4 u = {logg %-‘ by definition. To satisfy these,

we can choose: .
ty ty
(= {logg T3 logs logs T BJ

Then, we have:
ty ty 17 1 ty
u = ’710g3 1_‘2—‘ —/ > 10g3 E — (10g3 E — 5 10g3 1Og3 ?2 -3+ 1)

t t
> log3log3é+222+log3 {logg)TiJ > 2+ logy VI .

DN | =

This proves that u > 1 + [log3 (%\/Zﬂ as required. The running time is given
by Equation 11:

4 4 4
Z H(2k’J + 1) (ti — tifl) = 3£_1t1 + Z?)é_i(ti — tifl)
i=1 \ j=i i=2
-1
Stette+ Y 2x37
i=1

<2ty 4 2(0 —)3T, < 21ty

by definition of w. It is rather strange to obtain here a bound that depends only
on tg, but it makes more sense if we remark that by definition: ptf < T22 and
soty < %. In other words, our layered QAA averages the running times of the
different testing steps with respect to the Ly norm (like Ambainis’ algorithm for
the same problem [3]). By Lemma 8 the success probability is higher than:

p p [t 1
P=23%"2> () . (16)
e 38e \T>) log, ™

At this point, we can directly use Lemma 4, since we have a lower bound on the
success probability: a solution is found, with probability %, after a procedure

16

that applies O(l / \/F) QAA iterates. This gives a final time complexity of:

1T t te** Ty
O —=2 x/logs = x tt,) =0[[log =) 2] . 17
<\/ﬁ TR P e) ((OgTz) VP 17)

We recover a logarithmic factor depending on the maximal running time, which is
of the same order as Ambainis’ [3]. To define the algorithm we actually only need
to know T3 and an upper bound on t,. We can use the upper bound t, < T5/,/p.
As for Ty we can guess it by taking successive larger values until we find a valid
upper bound.

3.5 Optimizing the Complexity Numerically

Another analysis is possible when, instead of bounds on their products, we know
intervals on the a? of the form:

F=71-g)<a <u=+1+g) .

Indeed, we observe that as long as we keep the iteration numbers sufficiently
low, we can bound the final success probability using these known upper and
lower bounds.

Lemma 11. Assume that: Vi, k; < L’T L _ %J Let v} (lower bound) and

4 arcsin u;
v (upper bound) be obtained by replacing the a; by l; and w;, respectively, in
the formulas of Lemma 5. Then we have: vi' > vy > Vé.

Proof. The upper bounds on k; ensure that, regardless of the exact value of «;,
all inputs to sin stay in the interval [0; 7/2] where the function is increasing. The
bounds on v, then follows by a simple induction. O

Therefore, we can bypass Lemma 8 entirely and directly express the lower
bound on the success probability v7 of B, as a function of the k;:
vl =sin[(2k; + 1) arcsin(vy; (1 — &1))] (18)

Vi, vt = sin [(2k; + 1) arcsin [7;(1 — &;)v!_,]]

which includes the case ¢; = 0 where we know the success probability exactly.
Then, given the formula for the gate complexity of B, as a function of the
iteration numbers, our goal is to:

e . 2 . . 1 1
minimize G(B,)/v}” under the constraints: Vi, k; < {%m - §J.

We first optimize this numerically, then take the floor of the values k; obtained
(in order to avoid going above the bounds). This last rounding is, in practice,
insignificant for the complexity (even if the values are quite small, e.g. of the
order of 10).

Note that in case the ¢; are particularly large, it is possible that the success
probability of B; becomes quite low, in which case we would have to compose it
with an overcooked QAA as we did above.

17

4 Our main framework: Early-abort 4+ Backtracking

Our strategy for variable-time QAA in Section 3 is essentially a recursive combi-
nation of QAAs which stop the amplified algorithm at its different steps. How-
ever, this does not model many cryptographic applications of QAA. In this
section, we develop our main generic framework that combines early-abort and
backtracking strategies.

In general, a backtracking algorithm explores a search space by making partial
choices for partial values of the solution and being able to check whether a partial
solution may lead a full solution, e.g., classically this can be seen as a depth-
first tree search where it recognizes whether the current node can lead to a
solution, and if it doesn’t, returns to the parent node. Montanaro [23] showed a
generic quantum speedup of backtracking algorithms. However, the algorithm is
rendered inapplicable in our case by the fact that our steps are costly, and have
different time complexities. Intuitively, the last step will cost much less than the
first one. To gain advantage from this, we use a method based on nested QA As.
This requires knowledge of the success probabilities of each step. They are not
necessary in the quantum tree search of [23], but they can usually be computed
in cryptanalytic algorithms.

4.1 Setting and Definitions

Consider an input classical nested search problem NESTEDSEARCHPROBLEM
(see Algorithm 1) of ¢ layers defined by choice sets Ci, ..., Cy, filtering func-
tions f1,..., f¢ and post-processing functions d, . .., dy. The nested search prob-
lem functions f;, d; are transformed into corresponding quantum algorithms
Ai,...,Apand Dy, ..., D, that are deterministic and reversible. These quantum
algorithms operate on a Hilbert space H =C1 ® ... C, W1 ® ... W, ® F:

1. C; are quantum registers that encode the choice ¢; € Cj;

2. W; is a workspace register for search level 7 that includes an encoding of the
auxiliary data s; € S;;

3. F is a sequence of flag qubits, where the i-th qubit is initially 0 and modified
only by the i-th level quantum algorithm A; to 1 if the corresponding partial
solution (c1, ..., ¢;) is not filtered; there is only one full solution (cy, ..., c);

4. A; implements f; and operates on the registers Cy,...,C;, Wy, ..., W;, F but
only modifies W; and the i-th qubit flag in F;

5. D; implements d; and operates on the registers Cq,...,C;, Wy, ..., W;, F but
only modifies W;.

Remark 2. Note that to create the quantum algorithms A; and D;, first the
classical algorithms f; and d; need to be transformed into reversible circuits. To
that end, one often has to use a larger workspace than a simple encoding of the
auxiliary data. A naive example, if one does not care about memory complexity,
is to track all of their intermediate computations into the workspace. Otherwise,
in addition to the workspace qubits, each A; will also use a certain number of
ancilla qubits which (by definition) are returned to their initial state |0).

18

Remark 3. Naturally, our results also apply to more generic deterministic and
reversible quantum algorithms A; and D; that satisfy the above constraints.
However, a very important feature of A; and D; is that they act reversibly on
the previous workspace registers, i.e., they do not modify them. In the offline-
Simon algorithm of [5], there is a single Grover search with a test that uses an
external, previously constructed workspace. It is observed that the test does not
act (exactly) reversibly on the workspace, and each iteration adds an error term
that needs to be globally bounded. Our framework does not support this.

From the above definitions it follows that:

DioA;ler, ... ¢i) |Yey,eis) [1im100—it1)
=lc1,.. s Ci) |Ver o) [Licibey,. e, 00—i) . (19)

The behavior of A; on other states does not need to be specified. At the first
and last steps, we have:

Dy o Ay |e1) [0) [0¢) = [e1) [the,) [be, Op—1)
Df o AZ |Cla cee 7CZ> ’1/101,...,@,1> |15710> = |C], cee 7CZ> Iwcl,.‘.7cz> |1€71b017...,cg>

In particular we could set Dy = I and merge Ay and Dy in a single algorithm.
There is only one full solution which is denoted as (cf,...,c]). At each level,
we define two probabilities:

e a filtering probability: o!? is the probability that, starting from the good
subpath ¢f,..., ¢/, a uniformly random ¢; leads to a path that can still be
extended, i.e., there is no early abort at step ¢ on this path.

e a success probability: o is the probability that, starting from the good sub-
path ¢f,..., ¢/ ,, and assuming the filtering, by taking a uniformly random
¢;, we extend to the good subpath ¢f, ..., cJ.

Given that there is exactly one solution, we have:

4 L
1 1
Vi, a2al? = , ”2’,2:”7_ 20
L,y ‘Cl‘ Pl @ P ‘Cfl ()

Also, we set o, = 1: there is no filtering at the final step, since we are immediately
detecting if the path is good or not. Note that we only need to know the behavior
of A; on the good path; this is because the other paths do not produce false
positives (the good path is the only way to obtain a “1” in the final flag qubit).

Thus, we can define |G;) the uniform superposition of paths of the form

df,...,c)_ |, ci, which survive the filtering at step ¢ (and contain, in particular,
the good path ¢, ..., ¢/ ;,¢7), and | B;) the superposition of paths ¢f, ..., ¢)_ |, ¢

which are identified as bad at step . Both superpositions include the state of

19

the workspace. We have:

Dy oAs (32 |e1)) [0) [0g) =) [G1) [104—1) + By [B1) |Or)
Dy o Az |ef) (32 |e2)) ‘¢c§> [10¢-1) = o [Ga) [110,—2) + B5 | Ba) [10,-1)
Do Ailef, ey} (e [teg, o,) itOeiga)
= a;|Gy) |1:0g—i) 4 Bi | Bi) [1i-107—i41)
Al sefy) (S IR [et ez,) lem10) = o [Ge) [1e) + Be [Be) [1e-10)

Our goal is to find the good path (cf,...,¢]).

4.2 Description of the Algorithm

Our backtracking algorithm is a layered QAA that is structured differently from
the variable-time quantum search. Here, the last step D, o A, will be called more
often, and the first step D; 0.A; less often. The classical intuition of backtracking
is to go back to the previous computing step and try another path. In the
quantum setting, we use levels of QAA to prune the invalid paths.

We take two sequence of integers (k1,. .., k) and (k7, ..., k, = 0) that we will
choose afterwards. We define £ algorithms B; as follows. Each B; acts on H, but it
only modifies the registers numbered from i to £ — 1 (including workspace, index
and flags). We will see B; as an amplified version of the sequence of steps from
1 to £. The definition of the algorithms are given in Algorithm 2, Algorithm 3
and Algorithm 4. Our complete algorithm is By, which starts from input |0).

Analysis. For simplicity, here we often omit the workspace [¢), since it is always
a function of the current index registers: the construction ensures that we only
apply A; when the workspace contains the outputs of the step i — 1.

We show that B;, when it starts from the good path ¢, ..., c¢J_, has a prob-
ability of success v? which is defined by a certain recursion; and otherwise, it
outputs zero-flags only. Then B; merely starts from input |0), and outputs a
state which projects onto |c{, ..., c]) with probability vf.

Lemma 12. Using the definitions of Algorithm 2, Algorithm 8 and Algorithm /:
Vi, B; |c§], .. .,cf_1> 11i2100—i41) = v |cf, ..., ¢) [1o) + 4/ 1 — 12 |*) |x0)
Vi,V(er,...,cic1) # (], ..., c]_1), Biler, ..., ciz1) %) = |%) |0)

where the |x) are unspecified superpositions since the last flag is always 0. We
have: vy = sin [(2k, 4+ 1) arcsin ay] and for all i < £:

v; = sin [(2k; + 1) arcsin [v;41; sin((2k] + 1) arcsin(a))]] - (21)

20

Algorithm 2 B;: performs k, iterates of a quantum search on ¢, € Cy. Steps 3
to 5 correspond to the test of j,.

!

Input: index registers, work register, flag registers (numbered from 1 to £)
Output: acts in place on the registers numbered /¢
Apply a Hadamard transform on index register ¢
Repeat k; times
Compute Dy o Ay on ¢y and the current work register
Flip the phase if the ¢-th flag qubit is 1
Uncompute D, o Ap
Apply a Hadamard transform, an inversion around zero, and another
Hadamard, all on choice register number ¢
EndRepeat
Compute Dy o Ap

Algorithm 3 Al: produces a filtered superposition of indices at the next step.
If there is no early abort at this step, then we have simply A, = A,.

=

Input: index registers, work register, flag registers
QOutput: acts in place on the registers numbered ¢
Apply a Hadamard transform on index register ¢
Repeat & times

Compute A; on ¢; and the current work register

Flip the phase if the i-th flag qubit is 1

Uncompute A;

Apply a Hadamard transform, an inversion around zero, and another
Hadamard, all on choice register number
EndRepeat
Compute A;

Algorithm 4 B;: performs a QAA on the algorithm B; 41 o D; o AL

>

Input: index registers, work registers, flag registers
Output: acts in place on the registers numbered from i to ¢
Compute B;11 0 D; o A
Repeat k; times
Flip the phase if the ¢-th flag qubit is 1
Uncompute B; 1 0D; o A}
Apply an inversion around zero on the registers numbered from i to ¢
> These are all
the registers on which A}, D; and B;;1 act. The others are left unmodified, so the
QAA is performed correctly without having to invert on the whole workspace.
Compute B;y1 0D; o A
EndRepeat

21

Proof. We do a descending recursion on the value of i, starting from ¢ = /.
At i = £, By applies kg iterates of a quantum search on ¢;. Observe that:

Ay !cg,...,cgfﬁz lce) [1e=10) = ag|cf, ... c]) [Le) + Be|cf, ... ¢) Z lce) [16-10)

coFcy
= Belel,....c]_) |1) =vFl|cf,....cl) |Le) + /1 — 12 |*) [1,-10)

by the properties of QAA (Lemma 1), where vy = sin [(2k, + 1) arcsin ay]. If we
start from a wrong path, then the flag is always 0, so even after QAA we obtain
a superposition with only zero flags.

Next, we assume the lemma true for i+1 and prove it for i. We start by analyz-
ing the behavior of A}, assuming that we start from the good path (¢f,... ¢/ ;).
By Lemma 1, A’ produces:

Al |ed, el) 10) [1,210p—i41)
= sin((2k; + 1) arcsin o) |G;) |1;00—;)
+ cos((2k] + 1) arcsin o)) | B;) [1,-100—;41)
= a; sin((2k; + 1) arcsina}) [¢f, ..., ¢?) |1;00—) + %) [1;-100—i41)

(Recall that |G;) is the uniform superposition of paths |0517, ...,¢_1,¢;) passing
the early abort at step ¢, and by definition, the probability of such a path to be
(cf,...,c])is a?).

Then, we apply B; 1 o D; on this result. By linearity, and by our recurrence
hypothesis, we obtain a superposition of the form:

viproysin((2k; + 1) arcsinag) [¢f, ..., ¢f) [10) + %) |0) . (22)

Finally, B; applies a QAA on B;;1 o D; o Aj; it recognizes the good path using
the ¢-th flag. Using Lemma 1 again, we obtain the wanted formula for v?2.

If we start from a wrong path, A} produces a superposition of wrong paths.
Going through B; 1, the last flag written is always zero, so even after amplifica-
tion this remains the case. O

Remark 4. The assumption of having exactly one solution path, which is quite
common in cryptanalytic algorithms, allows us to reason only with respect to
this path: in particular, we only need to know, or to bound correctly, the filtering
(a!?) and success (a?) probabilities along this path. Indeed, since we assume that
the amplified algorithm A yields no false positives, the behavior on the other
paths turn out to be irrelevant for our analysis.

Remark 5. Very rarely, some applications may need to replace D; by a probabilis-
tic procedure, with some success probability p;, or even a quantum algorithm.
As long as D; is reversible and does not modify the previous workspaces, the
formulas remain the same with a? replaced by o?p;. Here p;, similarly to o2, is
the success probability of D; on the good branch. The result of D; is not tested.
(If it could be tested, then it should rather become its own early-abort step).

22

4.3 Analysis of the Algorithm

From now on, we assume that we only know an interval on o2 and o2, of the
form:

(23)

{122 = ’2(1 &) <af <uf =P (1+¢)

2= < a? <u? = 177 where 77 =

_1
1+s 7 < VeI

We can show that as long as we keep the iteration numbers sufficiently low, we
can bound the final success probability using these upper and lower bounds.

—fande<€k’§” -1

4 arcsin u/ 2°

Lemma 13. Assume that: Vi, k; < T

4 arcsin u;

Let v! (lower bound) and v}* (upper bound) be obtained by replacing the oy and
o by l; and U, and by u; and u), respectively, in the formulas of Lemma 12.
Then we have: v} > v > 1/{.

Proof. The upper bounds on the k; and k] ensure that, regardless of the exact
value of «; and o, all inputs to sin stay in the interval [0; 7/2] where the function
is increasing. The bound on v; then follows by a simple induction. O

Therefore, the conditions of Lemma 13 allow to simplify the analysis of the
algorithm, by focusing only on the bound of v/}.

Lemma 14. Let v}, = 1, k), = 0 and o), = 1. Let s; = (2k; + 1)%1? and
sh = sin” [(2k; + 1) arcsin(1})]. Let d = %2 — 1. Then for all i < £ we have:

szsguf+12 (1 slsiz/fHQ) <v < 81VZ+12 (1 + dSZSZl/Z+12) (24)
and for i = £ we have:
se(1—sg) < v < s (1 + dse) (25)

The proof is similar to Lemma 6 and uses the same inequalities. Note that
there is no need to bound the sin and arcsin in s;. In practice, we will expect
the s to be as close to 1 as possible. By recursively unfolding the inequalities,
we obtain the following;:

Lemma 15. For all i, let S; = He- . Let S] = HJ i]

i, S;S; < ¢ for some constant ¢ < =5 Then for all i: v} 12 < < Z' furthermore, v}
(the success probability of the whole algomthm) is lower bounded by:

Assume that for all

1
W > —Sis; (26)

Proof. The proof is similar to Lemma 7, where we unfold recursively the upper
bound in Equation 24 and replace s; by s;s;. For the lower bound, it goes exactly
as before except that we now have the product of all s to take into account. O

Afterwards, we can choose iteration numbers which satisfy the conditions
of Lemma 13:

23

Lemma 16. Choose:

= L%N/%VWC&|_'%J
Vi< st o 1k = |1y/]CI0—&) - gJ
W<M¢W:Lm:%wm—{ (27)
Vi&ta?¢1J4:[EE;$fTET %J
Vi st o> =1,k =0

where ¢ = %. Then the probability of success of By is lower bounded by:

1 1
v:> gHi (2k;+1)%y H sin® ((2k; 4 1) aresin(vjv/1 —;)) . (28)

1+¢; 1|a o

Proof. First of all, we can easily check that these numbers satisfy the conditions
of Lemma 13, especially the choice of k;. Indeed we have for all z, arcsinz < S,
so:

~1
b < . 1 1 < m 1
i < arcsin - < _
V1—¢; l,/|C| 2 4arcsinu; 2
Next, we have: Vi, (2k; +1)%a2 < 1 and (2k¢+1)%af < $s0 S; < § for all 4, and
by Lemma 15: v > 15,5). O

]

Finally, we give the gate and space complexities of the algorithm depending
on k; and k. For the cost of an inversion around zero on r qubits, we use the costs
of Lemma 2, i.e., 44r — 39 Clifford+T gates (and 3 gates for the bit-flipping).
We write I(r) = 44r — 36. The total number of ancilla qubits is the maximum
between the ancillas of the A;, and ¢ + >, (w; + n;) — 1, which is the number
required by the largest Og that we apply.

Recall that we note G(A) the gate cost of the algorithm A and S(A) the
number of qubits on which it acts. Note that each step A includes the writing
of its output flag qubit. We assume that |C;| are powers of 2: |C;| = 2™. Then
the space and gate complexities of the B; are given by the recursive formulas:

S(Be
G(Be

) =

)
S(8,)
G(B,) = 2k, +1>(G<Bi+1>+G<Di>+<2k;+1> <G<Ai>+m>+kﬂ(m>)

wy +np+1
(2ke + 1) (G(Ap) + n1) + kel (wy)
S(Bit1) +w; +n; +1

+EkI(S(B;)) .

4.4 Optimizing the Complexity Numerically

Even though our final result is quite tight, we still have a multiplicative factor of
order v el in the complexity. It can become a bit large for practical applications,

24

especially those that require a small value of £, e.g. less than 4, and do not have
any errors. Fortunately, we can do the same as in Section 3.5.

We bypass Lemma 16 and directly focus on the value of /{, the lower bound of
the success probability, which as we recall, is obtained by the following recursion:

vl = sin [(ng + 1) arcsin (e)}

1+ey
Vi, vt = sin [(2@- +1) arcsin [ugﬂﬁgi sin((2k] + 1) arcsin /T — si)H
(29)
Which holds both for €; # 0 and ¢; = 0. We simplify this problem by setting

s 1

k. = LZW — %J, since we will not gain anything by postponing the

early-abort step. Then, by simply running B; repeatedly, a solution is found

with average time complexity %G(Bl). Thus, given the formula for the gate
1

complexity of Bi, as a function of the iteration numbers, our goal is to:

L 2 .)
minimize (G(Bl)/yi) under the constraints: Vi, k; < %m—% .
\V1—¢g;
We can observe, as it was done in [20], that this direct optimization actu-

ally leads to lower probabilities of success, e.g. between 70% and 80%. In our
code (in Supplementary Material) using Scipy, we also tried to optimize directly
G(B1) under the constraint 1/{2 > 0.95, but an easier approach is to increase the
exponent on v}, which will naturally bring it closer to 1.

4.5 Analysis of the Memory

When turning a classical nested search into a quantum one, using our framework,
some conversion of the memory model is needed (see Section 2 for an overview
of quantum memory models). We can summarize it with the following rules:

e The workspace of the steps A; and D;, but also their intermediate data
(ancilla qubits), becomes qubits.

e If one of the A; needs fast random access to one of the previous workspaces
(e.g., reading from a table in memory), then the QRAQM model is required.
Otherwise, performing sequential access, or accessing cells of fixed (global
constant) position can be done with the standard quantum circuit model.

e If one of the A; needs fast random access to a table that was initialized before
the first step, then the QRACM model is required. The data in this table
will remain classical, but the indices accessed will be put in superposition.
Otherwise, performing sequential access, or accessing cells of fixed (global
constant) position can be done with the standard quantum circuit model,
and no QRACM would be required (only a classical memory).

5 Applications

To illustrate the versatility of our framework, we translate the quantum attacks
on AES given in [7]. Since we are interested merely in the shape of these al-

25

gorithms and their resulting complexities, we refer to [7] for the details of the
attacks and their correctness.

The AES [12] is the standardized version of the block cipher Rijndael [11],
which is a substitution-permutation network (SPN) operating on a 4 x 4 matrix
of bytes. An AES round applies the operations AddRoundKey (XORs the
current round key to the state), SubBytes (applies the S-Box S to each byte
individually), ShiftRows (permutes the bytes), MixColumns (applies a linear
operation to each column, defined by an MDS matrix).

The states of round i are denoted as k; (round key), z; (state after Ad-
dRoundKey), y; (state after SubBytes), z; (state after ShiftRows), w; (state
after MixColumns), and u; (state obtained by applying the inverse Mix-
Columns to k;). The bytes of these states are numbered from z;[0] to x;[15]
following a standard convention. A plaintext is denoted p and a ciphertext c.

In these attacks, we are given classical chosen-plaintext access to a black-
box Fj implementing a reduced-round AES with a secret key k. The goal is
to find k. A valid quantum attack must outperform the exhaustive search with
Grover’s algorithm, which always applies [7]. Since the AES S-Box S is the only
nonlinear component, it dominates the cost of quantum circuits, and we estimate
the complexity not by counting individual gates, but by counting S-Box circuits.
Our numbers are rounded to the second decimal.

5.1 Square Attacks on AES

The Square attack on 6-round AES using the partial sums technique [10] is
a good example of a simple backtracking algorithm, without early-abort. Its
quantum version is given in Appendix A.2 of [7]. The time complexity given
in [7] is 2447 S-Boxes.

Here we can take D; = I for all i. The successive algorithms A; correspond
to constructing tables of smaller sizes. We consider a few structures containing
232 plaintexts and ciphertexts of a specific shape, denoted ¢; (1 < i < 232). The
goal is to compute, for each structure, a sum of the form:

357 (usl0] & a0 (1[0] @ k0] 0157 (1] & 1)

S agsil(tg SY kG[Q]) S5 a3S71(52 5] k6[3]))

for known constants ag, a1, as, a3 depending on MixColumns, and to find the
choice of kg[0, 1,2, 3] and u5[0] for which this sum is equal to 0 for all structures.
Instead of having to do 232 computations per key guess, Algorithm 5 amortizes
this cost thanks to intermediate tables.

Using the generic formula of Lemma 16, we obtain a worse time complexity
than the one given in [7]. Indeed, we must take the following number of iterates
for the successive steps: 127, 7, 7, 2, with the last one quite small to allow
for a reduced probability of success. We obtain a count of 24424 S-Boxes for a
probability of success 27°!8, But in the attack, the calls to A; dominate the

time complexity. In [7] there are roughly gQS such calls, but in our case, we need

26

Algorithm 5 Square attack on 6-round AES.

Compute 8 structures of 232 classical CP queries

16 bits|Choose kg[0], ke[1]

For each structure, for each ciphertext ¢;, compute:

(tl, ta, tg) = aoS’l(ci[O] (&) ka[OD (&) al.S”l(cz-[l] (&) k6[1])7 Ci[Q], 01[3}

Build a table T; of 22 entries that stores, for each three-byte value (1, t2,t3),
how many times it appears.

This costs 232 x 8 x 2 = 23¢ S-Boxes and space: w1 = 8 x 22* x 32 = 232
qubits (we keep large 32-bit counters)

8 bits |Choose kg[2]

For each 3-byte value (1, t2,t3), compute: t; ® azsfl(tz @ ks[2]), t3

by accessing 74. Build a table Ty of 2'° entries that stores, for each 2-byte
Az value (s1, s2), how many times it appears.

This costs 8 x 2%* x 1 = 227 S-Boxes and space: w2 = 8 x 2'¢ x 32 = 2%
qubits (we keep large counters).

8 bits |Choose k¢|[3]

For each 2-byte value (s1, s2), compute s1 @ azS ™ (s2 ® ke 3).

As Build a table T3 that stores how many times each byte appears.

This costs 8 x 216 x 1 = 2% S-Boxes and space: w3 = 8 x 28 x 32 = 26 qubits.
8 bits |Choose us5[0]

Using the table, compute the sum.

As This costs: 8 x 28 x 1 S-Boxes and additional small computations,

and approx. 8 x 32 = 2% qubits.

A

to re-amplify the last layer with 18 calls, so we will call .4, roughly 18 x 28 times
and this is not competitive.

However, the numerical optimization (see Section 4.4) “sees” that A4; domi-
nates, and amplifies the non-dominating steps to a success probability closer to
1. This results in the number of iterates 171, 11, 11, 11 for a success probabil-
ity of 0.94 for By, and a time complexity of 24470 S-Boxes. The average time
complexity is only slightly higher at 24479,

5.2 DS-MITM Attack on 8round AES-256

We consider the DS-MITM key-recovery attack on AES-256 given in [7]. Its
complexity analysis relies on the following estimations:

e There are 40 S-Box differential equations of the form S(x & A) = S(z) @ A’
for known A, A’ in the path. We suppose that for the good path, all of them
have 2 solutions exactly, and not 4. This happens for the whole path with
probability 27045 as estimated in [7]

e the success probability of A3 to Ag varies less than by 278 (it depends on
the number of solutions for each column when Azs and Ay, is fixed). This
also comes from an estimate in [7]

e the computation of the equations in Dg cost less than 2% S-Boxes (most of
these computations are only linear)

27

Algorithm 6 DS-MITM attack on 8-round AES-256.

80 bits Choose k[0, 5,10, 15], k1[3], ur[1], us[0, 7,10, 13]
Find a pair which satisfies the differential path (2°% S-Boxes)
D Compute the 2°-sequence of differences dws[5] (< 2% S-Boxes)
! Compute Azz[4 — 7] and Ays[3,4,9, 14]
64 bits Choose Ayz[4 — 7], Axs[3,4,9, 14]
As Match Ayq[4 — 7], Axs[3,4, 9, 14] with Azq[4 — 7], Ays[3,4,9, 14]
Success: 278 Stop if no match
Do Compute the possible states
Compute Azxs and Ays
(Here we have assumed that the S-Box differential equations
yield only two solutions)
32 bits Choose Az4[0 — 3]
As Match Az4[0 — 3] with Azg and Aya
Succ.: 278(1 £ 278)|Stop if no match
32 bits Choose Az4[4 — 7]
Ay Match Az4[4 — 7] with Azs and Ays
Succ.: 278(1 4+ 278)|Stop if no match
32 bits Choose Az4[8 — 11]
As Match Az4[8 — 11] with Azs and Ay
Succ.: 278(1 £ 278)|Stop if no match
32 bits Choose Az4[12 — 15]
Ag Match Az4[12 — 15] with Azz and Ay,

Succ.: 278(14+278)
Des

Stop if no match

Using all the known states, write the equations (< 2'° S-Boxes)
Determine the values of z3,x2[4 — 7], 24[0 — 7,10, 11, 15]

(Here we assume that at most 4 different values are found,
which leaves 2° choices in total at the next step.)

9 bits
Az

Success: 27°

Choose one of 2° possibilities for 4[8,9,12,13,14], 25[4,9, 14]
Compute the expected d-sequence (2° x 40 S-Boxes)
Check if it equals the expected sequence

28

e at most 4 different values are found after Dg

The algorithm with our framework is different from the one in [7]. In par-
ticular, the number of iterations in the last QAA is considerably reduced, and
we do not use several instances of Grover search internally to reduce the fail-
ure probability. The space complexity remains quite small, and we count only
the number of S-Boxes applied. Using our formulas, we obtain an algorithm of
complexity: 212953 (S-Boxes) with success probability > 27°85, Most of this un-
certainty comes from the factor % and the reduction of the success probability
that ensures the correctness of our algorithm. Using Lemma 4, we find that with
on average 22 calls to this procedure and its inverse, we can bring the success
probability to 1/2. This gives a complexity of approximately 23490 S-Boxes. It
is already a better estimate than in [7].

By running a numerical optimization instead, we obtain a complexity
S-Boxes with a success probability > 0.95, which gives an average complexity
213215 t6 reach a success. We need to include the factor 2°4° for the global
success of the attack, so this gives 2132:69, This is actually quite close to what we
would obtain by taking exactly the square root of search spaces in the classical
complexity (2131-27), suggesting that there is not much more to improve.

2132.07

Acknowledgments. A.S. would like to thank Xavier Bonnetain and Ronald de
Wolf for helpful discussions on quantum search and variable-time amplitude
amplification. A.S. is supported by ERC-ADG-ALGSTRONGCRYPTO (project
740972).

References

1. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory Comput.
1(1), 47-79 (2005)

2. Ambainis, A.: Quantum search with variable times. Theory Comput. Syst. 47(3),
786-807 (2010)

3. Ambainis, A.: Variable time amplitude amplification and quantum algorithms for
linear algebra problems. In: STACS. LIPIcs, vol. 14, pp. 636-647. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik (2012)

4. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: CHES. LNCS, vol. 4727, pp. 450-466. Springer (2007)

5. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: The offline simon’s algorithm.
In: ASTACRYPT (1). LNCS, vol. 11921, pp. 552-583. Springer (2019)

6. Bonnetain, X., Jaques, S.: Quantum period finding against symmetric primitives
in practice. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 1-27 (2022)

7. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. TACR Trans. Symmetric Cryptol. 2019(2), 55-93 (2019)

8. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: Applications to CLEFIA, Camellia, LBlock and Simon. In:
ASTACRYPT 2014. Proceedings, Part I. LNCS, vol. 8873, pp. 179-199. Springer
(2014)

29

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53-74 (2002)

Chakraborty, S., Gilyén, A., Jeffery, S.: The power of block-encoded matrix pow-
ers: Improved regression techniques via faster hamiltonian simulation. In: ICALP.
LIPIcs, vol. 132, pp. 33:1-33:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik
(2019)

Daemen, J., Rijmen, V.: AES Proposal: Rijndael. Submission to the NIST AES
competition (1999)

Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

Davenport, J.H., Pring, B.: Improvements to quantum search techniques for block-
ciphers, with applications to AES. In: SAC. LNCS, vol. 12804, pp. 360-384.
Springer (2020)

Demirci, H., Selguk, A.A.: A meet-in-the-middle attack on 8-round AES. In: FSE.
LNCS, vol. 5086, pp. 116-126. Springer (2008)

Faugere, J., Horan, K., Kahrobaei, D., Kaplan, M., Kashefi, E., Perret, L.: Fast
quantum algorithm for solving multivariate quadratic equations. IACR Cryptol.
ePrint Arch. p. 1236 (2017)

Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D.A., Whiting,
D.: Improved cryptanalysis of Rijndael. In: FSE. LNCS, vol. 1978, pp. 213-230.
Springer (2000)

Frixons, P., Schrottenloher, A.: Quantum security of the legendre PRF. Math-
ematical Cryptology 1(2), 52-69 (Mar 2022), https://journals.flvc.org/
mathcryptology/article/view/130578

Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s al-
gorithm to AES: quantum resource estimates. In: PQCrypto. Lecture Notes in
Computer Science, vol. 9606, pp. 29-43. Springer (2016)

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC.
pp. 212-219. ACM (1996)

Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for
quantum key search on AES and lowmc. In: EUROCRYPT (2). LNCS, vol. 12106,
pp. 280-310. Springer (2020)

Kimmel, S., Lin, C.Y., Lin, H.: Oracles with costs. In: TQC. LIPIcs, vol. 44, pp.
1-26. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2015)

Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC. LIPIcs, vol. 22, pp. 20-34. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik (2013)

Montanaro, A.: Quantum-walk speedup of backtracking algorithms. Theory Com-
put. 14(1), 1-24 (2018)

Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
Pring, B.: Exploiting preprocessing for quantum search to break parameters for
MQ cryptosystems. In: WAIFI. LNCS, vol. 11321, pp. 291-307. Springer (2018)
Schwabe, P., Westerbaan, B.: Solving binary M@ with grover’s algorithm. In:
SPACE. LNCS, vol. 10076, pp. 303-322. Springer (2016)

Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: CRYPTO.
LNCS, vol. 3621, pp. 17-36. Springer (2005)

30

https://journals.flvc.org/mathcryptology/article/view/130578
https://journals.flvc.org/mathcryptology/article/view/130578

Appendix
A Search with Two Oracles and Exhaustive Key Search

A simple, but common, example of variable-time algorithm, as studied in Sec-
tion 3, is the search with two oracles which was considered e.g. in [13,21].

Consider a quantum search on {0,1}" with two test functions f; and fs,
implemented as two oracles Oy, and Oy,, with X; = f; (1), X2 == f5 (1),
|X1] = a?2", | X5 N X;1| = ada?2" where the combined success probability p =
a?a3 is known. Here we use a layered QAA with two levels and two differing
tests Oy, and Oy, (which write in two different flag results). We compute the
success probability as:

sin? |:(2k2 + 1) arcsin |:042 sin ((2k1 + 1) arcsin a1>H

As we have seen before, a1 does not need to be known exactly; we only need
to ensure that the internal QAA amplifies only to a small success probability,
and does not overamplify. Indeed, if an upper bound «; < « is given, we have:

e & 120272
Qg sin ((Zk}l +1) arcsinozl) > oy (2k1 + 1) (1 — (1+36)O‘17T>

204271'2
> B2k + 1) (1 _ W)

We can then choose k1 and ks to maximize the success probability:

(2k1 + 1)%a27)”

sin? |:(2]{12 + 1) arcsin {\/f)(le +1) (1 - o4

(2k; + 1)2042772)}

> sin? [\/13(21”»2 +1)(2k; +1) (1 - 24

To do so we choose: kg = {77/ (4\/}3(21471 +1) (1 - W))J This ensures
that the success probability is bigger than:

1 — sin? [\/ﬁ(%l +1) <1 — W)]

2,22
>1— B2k + 1) (1—(2]““;2 O‘”)

Let T and T3 be the gate counts of Oy, and Oy,. The time complexity is:

14 —L
T = ko(2ky + DTy + koTy < ——T4 TL(2k, 1)

4./p (1 _ (2k‘1+1)2a2ﬂ'2) (30)

24

31

Block Clipher Ezhaustive Key Search. Consider a block cipher Ex and several
given plaintext-ciphertext pairs (P;,C;),i < ¢, such that with overwhelming
probability there is a single key K such that Ex(P;) = C; for all i. We are
looking for this K. For example, with AES-256, £ = 3 would be enough. For
all intents and purposes, we can consider ¢ = 5, which works for most practical
block ciphers, e.g. AES [12], Present [1], etc. Furthermore, we can consider a key
size k := |K| > 64 and a block size n > 32.

Let trunc be a truncation of n bits to 32 well-chosen positions (depending on
the cipher attacked). Let Oy, and Oy, be two quantum oracles evaluating the
test functions:

(31)

fi(K) =1 < trunc(Ek(Py)) = trunc(Ch)
f2(K) =1 <= Vi,Ex(F;) =C;

Since ¢ = 5 plaintext-ciphertexts suffice, we can consider a ratio of gate
counts of Ty /Ty = 10 (this is assuming that computing the truncation is twice
as efficient as computing the whole ciphertext). The success probability of f;
can be bounded using a Chernoff-Hoeffding bound (for this we have to assume
that E is selected at random from all possible block ciphers): Pr (a% > 2’31) <

e=2"""/3_ Since k > 64, this event has negligible probability. So we can assume
that a2 < 2731 The optimal choice of k; is k; = 1480 for which the multiplying
factor is smaller than 1 + 277625 < 20-0073 This means that the cost of f5 is
completely amortized. The corresponding success probability is bigger than:

(2ky +1)227 3172
24

1—27%(2k, + 1) (1 -) > 1275247 (32)
Fact 1. For any reasonable block cipher with block size n > 32 and key size
Kk > 64, if Oy, is the oracle defined above (testing only 32 bits of a single plain-
text), then the complexity of a quantum ezhaustive search of the key (to reach
an overwhelming success) is smaller than: %2”/2+0‘01T1.

B Search with Independent Tests

In this section, we tackle the problem of search with many independent tests,
which arises in several cryptographic applications. It corresponds to a variable-
time amplitude amplification, as given in Section 3.

B.1 Search with Independent Tests (Asymptotic)

We consider the following problem, which arises in several cryptanalytic appli-
cations.

Problem 1 (Sequence of independent tests). Let f1,..., f, be m functions: f; :
{0,1}™ — {0,1}. Let X; = {x € {0,1}",Vj < i, f(z) = 1}, with Xy = {0,1}".
Clearly we have Vi, X;11 C X;. Assume that the f; are all independent random
boolean functions, which can be evaluated in time ¢. Sample from X,,.

32

Typically we will have m < n+ 3 since with the assumption of independence,
this ensures that |X,,| = 1 with a large probability. For intermediate values
of i, |X;| does not deviate too much from its average due to the multiplicative
Chernoft-Hoeffding bound:

V8 > 0,Pr(|X;] > 2" (14 8)) < e 2" 0/ (2H0) < om21 2
where we take § = 2= ("=9/3 {0 obtain:
VZ7P1"(|XZ| > 2n—i + 22(n—i)/3) < 6_2(n—i)/371 .

Using a union bound, we can ensure that most of the X; are close to their average
size:

|
©

. . X n—i)/3— > i/3-1
Pr(3i<n-—9,|X;| >2""+ 22("_1)/3) < o2 et < Z (6_1)2
i=9

i

Il
=)

7

(671)%(1‘79)%

IA
1

2
oo .

<ty (2*4/3)z <0.031 .
=0

In particular | X;| < 2””% which simplifies the asymptotic computations. We
will now cut the sequence fi, ..., f, into a variable-time algorithm Ayo---0A;.
Each A; will run m; successive functions f;, so that in total my+...+my = n—9.
A final search will be performed for the remaining conditions, but it will only add
a constant overhead. Due to the Chernoff bounds, we know that the cumulative
probabilities of success of the A; are upper bounded by: H;:1 a? <27 Xj=mitl
So we can take for the number of iterates k;:

1 c 1 1 1
— _ - m1 o) > = | — m; .
f1 {2\/“ 0/8) V2 QJ iz Lk L2”2 QJ ’

2 . . o, .
where ¢ = 7-, which are sufficient to ensure the conditions of Lemma 8:

7 7

— H(2kj+1)2a§ = H(ijﬂ)?

Jj=1 Jj=1

| X
27L

<

©| o

d C
Vi>1 | I 2%k.+1)2 < Zgmit...+m;
1= ;j:1(]+) =7

By Equation 11 the complexity of the full procedure is upper bounded by:

¢ [¢ ¢
Z H(%j +1) | mi < (Z \/Wm) + \/W\/gml
i=1 \j=i i—o

< v [mo ms M
< ot T gmiz T gtmrmaz T T Qe w2

33

SO

It appears clearly that when n is very large, we can minimize the complexity
by choosing ms, ms, ..., m, as follows:

myg=n—9— Llogﬂ nJ Vi, my_; = Llog%nJ — Llogsgl) nJ ,my = llogiﬁ;) nJ

where we have used an iterated logarithm in base /2. As long as all these
numbers are strictly positive, we have for all i > 1 :

I
2(mit+...+mi—1)/2 —

and so the time complexity is upper bounded by 2("—9)/2 (1 / % logfﬁ;) n -+ E).
We are still free to choose ¢ under the condition k; > 1 i.e. ,/%\/2’”1 > %
It can be remarked that £ = O(log’;7), and the complexity (after the final

amplification) to have a success probability 1 is O((logi‘/i n)3/22n/ 2).

B.2 Search with Independent Tests (Exact)

For cryptographically relevant parameters, we estimate that cutting the indepen-
dent tests in three groups should be enough. We select two parameters mi, mo;
we first perform m; tests, then my tests, then the remaining m —m; —mo where
m = n + 3 to ensure a single solution. We count the complexity in number of
tests:

Since the tests are independent, the probabilities of success of the three steps,

2 _ 1 Xmyl 2 [Xmy N Xmytmal 2 1 ;
ai = Hpt, a3 = X]) O3 = gagaaz, can be bounded using Chernoff-

Hoeffding bounds. There are on average 2"~ ™! elements passing the first step
and 2"~ ™27™1 elements passing the second. We have for all €1 and es:

Pr (|| — 2077 > 2277m) < 2exp ()

2on—m1—m
Pr ([Xony 1) Xomy g — 277™17M2] 2 2207 mima) < gexp (=2

3
(33)
Therefore, assuming that n —m; —msg > 12, we can take both ¢y = €5 = 2-4
and these two events occur with overwhelming probability. This gives bounds:

afe27m(1—ep)jut=2""1(14¢)]

2 —mgl—€2.,2 ._ 9—my ltes

of € [27me iz 0 = 2 me 2 (34)
2 —n+mi+ms_1 ., 2 . 9—ntmit+ms__1

az € |2 7o, U5 =2 —1_52]

Thus, after choosing values for m; and ms, we can follow the approach of Sec-
tion 3.5: we optimize the complexity as a function of k1, ko, k3 (counting the total

34

number of individual tests performed) under the constraints:

T 1 1 ™ 1 1 T 1 1
klg - _ . &a 7k2§ - . _ __ _ a 7k3§ DTS
4 arcsinuy; 2 4 arcsinus 2 4 arcsinuz 2

(35)

We can then try with different m; and ms and see which ones perform best.

For cryptographic parameters, n usually does not exceed 2'°, and we expect m;
to be quite small, so there are not many parameters to try.

B.3 Application: Solving Binary Multi-variate Quadratic Systems

As an example, we can consider the problem of solving binary quadratic equation
systems using exhaustive search, which was considered in [20] and improved
in [25] (note that an asymptotically better algorithm was given in [15], but
its exact complexity has not been analyzed to date). Assume that we have a
system of n quadratic equations in n boolean variables, with a single solution:
Vi, fi(x) = 0. The algorithm in [26] essentially performs a Grover search on the
whole search space {0, 1}" for x, which tests each equation separately and checks
if f;(x) =0 for all z. If an equation can be tested in time ¢ (returning a single
bit), this gives a time complexity: L%Q”/ﬂ nt.

By applying our framework, for n = 128 we obtain an average complexity
of 267-93¢ with my, ms = 5,10; for n = 256 we obtain 2'32:02¢ with m,ms =
5,12. The improvement over the naive exhaustive search is comparable to the
preprocessing method used in [25]; however both methods are different, since
the preprocessing uses the structure of the quadratic equations. It might be
possible to combine them both to further reduce the cost, and we leave this as
an interesting open question.

Our formula also applies to the problem of recovering the secret in the Leg-
endre PRF via Grover search (it generalizes the search with early abort given

in [17]).

35

	A Quantum Analysis of Nested Search Problems with Applications in Cryptanalysis

