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Abstract. Fully homomorphic encryption (FHE) has flourished since it
was first constructed by Gentry (STOC 2009). Single instruction multiple
data (SIMD) gave rise to efficient homomorphic operations on vectors
in (Ftd)

ℓ, for prime t. RLWE instantiated with cyclotomic polynomials

of the form X2N + 1 dominate implementations of FHE due to highly
efficient fast Fourier transformations. However, this choice yields very
short SIMD plaintext vectors and high degree extension fields, e.g. ℓ <
100, d > 100 for small primes (t = 3, 5, . . .).

In this work, we describe a method to encode more data on top of SIMD,
Field Instruction Multiple Data, applying reverse multiplication friendly
embedding (RMFE) to FHE. With RMFE, length-k Ft vectors can be
encoded into Ftd and multiplied once. The results have to be recoded (de-
coded and then re-encoded) before further multiplications can be done.
We introduce an FHE-specific technique to additionally evaluate arbi-
trary linear transformations on encoded vectors for free during the FHE
recode operation. On top of that, we present two optimizations to unlock
high degree extension fields with small t for homomorphic computation:
r-fold RMFE, which allows products of up to 2r encoded vectors before
recoding, and a three-stage recode process for RMFEs obtained by com-
posing two smaller RMFEs. Experiments were performed to evaluate the
effectiveness of FIMD from various RMFEs compared to standard SIMD
operations. Overall, we found that FIMD generally had > 2× better
(amortized) multiplication times compared to FHE for the same amount
of data, while using almost k/2× fewer ciphertexts required.

Keywords: Homomorphic Encryption · Finite Extension Fields · Re-
verse Multiplication Friendly Embeddings · Single Instruction Multiple
Data.
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1 Introduction

Fully homomorphic encryption (FHE) has seen a lot of improvements since it
was first realized by Gentry [24]. Currently, there are four main schemes in
wide use, Brakerski-Gentry-Vaikunathan (BGV) [5], Brakerski-Fan-Vercauteren
(BFV) [4,22], Cheon-Kim-Kim-Song (CKKS) [11] and FHEW/TFHE [14,15,21].
The first two schemes support finite field operations, the CKKS scheme supports
approximate arithmetic of numbers and the FHEW/TFHE family operates over
bits or low-precision numbers.

Most implementations of FHE, such as SEAL [36], PALISADE [35] and Lat-
tigo [33] focus on the case where BGV and BFV are instantiated with power-of-
two cyclotomic polynomial moduli. These parameters enjoy highly efficient arith-
metic due to negacyclic fast fourier transforms (FFT). However, small primes
such as t = 3, 5, 7, 11 are not useful in these cases due to the unfriendly decompo-
sition of the plaintext space into very few slots with a slot algebra corresponding
to finite fields of high extension degree. Therefore, use of BGV and BFV focused
on word-sized homomorphic encryption which uses large primes of 32 or more
bits, integer and fractional encodings proposed in [8,16,19,20] and an alternate
“polynomial modulus” for high-precision integer arithmetic in [3, 10].

Various papers have been published on the use of finite extension fields of
low to medium extension degree (≤ 64) for homomorphic computation, which
we elaborate on in a later section on related work. However, there remains a lack
of techniques that unlock the use of high degree extension fields for homomor-
phic computation, which would lead to improvements for small-prime arithmetic
circuits due to the faster arithmetic enabled by negacyclic FFT.

Our Contributions. In this work, we introduce field instruction multiple
data (FIMD), a method to encode more data into FHE ciphertexts by lever-
aging the inherent vector of extension fields plaintext structure from SIMD. We
add another level of packing to FHE, embedding a vector of base/intermediate
field elements into each slot of a SIMD plaintext such that homomorphic oper-
ations can be performed on the encoded vectors. Field addition, multiplication
and linearized polynomial evaluations correspond to component-wise addition,
multiplication, and linear maps on the encrypted vectors.

To that end, we apply reverse multiplication friendly embedding (RMFE)
defined by Cascudo et al. [7] to FHE. RMFE allows us to encode a length-k vector
of small field elements (F)k into a single element of a larger extension field E/F.
Products of these extension field elements then “correspond” to component-
wise multiplication on the underlying vectors. However, this process is not a
homomorphism and thus cannot support an arbitrary number of multiplications.
To address this limitation in MPC, Cascudo et al. [7] defined a recoding protocol
ReEncode which decodes and re-encodes field elements in one go after each MPC
multiplication so that it can be used in subsequent multiplications.

The key to applying RMFEs to FHE is that the encode, decode, and re-
coding (i.e. decode then re-encode) operations are F-linear maps between (F)k
and E. Such maps can be represented by linearized polynomials and therefore
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evaluated in FHE using low-noise Frobenius automorphisms. Furthermore, we
show that rotations, shifts and even arbitrary linear transformations M on the
encrypted vector can be done for free by modifying the recode operation into a
composition of decode, M , and encode. This gives FIMD more flexibility than
SIMD in terms of the overhead of linear transformations over the plaintext space
but FIMD requires the recode operation after multiplications. Crucially, we ex-
ploit the fact that the recode operation in FHE is non-interactive and does not
require any pre-processing. Performing arbitrary linear transformations during
the ReEncode protocol of Cascudo et al. [7] would be almost impossible because
randomness specific to any desired linear transformation has to be prepared
beforehand.

Besides that, we propose r-fold RMFE to amortize the overhead of the ho-
momorphic RMFE recode operation over several multiplications, at the cost of
lower packing efficiency. Instead of decoding after a single multiplication, r-fold
RMFE allows up to encodings of 2r vectors to be multiplied together before
decoding. With an additional requirement that field elements encoding multipli-
cations of fewer than 2r vectors can be added together, r-fold RMFE can allow
multivariate polynomials of degree up to 2r to be evaluated before decoding.
This generalization of RMFE could be of independent interest.

On top of that, we introduce a three-stage process for recoding operations
for RMFEs composed of two component RMFEs. Exploiting the fact that such
RMFEs is built on a tower of field extensions F ⊂ E1 ⊂ E2, we apply three linear
maps ψout : E2 → (E1)

kout , ϕout : (E1)
kout → E2, and π

′
in : (E1)

kout → (E1)
kout , each

of which have lower degree than the recoding map π : E2 → E2. All together, this
approach reduces the number of Frobenius automorphisms needed compared to
the standard recode process.

Finally, we perform several experiments to compare the efficiency of the var-
ious flavors of RMFE introduced in this work against each other and standard
FHE multiplications. FIMD improves the performance of FHE for small plain-
text moduli, not only achieving more than 2× faster multiplications amortized
but also using up to k/2× fewer ciphertexts in the whole process.

Related Work. Exploiting finite fields for homomorphic computation was first
considered by Kim et al. [32]. They showed that equality of two encrypted in-
tegers could be efficiently computed using Fermat’s Little Theorem. For more
complex operations, Jäschke and Armknecht [31] explored using addition and
multiplication in extension fields to compute integer addition but found them
lacking. Leveraging the vector space nature of extension fields, Tan et al. [39]
proposed the extract then compute method for comparison of encrypted integers.
Illiashenko and Zucca [30] took advantage of the nature of comparison polyno-
mials, reaching comparable efficiency to THFE-based methods for homomorphic
comparisons.

Studies were also done for encoding integers and fixed-point numbers such
that arithmetic was efficient. Dowlin et al. [19] considered decomposing integers
and fractional numbers into base-2 representations and then encoding them as
polynomials for fast arithmetic. Costache et al. [16] then showed that the two
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methods of Dowlin et al. were isomorphic and derived lower bounds for the
representation to support homomorphic computation. This was further extended
by Castryck et al. [8] to a more flexible encoding based on Laurent polynomials
and more fine-grained decomposition of the FHE plaintext space with composite
plaintext modulus. In another direction, Chen et al. [10] proposed to replace
the plaintext modulus t with X − b for some base b. This yields the plaintext
space Z/(bn + 1)Z which enables high-precision arithmetic. Bootland et al. [3]
generalized this to support complex-valued data by considering polynomials of
the form Xm + b.

Lastly, RMFE was studied to improve MPC over finite fields. Cascudo et
al. [7] used it to improve the amortized communication complexity of MPC pro-
tocols at the expense of the size of the field; previous work had to reduce the
adversary threshold instead. Concurrently, Block et al. [2] applied it to achieve
more efficient batched multiplications in MPC over binary fields. Since then,
RMFE has been generalized to support MPC over Galois rings by Cramer et
al. [17] and alternatively into circuit-amortization friendly embeddings to eval-
uate more complex circuits in a single multiplication by Dalskov et al. [18]. For
HE-based MPC over Z2k , methods were devised for protocols Overdrive2k [34]
and MHz2k [12] for packing Z2k -messages into polynomials, supporting depth-1
homomorphic correspondence.

2 Preliminaries

2.1 Fully Homomorphic Encryption

A leveled fully homomorphic encryption (FHE) scheme is a homomorphic en-
cryption scheme that supports evaluation of circuits of at most depth L, for some
pre-defined non-negative integer L. Encryptions of messages m will be denoted
with m to emphasize their underlying encrypted messages. We will use P to
denote the space of possible messages for the FHE scheme.

– (pk, evk, sk) ← KeyGen(1λ, 1L): Given security and level parameters λ and
L as inputs, output a public key pk, secret key sk and evaluation key evk.

– c = m ← Enc(pk,m): Given a public key pk and message m ∈ P as inputs,
output a ciphertext c = m that encrypts m.

– m′ ← Dec(sk, c): Given a secret key sk and ciphertext c as inputs, and
outputs a message m′ ∈ P.

– c′ ← Eval(evk, f,m1, ...,mn): Given evaluation key evk, function f : Pn → P
and encryptionm1, ...,mn of ciphertextsm1, ...,mn ∈ P, output a ciphertext
c′ such that Dec(sk, c′) = f(m1, ...,mn).

Usually, the Eval algorithm uses sub-routines of which the most common ones
are homomorphic addition and multiplication.

– c+ ← EvalAdd(evk,m1,m2): Given an evaluation key evk and two cipher-
texts m1,m2 as inputs, output a ciphertext c+ = m1 +m2, encrypting the
sum of the encrypted input messages.
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– c× ← EvalMul(evk,m1,m2): Given an evaluation key evk and two cipher-
texts m1,m2 as inputs, output a ciphertext c× = m1 ×m2, encrypting the
product of the encrypted input messages.

For all known (leveled) FHE schemes, which are based on (Ring) Learning
with Error ((R)LWE) problems, ciphertexts are noisy encryptions of their un-
derlying plaintext. This means that only a limited number of computations can
be performed before the noise in the ciphertexts overwhelms the data and the
result is unusable.

Single Instruction Multiple Data (SIMD). Let R = Z[X]/Φm(X), where
Φm(X) is the m-th cyclotomic polynomial and Rq = R/qR. Generation two
FHE schemes such as BGV and BFV typically use plaintext spaces of the form
P = Rt for some prime t. Smart and Vercauteren [37] noted that, if t and

m are co-prime, Φm(X) ≡
∏ℓ
i=1 fi(X) mod t, with deg fi(X) := d = ϕ(m)/ℓ

for all i ∈ {1, . . . , ℓ}. They proposed single instruction multiple data (SIMD),
simultaneously operating on vectors of messages, for FHE by exploiting the
following ring isomorphisms

P = Rt ∼= Zt[X]/⟨f1(X)⟩ × Zt[X]/⟨f2(X)⟩ × · · · × Zt[X]/⟨fℓ(X)⟩ ∼=
ℓ∏
i=1

Ftd .

These isomorphisms are a result of applying the Chinese Remainder Theorem
on the polynomial ring Z[X]/Φm(X) with the decomposition of Φm(X) into
its irreducible factors modulo t. From this, vectors in (Ftd)ℓ can be encoded in
a single ciphertext and enjoy homomorphic component-wise Ftd addition and
multiplications. Furthermore, the elements within the vectors can be moved
around via ring automorphisms κ : X 7→ Xκ, for κ ∈ Z∗

m. In particular, for prime
t, the automorphism X 7→ Xt corresponds to a component-wise Frobenius map
on plaintext vectors. Halevi and Shoup [29] present a thorough introduction on
the SIMD plaintext structure. Thus, with SIMD, we have a third sub-routine for
intra-vector data manipulation through homomorphic automorphisms.

– c⋆ ← EvalAut(evk, κ,m): Given an evaluation key evk, ciphertext m and
automorphism κ ∈ Z∗

m, output a ciphertext c⋆ = κ(m).

This third sub-routine, more specifically the Frobenius automorphism, is key
to the effective application of finite extension fields for homomorphic computa-
tion. In practice, multiple powers of the Frobenius automorphism, typically the
set of {ti}d−1

i=1 will be needed and techniques have been developed to optimize
the computational complexity and evaluation key sizes for evaluating more than
one automorphism on a single ciphertext [28]. Besides that, through EvalAut and
multiplicative masks, basic data movement of shifts and rotations on encoded
vectors x = (x1, ..., xℓ) ∈ (Ftd)ℓ.
– c′ ← FHE.EvalShift(evk, ρ,x): Let ρ < 0 denote a left shift and ρ ≥ 0 denote

a right shift. Using FHE.EvalAut defined above, output the ciphertext

c′ =

{
(x|ρ|, ..., xℓ, 0, ..., 0), if ρ < 0;

(0, ..., 0, x1, ..., xℓ−ρ), otherwise.
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– c′ ← FHE.EvalRot(evk, ρ, x̂): Let ρ < 0 denote a left rotation and ρ ≥ 0
denote a right rotation. Using FHE.EvalAut defined above, output the ci-
phertext

c′ =

{
(x|ρ|, ..., xℓ, x1, ..., x|ρ|−1), if ρ < 0;

(xℓ−ρ+1, ..., xℓ, x1, ..., xℓ−ρ), otherwise.

2.2 Finite Extension Fields

Let q be a prime power. Extension fields Fqw are Fq-vector spaces of dimension
w. A q-linearized polynomial f(Y ) is a polynomial of the form

f(Y ) = f0 + f1Y
q1 + f2Y

q2 + · · ·+ fz−1Y
qz−1

∈ Fq[Y ],

where any non-zero coefficient of f is attached to a monomial Y q
a

for some
positive integer a. In the following lemma, we review how Fq-linear maps between
subspaces of Fqw can be expressed as q-linearized polynomials.

Lemma 1. Let V and W be Fq-linear subspaces of Fqw , and let T : V → W
be an Fq-linear map. Then, there exists a unique q-linearized polynomial fT (Y )
with deg fT ≤ qdim(V ), such that for any α ∈ V , fT (α) = T (α).

Proof. Let {α1, α2, . . . , αk} be a basis for V , and let A denote the Moore matrix
given by 

α1 α2 · · · αk
αq1 αq2 · · · αqk
...

... · · ·
...

αq
k−1

1 αq
k−1

2 · · · αq
k−1

k

 .
Evaluation of a q-linearized polynomial is clearly Fq-linear, so for fT (α) = T (α)
to hold for any α, fT (Y ) must have coefficients f0, f1, . . . , fk−1 such that the
following matrix equation holds:[

f0 f1 · · · fk−1

]
A =

[
T (α1) T (α2) · · · T (αk)

]
.

Since α1, α2, . . . , αk are linearly independent, A has a nonzero determinant by
[26, Lemma 1.3.3]. A is also a square matrix, so its inverse A−1 always exists.
Thus f0, f1, · · · , fk−1 is found by computing

[
T (α1) T (α2) · · · T (αk)

]
A−1. From

this computation it is also clear that fT (Y ) is unique. The proof is complete.

For FHE schemes with plaintext space P ∼= (Ftd)ℓ, homomorphic evaluation
of component-wise t-linearized polynomials can be easily done using EvalAut.
Each monomial Y t

i

can be homomorphically computed with EvalAut(evk, ti, Y ),
without multiplications and therefore almost no depth.

– c′ ← EvalLinearMap(evk, fT ,m): For simplicity, we use m1 +m2 to denote
EvalAdd(evk,m1,m2) for FHE ciphertexts m1,m2 and a · m to mean the

product of a plaintext a and ciphertext m. Then, let fT (X) =
∑d−1
i=0 aiX

ti

and output c′ :=
∑d−1
i=0 ai · EvalAut(evk, pi,m) =

∑d−1
i=0 aim

ti .
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2.3 Reverse Multiplication Friendly Embeddings

Introduced by Cascudo et al. [7] and concurrently studied by Block et al. [2],
reverse multiplication friendly embeddings (RMFE) are methods of embedding
(Ft)k into Ftd such that component-wise multiplication in the vector space (de-
noted with ∗) corresponds to multiplication over the field.

Definition 1. Let q be a prime power and Fq denote the finite field of q ele-
ments. For integers k,w ≥ 1, a (k,w)q-RMFE is a pair of Fq-linear maps, (ϕ, ψ),
where ϕ : (Fq)k → Fqw and ψ : Fqw → (Fq)k such that for all x,y ∈ (Fq)k,

x ∗ y = ψ(ϕ(x) · ϕ(y)).

There are two approaches to constructing RMFEs, polynomial interpolation,
and algebraic function fields. From these, others can be obtained by composing
these base constructions appropriately.

RMFEs from Polynomial Interpolation. The core idea is that a vector
x = (x1, ..., xk) ∈ (Fq)k can be encoded as a polynomial f ∈ Fq[X] via in-
terpolation, that is, we require that f(Pi) = xi for some fixed set of points
{Pi ∈ Fq}. Hence products of polynomials, when evaluated at the points {Pi},
yield component-wise products of the vectors corresponding to each polynomial.
The following theorem constructs an RMFE that can then be constructed based
on this principle. The caveat is the value of k is limited by the number of points
available in Fq.

Theorem 1 ([7, Lemma 4]). For a base finite field Fq and 1 ≤ k ≤ q + 1,
there exists a (k, 2k − 1)q-RMFE.

Proof. Let Fq[X]≤m denote the set of polynomials in Fq[X] whose degree is
at most m and define ∞m+1 as a formal symbol such that f(∞m+1) is the
coefficient of Xm for f ∈ Fq[X]≤m. Let P1, ..., Pk be pair-wise distinct elements
in Fq ∪ {∞k} and let α be a root of a monic irreducible polynomial F (X) of
degree 2k − 1. Then Fq2k−1

∼= Fq(α) ∼= Fq[X]/(F (X)).
Polynomial interpolation yields the following Fq-vector space isomorphism

between Fq[X]≤k−1 and (Fq)k:

E1 : Fq[X]≤k−1 → (Fq)k; f 7→ (f(P1), ..., f(Pk)).

The evaluation embedding into (Fq)k can be extended naturally to any set of
polynomials of a limited degree. In particular, for polynomials in Fq[X]≤2k−2,

E ′1 : Fq[X]≤2k−2 → (Fq)k; f 7→ (f(P ′
1), ..., f(P

′
k)),

where P ′
i := Pi if Pi ∈ Fq and P ′

i := ∞2k−1 if Pi = ∞k. Finally, we use the
following isomorphism to map polynomials to the extension field Fq2k−1 ,

E2 : Fq[X]≤2k−2 → Fq2k−1 ; f =

2k−2∑
i=0

fiX
i 7→ f(α) =

2k−2∑
i=0

fiα
i.
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The (k, 2k − 1)q-RMFE is obtained by defining ϕ = E2 ◦ E−1
1 , where E2 is

restricted to the subset Fq[X]≤k−1, and ψ = E ′1 ◦ E−1
2 . To see the correctness of

the procedure, let fx = E−1
1 (x), fy = E−1

1 (y) be the polynomial encoding of the
vectors x,y ∈ (Fq)k. E−1

2 (ϕ(x) · ϕ(y)) = fxfy, since there is no overflow on the
monomials Xi. Therefore,

ψ(ϕ(x) · ϕ(y)) = E ′1(fxfy)
= (fxfy(P1), ..., fxfy(Pk))

= (fx(P1)fy(P1), ..., fx(Pk)fy(Pk))

= x ∗ y.

Algebraic Function Fields. A function field K/Fq is an algebraic extension
of the rational function field Fq(X), which contains all fractions of polynomials
in Fq[X]. Every function field K has an infinite set of “points” called places,
denoted by P and has a degree degP . The number of places with a given degree
is finite and in particular, places P of degP = 1 are called rational.

For functions f ∈ K and a place P , either f has a pole at P (i.e. (1/f)(P ) =
0), or f can be evaluated at P and f(P ) can be thought of as an element of
Fqdeg P . The elements of the function field K always have the same number of
zeroes and poles, up to multiplicity, called the order. For any two functions f , g
that do not have poles at P ,

1. λ(f(P )) = (λf)(P ), for every λ ∈ Fq;
2. f(P ) + g(P ) = (f + g)(P ) and
3. f(P ) · g(P ) = (f · g)(P ).

A divisor is a formal sum of places,G =
∑
cPP , with cP ∈ Z and only finitely

many cP ̸= 0. This set of places also is called the support of G and denoted with
supp(G). Just like places, a divisor G has a degree, degG :=

∑
cP degP ∈ Z.

For any function f ∈ K\{0}, there is a principal divisor associated to f , denoted
with (f). Roughly speaking, this principal divisor has the form (f) =

∑
aPP ,

where aP = o if f has a zero of order o at P , aP = −o if f has a pole of order o
at P and aP = 0 if P is neither a zero or pole of f .

The Riemann-Roch space associated with a divisor, G =
∑
cPP , is denoted

by L(G) = {0}∪ {f ∈ K\{0} | (f)+G =
∑
aPP and aP ≥ 0, ∀P}. It is the set

of all functions in K that have poles and zeroes at the set of places prescribed by
G along with the zero function. To be more precise, every function f ∈ L(G) has
a zero of order at least |cP | at the places P if cP ≤ 0 and can have a pole of order
of at most cP at the places P with cP ≥ 0. For any other place Q ̸∈ supp(G),
f(Q) ∈ Fqdeg Q . This space is a vector space over Fq and its dimension ℓ(G) is
not more than degG+ 1 [6, Lemma 2.51].

Another important fact is that given f, g ∈ L(G), the product f · g resides in
L(2G). For every function field K, there is a a non-negative integer associated
with it called the genus, denoted with g(K) := maxG degG− ℓ(G) + 1 where G
runs over all divisors of K.

From Polynomial Interpolation to Function Fields. To give more intuition
for the more abstract RMFEs from algebraic function fields, we sketch how
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RMFEs from the rational function field Fq(Y ) parallel the RMFEs obtained
from polynomial interpolation. The points Pi ∈ Fq of polynomial interpolation
can be understood as univariate polynomials (Y −Pi), which are rational places
in Fq(Y ), and∞ roughly corresponding to the place (1/Y ). More general places
in Fq(Y ) include the ideals Q = (f(Y )), where f are irreducible polynomials.
The degree of such a place Q is equal to the degree of the polynomial f(Y ).

Recall that in interpolation RMFEs, vectors were mapped to polynomials
in Fq[X]≤2k−2. In rational function field RMFEs, this corresponds to mapping
vectors to functions living in a particular subset of the Riemann-Roch space
L(G) of some divisor G, such that G does not have the places {(Y − Pi)} in its
support. To embed functions from L(G) into Fqw , we “evaluate” them at a fixed
place R = (f(Y )) whose degree is w. This evaluation corresponds to considering
the residues of our functions, modulo f(Y ).

RMFEs from Algebraic Function Fields. Here, we state the properties
of RMFEs that can be obtained from algebraic function fields. Proofs for the
following theorems and corollaries can be found in [7].

Theorem 2 ([7, Lemma 6]). Let K/Fq be an algebraic function field with
genus g and k distinct rational places P1, ..., Pk. Let G be a divisor of K such
that supp(G) ∩ {P1, ..., Pk} = ∅ and ℓ(G) − ℓ(G −

∑k
i=1 Pi) = k. If there exists

a place R with w = degR > 2 degG, then there exists a (k,w)q-RMFE.

In particular, the conditions of Theorem 2 are satisfied as long as there is a
place of sufficiently high degree.

Corollary 1 ([7, Corollary 1]). Let K/Fq be an algebraic function field of
genus g and suppose that there are k distinct rational places (P1, ..., Pk) and a
place of degree w ≥ 2k + 4g − 1. Then, there exists a (k,w)q-RMFE.

Finally, we state how RMFEs can be composed to yield more RMFEs.

Theorem 3 ([7, Lemma 5]). Suppose (ϕin, ψin) is a (kin, win)q-RMFE and
(ϕout, ψout) is a (kout, wout)qwin -RMFE. (ϕ, ψ) is a (kinkout, winwout)q-RMFE, where

ϕ : (Fq)kinkout → Fqwinwout
x1, ..., xkin ,
xkin+1, ..., x2kin ,
...

. . .
...

xkin(kout−1)+1, ..., xkinkout

 7→ ϕout


ϕin(x1, ..., xkin),

ϕin(xkin+1, ..., x2kin),
. . . ,

ϕin(xkin(kout−1)+1, ..., xkinkout)


and

ψ : Fqwinwout → (Fq)kinkout

α 7→ ψout(α) = (u1, ..., ukout) ∈ (Fqwin )kout 7→ (ψin(u1), ..., ψin(ukout)) ∈ (Fq)kinkout .



10 K.M.M. Aung et al.

3 Field Instruction Multiple Data (FIMD)

In this section, we present how RMFE and SIMD can be combined to encode and
work on more data in a single FHE ciphertext. Then, we describe an extension to
RMFE that removes the need to recode after each multiplication, at the expense
of more expensive recoding operations. Finally, we introduce some optimizations
tailored to composite RMFEs.

3.1 RMFE with FHE

The BGV and BFV FHE schemes offer the plaintext space P ∼=
∏ℓ
i=1 Ftd . Typ-

ical FHE-based secure computation systems only use base field operations and
pack an Ft element in each slot. RMFE unlocks the full capacity of P by introduc-
ing a “new” dimension in P hidden within the Ftd algebra of each SIMD slot.
Homomorphic extension field operations such as addition, multiplication, and
linearized polynomials are exploited to work with encrypted vectors from (Fq)k
within each plaintext slot, where qw ≤ td. With RMFE, we use “extension field
instructions” to process data, yielding a field instruction multiple data (FIMD)
system.

Throughout this section, let (ϕ, ψ) be a (k,w)q-RMFE. We first describe the
core encoding and decoding functionality of FIMD.

– µ ∈ Ftd ← FIMD.Encode(x = (x1, ..., xℓ·k) ∈ (Fq)ℓ·k): For i = 1, ..., ℓ, let
xi = (x(i−1)k+1, ..., xi·k) ∈ (Fq)k.

1. Embed each xi into Fqw with ϕ to obtain x̂ = (ϕ(x1), ..., ϕ(xℓ)) ∈
(Fqw)ℓ;

2. Encode x̂ into µ ∈ P with the SIMD isomorphism.
– m ∈ (Fq)ℓ·k ← FIMD.Decode(µ ∈ P):

1. Decode µ to the SIMD plaintext vector m̂ = (µ1, ..., µℓ) ∈ (Fqw)ℓ;
2. Apply ψ to the components of m̂ separately to compute the final

output m = (ψ(µ1), ..., ψ(µℓ)) ∈ (Fq)ℓ·k.

The µ from FIMD.Encode is then encrypted with the FHE scheme into µ for
use in encrypted processing. Similarly, the input to FIMD.Decode comes from
decrypted FHE ciphertexts that contain RMFE-encoded vectors.

Arithmetic Operations. The main operations in FHE are homomorphic addi-
tion and multiplication. Addition is straightforward in FIMD but multiplication
requires a little more work to achieve. Because RMFE only supports one multipli-
cation after embedding, the resulting data cannot be used without first decoding
and re-encoding it. A re-encoding protocol was proposed by Cascudo et al. [7]
to refresh secret-shared RMFE-encoded field elements and we require a similar
operation with FHE. Crucially, the Fq-linear nature of ϕ and ψ means that they
can be composed to obtain a recode map, π := ϕ ◦ ψ.

Evaluating π on encrypted RMFE-encoded data is done by homomorphically
evaluating the q-linearized polynomial fπ from applying Lemma 1 to π. Let evk
denote the evaluation keys for the BGV/BFV FHE scheme and µ1, µ2 obtained
from FIMD.Encode, then the basic homomorphic FIMD operations are as follows.
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– c′ ← FIMD.Recode(evk, c): Output c′ = FHE.EvalLinearMap(evk, fπ, c).

– c+ ← FIMD.EvalAdd(evk, µ1, µ2): Output c+ = FHE.EvalAdd(evk, µ1, µ2).

– c× ← FIMD.EvalMul(evk, µ1, µ2):
1. Compute c = FHE.EvalMul(evk, µ1, µ2);

2. Output c× = FIMD.Recode(evk, c).

Moving Data within Encrypted RMFE-Encoded Vectors. With SIMD,
data in the various slots can be moved around using the automorphisms κ ∈ Z∗

m.
Rotations of the components are achieved with EvalAut using the appropriate
automorphisms, κ, and shifts computed by first masking the irrelevant slots and
rotating the result. Similar operations can be done with RMFE-encoded vectors
and in fact, RMFE supports even more complex intra-vector manipulations.

This is possible due to the Fq-linearity of ϕ and ψ. Any Fq-linear map τ :
(Fq)k → (Fq)k can be applied on x of ϕ(x) by sandwiching it between ϕ and ψ,
as ϕ ◦ τ ◦ ψ. This generalizes the recode operation, which has the identity map
id between ϕ and ψ. In this way, arbitrary linear transformations on individual
RMFE components in FIMD can be folded into homomorphic multiplication and
thus done for free in many situations. Let f ′τ be the polynomial from Lemma 1
for ϕ ◦ τ ◦ ψ.

– c×
′ ← FIMD.EvalMul′(evk, τ,m1,m2):
1. Compute c = FHE.EvalMul(evk, µ1, µ2);

2. Output c× = FHE.EvalLinearMap(evk, f ′τ , c).

Rotations and Shifts for FIMD-Encoded Vectors. With the complete
FIMD technique, where RMFE and SIMD are combined, we focus on how to com-
pute rotations and shifts on P, interpreted as the space of vectors (Fq)k·ℓ. For any
plaintext x = (x1, ..., xk·ℓ) ∈ (Fq)k·ℓ, FIMD encodes it into x̂ = (ϕ(x1), ..., ϕ(xℓ)),
where xi = (x(i−1)k+1, ..., xi·k) for 1 ≤ i ≤ ℓ. To achieve rotations or shifts on
the entire vector, we split the process into two steps.

First, we execute a set of RMFE-only data movement operations followed
by a set of SIMD-only data movement operations. If we only move by small
steps (< k), usually there would be one portion of the data that will move to
an adjacent SIMD-slot and another that stays in the same SIMD-slot. More
generally, each xi can be partitioned into two parts, one that moves by z SIMD-
slots and the other that moves by z+1 SIMD-slots to the left or right, for some
z = 0, ..., ℓ− 1. If any of z, z+1 goes beyond ℓ+1, those components should be
wrapped around the other side of the vector for rotations and discarded for shifts.
This is accomplished by using the appropriate SIMD data movement operation,
FHE.EvalRot for the former and FHE.EvalShift for the latter.

For example, when rotating data one slot to the left, the first component of
xi, x(i−1)k+1 will be moved into last component of xi−1, whereas all other com-
ponents remain in xi but are moved 1 slot to the left, i.e. (x(i−1)k+2, ..., xi·k, y),
where y would come from xi+1. On the other hand, moving by k+1 slots to the
left means that x(i−1)k+1 will be moved to slot i − 2 and (x(i−1)k+2, ..., xi·k, y)
moved to slot i− 1.
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– c′ ← FIMD.EvalRot(evk, ρ, c): Let |ρ| = ρSIMDk + ρRMFE.

• If ρRMFE = 0, output c′ = FHE.EvalRot(evk, ρ, c).

• Otherwise, ρRMFE > 0. Let τ0 and τ1 be Fq-linear maps on (Fq)k with
τ0(z) = (zρRMFE+1, ..., zk, 0, ..., 0) and τ1(z) = (0, ..., 0, z1, ..., zρRMFE

) for
z = (z1, ..., zk).

1. Compute ciphertexts cτ0 = FHE.EvalLinearMap(evk, fτ0 , c) and
cτ1 = FHE.EvalLinearMap(evk, fτ1 , c);

2. Positive (negative) ρ mean rotation to the right (left). To move
data correctly, for i = 0, 1,

ρ > 0: compute c′τi = FHE.EvalRot(evk, ρSIMD − i, cτi);
ρ < 0: compute c′τi = FHE.EvalRot(evk,−ρSIMD − (1− i), cτi).
3. Output c′ = FIMD.EvalAdd(evk, c′τ0 , c

′
τ1).

– c′ ← FIMD.EvalShift(evk, ρ, c): Follow the steps of FIMD.EvalRot(evk, ρ, c),
replacing FHE.EvalRot with FHE.EvalShift.

3.2 r-fold RMFE

Among the possible plaintext spaces (Ftd)ℓ available in the BGV/BFV FHE
schemes, the possible set of (d, ℓ) can be very diverse. Many times, t is chosen
so that d = 1 and ℓ is maximized. However, this requires large t because d =
1 ⇔ t | (m − 1), where m refers to the m-th cyclotomic polynomial Φm(X) in
P = Zt[X]/Φm(X).

In the case for small t = 2, 3, 5, 7, ..., we can choose m to minimize d but
it is not always possible. More specifically, most HE implementations support
cyclotomic polynomials of the form Φm(X) = Xm/2+1, where m = 2N for some
positive integer N . For such m, small primes tend to have very high d in the
range of m/4, ...,m/32, which using m = 32768 as an example, would translate
to d ∈ {512, 1024, 2048, 4096}. With such high d, using FHE.EvalLinearMap after
each multiplication would be prohibitively expensive and alternatives are needed.

Instead of just 1 multiplication before decoding, we generalize RMFE to an
embedding that allows r-fold multiplications before decoding is strictly neces-
sary. This means that products of up to 2r encoded vectors can be done before
ψ is applied by multiplying the vectors pair-wise recursively.

Definition 2. Let q be a prime power and Fq denote the finite field of q ele-
ments. For integers k,w, r ≥ 1, a (k,w, r)q-RMFE is a pair of Fq-linear maps,
(ϕ, ψ), where ϕ : (Fq)k → Fqw and ψ : Fqw → (Fq)k such that for any 2r vectors
x1, ...,x2r ∈ (Fq)k,

2r∗
i=1

xi = ψ

(
2r∏
i=1

ϕ(xi)

)
.

This allows us to effectively amortize the expensive recoding step over several
multiplications instead, although this reduces the packing capacity as we will
show. Besides that, in practice, linear map evaluations incur some noise increase
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and reducing the number of recoding steps also reduces the noise overhead of
FIMD multiplications.

With this new property, it is desirable to be able to add intermediate prod-
ucts of r-fold RMFE-encoded vectors, regardless of the number of multiplica-
tions these products have undergone. This way, we can easily perform degree-r
multivariate polynomial evaluations simultaneously on all components of r-fold
RMFE-encoded vectors. While it is not a strict requirement in Definition 2, we
will focus on constructions that support this. To that end, we need an additional
condition on algebraic function field RMFEs to ensure inter-operability between
encoded vectors that go through a different number of multiplications.

Definition 3. Let K/Fq be an algebraic function field. A divisor, G =
∑
aPP

in K, is called positive if aP ≥ 0 for all P .

For a positive divisor G, L(G) is the set of functions that may have poles of order
at most aP at the places P with aP ̸= 0 in G. This means that L(xG) ⊆ L(yG)
for any x ≤ y, since functions in L(xG) can only have poles of order less than
x · aP ≤ y · aP .

Theorem 4 (Extending Theorem 2). Let K/Fq be an algebraic function
field with genus g and k distinct rational places P1, ..., Pk. Let G be a positive
divisor of K such that supp(G)∩{P1, ..., Pk} = ∅ and ℓ(G)−ℓ(G−

∑k
i=1 Pi) = k.

If there exists a place R with w = degR > 2r degG, then there exists a (k,w, r)q-
RMFE.

Proof. As before, we have the evaluation map from L(G) to the rational places,

E1 : L(G)→ (Fq)k; f 7→ (f(P1), ..., f(Pk)).

We choose a k-dimensional subspace W ⊂ L(G) such that E1 restricted to W is
an isomorphism between W and (Fq)k for encoding. Then, with f(R) denoting
the evaluation of any f ∈ K at R, the RMFE encode map is given by

ϕ : E1(W ) ∼= (Fq)k → Fqw ; (f(P1), ..., f(Pk)) 7→ f(R).

With a positive divisor, all L(xG) ⊆ L(2rG) and so we focus on the largest
space, L(2rG). We define the following injective Fq-linear map (since degR >
deg 2rG as well),

E2 : L(2rG)→ Fqw ; f 7→ f(R).

To obtain the RMFE decode map ψ, we first consider the map from the image
of E2 to the input space,

ψ′ : Im(E2) ⊆ Fqw → (Fq)k; f(R) 7→ (f(P1), ..., f(Pk)).

Because E2 is injective, f ∈ L(2rG) is uniquely determined by f(R) and we
linearly extend ψ′ to all of Fqw to get ψ.

The correctness of the construction follows for the same reasons in the proof
of Theorem 2. With a positive divisor G, any RMFE-encoded vectors that un-
dergone some number of multiplications would lie in L(xG) ⊆ L(2rG) for some
x ≤ 2r and thus can be added together in the “ambient” space L(2rG).
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Corollary 2 (Extending Corollary 1). Let K/Fq be an algebraic function
field of genus g and suppose that there are k distinct rational places (P1, ..., Pk)
and a place of degree w ≥ 2rk + 2r+1g − 2r + 1. Then, there exists a (k,w, r)q-
RMFE.

Proof. Like the proof of Corollary 1, we choose a divisor G of degree k+2g− 1,
whose support is disjoint from (P1, ..., Pk). Now, to apply Theorem 4 we require
w = degR > 2r degG, and therefore can get a (k,w, r)q-RMFE as long as
w > 2r(k + 2g − 1).

FIMD with r-Fold RMFE. We tag ciphertexts with a RMFE level, augment-
ing a standard BGV/BFV ciphertext c into (c, η), where η denotes the number of
multiplications that have been done on c since the data was first RMFE-encoded.
This is to keep track of how many multiplications a ciphertext can tolerate with-
out recoding before being rendered useless by excessive multiplications.

Let (ϕ, ψ) be a (k,w, r)q-RMFE and we use rFIMD to denote the combi-
nation of r-fold RMFE with SIMD packing methods. First, we highlight the
modifications needed when encrypting and decrypting r-fold RMFE vectors.

– (c, 0)← rFIMD.Encrypt(pk,x = (x1, ..., xℓ·k) ∈ (Ft)ℓ·k):
1. Compute x̂ = FIMD.Encode(x = (x1, ..., xℓ·k)).

2. Encrypt x̂ and output (c = FHE.Encrypt(pk, x̂), 0).

– m← rFIMD.Decrypt(sk, (c, η)):
1. If η > r, abort and output ⊥. Otherwise, continue to Step 2.

2. Decrypt the ciphertext to obtain µ = FHE.Decrypt(sk, c).

3. Decode µ and output m = FIMD.Decode(µ) ∈ (Ft)ℓ·k.

Homomorphic operations remain mostly unchanged, especially for addition.
The only difference is that the RMFE level of output ciphertexts has to be
accounted for. As a side effect of shifts and rotations of RMFE-encoded data
being modified recodings, any data movement operation in rFIMD with ρ =
ρSIMDk + ρRMFE with ρRMFE ̸= 0 would reset the RMFE level to zero.

– (c+, η) ← rFIMD.EvalAdd(evk, (c1, η1), (c2, η2)): Set η = max(η1, η2) and
output (c+ = FIMD.EvalAdd(evk, c1, c2), η).

– (c×, η)← rFIMD.EvalMul(evk, (c1, η1), (c2, η2)): Let η
′ = max(η1, η2)+1. We

distinguish between two cases, η′ = r and η′ < r.
1. If η′ = r, compute the recoded result c× = FIMD.EvalMul(evk, c1, c2)

and output (c×, 0).

2. Otherwise, η′ < r and output (c× = FHE.EvalMul(evk, c1, c2), η
′).

– (c′, η′)← rFIMD.EvalShift(evk, ρ, (c, η)): Let ρ = ρSIMDk + ρRMFE.
Return (c′ = FIMD.EvalShift(evk, ρ, c), η′), where η′ = 0 if ρRMFE ̸= 0 and
η′ = η otherwise.

– (c′, η)← rFIMD.EvalRot(evk, ρ, (c, η)): Let ρ = ρSIMDk + ρRMFE.
Return (c′ = FIMD.EvalRot(evk, ρ, c), η′), where η′ = 0 if ρRMFE ̸= 0 and
η′ = η otherwise.
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3.3 Composite RMFE with FHE

Recall from Theorem 3 that composite RMFEs (kinkout, winwout)q are built from
two component RMFEs, an “inner” (kin, win)q-RMFE and “outer” (kout, wout)qwin -
RMFE with the maps (ϕin, ψin) and (ϕout, ψout) respectively. This allows us to
design a three-stage method for recoding that leverages the simpler linear maps
(ϕin, ψin) and (ϕout, ψout). However, it also presents complications for extending
the r-fold property to composite RMFEs, which we describe and address at the
end of the section by relaxing the recoding requirements for composite RMFEs.

Exploiting the Intermediate Extension. The key difference between stan-
dard and composite RMFEs is the tower of field extensions of Fq underlying
composite RMFEs, Fq ⊆ E1 = Fqwin ⊆ E2 = Fqwinwout . Furthermore, their re-
spective extension degrees [E1 : Fq] = win and [E2 : E1] = wout are smaller than
the direct extension [E2 : Fq] = winwout. This means that E1-linear maps on E2

and Fq-linear maps on E1 correspond to |E1|- and |Fq|-linearized polynomials of
lower degrees and thus easier to evaluate.

We propose a three-stage recode process for composite RMFEs, exploiting
the intermediate field E1. Let x = (x1, ...,xkout),y = (y1, ...,ykout) ∈ (Fq)kinkout be
vectors to be encoded, where zi = (z(i−1)kin+1, ..., zikin) ∈ (Fq)kin for z ∈ {x,y}.
Denoting with α ∈ E2 the result of ϕ(x) · ϕ(y), we perform recoding in the
following manner,

1. Compute ψout(α) = (ϕin(x1) · ϕin(y1), ..., ϕin(xkout) · ϕin(ykout)) ∈ (E1)
kout .

2. Apply the recode map πin = ϕin ◦ ψin to each component of ψout(α),
recoding the intermediate field elements from the “inner” RMFE.(
πin
(
ϕin(xi) · ϕin(yi)

))kout
i=1

= (ϕin(x1 ∗ y1), ..., ϕin(xkout ∗ ykout)) ∈ (E1)
kout

3. Encode the resulting vector (ϕin(x1 ∗ y1), ..., ϕin(xkout ∗ ykout)) with ϕout,
getting α′ = ϕout((ϕin(x1 ∗ y1), ..., ϕin(xkout ∗ ykout))) ∈ E2.

Three-Stage Recode for FIMD. As with standard recode, we evaluate linear
maps in each stage. However, Stages 1 and 3 work over an E1-vector space while
Stage 2 work over an Fq-vector space. Stages 1 and 3 correspond to applying
the “outer” RMFE decoding and encoding maps, ψout, ϕout respectively. These
would correspond to evaluating two qwin-linearized polynomials, one per map,
following Lemma 1.

Let ϕ′in and ψ
′
in denote extensions of ϕin and ψin to Fq-linear maps over (E1)

kout

that perform component-wise encoding and decoding of the E1 elements. In the
second stage, notice that the map

π′
in : (E1)

kout → (E1)
kout

(α1, . . . , αkout) 7→ ϕ′in (ψ
′
in ((α1, . . . , αkout)))

= (ϕin(ψin(α1)), ..., ϕin(ψin(αkout)))
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is Fq-linear since (E1)
kout is the product of kout copies of the Fq-vector space E1

and π is the product of kout copies of πin. Thus, we can evaluate one q-linearized
polynomial to achieve Stage 2.

In fact, as with the recode operation with standard RMFEs, we can view π′
in

as a recode operation over the entire input vector space Fkinkoutq . Then, we can
similarly enhance the three-stage recode process to also evaluate arbitrary linear
transformations τ over elements in Fkinkoutq .

π′
in,τ : (E1)

kout → (E1)
kout

(α1, . . . , αkout) 7→ ϕ′in (τ (ψ
′
in ((α1, . . . , αkout))))

With this, we get an alternate FIMD multiplication algorithm for composite
RMFEs. Similar to FIMD.EvalMul′ in Section 3.1, we can evaluate arbitrary linear
transformations τ during FIMD multiplication. This is achieved by replacing fπ′

in

with the appropriate linearized polynomial for π′
in,τ in Stage 2 of FIMD.Recode3S.

– c′ ← FIMD.Recode3S(evk, c): Let fψout , fπ′
in
, and fϕout denote the linearized

polynomials required in the three stage recoding process.
1. Compute c(1) = FHE.EvalLinearMap(evk, fψout , c).
2. Compute c(2) = FHE.EvalLinearMap(evk, fπ′

in
, c(1)).

3. Output c′ = FHE.EvalLinearMap(evk, fϕout , c
(2)).

– c× ← FIMD.EvalMulc(evk, c1, c2):
1. Compute c = FHE.EvalMul(evk, c1, c2).
2. Output c× = FIMD.Recode3S(evk, c).

As with standard RMFEs, r-fold RMFEs can be composed just like the
original RMFE.

Theorem 5 (Composite r-fold RMFE). Let (ϕin, ψin) be a (kin, win, r)q-
RMFE and (ϕout, ψout) be a (kout, wout, r)qwin -RMFE. Then, their composition in
the manner of Theorem 3, denoted with (ϕ, ψ), is a (kinkout, winwout, r)q-RMFE.

The proof of this is exactly the same as (k,w)q-RMFE composition, since the
composition of Fq-linear maps are Fq-linear and field elements decode to component-
wise products of their respective encoded input vectors after each decode step.
If both (ϕin, ψin) and (ϕout, ψout) allow mixing “intermediate” products, then the
composed r-fold RMFE (ϕ, ψ) will also have this property.

Relaxing the r-fold Property for Composite RMFEs. Recode can be
delayed up until 2r encoded vectors are multiplied for any r-fold RMFEs. How-
ever, r-fold RMFEs from Theorem 5 is less space-efficient than r-fold RM-
FEs derived from Theorem 4. This is due to the fact that r-fold RMFEs have
w > 2r ·k and so a composite r-fold RMFE from Theorem 5 would typically have
winwout > (22r) ·kinkout per Corollary 2. With FHE, winwout is generally a depen-
dent variable – t and m are the main parameters – rendering r-fold composite
RMFEs almost unusable.

To remedy this situation, we relax the r-fold property such that for composite
r-fold RMFEs, one can perform a less expensive “outer” recode after r′-fold
multiplications for some r′ | r and only do a complete recode process after r-fold
multiplications.
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Theorem 6 (Composite r-fold RMFE, Relaxed Recode). Let (ϕin, ψin)
be a (kin, win, r)q-RMFE and (ϕout, ψout) be a (kout, wout, r

′)qwin -RMFE, for some
r′ | r. Then, their composition following Theorem 3, denoted with (ϕ, ψ), is a
(kinkout, winwout, r)q-RMFE, provided πout = ϕout ◦ ψout is evaluated on encoded
elements after every r′-fold multiplications.

Proof. Let ϕ′in and ψ
′
in denote extensions of the “inner” RMFE encode and decode

maps to act component-wise on vectors in (E1)
kout . Suppose we have 2r inputs,

xi = (x1,i, ..., xkinkout,i) for 1 ≤ i ≤ 2r and let their respective encodings be
αi = ϕout(ϕ

′
in(xi)). Any intermediate result after r′-fold multiplications β would

need to be refreshed with β′ = πout(β). Otherwise, further multiplications would
fail to correctly decode with ψout and thus similarly fail to decode with ψ. Finally,
observe that the map ψin tolerates up to 2r ≥ 2r

′
multiplications. Therefore, any

intermediate product γ would decode correctly with ψ′
in(ψout(γ)) as long as they

have been “outer recoded” after every r′-fold multiplications.

Thus, the “outer” RMFE is no longer restricted to be r-fold and can even
be a standard (kout, wout)q-RMFE if we are willing to perform an “outer” recode
after each multiplication. In that case, the overhead between composite and
standard r-fold RMFEs would be almost identical. Assuming we are using a
composite r-fold RMFE with components (ϕin, ψin) and (ϕout, ψout) of (kin, win, r)q
and (kout, wout, r

′)q-RMFEs respectively, we have

– (c×, ρ) ← rFIMD.EvalMulc(evk, (c1, ρ1), (c2, ρ2)): Let ρ
′ = max(ρ1, ρ2) + 1

and πout = ϕout ◦ ψout.
1. Compute c = FHE.EvalMul(evk, c1, c2).
2. Then, we consider three cases based on ρ′.

(a) If ρ′ = r, output (c× = FIMD.Recode3S(evk, c), 0).
(b) Else, if ρ′ | r′, output (c× = FHE.EvalLinearMap(evk, πout, c), ρ

′).
(c) Otherwise, output (c, ρ′).

4 RMFE Parameter Selection with FHE

In this section, we describe how parameters should be chosen for RMFE with
FHE. As introduced in Section 2.1, for chosen t and m, the FHE plaintext space
is (Ftd)ℓ, where d · ℓ = ϕ(m). Therefore, we are limited to (k,w, r)q-RMFEs
where qw ≤ td and q is some power of t.

For the various forms of RMFE discussed in previous sections, the main
parameter is the function field K used in Theorems 2 and 4. First, we introduce
the Hasse-Weil bound, which gives an upper bound on the number of rational
places of a function field. For every function field K, there is a unique non-
singular projective curve C associated with it. It was shown that there is a
one-to-one correspondence between the points on the curve C and the rational
places of K.

Lemma 2 (Hasse-Weil Bound, [38, Theorem 5.2.3]). Let K/Fq be an alge-
braic function field with genus g. The number of rational places of K, η, satisfies

|η − (q + 1)| ≤ 2g
√
q.



18 K.M.M. Aung et al.

Function Base Field, Genus, Max. k,
degG

Min. degR,

Field Fq g η r-fold

Rational (P) Ft 0 = t+ 1 k − 1 2r(k − 1) + 1

Elliptic (E) Ft 1 ≤ t+ 1 + 2
√
t k + 1 2r(k + 1) + 1

Hermitian (H) Ft2
t(t− 1)

2
= t3 + 1 k + t2 − t− 1 2r(degG) + 1

Table 1. Possible (k, degR, r)q-RMFE parameters

A collection of curves that satisfy the Hasse-Weil bound can be found at [23].

Packing Density. The packing density of an RMFE instantiation can be defined
as w/k. Cascudo et al. showed that there existed families of RMFEs with good
asymptotic packing density.

Theorem 7 ([7, Theorem 5]). There exists a family of (k,w)t-RMFE with
k →∞ and w = O(k). More concretely,

w

k
→ 2 +

4

A(t)
,

where A(t) is Ihara’s constant of Ft.

We extend the definition of packing density to FIMD by computing d/k and
not w/k because the FHE plaintext space is fixed to extension degree d with the
choice of t and m. A smaller number means that the FIMD instantiation can
effectively use a larger portion of the underlying field.

Function Fields for Efficient RMFE for FHE. To make good use of the
finite extension fields available from SIMD, we consider the following function
fields that yield RMFEs with w/k close to 2. Details of the possible RMFEs
enabled by these function fields are given in Table 1. The minimum degree of
the place R is derived from Corollaries 1 and 2.

– Rational Function Field, Ft(X): Corresponding to choosing the projective
line as the underlying curve.

– “Elliptic” Function Fields, Ft[X,Y ]/C: C is an appropriate elliptic curve
that approaches the Hasse-Weil bound.

– Hermitian Function Field, Ft2 [X,Y ]/C: C = Y t+Y −Xt+1 is the Hermitian
curve, and the function field satisfies the Hasse-Weil bound exactly.

When using Hermitian curves, note that the FHE slot degree d is effectively
halved as the base field of the Hermitian function field is Fq = Ft2 .
Existence of Higher Degree Place R.Given a function fieldK/Fq, the choice
of w is dependent on whether K even admits a place R with degR = w. The
following lemma gives conditions for the existence of places of a given degree.
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Lemma 3 ( [38, Corollary 5.2.10 (b), (c)]). Let K/Fq be an algebraic
function field with genus g.

1. If g = 0, then there exists a place of degree w, for all w ≥ 1.
2. If g ≥ 1, it is sufficient that w satisfies

2g + 1 ≤ q
w−1

2 (q
1
2 − 1),

for there to exist a place R of degree w.

The function fields from Table 1 have relatively small values of g, ensuring us a
wide selection of w. More explicitly, let w0 be the value derived from Lemma 3
such that for all w ≥ w0, Lemma 3 guarantees the existence of a place of degree
w for a given function field. Table 2 records the values of w0 for each of the
function fields from Table 1.

Function Field w0

Rational (P) 1

Elliptic (E) 2(logt 3− logt(t
1/2 − 1)) + 1

Hermitian (H) logt

(
t+ 1

t−1

)
+ 1

Table 2. Lower bound on degree of places guaranteed to exist by Lemma 3

Composite RMFEs for FHE. For composite RMFEs, r-fold or otherwise,
there are more considerations for the choices of component RMFEs. If we do
not need the r-fold property, we could choose component RMFEs, (kin, win) and
(kout, wout) such that the complexity of each stage of FIMD.Recode3S is about
the same. This entails balancing win ·kout with wout as these determine the degree
of the linear maps computed in Stage 2 and Stages 1 and 3 respectively.

For composite r-fold RMFEs, the main choices are in the sizes of r′ and kout.
Larger r′ means fewer recoding operations but reduces the potential packing
efficiency, while kout determines how expensive the “outer” recoding operation
would be. An option is to have cheap “outer” recodes and a more expensive three-
stage recode since the latter would be amortized over r-fold multiplications.

5 Experiment Results

In this section, we discuss the results of our experiments on the performance
of standard and r-fold RMFEs, as well as the three-stage recode optimization
for composite (r-fold) RMFEs. The experiment platform is an Intel® Xeon®

Platinum 8170 with maximum turbo frequency of 3.7 GHz and 192 GB RAM.
We do not use multi-threading for the experiments in this section.
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Plaintext modulus, t # SIMD Slots, ℓ Extension Degree, d

3 2 2048
7 4 1024
17 8 512
31 16 256

Table 3. FHE plaintext spaces for various primes with Φ8192(X)

Throughout this section, we use Φ8192(X) = X4096 + 1 and various plain-
text modulus t. Magma was used to implement the RMFEs and compute the
necessary data to use with HElib. The capacity parameter in HElib is set to
99 and yields a maximum ciphertext bit-width of < 159. Estimations with
the lwe-estimator of Albrecht et al. [1] shows the FHE instance achieving
at least 80-bit security. Table 3 shows the decomposition of the plaintext space
for m = 8192 with respect to various primes. We split our experiments into two
main categories: FIMD with basic and composite (r-fold) RMFE.

rFIMD Implementation Details. The main component of rFIMD is the re-
code operation, which consists of evaluating one or more linear maps on FHE
ciphertexts to refresh the RMFE encoding encrypted within them. To that end,
we generated the key-switching matrices for all necessary automorphisms in the
recode operation, which is at most, w matrices for a (k,w, r)q-RMFE. This allows
us to fully exploit the hoisting technique of Halevi and Shoup [28]. We evaluate
each linear map in the recode operation by first hoisting the input ciphertext and
then computing the required automorphisms one by one to minimize the number
of ciphertexts in memory. Besides that, due to the large noise increases from the
recode computation, we apply modulus switching to rescale the resulting cipher-
text. This reduces the ciphertext modulus based on the current estimated noise
levels and improves the performance of multiplications down the line.

5.1 Experimental Results for basic (r)FIMD

A list of the parameters used for basic RMFEs is shown in Table 4. These
parameters are chosen by maximizing k for each function field and they also
support r-fold variants for small r ∈ {1, 2, 4}. Note that Hermitian function
fields were not considered for t = 17, 31, as degG would exceed d. We also had
to reduce k for t = 31 with higher r values for the same reason that degG
would exceed d. We denote an RMFE parameter set by t-curve type, where
curve type ∈ {P,E,H} indicates the rational (P for projective line), elliptic and
Hermitian function fields respectively. For example, 17-P represents the case
where t = 17 and the RMFE is instantiated with the rational function field.

The first set of experiments compared the performance and noise impact
of (r)FIMD multiplication to FHE multiplication. We prepared one (r)FIMD
ciphertext and one FHE ciphertext, which was repeatedly squared until their



Field Instruction Multiple Data 21

t d K Parameter (P) Set Curve k d/k w

3 2048
Projective 3-P - 4 512 7
Elliptic 3-E y2 − x3 − 2x− 1 8 293 17

Hermitian 3-H y3 + y − x4 28 73.1 67

7 1024
Projective 7-P - 8 128 15
Elliptic 7-E y2 − x3 − 3 13 78.8 29

Hermitian 7-H y7 + y − x8 214 4.79 511

17 512
Projective 17-P - 18 28.4 35
Elliptic 17-E y2 − x3 − 3x 26 19.7 55

31 256

Projective 31-P -
16.0 8.0 63
32.0 16.0 31

Elliptic 31-E y2 − x3 − 3
14 18.3 89
43 5.95 31

Table 4. Basic RMFE parameters

capacities were exhausted. The time taken to complete this process as well as
the overall number of multiplications that were done were recorded. For better
comparison against (r)FIMD multiplications, we took as many timings from the
last few FHE multiplications onwards, so that the same number of multiplica-
tions are compared. This is because HElib implements the BGV scheme whose
multiplications become cheaper due to the use of modulus switching after each
multiplication for noise control. The complete set of basic (r)FIMD experiments
are described in Table 11, furnished in Appendix A. As we observe a similar trend
across the different parameter sets, a subcollection will be used to facilitate the
discussion about the experiment results in Table 5.

In general, (r)FIMD multiplications take much longer to complete than FHE
multiplications. We observe a trend of better amortized (r)FIMD multiplication
speedup as r increases. The speedup is primarily attributed to the decrease in
(r)FIMD multiplication time as the number of recodes performed is reduced.
Sometimes, recoding is not necessary as no more operations can be executed
after the maximum FIMD multiplications are achieved. Table 5 show that by
suppressing the recodes for P Sets 3-H and 7-H, we are able to obtain an amor-
tized speedup of more than 20× and 11× respectively. This shows that recode
is indeed an expensive operation that should be used sparingly.

We also see that higher k values are needed to see benefits with (r)FIMD.
These k values are dependent on the type of the function field, with RMFEs
from Hermitian function fields yielding the highest k, for any fixed r. Hence,
it is beneficial to perform fewer recodes while maximizing the value of k for a
basic (r)FIMD instantiation. Note that the number of multiplications supported
for any ciphertext varies slightly, due to variance in the noise generated in fresh
ciphertexts.
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P Set k r
Max # Max # rFIMD FHE Speedup v.s.

rFIMD Mult FHE Mult Mult (sec) Mult (sec) k FHE Mult

3-H 28

1 3 5 3.59 0.0245 0.191×
2 4 5 2.31 0.0355 0.431×
4 4 5 0.900 0.0400 1.24×
4⋆ 4 5 0.0541 0.0389 20.1×

7-P 8

1 3 5 3.74 0.0242 0.0516×
2 4 5 2.40 0.0359 0.120×
4 4 5 1.16 0.0378 0.261×
4⋆ 4 5 0.0431 0.0404 11.0×

7-H 214 1 3 5 1.83 0.0238 2.79×

17-P 18
1 2 5 1.16 0.0245 0.380×
2 4 5 1.12 0.0348 0.558×
4 4 5 0.428 0.0381 1.61×

31-E
43 1 2 4 0.578 0.0236 1.76×
43 2 3 4 0.382 0.0251 2.82×
14 4⋆ 3 4 0.0258 0.0263 14.3×

⋆No recodes were performed

Table 5. Selected experiments comparing (r)FIMD and FHE multiplication perfor-
mance for basic RMFEs

Furthermore, our implementation of homomorphic linear map evaluation
computes one monomial at a time and consumes it immediately; leaving 0.5k×
fewer ciphertexts (during peak operation) in memory compared to FHE. This
can be adjusted to trade off improved FIMD multiplication speeds by computing
several monomials at once using multiple cores. We observed that the recode op-
eration roughly consumes the noise budget of one multiplication, implying that
the standard RMFEs defined in Section 2.3 would yield about 1/2 the number
of FHE multiplications. Overall, r-fold RMFEs have an important role in bal-
ancing FIMD multiplication performance and retaining a sizable proportion of
multiplications for any given capacity.

5.2 Experimental Results for composite RMFE

As Table 3 shows, it is very difficult to work with small primes as the extension
degrees of their plaintext slot algebra are exceedingly high (> 1000). Therefore,
we investigated the effectiveness of composite RMFEs for FIMD in such cases.
For our choice ofm = 8192, it would not be meaningful to use composite RMFEs
for t = 17, 31 and we focus on t = 3, 7 in this section. Due to the high degree, it is
very expensive to generate the recode map π and so we focus on the three-stage
recode process described in Section 3.3.

Just like the previous section, we consider the packing density of a composite
RMFE instantiation with d/k, where k = kin · kout. The degree d′ = [E1 : Fq]
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is chosen as the next largest power-of-two from win. For larger r-fold values, we
can adjust the intermediate degree accordingly. We identify a composite RMFE
parameter set by a prefix C, e.g. C7-E, and present the parameters used in the
experiments to follow in Table 6.

t d K P Set Curve (ktotal, d/ktotal)

3 2048

Projective C3-P -
(8, 256), (16, 128), (32, 64), (64, 32),
(128, 16), (256, 8), (512, 4)

Elliptic C3-E y2 − x3 − 2x− 1
(24, 85.3), (48, 42.7), (64, 32), (96, 21.3),
(128, 16), (192, 10.7), (384, 5.33)

Hermitian C3-H y3 + y − x4 (24, 85.3), (44, 46.5), (48, 42.7), (88, 23.2),
(96, 21.3), (108, 19.0), (276, 11.6), (216, 216)

7 1024

Projective C7-P - (32, 32), (64, 16), (128, 8), (256, 4)

Elliptic C7-E y2 − x3 − 3
(26, 39.4), (48, 21.3), (52, 19.7),
(96, 10.7), (104, 9.85), (208, 4.92)

Hermitian C7-H y7 + y − x8 (64, 16)

Table 6. Composite RMFE parameters

In this second set of experiments, we compared the performance and noise
impact of FIMD multiplication with composite RMFEs to FHE multiplication.
Similar to the previous experiment, we repeatedly squared FIMD and FHE ci-
phertext until their capacities were exhausted and recorded the time taken as
well as how many squarings could be done.

As illustrated in Table 12 in Appendix A, composite RMFEs are more expen-
sive than basic RMFE and standard FHE. Composite RMFEs, however, offer
a greater amortized speedup than basic RMFEs over standard FHE multiplica-
tions due to the increase in packing capacity (i.e. lower d/ktotal). We make a few
observations on some of the trends in the results, presenting them with tables
featuring appropriate subcollections of Table 12 below.

Our first observation is that there is a slight advantage in choosing an inter-
mediate field such that its extension degree d′ = [E1 : Fq] > [E2 : E1]. Consider-
ing the results presented in Table 7, we see that a larger d′ value, over the same
ktotal, resulted in more than 10% savings in (r)FIMD multiplication time. This
is supported by the fact that the 3-stage recode process requires evaluating two
E1-linear maps in Steps 1 and 3 of FIMD.Recode3S and only one Fq-linear map
in Step 2. Using larger E1 reduces the computation time in Steps 1 and 3 while
increasing the computation time in Step 2 and we expect that a ratio close to
2 : 1 for [E1 : Fq] : [E2 : E1] would be best for three-stage recode performance in
our implementation.

We consider the effect of fixing either rin and rout, while fixing d
′, on composite

RMFEs. A subcollection of the experiments where we fixed rout and d′, while
varying rin, that supports our observation can be found in Table 8. We observe
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P Set ktotal (kin, rin)q (kout, rout)qd′
rFIMD Speedup v.s.

Mult (sec) FHE Mult

C7-P 64
(4, 2)7 (16, 2)716 0.4663130 3.396230
(8, 2)7 (8, 2)732 0.4076150 3.734270

Table 7. Effect of Intermediate Field Size on Composite RMFEs

that similar to basic RMFEs, (r)FIMD multiplication timings generally decrease
with larger rin. In our implementation, after each (r)FIMD multiplication, the
ciphertext capacity drops by similar amounts regardless of recoding type (outer
or full). With larger rin, some full recodes are replaced by outer recodes, thereby
reducing the time taken. However, due to the smaller ktotal that accompanies
this increase, overall amortized speedup against FHE multiplication actually
decreased.

P Set (kin, rin)q (kout, rout)qd′ ktotal
Max rFIMD Speedup v.s.

rFIMD Mult Mult (sec) ktotal FHE Mult

C3-E
(2, 2)3 (64, 1)316 128 2 1.4284200 1.138740
(6, 1)3 (64, 1)316 384 2 2.4344100 1.954400

C3-H

(3, 2)3 (16, 1)364 48 2 0.4838210 1.189630
(11, 1)3 (16, 1)364 176 2 1.1126300 1.891190

(11, 2)3 (8, 1)3128 88 2 0.4557780 2.271160
(27, 1)3 (8, 1)3128 216 2 1.0570600 2.641760

Table 8. Effect of rin for Composite RMFEs, Keeping rout and d′ fixed

On the other hand, Table 9 features a subcollection of experiments fixing rin
and d′ while varying rout. We generally get a decrease in (r)FIMD multiplication
times as rout increases. This is consistent with earlier trends seen in basic RMFEs
and composite RMFEs with fixed rout.

Looking at the parameter sets 7-H and C7-P, we also conclude that three-
stage recode is more efficient than direct recode for composite RMFEs. Although
we could not compute the direct recode map for C7-P, we approximate its per-
formance by extending from 7-H in Table 10. The theoretical wtotal for C7-P is
16 · 63 = 1008, which roughly corresponds to the number of monomials in its
direct recode map. We extrapolate the FIMD multiplication timing for C7-P
with direct recode by adjusting the multiplication time for 7-H by a factor of
1008/511 ≈ 1.97 as w = 511 for 7-H. 7-H took 1.83 seconds for 3 multiplications
which give an average of 0.610 seconds per multiplication. One multiplication
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P Set (kin, rin)q (kout, rout)qd′
Max rFIMD Speedup v.s.

rFIMD Mult Mult (sec) FHE Mult

C3-P
(4, 3)3 (16, 2)332 3 0.5992640 2.602520
(4, 3)3 (32, 1)332 2 0.2796210 11.709300

C3-E

(2, 2)3 (32, 2)316 3 0.8984420 1.212720
(2, 2)3 (64, 1)316 2 1.4284200 1.138740

(6, 1)3 (32, 2)316 2 1.3726500 2.065650
(6, 1)3 (64, 1)316 2 2.4344100 1.954400

C3-H

(3, 1)3 (16, 2)332 2 0.7272080 0.935283
(3, 1)3 (32, 1)332 2 1.2001000 1.107840

(11, 1)3 (8, 2)364 2 0.6007660 1.847700
(11, 1)3 (16, 1)364 2 1.1126300 1.891190

(27, 1)3 (4, 2)3128 2 0.5804140 2.261520
(27, 1)3 (8, 1)3128 2 1.0570600 2.641760

C7-P
(8, 1)7 (16, 2)716 1 0.5346350 3.126460
(8, 1)7 (32, 1)716 1 0.7542980 4.484790

Table 9. Effect of rout for Composite RMFEs, Keeping rin and d′ fixed

in C7-P took an average of 0.754 seconds which is almost twice as fast as the
adjusted time of 0.610 · 1.97 ≈ 1.20 seconds.

P Set k w r
Max rFIMD 1 rFIMD

rFIMD Mult Mult (sec) Mult (sec)

7-H 214 511 1 3 1.83 0.610
C7-P 8 · 32 = 256 16 · 63 = 1008 (1, 1) 1 0.754 0.754

Table 10. Comparing Three-Stage Recode and Direct Recode

6 Conclusion and Future Work

In this work, we present a method that allows small primes to be used with
the BGV and BFV FHE schemes without compromising on the amount of data
that can be packed into a ciphertext. Specifically, we adapted reverse multiplica-
tion friendly embedding (RMFE) to FHE. To that end, we introduced an FHE-
specific technique to compute a linear transformation on encoded vectors for free
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during the recode process. Additionally, we proposed two extensions to RMFE
targeting FHE plaintext spaces with high extension degree fields, namely r-fold
RMFE and a three-stage recode process for composite RMFE. r-fold RMFE sup-
ports correct decoding of products of up to 2r encoded vectors at the expense
of requiring a higher field degree w for the embedding, capitalizing on the fact
that the fixed d of FHE is often too high for small primes to fully utilize for
standard RMFEs. Composite RMFEs, on the other hand, let us “split” a large
extension field into a tower of smaller fields. This tower of fields is exploited in a
three-stage recode, where each stage goes between pairs of fields that are smaller
extensions and thereby use operations of lower complexity.

Our experiments show that FIMD multiplication is noisier than FHE mul-
tiplications, typically using the capacity of two FHE multiplications. On the
other hand, FIMD multiplications have a lower amortized time and need only
two ciphertexts to multiply more data. We also find that composite RMFEs,
while applicable to high-degree (> 1000) extension fields, are difficult to use in
practice. Generating the direct recode map is very time-consuming but the three-
stage recode process requires as much capacity as almost 3 FHE multiplications.
That said, we approximated the performance of direct recode and found that
three-stage recode does improve multiplication times, but significantly increased
noise consumption. A middle ground needs to be found for using composite RM-
FEs, which would entail using “inner” and “outer” RMFEs with some amount
of r and r′-fold respectively.

This paper represents the beginning of applying RMFE to FHE, and much
work remains to be done. A first direction would be adapting the methods of [13]
to FIMD and potentially improve downstream applications of FHE. Another
important task is to adapt RMFE for Galois rings, which was explored by Cramer
et al. [17] for MPC, to FHE. Crucially, the bootstrapping techniques of Gentry et
al. [25], Halevi and Shoup [27] and Chen and Han [9] for BGV and BFV demand
plaintext algebras that are Galois rings. Finally, developing RMFEs from other
classes of algebraic function fields is necessary to better understand how best to
perform homomorphic computation with high-degree extension fields.
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A Complete Experiment Results

A.1 Basic RMFE

P Set k r
Max # Max # rFIMD FHE Speedup v.s.

rFIMD Mult FHE Mult Mult (sec) Mult (sec) k FHE Mult

3-P 4

1 3 6 7.84 0.0170 0.00868×
2 4 5 4.54 0.0337 0.0297×
4 4 5 1.75 0.0369 0.0845×
4⋆ 4 5 0.0475 0.0370 3.12×

3-E 7

1 3 6 7.16 0.0180 0.0176×
2 4 6 4.58 0.0276 0.0421×
4 4 5 1.70 0.0478 0.197×
4⋆ 4 5 0.0469 0.0373 5.57×

3-H 28

1 3 5 3.59 0.0245 0.191×
2 4 5 2.31 0.0355 0.431×
4 4 5 0.900 0.0400 1.24×
4⋆ 4 5 0.0541 0.0389 20.1×

7-P 8

1 3 5 3.74 0.0242 0.0516×
2 4 5 2.40 0.0359 0.120×
4 4 5 1.16 0.0378 0.261×
4⋆ 4 5 0.0431 0.0404 11.0×

7-E 13

1 3 5 3.71 0.0244 0.0853×
2 4 5 2.31 0.0359 0.202×
4 4 5 0.931 0.0384 0.536×
4⋆ 4 5 0.0478 0.0404 20.1×

7-H 214 1 3 5 1.83 0.0238 2.79×

17-P 18
1 2 5 1.16 0.0245 0.380×
2 4 5 1.12 0.0348 0.558×
4 4 5 0.428 0.0381 1.61×

17-E 26
1 2 5 1.16 0.0252 0.565×
2 4 5 0.961 0.0434 1.17×
4 4 5 0.421 0.0389 2.40×

31-P
32 1 2 4 0.579 0.0231 1.28×
32 2 3 4 0.384 0.0259 2.16×
16 4 3 4 0.0262 0.0254 15.5×

31-E
43 1 2 4 0.578 0.0236 1.76×
43 2 3 4 0.382 0.0251 2.82×
14 4 3 4 0.0258 0.0263 14.3×

⋆No recodes were performed

Table 11. Comparison of FIMD and FHE multiplication performance for basic RMFEs
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A.2 Composite RMFE

P Set (kin, rin)q (kout, rout)qd′
Max Max rFIMD FHE Speedup v.s.

rFIMD Mult FHE Mult Mult (sec) Mult (sec) FHE Mult

C3-P

(2, 2, 3)3 (28, 3, 55)38 3 6 0.7074590 0.0174873 1.384240
(4, 1, 7)3 (64, 2, 127)38 2 5 1.6718600 0.0129312 1.980060
(4, 1, 7)3 (128, 1, 255)38 1 5 1.7500500 0.0124286 3.636160
(4, 2, 7)3 (64, 1, 127)316 2 5 1.1955500 0.0126123 2.700630
(4, 3, 7)3 (16, 2, 31)332 3 5 0.1890470 0.0350566 11.86810
(4, 3, 7)3 (32, 1, 63)332 2 5 0.2501270 0.0248627 12.72320
(4, 4, 7)3 (8, 2, 15)364 3 5 0.0966742 0.0340547 11.272400
(4, 4, 7)3 (16, 1, 31)364 2 5 0.1409130 0.0233469 10.603700
(4, 6, 7)3 (2, 2, 3)3256 4 5 0.0882771 0.0365346 3.310900
(4, 6, 7)3 (4, 1, 7)3256 3 6 0.1059930 0.0175280 2.645920

C3-E

(2, 2, 7)3 (32, 2, 63)316 3 6 0.8984420 0.0170243 1.212720
(2, 2, 7)3 (64, 1, 127)316 2 5 1.4284200 0.0127079 1.138740
(6, 1, 15)3 (32, 2, 63)316 2 5 1.3726500 0.0147678 2.065650
(6, 1, 15)3 (64, 1, 127)316 2 6 2.4344100 0.0123901 1.954400
(6, 2, 15)3 (16, 2, 31)332 3 5 0.8059610 0.0338111 4.027320
(6, 2, 15)3 (32, 1, 63)332 2 5 1.0435400 0.0129588 2.384290
(6, 3, 15)3 (8, 2, 15)364 3 6 0.5079130 0.0164912 1.558490
(6, 3, 15)3 (16, 1, 31)364 2 6 0.1632760 0.0168873 9.929100
(6, 4, 15)3 (4, 2, 7)3128 3 5 0.0692145 0.0332331 11.523500
(6, 4, 15)3 (8, 1, 15)3128 2 5 0.0893559 0.0248044 13.324400

C3-H

(3, 1, 17)3 (16, 2, 31)332 2 6 0.7272080 0.0141697 0.935283
(3, 1, 17)3 (32, 1, 63)332 2 6 1.2001000 0.0138491 1.107840
(3, 2, 17)3 (8, 2, 15)364 3 6 0.4109670 0.0276301 1.613570
(3, 2, 17)3 (16, 1, 31)364 2 5 0.4838210 0.0119909 1.189630
(11, 1, 33)3 (8, 2, 15)364 2 6 0.6007660 0.0126140 1.847700
(11, 1, 33)3 (16, 1, 31)364 2 6 1.1126300 0.119557 1.891190
(11, 2, 33)3 (4, 2, 7)3128 3 6 0.3776890 0.0258704 3.013850
(11, 2, 33)3 (8, 1, 15)3128 2 5 0.4557780 0.117630 2.271160
(27, 1, 65)3 (4, 2, 7)3128 2 5 0.5804140 0.0121539 2.261520
(27, 1, 65)3 (8, 1, 15)3128 2 5 1.0570600 0.0129282 2.641760

C7-P

(4, 2, 7)7 (16, 2, 31)716 3 5 0.4663130 0.0247454 3.396230
(4, 2, 7)7 (32, 1, 63)716 2 5 0.5249380 0.0129875 3.166860
(8, 1, 15)7 (16, 2, 31)716 1 5 0.5346350 0.0130587 3.126460
(8, 1, 15)7 (32, 1, 63)716 1 5 0.7542980 0.0132143 4.484790
(8, 2, 15)7 (8, 2, 15)732 3 5 0.4076150 0.0237835 3.734270
(8, 2, 15)7 (16, 1, 31)732 2 5 0.5056360 0.0129546 3.279410
(8, 3, 15)7 (4, 2, 7)764 3 5 0.2652440 0.0235409 2.840060
(8, 3, 15)7 (8, 1, 15)764 2 5 0.0908312 0.0126516 8.914370

C7-E

(6, 2, 15)7 (8, 2, 15)732 3 5 0.4115960 0.0246697 2.876960
(6, 2, 15)7 (16, 1, 31)732 2 6 0.5140520 0.0129425 2.417030
(13, 1, 29)7 (8, 2, 15)732 2 5 0.5879160 0.0124884 2.209150
(13, 1, 29)7 (16, 1, 31)732 1 5 0.7183080 0.0126397 3.660070
(13, 3, 29)7 (2, 2, 3)7128 3 5 0.2556120 0.0242098 2.462540
(13, 3, 29)7 (4, 1, 7)7128 2 5 0.0623321 0.0255382 21.305100

C7-H (32, 1, 147)7 (2, 1, 3)7256 2 6 0.5453260 0.0135578 1.591150

Table 12. Comparison of FIMD and FHE multiplication performance for composite
RMFEs, with the three-stage recode process of Section 3.3


