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Abstract. This work proposes a new two-stage lattice two-stage sam-
pling technique, generalizing the prior two-stage sampling method of
Gentry, Peikert, and Vaikuntanathan (STOC ’08). By using our new
technique as a key building block, we can significantly improve secu-
rity and efficiency of the current state of the arts of simulation-based
functional encryption. Particularly, our functional encryption achieves
(Q, poly) simulation-based semi-adaptive security that allows arbitrary
pre- and post-challenge key queries, and has succinct ciphertexts with
only an additive O(Q) overhead.
Additionally, our two-stage sampling technique can derive new feasibili-
ties of indistinguishability-based adaptively-secure IB-FE for inner prod-
ucts and semi-adaptively-secure AB-FE for inner products, breaking sev-
eral technical limitations of the recent work by Abdalla, Catalano, Gay,
and Ursu (Asiacrypt ’20).

1 Introduction

Functional Encryption (FE) [14, 43] is a powerful generalization of public-key
encryption (PKE), allowing more fine-grained information disclosure to a secret
key holder. FE with regular syntax can be described as follows – every secret
key is associated with a function f (in some class F), and the decryptor given
such key (i.e., skf ) and a ciphertext Enc(u) can only learn f(u). During the past
decade, there has been tremendous progress of FE for various function classes,
e.g., [2, 4–6,26,32,33] and more.

To facilitate presentation and comparisons with prior work, we consider the
notion of FE with a more fine-grained syntax, which has been studied in the
literature to capture various settings of FE [1,2,14,33]. Particularly, each message



u consists of two parts, namely u := (x, µ), where x is some index (or attribute)5,
and µ is some message. Additionally, each function f consists of two parts,
namely, f := (P, g) ∈ P × G, where P is a predicate over the index, and g is a
function over the message. The overall function acts as:

f(u) :=

{
g(µ) if P(x) = 1
⊥ otherwise.

When decrypting the ciphertext ctu = Enc(x, µ) by skf := sk(P,g), the decryptor
can learn g(µ) if P(x) = 1, and ⊥ otherwise. Under this syntax, we call a key
skf :=(P,g) a 1-key with respect to an index x if P(x) = 1, or otherwise a 0-key.
Intuitively, a 1-key is allowed to open the ciphertext, but a 0-key is not.

Even though FE with the fine-grained syntax is essentially equivalent to the
regular syntax for sufficiently expressive function/predicate classes, it is more
convenient to present our new results in this way. Moreover as noticed since [14],
many advanced encryption schemes such as identity-based encryption, attribute-
based encryption, predicate encryption can be captured naturally from this no-
tion, by different predicate and function classes P × G.

There are two important settings studied in the literature – FE with private
or public index, according to whether the index x is revealed to the decryption
algorithm. In what follows, we first discuss in more details about challenges of
the state of the arts in both settings. Then we present our contributions and
new techniques to break these barriers and advance the research frontiers.

FE with Private Index. In this setting, FE provides very strong privacy guar-
antee where only g(µ) can be learned given a 1-key skP,g and a Enc(x, µ) with
P(x) = 1. It is worthwhile to point out that in this setting, realizing the class
P × {I} for the identity function I is already general enough, as it suffices to
capture FE (of regular syntax) for the boolean circuit class P. In particular, we
can use skP,I and Enc(x, µ) to simulate the exact effect of skP and Enc(x) of the
regular syntax FE. Therefore, following some prior work [2], this work just focus-
es on the function class P × {I} for FE in the private index setting by default.
We discuss this in more details in Section 3.1.

To capture security, there have been notions of indistinguishable-based (IND)
and simulation-based (SIM) definitions proposed and studied in the literature
since [14]. As raised by [14], the IND-based security is inadequate (i.e., too weak)
in the private index setting for certain functionalities and applications. Thus, it
would be much desirable to achieve the stronger notion of SIM-based notion.

However, there are various settings that the SIM-based notion is too strong to
be attained. For example, the work [14] showed that for very simple functionali-
ties (identity-based encryption), the SIM-based security is impossible for multiple
challenge ciphertexts, even given just one post-challenge key query. Additionally,
the work [4] showed that for FE scheme with respect to general function class,
the ciphertext size must grow linearly with the number of pre-challenge key

5 We note that both the names “index” and “attribute” have been used interchange-
ably in the literature.
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queries. Therefore it is impossible to achieve the notion (poly, poly)-SIM security
(allowing an unbounded number of both 1 and 0-keys) for general functions.

Despite these lower bounds, the work [33] identified important feasible set-
tings for SIM-based security, by proposing new constructions in the setting of sin-
gle challenge ciphertext and bounded collusion. More specifically, [33] achieved
(Q,Q)-adaptive-SIM FE for the family of polynomial-sized circuits under the
minimal assumption of PKE. Their attained SIM notion is very strong – the
challenge index can be adaptively chosen and the adversary is allowed to query
both pre- and post-challenge key queries, up to some bounded Q times for both 1
and 0-keys. The ciphertexts however, are not succinct (i.e., dependent on the cir-
cuit description), and their size grows with a multiplicative factor of O(Q4). Even
though a recent work [11] improved the multiplicative factor to O(Q) and proved
the security of SIM FE solely on PKE, their ciphertexts are still not succinct. The
non-succinctness of the ciphertext prohibits other important applications, such
as reusable garbled circuits [32], and thus improving in this dimension would be
very significant.

A subsequent work [32] constructed the first single-key succinct FE for bound-
ed depth circuits, and showed that this suffices for reusable garbled circuits,
solving a long-term open question in the field. However, their scheme [32] has
drawbacks in the following two aspects. First, the single-key FE of [32] achieves
a weaker notion of selective security and only allows one pre-challenge key query
(either a 1 or 0-key). Second, even though the single-key FE of [32] can be boot-
strapped to Q key FE using the compiler of [33], yet the resulting ciphertexts
grows with O(Q4) multiplicatively.

Tackling these drawbacks, two almost concurrent work [2, 6] advanced this
direction of work significantly. Particularly, the work [6] constructed a single key
succinct FE for NC1, and then showed another bootstrapping method (from NC1
to general circuits) that only occurs an O(Q2) additive overhead, yet the result-
ing (offline-part) ciphertexts become no longer succinct. The other concurrent
work [2] designed a new succinct single key FE that supports (1, poly) queries for
general circuits, and a new bootstrapping method that achieves (Q, poly)-SIM se-
curity with succinct ciphertexts and O(Q2) additive overhead. As a substantial
milestone, [2] for the first time identified an important and useful6 subclass of
key queries (i.e., 0-keys), where SIM-based security is feasible beyond bounded
collusion. Recently, the work [11] designed a simple yet very novel compiler that
turns any bounded-collusion FE into one with ciphertext growth O(Q) multi-
plicatively. This compiler improves the ciphertext size significantly, but does not
improve the security over the original scheme.

Challenges. The attainable SIM-based security of [2] is however weaker than
that of the work [33] in three aspects – (1) the challenge index needs to be
semi-adaptive (the adversary commits to the challenge right after the master
public-key); (2) the 1-key queries need to be made at one-shot right before the

6 For example in IBE and ABE, 0-keys are useful for decrypting other ciphertexts with
satisfying indices. They just cannot decrypt the specific (challenge) index.
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challenge ciphertext; (3) no more 1-key is allowed for post-challenge phase. How
to bridge the gap between the two methods [2,33] is an important open question.

To measure how large the gap is, we first notice that the semi-adaptive at-
tribute (i.e., aspect (1)) can be mitigated (though not completely satisfactory)
by the generic complexity leveraging argument as also pointed out by [32]. Par-
ticularly, by scaling up the ` in bit-security of the selective scheme, we can
achieve adaptive security over `-bit index. Even though theoretically this would
require to assume sub-exponential security of the underlying hard problem, yet
nevertheless in practice this assumption is usually in use, given the estimations
of the best-known concrete attacks, e.g., the concrete LWE estimation [7].

On the other hand, how to tackle adaptiveness for pre-challenge and post-
challenge key queries seems beyond the current techniques, as the length to
describe all possible key queries requires Q · poly(λ) bits for some unbounded
polynomial, which is too large for the complexity leveraging argument. Thus,
how to improve aspects (2) and (3) would require substantial new techniques.
This work aims to solve these challenges with the following particular goal.

(Main Goal 1:) Design a succinct FE for general bounded depth circuit-
s with (Q, poly)-SIM-based security7, allowing arbitrary pre- and post-
challenge queries for both 1 and 0-keys.

FE with Public Index. The public index setting does not require the scheme
to hide the index, and for many scenarios in this setting the IND security notion
would already be adequate, as pointed out by [14]. Even though FE with public
index can be generically derived from FE with private index, much more efficient
solutions are desired. For example, current instantiations of FE with private index
either use heavy tools such as garbled circuits or fully homomorphic encryption,
while the identity-based encryption [3] (as a special case of FE with public index)
only requires simple lattice operations and thus can be much more efficient.

A recent work [1] studied the class IB×IP, where the IB is the class of identity
comparison predicates and IP is the class of inner products. Particularly, the
work [1] showed that by connecting ABB [3] encoding for IB and ALS [5] encoding
for IP, one can derive a simple FE for IB × IP from lattices. Albeit simple and
efficient, the work [1] can only prove the selective security (over IB) for their
lattice design in the standard model, even though the ABB and ALS encodings
both achieve the adaptive security in their encryption settings. Moreover, note
that their construction idea [1] naturally extends to the setting of AB × IP by
connecting the AB encoding of [12] with ALS, where AB is the general attribute-
based policy functions. However, their proof of security [1] even for the selective
security would hit a subtle yet challenging technical barrier. Our second goal is
to tackle these challenges.

(Main Goal 2:) Determine new proof strategy for the class of IB × IP
and AB× IP in the public index setting.

7 We notice that (poly, poly) SIM-based security is not possible by the lower bound
of [4]. Thus, (Q, poly) SIM-based security is the best we can hope for in this model.
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1.1 Our Contributions

This work aims at the two main goals and makes three major contributions.

Contribution 1. First we propose a new lattice two-stage sampling technique,
generalizing the prior GPV type two-stage sampling [29]. Using this new sam-
pling technique, we design a unified framework that handles major challenges
in our two (seemingly different) main goals as we elaborate next. The crux of
our design relies on adding smudging noise over secret keys, which is critical in
the analysis and conceptually new, as all prior work (to our knowledge) only
considered adding smudging noise over ciphertexts, e.g., [2].

Contribution 2. By using our new pre-sampler, we improve the prior designs
of [2] substantially as we elaborate below.

– Our first step is to achieve a (1, poly) selectively secure (over the challenge
index) partially hiding predicate encryption (PHPE), allowing general pre-
challenge but no post-challenge key queries. Technically, our construction
simply replaces the key generation algorithm in the very-selective PHPE
of [2]8 by our new sampler. Our result at this step is already stronger than
the work [2] in the following ways.
1. We notice that our PHPE can achieve adaptive security by the complexity

leveraging argument directly, yet the very-selective PHPE of [2] cannot,
as the description of the function for key queries is too large.

2. The two schemes can be upgraded to semi-adaptive security over the
challenging index without the complexity leveraging, yet the transforma-
tion for ours is much more efficient. Particularly, our upgrade only applies
the very light-weight method of [21,37], whereas the very-selective PHPE
of [2] requires to compose PHPE with another FE (ALS [5]). Moreover,
our resulting scheme allows arbitrary pre-challenge key queries, whereas
the resulting scheme of [2] still requires the adversary to commit to the
1-key query before making further 0-key queries.

– Our (1, poly) PHPE can be turned into FE by using the modified transfor-
mation of [35],9 resulting in a succinct single key (1, poly) FE that allows
arbitrary pre-challenge key queries as long as there is at most one 1-key.
This suffices to construct the reusable garbled circuits [32]. We present a
comparison of our single key succinct FE with prior work in Table 1.

– Our next step is to achieve a succinct (Q, poly) FE that allows arbitrary pre-
and post-challenge queries. To achieve this, we slightly modify the transfor-
mation (from (1, poly) PHPE to (Q, poly) PHPE) of [2] by using the tech-
nique of secret sharing and a new way of generating cover-free sets inspired

8 A very-selective scheme requires the adversary to commit to both the challenge index
and function in the very beginning of the security experiment.

9 In fact, the transformation of [35] can not be directly applied in our case, due to
the fact that we need to apply a noise smudging technique to the used FHE noise.
However, we can just insert a bootstrapping step to reduce the FHE noise into a
polynomial bound again.
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by [11]. By applying our new transformation to our (1, poly) PHPE, we derive
a (Q, poly) PHPE that allows arbitrary pre- and post-key queries. Then the
desired FE again follows from the modified transformation of [35].

Importantly, our transformation inherits many nice properties in [2], e.g.,
the succinctness of the ciphertexts is preserved. Thus, our resulting FE has
succinct ciphertexts, whose size grows additively withO(Q), and are indepen-
dent of the function/circuit size. Our result is better than the transformation
of [11], which incurs a multiplicative O(Q) blowup in the ciphertexts.

Ref. (1-key,0-key) (Pre,Post)-Challenge Index Succinct ct

[33] (a, b) : a + b = 1 (3, 3) AD 7

[32] (a, b) : a + b = 1 (3, 7) Sel† 3

[6] (a, b) : a + b = 1 (3, 7) AD 3 for NC1

[2] (1, poly) (37, 7)∗ SA† 3

Ours (1, poly) (3, 7) SA† 3

Table 1. Comparison of Prior Work of Single Key SIM-Secure Public-Key FE.

(∗) The scheme requires the adversary to commit to the 1-key query right after seeing
the master public key. Then the adversary is allowed to make further arbitrary
0-key queries in the pre- and post-challenge phases, but not any more 1-key query.

(†) The selective (Sel)/semi-adaptive (SA) security can be raised to adaptive security
(AD) by the complexity leveraging argument, at the cost of scaling up the security
parameters.

In summary, we achieve our Main Goal 1 for semi-adaptive security over the
challenge index, and the full-fledged of the goal if we further apply the complexity
leveraging argument. Additionally, our scheme for the first time achieves succinct
ciphertexts with only O(Q) additive overhead. We present a comparison of our
(Q, poly) FE with prior work in Table 2.
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Ref. (1-key,0-key) (Pre,Post)-Challenge Index Succinct ct Ciphertext size

[33] (Q,Q) (3, 3) AD 7 × O(Q4)

[32]+ [33] (Q,Q) (3, 7) Sel† 3 × O(Q4)

[6] (Q,Q) (3, 7) AD 3 for NC1 + O(Q2)

[2] (Q, poly) (37, 7)∗ SA† 3 + O(Q2)

[2]+ [11]‡ (Q, poly) (37, 7)∗ SA† 3 × O(Q)

Ours (Q, poly) (3, 3) SA† 3 + O(Q)

Table 2. Comparison of Other Private Index SIM-secure Public-Key FE.

(∗) The scheme requires the adversary to commit to all the Q 1-key queries (in one
shot) right after seeing the master public key. Then the adversary is allowed to
make further arbitrary 0-key queries in the pre- and post-challenge phases, but not
any more 1-key query.

(†) Similar to Table 1.
(‡) The generic method in [11] can transform any bounded collusion FE scheme into

one whose ciphertext size grows with O(Q) multiplicatively.

Contribution 3. Finally, we identify that our new sampling technique is the key
to break the technical barriers of the lattice-based analysis of [1]. Particularly,
for the setting of public index, we construct new FE schemes for IB × IP and
AB × IP. The crux is to replace the key generation algorithm of [1] by our new
pre-sampler. The novelty of this contribution majorly comes from the proof
techniques. In Table 3 we compare our schemes with [1].

Reference IB-FEIP AB-FEIP

[1] (1, poly)-Sel 7

Ours (1, poly)-AD (Q, poly)-SA

Table 3. Comparison of Public Index IND-Based Construction.

1.2 Technical Overview

We present an overview of our new techniques. We first describe our central
technique – a new two-stage sampling method, and then show how it can be
used to achieve our main goals, together with further new insights. Our two-
stage sampling method can be understood without the context of FE, and might
find other applications. Thus we believe that this technique can be of general
interests.

Two-stage Sampling Method. At a high level, we would like to sample the
following two-stage distribution:
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– In the first stage, a random matrix A and a random vector u are sampled;

– In the second stage, an arbitrary small-norm matrix R is first specified, and
then a short vector y is sampled conditioned on [A|AR]y = u.

– The overall distribution consists of (A,AR,u,y).

In a series of lattice-based work [1–3,12,15,29,34,35], the proof framework re-
quires to sample this distribution (or its slight variations) in two ways – with A’s
trapdoor and without A’s trapdoor. On the one hand, given the trapdoor of A,
one can efficiently sample this distribution. On the other hand, without the trap-
door of A, one can also sample the distribution through using G-trapdoor [41].
In particular, if we have the G matrix [41] on the second part, i.e., the matrix
is of the form [A|AR + γ ·G] with γ 6= 0, then this sampling task can be solved
easily by the sample-right technique [3,41]. However, our task (and the security
proofs in this work) does not have the matrix G in the second matrix, and thus
the prior technique cannot be applied to sample the required distribution.

Is this task even doable? To answer this question, we first consider a simpler
case where there is no R. Then we notice that this task is achievable via the clas-
sic GPV two-stage sampling technique: we first pre-sample y, and set u = Ay.
By setting parameters appropriately, the work [29] showed that the distributions
(A,u,y) generated in the two ways (with trapdoor and without trapdoor) are
statistically indistinguishable. Moreover, this idea can be generalized to achieve
a weaker version of our task where R is given in the first stage – we simply pre-
sample y, set u = [A|AR]y, and output (A,AR,u,y). In fact, this approach
has been explored by prior work [2] in the context of functional encryption (more
precisely PHPE). Due to the technical barrier that R must be given in the first
stage, schemes using this approach achieve a weak notion of very selective PHPE,
where the adversary needs to commit to the challenge index and 1-key query at
the beginning. We will elaborate more on the connection of FE and PHPE later.

As we discuss above, the challenge comes from the fact that if R is only given
in the second stage, the two-stage sampling method cannot generate u in a way
that depends on R. To tackle this, we aim to “eliminate” the effect of this matrix
R in the two-stage sampling process. In particular we observe that if the matrix
R has a small norm, we can “smudged” its effect by using a distribution with
some larger parameter. With this intention in mind, we propose the following
new two-stage sampling method:

– In the first stage, generate a random A, and pre-sample x from a discrete
Gaussian for some larger parameter ρ. Set u = Ax.

– In the second stage when R is given, sample z from a discrete Gaussian with

a smaller parameter s, and then output y =

(
x−Rz
z

)
.

– The sampler outputs (A,AR,u,y) at the end.

Clearly the output y satisfies the equation [A|AR]y = u. If ρ � s‖R‖,

then we can intuitively think that x smudges Rz, so y =

(
x−Rz
z

)
behaves
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like y′ =

(
x′

z

)
such that [A|AR]y′ = u. By formalizing this idea, this task is

achieved.

Improving FE with Private Index. Our two-stage sampling method can sig-
nificantly improve FE with private index of [2]. Before presenting our insights,
we first briefly review the framework of [2].

At a high level, [2] constructed FE in the following steps:

(1a) Construct a (1, poly) very-selective partially hiding predicate encryption (PHPE)
where the adversary needs to commit to the challenge index and 1-key query
at the beginning of the security experiment.

(1b) Upgrade the basic scheme to (1, poly) semi-adaptive PHPE by composing the
basic scheme with ALS-FE for inner products [5].

(2) Upgrade the (1, poly) semi-adaptive PHPE to (Q, poly) semi-adaptive PHPE.
Here the transformation preserve succinct ciphertexts and only incurs an
additive blow up of O(Q2).

(3) Transform the (Q, poly) semi-adaptive PHPE to (Q, poly) semi-adaptive FE.
This step follows almost from [35] and an additional technique of adding
smudging noise over the ciphertexts.

We notice that Step (3) is generic, so it suffices to focus on improving PHPE
in Steps (1a) - (2). To facilitate presentation of our new ideas, we next identify
the following four limitations in the current framework.

– First, Steps (1a) and (1b) require the adversary to commit to his 1-key
challenge query before asking further 0-key queries.

– Second, the step (1b) uses a composition of FE over another FE, which could
be overly complicated and inefficient.

– Third, Step (2) does not support post-challenge 1-key queries.
– Fourth, Step (2) incurs an additive overhead of O(Q2), which is incomparable

with the multiplicative O(Q) overhead the recent work by [11].

Next, we present our new insights to break all these limitations! To describe
how our techniques work, we start with a highly simplified description of the very
selective PHPE of [2]: the master public key contains matrices A, B1, . . . ,B` for
` being the length of the index (private and public combined), and a matrix
P. Given a key query f , the key generation algorithm defines another related
function Cf and computes BCf from B1, . . . ,B` by the technique of key homo-
morphic evaluation [12]. Then the key generation algorithm samples skf := Y
such that [A|BCf ] ·Y = P. Clearly, this sampling task can be easily performed
if the trapdoor of A is given.

In the proof of security, the trapdoor of A is not given. Yet we can set
Bi := A·Ri+x∗iG for challenge index x∗ = (x∗1, . . . , x

∗
` ). (Note that here we do not

need to distinguish public/private index to demonstrate our idea.) Then by the
key homomorphic evaluation method, we have [A|BCf ] = [A|ARCf +Cf (x∗)G].
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From the design of Cf , we have Cf (x∗) = 0 if the key query f corresponds to a
1-key with respect to x∗, or otherwise Cf (x∗) 6= 0 if the key query corresponds
to a 0-key. Therefore in the security analysis, one can clearly answer any 0-key
queries as the G-trapdoor appears in the second matrix.

At this moment, the reader can already see that answering the 1-key query
corresponds to the two-stage sampling as we describe above. In fact, the reason
why [2] starts with the very selective notion comes from the fact that the prior
technique requires RCf to be given in the first stage. This requires the adversary
to commit to the challenge 1-key function f and the challenge index at the
beginning of the security experiment.

Note that by using our new two-stage sampling method for the key generation
algorithm, we are able to answer the 1-key query at any moment just before the
challenge ciphertext. Therefore, we can achieve (1, poly) selective FE, allowing
arbitrary pre-challenge key queries. Moreover by the very light-weight method
of [21, 37], the FE can be upgraded to semi-adaptive security10. This solves the
first two limitations, giving an improved way to achieve (1a) + (1b) of [2].

To further break the third and fourth limitations, we first briefly overview
the transformation in Step (2) of [2]. At a high level, besides A,B1, . . . ,B`,
the method generate additional matrices P1, . . . ,PN . The key generation would
choose a small subset ∆ ⊆ [N ] of some fixed cardinality and generate skf := Y
such that [A|BCf ] ·Y = P∆, where P∆ =

∑
i∈∆ Pi. To encrypt a message µ,

the encryption algorithm just additionally generates β1,i = s>Pi + e + q
2|∆|µ

for all i ∈ [N ]. The decryption algorithm can figure out β1,∆ =
∑
i∈∆ β1,i =

s>Pi + e′ + q
2µ, and the rest of the procedure is similar to the (1, poly)-PHPE.

The work [2] requires that for Q randomly sampled sets ∆1, . . . ,∆Q in [N ], it is
overwhelming that the sets are cover-free. By using the result of [33], this would
require N = O(Q2). This explains why the transformation incurs an additive
O(Q2) overhead.

To further reduce the parameter N , it suffices to generate cover-free sets more
efficiently. We then construct a simple set sampler that only requires requires
N = O(Q), inspired by an implicit construction in the work [11]. We identify
that this more efficient cover-freeness suffices for the rest of the proof.

Finally, we take care of the post-challenge key queries if the message space
is small, e.g., bit encryption. (Here we do not need to place a constraint on the
index length.) Our idea is to use secret sharing over the plaintext µ ∈ {0, 1}, i.e.,
sharing q

2µ into µ1, . . . , µN , such that any subset ∆ with some fixed cardinality
would recover µ, i.e., µ =

∑
i∈∆ µi. Then we generate ciphertexts β1,i = s>Pi+

e+µi for all i ∈ [N ]. As a critical security proof step, we show that given all secret
keys of the form (∆,Y), one can only learn

∑
i∈∆ µi = µ but nothing more. By

using this fact, we can design a ciphertext simulator, who generates simulated
shares µ1, . . . , µN and 2Q sets ∆1, . . . ,∆Q, ∆′1, . . . ,∆

′
Q such that

∑
∆i
µi = q/2,

10 The reason why [2] cannot apply the light-weight method is because its basic con-
struction only achieves very selective security, whereas the technique of [21, 37] can
be applied to the selective security only over index.
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and
∑
∆′i
µi = 0. In this way, the post-challenge simulator can answer a 1-key

query by using either {∆i} or {∆′i} according to whether µ = 1 or µ = 0.
Notice that the core and useful properties of the above process are that: (1)

the simulation of the ciphertext does not depend on the plaintext µ; (2) the
post-challenge key simulation can consistently generate a key that opens the
simulated ciphertext to either µ = 1 or µ = 0. By further taking fine care of
the details, we are able to achieve (Q, poly)-PHPE that supports arbitrary key
queries and has succinct ciphertext that grows additively with O(Q). This solves
the third and fourth challenges as above and improves Step (2) of [2]. Clearly,
this PHPE can also be transformed into an FE, following Step (3).

Improving FE with Public Index. Interestingly, the lattice-based construc-
tion of FE with public index [1] faces exactly the same technical challenge as
the very selective PHPE of [2]. Our new two-stage sampling method is the key
missing link of [1] to achieve adaptive IB × IP and semi-adaptive AB × IP. We
further elaborate on this setting in Section 7. The reader would immediately see
the point even just with a glance at the construction.

1.3 Other Related Work

We notice that FE can be obtained from indistinguishable obfuscation (iO) [26],
achieving the notion of (poly, poly)-IND adaptive security via [10]. Even though
recently there has been substantial progress for instantiating iO [16,27,38], the
derived FE (as is) cannot achieve the simulation-based security. This is because
the iO-based FE has ciphertext length independent of the number of collusion Q,
and thus according to the lower bound of [4], the scheme cannot be SIM secure.
Moreover as mentioned in [14, 33], IND-based FE does not imply SIM-based FE.
Therefore for the direction of SIM-based FE, our work would shed light on new
methods and feasibilities beyond what can be implied from the recent progress
on the direction of iO [16, 27,38].

In [22], Canetti and Chen show that single key SIM-secure private-key FE suf-
fices to construct reusable garbled circuits. Compared with the reusable garbled
circuits following naturally from our (Q, poly)-SA-SIM FE with Q = 1,11 the con-
struction in [22] achieves the stronger adaptive security with respect to index
without the complexity leveraging argument, yet can only support either pre- or
post-challenge key query and NC1 circuits, rather than general circuits.

2 Preliminaries

2.1 Notations

In this paper, N, Z and R denote the sets of natural numbers, integers and real
numbers, respectively. We use λ to denote the security parameter, which is the

11 Notice that the reusable garbled circuits following from our SIM-secure FE can
achieve SA-SIM security, and support general circuits and arbitrary pre- and post-
challenge key query, even it just allow to be queried one time by its definition.
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implicit input for all algorithms presented in this paper. A function f(λ) > 0
is negligible and denoted by negl(λ) if for any c > 0 and sufficiently large λ,
f(λ) < 1/λc. A probability is called to be overwhelming if it is 1 − negl(λ).
A column vector is denoted by a bold lower case letter (e.g., x). A matrix is
denoted by a bold upper case letter (e.g., A), and its transposition is denoted
by A>.

For a set D, we denote by u
$←− D the operation of sampling a uniformly

random element u from D, and represent |u| as the bit length of u. For an
integer ` ∈ N, we use U` to denote the uniform distribution over {0, 1}`. Given
a randomized algorithm or function f(·), we use y ← f(x) to denote y as the
output of f and x as input. For a distribution X, we denote by x ← X the
operation of sampling a random x according to the distribution X. Given two
different distributions X and Y over a countable domain D, we can define their
statistical distance to be SD(X,Y ) = 1

2

∑
d∈D |X(d)− Y (d)|, and say thatX and

Y are SD(X,Y ) close. Moreover, if SD(X,Y ) is negligible in λ, we say that the

two distributions are statistically close, which is always denoted by X
s
≈ Y . If for

any ppt algorithm A that
∣∣Pr[A(1λ, X) = 1]− Pr[A(1λ, Y ) = 1]

∣∣ is negligible in
λ, then we say that the two distributions are computationally indistinguishable,

denoted by X
c
≈ Y .

Matrix norms. For a vector x, its Euclidean norm (also known as the `2 norm)
is defined as ‖x‖ = (

∑
i x

2
i )

1/2. For a matrix R, we denote its ith column vector

as ri, and use R̃ to denote its Gram-Schmidt orthogonalization. In addition,

– ‖R‖ denotes the Euclidean norm of R, i.e., ‖R‖ = maxi ‖ri‖.
– s1(R) denotes the spectral norm of R, i.e., s1(R) = sup‖x‖=1‖Rx‖, with
x ∈ Zm.

We know the facts on the above norms: ‖R̃‖ ≤ ‖R‖ ≤ s1(R) ≤
√
k‖R‖

and s1(R|S) ≤
√
s1(R)2 + s1(S)2, where k denote the number of columns of R.

Besides, we have the following lemma for the bounding spectral norm.

Lemma 2.1 ( [24]) Let X ∈ Rn×m be a subgaussian random matrix with pa-
rameter s. There exists a universal constant c ≈ 1/

√
2π such that for any t > 0,

we have s1(X) ≤ c · s · (
√
m+

√
n+ t) except with probability at most 2

eπt2
.

At the same time, we rely on the following useful lemma on cover-free for our
security proof.

Lemma 2.2 (Cover-Freeness [33]) Let ∆1, · · · , ∆Q ⊆ [N ] be randomly cho-
sen subsets of size v. Let v(κ) = Θ(κ) and N(κ) = Θ(vQ2). Then for all i ∈ [Q],

we have Pr
[
∆i\

(⋃
j 6=i∆j

)
6= ∅
]

= 1− 2−Ω(κ), where the probability is over the

random choice of subsets ∆1, · · · , ∆Q.

2.2 Lattices Background

A lattice is a discrete additive subgroup of Rm. Let B = (b1, . . . , bm) ⊂ Rm con-
sists of m linearly independent vectors. The m-dimensional lattice Λ generated
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by the basis B is Λ = L(B) = {B · c =
∑
i∈[m] ci·bi : c = (c1, . . . , cm) ∈ Zm}.

We will be interested in integer lattices, whose points have coordinateds in Zm.
One of typical integer lattices is the q-ary lattice defined as follows: for any in-
teger q > 2 and any matrix A ∈ Zn×mq , we define Λq(A) = {x ∈ Zm : x =

A> ·e mod q, for some e ∈ Znq }, Λ⊥q (A) = {x ∈ Zm : A ·x = 0 mod q}, and the
related shift Λu

q (A) = {x ∈ Zm : A · x = u mod q}.
The dual lattice of Λ, denoted as Λ∗, is defined to be Λ∗ = {x ∈ Rm : ∀ v ∈

Λ, 〈x,v〉 ∈ Z}. By symmetry, (Λ∗)∗ = Λ. For q-ary lattices Λq(A) and Λ⊥q (A),

it holds Λ⊥q (A) = q · (Λq(A))∗ and Λq(A) = q · (Λ⊥q (A))∗.

The minimum distance λ1(Λ) of a lattice Λ is the length in the Euclidean
`2 norm of the shortest nonzero vector: λ1(Λ) = min

06=x∈Λ
‖x‖. We write λ∞1 (Λ)

to denote the minimum length measured in the `∞ norm, which is defined as
‖x‖∞ = max |xi|.

For an approximation factor γ = γ(n) > 1, we define the problem GapSVPγ
as follows: given a basis B of an m-dimensional lattice Λ = L(B) and a positive
number d, distinguish between the case where λ1(Λ) ≤ d and the case where
λ1(Λ) ≥ γd.

2.3 Gaussians on Lattices.

Let σ be any positive real number. The Gaussian distribution Dσ,c with parame-
ter σ and c is defined by probability distribution function ρσ,c(x) = exp(−π‖x−
c‖2/σ2). For any set S ⊆ Rm, define ρσ,c(S) =

∑
x∈S ρσ,c(x). The discrete

Gaussian distribution DS,σ,c over S with parameter σ and c is defined by the
probability distribution function ρσ,c(x) = ρσ,c(x)/ρσ,c(S) for all x ∈ S.

In [42], Micciancio and Regev introduced a useful quantity called smoothing
parameter.

Definition 2.3 For any m-dimensional lattice Λ and positive real ε > 0, the
smoothing parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε.

Then, we have the following upper bound for the smoothing parameter.

Lemma 2.4 ( [29]) For any m-dimensional lattice Λ and real ε > 0, we have

ηε(Λ) ≤
√

log(2m/(1+1/ε))/π

λ∞1 (Λ∗) . Then for any ω(
√

logm) function, there is a negli-

gible ε(m) for which ηε(Λ) ≤ ω(
√

logm)/λ∞1 (Λ∗).

Furthermore, we have the following useful facts from the literature.

Lemma 2.5 ( [29] and Full Version of [40]) Let n,m, q are integers such that
m > 2n log q. Then for all but an at most q−n fraction of A ∈ Zn×mq , we have
λ∞1 (Λq(A)) > q/4.

Furthermore, for such A and any function ω(
√

logm), there is a negligible
function ε(m) such that ηε(Λ

⊥
q (A)) ≤ ω(

√
logm).
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Lemma 2.6 Let n,m, q are integers such that m > 2n log q, and R ∈ Zm×mq

be arbitrary. Then for all but an at most q−n fraction of A ∈ Zn×mq , we have
λ∞1 (Λq(A|AR)) > q/4.

Furthermore, for such A and any function ω(
√

logm), there is a negligible
function ε(m) such that ηε(Λ

⊥
q (A|AR)) ≤ ω(

√
logm).

Proof. By definition, we have Λq(A) = {x ∈ Zm : x = A>·e mod q, for some e ∈
Znq }, and Λq(A|AR) = {x ∈ Z2m : x = (A|AR)> · e mod q, for some e ∈
Znq }. Hence, any vector in Λq(A|AR) has a prefix in Λq(A), i.e., for any x =

(x>1 ,x
>
2 )> ∈ Λq(A|AR), it holds x1 ∈ Λq(A). Besides, for any vector x =

(x1,x2) ∈ Z2m, we have ‖x‖∞ ≥ ‖x1‖∞, according to the definition of infinite
norm. Connecting this fact with Lemma 2.5, we conclude that for all but an at
most q−n fraction of A ∈ Zn×mq , we have λ∞1 (Λq(A|AR)) > λ∞1 (Λq(A)) > q/4.

The second part follows from the relation with λ1 of the dual lattice as
Lemma 2.4 and the fact that Λ⊥(A|AR)∗ = Λ(A|AR)/q, implying

ηε(Λ
⊥
q (A|AR)) ≤ ω(

√
logm)/λ∞1 (Λ⊥(A|AR)∗) ≤ ω(

√
logm).

ut

Lemma 2.7 ( [29], Lemma 5.2) Assume the columns of A generate Znq , let

ε ∈ (0, 1/2) and r ≥ ηε(Λ
⊥(A)). Then for e ← DZm,r, the distribution of u =

ATe mod q is within statistical distance 2ε of uniform over Znq .
Furthermore, for any fixed u ∈ Znq , let t ∈ Zm be an arbitrary solution to

At = u mod q. Then the conditional distribution of e ∼ DZm,s given Ae =
u mod q is exactly t+DΛ⊥,s,−t.

Lemma 2.8 ( [42], Lemma 4.4) For any m-dimensional lattice Λ, c ∈ Rm,
real ε ∈ (0, 1) and s ≥ ηε(Λ), we have Prx←DΛ,s,c [‖x− c‖ > s

√
m] 6 1+ε

1−ε · 2
−m.

Lemma 2.9 (Smudging Lemma) Let n ∈ N. For any real σ ≥ ω(
√

log n),
and any c ∈ Zn, it holds SD(DZn,σ,DZn,σ,c) ≤ ‖c‖/σ.

Lemma 2.10 (Noise Rerandomization [39]) Let q, `,m be positive integers
and r a positive real satisfying r > max{ηε(Zm), ηε(Z`)}. Let b ∈ Zmq be arbitrary

vector and x chosen from DZm,r. Then for any V ∈ Zm×` and positive real
σ > s1(V), there exists a PPT algorithm ReRand(V, b + x, r, σ) that outputs

b
′

= bV+x
′ ∈ Z`q where the statistical distance of the discrete Gaussian DZ`,2rσ

and the distribution of x
′

is within 8ε.

Learning With Errors. The Learning with errors problem, or LWE, is the
problem of determining a secret vector over Fq given a polynomial number of
“noisy” inner products. The decision variant is to distinguish such samples from
random. More formally, we define the problem as follows:

Definition 2.11 ( [45]) Let n ≥ 1 and q ≥ 2 be integers, and let χ be a proba-
bility distribution on Zq. For s ∈ Znq , let As,χ be the probability distribution on
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Znq × Zq obtained by choosing a vector a ∈ Znq uniformly at random, choosing
e ∈ Zq according to χ and outputting (a, 〈a, s〉+ e).

The decision LWEq,n,χ problem is: for uniformly random s ∈ ZNq , given a
poly(n) number of samples that are either (all) from As,χ or (all) uniformly
random in Znq × Zq, output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time
algorithms A, the probability that A solves the decision-LWEq,n,χ problem (over
s and A’s random coins) is negligibly close to 1/2 as a function of n. The works
of [18,44,45] show that the LWE assumption is as hard as (quantum or classical)
solving GapSVP and SIVP under various parameter regimes.

2.4 Lattice Trapdoor and Gaussian Sampling

Gadget Matrix. We recall the “gadget matrix” G defined in [41]. The “gadget

matrix” G = In ⊗ g> ∈ Zn×ndlog qe
q where g> = (1, 2, 4, ..., 2dlog qe−1). We can

also extend the column dimension to any m ≥ ndlog qe by padding 0n×m′ to the
right for m′ = (m− ndlog qe), i.e., G = [In ⊗ g>|0n×m′ ] ∈ Zn×mq .

Lemma 2.12 (Theorem 4.1, [41]) Let q ≥ 2 be any integer, and n,m ≥ 2 be
integers with m ≥ ndlog qe. There is a full-rank (of columns) matrix G ∈ Zn×mq

such that the lattice Λ⊥q (G) has a publicly known trapdoor matrix TG ∈ Zn×m

with ‖T̃G‖ ≤
√

5, where T̃G is the Gram-Schmidt orthogonalization of TG.

Theorem 2.13 (Trapdoor Generation [9, 41]) There is a probabilistic
polynomial-time algorithm TrapGen(1n, q,m) that for all m ≥ m0 = m0(n, q) =
O(n log q), outputs (A,TA) such that A ∈ Zn×mq is within statistical distance

2−n from uniform, and TA is a basis for Λ⊥q (A) satisfying ‖TA‖ ≤ O(n log q)

and ‖T̃A‖ ≤ O(
√
n log q), where T̃A denotes the Gram-Schmidt orthogonaliza-

tion of TA.

Lemma 2.14 (SampleLeft [3, 23]) Let q > 2, A,B ∈ Zn×mq be two full rank

matrices with m > n, TA be a trapdoor matrix for A, a matrix U ∈ Zn×`q and s ≥
‖T̃A‖·ω(

√
logm). Then there exists a ppt algorithm SampleLeft(A,TA,B,U, s)

that outputs a matrix X ∈ Z2m×`
q , which is distributed statistically close to

DΛU
q (A|B),s.

Lemma 2.15 (SampleRight [41]) Let q > 2, A ∈ Zn×mq be a full rank ma-

trix with m > n, R ∈ Zm×m, U ∈ Zn×`q , y ∈ Zq with y 6= 0, and s ≥
√

5 ·
s1(R) ·ω(

√
logm). Then there exists a ppt algorithm SampleRight(A,R, y,U, s)

that outputs a matrix X ∈ Z2m×`
q , which is distributed statistically close to

DΛU
q (A|A·R+yG),s, where G is the gadget matrix.

Lemma 2.16 (Leftover Hash Lemma [3]) Suppose that m > (n+ 1) log q+
ω(log n) and that q > 2 is prime. Let R be an m × k matrix chosen uniformly
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in {1,−1}m×k mod q where k = k(n) is polynomial in n. Let A and B be
matrices chosen uniformly in Zn×mq and Zn×kq respectively. Then, for all vectors

e ∈ Zm, the distribution (A,AR,R>e) is statistically close to the distribution
(A,B,R>e).

2.5 Partially Hiding Predicate Encryption

We recall the notation of partially hiding predicate encryption (PHPE) proposed
by [35], which interpolates attribute-based encryption and predicate encryption.
A Partially-Hiding Predicate Encryption scheme PHPE for a pair of private-
public index spaces X ,Y, a function class F mapping X × Y to {0, 1}, and a
message space M, consists of four algorithms
(PHPE.Setup,PHPE.Enc,PHPE.KeyGen,PHPE.Dec):

PHPE.Setup(1λ,X ,Y,F ,M) → (PHPE.mpk,PHPE.msk). The setup algorithm
gets as input the security parameter λ and a description of (X ,Y,F ,M) and
outputs the public parameter PHPE.mpk, and the master key PHPE.msk.

PHPE.Enc(PHPE.mpk, (x,y), µ)→ cty. The encryption algorithm gets as input
PHPE.mpk, a pair of private-public indexes (x,y) ∈ X × Y and a message
µ ∈M. It outputs a ciphertext cty.

PHPE.KeyGen(PHPE.msk, f)→ skf . The key generation algorithm gets as input
PHPE.msk and a function f ∈ F . It outputs a secret key skf .

PHPE.Dec((skf , f), (cty,y)) → µ ∨ ⊥. The decryption algorithm gets as input
the secret key skf , a function f , and a ciphertext cty and the public part y
of the attribute vector. It outputs a message µ ∈M or ⊥.

Correctness. We require that for all (PHPE.mpk,PHPE.msk) ← PHPE.Setup
(1λ,X ,Y,F ,M), for all (x,y, f) ∈ X × Y × F and for all µ ∈M,

– For 1-queries, i.e., f(x,y) = 1, Pr [PHPE.Dec((skf , f), (cty,y)) 6= µ] ≤ negl(λ).
– For 0-queries, i.e., f(x,y) = 0, Pr [PHPE.Dec((skf , f), (cty,y)) 6= ⊥] ≤ negl(λ).

The formal definition of PHPE can be formally described as follows.

Definition 2.17 ((q1, q2)-Sel-SIM security) Let Π = (Setup,KeyGen,Enc,Dec)
be a PHPE for a pair of private-public index spaces X ,Y, a function class F map-
ping X ×Y to {0, 1}, and a message spaceM. For every stateful p.p.t. adversary
A and a stateful p.p.t. simulator Sim, consider the following two experiments:

Expreal
Π,A(1λ) : Expideal

Π,A(1λ) :
1: (x,y)← A(1λ,X ,Y,F ,M) 1: (x,y)← A(1λ,X ,Y,F ,M)
2: (mpk,msk)← Setup(1λ) 2: mpk← Sim1(1λ,y, 1|x|)
3: (u, L)← AKeyGen(msk,·)(mpk) 3: (u, L)← ASim2(·)(mpk)
4: Set b = u. 4: If there is ever a 1-key queried,

set (b, List) = (u, L), else (b, List) = ⊥.
5: cty ← Enc(PH.mpk, (x,y), b) 5: cty ← Sim3(b, st)

6: α← AKeyGen(msk,·)(cty) 6: α← AOSim4(·)
(cty)

7: Output (x,y, u, α) 7: Output (x,y, u, α)
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Below we present some supplementary notes of the above description.

– Here we use L to record all the predicate functions queried by the adversary.
– The oracle O handles the adversary’s key query in the following way: if the

query f is a 1-key, then the oracle sends (u, f) to Sim4. Otherwise it sends
(⊥, f) to Sim4. Upon receiving a simulated key from Sim4, O forwards the
key to the adversary.

– Both the adversary and the simulator are stateful, so they carry states during
all stages of the interaction. For simplicity, we omit these states, except in
the step 5 in the Ideal experiment. This is because Sim3 is allowed to learn the
predicate functions of the 1-keys queried in Step 3, capturing the information
learned by the adversary in the real. We handle this by letting the experiment
pass the list L to Sim3 via the state.

We say an adversary A is admissible if for all queries, there exists at most q1

1-keys and q2 0-keys with respect to the challenge index (x,y).12 The partially
hiding predicate encryption scheme PHPE is said to be (q1, q2)-Sel-SIM secure if
there exists a p.p.t. simulator Sim = (Sim1,Sim2,Sim3,Sim4) such that for every
admissible p.p.t. adversary A, the following two distributions are computationally
indistinguishable: {

Expreal
Π,A(1λ)

}
λ∈N

c
≈
{

Expideal
Π,Sim(1λ)

}
λ∈N

.

2.6 Key Homomorphic Evaluation

In this section, we first describe several preliminaries for the (key) homomorphic
evaluation mechanism as introduced by [12]. Next, we describe a homomorphic

evaluation procedure of functions of the form Ĉ ◦ IP (defined in Section 5) by
tweaking the schemes of [2, 35].

Three basic algorithms. The work [12] proposes three deterministic algo-
rithms Evalpk,Evalct,Evaltrap with the following properties:

– Evalpk({Ai}i∈[`], C) : on input ` matrices A1, · · · ,A` ∈ Zn×mq and a function

C : {0, 1}` → {0, 1} with depth d, outputs a matrix AC ∈ Zn×mq ;
– Evalct({Ai}i∈[`], {ui}i∈[`],y, C) takes as input A1, · · · ,A` and C as above,

along with y ∈ {0, 1}` and ` vectors u1, · · · ,u` ∈ Zmq , and outputs a vector
uC ∈ Zmq ;

– Evaltrap({Ri}i∈[`],A, C,y) : on input matrices R1, · · · ,R` over {−1, 1}m×m,

matrix A over Zn×mq , C as before, along with y ∈ {0, 1}`, outputs a matrix
RC ∈ {−1, 1}m×m.

The algorithms satisfy the following properties:

12 Compared with the definition in [2], our definition does not restrict the 1-query only
before generating the challenge ciphertext.
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– If (u1, · · · ,u`) ≈ ((A1 + y1 ·G)>s, · · · , (A` + y` ·G)>s), then uC ≈ (AC +
C(y) ·G)>s.

– If (A1, · · · ,A`) = (AR1 − y1 ·G, · · · ,AR` − y` ·G) where R1, · · · ,R` are
matrices with small norms, then we have

AC = ARC − C(y) ·G

where RC is also a matrix with a small norm, roughly with a n2d multiplica-
tive blow-up.

The following lemma captures the above intuition.

Lemma 2.18 ( [12]) The algorithms Evalpk,Evalct,Evaltrap satisfy the following
properties. For all A1, · · · ,A` ∈ Zn×mq , all y ∈ {0, 1}`, all boolean circuit C of
depth d, let AC = Evalpk(A1, · · · ,A`, C). Then,

– for all u1, · · · ,u` ∈ Zmq and all s ∈ Znq ,

‖uC−(AC+C(y) ·G)>s‖∞ ≤ O(`n log q)O(d) ·max
i∈[`]
{‖ui−(Ai+yi ·G)>s‖∞

where uC = Evalct(A1, · · · ,A`,u1, · · · ,u`,y, C).
– If (A1, · · · ,A`) = (AR1 − y1 ·G, · · · ,AR` − y` ·G) where R1, · · · ,R` ∈

Zm×mq , then we have
AC = ARC − C(y) ·G,

where RC = Evaltrap({Ri}i∈[`],A, C,y) and

s1(RC) ≤ O(`n log q)O(d) ·
√
m.

Homomorphic evaluation of Ĉ ◦ IP. Recall that Ĉ ◦ IP : {0, 1}t × {0, 1}` →
{0, 1} is the function defined as

(Ĉ ◦ IP)(x,y) = IP
(
PT(x), Ĉ(y)

)
,

for x, Ĉ(y) ∈ Zt′q , PT being the power-of-two function, and t = t′ log q.

Next, we describe a simple tweak of [35] that homomorphically evaluates our

desired functions. Let Ĉi denote the circuit computing the i-th output value of
Ĉ. Then we define three deterministic algorithms Evalpk,Evalct,Evaltrap for Ĉ ◦ IP
as:

– Evalpk({Ai}i∈[`], {Bi}i∈[t], Ĉ◦IP) : on input `+t matrices {Ai}i∈[`], {Bi}i∈[t],

and circuit Ĉ ◦ IP, output a matrix AĈ◦IP ∈ Zn×mq computed as follows:

1. For i ∈ [t′], compute AĈi
= Evalpk(A1, · · · ,A`, Ĉi);

2. Rearrange the indices of matrices {Bi}i∈[t] to {Bi′,j′}i′∈[t′],j′∈[log q], where
we express i = (i′−1) log q+ j′. We note that the mapping of i 7→ (i′, j′)
can be any bijection13, as long as it is consistent among all our evaluation
algorithms. For i′ ∈ [t′], compute Bi′ =

∑
j′∈[log q] Bi′,j′ ·G−1(2j

′−1 ·G)

13 For example, we can use the division with remainder, namely, i′ = bi/ log qc and
j′ = imod log q
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3. Output AĈ◦IP =
∑
i′∈[t′] AĈi′

·G−1(Bi′).

– Evalct({Ai,ui}i∈[`], {Bi,vi}i∈[t],y, Ĉ◦IP) on input matrices {Ai}i∈[`], {Bi}i∈[t]

and Ĉ◦IP as before, along with y ∈ {0, 1}` and `+t vectors {ui}i∈[`], {vi}i∈[t],
output a vector uĈ◦IP ∈ Zmq computed as follows:

1. For i ∈ [t′], compute u′
Ĉi

= Evalct(A1, · · · ,A`,u1, · · · ,u`,y, Ĉi);
2. Rearrange the indices of the set {Bi,vi}i∈[t] to {Bi′,j′ ,vi′,j′}i′∈[t′],j′∈[log q],

where we express i = (i′ − 1) log q + j′. For i′ ∈ [t′], compute B′i′ =∑
j′∈[log q] Bi′,j′ ·G−1(2j

′−1 ·G);

3. For i′ ∈ [t′], compute vi′ =
∑
j′∈[log q] G

−1(2j
′−1 ·G)> · vi′,j′ ;

4. Let z = Ĉ(y), and then output

uĈ◦IP =
∑
i′∈[t′]

(
z′i · vi′ −G−1(Bi′)

> · u′
Ĉi′

)
.

– Evaltrap({Ri}i∈[`], {R′i}i∈[t],A, Ĉ ◦ IP,x,y) : on input matrices {Ri}i∈[`],

{Ri}i∈[t], A, circuit Ĉ ◦ IP, x ∈ {0, 1}t, y ∈ {0, 1}`, output a matrix RĈ◦IP
computed as follows:

1. For i ∈ [t′], compute RĈi
= Evaltrap(R1, · · · ,R`,A,y, Ĉi);

2. Set Bi = A ·R′i − xi ·G for i ∈ [t]. Rearrange the indices of {Bi}i∈[t] to
{Bi′,j′}i′∈[t′],j′∈[log q] as above. For i′ ∈ [t′], compute Bi′ =

∑
j′∈[log q] Bi′,j′ ·

G−1(2j
′−1 ·G);

3. Rearrange the indices of {R′i}i∈[t] to {R′i′,j′}i′∈[t′],j′∈[log q], where we ex-
press i = (i′− 1) log q+ j′. For i′ ∈ [t′], compute R′i′ =

∑
j′∈[log q] R

′
i′,j′ ·

G−1(2j
′−1 ·G);

4. Let z = Ĉ(y), and then output

RĈ◦IP =
∑
i′∈[t′]

(
−RĈi′

G−1(Bi′) + zi′ ·R′i′
)
.

Similar to the work [35], it is not hard to derive the following lemma.

Lemma 2.19 The algorithms Evalpk,Evalct,Evaltrap satisfy the following proper-
ties. For matrices in Zn×mq namely {Ai}i∈[`], {Bi}i∈[t], any (x,y) ∈ {0, 1}t ×
{0, 1}`, any boolean circuit Ĉ of depth d, define AC = Evalpk({Ai}i∈[`], {Bi}i∈[t], Ĉ◦
IP). Then the following holds:

– For all vectors {ui}i∈[`], {vi}i∈[t] and all s ∈ Znq ,

‖uĈ◦IP − (AĈ◦IP + 〈PT(x), Ĉ(y)〉 ·G)>s‖∞
≤ O(`n log q)O(d) ·max

i∈[`]

{
‖ui − (Ai + yi ·G)>s‖∞

}
,

where uĈ◦IP = Evalct({Ai,ui}i∈[`], {Bi,vi}i∈[t],y, Ĉ ◦ IP).
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– If Ai = ARi − yi ·G for i ∈ [`], and Bi = AR′i − xi ·G then we have

AC = ARĈ◦IP + 〈PT(x), Ĉ(y)〉 ·G

where RĈ◦IP = Evaltrap({Ri}i∈[`], {R′i}i∈[t],A, Ĉ ◦ IP,x,y) and

s1(RĈ◦IP) ≤ max{O(log q)2, O(`n log q)O(d)} ·
√
m

2.7 Fully Homomorphic Encryption

A leveled homomorphic encryption scheme is a tuple of polynomial-time algo-
rithms (FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec) :

– FHE.KeyGen(1λ, 1d, 1k) : This is a probabilistic algorithm that takes as input
the security parameter, the depth bound for the circuit, the message length
and outputs the secret key FHE.sk.

– FHE.Enc(FHE.sk, µ) : This is a probabilistic algorithm that takes as input
the secret key and message and produces the ciphertext FHE.ct.

– FHE.Eval(C,FHE.ct) : This is a deterministic algorithm that takes as input a
Boolean circuit C : {0, 1}k → {0, 1} of depth at most d and outputs another
ciphertext FHE.ctC .

– FHE.Dec(FHE.sk,FHE.ct) : This is a deterministic algorithm that takes as
input the secret key and a ciphertext and produces a bit or ⊥.

Correctness. For FHE.sk ← FHE.KeyGen(1λ, 1d, 1k) and C a circuit of depth
d, we require that

Pr
[
FHE.Dec

(
FHE.sk,FHE.Eval(C,FHE.Enc(FHE.sk, µ))

)
= C(µ)

]
= 1− negl(λ).

Security. We require that for every stateful ppt adversary A and for all d, k =
poly(λ), the following quantity

Pr

 b = b′ :

FHE.sk← FHE.KeyGen(1λ, 1d, 1k);
(µ0, µ1)← A(1λ, 1d, 1k);

b
$←− {0, 1};

FHE.ct← FHE.Enc(FHE.sk, µ);
b′ ← A(FHE.ct)

− 1

2

is negligible in λ.

Instantiating FHE from Learning with Errors. We rely on the following
instantiation of FHE from LWE:

Theorem 2.20 ( [8, 17,19,20,30]) There is a FHE scheme based on the LWE
assumption such that, as long as q ≥ O(λ2) :

1. FHE.sk ∈ Ztq for some t ∈ poly(λ).
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2. FHE.ct ∈ {0, 1}`, where ` = poly(λ, k, d, log q).
3. FHE.ctC ∈ {0, 1}`.
4. There exists an algorithm FHE.Scale(p, q,FHE.ct), which reduces the modulus

of the input ciphertext FHE.ct from p to q. Moreover, let B be an upper bound
of the noise in FHE.ct. Then the noise of the resulting ciphertext can be upper
bounded by B · q/p + poly(λ), for some fixed polynomial poly(·). Therefore,
as long as B · q/p can be upper bounded by a polynomial (even if all B, q, p
are super-polynomials), the noise in the resulting ciphertext can be upper
bounded by a polynomial.

5. For any boolean circuit C of depth d, FHE.Eval(C, ·) is computed by a boolean
circuit of depth poly(d, λ, log q).

6. FHE.Dec on input FHE.sk and FHE.ctC outputs a bit b ∈ {0, 1}. If FHE.ctC
is an encryption of 1, then∑

i∈[t]

FHE.sk[i] · FHE.ctC [i] ∈
[
bq/2c −B, bq/2c+B

]
,

where B is some upper bound of the noise in FHE.ctC . Otherwise, if FHE.ctC
is an encryption of 0, then∑

i∈[t]

FHE.sk[i] · FHE.ctC [i] /∈
[
bq/2c −B, bq/2c+B

]
.

Notice that in the application of this work, B is required to be polynomially
bounded. We can achieve this by choosing appropriate p and q (and some
other techniques).

7. Security relies on LWEq,θ(t),χ.

3 Definitions of Functional Encryption

We first present the syntax of functional encryption.

Definition 3.1 (Functional Encryption) Let F be a family of functions, where
each f ∈ F is defined as f : U → Y. A functional encryption (FE) scheme for
F consists of four algorithms as follows.

– Setup(1λ,F) : Given as input the security parameter λ and a description of
the function family F , the algorithm outputs a pair of master public key and
master secret key (mpk,msk). In the following algorithms, mpk is implicitly
assumed to be part of their inputs.

– KeyGen(msk, f ∈ F): Given as input the master secret key msk and a func-
tion f ∈ F , the algorithm outputs a description key skf .

– Enc(mpk, u ∈ U) : Given as input the master public key and a message u ∈ U ,
the algorithm outputs a ciphertext ct.

– Dec(skf , ct) : Given as input the secret key skf and a ciphertext ct, the
algorithm outputs a value y ∈ Y or ⊥ if it fails.

A functional encryption scheme is correct, if for all security parameter λ, any
message u ∈ U and any function f ∈ F , the decryption algorithm outputs the
right outcome, i.e., Pr[Dec(skf , ctu) = f(u)] ≥ 1−negl(λ), where the probability
is taken over (mpk,msk)← Setup(1λ,F), skf ← KeyGen(msk, f), ctu ← Enc(u).
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More fine-grained syntax of FE. For FE with fine-grained syntax, each mes-
sage u consists of two parts, namely u := (x, µ), where x ∈ X for some index
(or attribute) space X , and µ ∈ M for message space M. Additionally, each
function f consists of two parts, namely, f := (P, g) ∈ P × G, where P is a
predicate over the index space X , and g is a function of the message space M.
The overall function acts as the following:

f(u) :=

{
g(µ) if P(x) = 1
⊥ otherwise.

(1)

Therefore, when decrypting the ciphertext ctu = Enc(mpk, (x, µ)) by skf =
KeyGen(msk, (P, g)), the algorithm outputs g(µ) if P(x) = 1, and ⊥ otherwise.
Under this fine-grained syntax, we call a key skf :=(P,g) a 1-key with respect to
an index x if P(x) = 1, or otherwise a 0-key. Intuitively, a 1-key is allowed to
open the ciphertext, but a 0-key is not.

To differentiate the regular FE in Definition 3.1 and FE with the fine-grained
syntax, we use different types of function classes, i.e., FE for F refers to the
former and FE for P × G refers to the latter.

There are two important types of index studied in the literature – FE with
private or public index, according to whether the index x is revealed to the
decryption algorithm or not.

Our security notions simply follow from those in prior work [2, 14, 33]. It is
important that for the simulation-based security, we can achieve a notion where
any pre- and post-challenge key queries are allowed, while the prior work [2]
requires the adversary to commit in one-shot to all the 1-key queries right after
seeing the master public key.

Particularly, we present the formal definitions for private/public-index func-
tion encryption schemes. Besides, we discuss relations of function families be-
tween regular syntax FE and fine-grained one, and detailed comparisons of our
definitions with other relevant work.

3.1 Functional Encryption with Private Index

FE with private index requires that the decryption algorithm cannot learn the
index beyond whether it is satisfied, providing the strongest guarantee of privacy.
We observe that in this setting, the formulation of FE with the fine-grained
syntax is essentially equivalent to that of the regular FE as Definition 3.1. It is
easy to see that the regular FE can realize the FE with the fine-grained syntax
by using Equation (1) in Section 3. On the other hand, FE for class P × G can
clearly realize FE for G in Definition 3.1 by including x := ε, i.e., the empty
string, and a predicate function P such that P(ε) = 1.

Next, we notice that an important subclass FE for P × {I} for the identity
function I (even just for message space M = {0, 1}) is also sufficient to realize
FE for P as Definition 3.1. This is because for any g ∈ P, we can use sk(g,I) and
Enc((µ, 1)) to simulate exactly the same effect of skg and Enc(µ) of the regular
FE. Therefore, it is already without loss of generality to adopt the form of FE
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for P × {I} when considering expressive classes P, e.g., Agrawal [2] directly
defined functional encryption in this form. This captures the strongly attribute-
hiding predicate encryption (PE), a generalization of the prior notion of weakly
attribute-hiding PE of [35], which only hides the index against 0-keys but not
1-keys.

Based on the above discussion, in the following, we just define the security
notion of FE for P × {I}, as the goal of this work is to achieve general boolean
circuits for P. Then in the end of this section, we will discuss the relation between
our definition and those in the prior work [2, 4, 14,33].

Definition 3.2 ((q1, q2)-SA-SIM security) Let Π = (Setup,KeyGen,Enc,Dec)
be an FE with private index for family F = P × {I} and index-message s-
pace U = X × M. Then for any stateful adversary A and stateful simulator
Sim = (Sim1,Sim2,Sim3,Sim4), we consider the following two experiments:

Expreal
Π,A(1λ) : Expideal

Π,Sim(1λ) :
1: (mpk,msk)← Setup(1λ) 1: mpk← Sim1(1λ)
2: x∗ ← A(mpk) 2: x∗ ← A(mpk)
3: (m,L)← AKeyGen(msk,·)(mpk) 3: (m,L)← ASim2(·)(mpk)
4: Set b = m 4: If there is ever a 1-key queried,

set (b, List) = (m,L), else (b, List) = ⊥.
5: ct← Enc(mpk, x∗, b) 5: ct← Sim3(b, List)

6: α← AKeyGen(msk,·)(ct) 6: α← AOSim4(·)
(ct)

7: Output (x∗,m, α) 7: Output (x∗,m, α)

Below we present some supplementary notes of Definition 3.2.

– Here we use L to record all the functions, i.e., (P, I) ∈ P × {I} of the 1-
keys (with respect to x∗) queried by the adversary in Step 3. We assume that
the simulator carry states, so for any (P, I) ∈ L, Sim3 knows the secret key
sk(P,I) generated by Sim2.

– The oracle O handles the adversary’s key query in the following way: if the
query (P, I) is a 1-key with respect to x∗, then the oracle sends (m, (P, I))
to Sim4, or else it sends (⊥, (P, I)). Then Sim4 sends a simulated key to O,
and O forwards the key to the adversary.

– Both the adversary and the simulator are stateful, so they carry states during
all stages of the interaction. For simplicity, we omit these states, except in
the step 5 in the Ideal experiment. This is because the simulator (i.e., Sim3)
is allowed to learn the predicate functions of the 1-keys queried in Step 3,
capturing the information learned by the adversary in the real. We handle
this by letting the experiment pass the list L to Sim3 via the state.

We say an adversary A is admissible if for all queries, there exist at most
q1 1-keys and q2 0-keys with respect to the challenge index x∗. The FE scheme
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Π is said to be (q1, q2)-SA-SIM secure if there exists a ppt simulator Sim =
(Sim1,Sim2,Sim3,Sim4) such that for any admissible ppt adversary A, the fol-
lowing two distributions are computationally indistinguishable:{

Expreal
Π,A(1λ)

}
λ∈N

c
≈
{

Expideal
Π,Sim(1λ)

}
λ∈N

.

Remark 3.3 We call the adversary’s queries made in Step 3 as pre-challenge
key queries, and those made in Step 6 as post-challenge key queries. In the
literature, there have been different names such as non-adaptive/adaptive key
queries. To distinguish adaptiveness from key queries and index, in this work we
always use non-adaptive/adaptive regarding the challenge index, and pre/post-
challenge regarding the key queries.

Comparison with Relevant Work. We compare our definition with other
notions in the most relevant work [2, 4, 14,33].

– This work and the prior work [2, 33] focus on the simulation-based security
with respect to one challenge ciphertext for general functions. As pointed
out by [14], simulation-based security for general functions is impossible for
multiple challenge ciphertexts.

– Our definition and that of [2] work on the fine-grained syntax for C × {I},
yet our notion of semi-adaptive security is strictly stronger in the following
sense: we only require that the adversary commits to the challenge index
right after the mpk. After this step, he is allowed to make both pre- and
post-challenge key queries for both 1-keys and 0-keys at any order he wishes.
On the contrary, the work [2] requires that the adversary commits to both
challenge index and all the challenge 1-key queries right after the mpk. After
this step, no more 1-key queries are allowed.

– Both our work and [2] can achieve (Q, poly)-security for any polynomially
boundedQ, and an unbounded polynomial poly. This is strictly stronger than
the prior predicate encryption of [35], which only achieves (0, poly)-security
and the notion of the weakly attribute hiding, i.e., the index is hidden only
for 0-keys.

– The work [33] can achieve fully-adaptive simulation-based security, but the
number of key queries is more restricted, i.e., (Q,Q)-security for any poly-
nomially bounded Q.

– The work [4] showed that simulation-based security notion is impossible for
general functions if the adversary can query an unbounded number of pre-
challenge 1-keys. Therefore, it is not possible to extend the feasibility results
of our work and [2,33] to (poly, poly)-security. We note that the lower bound
of [4] does not apply to the 0-keys, and therefore there is no contradiction
with the feasibility results of (Q, poly)-security achieved in [2] and this work.

3.2 Functional Encryption with Public Index

FE with public index does not prohibit the decryption algorithm from learning
the index from the ciphertext, regardless of whether it is satisfied. In fact, this
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notion has been studied extensively in the literature, capturing many useful
schemes for different expressions of P ×G. For example, IBE can be captured by
setting G = {I} and P as the class of identify comparison functions; ABE can be
captured by setting G = {I} and P as the class of general predicate functions;
in a recent work [1], Abdalla et al. [1] considered P for the identity comparison
functions or general predicates, and G = IP the inner product functions. These
naturally define IB-FEIP and AB-FEIP, respectively.

Even though it is possible to construct FE with public index via the feasibility
result of FE with private index (e.g., [2]), in this work we aim at much more
efficient constructions for the same classes as Abdalla et al. [1], i.e., IB-FEIP and
AB-FEIP. We achieve the indistinguishability based security as we present next.

Definition 3.4 ((q1, q2)-IND security) Let Π = (Setup,KeyGen,Enc,Dec) be
a public index FE scheme for a function class F = P ×G and a encrypted space
U = X ×M. For any security parameter λ, and any stateful adversary A, we
define the following security experiment for β ∈ {0, 1} as follows.

Experiment INDΠβ (1λ,A):

(Sel): x∗ ← A(1λ,P,G,X ,M)
1: (mpk,msk)← Setup(1λ,P,G,X ,M)
(SA): x∗ ← A(mpk)
2: (m0,m1)← AKeyGen(msk,·)(mpk)
(AD): x∗ ← AKeyGen(msk,·)(mpk)
3: ct∗ ← Enc(mpk, x∗, µβ)
4: α← AKeyGen(msk,·)(ct∗)
5: Output β′ ∈ {0, 1}

Below we present some supplementary notes of Definition 3.4.

– The adversary is stateful, so it carries states during all stages of the inter-
action. For simplicity, we omit these states.

– The adversary is admissible if the following holds:
• for the challenge messages (µ0, µ1) and index x∗, all key queries for f =

(P, g) satisfy the condition g(µ0) = g(µ1) when P(x∗) = 1;
• the adversary makes at most q1 1-keys and q2 0-keys.

– There will be only one step among {Sel, SA, AD} being selected by the ad-
versary, capturing the selective, semi-adaptive, or adaptive indistinguishable
experiment, respectively.

We define the advantage of A in the above experiment to be

AdvIND
Π,A(λ) =

∣∣∣Pr[INDΠ0 (1λ,A) = 1]− Pr[INDΠ1 (1λ,A) = 1]
∣∣∣ .

An FE scheme is said to be selevtive/semi-adaptive/adaptive (q1, q2)-IND-secure
if for any ppt admissible adversary A, we have AdvIND

FE,A(λ) ≤ negl(λ). More-
over, whether the scheme is selective, semi-adaptive, or adaptive security depends
on the step where x∗ is chosen by the adversary.
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The case of IB × G. We refer this special case as IB-FE as the predicate P
contains only the comparison function, similar to the case of IBE. In this case,
(1, poly)-AD-IND security is the best we can achieve, because there is only one
possible 1-key for each challenge index.

Comparison with Relevant Work. The most relevant work to this work in
the public index is a very recent work of [1]. For lattice-based constructions, the
work [1] achieves selective-IND security for the class IB× IP in the plain model,
and adaptive-IND security for the same class in the random oracle model. For
more general predicate classes (e.g., general circuits), they cannot even achieve
the selective-IND security under known techniques prior to this work. Besides,
there is a slight difference between our definition of IND-security and that of [1].
In particular, our definition is much more fine-grained, i.e., we separate the
challenge index from the challenge message, rather than putting them together
as [1].

For this work, we are able to achieve the adaptive-IND for the class IB × IP
and selective-IND for the class C × IP, where C is the general boolean circuits.
Both our constructions are in the plain model.

4 Our New Two-Stage Sampling Method

In this section, we present our key technical contribution – a new two-stage
sampling method. At a high level, we would like to sample the following two-
stage distribution: (1) in the first stage, a random matrix A and a random vector
u are sampled, and (2) in the second stage, an arbitrary small-norm matrix R
is given, and then some short vector y is sampled conditioned on [A|AR]y = u.
The distribution then outputs (A,AR,u,y).

For a simpler case where there is no R, this task is achievable via the following
GPV two-stage sampling technique:

Lemma 4.1 ( [29]) For any prime q, integers n ≥ 1, m ≥ 2n log q, s ≥
ω(
√

logm), the following two distributions are statistically indistinguishable:

– (A,u,y): A
$←− Zn×mq , u

$←− Znq , y ← DΛu
q (A),s.

– (A,u,y): A
$←− Zn×mq , y ← DZm,s, u = Ay mod q.

Intuitively, we can pre-sample a short vector y from an appropriate Gaussian
distribution and then set u = Ay. By the indistinguishability as Lemma 4.1,
we can sample the desired distribution with or without the trapdoor of A as
desired.14 Moreover, this idea can be generalized to achieve a weaker version
of our task where R is given in the first stage. The generalized idea has been

14 To sample DΛu
q (A),s, the current sampling algorithm requires that s >

‖T̃A‖ω(
√

logm). According to the best known (to our knowledge) trapdoor gen-
eration, the smallest s we can sample would be ω(

√
n log q ·

√
logm), which is much

larger than the required bound for Lemma 4.1.
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explored in the context of functional encryption (more precisely PHPE) by prior
work [2], yet the technique however, would inherently require to know R in the
first stage, resulting in a weak notion of very selective PHPE, where the adversary
needs to commit to the challenge index and 1-key query at the beginning.

To break this limitation, we design a new two-stage sampling method that
uses smudging noise over keys. Below we first present the two-stage sampling
method and then explain the idea behind it.

For any integers m > n ≥ 1, q ≥ 2, we consider the following two procedures:

Sampler-1(R, ρ, s): Given a matrix R ∈ Zm×m and two values ρ, s ∈ R as input,
this sampler conducts the following steps in two stages.

1. Stage 1: (without the need of R)

– Sample a random matrix A
$←− Zn×mq ;

– Sample a random vector u
$←− Znq ;

2. Stage 2:

– Sample a random x← DZm,ρ;

– Compute z = u−Ax (mod q);

– Sample a vector z′ =

(
z1

z2

)
← DΛz

q (A|AR),s, satisfying (A|AR)

(
z1

z2

)
=

z (mod q);

– Set y =

(
x+ z1

z2

)
∈ Z2m, satisfying (A|AR)y = u (modq);

– Output the tuple (A,AR,y,u).

The Sampler-1(R, ρ, s) can be implemented efficiently given the trapdoor TA

of A, using the SampleLeft algorithm as Lemma 2.14 (with larger parameters of s
than the required bound in Lemma 4.1). Next we present another way to sample
the distribution without the need of the trapdoor.

Sampler-2(R, ρ, s): Given a matrix R ∈ Zm×m and two values ρ, s ∈ R as input,
this sampler conducts the following steps in two stages.

1. Stage 1: (without the need of R)

– Sample a random matrix A
$←− Zn×mq ;

– Sample a random vector x← DZm,
√
ρ2+s2

, and set u = Ax (modq);

2. Stage 2:

– Sample a random vector z2 ← DZm,s;

– Compute a vector y =

(
x−Rz2

z2

)
, satisfying (A|AR)y = u (modq);

– Output the tuple (A,AR,y,u).
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In a nutshell, this algorithm first pre-samples a (larger) x and sets u = Ax,
without knowing R. In the second stage when R is given, it samples a smaller
z2 and adjusts y accordingly. Intuitively, the larger x servers as the smudging
noise that “overwrites” the effect of Rz2 as long as the norm of x is super-
polynomially larger. This would hide the information of R, which needs to be
kept secret as required by the proof framework in prior work [2,3]. We formalize
this intuition by the following theorem.

Theorem 4.2 For integers q ≥ 2, n ≥ 1, sufficiently large m = O(n log q), any
R ∈ Zm×m, s > ω(

√
logm), and ρ ≥ s

√
m‖R‖ · λω(1), the output distributions

(A,AR,y,u) of the above two procedures are statistically close.

Proof. Our high-level proof idea is to introduce an additional two-stage sampling
algorithm Sampler-3, and then prove it statistically indistinguishable from both
Sampler-1 and Sampler-2. Below, we describe the algorithm Sampler-3(R, ρ, s).

Sampler-3(R, ρ, s): Given a matrix R ∈ Zm×mq and two values ρ, s ∈ R as input,
this sampler conducts the following steps in two stages.

1. Stage 1: Sample a random matrix A
$←− Zn×mq ;

2. Stage 2:
– Sample two random vectors x′ ← DZm,

√
ρ2+s2

, z2 ← DZm,s;

– Compute u = (A|AR)

(
x′

z2

)
(modq), and denote y =

(
x′

z2

)
∈ Z2m;

– Output a tuple (A,AR,y,u).

Claim 4.3 For the parameters in the statement of Theorem 4.2, the output
distributions of Sampler-1 and Sampler-3 are statistically close.

Proof. We first observe that in Sampler-3, the x′ component can be decomposed
into x + z1 (within a negligible statistical distance), where x ← DZm,ρ and
z1 ← DZm,s. The decomposition holds as we have ρ > s > ηε(Zm) for some
ε = negl(λ).

Next, we prove a generalization of Lemma 4.1 that the following two distri-
butions are statistically close:

– D1:

(
A,AR,

(
z1

z2

)
,u′
)

: A
$←− Zn×mq , u′

$←− Znq ,

(
z1

z2

)
← DΛu′

q (A|AR),s.

– D2:

(
A,AR,

(
z1

z2

)
,u′
)

: A
$←− Zn×mq ,

(
z1

z2

)
← DZ2m,s,

u′ = (A|AR)

(
z1

z2

)
mod q.

This simply follows from Lemmas 2.6 and 2.7 – for all but q−n fraction of A,
we have ηε(Λ

⊥(A|AR)) ≤ ω(
√

logm) < s; for such an A, the distribution of

(A|AR)

(
z1

z2

)
is uniformly random over Znq , and the conditional distribution
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of

(
z1

z2

)
given the constraint is DΛu

q (A|AR),s. Thus, we conclude that D1 and

D2 are statistically close.
The above indistinguishability implies directly that the following two distri-

butions are as well statistically indistinguishable:

– D′1:

(
A,AR,

(
z1 + x′

z2

)
,u′ + Ax′

)
: x′ ← DZm,ρ; the other random vari-

ables are sampled the same way as D1.

– D′2:

(
A,AR,

(
z1 + x′

z2

)
,u′ + Ax′

)
: x′ ← DZm,ρ; the other random vari-

ables are sampled the same way as D2.

As one can apply the same randomized procedure F such that D′1 = F (D1) and
D′2 = F (D2), we conclude that SD(D′1, D

′
2) ≤ SD(D1, D2) < negl(λ).

Finally, by change of variable with u = u′ + Ax′, we can easily see that the
marginal distribution of u is still uniformly random in D′1, i.e., (u′ serves as
a one-time pad). Then it is not hard to see that D′1 is distributed identical as
Sampler-1 and D′2 is distributed statistically close to Sampler-3. This concludes
the proof of the claim. ut

Claim 4.4 For the parameters in the statement of Theorem 4.2, the output
distributions of Sampler-2 and Sampler-3 are statistically close.

Proof. We first observe that for both Sampler-2 and Sampler-3, the compo-
nent u can be determined (deterministically) from the first three components
(A,AR,y). Therefore, it suffices for us just to prove statistical closeness for the
first three components.

We next note that A is uniformly random and independent with the compo-
nent y in both Sampler-2 and Sampler-3. Therefore, it remains to show that the
distributions of y in these two algorithms are statistically close.

In Sampler-2, we have y =

(
x−Rz2

z2

)
, and in Sampler-3 we have y =

(
x
z2

)
.

As ρ ≥ s
√
m‖R‖ · λω(1), by the smudging lemma (i.e., Lemma 2.9) and the

Gaussian tail bound (i.e., Lemma 2.8), these two distributions are statistically
close. This concludes the proof of the claim. ut

The proof of this theorem follows directly from the above two claims. ut

5 Constructions of PHPE and FE with Private Input

In this section, we present three constructions of partially hiding predicate en-
cryption scheme PHPE. Particularly, we first construct a basic (1, poly)-Sel-SIM
secure PHPE in Section 5.1. Then, we upgrade our basic scheme to a (Q, poly)-
Sel-SIM secure PHPE for any polynomially bounded Q and general key queries
in Section 5.2. In Section 5.3, we show how to obtain a (Q, poly)-SA-SIM se-
cure PHPE via a simple transformation. Finally, we present the construction of
(Q, poly)-SIM-secure Functional Encryption with private input in Section 6.
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Throughout the whole section, we will work on the function class F as de-
scribed below. Before presenting the class, we first define three basic functions.

Definition 5.1 Let t ∈ N, q ∈ N, t′ ∈ N such that t = t′ log q. Define the func-
tion PT : {0, 1}t → Zt′q as: on input x ∈ {0, 1}t, first parse the vector x into a

bit matrix {x′i,j}i∈[t′],j∈[log q]. The function then computes z = (z1, . . . , zt′)
> as

zi =
∑
j∈[log q] x

′
i,j · 2j−1 for i ∈ [t′] and outputs z ∈ Zt′q .

Definition 5.2 Let t′ ∈ N be the dimension of vectors, q be some modulus, and
γ ∈ Zq be some parameter. Define IP : Zt′q × Zt′q → Zq be the inner product

modulo q, and IPγ : Zt′q ×Zt′q → {0, 1} be function such that IPγ(x,y) = 1 if and

only if γ = IP(x,y) for inputs x,y ∈ Zt′q .

Intuitively, PT acts as the “power-of-two” function that maps {0, 1}t to Zt′q ,
and IPγ acts as the comparison function between the parameter γ and the inner
product of the inputs.

Function Class F . We consider functions of the following form. Any function
in the class F , namely C : {0, 1}t×{0, 1}` → {0, 1} can be described as Ĉ ◦ IPγ ,

where Ĉ : {0, 1}` → {0, 1}t′ is a boolean circuit of depth d, t′ log q = t, and
γ ∈ Zq. More formally, for x ∈ {0, 1}t and y ∈ {0, 1}t, the function is defined as

(IPγ ◦ Ĉ)(x,y) = IPγ
(
PT(x), Ĉ(y)

)
.

Similarly, we define a relevant function (IP ◦ Ĉ) : {0, 1}t × {0, 1}` → Zq as

(IP ◦ Ĉ)(x,y) = IP
(
PT(x), Ĉ(y)

)
= 〈PT(x), Ĉ(y)〉(modq).

Notice that our formulation is slightly different from that of the prior work [2,
35], which directly defined the input x in the domain Zt′q . In Section 2.6, we show
that this formulation can also achieve the same effect as the prior work [2, 35]
with a simple tweak. Thus, it is without loss of generality to define functions in
this way. In fact, our modified formulation is for the need of the transformation
(from selective-security to semi-adaptive security) in Section 5.3, which requires
to work on a small input base, e.g., {0, 1}. We notice that both our selective
PHPE and the scheme of [2] require a super-polynomial q, so without the mod-
ification of the input space, the selective scheme would not be compatible with
the transformation.

5.1 (1, poly)-Partially Hiding Predicate Encryption

Our basic construction of PHPE is essentially the same as that of Agrawal [2]
(her basic construction), except that we adopt our new sampling algorithm in
Section 4 for the key generation. Our scheme achieves (1, poly)-Sel-Sim security
as the Definition 2.17, where one 1-key pre-challenge query is allowed. This is
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stronger than the (1, poly)-very-selective scheme of Agrawal [2], which requires
the adversary to commit to both his challenge index and function of the 1-key
query at the beginning of the experiment. Below we present the construction.

PH.Setup(1λ, 1t, 1`, 1d): Given as input the security parameter λ, the length of
the private and public indices, t and ` respectively, and the depth of the
circuit family d, the algorithm does the following steps:
1. Choose public parameters (q, ρ, s) as described in the following parame-

ter setting paragraph.
2. Choose random matrices Ai ∈ Zn×mq for i ∈ [`],Bj ∈ Zn×mq for j ∈ [t],

and P ∈ Zn×mq .
3. Sample (A,TA)← TrapGen(1m, 1n, q).
4. Output the public and master secret keys.

PH.mpk = ({Ai}i∈[`], {Bj}j∈[t],A,P),PH.msk = (TA).

PH.KeyGen(PH.msk, Ĉ ◦ IPγ): Given as input a circuit description Ĉ ◦ IPγ and
the master secret key, the algorithm does the following steps:
1. Let AĈ◦IP = Evalpk({Ai}i∈[`], {Bj}j∈[t], Ĉ ◦ IP).
2. Sample matrix J← DZm×m,ρ, and let U = P−AJ(modq).

3. Sample

[
K1

K2

]
← SampleLeft(A,AĈ◦IP + γG,TA,U, s) for parameter s,

i.e., the equation holds for [A|AĈ◦IP + γG] ·
[
K1

K2

]
= U(modq).

4. Let K =

[
J + K1

K2

]
, and output skĈ◦IPγ = K.

PH.Enc(PH.mpk, (x,y), µ): Given as input the master public key, the private
attributes x ∈ {0, 1}t, public attributes y ∈ {0, 1}` and message µ ∈ {0, 1},
the algorithm does the following steps:
1. Sample s← DZn,sB and error terms e← DZm,sB and e′ ← DZm,sD .
2. Let b = [0, · · · , 0, dq/2eµ]> ∈ Zmq . Set β0 = A>s+e, β1 = P>s+e′+b.

3. For i ∈ [`], sample Ri
$←− {−1, 1}m×m and set ui = (Ai+yi·G)>s+R>i e.

4. For j ∈ [t], sample R′j
$←− {−1, 1}m×m and set vj = (Bj + xj ·G)>s +

(R′j)
>e.

5. Output the ciphertext cty =
(
y,β0,β1, {ui}i∈[`], {vj}j∈[t]

)
.

PH.Dec(skĈ◦IPγ , cty): Given as input a secret key and a ciphertext, the algo-

rithm does the following steps:
1. Compute uĈ◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ ◦ IP,y

)
.

2. Compute η = β1 −K>
(
β0

uĈ◦IP

)
.

3. Round each coordinate of η. If [Round(η[1]), · · · ,Round(η[m − 1])] = 0
then set µ = Round(η[m]) and output µ. Otherwise, output ⊥.

Theorem 5.3 Assuming the hardness of LWE, then the scheme described in Sec-
tion 5.1 is a PHPE for the class F , achieving (1, poly)-Sel-Sim security that allows
at most one 1-key pre-challenge query (and an unbounded polynomial number of
0-keys for both pre and post-challenge queries), according to Definition 2.17.
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For clarity of the presentation, we defer the correctness, parameter setting and
the detailed proof of Theorem 5.3 to the supplementary material in Sections A.1,
A.2, and A.3.

5.2 (Q, poly)-Partially Hiding Predicate Encryption

In this section, we upgrade our basic scheme to handle arbitrary pre- and post-
challenge 1-key queries up to Q times (and any unbounded polynomially many 0-
keys). Our upgrading technique is similar to that of Agrawal [2] (the Q-bounded
PHPE) except that (1) we adopt our new sampling procedure in Section 4 for
the key generation, (2) we use a simple secret sharing encoding over the message
in a novel way, and (3) we take a more efficient way to generate cover-free sets
by using a technique of [11]. Our resulting scheme achieves (Q, poly) simulation-
based selective security with ciphertext growth additively with O(Q), allowing
general 1-key queries up to Q times, whereas the prior scheme of Agrawal [2]
requires the adversary to be committed to all the functions of the 1-key queries
right after seeing the public parameters, and the ciphertext size grows additively
with O(Q2).

Before presenting the theorem, we first define the following set sampling
algorithm.

Lemma 5.4 Let N = Qvκ2 and v = Θ(κ). There exists an efficient sampler
SamplerSet(N,Q, v) with the following properties: (1) The sampler always outputs
a set ∆ ⊂ [N ] with cardinality v; (2) For independent samples ∆1, . . . ,∆Q from
SamplerSet(N,Q, v), the sets are cover-free with probability (1− 2−Ω(κ)), i.e., for

all i ∈ [Q], Pr
[
∆i\

(⋃
j 6=i∆j

)
6= φ

]
≥ 1− 2Q · 2−Ω(κ).

Proof. We construct SamplerSet(N,Q, v) as follows.

– The sampler first defines an (arbitrary) bijection h : [N ]→ [Q]× [vκ2].
– The sampler selects i ∈ [Q] uniformly random, and a random ∆′ ⊂ [vκ2] of

cardinality v.
– The sampler sets ∆ = {h−1(i, j) : j ∈ ∆′}, and outputs ∆.

The analysis of SamplerSet is similar to that in [11], so we just sketch the
proof idea. We first observe that the bijection splits [N ] into Q buckets, each
with vκ2 elements. If we randomly throw Q balls to the buckets, then from
the Chernoff bound, we have with at least probability (1 − Q · 2−Ω(κ)) that all
buckets will contain at most κ balls. These buckets correspond to the first index
i. Suppose each bucket contains at most κ balls, where each ball corresponds to
a random subset in the second index. Then by Lemma 2.2, for certain bucket,
the probability that κ random subsets of size v are cover-free is at least (1 −
2−Ω(κ)). Furthermore, by union bound, we know that the independent samples
∆1, . . . ,∆Q from SamplerSet(N,Q, v) are cover free with at least probability (1−
Q · 2−Ω(κ)).

The proof of this lemma simply follows from these two facts. ut

32



In general we can choose κ to be ω(log λ) to achieve negl(λ) security in the
asymptotic setting, or say λ1/3 to achieve 2−Ω(λ) security in the concrete setting.

Below we present the construction.

QPH.Setup(1λ, 1t, 1`, 1d, 1Q): Given as input the security parameter λ, the length
of the private and public attributes, t and ` respectively, the depth of the
circuit family d, and Q as the upper bound of 1-key queries, do the following:
1. Choose public parameters (q, ρ, s,N, v) as described in the following pa-

rameter setting paragraph.
2. Choose random matrices Ai ∈ Zn×mq for i ∈ [`],Bj ∈ Zn×mq for j ∈ [t],

and Pk ∈ Zn×mq for k ∈ [N ].
3. Sample (A,TA)← TrapGen(1n, q,m).
4. Output the public and master secret keys.

PH.mpk = ({Ai}i∈[`], {Bj}j∈[t],A, {Pk}k∈[N ]),PH.msk = (TA)

QPH.KeyGen(PH.msk, Ĉ ◦ IPγ): Given as input a circuit description Ĉ ◦ IPγ and
the master secret key, do the following:
1. Let AĈ◦IP = Evalpk({Ai}i∈[`], {Bj}j∈[t], Ĉ ◦ IP).
2. Sample a random subset ∆ ⊂ [N ] according sampler SamplerSet(N,Q, v)

with |∆| = v, and compute the subset sum P∆ =
∑
k∈∆ Pk.

3. Sample matrix J← DZm×m,ρ, and let U = P∆ −AJ.

4. Sample

[
K1

K2

]
← SampleLeft(A,AĈ◦IP + γG,TA,U, s) for Gaussian pa-

rameter s, i.e., the equation holds for [A|AĈ◦IP+γG]·
[
K1

K2

]
= U mod q.

5. Let K =

[
J + K1

K2

]
, and output skĈ◦IPγ = (∆,K).

QPH.Enc(PH.mpk, (x,y), µ): Given as input the master public key, the private
attributes x, public attributes y and message µ, do the following:
1. Sample s ← DZn,sB and error terms e ← DZm,sB and e′k ← DZm,sD for
k ∈ [N ].

2. Set β0 = A>s+e, bk = [0, · · · , 0, dq/2ev µ] ∈ Zmq for k ∈ [N ], and compute

the following vectors as: {β1,k = P>k s+ e′k + bk}k∈[N ].

3. For i ∈ [`], sample Ri
$←− {−1, 1}m×m and set ui = (Ai+yi·G)>s+R>i e.

4. For j ∈ [t], sample R′j
$←− {−1, 1}m×m and set vj = (Bj + xj ·G)>s +

(R′j)
>e.

5. Output the ciphertext cty =
(
y,β0, {β1,k}k∈[N ], {ui}i∈[`], {vj}j∈[t]

)
.

QPH.Dec(skĈ◦IPγ , cty): Given as input a secret key skĈ◦IPγ := (∆,K) and a

ciphertext, do the following:
1. Compute uĈ◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ ◦ IP,y

)
.

2. Compute η =
∑
k∈∆ β1,k −K>

(
β0

uĈ◦IP

)
.

3. Round each coordinate of η. If [Round(η[1]), · · · ,Round(η[m − 1])] = 0
then set µ = Round(η[m]) and output µ. Otherwise, output ⊥.

33



Theorem 5.5 Assuming the hardness of LWE, then the QPHPE scheme de-
scribed in Section 5.2 is (Q, poly)-Sel-Sim secure that allows both pre- and post-
challenge 1-key queries up to Q times and 0-key queries for an unbounded poly-
nomial times, as Definition 2.17.

For clarity of the presentation, we defer the correctness and parameter setting to
the supplementary material in Sections B.1 and B.2, respectively. Additionally,
we just describe the simulator Sim for Theorem 5.5 here, and defer the detailed
proof to Section B.3.

Simulator Sim(1λ,y, 1|x|, b, st):

1. Sim1(1λ,y, 1|x|): It generates all public parameters as in the real PH.Setup,
except that it runs (A′,TA′) ← TrapGen(1n+1, q,m), then parses A′ =[

A
z>

]
, where A ∈ Zn×mq , and sets A be the public matrix in PH.mpk.

2. Sim2(1λ,y, 1|x|): It generates all keys using the real PH.KeyGen.

3. Sim3(1λ,y, 1|x|, b, List): It takes as input the public attributes y, the size of
the private attributes x, the message b, and a list List. It constructs the
challenge ciphertext as follows.

– It samples ui,vj independently and uniformly from Zmq , and sets β0 = z,
where z is the vector prepared in Sim1.

– If (b, List) = ⊥, it computes {β1,k}k∈[N ] as follows:

• Sample random vectors β̃k from Zmq for k ∈ [N ].
• Choose 2Q random subsets ∆1, · · · , ∆Q, ∆

′
1, · · · , ∆′Q of [N ] accord-

ing sampler SamplerSet(N,Q, v), each of which has cardinality v. Note
that with an overwhelming probability, the 2Q subsets would be
cover-free under our parameter selection.
• Generate random shares {bk}k∈[N ] over Zq under the following con-

straints: for î ∈ [Q], (1)
∑
k∈∆î

bk = 0, and (2)
∑
k∈∆′

î

bk = dq/2e.
This can be done efficiently by the cover-freeness of the subsets, using
the following standard procedure.
First, let δî be a unique index that only appears in ∆î but not
the other subsets, and δ′

î
be a unique index of ∆′

î
. To generate

the random shares {bk}k∈[N ], we first sample bk randomly for all
k ∈ [N ] \ ({δî}î∈[Q] ∪ {δ′î}î∈[Q]), and then fix bδî = −

∑
k∈∆î\{δî}

bk

for î ∈ [Q], and similarly bδ′
î

= dq/2e −
∑
k∈∆′

î
\{δ′

î
} bk for î ∈ [Q].

• Set bk = [0, · · · , 0, bk] ∈ Zmq for k ∈ [N ], and sample errors {e′k}k∈[N ]

from the distribution DZmq ,sD .

• Set β1,k = β̃k + bk + e′k for k ∈ [N ].

– If b = µ and List = {Ĉ∗
î
◦ IPγî}î∈[Q′] for some Q′ ≤ Q, it computes the

simulated ciphertext as follows.
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• For î ∈ [Q′], compute u
Ĉ∗
î
◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ

∗
î
◦

IP,y
)
, and let

(
∆î,K

∗
î

=

[
J∗
î

+ K∗
î,1

K∗
î,2

])
be the keys for Ĉ∗

î
◦ IPγî ,

generated by Sim2 for the pre-challenge 1-key queries.
• Sample Q − Q′ random subsets of cardinality v according sampler
SamplerSet(N,Q, v), i.e., {∆î}î∈[Q′+1,Q], starting with the index Q′+
1 and ending with Q. We know that by our setting of parameters, the
subsets {∆î}î∈[Q] are cover-free with an overwhelming probability.

• Compute vectors {β1,k}k∈[N ] as follows:
∗ Sample random shares {µk}k∈[N ] conditioned that

∑
k∈∆î

µk =

dq/2eµ for î ∈ [Q]. Then set bk = [0, · · · , 0, µk] for k ∈ [N ].

∗ Sample random vectors {β̃k}k∈[N ] condition on the following e-
quations:

∑
k∈∆î

β̃k =

[
J∗
î

+ K∗
î,1

K∗
î,2

]>
·

(
β0

u
Ĉ∗
î
◦IP

)
for î ∈ [Q′].

The above two steps can be done efficiently due to the cover-
freeness of the subsets {∆î}î∈[Q]. The procedure is the same as
we have presented in the previous case.

∗ Sample errors {ek}k∈[N ] according DZmq ,sD .

∗ Set β1,k = β̃k + bk + e′k for k ∈ [N ].
– It outputs the challenge ciphertext

ct∗ =
(
{ui}i∈[`], {vj}j∈[t],y,β0, {β1,k}k∈[N ]

)
.

4. Sim4(1λ,y, 1|x|): If the query is a 0-key, then it generates the key using the

real QPH.KeyGen. Otherwise, we denote function Ĉ∗
î
◦IPγî be the adversary’s

1-key query and (µ, Ĉ∗
î
◦ IPγî) be the message received from the oracle O.

Here we use index î ∈ [Q] to denote the number of overall 1-key queries up
to this point. Then the simulator computes as follows.

– The simulator first considers the following two cases to determine the
parameter ∆:
• Case 1: Q′ = 0, i.e., the adversary did not make any 1-key pre-

challenge query.
∗ If µ = 0, set ∆ := ∆î.
∗ Else ∆ := ∆′

î
, where {∆î}î∈[Q] and {∆′

î
}î∈[Q] are the subsets

prepared by Sim3 in the previous procedure.
• Case 2: 1 ≤ Q′ < Q, i.e., the adversary had made Q′ 1-key pre-

challenge queries.
∗ Set ∆ := ∆î where ∆î is the subset prepared by Sim3 (where µ

had been received by Sim3) in the previous procedure.
– Compute P∗∆ =

∑
k∈∆ Pk, and compute β̃∆ =

∑
k∈∆ β̃k, where {β̃k}k∈[N ]

are the vectors prepared by Sim3 in the previous procedure.
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– Compute A
Ĉ∗
î
◦IP = Evalpk({Ai}i∈[`], {Bj}j∈[t], Ĉ

∗
î
◦ IP), and compute

u
Ĉ∗
î
◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ

∗
î
◦ IP,y

)
.

– Sample J∗
î
← DZm×m,ρ, and use TA′ to sample

[
K∗
î,1

K∗
î,2

]
← DZ2m×m,s such

that A A
Ĉ∗
î
◦IP

β>0 u>
Ĉ∗
î
◦IP

 · [K∗î,1
K∗
î,2

]
= −

[
A

β>0

]
· J∗

î
+

[
P∗∆

β̃
>
∆

]
.

– Output sk
Ĉ∗
î
◦IPγ

î

=
(
∆,

[
J∗
î

+ K∗
î,1

K∗
î,2

])
.

5.3 Semi-Adaptively Secure Partially Hiding Predicate Encryption

In this section, we show how to upgrade our PHPE in Section 5.2 from (Q, poly)-
Sel-SIM security to (Q, poly)-SA-SIM security. Technically, we follow the idea
of [21], yet in the case of bounded-length attributes (as used in this work).
Below, we present the detailed construction.

Let PHSel = {Setup,KeyGen,Enc,Dec} be a PHPE with private-public at-
tribute space {0, 1}t × {0, 1}`, message space M, and function class F that
is closed under bit-shift on {0, 1}t × {0, 1}` (i.e., for any f ∈ F , (r, r′) ∈
{0, 1}t×{0, 1}`, we have fr,r′(x,y) = f(x⊕r,y⊕r′) ∈ F). Moreover, the encryp-
tion algorithm Enc((x,y), µ) can be decomposed into three parts: Enc1(µ;R),
{Enc2(xi;R)}i∈[t], {Enc3(yi;R)}i∈[`], where R is the common random string a-
mong the three algorithms, xi is the i-th bit of the attribute x whose bit-length
is `, and similarly yi is the i-th bit of y. Intuitively, the encryption procedure is
done by three different components: with a common random string R, Enc1 en-
codes the message, and both Enc2 and Enc3 encode the private/public attributes
in the bit-by-bit manner.

Additionally, let PKE = {Gen,Enc,Dec} be any semantically secure public-
key encryption. Then our transformation is defined as below.

PHSA.Setup(1λ, 1t, 1`): the algorithm takes the following steps:
– Run the underlying setup (mpkSel,mskSel)← PHSel.Setup(1λ, 1`).
– Generate {PKE.pki,b,PKE.ski,b}i∈[t],b∈{0,1}, {PKE.pk′i,b,PKE.sk

′
i,b}i∈[`],b∈{0,1}

from the scheme PKE.
– Sample a random string (r, r′) ∈ {0, 1}t × {0, 1}`.
– Finally output mpkSA = (mpkSel, {PKE.pki,b}i∈[t],b∈{0,1}, {PKE.pk′i,b}i∈[`],b∈{0,1})

as the master public key, and keep private mskSA = (mskSel, {PKE.ski,b}i∈[t],b∈{0,1},
{PKE.sk′i,b}i∈[`],b∈{0,1}, r, r

′) as the master secret key.

Note: Here Setup might implicitly take input 1d, 1Q for circuit depth and an
upper bound of the 1-key queries. For simplicity, we omit the description.

PHSA.KeyGen(mskSA, f ∈ F) : the algorithm defines a related function fr,r′(x,y) :=
f(x ⊕ r,y ⊕ r′), and runs skSel,f ← PHSel(mskSel, fr,r′). Then it returns
(r, r′, {PKE.ski,ri}i∈[t], {PKE.sk′i,r′i}i∈[`], skSel,f ) as the secret key.
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PHSA.Enc(mpkSA, (x,y), µ) : the algorithms runs the following steps:
– Sample a random string R.
– Run ct1 ← PHSel.Enc1(µ;R), {Li,b ← PHSel.Enc2(xi ⊕ b;R)}i∈[t],b∈{0,1},

and {L′i,b ← PHSel.Enc3(yi ⊕ b;R)}i∈[`],b∈{0,1}.
– Generate {cti,b ← PKE.Enc(PKE.pki,b, Li,b)}i∈[t],b∈{0,1} and {ct′i,b ←

PKE.Enc(PKE.pk′i,b, L
′
i,b)}i∈[`],b∈{0,1}.

– Finally, output the ciphertext as ct = (ct1, {cti,b}i∈[t],b∈{0,1}, {ct′i,b}i∈[`],b∈{0,1}).
PHSA.Dec(skSA,f ,y, ct) :the algorithm runs the following steps:

– Parse ct = (ct1, {cti,b}i∈[t],b∈{0,1}, {ct′i,b}i∈[`],b∈{0,1}).
– Run the PKE decryption on {cti,ri}i∈[t] and {ct′i,r′i}i∈[`]. Then obtain

{Li,ri}i∈[t] and {L′i,r′i}i∈[`].

– View (ct1, {Li,ri}i∈[t], {L′i,r′i}i∈[`]) as the ciphertext of PHSel, and decrypt

it with skSel,f . Output the decrypted outcome.

Theorem 5.6 Assume that PKE is semantically secure, and PHSel is (q1, q2)-
Sel-SIM secure for private-public attribute space {0, 1}t × {0, 1}`, message space
M, and function class F that is closed under bit-shift on {0, 1}t×{0, 1}`. Then
the scheme PHSA is (q1, q2)-SA-SIM secure for the same attribute and message
spaces and the function class F .

For clarity of the presentation, we defer the correctness and the proof of Theorem
5.6 to the supplementary material in Sections C.1, C.2, respectively.

6 (Q, poly)-SIM-secure Functional Encryption

In this section, we present the technique from [2], showing that a (Q, poly)-SIM-
secure QPHPE with a fully homomorphic encryption scheme implies a (Q, poly)-
SIM-secure FE, which is what we desire. In particular, we present a (Q, poly)-
functional encryption scheme by bootstrapping our QPHPE scheme. Our con-
struction ΠFE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) uses two components:

– a fully homomorphic encryption scheme FHE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval);
– a partially-hiding predicate encryption scheme QPHPE = (QPH.Setup,QPH.KeyGen,

QPH.Enc,QPH.Dec) that achieves (Q, poly)-SA-SIM security.

Formally, we require a QPHPE scheme for the circuit family C where Ĉ ◦ IP ∈ C is
defined as follows. Let the private attributes x = t where t is the FHE secret, and
public attributes y = (â, 0̂1, · · · , 0̂N ), where â is an FHE encryption of vector a,
and 0̂i is an FHE encryption of the bit 0 for i ∈ [N ], with large noise ψ. Then,
define:

Ĉ
(
{0̂i}i∈[N ], â

)
= FHE.Scale

(
FHE.Eval(â, C) +

∑
j∈[N ]

rj 0̂j

)
Ĉ ◦ IP

(
t, {0̂i}i∈[N ], â

)
=
〈
t, Ĉ

(
{0̂i}i∈[N ], â

)〉
mod q

Ĉ ◦ IPγ
(
t, {0̂i}i∈[N ], â

)
= 1 iff Ĉ ◦ IP

(
t, {0̂i}i∈[N ], â

)
= γ, 0 otherwise,
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where r = (r1, · · · , rN ) ∈ {0, 1}N is a parameter of the circuit Ĉ. For simplicity
of notation, we often omit the expression of r and assume that it is part of the
description of Ĉ. On the other hand, we require the noise ψ of encryption of 0
and the noise of evaluation of a’s ciphertext satisfy that

ψ + Noise
(
FHE.Eval(â, C)

) s
≈ ψ. (2)

Above, FHE.Scale is the modulus reduction algorithm as Theorem 2.20, tak-
ing input an FHE ciphertext over modulus p and reducing it to a ciphertext that
is over modulo q, for a smaller yet perhaps still super-polynomial modulus q.
Notice that this q is required to match the modulus of the used QPH, and the
noise in the resulting ciphertext is required to be polynomially bounded. Below
we describe how to achieve this.

We first note that q is required to be λΩ(d) from the QPH, where d is the depth
of the circuit Ĉ. Therefore, q would be super-polynomial if the depth is beyond
a constant, i.e., O(1).15 Next, it is without loss of generality to assume that the
noise of the output of FHE.Eval is polynomially bounded, via the bootstrapping
technique. Thus, the noise of FHE.Eval(â, C)+

∑
j∈[N ] rj 0̂j can be dominated and

upper bounded by the noise bound of ψ, say some super-polynomial B, with an
overwhelming probability. Then by setting the FHE modulus as p = qB+poly(λ)
for some small polynomial poly(·), according to Theorem 2.20, the noise of the
resulting FHE ciphertext after FHE.Scale would be polynomially bounded. This
satisfies what we need for the construction.

For the sake of brevity, we slightly abuse notation and do not explicitly
include the inputs (p, q) in the inputs to Ĉ.

6.1 Construction of (Q, poly) Functional Encryption

In this section, we present a private-index FE for the class C × {I}, where C
contains all bounded-depth circuits.

FE.Setup(1λ, 1k, 1d, 1Q) : The setup algorithm takes as input the security pa-
rameter λ, the index length k, the function depth d and the upper bound
of 1-key queries Q, sets another useful parameter N = O(Q), and then does
the following:
1. Choose the FHE modulus p in which FHE.Eval(·, ·) will be computed and

the FHE modulus q ∈ poly(λ) in which decryption will be performed.

2. Invoke the setup algorithm for the QPHPE scheme for family C to get:

(QPH.mpk,QPH.msk)← QPH.Setup(1λ, 1t, 1`, 1d
′
, 1Q),

where length of private attributes t = |FHE.sk|, length of public at-
tributes ` is the length of an FHE encryption of (k+N) bits correspond-
ing to the attributes a and 0, i.e. ` = (k + N) · |FHE.ct| and d′ is the
bound on the augmented FHE evaluation circuit.

15 In fact, we can compute a polynomial-length branching program for any NC1 circuit
within a polynomial modulus [36], yet this cannot be extended beyond the NC1
class.
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3. Output (FE.mpk = (QPH.mpk, N),FE.msk = QPH.msk).

FE.KeyGen(FE.msk, C): The key generation algorithm takes as input the master
secret key FE.msk and a circuit C. It does the following:
1. Let R , [bq/2c − B, bq/2c + B]. For each γ ∈ R, sample a set ∆ ←

SamplerSet(N,Q, v) (ref. Lemma 5.4 in Section 5.2), set r ∈ {0, 1}N as
the indicator vector of ∆, and include r in the circuit description of
Ĉ ◦ IPγ as described above.

2. For each γ ∈ R, compute

QPH.skĈ◦IPγ ← QPH.KeyGen(QPH.msk, Ĉ ◦ IPγ).

3. Output the secret key as skC = {QPH.skĈ◦IPγ}γ∈R.

FE.Enc(FE.mpk,a, µ): The encryption algorithm does the following:
1. Sample a fresh FHE secret key FHE.sk, and denote it by t.

2. Compute an FHE encryption of a to get â = FHE.Enc(t,a).

3. Sample {ψi}i∈[N ] to satisfy the formula (2) and compute N FHE encryp-

tions of 0 with noise {ψi}i∈[N ] as {0̂i}i∈[N ].

4. Set public attributes y = (â, 0̂1, · · · , 0̂N ) and private attributes x = t.

5. Compute QPH.ctâ,{0̂i}i∈[N]
= QPH.Enc

(
QPH.mpk, (x,y), µ

)
.

6. Output cta =
(
â, {0̂i}i∈[N ],QPH.ctâ,{0̂i}i∈[N]

)
.

FE.Dec(skC , cta): Do the following:
1. Parse skC as the set {QPH.skĈ◦IPγ}γ∈R

2. For each γ ∈ R, let τγ = QPH.Dec
(
cta,QPH.skĈ◦IPγ

)
. If there exists

some value γ′ for which τγ′ 6= ⊥, then output µ = τγ′ , else output ⊥.

Correctness. Correctness follows from correctness of QPHPE. As we defined
before

Ĉ ◦ IPγ
(
t, {0̂i}i∈[N ], â

)
= 1 iff Ĉ ◦ IP

(
t, {0̂i}i∈[N ], â

)
= γ, 0 otherwise.

Note that Ĉ
(
{0̂i}i∈[N ], â

)
= FHE.Scale

(
FHE.Eval(â, C) +

∑
j∈[N ] rj 0̂j , q, p

)
is a

modulo p FHE ciphertext of message C(a) by the properties of FHE. If C(a) = 1,
then for some θ ∈

[
bq/2c −B, bq/2c+B

]
, we have that:〈

t, Ĉ
(
{0̂i}i∈[N ], â

)〉
= θ mod q.

Therefore QPH.Dec
(
â, {0̂i},QPH.ctâ,{0̂i}, Ĉ ◦ IPγ ,QPH.skĈ◦IPγ

)
= µ iff γ = θ.

Otherwise, if C(a) = 0, then θ must lie outside
[
bq/2c − B, bq/2c + B

]
. Hence

QPH.Dec returns ⊥ by correctness of QPHPE.
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6.2 Security of (Q, poly) Functional Encryption in Section 6

Theorem 6.1 Let C be the family of bounded depth circuits, QPHPE be a (Q, poly)-
SA-SIM secure partially-hiding predicate encryption scheme for F as defined in
Section 5, and FHE be a secure fully-homomorphic encryption scheme. Then the
functional encryption scheme described above is (Q, poly)-SA-SIM secure for the
class C × {I}.

As the proof is similar to that of [2], we only describe the required simulator and
sketch the hybrids.

Proof (Sketch). We construct a simulator FE.Sim as required by Definition 3.2.

Simulator FE.Sim(1λ). The simulator is described as follow:

1. It invokes QPHPE.Sim1(1λ) to obtain the public parameters.
2. The adversary A outputs challenge index a. FE.Sim2 does the following:

– If Amakes a 0-key query C, FE.Sim2 transforms C into {Ĉ◦IPγ}γ∈R, and
sends this to QPHPE.Sim2. FE.Sim2 receives the secret key set {QPH.skĈ◦IPγ}γ∈R
from QPHPE.Sim2, and forwards them to A.

– If A makes a 1-key query C∗, FE.Sim2 samples γq such that formu-
la (2) holds, and sets γ to denote its scaled down version modulo p,

and then computes Ĉ∗ ◦ IPγ . For θ ∈ R\{γ}, FE.Sim2 computes {Ĉ∗ ◦
IPθ}. Finally, FE.Sim2 sends {Ĉ∗ ◦ IPγ}γ∈R to QPHPE.Sim2, and for-
wards {QPH.skĈ∗◦IPγ}γ∈R to A upon receiving the secret key set from

QPHPE.Sim2.
3. Upon receiving the tuple (b, List), FE.Sim3 samples an FHE secret key FHE.sk

and sets â = FHE.Enc(FHE.sk,0) and 0̂i = FHE.Enc(FHE.sk, 0) with noise
ψi for i ∈ [N ]. Then it invokes QPHPE.Sim3

(
(â, {0̂i}i∈[N ]), 1

|FHE.sk|, b, List
)

to obtain QPH.ct. Finally, FE.Sim3 outputs (â, {0̂i}i∈[N ],QPH.ct).
4. FE.Sim4 is similar to FE.Sim2 except that it invokes QPHPE.Sim4 instead of

QPHPE.Sim2 to generate secret keys.

The proof follows from a series of hybrids described below.

Hybrid 0: The real experiment.
Hybrid 1: In this hybrid, the FHE encryption â is generated honestly but the

remainder of the experiment is simulated.
Hybrid 2: The simulated experiment.

This completes the sketch of the proof. ut

We notice that the required QPHPE can be instantiated by Theorems 5.5
and 5.6. Thus, we obtain the following corollary to summarize the final result.

Corollary 6.2 Assuming the hardness of LWE for a sub-exponential modulus-
to-noise ratio. Then for any bounded polynomial Q = poly(λ), there exists a
(Q, poly)-SA-SIM secure FE for the class C × {I}.
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7 Constructions of FE with Public index

In this section, we notice that our two-stage sampling technique in Section 4
can be further used to derived several new feasibilities of FE with public index.
Particularly, we first construct an adaptively-secure public-index FE for IB-FEIP
in the IND-based setting. Then, we construct a semi-adaptively-secure public-
index FE for AB-FEIP in the IND-based setting. Both of constructions are in the
standard model.

7.1 Construction of IB-FEIP

In this section, we present the first functional encryption with public index for
the class I × (IP) where I is the class of identity comparison functions, and IP
is the class of inner product functions over Z. The scheme achieves (1, poly)-
adaptive security.

IB-FEIP.Setup(1λ, I, IP,X ,M): Given as input the security parameter λ, the
class I of identity comparison functions, the class IP of inner product func-
tion indexed by vectors in {0, . . . , v − 1}`, the index (or identity) space
X = {0, 1}¯̀

and the message space M = {0, . . . , p − 1}` with `, ¯̀, v, p ∈ N,
the algorithm does the following:
1. Choose modulus q, parameters n,m, k, ρ, s, σ, τ as described in next para-

graph for parameters.

2. Sample matrices Ai
$←− Zn×mq for i ∈ [¯̀],P

$←− Zn×`q .
3. Sample (A,TA)← TrapGen(1m, 1n, q).
4. Output the public and master secret keys.

mpk := (A, {Ai}i∈[¯̀],P),msk := TA.

IB-FEIP.KeyGen(msk, id,y): Given as input a master secret key msk, an identity
id = (b1, . . . , b¯̀) ∈ {0, 1}¯̀

, and one vector y ∈ {0, . . . , v − 1}`, the algorithm
does the following:

1. Let Aid = G +
∑¯̀

i=1(biAi) ∈ Zn×mq .
2. Sample matrix J← DZm×`,ρ, and let U = P−AJ(modq).

3. Sample

[
K1

K2

]
← SampleLeft(A,Aid,TA,U, s) for Gaussian parameter s,

i.e., the equation holds for [A|Aid] ·
[
K1

K2

]
= U(modq).

4. Let Kid =

[
J + K1

K2

]
∈ Z2m×`

q , and output (y, skid,y = Kid · y).

IB-FEIP.Enc(mpk, id,x): Given as input a master public key, an identity id =
(b1, . . . , b¯̀) ∈ {0, 1}¯̀

, and a vector x ∈M, the algorithm does the following:

1. Let Aid = G +
∑¯̀

i=1(biAi) ∈ Zn×mq , and Hid = [A|Aid] ∈ Zn×2m
q .

2. Sample s
$←− Znq .

3. Sample Ri
$←− {−1, 1}m×m for i ∈ [¯̀], and compute Rid =

∑¯̀

i=1(bi ·Ri).
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4. Sample error terms e1,1, e1,2 ← DZm,2στ , e2 ← DZ`,2στ+σ.

5. Let e =

(
e1,1

e1,2

)
. Compute ct1 = H>id ·s+e, and ct2 = P> ·s+e2+b qk c·x.

6. Output the ciphertext (ct1, ct2).
IB-FEIP.Dec(y, skid,y, ct1, ct2): Given as input a secret key (y, skid,y) and a ci-

phertext (ct1, ct2), the algorithm does the following:
1. Compute µ′ = y> · ct2 − sk>id,y · ct1 mod q.
2. Output the value µ ∈ {0, . . . , k − 1} that minimizes |b qk · µ− µ

′c|.

Parameters.

Our scheme is an essential improvement of selective IB-FEIP in [1] with similar
parameters. For completeness, we present the details below. For the plaintext
vectors x ∈M = {0, . . . , p−1}`, and the decryption key vectors y ∈ {0, . . . , v−
1}`, we set 〈x,y〉 ∈ {0, . . . , k−1} with k = `vp. Since our construction is essential
a combination of LWE-based adaptively secure FEIP in [5] (which is referred as
ALS in the following contexts) and IBE from [3], we set the parameters in the
following way:

– For the security and correctness of ALS, we need to set the parameters nALS,
qALS, σALS, ρALS, mALS = 2nALS log qALS, αALS as in Appendix D.1.

– For the security reduction to ALS, we need to set σ = σALS, q = qALS,
n = nALS, m = mALS.

– For the algorithms SampleLeft and SampleRight, we need to set s > m ·
¯̀ω(
√

logm).
– For our new two-stage sampling algorithms in Section 4, we need to set
s ≥ ω(

√
logm) and ρ ≥ s · ¯̀·m · λω(1).

– For the algorithm TrapGen, we need to set m > 6n log q.
– For the hardness of LWEn,q,α, we need to set α = αALS and αq > 2

√
n.

– For the algorithm ReRand in the process of noise rerandomization, we need

to set σ ≥ ωlog(2m+ `), τ ≥
√

1 + c2(ρ2 + σ2) · (2
√
m+

√
`)2 + ¯̀2m2, since

s1(I) = 1, s1(Rid∗) ≤ ¯̀s1(Ri) ≤ ¯̀m, and s1(J∗) ≤ c ·(
√
ρ2 + σ2)(2

√
m+
√
`)

for R∗i
$←− {0, 1}m×m and J∗

$←− DZm×`,
√
ρ2+σ2 .

– For correctness, we need to set q ≥ 8kσmτρ+ 2k`v(2στ + σ).
Hence, we choose to use ALS parameters, and modify them in the following
way to satisfy these restrictions.
• m > 6n log q.
• q ≥ 8kσmτρ+ 2k`v(2στ + σ).
• s ≥ m · ¯̀ω(

√
logm).

• ρ ≥ s · ¯̀·m · λω(1).

• τ ≥
√

1 + c2(ρ2 + σ2) · (2
√
m+

√
`)2 + ¯̀2m2.

Lemma 7.1 (Correctness) For parameters n, m, q, σ, ρ, s, τ , `, p, v, k,
chosen as in the previous paragraph, our scheme IB-FEIP is correct.
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This lemma can be easily verified as [1], so we omit the proof.

Theorem 7.2 (AD-IND Security) Let λ be the security parameter and con-
sider the functional encryption scheme ALS with parameters q, σ, ρ, s,m, n, α
chosen as in the parameter setting paragraph of Section D.1. If ALS is adap-
tively secure under the LWEq,α,n assumption, then our scheme IB-FEIP with the
above parameters setting is AD-IND secure under LWEq,α,n assumption.

The proof follows the outline of the original adaptive IBE in [3]. The novelty of
our proof is the use of our new two-stage sampling algorithm to support adaptive
functional decryption key query.

Proof. Before proving this theorem, we first present some auxiliary algorithms.

Auxiliary Algorithms.

IB-FEIP.Setup1(1λ, I, IP,X ,M): Do the following:
1. Choose modulus q, parameters n,m, k, ρ, s, σ, τ as described in next para-

graph for parameters.
2. Sample (A,TA)← TrapGen(1m, 1n, q).

3. Let Ai = A ·Ri − hi ·G ∈ Zn×mq for i ∈ [¯̀], where Ri
$←− {−1, 1}m×m

and hi
$←− Zq for i ∈ [¯̀].

4. Sample P
$←− Zm×`q .

5. Output the public and master secret keys.

mpk := (A, {Ai}i∈[¯̀],P),msk := (TA, {Ri}i∈¯̀).

IB-FEIP.Setup2(1λ, I, IP,X ,M): Do the following:
1. Choose modulus q, parameters n,m, k, ρ, s, σ, τ as described in next para-

graph for parameters.
2. Sample (A,TA)← TrapGen(1m, 1n, q).

3. Let Ai = A ·Ri − hi ·G ∈ Zn×mq for i ∈ [¯̀], where Ri
$←− {−1, 1}m×m

and hi
$←− Zq for i ∈ [¯̀].

4. Sample J← DZm×`,
√
ρ2+s2

, and set P = A · J(modq).

5. Output the public and master secret keys.

mpk := (A, {Ai}i∈[¯̀],P),msk := (TA, {Ri}i∈¯̀,J).

IB-FEIP.Setup3(1λ, I, IP,X ,M): Do the following:
1. Choose modulus q, parameters n,m, k, ρ, s, σ, τ as described in next para-

graph for parameters.

2. Sample A
$←− Zn×mq .

3. Let Ai = A ·Ri − hi ·G ∈ Zn×mq for i ∈ [¯̀], where Ri
$←− {−1, 1}m×m

and hi
$←− Zq for i ∈ [¯̀].

4. Sample J← DZm×`,
√
ρ2+s2

, and set P = A · J(modq).
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5. Output the public and master secret keys.

mpk := (A, {Ai}i∈[¯̀],P),msk := ({Ri}i∈¯̀,J).

IB-FEIP.KeyGen1(PH.msk, id,y): Do the following:

1. Let Aid = G +
∑¯̀

i=1(biAi) = ARid + hidG ∈ Zn×mq , where Rid =∑¯̀

i=1(biRi) ∈ Zm×mq and hid = 1 +
∑¯̀

i=1(bihi) ∈ Zq.
2. For different types of key queries, we respond as follows:

– 0-query (id,y) such that id 6= id∗. In this case, we have hid 6= 0. As
the G does not vanish, the algorithm runs

Kid ← SampleRight(A,Rid, hid,P, s),

satisfying [A|ARid + hidG]Kid = P(modq).
– 1-query (id,y) such that id = id∗. In this case, the algorithm samples

K2 ← DZm×`,s, and sets Kid =

[
J−RidK2

K2

]
.

– Return (y,Kid · y).

Now we establish the proof via the following hybrids, where the first one
corresponds to the real world and security of the last one follows from the security
of the ALS encryption scheme.

Hybrid 0: This is the real experiment with (m0,m1) as the challenge messages.
Hybrid 1: This hybrid is almost identical to Hybrid 0 except for replacing IB-

FEIP.Setup with IB-FEIP.Setup1.
Hybrid 2: This hybrid is almost identical to Hybrid 1 except for replacing IB-

FEIP.Setup1 with IB-FEIP.Setup2.
Hybrid 3: This hybrid is almost identical to Hybrid 2 except for replacing IB-

FEIP.Setup2 with IB-FEIP.Setup3.
Hybrid 4: This hybrid is almost identical to Hybrid 3 except for replacing IB-

FEIP.KeyGen with IB-FEIP.KeyGen1.

Next, for the last hybrid, we build a reduction from ALS, meaning that suppose
the adversary has an noticeable advantage in Hybrid 4, then the reduction can
break ALS with a similar advantage.

Particularly, upon receiving public keys AALS and DALS from the AD-CPA
challenger CALS, the reduction simulates the view of the adversary AHybrid 4 in
Hybrid 4 in the following way:

– Setup: The reduction sets A := A>ALS, and conducts the following steps:
1. Choose J∗ ← DZm×`,

√
ρ2+s2

, and compute P := D>ALS + AJ∗(modq),

2. Choose Ri
$←− {−1, 1}m×m and hi

$←− Zq for i ∈ [¯̀], and then compute
Ai = A ·Ri − hi ·G ∈ Zn×mq for i ∈ [¯̀].

3. Send (A, {Ai}i∈[`],P) as mpk to AHybrid 4.
– KeyGen for id 6= id∗: The reduction uses the 0-key query algorithm as in

Hybrid 4.
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– KeyGen for (id∗, ỹ): The reduction asks CALS for the functional decryption key
with respect to ỹ, and then receives skỹ. Finally, the reduction computes and

return skid∗,ỹ =

[
J∗ · ỹ + skỹ −Rid∗K2ỹ

K2ỹ

]
16, where K2 ← DZm×`,s, Rid∗ =∑¯̀

i=1(b∗iRi) ∈ Zm×mq with id∗ = (b∗1, . . . , b
∗
¯̀).

– Challenge ciphertext query for (x0,x1) from AHybrid 4: The reduction for-
wards (x0,x1) to CALS, and receives (ctALS1 , ctALS2 ). Then, the reduction con-
ducts the following steps:
1. Run the algorithm ReRand in Lemma 2.10, i.e., ReRand([I|Rid∗ |J∗], ctALS1 , σ, τ),

to obtain (ct>1,1, ct
>
1,2, ct

>
1,3)> ∈ Z2m+`

q .

2. Set ct1 = (ct>1,1, ct
>
1,2)> ∈ Z2m

q , ct2 = ct1,3 + ctALS2 ∈ Z`q.
3. Send (ct1, ct2) to AHybrid 4.

Next, let us analyze above reduction process. Clearly, according to Lemma
2.10, for ctALS1 = A> · s + eALS1 ∈ Zmq , we have ct1,1 = A> · s + e′1,1 ∈ Zmq ,

ct1,2 = (ARid∗)
> ·s+e′1,2 ∈ Zmq , ct1,3 = (AJ∗)> ·s+e′1,3 ∈ Z`q, where e′1,1, e

′
1,2 ∈

DZm,2στ , e′1,3 ∈ DZ`,2στ . Hence, it holds

ct1 = (ct>1,1, ct
>
1,2)> = [A|A ·Rid∗ ]

> · s+

(
e′1
e′2

)
.

Additionally, for ctALS2 = DALS · s+ eALS2 + b qk · xbc with b ∈ {0, 1}, we have

ct2 = ct1,3 + ctALS2 = (A · J∗ + P)> · s+ e′2 + b q
k
· xbc,

where e′2 = e′1,3 + eALS2 . For sufficiently large σ, σ′, we know the distribution of
e′2 is statistically close to DZ`,2στ+σ.

Hence, the reduction faithfully simulate Hybrid 4, and thus turns an adversary
with a non-negligible advantage in Hybrid 4 into an adversary that breaks ALS
with a non-negligible advantage.

Finally, we sketch how to show indistinguishability between each two adjacent
hybrids.

Lemma 7.3 Hybrid 0 and Hybrid 1 are statistically indistinguishable.

Proof. This lemma holds due to Lemma 2.16. We omit the detailed proof here.
ut

Lemma 7.4 Hybrid 1 and Hybrid 2 are statistically indistinguishable.

Proof. This lemma holds due to Lemma 4.1. We omit the detailed proof here.
ut

Lemma 7.5 Hybrid 2 and Hybrid 3 are statistically indistinguishable.

16 Notice that the distributions of this secret keys are still statistically close to that of
the direct usage of Sampler-2, since J∗i ỹ + sk

(i)
ỹi

and J∗i ỹ are statistically close, due
to noise smudging for our parameter setting.
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Proof. This lemma holds due to Theorem 2.13. We omit the detailed proof here.
ut

Lemma 7.6 Hybrid 3 and Hybrid 4 are statistically indistinguishable.

Proof. This lemma holds due to Theorem 4.2. We omit the detailed proof here,
as it is quite similar to that of Lemma B.3. ut

ut

7.2 Construction of AB-FEIP Modulo p

In this section, we present the second functional encryption with public index
for the class C × (IP mod p) where C is general circuits of depth at most d,
and IP mod p is inner product modulo p. The scheme achieves (Q, poly)-selective
security. The selective security can be upgraded to semi-adaptive security, using a
semantically secure PKE scheme as in Section 5.3. For simplicity of presentation,
we only describe the case of selective security in this section.

AB-FEIP.Setup(1λ, 1Q, C, IP,X ,M): Given as input the security parameter λ,
the upper bound Q of 1-key queries, the class C of general d-depth circuits
mapping {0, 1}¯̀

to {0, 1}, the class IP of inner product function indexed by
vectors in Z`p, the index (or attribute) space X = {0, 1}¯̀

, and the message

space M = Z`p, the algorithm does the following:
1. Choose modulus q = pe, parameters e, n,m, ρ, s, σ,N, t in a similar way

as described in the parameter setting paragraph of Section 7.1.

2. Choose random matrices Ai
$←− Zn×mq for i ∈ [¯̀],Pj

$←− Zn×`q for j ∈ [N ].
3. Sample (A,TA)← TrapGen(1m, 1n, q).
4. Output the public and master secret keys.

mpk := (A, {Ai}i∈[¯̀], {Pj}j∈[N ]),msk := TA.

AB-FEIP.KeyGen(msk, C,y): Given as input a master secret key msk, a general
predicate C ∈ C, and one vector y ∈ Z`p, the algorithm does the following:
1. Let AC = Evalpk({Ai}i∈[¯̀], C).
2. Sample a random subset ∆ ⊂ [N ] with |∆| = t according sampler

SamplerSet(N,Q, t), and compute the subset sum P∆ =
∑
k∈∆ Pk.

3. Sample matrix J← DZm×`,ρ, and let U = P∆ −AJ(modq).

4. Sample

[
K1

K2

]
← SampleLeft(A,AC ,TA,U, s) for Gaussian parameter

s, i.e., the equation holds for [A|AC ] ·
[
K1

K2

]
= U(modq).

5. Let KC =

[
J + K1

K2

]
, and output (∆,y, skC,y = KC · y).

AB-FEIP.Enc(mpk, x,x): Given as input a master public key, an x = (x1, . . . , x¯̀) ∈
X = {0, 1}¯̀

, and a vector x ∈M, the algorithm does the following:
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1. Let Hx = [A|x1G + A1| · · · |x¯̀G + A¯̀] ∈ Zn×(¯̀+1)m
q .

2. Sample s
$←− Znq , Ri

$←− {−1, 1}m×m for i ∈ [¯̀], and error terms e1 ←
DZm,σ, and e2,i ← DZ`,2στ+σ for i ∈ [N ].

3. Set an encoding of x ∈ Z`p as {x′i}i∈[N ], where x′i = dq/2e
v x.

4. Let e = [Im|R1| · · · |R¯̀]> · e1 ∈ Z(¯̀+1)m
q .

5. Compute ct1 = H>x ·s+e, and ct2,i = P>i ·s+e2,i+pe−1 ·x′i for i ∈ [N ]
6. Output the ciphertext (x, ct1, {ct2,i}i∈[N ]).

AB-FEIP.Dec(∆,y, skC,y, x, ct1, {ct2}i∈[N ]): Given as input a secret key (∆,y, skC,y)
and a ciphertext (x, ct1, {ct2}i∈[N ]), the algorithm does the following:
1. If P(x) 6= 0, output ⊥. Otherwise, conduct the following steps.

2. Let ct1 = (ct1,0, ct1,1, . . . , ct1,`) ∈ Z(`+1)m
q .

3. Compute ctP = Evalct(P, {(xi,Ai, ct1,i)}`i=1) ∈ Zmq .
4. Let ct′P = (ct1,0, ctP) ∈ Z2m

q .

5. Compute u′ = y> ·
∑
i∈∆(ct2,i)− sk>P,y · ct′P mod q.

6. Output the value µ ∈ Zp that minimizes |pe−1 · µ− µ′c|.

Theorem 7.7 (Sel-IND Security) Let λ be the security parameter and con-
sider the functional encryption scheme N -ALS with parameters q, σ, ρ, s,m, n, α
chosen as in the parameter setting paragraph of Section D.2. If N -ALS is secure
under the LWEq,α,n assumption, then our scheme AB-FEIP is Sel-IND secure
under LWEq,α,n assumption.

The security of our construction relies on the improved ALS scheme, which
we called N -ALS from the work [47]. We present the necessary backgrounds in
Section D. Similar to proof of Theorem 7.2, this proof follows the outline of the
original selective ABE in [12], except that we use our new two-stage sampling
algorithm and the secret sharing technique in Section 5.2. To avoid repetition,
we just provide a sketch of the proof.

Proof (Sketch). We prove the theorem via a series of hybrids. First, we view the
real experiment as Hybrid0. Then, in Hybrid 1, we replace the random matrices

Ai with A · Ri − x∗iG(mod q) for i ∈ [¯̀], where Ri
$←− {−1, 1}m×m and x∗ =

(x∗1, . . . , x
∗
¯̀) is the challenge index proposed in advance. At the same time, we

use the same matrices {Ri}i∈[¯̀] in the computation of the challenge ciphertext.

Next, in Hybrid 2, we first choose Q random subsets ∆∗1, · · · , ∆∗Q with size t

according sampler SamplerSet(N,Q, t). Then, we set matrices Pi for i ∈ [¯̀] in the
following way: Sample J∗i ← DZm×`,ρ for i ∈ [Q], and sample random matrices
Pj from Zn×`q for j ∈ [N ] under the constraint

∑
j∈∆∗i

Pj = A · J∗i , and we

denote
∑
j∈∆∗i

Pj as P∆∗i
.

Next in Hybrid 3, we set Pi in the following way.

1. For every i ∈ [Q], choose a unique index δi that only appears in ∆∗i ⊂ [N ]
but not the other subsets.

2. Sample Ji ← DZm×`,s for i ∈ [N ]\{δ1, · · · , δQ}. Set Jδi = J∗i −
∑
j∈∆∗i \{δi}

Jj
for i ∈ [Q].
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3. Set Pi = A · Ji for i ∈ [N ].

Moreover, in Hybrid 4, we replace the matrix A from the algorithm TrapGen
with a randomly chosen one without trapdoor. Furthermore, in Hybrid 4, we use
SampleRight to answer 0-key queries, and use Sampler-2 to answer 1-key queries.
It is easy to argue the indistinguishability of the above hybrids, which is omitted
here for simplicity.

Finally, we build a reduction from the N -ALS scheme to Hybrid 4, where
N -ALS can be viewed as N copies of the ALS scheme with the common matrix
A. Its security has been proven in [47].

Particularly, upon receiving public keys AN-ALS and {DN-ALS,i}i∈[N ] from
the AD-CPA challenger CN-ALS, the reduction simulates the view of the adversary
AHybrid 4 in Hybrid 4 in the following way:

– Setup. The reduction sets A := A>N-ALS, and conducts the following steps.
1. Choose Q random subsets ∆∗1, · · · , ∆∗Q with size t according sampler

SamplerSet(N,Q, t), and choose a unique index δi that only appears in
∆∗i but not the other subsets.

2. Set Pi = D>N-ALS,i for i ∈ [N ]\{δ1, · · · , δQ}.
3. Sample J∗i ← DZm×`,ρ and set Pi = A·J∗i +D>N-ALS,i for i ∈ {δ1, · · · , δQ}.
4. Choose Ri

$←− {−1, 1}m×m for i ∈ [¯̀], and then compute Ai = A ·Ri −
x∗i ·G ∈ Zn×mq , where x∗ = (x∗1, . . . , x

∗
¯̀) ∈ {0, 1}¯̀

.
5. Send (A, {Ai}i∈[¯̀], {Pj}j∈[N ]) to AHybrid 4.

In this case, we have
∑
j∈∆∗i

(
Pj

)
= AJ∗i +

∑
j∈∆∗i

(
D>N-ALS,j

)
for i ∈ [Q].

– KeyGen for 0-key queries: The reduction uses the 0-key query algorithm as
in Hybrid 4.

– KeyGen for i-th 1-key query (Ci, ỹi) for i ∈ [Q]: The reduction asks CN-ALS for
the functional decryption key of (yN-ALS

1 , . . . ,yN-ALS
N ), where yN-ALS

j = ỹi for

all j ∈ ∆i, otherwise yN-ALS
j = 0`. Then, the reduction receives sk

(i)
ỹ . Finally,

the reduction computes and returns skCi,ỹi =

[
J∗i ỹ + sk

(i)
ỹi
−RPiK2ỹi

K2ỹi

]
17,

where K2
$←− DZm×`,s, RCi = Evaltrap

(
A, {(x∗i ,Ri)}i∈[¯̀], Ci

)
with x∗ = (x∗1, . . . , x

∗
¯̀).

– Challenge ciphertext query for (x0,x1) from AHybrid 4: For (x0,x1), the re-
duction conducts the following steps:
1. Run the same secret key sharing as real encryption algorithm to obtain

({x′0,i}i∈[N ], {x′1,i}i∈[N ]).

2. Receive (ctN-ALS
1 , ctN-ALS

2,1 , . . . , ctN-ALS
2,N ) from CN-ALS as the challenge ci-

phertext of N -ALS.
3. Set ct1 = [Im|R1| · · · |R¯̀]> · ctN-ALS

1 .
4. Choose random vector e′2,i ∈ DZ`,2στ , and compute ct2,i = ctN-ALS

2,i +e′2,i
for i ∈ [N ]\{δ1, · · · , δQ}.

17 Notice that the distributions of this secret keys are still statistically close to that of
the direct usage of Sampler-2, since J∗i ỹ + sk

(i)
ỹi

and J∗i ỹ are statistically close, due
to noise smudging for our parameter setting.
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5. Run the algorithm ReRand in Lemma 2.10, i.e., ReRand(J∗i , ct
N-ALS
1 , σ, τ),

to obtain ct1,i ∈ Zmq for i ∈ [Q].

6. Compute ct2,δi = ct1,i + ctN-ALS
2,δi

for i ∈ [Q].
7. Send (ct1, ct2,1, · · · , ct2,N ) to AHybrid 4.

Next, let us analyze the above reduction process. Clearly, according to Lemma
2.10, for ctN-ALS

1 = A> · s + e1 ∈ Zmq , we have ct1,i = (AJ∗i )
> · s + e′1,i ∈ Z`q,

where e′1,i ∈ DZ`,2στ . Hence, it holds

ct2,δi = ct1,i + ctN-ALS
2,δi = [AJ∗i + Pδi ]

> · s+ e′1,i + e′2,δi ,

where e′2,δi denotes the error vector in ctN-ALS
2,δi

, which is chosen from DZ`,σ.
Thus, the error vector (e′1,i + e′2,δi) in ct2,δi is statistically close to DZ`,2στ+σ.
Similarly, for i ∈ [N ]\{δ1, · · · , δQ}, the error vector in ct2,i is statistically close
to DZ`,2στ+σ as well.

Hence, the reduction faithfully simulates Hybrid 4. Finally, it is not hard to
verify that the reduction translates the key queries of adversary in Hybrid 4 into
an admissible set of queries to N -ALS. Thus, the reduction would break N -ALS
with a non-negligible probability if the adversary has a non-negligible probability
in Hybrid 4. ut

By combining Theorem 7.7 with the technique in Section 5.3, we can obtain
the following corollary.

Corollary 7.8 (SA-IND Security) Assuming the hardness of LWE for appro-
priate q, α, n, then there exists an AB-FEIP that is SA-IND secure.
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A Supplementary Material of Section 5.1

In this section, we first argue the correctness of (1, poly)-PHPE in Section A.1.
Then, we set the parameters so that correctness and security of the scheme are
satisfied in Section A.2. Finally, we present the security proof of (1, poly)-PHPE in
Section A.3.

A.1 Correctness of (1, poly)-PHPE in Section 5.1

The correctness of the scheme follows from our choice of parameters. Specifically,
to show correctness we first note that

uĈ◦IP = Evalct
(
{Ai,ui}, {Bj ,vj}, Ĉ ◦ IP,y

)
=
(
AĈ◦IP + Ĉ ◦ IP(x,y) ·G

)> · s+ eEval.

When Ĉ ◦ IP(x,y) = γ, we have

(
β0

uĈ◦IP

)
=

[
A>

(AĈ◦IP + γ ·G)>

]
· s +

(
e
eEval

)
.

Hence, it holds K> ·
(
β0

uĈ◦IP

)
= P> · s + K> ·

(
e
eEval

)
. Therefore, we know

β1 −K> ·
(
β0

uĈ◦IP

)
= b+ e′ −K> ·

(
e
eEval

)
.

Thus, when Ĉ ◦ IP(x,y) = γ, we require the first m − 1 coordinates of

e′−K> ·
(
e
eEval

)
to be bounded by q/4, which can be ensured by our parameter

setting below.
Otherwise, if Ĉ ◦ IP(x,y) = γ′ 6= γ mod q, then setting γ′ = γ + γ∗ for some

γ∗, and parsing K =

[
J + K1

K2

]
, we have that

η = β1 −K> ·
(
β0

uĈ◦IP

)
= b+ γ∗ ·K>2 G + e∗,

for some error e∗. Hence, with negligible probability all first m − 1 coefficients
of η will be smaller than q/4.

A.2 Parameter Setting of (1, poly)-PHPE in Section 5.1

We choose the parameters so that correctness and security of the scheme are
satisfied. We must satisfy the following constraints.

1. For correctness, the final magnitude of error obtained must be below q/4.
2. We must choose m large enough for the algorithm TrapGen in Theorem 2.13.
3. We must choose sB such that LWEq,n,sB assumption holds.
4. We set s used in SampleLeft and SampleRight such that the output matrices

are statistically indistinguishable.
5. We set s and ρ to meet the requirements in Theorem 4.2.
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6. We set sD such that e′
s
≈ J> · e+ e′.

To satisfy the constraints, we can choose n = poly(λ), m = O(n log q), sB =√
n, s = O(`n log q)O(d) · ω(

√
logm), ρ = s

√
m · O(`n log q)O(d) · λω(1), sD =

ρ
√
mn ·λω(1), q = ρm

√
n ·λω(1). Note that there are other possible choices of the

parameters. Here we just set one for demonstration, showing that parameters
are feasible under the constraints.

A.3 Security of (1, poly)-PHPE in Section 5.1

Theorem (Restatement of Theorem 5.3) Assuming the hardness of LWE,
then the scheme described in Section 5.1 is a PHPE for the class F , achiev-
ing (1, poly)-Sel-Sim security that allows at most one 1-key pre-challenge query
(and an unbounded polynomial number of 0-keys for both pre and post-challenge
queries), according to Definition 2.17.

Proof. We define a ppt simulator Sim and prove that for any ppt adversary A,
the ideal experiment with respect to Sim is computationally indistinguishable
(under the LWE assumption) from the output of the real experiment.

Simulator Sim(1λ,y, 1|x|, b, List):

1. Sim1(1λ,y, 1|x|): It generates all public parameters as in the real PH.Setup

2. Sim2(1λ,y, 1|x|): It generates all keys using the real PH.KeyGen

3. Sim3(1λ,y, 1|x|, b, List): It takes as input the public attributes y, the size
of the private attributes x, a message b, and a list List. It constructs the
challenge ciphertext as follows.

– It samples β0,ui,vj independently and uniformly from Zmq . If (b, List) =
⊥, it samples β1 randomly from Zmq

– If (b, List) = (µ, Ĉ∗ ◦ IPγ), this means that the adversary has already

queried the 1-key Ĉ∗ ◦ IPγ and Sim2 has already generated the secret
key sk

Ĉ∗◦IPγ := K∗. Now Sim3 generates β1 to satisfy the decryption

consistency as follows.

• Let u
Ĉ∗◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ∗ ◦ IP,y

)
.

• Set β1 = K∗>
(

β0

u
Ĉ∗◦IP

)
+e′+b, for e′ ← DZm,sD and b = [0 · · · 0, dq/2eµ]> ∈

Zmq .

– It outputs the simulated ciphertext

ct∗ =
(
{ui}i∈[`], {vj}j∈[t],y,β0,β1

)
4. Sim4(1λ,y, 1|x|): It generates all keys using the real PH.KeyGen.
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Auxiliary Algorithms.

PH.Setup∗1(1λ, 1d,x,y): Do the following:
1. Sample a random matrix with associated trapdoor:

(A,TA)← TrapGen(1m, 1n, q)

2. Let Ai = A ·Ri − yi ·G ∈ Zn×mq for i ∈ [`], where Ri ← {−1, 1}m×m
for i ∈ [`].

3. Let Bj = A ·R′j − xj ·G ∈ Zn×mq for j ∈ [t], where R
′

j ← {−1, 1}m×m
for j ∈ [t].

4. Sample J← DZm×m,
√
ρ2+s2

and set P = A · J(modq).

5. Output the master public key as PH.mpk =
(
{Ai}i∈[`], {Bj}j∈[t],A,P

)
and the master secret key as PH.msk =

(
TA, {Ri}i∈[`], {R

′

j}j∈[t],J
)
.

PH.Enc∗1(PH.mpk,PH.msk,y, µ, List): The ciphertext is computed as follows:
1. Sample s, e← DZn,sB and set β0 = A>s+ e.

2. For i ∈ [`], j ∈ [t] compute ui = R>i · β0, vj = (R
′

j)
> · β0, where

the matrices {R>i } and {R′j} are the matrices in the msk generated by
PH.Setup∗1.

3. β1 is computed as real encryption algorithm.
4. Output

(
{ui}i∈[`], {vj}j∈[t],y,β0,β1

)
.

PH.KeyGen∗1(PH.msk, Ĉ ◦ IPγ): Do the following:

1. Compute the homomorphic public key corresponding to circuit Ĉ ◦ IP as

AĈ◦IP = Evalpk
(
{Ai}i∈[`], {Bj}j∈[t], Ĉ ◦ IP

)
2. We know that AĈ◦IP = A ·RĈ◦IP−〈PT(x), Ĉ(y)〉 ·G. For different types

of the key query, we respond as follows:
– 0-key query Ĉ ◦ IPγ such that Ĉ ◦ IP(x,y) 6= γ. In this case, we have:[

A|AĈ◦IP + γ ·G
]

= [A|A ·RĈ◦IP + (γ − 〈PT(x), Ĉ(y)〉) ·G
]
.

As the G trapdoor does not vanish, the algorithm runs

K← SampleRight(A,RĈi◦IP, γ − 〈PT(x), Ĉ(y)〉,P, s),

satisfying
[
A|A ·RĈi◦IP + (γ − 〈PT(x), Ĉ(y)〉) ·G

]
·K = P.

– 1-key query Ĉ ◦ IPγ such that Ĉ ◦ IP(x,y) = γ. In this case, the
algorithm computes

RĈ◦IP = Evaltrap
(
{Ri}i∈[`], {R

′

j}j∈[t],A,y, Ĉ ◦ IP
)
,

samples K2 ← DZm×m,s, and sets K =

[
J−RĈ◦IP ·K2

K2

]
. Note that

by construction, we have[
A|AĈ◦IP + γ ·G

]
·K =

[
A|A ·RĈ◦IP

]
·K = P.
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3. Return skĈ◦IPγ = K.

PH.Enc∗2(PH.mpk,PH.msk,y, µ, List): The ciphertext is computed as follows:
1. Generate β0, {ui}, {vi} as PH.Enc∗1.
2. Sample e′ ← DZm,sD , set b = (0, · · · , 0, dq/2eµ)> ∈ Zmq and compute β1

as follows:
– If there is no 1-query before the challenge ciphertext, it computes
β1 = J> · β0 + e′ + b.

– If the adversary has already queried the 1-key Ĉ∗ ◦ IPγ , it computes

β1 = (sk
Ĉ∗◦IPγ )> ·

(
β0

uĈ∗◦IP

)
+ e′ + b, where u

Ĉ∗◦IP =

Evalct
(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ∗ ◦ IP,y

)
.

3. Output
(
{ui}i∈[`], {vj}j∈[t],y,β0,β1

)
.

PH.Enc∗3(PH.mpk,PH.msk,y, µ, List): Sample β0 ← Zmq randomly. Compute the
remaining ciphertext elements exactly the same as in PH.Enc∗2.

PH.KeyGen∗2(PH.msk, Ĉ ◦ IPγ) : Do the following:

1. If Ĉ ◦ IPγ is a 0-key query, sample the key K using the SampleLeft algo-
rithm as in KeyGen.

2. If Ĉ ◦ IPγ is a 1-key query, set K the same as PH.KeyGen∗1.
3. Return skĈ◦IPγ = K.

PH.Enc∗4(PH.mpk,PH.msk,y, µ, List): If there is no 1-query before the challenge
ciphertext, it samples β1 randomly from Zmq . Otherwise, Compute ciphertext
elements the same as PH.Enc∗3.

PH.Enc∗5(PH.mpk,PH.msk,y, µ, Ĉ∗ ◦ IP): Sample ui,vi randomly. Everything
else remains the same as PH.Enc∗4.

Now we establish the proof via the following hybrids, where the first one
corresponds to the real world and the last corresponds to the ideal world.

Hybrids.

Hybrid 0: The real experiment.
Hybrid 1: The real game algorithms PH.Setup and PH.Enc are replaced with

PH.Setup∗1 and PH.Enc∗1, which use the knowledge of (x,y) to generate the
public parameters, the master public/secret keys, and additionally sets P =
A · J.

Hybrid 2: The real game PH.KeyGen is replaced with PH.KeyGen∗1 where instead
of using the trapdoor TA of the matrix A, secret keys for a 0-key queries are
sampled using the public trapdoor TG along with the trapdoor information
generated in PH.Setup∗1, and the secret key for the 1-key query for function

Ĉ∗ ◦ IPγ is computed as K =

[
J−R

Ĉ∗◦IP ·K2

K2

]
.

Hybrid 3: PH.Enc∗1 is replaced by PH.Enc∗2, in which β1 is computed from J if
there is no 1-key queried before, or otherwise from the given 1-key.

Hybrid 4: The encryption algorithm is changed from PH.Enc∗2 to PH.Enc∗3. Here,
the ciphertext element β0 is switched to random and all other ciphertext
elements are derived from it.
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Hybrid 5: The algorithm PH.KeyGen∗1 is replaced by PH.KeyGen∗2. The PH.KeyGen∗2
algorithm is as the real PH.KeyGen algorithm, except for the response to the
1-key query Ĉ∗ ◦ IPγ .

Hybrid 6: The encryption algorithm is changed from PH.Enc∗3 to PH.Enc∗4. Here,
the ciphertext element β1 is random or computed by using skĈ∗◦IPγ , depend-

ing on whether a 1-key has been queried before the challenge ciphertext.
Hybrid 7: The key generation algorithm is changed from PH.KeyGen∗2 to the real

PH.KeyGen algorithm.
Hybrid 8: The encryption algorithm is changed from PH.Enc∗4 to PH.Enc∗5, in

which the ciphertext elements {ui}, {vi} are changed to random. The re-
maining elements β0 and β1 are as before.

Hybrid 9: The algorithm PH.Setup∗1 is replaced by the real PH.Setup algorithm.
This hybrid is identical to the ideal experiment when running the simulator
Sim.

Below we show that each two adjacent hybrids are indistinguishable.

Lemma A.1 Hybrid 0 and Hybrid 1 are statistically indistinguishable.

Proof. The difference between the two hybrids is in how the public parameters
and the ciphertext are generated. In Hybrid 0, for PH.mpk,

{Ai}, {Bj},P
$← Zn×mq ∀i ∈ [`], j ∈ [t],

and for ct∗,

β0 = A>s+ e,ui = (Ai + yi ·G)>s+ R>i e,vi = (Bi + xi ·G)>s+ (R′i)
>e,

In Hybrid 1, for PH.mpk,

{Ai = A ·Ri − yi ·G}, {Bj = A ·R
′

j − xj ·G},P = A · J ∀i ∈ [`], j ∈ [t],

and for ct∗,
β0 = A>s+ e,ui = R>i · β0,vi = (R′i)

>β0,

We argue that the joint distribution of the public parameters and ciphertext

(A, {Ai,ui}i∈[`], {Bj ,vj}j∈[t],P)

is statistically indistinguishable between the two hybrids.

On the one hand, by Theorem 2.13, we have that A
$
≈ U for A output by

TrapGen algorithm. Then by Lemma 2.16, we have that,

(A,A ·Ri − yi ·G,R>i e)
$
≈ (A,U ,R>i e),

and this holds for Bj = A ·R′j −xj ·G as well. And since for all i, Ri (resp. R′i)
is randomly and independently chosen, it follows that

(A, {A·Ri−yi·G}, {R>i e}, {A·R′j−xj ·G}, {(R′j)>e})
$
≈ (A, {Ui}, {R>i e}, {Uj}, {(R′j)>e}).
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On the other hand, by Lemma 2.7, we have (A,A·J)
$
≈ (A,U). Furthermore,

the ciphertext components ui and vj are derived simply by adding (Ai+yi·G)>·s
and (Bj + xj ·G)> · s to R>i e and (R′j)

>e, respectively. Since applying a func-
tion to two statistically indistinguishable distributions produces two statistical-
ly indistinguishable distributions, this shows that the public parameters, the
ciphertext and the secret keys are statistically close in both hybrids. ut

Lemma A.2 Hybrid 1 and Hybrid 2 are statistically indistinguishable.

Proof. Between Hybrid 1 and Hybrid 2, the manner of generating keys changes
from PH.KeyGen to PH.KeyGen∗1. We consider two cases:

1. For the 0-key Ĉ ◦ IP, in Hybrid 1, these keys are sampled using the SampleLeft
algorithm, whereas in Hybrid 2, they are sampled using the SampleRight al-
gorithm. By Lemma 2.15 and our setting of parameters, the resulting distri-
butions are statistically indistinguishable.

2. For the 1-key Ĉ◦IPγ , we note that P is chosen the same way in both Hybrid 1

and Hybrid 2. In Hybrid 1, we sample K =

[
J′ + K1

K2

]
by first sampling

J′ ← DZm×m,ρ then using SampleLeft such that[
A|A

Ĉ∗◦IP + γ ·G
]
·
[
K1

K2

]
= P−AJ′,

where the marginal distribution of P = A · J′ is uniformly at random, as J′

is hidden in the view of adversary in this case.

In Hybrid 2, we output K =

[
J−RĈ◦IP ·K2

K2

]
, where K1 ← DZm×m,s, J ←

DZm×m,
√
ρ2+s2

, and

RĈ◦IP = Evaltrap
(
{Ri}i∈[`], {R

′

i}i∈[t],A,y, Ĉ ◦ IP,y
)
.

To rephrase in the terms as we used in Section 4, the key generation (with
the public A,P) in Hybrid 1 is exactly the procedure of Sampler-1, and in
Hybrid 2 the Sampler-2. Therefore, by Theorem 4.2, we know that the two
hybrids are statistically indistinguishable.

This completes the proof. ut

Lemma A.3 Hybrid 2 and Hybrid 3 are statistically indistinguishable.

Proof. The only difference between the two hybrids is the way how the ciphertext
element β1 is generated. In Hybrid 2, we have β1 = P>s + e′ + b. In Hybrid 3,
for β1, if there is no 1-key query before challenge, we have

β1 =J> · β0 + e′ + b

=(AJ)>s+ J> · e+ e′ + b

=P>s+ J> · e+ e′ + b.
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Thus, it suffices to show that e′
s
≈ J> · e + e′. By the smudging lemma, i.e.,

Lemma 2.9 and our setting of parameters, we achieve the goal. If the adversary
has already queried the 1-key Ĉ∗ ◦ IPγ , we have uĈ∗◦IP = R>

Ĉ∗◦IP
·β0, and thus,

β1 =

(
J−RĈ◦IP ·K2

K2

)>
·
(

β0

uĈ∗◦IP

)
+ e′ + b

=J> · β0 + e′ + b,

Thus we complete the proof. ut

Lemma A.4 Hybrid 3 and Hybrid 4 are computationally indistinguishable as-
suming LWE is hard.

Proof. We show how the LWE assumption can be broken given an adversary that
distinguishes between Hybrid 3 and Hybrid 4. Given the LWE challenge sample
(A, z) where z is either real or random. The reduction does as follows:

1. Run PH.Setup∗1 and PH.KeyGen∗1. These algorithms are used to produce the
public parameters and the function keys. We note that these two algorithms
can be implemented without the trapdoor of A.

2. To produce the ciphertext, set β0 = z and generate the remaining compo-
nents as in Hybrid 3.

Now if z = A>s+ e, then the reduction faithfully simulates the distribution of
Hybrid 3, whereas if z is random, the reduction simulates Hybrid 4. This completes
the proof. ut

Lemma A.5 Hybrid 4 and Hybrid 5 are statistical indistinguishable.

Proof. The proof is analogous to the proof of indistinguishability between Hybrid 1
and Hybrid 2 for generating secret keys of 0-key queries. ut

Lemma A.6 Hybrid 5 and Hybrid 6 are statistically indistinguishable.

Proof. The difference between the two hybrids is the way of generating ciphertext
element β1 in the case that there is no 1-key queried.

We know that in Hybrid 5, if there is no 1-key queried, β1 = J> ·β0 + e′+ b,
and in Hybrid 6, it samples β1 randomly from Zmq . In this case, we need to show

β1

s
≈ U in Hybrid 5. By the leftover hash Lemma 2.7, J> ·u

s
≈ U for a uniformly

random vector u ∈ Zmq , thus β1

s
≈ U , when J is not given. ut

Lemma A.7 Hybrid 6 and Hybrid 7 are statistically indistinguishable.

Proof. The proof is analogous to the proof of indistinguishability between Hybrid 1
and Hybrid 2 for generating secret keys of 1-key query. ut

Lemma A.8 Hybrid 7 and Hybrid 8 are statistically indistinguishable.
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Proof. For the elements ui,vi, in Hybrid 7, they are computed as ui = R>i · u
and vi = (R′i)

> · u. However, in Hybrid 8 these are randomly chosen from the
encoding space. The indistinguishability of two hybrids follows from the leftover
hash Lemma 2.16:(

A,B,u, {ARi,R
>
i u}, {BR′i, (R

′
i)
>u}

)
$
≈
(
A,B,u, {ARi,u}, {BR′i,u}

)
.

ut
Lemma A.9 Hybrid 8 and Hybrid 9 are statistically indistinguishable.

Proof. The proof follows similarly as the proof of indistinguishability between
Hybrid 0 and Hybrid 1. ut

This completes the security proof. ut

B Supplementary Material of Section 5.2

In this section, we first argue the correctness of (Q, poly)-PHPE in Section B.1.
Then, we set the parameters so that correctness and security of the scheme
are satisfied in Section B.2. Finally, we present the security proof of (Q, poly)-
PHPE in Section B.3.

B.1 Correctness of (Q, poly)-PHPE in Section 5.2

The correctness of the scheme follows from our choice of parameters. Specifically,
to show correctness we first note that

uĈ◦IP = Evalct
(
{Ai,ui}, {Bj ,vj}, Ĉ ◦ IP,y

)
=
(
AĈ◦IP + Ĉ ◦ IP(x,y) ·G

)> · s+ eEval.

When Ĉ ◦ IP(x,y) = γ, we have

(
β0

uĈ◦IP

)
=

[
A>

(AĈ◦IP + γ ·G)>

]
· s +

(
e
eEval

)
.

Hence, it holds K> ·
(
β0

uĈ◦IP

)
= P>∆ · s + K> ·

(
e
eEval

)
. Therefore, we know∑

k∈∆ β1,k −K> ·
(
β0

uĈ◦IP

)
= b+

∑
k∈∆ e

′
k −K> ·

(
e
eEval

)
.

Thus, when Ĉ ◦ IP(x,y) = γ, we require the first m − 1 coordinates of∑
k∈∆ e

′
k − K> ·

(
e
eEval

)
are bounded by q/4, which can be ensured by our

parameter setting below.
Otherwise, if Ĉ ◦ IP(x,y) = γ′ 6= γ mod q, then setting γ′ = γ + γ∗ for some

γ∗, and parsing K =

[
J + K1

K2

]
, we have that

η =
∑
k∈∆

β1,k −K> ·
(
β0

uĈ◦IP

)
= b+ γ∗ ·K>2 G + e∗

for some error e∗. Hence, with negligible probability all first m − 1 coefficients
of η will be smaller than q/4.
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B.2 Parameter Setting of (Q, poly)-PHPE in Section 5.2

We choose the parameters so that correctness and security of the scheme are
satisfied. We must satisfy the following constraints.

1. For correctness, the final magnitude of error obtained must be below q/4.
2. We must choose m large enough for the algorithm TrapGen in Theorem 2.13.
3. We must choose N,Q, v such that Lemma 5.4 holds.
4. We must choose sB such that LWE assumption holds.
5. We set s used in SampleLeft and SampleRight such that the output matrices

are statistically indistinguishable.
6. We set s such that Lemma 2.7 holds.
7. We set s and ρ to meet the requirements in Theorem 4.2.

8. We set sD such that e′i
s
≈ (J∗i )

> · e+ e′i.

Next, we choose one setting of parameters to demonstrate feasibility under the
constraints. Particularly, we can choose n = poly(λ), Q = O(λ), κ = ω(log λ),
v = O(κ), N = O(Qκ3), m = O(n log q), sB =

√
n, s = O(`n log q)O(d) ·

ω(
√

logm), ρ = s
√
m · O(`n log q)O(d) · λω(1), sD = ρ

√
mn · λω(1), q = ρvm

√
n ·

λω(1).

B.3 Security of (Q, poly)-PHPE in Section 5.2

Theorem (Restatement of Theorem 5.5) Assuming the hardness of LWE,
then the QPHPE scheme described in Section 5.2 is (Q, poly)-Sel-Sim secure that
allows both pre- and post-challenge 1-key queries up to Q times and 0-key queries
for an unbounded polynomial times, as Definition 2.17.

Proof. We define a ppt simulator Sim and prove that for any ppt adversary A,
the ideal experiment with respect to Sim is computationally indistinguishable
(under the LWE assumption) from the output of the real experiment. This suffices
to prove the theorem.

Simulator Sim(1λ,y, 1|x|, b, st):

1. Sim1(1λ,y, 1|x|): It generates all public parameters as in the real PH.Setup,
except that it runs (A′,TA′) ← TrapGen(1n+1, q,m), then parses A′ =[

A
z>

]
, where A ∈ Zn×mq , and sets A be the public matrix in PH.mpk.

2. Sim2(1λ,y, 1|x|): It generates all keys using the real PH.KeyGen.
3. Sim3(1λ,y, 1|x|, b, List): It takes as input the public attributes y, the size of

the private attributes x, the message b, and a list List. It constructs the
challenge ciphertext as follows.
– It samples ui,vj independently and uniformly from Zmq , and sets β0 = z,

where z is the vector prepared in Sim1.
– If (b, List) = ⊥, it computes {β1,k}k∈[N ] as follows:

• Sample random vectors β̃k from Zmq for k ∈ [N ].
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• Choose 2Q random subsets ∆1, · · · , ∆Q, ∆
′
1, · · · , ∆′Q of [N ] accord-

ing sampler SamplerSet(N,Q, v), each of which has cardinality v. Note
that with an overwhelming probability, the 2Q subsets would be
cover-free under our parameter selection.

• Generate random shares {bk}k∈[N ] over Zq under the following con-

straints: for î ∈ [Q], (1)
∑
k∈∆î

bk = 0, and (2)
∑
k∈∆′

î

bk = dq/2e.
This can be done efficiently by the cover-freeness of the subsets, using
the following standard procedure.
First, let δî be a unique index that only appears in ∆î but not
the other subsets, and δ′

î
be a unique index of ∆′

î
. To generate

the random shares {bk}k∈[N ], we first sample bk randomly for all
k ∈ [N ] \ ({δî}î∈[Q] ∪ {δ′î}î∈[Q]), and then fix bδî = −

∑
k∈∆î\{δî}

bk

for î ∈ [Q], and similarly bδ′
î

= dq/2e −
∑
k∈∆′

î
\{δ′

î
} bk for î ∈ [Q].

• Set bk = [0, · · · , 0, bk] ∈ Zmq for k ∈ [N ], and sample errors {e′k}k∈[N ]

from the distribution DZmq ,sD .

• Set β1,k = β̃k + bk + e′k for k ∈ [N ].

– If b = µ and List = {Ĉ∗
î
◦ IPγî}î∈[Q′] for some Q′ ≤ Q, it computes the

simulated ciphertext as follows.
• For î ∈ [Q′], compute u

Ĉ∗
î
◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ

∗
î
◦

IP,y
)
, and let

(
∆î,K

∗
î

=

[
J∗
î

+ K∗
î,1

K∗
î,2

])
be the keys for Ĉ∗

î
◦ IPγî ,

generated by Sim2 for the pre-challenge 1-key queries.
• Sample Q − Q′ random subsets of cardinality v according sampler
SamplerSet(N,Q, v), i.e., {∆î}î∈[Q′+1,Q], starting with the index Q′+
1 and ending with Q. We know that by our setting of parameters, the
subsets {∆î}î∈[Q] are cover-free with an overwhelming probability.

• Compute vectors {β1,k}k∈[N ] as follows:
∗ Sample random shares {µk}k∈[N ] conditioned that

∑
k∈∆î

µk =

dq/2eµ for î ∈ [Q]. Then set bk = [0, · · · , 0, µk] for k ∈ [N ].

∗ Sample random vectors {β̃k}k∈[N ] condition on the following e-
quations:

∑
k∈∆î

β̃k =

[
J∗
î

+ K∗
î,1

K∗
î,2

]>
·

(
β0

u
Ĉ∗
î
◦IP

)
for î ∈ [Q′].

The above two steps can be done efficiently due to the cover-
freeness of the subsets {∆î}î∈[Q]. The procedure is the same as
we have presented in the previous case.

∗ Sample errors {ek}k∈[N ] according DZmq ,sD .

∗ Set β1,k = β̃k + bk + e′k for k ∈ [N ].
– It outputs the challenge ciphertext

ct∗ =
(
{ui}i∈[`], {vj}j∈[t],y,β0, {β1,k}k∈[N ]

)
.
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4. Sim4(1λ,y, 1|x|): If the query is a 0-key, then it generates the key using the

real QPH.KeyGen. Otherwise, we denote function Ĉ∗
î
◦IPγî be the adversary’s

1-key query and (µ, Ĉ∗
î
◦ IPγî) be the message received from the oracle O.

Here we use index î ∈ [Q] to denote the number of overall 1-key queries up
to this point. Then the simulator computes as follows.

– The simulator first considers the following two cases to determine the
parameter ∆:
• Case 1: Q′ = 0, i.e., the adversary did not make any 1-key pre-

challenge query.
∗ If µ = 0, set ∆ := ∆î.
∗ Else ∆ := ∆′

î
, where {∆î}î∈[Q] and {∆′

î
}î∈[Q] are the subsets

prepared by Sim3 in the previous procedure.
• Case 2: 1 ≤ Q′ < Q, i.e., the adversary had made Q′ 1-key pre-

challenge queries.
∗ Set ∆ := ∆î where ∆î is the subset prepared by Sim3 (where µ

had been received by Sim3) in the previous procedure.

– Compute P∗∆ =
∑
k∈∆ Pk, and compute β̃∆ =

∑
k∈∆ β̃k, where {β̃k}k∈[N ]

are the vectors prepared by Sim3 in the previous procedure.
– Compute A

Ĉ∗
î
◦IP = Evalpk({Ai}i∈[`], {Bj}j∈[t], Ĉ

∗
î
◦ IP), and compute

u
Ĉ∗
î
◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ

∗
î
◦ IP,y

)
.

– Sample J∗
î
← DZm×m,ρ, and use TA′ to sample

[
K∗
î,1

K∗
î,2

]
← DZ2m×m,s such

that A A
Ĉ∗
î
◦IP

β>0 u>
Ĉ∗
î
◦IP

 · [K∗î,1
K∗
î,2

]
= −

[
A

β>0

]
· J∗

î
+

[
P∗∆

β̃
>
∆

]
.

– Output sk
Ĉ∗
î
◦IPγ

î

=
(
∆,

[
J∗
î

+ K∗
î,1

K∗
î,2

])
.

Auxiliary Algorithms.

QPH.Setup∗1(1λ, 1d, 1Q,x,y): Do the following:
1. Sample a random matrix with associated trapdoor:

(A,TA)← TrapGen(1m, 1n, q).

2. Let Ai = A ·Ri − yi ·G ∈ Zn×mq for i ∈ [`], where Ri
$←− {−1, 1}m×m

for i ∈ [`].

3. Let Bj = A ·R′j − xj ·G ∈ Zn×mq for j ∈ [t], where R
′

j
$←− {−1, 1}m×m

for j ∈ [t].
4. Choose Q random subsets ∆∗1, · · · , ∆∗Q with size v according sampler

SamplerSet(N,Q, v). By cover-freeness, for every î ∈ [Q], there exists a
unique index δî that only appears in ∆∗

î
but not the other subsets.
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5. Sample J∗
î
← DZm×m,

√
ρ2+s2

for î ∈ [Q], and sample random matrices

Pk from Zm×nq for k ∈ [N ] under the constraint
∑
k∈∆∗

î

Pk = A · J∗
î
,

and we denote
∑
k∈∆∗

î

Pk as P∆∗
î
.

6. Output the master public key as PH.mpk =
(
{Ai}i∈[`], {Bj}j∈[t],A, {Pk}k∈[N ]

)
and the master secret key as

PH.msk =
(
TA, {Ri}i∈[`], {R

′

j}j∈[t], {∆∗î ,J
∗
î
}î∈[Q]

)
.

QPH.Enc∗1(PH.mpk,PH.msk,y, µ, List): The ciphertext is computed as follows:

1. Sample s, e← DZn,sB and set β0 = A>s+ e.

2. For i ∈ [`], j ∈ [t] compute ui = R>i · β0, vj = (R
′

j)
> · β0, where

the matrices {R>i } and {R′j} are the matrices in the msk generated by
PH.Setup∗1.

3. {β1,k} is computed as real encryption algorithm.

4. Output
(
{ui}i∈[`], {vj}j∈[t],y,β0, {β1,k}k∈[N ]

)
.

QPH.KeyGen∗1(QPH.msk, Ĉ ◦ IPγ): This algorithm is stateful that keeps track of
how many keys have been queried before. Particularly, it does the following:

1. Compute the homomorphic public key corresponding to circuit Ĉ ◦ IP as

AĈ◦IP = Evalpk
(
{Ai}i∈[`], {Bj}j∈[t], Ĉ ◦ IP

)
2. We know that AĈ◦IP = A ·RĈ◦IP−〈PT(x), Ĉ(y)〉 ·G. For different types

of the key query, we respond as follows:
– 0-key query Ĉ ◦ IPγ such that Ĉ ◦ IP(x,y) 6= γ. In this case, we have:[

A|AĈ◦IP + γ ·G
]

= [A|A ·RĈ◦IP + (γ − 〈PT(x), Ĉ(y)〉) ·G
]
.

As the G trapdoor does not vanish, the algorithm samples a fresh
random subset∆ ⊆ [N ] with cardinality v according sampler SamplerSet(N,Q, v),
and then runs

K← SampleRight(A,RĈ◦IP, γ − 〈PT(x), Ĉ(y)〉,
∑
k∈∆

Pk, s),

satisfying
[
A|A ·RĈ◦IP + γ ·G

]
·K =

∑
k∈∆ Pk.

– 1-key query of function Ĉ ◦ IPγ such that Ĉ ◦ IP(x,y) = γ. In this
case, the algorithm does the following:
• Let Ĉî ◦ IPγî be the î-th 1-key query, where î ∈ [Q]. Then set
∆ = ∆∗

î
instead of sampling freshly. We recall that ∆∗

î
is the

subset sampled in the QPH.Setup∗1, and J∗
î

is the corresponding
matrix.

• Compute

RĈî◦IP
= Evaltrap

(
{Ri}i∈[`], {R

′

j}j∈[t],A, Ĉî ◦ IP,x,y
)
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• Sample Kî,2 ← DZm×m,s, and set K =

(
J∗
î
−R

Ĉ∗
î
◦IP ·Kî,2

Kî,2

)
.

Note that by construction, we have[
A|AĈî◦IP

+ γ ·G
]
·K =

[
A|A ·RĈî◦IP

]
·K =

∑
k∈∆

Pk.

3. Return skĈ◦IPγ = (∆,K).

QPH.Setup∗2(1λ, 1d, 1Q,x,y): Do the following:
1. For every î ∈ [Q], choose a unique index δî that only appears in ∆∗

î
but

not the other subsets. This choice exists due to the cover-freeness of the
subsets, which happens with an overwhelming probability.

2. Sample Jk ← DZm×m,
√
ρ2+s2

for i ∈ [N ]\{δ1, · · · , δQ}. Set Jδî = J∗
î
−∑

k∈∆∗
î
\{δî}

Jk for î ∈ [Q].

3. Sample A randomly and set Pi = A · Ji for i ∈ [N ].
4. The remaining elements are defined the same as in QPH.Setup∗1.
5. Output the master public key as PH.mpk =

(
{Ai}i∈[`], {Bj}j∈[t],A, {Pk}k∈[N ]

)
and the master secret key as

PH.msk =
(
TA, {Ri}i∈[`], {R

′

j}j∈[t], {∆∗î ,J
∗
î
, δî}î∈[Q], {Jk}k∈[N ]

)
.

QPH.Enc∗2(QPH.mpk,QPH.msk,y, µ, List): The ciphertext is computed as:
1. Generate β0, {ui}, {vj} as PH.Enc∗1.
2. Compute {β1,k}k∈[N ] as follows.

– Sample e′k ← DZm,sD , k ∈ [N ].

– Set β1,k = (Jk)> · β0 + e′k + bk, where bk = [0 · · · 0, dq/2ev µ]> ∈ Zmq
as defined in the real encryption algorithm.

3. Output
(
y, {ui}i∈[`], {vj}j∈[t],β0, {β1,k}k∈[N ]

)
.

QPH.Enc∗3(QPH.mpk,QPH.msk,y, µ, List): Sample β0 ← Zmq randomly. Com-
pute the remaining ciphertext elements as in PH.Enc∗2.

QPH.KeyGen∗2(QPH.msk, Ĉ ◦ IPγ) : Do the following:

1. If Ĉ ◦ IPγ is a 0-key query, sample the key K using the SampleLeft algo-
rithm as in KeyGen.

2. If Ĉ ◦ IPγ is a 1-key query, set K the same as PH.KeyGen∗1.
3. Return skĈ◦IPγ = (∆,K).

QPH.Setup∗3(1λ, 1d, 1Q,x,y): Do the following:

1. Sample (A′,TA′) ← TrapGen(1n+1, q,m), and then parse A′ =

[
A
z>

]
,

where A ∈ Zn×mq , z ∈ Zmq .

2. Define β̃k = (Jk)> · z, for k ∈ [N ].
3. Set A as the public matrix in QPH.mpk, and additionally store z ∈ Zmq

and {β̃k}k∈[N ] in QPH.msk.
4. The remaining elements are defined the same as in QPH.Setup∗2.

QPH.Enc∗4(PH.mpk,PH.msk,y, µ, List): Compute ciphertext elements the same

as QPH.Enc∗3 except for setting β0 = z, and β1,k = β̃k +bk +e′k for k ∈ [N ].
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QPH.Setup∗4(1λ, 1d, 1Q,x,y): Do the following:

1. Generate public matrices {Pk}k∈[N ] by sampling random matrices Pk

from Zm×nq for k ∈ [N ] under the constraint
∑
k∈∆∗

î

Pk = A · J∗
î
, which

is the same as QPH.Setup∗1.

2. Additionally, sample random vectors β̃k from Zmq for k ∈ [N ] under the

constraint
∑
k∈∆∗

î

β̃k = (J∗
î
)> · z, and denote

∑
k∈∆∗

î

β̃k as β̃∆∗
î
.

3. The remaining elements are defined the same as in QPH.Setup∗3.

QPH.KeyGen∗3(PH.msk, Ĉ ◦ IPγ): Do the following:

1. If Ĉ ◦ IPγ is a 0-key query, sample the key (∆,K) the same as in
QPH.KeyGen∗2.

2. If Ĉ ◦ IPγ is the î-th 1-key query with î ∈ [Q], then set ∆ = ∆∗
î
, the

subset prepared in QPH.Setup∗1. Then compute K as follows: sample

a fresh J∗
′

î
← DZm×m,ρ and use TA′ to sample

[
Kî,1

Kî,2

]
by SampleLeft

algorithm such that[
A AĈ◦IP
z> u>

Ĉ◦IP

]
·
[
Kî,1

Kî,2

]
= −

[
A
z>

]
· J∗

′

î
+

[
P∆

β̃
>
∆

]
.

3. Set K =

[
J∗
′

i + Kî,1

Kî,2

]
, and return skĈ◦IPγ = (∆,K).

QPH.Setup∗5(1λ, 1d, 1Q,x,y): Sample {Ai}, {Bj}, {Pk} the same as the real

setup algorithm, and set {β̃k}k∈[N ] to be uniformly random. Everything else
remains the same as QPH.Setup∗4.

QPH.Enc∗5(PH.mpk,PH.msk,y, µ, List): the algorithm samples ui,vj randomly,
and then considers the following two cases:

– Case 1: the adversary has never made a pre-challenge 1-key query, i.e.,
Q′ = 0. In this case, the algorithm samples Q (new) random subsets
∆′1, · · · , ∆′Q of [N ] of cardinality v according sampler SamplerSet(N,Q, v),
and then generates random shares {bk}k∈[N ] over Zq under the following

constraints: for î ∈ [Q], (1)
∑
k∈∆∗

î

bk = dq/2eµ, and (2)
∑
k∈∆′

î

bk =

dq/2e(1 − µ). Then set β1,k = β̃k + e′k + bk, where e′k ← DZm,sD for

k ∈ [N ] and bk = [0 · · · 0, bk]> ∈ Zmq . Everything else remains the same
as QPH.Enc∗4.

– Case 2: the adversary has made at least one pre-challenge 1-key query,
i.e., Q′ ≥ 1. The algorithm samples random shares {µk}k∈[N ] conditioned

that
∑
k∈∆∗

î

µk = dq/2eµ for î ∈ [Q]. Then set bk = [0, · · · , 0, µk] and

β1,k = β̃k + e′k + bk, where e′k ← DZm,sD for k ∈ [N ]. Everything else
remains the same as QPH.Enc∗4.

Now we establish the proof via the following hybrids, where the first one
corresponds to the real world and the last corresponds to the ideal world.
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Hybrids.

Hybrid 0: The real experiment.
Hybrid 1: The real game algorithms QPH.Setup and QPH.Enc are replaced with

QPH.Setup∗1 and QPH.Enc∗1, which use the knowledge of (x,y) to generate
the public parameters, the master keys.

Hybrid 2: The real game QPH.KeyGen is replaced with QPH.KeyGen∗1 where
instead of using the trapdoor TA of the matrix A, the secret keys for 0-key
queries are sampled using the public trapdoor TG along with the trapdoor
information generated using QPH.Setup∗1, and the secret key for the i-th

1-key query Ĉ∗i ◦ IPγi is generated as
(
∆∗i ,

[
J∗i −R

Ĉ∗i ◦IP
·Ki,2

Ki,2

])
.

Hybrid 3: QPH.Setup∗1 is replaced by QPH.Setup∗2. In this hybrid, the public ma-
trices {Pi} are generated by first sampling matrices {Ji} according Gaussian
under certain constraints, then setting each Pi = A · Ji.

Hybrid 4: QPH.Enc∗1 is replaced by QPH.Enc∗2, where the difference is the com-
putation of {β1,k}.

Hybrid 5: The encryption algorithm is changed from QPH.Enc∗2 to QPH.Enc∗3.
Here, the ciphertext element β0 is switched to random and all other cipher-
text elements are derived from it.

Hybrid 6: The algorithm QPH.KeyGen∗1 is replaced with QPH.KeyGen∗2. The
QPH.KeyGen∗2 algorithm is as the real QPH.KeyGen algorithm, except for

the response to 1-key queries Ĉ∗ ◦ IPγ .
Hybrid 7: The QPH.Setup∗2 algorithm is replaced with QPH.Setup∗3, where the

differences are the generation of the public matrix A′ together with TA′ ,
and the vectors {β̃k}k∈[N ] are added into the master secret key.

Hybrid 8: The encryption algorithm QPH.Enc∗3 is replaced with QPH.Enc∗4, where
the differences are the computations of β0 and β1,k for k ∈ [N ].

Hybrid 9: The QPH.Setup∗3 algorithm is replaced with QPH.Setup∗4, where the

differences are the computations of matrices Pk and vectors β̃k.
Hybrid 10: The algorithm QPH.KeyGen∗2 is replaced with QPH.KeyGen∗3, where

the keys for 1-key queries are generated by using trapdoor TA′ such that[
A AĈ◦IP
z> u>

Ĉ◦IP

]
·
[
Ki,1

Ki,2

]
= −

[
A
z>

]
· J∗

′

i +

[
P∆

β̃
>
∆

]
.

Hybrid 11: The algorithm QPH.Setup∗4 is replaced by QPH.Setup∗5 algorithm.
Here the public matrices Ai,Bj ,Pk are generated as the real world, and

{β̃k}k∈[N ] are sampled uniformly at random.
Hybrid 12: The encryption algorithm is changed from QPH.Enc∗4 to QPH.Enc∗5,

in which the secret sharing procedure is generated differently.
Hybrid 13: The ideal experiment.

Below we show that each two adjacent hybrids are indistinguishable.

Lemma B.1 Hybrid 0 and Hybrid 1 are statistically indistinguishable.
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Proof. The difference between the two hybrids is in how the public parameters
and the ciphertext are generated. In Hybrid 0, for QPH.mpk we have

{Ai}, {Bj}, {Pk}
$← Zn×mq ∀i ∈ [`], j ∈ [t], k ∈ [N ],

and for ct∗,

β0 = A>s+ e,ui = (Ai + yi ·G)>s+ R>i e,vj = (Bj + xj ·G)>s+ (R′j)
>e.

In Hybrid 1, for QPH.mpk,

{Ai = A ·Ri − yi ·G}, {Bj = A ·R
′

j − xj ·G}, ∀i ∈ [`], j ∈ [t],

and {Pk}k∈[N ] are sampled randomly under the condition
∑
k∈∆∗

î

Pk = A · J∗
î

for î ∈ [Q], and for ct∗, we have β0 = A>s+ e,ui = R>i · β0,vj = (R′j)
>β0.

We argue that the joint distribution of the public parameters and ciphertext

(A, {Ai,ui}i∈[`], {Bj ,vj}j∈[t], {Pk}k∈[N ], ct
∗)

is statistically indistinguishable between these two hybrids.

On the one hand, by Theorem 2.13, we have that A
$
≈ U for A output by

TrapGen algorithm. Then By Lemma 2.16, we have that

(A,A ·Ri − yi ·G,R>i e)
s
≈ (A,U ,R>i e),

and this holds for Bj = A ·R′j − xj ·G as well. Since for all i, Ri (resp. R′j) is
randomly and independently chosen, it follows that

(A, {A·Ri−yi·G}, {R>i e}, {A·R′j−xj ·G}, {(R′j)>e})
s
≈ (A, {Ui}, {R>i e}, {Uj}, {(R′j)>e}).

On the other hand, by Lemma 2.7, We have (A, {A·J∗
î
}î∈[Q])

s
≈ (A, {Uî}î∈[Q])

for random matrix A. Furthermore, the ciphertext components ui and vj are
derived simply by adding (Ai + yi ·G)> · s and (Bj + xj ·G)> · s to R>i e and
(R′j)

>e, respectively. As statistical distance does not increase under application
of a function, this implies that the public parameters and the ciphertext are
statistically close in these two hybrids. ut

Lemma B.2 Hybrid 1 and Hybrid 2 are statistically indistinguishable.

Proof. Between Hybrid 1 and Hybrid 2, the manner of generating keys changes
from QPH.KeyGen to QPH.KeyGen∗1. We consider two cases:

1. For a 0-key query Ĉ◦IPγ , in Hybrid 1 the key is sampled using the SampleLeft
algorithm, whereas in Hybrid 2, it is sampled using the SampleRight algorith-
m. By Lemma 2.15 and our setting of parameters, the resulting distributions
are statistically indistinguishable.

68



2. For a 1-key query Ĉ◦IPγ , we note that {Pk} are chosen the same way in both

Hybrid 1 and Hybrid 2. In Hybrid 1, for î ∈ [Q], we sample Kî =

[
J∗
î

+ K1,̂i

K2,̂i

]
by first sampling J∗

î
← DZm×m,ρ then using SampleLeft to sample the key

such that [
A|AĈ∗

î
◦IP + γ ·G

]
·
[
K1,̂i

K2,̂i

]
=
∑
k∈∆∗

î

Pk −AJ∗
î
,

where the marginal distribution of
∑
k∈∆∗

î

Pk = A · J∗
î

is uniformly at ran-

dom, as J∗
î

is hidden in the view of adversary in this case.

In Hybrid 2, for î ∈ [Q], we output Kî =

[
J∗
î
−RĈ◦IP ·K

′
2,̂i

K′
2,̂i

]
, where J∗

î
←

DZm×m,
√
ρ2+s2

, K′
2,̂i
← DZm×m,s and

RĈ◦IP = Evaltrap
(
{Ri}i∈[`], {R

′

j}j∈[t],A, Ĉ ◦ IP,x,y
)
.

To rephrase in the terms as we used in Section 4, the key generation (with
the public A,P) in Hybrid 1 is exactly the procedure of Sampler-1, and in
Hybrid 2 the Sampler-2. Therefore, by Theorem 4.2, we know that the two
cases are statistically indistinguishable. Via a simple hybrid argument, we
know the indistinguishability also holds for Q key queries.

The above analysis shows that the hybrids are indistinguishable for either case,
and this completes the proof. ut

Lemma B.3 Hybrid 2 and Hybrid 3 are statistically indistinguishable.

Proof. The only difference between the two hybrids is the way how the public
matrices {Pk} are generated. In Hybrid 2, for k ∈ [N ], Pk is sampled uniformly
at random under the constraint

∑
k∈∆∗i

Pk = A · J∗i . In Hybrid 3, for k ∈ [N ],

Pk = A · Jk, where Jk ← DZm×m,s for k ∈ [N ]\{δ1, · · · , δQ}, and Jδî = J∗
î
−∑

k∈∆∗
î
\{δî}

Jk for i ∈ [Q].

Clearly, {Pk}k∈[N ] in the two hybrids are under the same constraint. It
suffices to show the marginal distribution of Pk is uniformly at random for
k ∈ [N ] in Hybrid 3. By Lemma 2.7 and our setting of parameters, we have

(A,A · Ji)
s
≈ (A,Ui), for i ∈ [N ]. This completes the proof. ut

Lemma B.4 Hybrid 3 and Hybrid 4 are statistically indistinguishable.

Proof. The only difference between the two hybrids is the way how the ciphertext
elements {β1,k}k∈[N ] are generated. In Hybrid 3, we have β1,k = P>k s+ e′k + bk,
for k ∈ [N ]. In Hybrid 4, for k ∈ [N ], we have

β1,k = J>k · β0 + e′k + bk

= (A · Jk)>s+ J>k · e+ e′k + bk

= P>k · s+ J>k · e+ e′k + bk.

69



Thus, it suffices to show that e′k
s
≈ J>k · e + e′k. By the smudging lemma, i.e.,

Lemma 2.9 and our setting of parameters, the two distributions are statistically
close. Thus this completes the proof. ut

Lemma B.5 Hybrid 4 and Hybrid 5 are computationally indistinguishable as-
suming LWE is hard.

Proof. We show how the LWE assumption can be broken given an adversary that
distinguishes between Hybrid 4 and Hybrid 5. Given the LWE challenge sample
(A, z) where z is either real or random. The reduction does as follows:

1. Run QPH.Setup∗2 and QPH.KeyGen∗1. These algorithms are used to produce
the public parameters and the function keys. We note that these two algo-
rithms can be implemented without the trapdoor of A.

2. To produce the ciphertext, set β0 = z and generate the remaining compo-
nents as in Hybrid 3.

Now if z = A>s + e, then the reduction faithfully simulates the distribution
of Hybrid 4, whereas if z is random, the reduction simulates Hybrid 5. Thus the
reduction has the same advantage in breaking LWE as that in distinguishing the
two hybrids. This completes the proof. ut

Lemma B.6 Hybrid 5 and Hybrid 6 are statistical indistinguishable.

Proof. The proof is analogous to the proof of indistinguishability between Hybrid 1
and Hybrid 2 for generating secret keys of 0-key queries. ut

Lemma B.7 Hybrid 6 and Hybrid 7 are statistical indistinguishable.

Proof. The difference between the two hybrids is how the public matrix A
and the trapdoor are generated. In Hybrid 6, A and trapdoor are generat-
ed by (A,TA) ← TrapGen(1n, q,m). In Hybrid 7, it first runs (A′,TA′) ←

TrapGen(1n+1, q,m), then parses A′ =

[
A
z>

]
and sets A as the public matrix. By

Theorem 2.13, the matrix A in these two cases are both statistically close to the
uniform distribution, and thus they are indistinguishable for the two hybrids.

On the other hand, by Theorem 2.13, TA′ is also a trapdoor of A for KeyGen
algorithm. As the secret keys are sampled from the same Gaussian distribution
over the same lattice for these two hybrids, it does not matter which trapdoor
is used. Therefore, these two hybrids are statistically indistinguishable. This
completes the proof. ut

Lemma B.8 Hybrid 7 and Hybrid 8 are statistically indistinguishable.

Proof. The difference between the two hybrids is the way of generating cipher-
text elements β0 and β1,k for k ∈ [N ]. In Hybrid 7, β0 is sampled uniformly at
random, whereas in Hybrid 8, β0 is set as z prepared in QPH.Setup∗3. By theo-
rem 2.13, z is statistically close to uniformly random, and thus the two hybrids
generate β0 in a statistically close way.

On the other hand, β1,k in the two hybrids are identical for k ∈ [k] by the

setting of β̃k. This completes the proof. ut
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Lemma B.9 Hybrid 8 and Hybrid 9 are statistically indistinguishable.

Proof. The difference between the two hybrids is the way of generating the public
matrices Pk and the elements β̃k prepared in QPH.msk for k ∈ [N ].

For the indistinguishability of Pk in the two hybrids, the proof is analogous
to the proof of indistinguishability between Hybrid 2 and Hybrid 3.

For β̃k, in Hybrid 8, β̃k = (Jk)> · z, where Jk ← DZm×m,s for k ∈ [N ] under

constraint
∑
k∈∆∗

î

Jk = J∗
î

with î ∈ [Q]. By Lemma 2.7, the marginal distribution

of β̃k are statistically close to uniformly random distribution for k ∈ [N ] under

constraint
∑
k∈∆∗

î

β̃k = (J∗
î
)> · z, which is identical to the distribution of β̃k in

Hybrid 9. Thus the two hybrids are statistically close. ut

Lemma B.10 Hybrid 9 and Hybrid 10 are statistically indistinguishable.

Proof. We show the indistinguishability between the two hybrids in an infor-
mation theoretical way, i.e., the view of adversary A in Hybrid 9 is statistically

indistinguishable from that in Hybrid 10: AView
Hybrid9

s
≈ AView

Hybrid10.
From Definition 3.2, we know that

AView =
(
QPH.mpk, {skĈi◦IPγi }i∈[poly], {skĈ∗

î
◦IPγ

î

}î∈[Q], ct
∗),

where skĈi◦IPγi
is the secret key for 0-key query Ĉi ◦ IPγi , skĈ∗

î
◦IPγ

î

is the secret

key for 1-key query Ĉ∗
î
◦ IPγî . The only differences between the two views come

from the way how 1-keys, i.e., {skĈ∗
î
◦IPγ

î

}î∈[Q] are generated.

To show the indistinguishability of the two views, we define an intermediate
viewAView′

Hybrid9, in which the elements (A, {Ai}, {Bj}) in QPH.mpk, {skĈi◦IPγi}i∈[poly],

{skĈ∗
î
◦IPγ

î

}î∈[Q] and β0, {ui}, {vj} in ct∗ are identical to AView
Hybrid9. The pub-

lic matrices {Pk}k∈[N ] are generated by randomly sampling Pk from Zn×mq

under the constraint
∑
k∈∆∗

î

Pk = [A|A
Ĉ∗
î
◦IP] · (skĈ∗

î
◦IPγ

î

), and the elements

{β1,k} are generated as β1,k = β̃k + bk + e′k, where bk, e
′
k are the same as

before, and {β̃k}k∈[N ] are sampled randomly from Zmq under the constraint∑
k∈∆∗

î

β̃k = (skĈ∗
î
◦IPγ

î

)> ·

(
z

u
Ĉ∗
î
◦IP

)
. Next we will show AView

Hybrid9

s
≈ AView′

Hybrid9

and AView′

Hybrid9

s
≈ AView

Hybrid10.
For the first part, it’s easy to see [A|A

Ĉ∗
î
◦IP] · (skĈ∗

î
◦IPγ

î

) = A · J∗
î

and

(skĈ∗
î
◦IPγ

î

)> ·

(
z

u
Ĉ∗
î
◦IP

)
= (J∗

î
)> · z in AView′

Hybrid9, meaning that AView′

Hybrid9 can be

viewed as a change of variables of and AView
Hybrid9. Thus, these two distributions are

identical.
For the second part, we show it by a hybrid argument. For i∗ ∈ {0, · · · , Q}, we

define an intermediate viewAView′

Hybrid9,i∗ as: A, {Ai}, {Bj} in QPH.mpk, {skĈi◦IPγi}i∈[poly]
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are identical to AView′

Hybrid9, the first i∗ secret keys for 1-key queries are generated by
the way of Hybrid 10, the remaining Q− i∗ secret keys are generated as Hybrid 9,
and the related constraints of Pk and β̃k are corresponding to the secret keys
sampled in this hybrid. It is easy to see AView′

Hybrid9,0 is identical to AView′

Hybrid9, and

AView′

Hybrid9,Q is exactly AView
Hybrid10. It thus suffices to show AView′

Hybrid9,i∗−1

s
≈ AView

Hybrid9,i∗

for every i∗ ∈ {1, · · · , Q}, then implying AView′

Hybrid9

s
≈ AView

Hybrid10.
We show this by reduction: if there exists an i∗ ∈ {1, · · · , Q} such that we can

distinguish AView′

Hybrid9,i∗−1 and AView′

Hybrid9,i∗ , then we can break the indistinguishabil-
ity of Theorem 4.2. The reduction T processes as follows:

1. Given the challenge elements A′,U′i∗ output by Stage 1 of the Sampler.
Generate QPH.mpk as follows:

– Parse A′ =

[
A
z>

]
and denote A as the public matrix in QPH.mpk.

– Use A to generate the public elements {Ai}, {Bj} in QPH.mpk as Hybrid10.

– Sample J∗i ← DZm×m,ρ, and set U′i = A′ · J∗i =

[
Ui

u>i

]
, for i ∈ [Q]\{i∗}.

Then chooseQ random subsets∆∗1, · · · , ∆∗Q according sampler SamplerSet(N,Q, v),

and generate P′k =

[
Pk

β̃
>
k

]
for k ∈ [N ] by randomly sampling P′k from

Z(n+1)×m
q under the constraint

∑
k∈∆∗i

P′k = U′i, i ∈ [Q]. Denote {Pk}
as the public elements in QPH.mpk.

2. Generate secret keys {skĈi◦IPγi}i∈[poly] for 0-key queries {Ĉi ◦ IPγi}i∈poly such

that the distributions of {skĈi◦IPγi}i∈[poly] are identical to which in Hybrid 9.

3. Generate secret keys {skĈ∗i ◦IPγi}i∈[Q] for 1-key queries {Ĉ∗i ◦ IPγi}i∈[Q] as

follows:
– Generate the first i∗ − 1 secret keys for 1-key queries {Ĉ∗i ◦ IPγi}i∈[i∗−1]

such that these keys distribute as Hybrid10.
– For the i∗-th 1-key query Ĉ∗i∗ ◦ IPγi∗ , compute RĈ∗

i∗◦IP
and use it to call

the Stage 2 oracle of the Sampler. Denote skĈ∗
i∗◦IPγi∗

= (∆∗i∗ ,Yi∗), where

Yi∗ is the response of the oracle such that [A′|A′ ·RĈ∗
i∗◦IP

] ·Yi∗ = U′i∗ .

– Generate the last Q− i∗ secret keys for 1-key queries {Ĉ∗i ◦ IP}i∈[i∗+1,Q]

such that these keys distribute as Hybrid9.
4. Set the element β0 = z, and compute {ui}, {vj} in ct∗ as Hybrid9. For

βi,k, k ∈ [N ], set β1,k = β̃k + bk + e′k, where bk, e
′
k are defined as Hybrid9,

and {β̃k} are the vectors generated in Step 1 along with the matrices {Pk}.

Denote D∗ as the distribution of challenge tuple (A′,A′ · RĈ∗
i∗◦IP

,Yi∗ ,U
′
i∗)

of Sampler, and then we can treat the distribution of the view output by the
reduction above as T (D∗). Furthermore, denote D1 as the distribution of tuple
output by Sampler-1, and D2 as that by Sampler-2. Now if D∗ = D2, then it is
clear from the construction that T (D2) = AView′

Hybrid9,i∗−1. On the other hand, if
D∗ = D1, the distribution T (D1) however, is not exactly the same as that of
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T (D2) = AView′

Hybrid9,i∗−1 due to a subtle mismatch in the anticipated distribution
of U′i∗ in Hybrid9, i∗ is A · J∗i , not exactly uniformly random as the D1.

To handle this issue, we further define D3 as the distribution of tuple (A′,A′ ·
RĈ∗

i∗◦IPγi∗
,Y′i∗ ,U

′′
i∗), where everything is the same as D1 except that U′′i∗ is

defined by sampling J∗i∗ ← DZm×m,ρ, and setting U′′i∗ = A′ · J∗i∗ . Then it is easy

to verify T (D3) = AView′

Hybrid9,i∗ .
Now, by the property of statistical distance SD, we have:

SD(AView′

Hybrid9,i∗ ,AView′

Hybrid9,i∗−1) = SD(T (D3), T (D2)) ≤ SD(D2, D3)

≤ SD(D1, D2) + SD(D1, D3).

Next we claim SD(D1, D3) ≤ negl(λ). To see this, we observe that U′′i∗ = A′ ·J∗i∗ ,
and J∗i∗ is never explicitly used by the Sampler-1 (both D1 and D3). Therefore,
by Lemma 2.7, the marginal distribution of U′′i∗ is statistically close to random,
which is exactly the distribution of U′i∗ in D1. This thus proves the claim.

Together with Theorem 4.2 which shows SD(D1, D2) ≤ negl(λ), the proof is
complete.

ut

Lemma B.11 Hybrid 10 and Hybrid 11 are statistically indistinguishable.

Proof. The proof follows similarly as the proof of indistinguishability between
Hybrid 0 and Hybrid 1. ut

Lemma B.12 Hybrid 11 and Hybrid 12 are statistically indistinguishable.

Proof. We show the indistinguishability between the two hybrids in an informa-
tion theoretical way. The only difference between the two views AView

Hybrid11 and

AView
Hybrid12 is the way to generate the message encoding vectors bk in the cipertext

elements β1,k for k ∈ [N ]. Formally, the elements {β̃k}k∈[N ] are truly random in

both the two hybrids now, skĈ∗
î
◦IPγ

î

for 1-key query Ĉ∗
î
◦ IPγî is generated under

the constrain

[
A AĈ∗

î
◦IP

z> u>
Ĉ∗
î
◦IP

]
· (skĈ∗

î
◦IPγ

î

) =

∑k∈∆∗
î

Pk∑
k∈∆∗

î

β̃
>
k

, and the condition for

correctness of decryption is (skĈ∗
î
◦IPγ

î

)> ·

(
z>

u>
Ĉ∗
î
◦IP

)
=
∑
k∈∆∗

î

β̃
>
k . Then β̃k acts

as one-time pad to hide bk in βi,k if there is no 1-key query been asked, and
A only learns the value

∑
k∈∆∗

î

bk = dq/2eµ if skĈ∗
î
◦IPγ

î

if the secret key of the

query Ĉ∗
î
◦ IPγî is provided.

As for any î ∈ Q, the summation of
∑
k∈∆∗

î

bk is set to be equal in these two

hybrids. Therefore, the two views are statistically indistinguishable. ut

Lemma B.13 Hybrid 12 and Hybrid 13 are statistically indistinguishable.
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Proof. We show the view of adversary A in Hybrid 12 is statistically indistin-
guishable from the view in Hybrid 13, the ideal experiment.

For AView =
(
QPH.mpk, {skĈi◦IPγi}i∈poly, {skĈ∗î ◦IPγî

}î∈[Q], ct
∗), we first ob-

serve that the distributions of QPH.mpk, and {skĈi◦IPγi }i∈poly and the elements

β0, {ui}, {vj} of ct∗ in these two hybrids are identical. It remains to show the
distributions of {skĈ∗

î
◦IPγ

î

}î∈[Q], and {β1,k} in ct∗ in the two hybrids are statis-

tically indistinguishable.
To see this, we first observe that the distributions of ct∗ in the two hybrids are

identical by a similar argument as Lemma B.12. Next, we show the distributions
of {skĈ∗

î
◦IPγ

î

= (∆∗
î
,Kî)}î∈[Q] in the two hybrids are statistically indistinguish-

able. We first consider the case where there is no pre-challenge 1-key query. In
Hybrid 12, {∆∗i }i∈[Q] are prepared in QPH.Setup phase, and {∆′i}i∈[Q] are chosen
in the encryption algorithm. In Hybrid 13, {∆i, ∆

′
i}i∈[Q] are chosen in QPH.Enc

(Sim3) phase. The distributions of {∆∗i }i∈[Q] in the two hybrids are identical,
since there is no secret key for 1-key query specified before the challenge.

Similarly, we consider the case that A had made Q′ 1-key pre-challenge
queries. In Hybrid 12, {∆∗i }i∈[Q] are prepared in QPH.Setup phase. In Hybrid 13,
the random subsets {∆i}i∈[Q′] corresponding to the pre-challenge 1-key queries
are specified in Sim2 phase. Thus, {∆i}i∈[Q′] in the two hybrids are identical,
as these subsets are specified before the challenge. In Hybrid 13, {∆i}i∈[Q′+1,Q]

corresponding to the post-challenge 1-key queries are specified in Sim3 phase.
By a simple observation, the distributions of {∆i}i∈[Q′+1,Q] in the two hybrids
are identical.

On the other hand, the distributions of Ki in the two hybrids are statistically
close, since they are both generated by the two-stage sampling method defined
in Section 4. This completes the proof of Lemma B.13. ut

This completes the security proof. ut

C Supplementary Material for SA-Secure PHPE in
Section 5.3

In this section, we first argue the correctness in C.1. Then, we present the detailed
security proof in Section C.2.

C.1 Correctness of SA-Secure PHPE in Section 5.3

It is not hard to verify the correctness of the above transformation, so we
just describe the most critical design idea. We first observe that the decryp-
tion keys of the PKE allow the PHSA.Dec to learn {Li,ri}i∈[t] and {L′i,r′i}i∈[`]

from {cti,b}i∈[t],b∈{0,1} and {ct′i,b}i∈[`],b∈{0,1} only. This information together
with ct1, forms a ciphertext with the shifted private/public attributes of the
underlying PHSel, i.e., PHSel.Enc((x⊕ r,y ⊕ r′), µ). Since the key generation al-
gorithm also queries the underlying PHSel.KeyGen with a shifted function, i.e.,
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fr,r′(x,y) = f(x ⊕ r,y ⊕ r′), we have fr,r′(x ⊕ r,y ⊕ r′) = f(x,y), implying
the correctness of the overall decryption.

C.2 Security of SA-Secure PHPE in Section 5.3

We present the following theorem to summarize the security the transformation
achieves. As the proof is similar in spirit with the prior work [21], we will just
present a sketch, which suffices to demonstrate the core ideas.

Theorem (Restatement of Theorem 5.6) Assume that PKE is semantical-
ly secure, and PHSel is (q1, q2)-Sel-SIM secure for private-public attribute space
{0, 1}t × {0, 1}`, message space M, and function class F that is closed under
bit-shift on {0, 1}t×{0, 1}`. Then the scheme PHSA is (q1, q2)-SA-SIM secure for
the same attribute and message spaces and the function class F .

Proof (sketch). First, we show how to construct the simulator Sim′ = (Sim′1,Sim
′
2,

Sim′3,Sim
′
4) for PHSA from the simulator Sim = (Sim1,Sim2,Sim3,Sim4) for the

underlying PHSel, in a black box way.

– For Sim′1, we conduct the following steps:

1. Choose a random vector (r̃, r′) ← {0, 1}t × {0, 1}`, and run Sim1 with
r′ as input.

2. After getting from Sim1 the master public key mpkSel, run PKE.KeyGen
for (2t+2`) times to obtain the corresponding pairs of public/secret keys,
{PKE.pki,b,PKE.ski,b}i∈[t],b∈{0,1} and {PKE.pk′i,b,PKE.sk

′
i,b}i∈[`],b∈{0,1}.

3. Output mpkSA = (mpkSel, {PKE.pki,b}i∈[t],b∈{0,1}, {PKE.pk′i,b}i∈[`],b∈{0,1}).

– For Sim′2, after receiving key query f ∈ F and the challenge public attribute
y∗, we conduct the following steps:

1. Let r̃′ = r′⊕y∗. Define a related function fr̃,r̃′(x,y) := f(x⊕ r̃,y⊕ r̃′),
and then run Sim2 with fr̃,r̃′(·, ·) and y∗ as input.18

2. After getting skSel,f from Sim2, set and output skAD,f = (r̃, r̃′, {PKE.ski,r̃i}i∈[t],
{PKE.sk′i,r̃′i}i∈[`], skSel,f ).

– For Sim′3, after receiving (b, st) for challenge ciphertext query, we conduct
the following steps:

1. Replace the queried functions f ∈ st with fr̃,r̃′ , and generate new state
information st′.

2. Run Sim3 with (b, st′) and y∗ as input.

3. Get the challenge ciphertext ctSel = (ct
(1)
Sel , ct

(2)
Sel , ct

(3)
Sel ), where ct

(1)
Sel =

Enc1(µ;R), ct
(2)
Sel = {ct(2),i

Sel }i∈[t] = {Enc2(xi;R)}i∈[t], ct
(3)
Sel =

{ct(3),i
Sel }i∈[`] = {Enc3(yi;R)}i∈[`].

4. Set ct1 = ct
(1)
Sel , Li,r̃i = ct

(2),i
Sel for i ∈ [t], and L′i,r̃′i

= ct
(3),i
Sel for i ∈ [`].

18 Here, when we denote (x∗,y∗) as the challenge attribute of PHSA, the related chal-
lenge attribute of PHSel is (r̃⊕x∗, r′). Clearly, we have fr̃,r̃′(r̃⊕x∗, r′) := f(x∗,y∗),
which means 1-key and 0-key queries of PHSA and PHSel are consistent.
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5. Set {Li,1−r̃i}i∈[t] and {L′i,1−r̃′i}i∈[`] to be random strings with the same

length as ct
(2),i
Sel and ct

(3),i
Sel , respectively.

6. Generate {cti,b}i∈[t],b∈{0,1} and {ct′i,b}i∈[`],b∈{0,1} just as the real encryp-

tion algorithm, i.e., encrypting Li,b and L′i,b under pki,b and pk′i,b, re-
spectively.

7. Output ct = (ct1, {cti,b}i∈[t],b∈{0,1}, {ct′i,b}i∈[`],b∈{0,1}).

– For Sim′4, we construct it from Sim4 in a black box way, which is similar as
the black-box construction of Sim′2.

Next, we sketch to show the indistinguishability of real PHSA experiment
and the above simulator SIM′, through using a hybrid argument. In particu-
lar, we first treat the real experiment as Hybrid0. Then in Hybrid1, we replace
{cti,1−r̃i}i∈[t] and {ct′i,1−r̃′i}i∈[`] with the encryptions of random values. Finally,

we treat the above SIM′ as Hybrid2. Clearly, the indistinguishability of Hybrid0

and Hybrid1 follows from the security of the used PKE scheme. And the indistin-
guishability of Hybrid1 and Hybrid2 follows naturally from that of the underlying
PHSel’s real experiment and SIM. The proof can be formalized in a similar way
as the prior work [21]. To avoid repeating the existing technique, here we only
present this sketch and refer readers to the work [21] for the detailed steps. ut

D Supplementary Material of Section 7

D.1 ALS in [5]

In this section, we recall the original ALS in [5], which is necessary for the
reduction proof in Section 7.1.

– ALS.Setup(1λ, 1`, IP,M): Given as input the security parameter λ, the class
IP of inner product function indexed by vectors in {0, . . . , v − 1}`, and the
message space M = {0, . . . , p− 1}` with `, v, p ∈ N, do the following:
1. Choose modulus q, parameters n,m, k, ρ, σ as described in next para-

graph for parameters.

2. Sample random matrices AALS
$← Zm×nq and ZALS ← DZ`×m,ρ;

3. Compute DALS = ZALS ·AALS ∈ Z`×nq ;
4. Output mpk := (AALS,DALS) and msk := ZALS.

– ALS.KeyGen(msk,y): On input a vector y ∈ {0, . . . , v − 1}`, the algorithm
computes and outputs sky := Z>ALS · y(modq).

– ALS.Enc(mpk,x): On input a message x ∈ {0, . . . , p − 1}`, the algorithm
conducts the following steps:

1. Sample s
$← Znq , e0 ← DZm,σ and e1 ← DZ`,σ;

2. Compute ct1 = A>ALS · s+e0 ∈ Zmq , ct2,i = DALS · s+e1 + b qk c ·y ∈ Z`q
for i ∈ [N ];

3. Output ct = (ct1, ct2).
– ALS.Dec(mpk, sky,y, ct): On input ct = (ct1, ct2) and a secret key sky for
y ∈ {0, . . . , v−1}`, the algorithm computes µ′ = 〈y, ct2〉−〈sky, ct1〉( mod q),
and then outputs the value µ ∈ {0, . . . , p− 1} that minimizes |b qk c · µ− µ

′|.
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Parameters setting.

– To ensure correctness of decryption, we require q ≥ 2k`
√
`vω(log2 n), ρ, σ >

ω(
√

logm).
– To ensure the correctness of ReRand algorithm, we require σ ≥ 2αqΩ(ρ(

√
`+√

m+
√
n)) (c.f. Lemma 2.10).

– To ensure large enough entropy required in the security proof, we require
ρ > ω(

√
logm), m ≥ (2n log q + 2n)/ log(4/3).

– To ensure the hardness of the underlying LWEn,q,α, we require qα ≥ Ω(
√
n).

Under the parameters above, the ALS scheme described above is adaptively
secure for chosen message attacks.

Theorem D.1 Under the LWEn,q,α assumption, the above ALS is AD-INDsecure
within the above parameters setting.

D.2 N-ALS in [47]

In this section, we recall the modified N -ALS in [47], and its IND-based security
notion for chosen message distributions, which is necessary for the reduction
proof in Section 7.2. Finally, we present the related parameter setting and formal
theorem.

– N -ALS.Setup(1λ, 1`, p,N): The algorithm conducts the following steps:
1. Set parameters n,m, σ, σ′, q = pe for some integer e;

2. Sample random matrices AN-ALS
$← Zm×nq and ZN-ALS,i

$←− Z`×mp , for
i = 1, . . . , N ;

3. Compute DN-ALS,i = ZN-ALS,i ·AN-ALS ∈ Z`×nq ;
4. Output mpk := (AN-ALS, {DN-ALS,i}i∈[N ]) and msk := ({ZN-ALS,i}i∈[N ]).

– N -ALS.KeyGen(msk,y): On input a vector y = (y>1 , . . . ,y
>
N )> ∈ ZN ·`p , the

algorithm computes and outputs sky :=
∑N
i=1

(
Z>N-ALS,i · yi

)
.19

– N -ALS.Enc(mpk,x): On input a message x = (x>1 , ...,x
>
N )> ∈ ZN ·`p , the algo-

rithm conducts the following steps:

1. Sample s
$← Znq , e0 ← DZm,σ and {ei}i∈[N ] ← DZ`,σ′ ;

2. Compute ct1 = A>N-ALS ·s+e0 ∈ Zmq , ct2,i = DN-ALS,i ·s+ei+p
e−1 ·yi ∈

Z`q for i ∈ [N ];
3. Output ct = (ct1, {ct2,i}i∈[N ]).

– N -ALS.Dec(mpk, sky,y, ct): On input ct = (ct1, {ct2,i}i∈[N ]) and a secret key

sky for y = (y>1 , . . . ,y
>
N )> ∈ ZN ·`p , the algorithm computes µ′ =

∑N
i=1 (〈yi, ct2,i〉)−

〈sky, ct1〉(modq), and then outputs the value µ ∈ Zp that minimizes |pe−1 ·
µ− µ′|.

Next, we present the IND-based security notion for chosen message distri-
butions. For ease of exposition, we first introduce the definitions of the query
mappings and admissible mappings.

19 We require that all the queried x should be linearly independent modulo from each
other over ZN·`p .
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Definition D.2 Let t = t(λ) be a integers andM be the message space. {xi}i∈[t] ∈
Mt is a set of messages, and f :M→K be a function. We define the functions
(i, f) : Mt → K as (i, f)(x1, ..., xt) = f(xi), and function (i, I) : Mt → M as
(i, I)(x1, ..., xt) = xi.

Definition D.3 (Admissible mappings) Let t = t(λ) be an integer, M be
the message space, and M0,M1 be two distributions over space Mt. Let subsets
T1, T2 ( [t] such that T2 ∩ T1 = ∅ and |T2 ∪ T1| < t, and let {ki}i∈T2 be a
set of integers. We say that mappings {(i, I)}i∈T1

and {(i, fij)}i∈T2,j∈[ki] are
admissible if it holds that

{{(i, I)(M0)}i∈T1 , {(i, fij)(M0)}i∈T2,j∈[ki]}
={{(i, I)(M1)}i∈T1 , {(i, fij)(M1)}i∈T2,j∈[ki]}

Remark D.4 The requirement of admissible mappings is that the above two
distributions are identical. It can also be relaxed by requiring the two distribu-
tions are statistically or computationally close.

Next, we present the adaptive security of functional encryption for chosen mes-
sage distributions through an experiment ExpFE

A (1λ, 1t) between an adversary
and challenger:

1. Setup: For i ∈ [t], challenger first computes (mpki,mski)← Setup(1λ), then
sends {mpki}i∈[t] to adversary A.

2. Query Phase I: Proceeding adaptively, adversary can make any polynomial
number of queries to the oracle O({mski}i∈[t], ·) of the following two kinds:
– Function queries (i, fij): Challenger sends back skfij ← KeyGen(ski, fij).
– Opening queries (i, I): Challenger sends back mski.

3. Challenge Phase: Adversary A sends two message distributions M0 and
M1 over message space Mt with the restriction that any queries made
in Query Phase I are admissible with respect to (M0,M1) (c.f. Defini-
tion D.3). The challenger chooses a random bit b ∈ {0, 1}, and sends cipher-
text {cti = Enc(mpki, xi)}i∈[t] back to adversary, where {xi}i∈[t] ←Mb.

4. Query Phase II: Adversary A can continue making queries as specified in
Query Phase I as long as the queries are admissible.

5. Guess: Adversary A outputs his guess b′.

We define the advantage of adversary A in the experiment ExpFE
A (1λ, 1t) as

AdvA(1λ, 1t) = |Pr[ExpFE
A (1λ, 1t) = 1]− 1/2|

Definition D.5 We say a functional encryption scheme Π is adaptively secure
for chosen message distributions security if for any polynomial t = t(λ), and any
ppt adversary A, we have AdvA(1λ, 1t) ≤ negl(λ).

Finally, we present the parameter setting and security theorem of the above
N -ALS.
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Parameters setting.

– To ensure correctness of decryption, we require pe−1 > 2Np2m`αq
√
n.

– To ensure the correctness of ReRand algorithm, we require σ∗ ≥ pm (c.f.
Lemma 2.10).

– By the property of ReRand algorithm, we have σ
′

= 2σ∗σ (c.f. Lemma 2.10).
– To ensure small enough reduction loss for the ReRand algorithm, we require
αq >

√
λ+ tN2`2 log p (c.f. Lemma 2.10).

– To ensure large enough entropy required in the security proof, we require
m ≥ 2N`+ eN`(n+ 1) + 3λ.

Under the parameters above, the N -ALS described above is adaptively secure
for chosen message distributions.

Theorem D.6 Under the LWE assumption, the above N -ALS is adaptively se-
cure for chosen message distributions, assuming all the secret key queries y to
N -ALS.KeyGen are linearly independent.
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