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Abstract. This paper provides the first analysis of reflection ciphers
such as Prince from a provable security viewpoint.
As a first contribution, we initiate the study of key-alternating reflec-
tion ciphers in the ideal permutation model. Specifically, we prove the
security of the two-round case and give matching attacks. The resulting
security bound takes form O(qp2/22n+ q2/2n), where q is the number of
construction evaluations and p is the number of direct adversarial queries
to the underlying permutation. Since the two-round construction already
achieves an interesting security lower bound, this result can also be of
interest for the construction of reflection ciphers based on a single public
permutation.
Our second contribution is a generic key-length extension method for
reflection ciphers. It provides an attractive alternative to the FX con-
struction, which is used by Prince and other concrete key-alternating
reflection ciphers. We show that our construction leads to better secu-
rity with minimal changes to existing designs. The security proof is in
the ideal cipher model and relies on a reduction to the two-round Even-
Mansour cipher with a single round key. In order to obtain the desired
result, we sharpen the bad-transcript analysis and consequently improve
the best-known bounds for the single-key Even-Mansour cipher with two
rounds. This improvement is enabled by a new sum-capture theorem that
is of independent interest.

Keywords: Reflection ciphers · Public random permutations · Ideal ci-
pher model · Sum capture theorem · Prince

1 Introduction

Cryptographers have long been fascinated by self-inverse, or almost self-inverse,
encryption schemes. For example, the Enigma rotor machine has the surpris-
ing property that its encryption and decryption operations are identical. This
feature, enabled by the middle reflector or Umkehrwalze, made the encryption
device considerably more compact.

Although the reflector ultimately contributed to the demise of Enigma, the
use of self-inverse structures was not abandoned and persists in modern cryp-
tography. Feistel ciphers such as the DES, for instance, are equal to their own
inverse up to a reordering of the round keys. Despite this property, it was later
shown by Luby and Rackoff [28] and follow-up work that the generic Feistel
construction is indeed sound.



Many traditional key-alternating ciphers also use involutions, i.e. self-inverse
functions, as their components in order to keep the hardware implementation
costs for encryption and decryption similar and to save area. The block ciphers
anubis [3], khazad [4] and noekeon [16] are early examples of this strategy.
Key-alternating ciphers have been extensively analyzed from the perspective of
provable security [7, 13, 20, 21, 25], with results demonstrating their resistance
against generic attacks. The provable security of key-alternating ciphers based
on an involution instead of permutations has been studied by Lee [26].

At ASIACRYPT 2012, Borghoff et al. [8] introduced the block cipher Prince
as an alternative approach to minimizing the overhead of supporting both effi-
cient encryption and decryption. Prince has the following reflection property :
decryption is the same as encryption using a related key. This feature is achieved
by using the structure shown in Figure 1, which we will call the key-alternating
reflection cipher. Although the use of both permutations and their inverse risks
increasing area requirements, this is not a concern for the low-latency use-case
that Prince aims for. Indeed, Prince targets fully unrolled hardware imple-
mentations that encrypt a plaintext in a single cycle.
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Fig. 1. A 2r-round key-alternating reflection cipher based on r public permutations
π1, . . . , πr and 2r + 2 keys K1, . . . ,K2r+2. Various key-schedules are possible. In the
Prince core cipher K1 = . . . = Kr+1 and Kr+2 = . . . = K2r+2 ⊕ α for some constant
α ̸= 0. The reflector R is an involution.

Following increased interest in lightweight cryptography, and low-latency en-
cryption in particular, several other key-alternating reflection ciphers were sub-
sequently proposed. For example, Princess [10] and Prince v2 [11] are variants
of Prince. The tweakable block ciphers Mantis [5] and Qarma [1] combine
the key-alternating reflection cipher structure with involutive components and
target applications such as memory encryption.

Despite their widespread use, the generic security of key-alternating reflection
ciphers has not been analyzed from a provable security viewpoint. This stands in
sharp contrast to Feistel ciphers and traditional key-alternating ciphers, which
have been a regular subject of study in symmetric-key provably security. This is
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remarkable, since it is natural to wonder whether or not the additional structure
of reflection ciphers leads to generic flaws.

Related work. The block cipher Prince has been extensively analyzed from a
cryptanalytic point of view, see for instance the results of the Prince crypt-
analysis challenge which ran between 2014 and 2016 [9]. Boura et al. [10] discuss
the choice of the reflector R and the key-schedule of general key-alternating
reflection ciphers.

No results, for any number of rounds or any kind of key-schedule, are known
about the provable security of key-alternating reflection ciphers. The study of
traditional key-alternating ciphers, in contrast, goes back to Even and Man-
sour [20] for one round. The analysis of multiple rounds was initiated by Bog-
danov et al. [7] and continued in [13,21,25]. Their results consider the case with
independent round keys. For the two-round case, the security with three equal
keys was shown by Chen et al. [12] at CRYPTO 2014.

Despite the lack of results about the provable security of key-alternating re-
flection ciphers, the design of Prince does rely on results from provable security
for the purpose of key-length extension. Specifically, Prince uses a variant of
the FX construction [24] to extend the key-length of its 64-bit core reflection
cipher from 64 to 128 bits. This construction is shown in Figure 2. The designers
of Prince prove that, under the strong assumption that E∗ is an ideal reflection
cipher, the resulting construction is secure up to the tradeoff curve pq = 2128

with p the number of queries to E∗ and q the number of construction queries.
Mantis uses the same approach to key-length extension.
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Fig. 2. The structure of Prince and Mantis, with secret keys K and L, and E a block
cipher. The map σ is an invertible linear map and R is a linear involution.

Although the construction in Figure 2 can offer reasonable security when the
number of construction queries q is limited, it has been observed that the security
margin offered by the pq = 2128 tradeoff may be less comfortable than expected.
In particular, at EUROCRYPT 2015, Dinur [18] proposed new time-memory-
data tradeoff attacks against Prince. Recently, Prince v2 [11] was proposed
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with the explicit goal of obtaining improved security with minimal changes to the
original design. The approach taken by Prince v2 is to use alternating round
keys, i.e. K2i−1 = K1 and K2i = K2 for i = 1, . . . , r in Figure 1. They also
slightly modify the reflector R.

Contribution. The contribution of this paper is twofold. First, we initiate the
study of the provable security of key-alternating reflection ciphers. Second, we
provide a simple and generic key-extension method for reflection ciphers that
achieves much better security than the FX construction.

For the first contribution, we analyze the security of the two-round variant of
the general construction from Figure 1 in the ideal permutation model. Specifi-
cally, our results focus on the case with a linear reflector R and two alternating
round keys (i.e. K3 = K1, K4 = K2), similar to the Prince v2 construction.
Decryption is then the same as encryption up to swapping of the keys K1 and
K2. We denote this construction by KARC2. Our Theorem 1 shows that any
adaptive distinguisher making p primitive queries and q construction queries to
KARC2 achieves an advantage of at most O(p2q/22n + q2/2n). In Section 3.2,
alternative key-schedules are discussed, and we show that reducing the number
of round keys is nontrivial and even results in insecure constructions for many
natural choices of the key-schedule.

The KARC2 construction is the first generic reflection cipher construction
with a security proof. This resolves the first case of a problem of intrinsic the-
oretical interest, similar to the study of key-alternating ciphers. From a more
practical perspective, the result limits the power of generic attacks and moti-
vates the general soundness of a widely used construction.

Although KARC2 achieves only birthday-bound security with respect to the
number of construction queries q, the best tradeoff between primitive and con-
struction queries satisfies p2q = 22n. Since the amount of data q is often limited
in practice, the latter tradeoff is usually dominant. Hence, we believe the KARC2
construction could also be instantiated directly with concrete reduced-round per-
mutations to build an attractive reflection cipher. Although many permutations
are only designed to be efficient in the forward direction, there are exceptions
such as Friet [32].

In Section 4, we show that Theorem 1 is tight for general choices of the
reflector R, by providing two matching generic attacks. The first attack is
information-theoretic and shows that the tradeoff curve p2q = 22n cannot be
improved. The second attack is a variant of the mirror slide attack of Dunkel-
man, Keller and Shamir [19]. It uses O(2n/2) construction queries and has a
similar time-complexity. The advantage achieved by the attack is lower bounded
in Theorem 2, thereby showing that the q2/2n term in Theorem 1 can not be
avoided in general. Although this may suggest that the reflector R is not that
important from a generic viewpoint, it is important from the viewpoint of ded-
icated cryptanalysis (when all permutations are instantiated). Another reason
for considering R is simply that all practical reflection ciphers have such a layer,
and we want our results to say something about their generic security.
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The proof of Theorem 1 is given in Section 5. It relies on Patarin’s H-
coefficient technique [13, 29]. The good transcript analysis resembles ideas of
the first iteration of Patarin’s mirror theory [30, 31], but additional difficulties
appear due to the fact that the underlying permutation can be queried by the dis-
tinguisher. Note that the framework of Chen et al. [14] relies on mirror theory for
two independent permutations, so it cannot be applied to KARC2, which requires
the single permutation variant of mirror theory. For the secret permutation case,
different techniques can be used in order to obtain domain separation [17,30]. In
our proof, the domain separation is covered by a bad event, which leads to the
q2/2n term in the final security bound. The proof, like many proofs in provable
security, is in an idealized model. The assumption that the primitive is ideal will
never be satisfied in practice. For this reason, it is good practice to complement
the provable security analysis (which rules out generic attacks) with dedicated
cryptanalysis when all components are instantiated.

Our second contribution is a general method to extend the key-length of re-
flections ciphers, similar to the FX construction shown in Figure 2, but achieving
much better security. Specifically, our proposal is to add the keys K and σ(K)
again before and after the reflector R respectively. For this construction, we
model the block cipher E as an ideal cipher. Our Theorem 7 shows that any
distinguisher making adaptively chosen plaintext and ciphertext queries to this
construction achieves an advantage of at most Õ(p√q/2n+k), with n the block
size and k the key-length of the ideal cipher.

The proof of Theorem 7 is by a reduction to the security of the two-round
Even-Mansour cipher with a single key. However, in order to be able to prove that
p2q = 22(n+k) is the optimal tradeoff for our ideal cipher construction, we had to
sharpen the analysis of two-round Even-Mansour by Chen et al. [12]. Hence, as a
side-result that is of independent interest, we improve the best known bounds for
the two-round Even-Mansour cipher with identical round keys. Figure 3 shows
the difference between our new bound and the bound of Chen et al.. This result
is presented in Theorem 3.

The proof of Theorem 3 is given in Section 6. Our improvement over the
result of Chen et al. [12] is due to a sharpening of their bad-transcript analysis.
This sharpening is made possible by an improved sum-capture theorem, which
we present in Theorem 5 and prove in Section 6.1. Our sharpened sum-capture
theorem is also of independent interest, as it is applicable to all other proofs
relying on this result. In a nutshell, the new result removes the unnecessary
discrepancy between the best-known sum-capture theorems for random functions
and random permutations. Hence, we are able to avoid a term of order p2

√
pq/22n

in the security bound. A detailed discussion of this result is given in Section 6.

Section 7 presents our ideal cipher construction and the proof of Theorem 7.
When applied to Prince or Mantis, we obtain a reflection cipher with an op-
timal tradeoff of p2q = 2256. This should be compared to the tradeoff curve
pq = 2128 for the FX construction. Hence, our construction can tolerate far
more construction queries before becoming insecure. Compared to the dedicated
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Fig. 3. Comparison between the result of Chen et al. [12] for 2-round Even-Mansour
and Theorem 3. The lines correspond to an advantage upper bound equal to one.

construction Prince v2, it has the advantage of introducing a more minimal-
ist change. In addition, Prince v2 does not completely preserve the reflection
property of Prince due to the changes it introduces in the reflector R.

Future work. Our work opens up several directions for interesting future research.
Currently, our results only apply when two independent keys are used. Several
difficulties in using a single key are discussed in Section 3.2, but we believe that
using a nonlinear involution σ could resolve these issues. However, this seems
to require novel proof techniques, as the sum-capture theorem requires linear
mappings. Likewise, it is an open question to categorize all strong linear key
schedules using two independent master keys.

Another challenging problem is that the mirror slide attack from Section 4.2
suggests that a good choice of the reflector may improve the security of KARC2,
in the sense that the birthday bound term q2/2n can be avoided. However,
proving this seems difficult with state-of-the-art techniques.

A third tantalizing open problem is to generalize our results to a larger
number of rounds. Namely, for r > 1, can we find sufficient conditions on the
key-schedule such that the 2r-round key-alternating reflection cipher achieves
tight security?

It would also be interesting to reduce the time complexity of attacks against
the KARC2 construction (potentially down to Õ(22n/3)). Note that the analogous
problem for two-round Even-Mansour cipher is also open, with the best attack
due to Leurent and Sibleyras [27] having a time-complexity of O(2n/

√
n).

Another possible future research direction is to design tweakable reflection ci-
phers from public random permutations. Finally, it could be interesting to study
the related key security of KARC2 – apart from the intentional reflection relation,
and to perform cryptanalysis of concrete instances of the KARC2 construction.
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2 Preliminaries

For a non-negative integer n, the set of bitstrings of length n will be denoted by
{0, 1}n. For any two bitstrings X,Y ∈ {0, 1}n, we denote their bitwise exclusive-
or as the bitstring X ⊕ Y ∈ {0, 1}n.

For any finite set S, the notation S
$←− S indicates that S is a random

variable uniformly distributed on S. In particular, Perm(n) denotes the set of
all permutations on {0, 1}n and π

$←− Perm(n) defines π as a uniform random
permutation. For a list of input-output tuples Qπ = {(x1, y1), . . . }, we denote
by π ⊢ Qπ the event that the permutation π is consistent with the queries-
response tuples in Qπ, i.e. that π(x) = y for all (x, y) ∈ Qπ.

Finally, for any non-negative integers b ≤ a, the falling factorial of a with
respect to b will be denoted by (a)b. The value (a)b is equal to the number of
injections from a set of size b to a set of size a. In particular,

(a)b =

{
1 if b = 0,

a(a− 1) . . . (a− b+ 1) otherwise.

2.1 Block Ciphers

For non-negative integers k and n, a block cipher is a function F : {0, 1}k ×
{0, 1}n → {0, 1}n, such that for every fixed key K ∈ {0, 1}k, the function
FK(·) = F (K, ·) is a permutation on {0, 1}n. The inverse of FK will be denoted
by F−1

K (·) = F−1(K, ·).
We will consider block ciphers F based on r public random permutations

π1, . . . , πr
$←− Perm(n). Our analysis of such constructions will use the strong

pseudorandom permutation (sprp) security notion. Specifically, let D be a dis-
tinguisher with bi-directional access to either (FK [π1, . . . , πr], π1, . . . , πr) for se-
cret key K

$←− {0, 1}k, or (π, π1, . . . , πr) for π
$←− Perm(n). The goal of D is to

determine which oracle it was given access to and its advantage with respect to
this task is defined as

Advsprp
F (D) =

∣∣∣Pr [DF±
K [π1,...,πr],π

±
1 ,...,π±

r = 1
]
− Pr

[
Dπ±,π±

1 ,...,π±
r = 1

]∣∣∣ .
It is possible to build a new block cipher F from an ideal cipher E. The sprp

security notion carries over to this case, but the distinguisher D is given access
to the ideal cipher E rather than to r random permutations. This means that D
can query the random permutations F (K, ·) or its inverse for any chosen key K.
Formally, let D be a distinguisher with bi-directional access to either (FK [E], E)
for a secret key K

$←− {0, 1}n, or (π,E) with π
$←− Perm(n). The sprp-advantage

of D against F is defined as

Advsprp
F (D) =

∣∣∣Pr [DF±
K [E],E±

= 1
]
− Pr

[
Dπ±,E±

= 1
]∣∣∣ .

Here DO denotes the value returned by D when interacting with the oracle O
and the superscript ± indicates that the distinguisher has bi-directional access.
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2.2 Patarin’s H-Coefficient Technique

We use the H-coefficient technique of Patarin [29], and our description of it
follows the modernization of Chen and Steinberger [13].

Consider a deterministic distinguisher D that is given access to either a real
world oracleO or an ideal world oracle P. The distinguisher’s goal is to determine
which oracle it is given access to and we denote its advantage by

Adv(D) =
∣∣Pr [DO = 1

]
− Pr

[
DP = 1

]∣∣ .
The query-response tuples learned by D during its interaction with the oracle
O or P can be summarized in a transcript τ . Let XO (respectively XP) be a
random variable equal to transcript produced by the interaction between D and
O (respectively P). A particular transcript τ is called attainable if Pr[XP = τ ] >
0 and the set of all attainable transcripts is denoted by T .

Lemma 1 (H-coefficient technique). Let D be any deterministic distin-
guisher. Define a partition T = Tgood ∪ Tbad, where Tgood is the subset of at-
tainable transcripts T which contains all the “good” transcripts and Tbad is the
subset with all the “bad” transcripts. If there exists an ϵ ≥ 0 such that for all
attainable τ ∈ Tgood,

Pr[XO = τ ]

Pr[XP = τ ]
≥ 1− ϵ ,

then Adv(D) ≤ ϵ+ Pr[XP ∈ Tbad].

3 Construction Based on a Public Permutation

In this section, we consider the two-round variant of the general construction
shown in Figure 1. In particular, as shown in Figure 4, we consider the case
with K3 = K1 and K4 = K2 and a linear reflector R. This case is of particular
interest because it is both a natural choice for the key-schedule, and one which
is used by concrete reflection ciphers such as Prince v2 [11]. A few alternative
choices of the key-schedule are discussed in Section 3.2 below.

K1

π

K2

R

K1

π−1

K2

M
u v v′ u′

C

Fig. 4. The KARC2 construction based on a public permutation π and with secret keys
K1 and K2.

The construction shown in Figure 4 will be referred to as KARC2, for key-
alternating reflection cipher with two rounds. Formally, let n be a positive in-
teger, π ∈ Perm(n), and R : {0, 1}n → {0, 1}n a linear involution. The generic
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construction KARC2: {0, 1}2n × {0, 1}n → {0, 1}n is defined as

KARC2K1,K2 [π](M) = π−1(R(π(M ⊕K1)⊕K2)⊕K1)⊕K2 .

The KARC2 construction has the following reflection property:(
KARC2K1,K2 [π]

)−1
= KARC2K2,K1 [π]

The security of KARC2 is discussed in Section 3.1.

3.1 Security Lower Bound

In Section 5, we prove the following security bound for KARC2. As will be shown
in Section 4, it is also the case that this bound is tight for general choices of
the reflector R, i.e., there are specific R (such as the identity) with a matching
attack.

Theorem 1. Let n be a positive integer, π
$←− Perm(n) and K1,K2

$←− {0, 1}n.
Let R be a linear involution on {0, 1}n. For any distinguisher D for KARC2K1,K2

[π]
making at most q construction queries, and at most p primitive queries to π±

such that p+ 2q < 2n−1, we have

Advsprp
KARC2(D) ≤

3qp2

22n
+

q2

2n
+

4q3/2

2n
+

4q(p+ 2q)(p+ 2q + 1)

22n
.

On the one hand, Theorem 1 ‘only’ shows that KARC2 achieves birthday-bound
security with respect to the number of construction queries q. On the other hand,
it also shows that the best possible tradeoff curve between construction and
primitive queries is p2q = 22n up to a small constant. This is much better than
the typical birthday-bound tradeoff pq = 2n. This result is especially important
since in practice the number of construction queries is usually limited by the
application. The number of primitive queries, however, is only limited by the
computational power of the adversary.

The attacks that will be presented in Section 4 show that the term q2/2n

cannot be avoided unless the reflector R is carefully chosen. However, for any
linear involution R, there is an attack with advantage approximately 2−n/2

using q = 2n/2 construction queries and no primitive queries. Hence, some terms
independent of p cannot be avoided. It will also be shown that the term p2q/22n

is tight from an information-theoretic point of view, but we are not aware of any
attacks achieving the p2q = 22n tradeoff with reasonable time complexity.

3.2 Variants

The choice of the key-schedule in Figure 4 is not the only possibility. One tempt-
ing option is to further reduce the number keys by setting K2 = σ(K1) for some
involution σ. However, when σ is linear, this construction would not even be
secure up to q2/2n for general choices of R. The reason is that K1 ⊕ K2 =
K1 ⊕ σ(K1) can then no longer be uniform random, and this significantly facil-
itates the attack presented in Section 4.2 below. Indeed, one has the following
result.
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Lemma 2. Let n be a positive integer and σ : {0, 1}n → {0, 1}n a linear invo-
lution. Then σ has at least 2n/2 fixed points and the image of σ⊕ id, where id is
the identity function, contains at most 2n/2 distinct values.

Proof. Since f = σ ⊕ id is linear, the cardinality of its image is 2dim(im f). Fur-
thermore, f2 = 0, so im(f) ⊆ ker(f) and

dim(im f) ≤ dim(ker f) = n− dim(im f) .

It follows that dim(im f) ≤ n/2. The claim about the number of fixed points
follows from the observation that the fixed points of σ are precisely the elements
of ker f . ⊓⊔

Due to the above issue, we focus on constructions with two keys. The case
of one key, which necessarily requires either a special choice of R or a nonlin-
ear σ, will be left as interesting (but likely challenging) future work. However,
even with two keys, several constructions are possible. For example, Boura et
al. [10] propose general key-schedules in which the third and fourth key-addition
in Figure 4 (counting from the left) are replaced by F2(K1,K2) and F1(K1,K2)
respectively, where F1 and F2 are (possibly nonlinear) functions. The construc-
tion we analyze is arguably the simplest secure case: F1(K1,K2) = K1 and
F2(K1,K2) = K2.

4 Attacks on the Public Permutation Construction

This section shows that the security bound in Theorem 1 is essentially tight
by providing two matching generic attacks. The first attack is only information
theoretic and has no practical significance: it shows that the tradeoff curve p2q =
22n between the number of construction queries q and the number of primitive
queries p can be achieved with a time-complexity of O(22n). The second attack
only uses construction queries and corresponds to the q2/2n term in Theorem 1.
Contrary to the first attack, the time-complexity of the second attack is limited
to Õ(2n/2) operations.

4.1 Information Theoretic Attack

Suppose the attacker makes 2q construction queries and p primitive queries with
inputs-output pairs denoted by (u1, v1), . . . , (up, vp). If p

2q = 22n, then the ex-
pected number of plaintext-ciphertext pairs (M,C) and primitive query indices
(i, j) such that

M ⊕K1 = ui

C ⊕K2 = uj ,
(1)

is equal to two. Whenever the above conditions hold, one also has R(vi)⊕ vj =
K1 ⊕R(K2). This suggests the following method for obtaining the keys K1 and
K2. For each possible choice of K1 and K2, the adversary proceeds as follows:
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(i) Identify the pairs (M,C) and (i, j) for which a collision of type (1) occurs.
(ii) For each of the cases identified in step i, check thatR(vi)⊕vj = K1⊕R(K2).

If this relation holds for all pairs that were identified, add (K1,K2) to a
list of candidate keys.

Since the expected number of pairs satisfying (1) is equal to two, each incorrect
key (K1,K2) has an average probability of 1/22n of being accepted. Hence, the
adversary obtains a list of a constant number of candidate keys. These candidate
keys can be checked using a few additional queries.

The attack sketched above is purely information theoretic and does not ac-
count for the computational cost of the procedure. Since the attack uses O(22n)
table lookups, it indeed has no practical significance. Nevertheless, it shows that
the p2q/22n term in Theorem 1 cannot be avoided.

Finding attacks with lower computational cost is left for future work and
we believe this is an interesting problem, as the situation for the two-round
Even-Mansour cipher is similar. In that case, the best known attack is due to
Leurent and Sibleyras [27] and has a time-complexity of O(2n/

√
n) [27]. Their

attack is based on a reduction to the 3-XOR problem. However, since the KARC2
construction has two keys, this approach does not help to reduce the time-
complexity below O(2n).

4.2 Mirror Slide Attack

The second attack is a variant of the mirror slide attack of Dunkelman, Keller
and Shamir [19]. The attack is applicable whenever R has many fixed points and
recovers the value of K1 ⊕K2.

The original mirror slide attack is applicable to the one-round Even-Mansour
cipher with an involutive permutation. To apply a similar technique to KARC2,
we let

I(x) = π−1(K1 ⊕R(K2)⊕R(π(x))) .

The KARC2 construction can then be written asM 7→ I(x⊕K1)⊕K2. In general,
I is not an involution since

I−1(x) = π−1(K2 ⊕R(K1)⊕R(π(x))) .

Nevertheless, the equation above shows that I is an involution iff K1 ⊕ K2 is
a fixed point of the reflector R. Since by Lemma 2 any linear involution has at
least 2n/2 fixed points, the mirror slide attack is applicable for a fraction of at
least 2−n/2 weak keys. However, if R is chosen as the identity map, then all keys
are weak.

The attack is based on the following observation. Let (M,C) and (M∗, C∗)
be two input-output pairs for the construction such that M ⊕ C∗ = K1 ⊕ K2

with K1⊕K2 a fixed point of R. Since M ⊕K1 = C∗⊕K2, it then follows that

M∗ = K1 ⊕ I−1(C∗ ⊕K2) = K1 ⊕ I(M ⊕K1) = K1 ⊕K2 ⊕ C .
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The attack itself is then simple: choose Θ(2n/2) distinct values M1,M2, . . . and
C1, C2, . . .. With high probability, there exist indices i ̸= j such that Mi ⊕Cj =
K1 ⊕ K2 = Mj ⊕ Ci. Furthermore, since the expected number of collisions is
small, one obtains a short list of candidates for K1 ⊕K2.

Theorem 2 gives a lower bound on the advantage of a distinguisher based on
the same principle. Hence, the security lower bound in Theorem 1 is tight in the
sense that the O(q2/2n) term cannot be avoided for some choices of R. Finding
matching attacks when R has only 2n/2 fixed points, or improving the security
lower bound in this case, will be left as future work.

Theorem 2 (Mirror slide attack). Let n ≥ 2 be an even integer, π
$←−

Perm(n), and K1,K2
$←− {0, 1}n. Let R be a linear involution on {0, 1}n with

ℓ ≥ 4 fixed points. There exists a distinguisher D for KARC2K1,K2
[π] making

3 · 2n/2 + 1 construction queries such that

Advsprp
KARC2(D) ≥

ℓ

2n
− 4

2n
.

Proof. Let ∆ be an arbitrary constant which is zero on the first n/2 bits, such
as ∆ = 0n−1∥1. The distinguisher D follows the approach described above, but
using a slightly different approach to make the attack deterministic in the real
world (assuming K1 ⊕ K2 is a fixed point of R). Specifically, D operates as
follows:

(i) For i = 1, . . . , 2n/2, query Mi = ⟨i⟩n/2 ∥ 0n/2 to obtain its encryption Ci.
Likewise, query M̃i = Mi ⊕∆ to obtain its encryption C̃i.

(ii) For i = 1, . . . , 2n/2, query C∗
i = 0n/2 ∥ ⟨i⟩n/2 to obtain M∗

i . Likewise,
define C̃∗

i = Ci ⊕∆ and denote the corresponding plaintext by M̃∗
i .

(iii) If there exists a pair of indices (i, j) such that Mi ⊕ C∗
j = M∗

i ⊕ Cj and
M̃ i ⊕ C̃∗

j = M̃∗
i ⊕ C̃j , then output 1. Otherwise, output 0.

Since in step ii only 2n/2 + 1 new queries are made, the total number of queries
made is 3 · 2n/2 + 1. The distinguisher’s advantage satisfies

Advsprp
KARC2(D) =

∣∣∣Pr [DKARC2±K1,K2
[R,π],π±

= 1
]
− Pr

[
Dπ±

I ,π±
= 1
]∣∣∣ .

Suppose thatK1⊕K2 is a fixed point ofR. In the real world, there is a unique pair
(i, j) such that Mi⊕C∗

j = K1⊕K2. It then also holds that (Mi⊕∆)⊕(C∗
j ⊕∆) =

K1⊕K2. Hence, as detailed in the explanation of the mirror slide attack above,
the following two events then necessarily hold:

Ai,j : Mi ⊕ C∗
j = M∗

j ⊕ Ci

Bi,j : M̃i ⊕ C̃∗
j = M̃∗

j ⊕ C̃i .

Thus, since the number of fixed points of R is ℓ,

Pr
[
DKARC2±K1,K2

[R,π],π±
= 1
]
≥ ℓ/2n .
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For the ideal world, we have

Pr
[
Dπ±

I ,π±
= 1
]
= Pr

∨
i,j

Ai,j ∧Bi,j

 ≤ 2n Pr [A1,1 ∧B1,1] ≤
4

2n
.

Hence, the result follows provided that ℓ ≥ 4.

5 Security Proof for the Public Permutation Construction

In this section we prove Theorem 1. Let K1,K2
$←− {0, 1}n and πI , π

$←− Perm(n).
Consider any computationally unbounded and deterministic distinguisherD with
access to the oracles (KARC2±K1,K2

[π], π±) in the real world and (π±
I , π

±) in the
ideal world.

The distinguisher makes q construction queries to KARC2±K1,K2
[π] or π±

I , and
these are summarized in a transcript of the form τ0 = {(M1, C1), . . . , (Mq, Cq)}.
It also makes p primitive queries to π±, and these are summarized in the tran-
script τ1 = {(u1, v1), . . . , (up, vp)}. Without loss of generality, it can be assumed
that the distinguisher does not make duplicate construction or primitive queries.

After D’s interaction with the oracles, but before it outputs its decision, we
disclose the keys K1 and K2 to the distinguisher. This can only increase its
advantage. In the real world, these are the keys used in the construction. In
the ideal world, K1 and K2 are dummy keys drawn uniformly at random. The
complete view is denoted by τ = (τ0, τ1,K1,K2).

5.1 Bad Events

Throughout the proof, let U = {u | (u, v) ∈ τ1} and V = {v | (u, v) ∈ τ1}. Recall
that R : {0, 1}n → {0, 1}n is an involution, i.e. R−1 = R. We say that τ ∈ Tbad if
and only if there exist construction queries (Mi, Ci), (Mj , Cj) ∈ τ0 and primitive
queries (u, v), (u′, v′) ∈ τ1 such that one of the following conditions holds:

bad1 : Mj ⊕ Ci = K1 ⊕K2 , (2)

bad2 : Mj ⊕ u = K1 and Cj ⊕ u′ = K2 , (3)

bad3 : Mj ⊕ u = K1 and R(v)⊕ v′ = K1 ⊕R(K2) , (4)

bad4 : Cj ⊕ u′ = K2 and v ⊕R(v′) = R(K1)⊕K2 , (5)

When p < q, we also need the following two bad events for our good transcripts
analysis:

bad5 : α1 = |{(Mj , Cj) ∈ τ0 | Mj ⊕K1 ∈ U}| ≥ √q , (6)

bad6 : α2 = |{(Mj , Cj) ∈ τ0 | Cj ⊕K2 ∈ U}| ≥ √q . (7)

Any attainable transcript τ for which τ /∈ Tbad will be called a good transcript.
We give an informal explanation of the definition of the first four bad events.

The first bad event is necessary to exclude the mirror slide attack that was

13



described in Section 4.2. The second bad event is exploited by the information-
theoretic attack from Section 4.1. The motivation behind bad3 and bad4 is simi-
lar. In fact, note thatR(v)⊕v′ = K1⊕R(K2) in bad3 and v⊕R(v′) = R(K1)⊕K2

in bad4 express the same equation. In the real world, if bad1 does not hold, then
every construction query j induces exactly two evaluations (u, v), (u′, v′) of the
underlying public permutation π, and these two pairs satisfy

Mj ⊕ u = K1 ,

Cj ⊕ u′ = K2 ,

R(v)⊕ v′ = K1 ⊕R(K2) .

Clearly, u and u′ are fixed by Mj (if in the forward direction) or Cj (if in the
inverse direction) and K1,K2, but there is “freedom” in the value R(v) ⊕ v′.
If it happens to be that the distinguisher queried u, i.e., that (u, v) ∈ τ1, the
construction query also fixes the input-output tuple (u′, v′). However, in the ideal
world, there is no such dependency. This means that if the adversary queries u =
Mj ⊕K1 and u′ = Cj ⊕K2 to π, with high probability the third equation would
not hold. An identical reasoning applies for the case where the distinguisher
happened to have set any other two out of three equations.

5.2 Probability of Bad Events in the Ideal World

We want to bound the probability Pr[XP ∈ Tbad] that an ideal world transcript
τ satisfies either of (2)-(7). Therefore, by the union bound, the probability that
XP ∈ Tbad can be bounded as

Pr[XP ∈ Tbad] ≤
6∑

i=1

Pr[badi] .

1st bad event. We first consider the bad event bad1. Here, we rely on the ran-
domness of K1⊕K2. Since K1 and K2 are dummy keys generated independently
of τ0 and τ1, the probability that (2) holds for fixed i and j is 1/2n. Summing
over q2 possible choices of the pair (i, j), we have

Pr[bad1] ≤
q2

2n
.

2nd bad event. We now consider the event bad2. For any construction query
(Mj , Cj) ∈ τ0 and any primitive queries (u, v) and (u′, v′), the only random-
ness in the first equation of (3) is K1 and the only randomness in the second
equation is K2. This means that the event that one of the equations defining
bad2 holds is independent of the event that the other one holds. Since the keys
K1,K2

$←− {0, 1}n are dummy keys generated independently of τ0 and τ1, the
probability that bad2 holds for a fixed choice of j, (u, v), and (u′, v′) is 1/22n.
Summing over the q possible construction queries and p2 possible pairs of prim-
itive queries, we get

Pr[bad2] ≤
qp2

22n
.

14



3rd bad event. Next, we consider the bad event bad3. Note that in the second
equation of (4), we can replace K1 by Mj⊕u. Hence, the only randomness in the
first equation is K1 and the only randomness in the second equation (conditional
on the first) is K2. The events that one of the equations defining bad2 holds is
therefore independent of the other. Summed over q possible construction queries
and p2 possible pairs of primitive queries, we get

Pr[bad3] ≤
qp2

22n
.

4th bad event. The same reasoning as in the case of bad3 applies to bad4. Hence,
it also holds that Pr[bad4] ≤ qp2/22n.

5th bad event. Finally, if p < q, we also consider the bad event bad5. Note that
α1 is a random variable over the random choice of K1, and it is independent of
K2. Furthermore, by the uniformity of K1,

E[α1] =

q∑
j=1

∑
u∈U

Pr[Mj ⊕K1 = u] =
qp

2n
,

Hence, by Markov’s inequality and because we only consider this event for p < q,

Pr[bad5] ≤
√
qp

2n
≤ q3/2

2n
.

6th bad event. The analysis of the last bad event is similarly to that of bad5.
Hence, we also have Pr[bad6] ≤ q3/2/2n.

Conclusion. Summing the probabilities of the bad events, we get

Pr[XP ∈ Tbad] ≤
3qp2

22n
+

q2

2n
+

2q3/2

2n
. (8)

This concludes the analysis of the bad transcripts in the ideal world.

5.3 Ratio for Good Transcripts

Before we continue with the proof, we present the following lemma, which will
be useful in the good transcript analysis.

Lemma 3. Let a, b, c ≥ 0 and N ≥ 1 be integers such that 2a + b ≤ N/2 and
2a+ c+ 1 ≤ N/2. Then

a∏
i=1

(N − i)(N − b− c− 3i)

(N − b− 2i)(N − c− 2i− 1)
≥ 1− 4a(2a+ b)(2a+ c+ 1)

N2
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Proof. One has

a∏
i=1

(N − i)(N − b− c− 3i)

(N − b− 2i)(N − c− 2i− 1)

≥
a∏

i=1

N2 −N(b+ c+ 4i)−N

N2 −N(b+ c+ 4i+ 1) + (b+ 2i)(c+ 2i+ 1)

=

a∏
i=1

(
1− (b+ 2i)(c+ 2i+ 1)

N2 −N(b+ c+ 4i+ 1) + (b+ 2i)(c+ 2i+ 1)

)
=

a∏
i=1

(
1− (b+ 2i)(c+ 2i+ 1)

(N − b− 2i)(N − c− 2i− 1)

)
≥ 1− a(2a+ b)(2a+ c+ 1)

(N − b− 2a)(N − c− 2a− 1)

≥ 1− 4a(2a+ b)(2a+ c+ 1)

N2
,

where for the last inequality we used 2a+ b ≤ N/2 and 2a+ c+ 1 ≤ N/2. ⊓⊔

Consider an attainable transcript τ ∈ Tgood. We now lower bound Pr[XO = τ ]
and compute Pr[XP = τ ] in order to obtain a lower bound for the ratio of these
probabilities. For the ideal world oracle P, the probability of any good transcript
τ is equal to

Pr[XP = τ ] =
1

22n
· (2

n − p)!

2n!
· (2

n − q)!

2n!

=
1

22n
· 1

(2n)p
· 1

(2n)q
.

The first factor is due to the number of possible keys K1 and K2. The second
and third factors correspond to the probability that the uniform random per-
mutations π and πI are consistent with the transcripts τ1 and τ0 respectively.

Similarly, the real world oracle O is compatible with a good transcript τ if
and only if it is compatible with τ0 and τ1. Hence,

Pr[XO = τ ] =
1

22n
· 1

(2n)p
· Pr[KARC2±K1,K2

[π] ⊢ τ0 | π ⊢ τ1] ,

where the probability is taken with respect to π
$←− Perm(n) and conditional on

the keys. As before, the first factor corresponds to the number of possible keys
K1 and K2. The second factor is the probability that π is consistent with τ1. The
third factor is the probability that the construction KARC2±K1,K2

[π] is consistent
with τ0, given the keys K1,K2, and given that π is compliant with τ1.

If we let ρ(τ) = Pr[KARC2±K1,K2
[π] ⊢ τ0 | π ⊢ τ1], then from the above we

obtain that

Pr[XO = τ ]

Pr[XP = τ ]
= (2n)q ρ(τ) . (9)
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In order to bound ρ(τ), we re-group the construction queries in τ0 according to
their collisions with the primitive queries:

QU1 = {(Mj , Cj) ∈ τ0 | Mj ⊕K1 ∈ U} ,
QU2 = {(Mj , Cj) ∈ τ0 | Cj ⊕K2 ∈ U} ,
Q0 = {(Mj , Cj) ∈ τ0 | Mj ⊕K1, Cj ⊕K2 /∈ U} .

By definition, α1 = |QU1
| and α2 = |QU2

|. Also note that QU1
∩ QU2

= ∅ by
¬bad2, QU1

∩Q0 = ∅ and QU2
∩Q0 = ∅ by the definition of QU1

, QU2
, and Q0.

Denote respectively by E1, E2, and E0 the events that KARC2±K1,K2
[π] ⊢ QU1 ,

QU2 , and Q0 such that

ρ(τ) = Pr[E1 ∧ E2 | π ⊢ τ1] Pr[E0 | E1 ∧ E2 ∧ π ⊢ τ1] . (10)

Lower bounding Pr[E1 ∧ E2 | π ⊢ τ1]. The consistency condition π ⊢ τ1 already
defines exactly p distinct input-output relations for π. We know that for each
(Mj , Cj) ∈ QU1

, there is an unique (u, v) ∈ τ1 such that Mj ⊕ K1 = u, and
π(Mj ⊕K1) = v. We define

Ṽ2 = {R(π(Mj ⊕K1)⊕K2)⊕K1 : (Mj , Cj) ∈ QU1
} ,

Ũ2 = {Cj ⊕K2 : (Mj , Cj) ∈ QU1} .

Similarly, for each (Mj , Cj) ∈ QU2
, there is a unique (u, v) ∈ τ1 such that

Cj ⊕K2 = u, and π(Cj ⊕K2) = v. Again, define

Ṽ1 = {R(π(Cj ⊕K2)⊕K1)⊕K2 | (Mj , Cj) ∈ QU2
} ,

Ũ1 = {Mj ⊕K1 | (Mj , Cj) ∈ QU2} .

Note that all values in Ũ1 and all values in Ṽ2 are distinct since the Mj ’s are

distinct, and all values in Ũ2 and all values in Ṽ1 are distinct since the Cj ’s are

distinct. We also have Ũ1 ∩ Ũ2 = Ṽ1 ∩ Ṽ2 = ∅ by ¬bad1, U ∩ Ũ1 = U ∩ Ũ2 = ∅ by
¬bad2, V ∩ Ṽ2 = ∅ by ¬bad3, and V ∩ Ṽ1 = ∅ by ¬bad4. Hence, the events E1

and E2 define exactly α = |QU1
|+ |QU2

| new and distinct input-output pairs of
π and it follows that

Pr[E1 ∧ E2 | π ⊢ τ1] =
1

(2n − p)α
. (11)

Lower bounding Pr[E0 | E1∧E2∧π ⊢ τ1]. The conditions π ⊢ τ1, E1 and E2 now
define exactly p′ = |U ∪ Ũ1 ∪ Ũ2| = |V ∪ Ṽ1 ∪ Ṽ2| = p+ α distinct input-output
pairs of π. Our goal now is to count the number of new distinct input-output
relations for π induced by the event E0. Recall that the event E0 holds if and
only if the reflection cipher is consistent with the construction queries in Q0, i.e.
KARC2K1,K2

[π] ⊢ Q0. The queries in Q0 can be labeled as

Q0 = {(Ml1 , Cl1), . . . , (Mlq′ , Clq′ )} ,
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where q′ = |Q0| = q − α is the total number of these queries.
The event E0 defines exactly 2q′ relations for π of the form π(ū2i−1) = v̄2i−1

and π(ū2i) = v̄2i, where ū2i−1 = Mli ⊕K1 and ū2i = Cli ⊕K2 for i = 1, . . . , q′.
By the definition of Q0 and because bad1 does not hold for good transcripts, it
follows that

{ū1, . . . , ū2q′} ̸⊆ U ∪ Ũ1 ∪ Ũ2 .

Hence, taking into account that π is a permutation, the values v̄1, . . . , v̄2q′ must
satisfy the following conditions (for i = 1, . . . , q′) in the real world:

(1) R(v̄2i−1)⊕ v̄2i = K1 ⊕R(K2).
(2) The variables v̄2i−1 additionally satisfy:

(a) v̄2i−1 /∈ V ∪ Ṽ1 ∪ Ṽ2,
(b) v̄2i−1 /∈ {v̄1, . . . , v̄2i−2} if i > 1.

(3) The variables v̄2i additionally satisfy:
(a) v̄2i /∈ V ∪ Ṽ1 ∪ Ṽ2,
(b) v̄2i /∈ {v̄1, v̄3, . . . , v̄2i−1} if i > 1.

Observe that whenever conditions (1) and (2b) are satisfied, then it also holds
that v̄2i /∈ {v̄2, v̄4, . . . , v̄2i−2}, since K1 ⊕R(K2) is a fixed value. It follows that
conditions (1), (2b) and (3b) ensure that the values v̄1, . . . , v̄2q′ are distinct.

For any positive integer m ≤ q′, let Nm denote the number of distinct tuples
(v̄1, . . . , v̄2m) satisfying the conditions above for i = 1, . . . ,m. In particular,
for each of the Nq′ possible consistent choices of (v̄1, . . . , v̄2q′), the event E0 is
equivalent to exactly 2q′ new input-output relations for π. Hence,

Pr[E0 | E1 ∧ E2 ∧ π ⊢ τ1] =
Nq′

(2n − p′)2q′
. (12)

Below, a recursive formula for Nm in terms of Nm−1 will be determined. This
formula leads to a lower bound for Nm/Nm−1. Finally, in order to lower bound
Nq′ , the following telescoping product will be used (N0 = 1):

Nq′ =

q′∏
m=1

Nm

Nm−1
. (13)

Define Rm as the set of all tuples (v̄1, . . . , v̄2m) that satisfy all conditions
above for i = 1, . . . ,m − 1 and satisfy condition (1) for i = m, but not (2)
and (3). It is easy to see that |Rm| = 2nNm−1.

Furthermore, let Sm be the set of values (v̄1, . . . , v̄2m) also satisfying all
conditions for i = 1, . . . ,m − 1, and additionally satisfying (1) and (2) but
not (3) for i = m. Define Tm analogously but with values satisfying (1) and (3)
but not (2) for i = m. The set of complete solutions can then be written as
Rm \ (Sm ∪ Tm). Hence, by the union bound,

N2m+2 = |Rm \ (Sm ∪ Tm)| = |Rm| − |Sm ∪ Tm| ≥ |Rm| − |Sm| − |Tm| . (14)

Since any (v̄1, . . . , v̄2m) ∈ Sm satisfies v̄2m−1 ∈ {v̄1, . . . , v̄2m−2} ∪ V1 ∪ Ṽ1 ∪ Ṽ2,
one has that |Sm| ≤ (p′ + 2m − 2)Nm−1. Similarly, |Tm| ≤ (p′ +m − 1)Nm−1.
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Hence, substituting these inequalities and |Rm| = 2nNm−1 in (14) and dividing
out Nm−1 yields

Nm

Nm−1
≥ 2n − (p′ + 2m− 2)− (p′ +m− 1) = 2n − 2p′ − 3m+ 3 .

Using the telescoping product (13), it follows that

Nq′ ≥
q′∏

m=1

(2n − 2p′ − 3m+ 3) ≥
q′−1∏
i=0

(2n − 2p′ − 3i) .

Combining (10), (11) and (12), we obtain

Pr[XO = τ ]

Pr[XP = τ ]
≥ Nq′

(2n)q
(2n − p′)2q′ (2n − p)α

≥ Nq′
(2n)q′

(2n − p′)2q′︸ ︷︷ ︸
A

· (2
n − q′)α

(2n − p)α︸ ︷︷ ︸
B

. (15)

Plugging in the lower bound for Nq′ in A yields

A ≥
∏q′−1

i=0 (2n − i)(2n − 2p′ − 3i)

(2n − p′)2q′

≥
q′−1∏
i=0

(2n − i)(2n − 2p′ − 3i)

(2n − p′ − 2i)(2n − p′ − 2i− 1)

≥ 1− 4q′(p′ + 2q′)(p′ + 2q′ + 1)

22n

≥ 1− 4q(p+ 2q)(p+ 2q + 1)

22n
, (16)

where we used Lemma 3 with a = q′ and b = c = p′, and the fact that q′ ≤ q
and p′ + 2q′ + 1 ≤ p+ 2q + 1 ≤ 2n/2.

Next, we consider the factor B in (15). Note that for p ≥ q ≥ q′ and using
the fact that q = q′ + α, we have B ≥ 1. For p < q, we have

B ≥ (2n − q′)α
2αn

≥

(
2n − q

2n

)α

≥ 1− 2q3/2

2n
, (17)

where we used α = α1 + α2 ≤ 2
√
q, which is due to ¬bad5, and ¬bad6.

Conclusion. From (15), (16), and (17) we conclude that

Pr[XO = τ ]

Pr[XP = τ ]
≥ 1− 4q(p+ 2q)(p+ 2q + 1)

22n
− 2q3/2

2n
=: 1− ϵ ,

using (1− x)(1− y) ≥ 1− x− y.
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5.4 Conclusion

Using Patarin’s H-Coefficient technique (Lemma 1), we obtain

Advsprp
KARC2(D) ≤

3qp2

22n+1
+

q2

2n
+

4q(p+ 2q)(p+ 2q + 1)

22n
+

4q3/2

2n
.

6 Sharpened Analysis of Two-Round Even-Mansour

As an intermediate result that will be used to prove the security of our ideal
cipher construction, we consider the following single-key variant of the 2-round
Even-Mansour cipher. For any positive integer n, let π1, π2 ∈ Perm(n), and
let γ1, γ2 : {0, 1}n → {0, 1}n be arbitrary invertible linear maps on {0, 1}n with
respect to ⊕. Define the generic construction EMIP2: {0, 1}n×{0, 1}n → {0, 1}n
as

EMIP2K [π1, π2](M) = π2(π1(M ⊕K)⊕ γ1(K))⊕ γ2(K) .

Chen et al. [12] showed that for γ1 = γ2 = id, EMIP2 is secure up to Õ(22n/3)
queries. In this section, the following sharpened result will be shown. The result
is sharper because, as explained below, our proof avoids the term p2

√
qp/22n in

the bad transcript analysis. The latter term can play an important role when
p is large. The difference between Theorem 3 and the result of Chen et al. is
illustrated in Figure 3 in the introduction.

Theorem 3. Let n ≥ 4 be an integer, let K
$←− {0, 1}n and π1, π2

$←− Perm(n)
independent and uniform random permutations. Let D be any distinguisher for
EMIP2K [π1, π2] making at most q > 1 construction queries, at most p primitive
queries to π±

1 and at most p primitive queries to π±
2 . For all q < 2n−1 or q = 2n,

we have

Advsprp
EMIP2(D) ≤

12

22c−n
+

7qp2

22n
+

6
√

3cqp2

2n
,

with c > 0 an arbitrary real number.

We prove Theorem 3 in Section 6.2. The bad transcript analysis of Chen et
al. [12] relies on a sum-capture theorem. The sharpened bound in Theorem 3 is
due to a sharpening of this result. Several variants of the sum-capture theorem
exist for different situations [12,15]. These results build on the work of Babai [2]
and Steinberger [33]. Typically, a sum-capture theorem states that for a random
subset Z of {0, 1}n of size q, the quantity

µ(Z,A,B) = |{(z, a, b) ∈ Z ×A×B : z = a⊕ b}|

is not much larger than q |A| |B| /2n for any possible choice of A and B, except
with negligible probability. In our setting, Z will consist of query-response tuples
from a permutation, i.e. Z consists of values ui⊕vi where {(u1, v1), . . . , (uq, vq)}
is a permutation transcript. For this case, Chen et al. [12] proved the following
result.
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Theorem 4 (Chen et al. [12]). Let Γ be an invertible linear map on the

F2-vector space {0, 1}n. Let π $←− Perm(n), let D be some probabilistic algorithm
making exactly q distinct two-sided adaptive queries to π. Let Z = {(u1, v1), . . . ,
(uq, vq)} be the transcript of the interaction of D with π, which consists of q ≥ 1
pairs such that either vi = π(ui) or ui = π(vi) for all i = 1, . . . , q. For any two
subsets A,B ⊆ {0, 1}n, let

µ(Z,A,B) = |{((u, v), a, b) ∈ Z ×A×B : u⊕ a = Γ (v ⊕ b)}| .

Then, for 9n ≤ q ≤ 2n−1, we have

Pr

[
µ(Z,A,B) ≥ q |A| |B|

2n
+

2q2
√
|A| |B|
2n

+ 3
√

nq |A| |B|

]
≤ 2

2n
.

In Section 6.1, we prove the following sharpened and simplified version of
their result. For c = n, the bound in the theorem below is essentially identical to
the one given in the sum-capture theorem of Cogliati et al. [15, Lemma 1] for the
case where Z results from the interaction with a random function. Hence, our
result removes the unnecessary discrepancy between the sum-capture theorems
for random functions and random permutations.

Theorem 5 (Sum-capture theorem). Let Γ be an invertible linear map on

the F2-vector space {0, 1}n. Let π $←− Perm(n), and let D be some probabilistic
algorithm making exactly q distinct two-sided adaptive queries to π. Let Z =
{(u1, v1), . . . , (uq, vq)} be the transcript of the interaction of D with π, which
consists of q ≥ 1 pairs such that either vi = π(ui) or ui = π(vi) for all i =
1, . . . , q. For any two subsets A,B ⊆ {0, 1}n, let

µ(Z,A,B) = |{((u, v), a, b) ∈ Z ×A×B : u⊕ a = Γ (v ⊕ b)}| .

For any real number c > 0, it then holds that

Pr

[
µ(Z,A,B) ≥ q |A| |B|

2n
+ 2
√

3cq |A| |B|
]
≤ 4

22c−n
.

As can be seen by comparing Theorem 4 and Theorem 5, our version of the
sum-capture theorem does not contain the term 2q2

√
|A| |B|/2n and avoids the

condition 9n ≤ q ≤ 2n−1. This eliminates the terms 2q2p/22n and 4p2
√
qp/22n

in our bad transcript analysis. The latter term can play an important role when
p is large.

6.1 Proof of the Sharpened Sum-Capture Theorem

For a subset Z of {0, 1}n×{0, 1}n and an invertible linear map Γ of the F2-vector
space {0, 1}n, we define the quantity

ΦΓ (Z) = max
α∈{0,1}n

α̸=0

∣∣∣ ∑
(x,y)∈Z

(−1)⟨α,x⟩⊕⟨α,Γ (y)⟩
∣∣∣ .
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In the expression above, ⟨α, x⟩ = ⊕n
i=1αixi denotes the standard dot product

between bitstrings of length n. The following lemma was proven by Chen et
al. [12], but in the statement of their result they replaced the smaller quantity
ΦΓ (Z) by the quantity

Φ(Z) = max
α,β∈{0,1}n

α,β ̸=0

∣∣∣ ∑
(x,y)∈Z

(−1)⟨α,x⟩⊕⟨β,y⟩
∣∣∣ ≥ ΦΓ (Z) .

However, their proof carries over essentially completely.

Lemma 4 (Chen et al. [12]). Let Γ be an automorphism of the F2-vector
space {0, 1}n. For all sets Z ⊆ {0, 1}n × {0, 1}n and A,B ⊆ {0, 1}n, define

µ(Z,A,B) = |{((u, v), a, b) ∈ Z ×A×B : u⊕ a = Γ (v ⊕ b)}| .

Then it holds that

µ(Z,A,B) ≤ |Z| |A| |B|
2n

+ ΦΓ (Z)
√
|A| |B| .

In order to obtain the simplified sum-capture theorem, it suffices to compute
a tail bound for the quantity ΦΓ (Z). Our improvement over the result of Chen et
al. is enabled by the following theorem of Hoeffding [22], which is stated for the
special case of zero-mean uniformly bounded populations below.

Theorem 6 (Hoeffding [22]). If x1, x2, . . . , xq is a random sample without
replacement from a finite population (multiset) {{c1, c2, . . . , cN}} such that a ≤
ci ≤ b for all i = 1, . . . , N and

∑N
i=1 ci = 0, then for all δ > 0, it holds that

Pr

[
q∑

i=1

xi ≥
√
qδ

]
≤ exp

(
−2δ2

(b− a)2

)
.

Theorem 6 is precisely the same bound as the classical Hoeffding inequality
for sampling with replacement [22, Theorem 2]. It is not surprising that the same
result should be true for sampling without replacement, since the latter tends to
decrease variability. To prove Theorem 6, Hoeffding first showed that the average
of any continuous convex function of

∑q
i=1 xi is less than the same function of

an equivalent sum involving random variables sampled with replacement. The
result then follows by applying this argument for the exponential function (which
is clearly convex) and by using Markov’s inequality.

Lemma 5. Let π
$←− Perm(n) and let D be some probabilistic algorithm making

exactly q distinct two-sided adaptive queries to π. Let Z = {(u1, v1), . . . , (uq, vq)}
be the transcript of the interaction of D with π, which consists of q ≥ 1 pairs
such that vi = π(ui) or ui = π(vi). For any real number c > 0, the tail of ΦΓ (Z)
can be bounded as

Pr[ΦΓ (Z) ≥ 2
√

3cq] ≤ 4

22c−n
.
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Proof. By swapping inputs and outputs where necessary for i = 1, . . . , q, there
exist pairs (xi, yi) such that yi = π(xi) and

ΦΓ (Z) = max
α∈{0,1}n

α ̸=0

∣∣∣ q∑
i=1

(−1)⟨α,xi⟩⊕⟨α,Γ (yi)⟩
∣∣∣ .

For any α ̸= 0 the values zi = ⟨α, Γ (yi)⟩ with i = 1, . . . , q are random samples
without replacement from a population consisting of 2n−1 values 0 and 2n−1

values 1. Indeed, any nonzero linear combination of the output bits of a uniform
random permutation is a uniform random balanced Boolean function and no
queries to π can be repeated. Furthermore, due to the fact that π is a uniform
random permutation, z1, . . . , zq are independent of x1, . . . , xq. Hence, consider
the sum

Sα =

q∑
i=1

(−1)⟨α,xi⟩ (−1)zi .

Note that Sα is a symmetric random variable and E[Sα] = 0. Applying the
union bound1 and Theorem 6 to the terms with positive and negative coefficients
separately gives the tail bound

Pr
[
|Sα| ≥ δ

√
q | x1, . . . , xq

]
≤ 4 e−δ2/8 .

The law of total probability then directly yields the upper bound Pr
[
|Sα| ≥ δ

√
q
]
≤

4 e−δ2/8. By the union bound,

Pr [ΦΓ (Z) ≥ δ
√
q] = Pr

[
max
α̸=0
|Sα| ≥ δ

√
q
]
≤ 2n+2 e−δ2/8 .

Let δ = 2
√
3c > 4

√
ln 2c for c > 0, then

Pr [ΦΓ (Z) ≥ 2
√
3cq] ≤ 2n+2 e−2 ln 2c =

4

22c−n
.

This concludes the proof. ⊓⊔

6.2 Proof of Theorem 3

In this section we prove Theorem 3. Let K
$←− {0, 1}n and πI , π1, π2

$←− Perm(n).
Consider any computationally unbounded and deterministic distinguisherD with
access to the oracles (EMIP2±K [π1, π2], π

±
1 , π

±
2 ) in the real world and (π±

I , π
±
1 , π

±
2 )

in the ideal world.
The distinguisher makes q construction queries to EMIP2±K [π1, π2] or π

±
I , and

these are summarized in a transcript of the form τ0 = {(M1, C1), . . . , (Mq, Cq)}.
It also makes p primitive queries to π±

1 , and p primitive queries to π±
2 , these

are respectively summarized in the transcript τ1 = {(u1, v1), . . . , (up, vp)} and

1 In the form Pr[X + Y ≥ t] ≤ Pr[X ≥ t/2] + Pr[Y ≥ t/2].
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τ2 = {(x1, y1), . . . , (xp, yp)}. Without loss of generality, it can be assumed that
the distinguisher does not make duplicate construction or primitive queries.

After D’s interaction with the oracles, but before it outputs its decision, we
disclose the key K to the distinguisher. In the real world, this is the key used in
the construction. In the ideal world, K is a dummy key that is drawn uniformly
at random. The complete view is denoted by τ = (τ0, τ1, τ2,K).

Bad events. We say that τ ∈ Tbad if and only if there exist a construction
query (Mj , Cj) ∈ τ0 and primitive queries (u, v) ∈ τ1 and (x, y) ∈ τ2 such that
one of the following conditions holds:

bad1 : Mj ⊕ u = K and Cj ⊕ y = γ2(K) , (18)

bad2 : Mj ⊕ u = K and v ⊕ x = γ1(K) , (19)

bad3 : Cj ⊕ y = γ2(K) and v ⊕ x = γ1(K) . (20)

Any attainable transcript τ for which τ /∈ Tbad will be called a good transcript.

Probability of bad events in the ideal world. We want to bound the
probability Pr[XP ∈ Tbad] that an ideal world transcript τ satisfies either of
(18)-(20). Therefore, the probability that XP ∈ Tbad is given by

Pr[XP ∈ Tbad] ≤ Pr[bad1] + Pr[bad2] + Pr[bad3] .

Throughout the proof, let U = {u | (u, v) ∈ τ1}, V = {v | (u, v) ∈ τ1}, X =
{x | (x, y) ∈ τ2} and Y = {y | (x, y) ∈ τ2}. In addition, denote

Ω1 =
∣∣{(j, (u, v), (x, y)) | Mj ⊕ u = γ−1

2 (Cj ⊕ y)
}∣∣ ,

Ω2 =
∣∣{(j, (u, v), (x, y)) | Mj ⊕ u = γ−1

1 (v ⊕ x)
}∣∣ ,

Ω3 =
∣∣{(j, (u, v), (x, y)) | Cj ⊕ y = γ2 ◦ γ−1

1 (v ⊕ x)
}∣∣ .

In the ideal world, Ω1, Ω2, and Ω3 only depend on π1, π2 and π, and not on

the key K
$←− {0, 1}n, which is drawn uniformly at random at the end of the

interaction. For any i ∈ {1, 2, 3} and λi > 0 a real constant, we have

Pr[badi] ≤ Pr[Ωi ≥ λi] +
λi

2n
.

To upper bound the first term above, the sharpened sum-capture theorem (The-
orem 5) will be used. This application of the sum-capture theorem will also rely
on the linearity of γ1 and γ2.

1st bad event. The first bad event can be rewritten as Mj ⊕ u = γ−1
2 (Cj) ⊕

γ−1
2 (y) = K. To apply the sum-capture lemma, define

Z1 = {Mj ⊕ γ−1
2 (Cj) | (Mj , Cj) ∈ τ0} ,

A1 = U ,

B1 = {γ−1
2 (y) | y ∈ Y } .
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Since γ−1
2 is a permutation, Lemma 4 can be applied with Ω1 = µ(Z1, A1, B1),

Pr

[
µ(Z1, A1, B1) ≥

qp2

2n
+ 2
√
3cqp2

]
≤ 4

22c−n
.

We thus set λ1 = qp2/2n + 2
√
3cqp2 and obtain

Pr[bad1] ≤
4

22c−n
+

qp2

22n
+

2
√
3cqp2

2n
.

2nd bad event. For i = 2, we rewrite bad2 as Mj ⊕ u = γ−1
1 (v) ⊕ γ−1

1 (x) = K,
and we define

Z2 = {u⊕ γ−1
1 (v) | (u, v) ∈ τ1} ,

A2 = {Mj | (Mj , Cj) ∈ τ0} ,
B2 = {γ−1

1 (x) | x ∈ X} .

Then, since γ−1
1 is a permutation, we can apply Lemma 4 withΩ2 = µ(Z2, A2, B2),

Pr

[
µ(Z2, A2, B2) ≥

qp2

2n
+ 2
√
3cqp2

]
≤ 4

22c−n
.

We thus set λ2 = qp2/2n + 2
√
3cqp2 and obtain

Pr[bad2] ≤
4

2c−2n
+

qp2

22n
+

2
√
3cqp2

2n
.

3rd bad event. For i = 3, we rewrite bad3 as Cj⊕y = γ2 ◦γ−1
1 (v)⊕γ2 ◦γ−1

1 (x) =
γ2(K) and we define

Z3 = {γ2 ◦ γ−1
1 (x)⊕ y | (x, y) ∈ τ2} ,

A3 = {Cj | (Mj , Cj) ∈ τ1} ,
B3 = {γ2 ◦ γ−1

1 (v) | v ∈ V } .

Then, since γ2 ◦ γ−1
1 is a permutation, we can apply Lemma 4 with Ω3 =

µ(Z3, A3, B3),

Pr

[
µ(Z3, A3, B3) ≥

qp2

2n
+ 2
√
3cqp2

]
≤ 4

22c−n
.

We thus set λ3 = qp2/2n +
√

5nqp2 and obtain

Pr[bad3] ≤
4

22c−n
+

qp2

22n
+

2
√
3cqp2

2n
.

Conclusion. Summing the probabilities of the three bad events, we get

Pr[XP ∈ Tbad] ≤
12

22c−n
+

3qp2

22n
+

6
√

3cqp2

2n
. (21)
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Probability ratio for good transcripts. Since our bad events are the same as
in the analysis of Chen et al. [12], their analysis of the good transcript ratio can
be recycled. In particular, their Lemma 8 (i) implies that for any good transcript
τ and any integers q and p such that 2q + 2p ≤ 2n,

Pr[XO = τ ]

Pr[XP ∈ τ ]
≥ 1− 4qp2

22n
.

However, the above bound is trivial whenever p ≥ 2n−1/
√
q. Hence, 2q + 2p ≤

2n/
√
q + 2q and for n ≥ 4 this is lower than 2n whenever q > 1 and q < 2n−1.

Furthermore, by [12, Lemma 8 (ii)], the result also holds for q = 2n.

Conclusion. Using Patarin’s H-Coefficient technique (Lemma 1), we obtain

Advsprp
EMIP2(D) ≤

12

22c−n
+

3qp2

22n
+

6
√

3cqp2

2n
+

4qp2

22n
.

7 Construction Based on an Ideal Cipher

We now turn to our second reflection cipher construction, which is illustrated in
Figure 5 below. Theorem 7 will show that, for an n-bit ideal block cipher with a
k-bit key, this construction achieves a Õ(p√q/2n+k) security bound. The proof
of this result is based on a reduction to our sharpened security bound for the
two-round Even-Mansour cipher from Theorem 3.

K

E

L K

R

σ(K)

E−1

L+ α σ(K)

Fig. 5. The KARC-IC construction uses two secret keys K and L, and a block cipher
E. The reflector R is a fixed linear involution and σ is an invertible linear map. To
obtain a pure reflection property with respect to both keys, σ should be an involution.

Although the construction in Figure 5 is based on the more powerful ideal
cipher model, it is of considerable practical interest. Indeed, block-ciphers such
as Prince [8], Mantis [5] and Qarma [1] are designed to support a 64 bit block
size with 128 bit keys (internally split into two 64 bit keys), and claim a security
tradeoff of pq = 2128.

In the case of Prince andMantis, this is achieved by instantiating the XEX-
construction [23] with an ideal reflection cipher. Their construction is shown in
Figure 2 (in the introduction). Importantly, although this achieves the desired
tradeoff, the construction of the ideal reflection cipher E∗ in Prince and Man-
tis closely follows our proposed construction: the only difference is the presence
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of key-additions in the middle layer of our construction. Hence, by minimally
modifying Prince and Mantis, our results show that an improved security
tradeoff of pq2 = 2256 can be achieved. However, it should be stressed that our
results only establish security against generic attacks. Careful analysis by crypt-
analysts remains necessary, even for minor changes such as the one proposed by
our construction. For instance, in the case of Mantis, reduced-round nonlinear
invariant attacks have been discovered [6]. The presence of key additions in the
middle could provide additional flexibility to propagate the invariant property
over more rounds. We believe a detailed analysis of this case would make for
interesting future work.

The design of Qarma follows a very similar approach to our construction.
In fact, Avanzi [1] remarks that the true security of the Qarma construction is
likely to exceed the claimed pq = 2n trade-off. Our results corroborate this to
some extent. However, our Theorem 7 is not directly applicable because Qarma
uses a nonlinear reflector R between the middle key-additions. Analyzing the
security of such construction would be possible if the sum-capture theorem could
be extended to allow for nonlinearity. This is an interesting problem by itself.

Before giving Theorem 7 and its proof, we formalize our second construction.
For any positive integers n and k, let E be a block cipher with key L ∈ {0, 1}k,
and let K ∈ {0, 1}n be a second construction key. Furthermore let R be a linear
involution and σ an invertible linear map on {0, 1}n such that id + R ◦ σ is
invertible. The generic construction KARC-IC2: {0, 1}n+k × {0, 1}n → {0, 1}n is
defined by

KARC-IC2K,L[E](M) = E−1
L+α(R(EL(M ⊕K)⊕K)⊕ σ(K))⊕ σ(K) , (22)

with α ∈ {0, 1}k a nonzero constant. The condition that id+R◦σ is invertible is
an important one, since Theorem 3 requires that γ2 is invertible. Note that this
condition is equivalent to the requirement that R ◦ σ does not have any fixed
points. The security of KARC-IC2 is given in Theorem 7, which can be proven
by a reduction to the security of EMIP2.

Theorem 7. For any positive integers n ≥ 2 and k, let K
$←− {0, 1}n and L

$←− {0, 1}k
be uniform random keys and E an ideal cipher. If D is any distinguisher for
KARC-IC2K,L[E] making at most q > 1 construction queries, and at most p
primitive queries to E±, then for all q < 2n−1 or q = 2n it holds that:

Advsprp
KARC-IC2(D) ≤

12

2n+k
+ 9
√
2n+ k

√
q p

2n+k
.

Proof. Enumerate all ℓ = 2k possible ideal cipher keys as L1, . . . , Lℓ. Suppose
the distinguisher D makes p1,i queries to E±1 with key Li. Likewise, let p2,i
denote the number of queries to E±1 with key Li ⊕ α. For convenience, let
pi = max{p1,i, p2,i} be the maximum number of queries made for either Li or
Li ⊕ α. Since the total number of queries is equal to p, we have

ℓ∑
i=1

pi ≤
ℓ∑

i=1

p1,i + p2,i = 2p .
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It follows from the law of total probability and the triangle inequality that

Advsprp
KARC-IC2(D) ≤

ℓ∑
i=1

1

ℓ
Advsprp

KARC-IC2K,Li
[E](D) .

Let Di be a distinguisher running D to play the indistinguishability game against
the EMIP2K [π1, π2] construction with π1 = ELi

and π2 = E−1
Li⊕α using p1,i

primitive queries to π1, p2,i primitive queries to π2 and q construction queries.
In order to do this, Di simulates D’s queries to E whenever the key is different
from Li or Li ⊕ α. A standard hybrid argument then shows that

Advsprp
KARC-IC2K,Li

[E](D) ≤ Advsprp

EMIP2K [ELi
,E−1

Li+α]
(Di) .

Since Li ̸= Li ⊕ α, the permutations π1 and π2 are indeed independent and
uniform random. Hence, Theorem 3 (with c = n+ k/2) yields the upper bound

Advsprp

EMIP2K1
[ELi

,E−1
Li+α]

(Di) ≤
12

2n+k
+

7qp2i
22n

+ 6
√

3(n+ k/2)

√
q pi

2n

≤ 12

2n+k
+ (6

√
3(n+ k/2) +

√
7)

√
q pi

2n

≤ 12

2n+k
+ 9
√
2n+ k

√
q pi

2n
,

where the second inequality follows from x2 ≤ x for all x ∈ [0, 1]. Hence, it
follows that

Advsprp
KARC-IC2(D) ≤

12

2n+k
+ 9
√
2n+ k

√
q p

2n+k
.

This concludes the proof. ⊓⊔

To apply Theorem 7 to Prince, it remains to show that the linear mapR◦σ does
not have any fixed points when R is the linear reflector and σ the whitening-key
orthomorphism2 of Prince. Specifically, σ : {0, 1}n → {0, 1}n is defined by

σ(x) = (x ≫ 1)⊕ (x≫ 63) . (23)

One can verify that rank(id + R ◦ σ) = 64. That is, R ◦ σ does not have any
fixed points.

Observe that the σ defined by (23) is not an involution. Hence, the Prince
decryption algorithm is not the exactly same as the encryption algorithm: K and
σ(K) must also be swapped. Our construction preserves the same property, but
we note that it is also possible to choose an involution σ such that R◦σ does not
have any fixed points. In this case, decryption and encryption are purely related
by the coupling map (K,L) 7→ (σ(K), L⊕ α).

However, since the block cipher E used in Prince starts by xoring L to the
state, using an involution σ has the potential downside that (K + L, σ(K) + L)

2 An orthomorphism such as σ is a linear map such that both σ and σ⊕id are invertible.
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is no longer jointly uniform for uniform random keys K and L. Indeed, for any
linear involution σ, it holds that rank(id + σ) ≤ n/2. This may facilitate par-
tial key guessing. Again, this illustrates the importance of performing additional
cryptanalysis when instantiating our (or, more generally, any) generic construc-
tion.
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