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Abstract

In Private Information Retrieval (PIR), a client wishes to access an index i from a public n-bit
database without revealing any information about i. Recently, a series of works starting with the seminal
paper of Corrigan-Gibbs and Kogan (EUROCRYPT 2020) considered PIR with client preprocessing and
no additional server storage. In this setting, we now have protocols that achieve Õ(

√
n) (amortized)

server time and Õ(1) (amortized) bandwidth in the two-server model (Shi et al., CRYPTO 2021) as well
as Õ(

√
n) server time and Õ(

√
n) bandwidth in the single-server model (Corrigan-Gibbs et al., EURO-

CRYPT 2022). Given existing lower bounds, a single-server PIR scheme with Õ(
√
n) (amortized) server

time and Õ(1) (amortized) bandwidth is still feasible, however, to date, no known protocol achieves such
complexities. In this paper we fill this gap by constructing the first single-server PIR scheme with Õ(

√
n)

(amortized) server time and Õ(1) (amortized) bandwidth. Our scheme achieves near-optimal (optimal
up to polylogarithmic factors) asymptotics in every relevant dimension. Central to our approach is a new
cryptographic primitive that we call an adaptable pseudorandom set: With an adaptable pseudorandom
set, one can represent a large pseudorandom set with a succinct fixed-size key k, and can both add to
and remove from the set a constant number of elements, by manipulating the key k, while maintaining
its concise description as well as its pseudorandomness (under a certain security definition).
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1 Introduction

In private information retrieval (PIR), a server holds a public database DB represented as an n-bit string
and a client wishes to retrieve DB[i] without revealing i to the server. PIR has many applications in various
systems with advanced privacy requirements [SCH+21, AS16, BKMP12, KCG21, GCM+16] and comprises
a foundational computer science and cryptography problem, with connections to primitives such as oblivious
transfer [DCMO00] and locally-decodable codes [Yek10, KKYM20], among others. PIR can be naively
realized by downloading the whole DB for each query, which is prohibitive for large databases. To achieve
more efficient protocols, the two-server assumption [CKGS98] was introduced, where DB is replicated in
two, non-colluding servers. For the rest of the paper we use 1PIR to refer to single-server PIR and 2PIR
to refer to two-server PIR. Clearly, 1PIR is much more challenging than 2PIR, but also more useful; it is
hard to ensure two servers do not collude and remain available in practice [MCR21, BBG+20]. Also, many
connections between PIR and other primitives are shown only for 1PIR [DCMO00, Yek10].
Sublinear time 2PIR. Preliminary PIR works [KO97, CKGS98, BI01, Yek08, Efr12, DG16, Lip05, GR05,
DC14, KLL+15, LP17] featured linear server time and sublinear bandwidth. To reduce server time, several
works [BIM00, DCIO01, GMP16, DvDF+16, GCM+16, ACLS18] proposed preprocessing PIR. These ap-
proaches require a prohibitive amount of server storage due to a large server-side data structure. Recently
a new type of preprocessing PIR with offline client-side preprocessing was proposed by Corrigan-Gibbs
and Kogan [CGK20]. Introduced as 2PIR, their scheme has sublinear server time and no additional server
storage—the preprocessing phase outputs just a few bits stored at the client. A simplified, stripped-down1

version of their protocol, involving three parties, client, server1 and server2, is given below.

• Offline phase. client sends
√
n random index sets S1, . . . , S√

n of size
√
n each to server1 and server1

returns database parities p1, . . . , p√n, where pi = ⊕j∈SiDB[j]. These database parities, along with
the respective index sets, are then stored by client locally.

• Online phase (query to index i). In Step 1, client finds a local set Sj that contains i and sends S′
j =

Sj \ {i} to server2. In Step 2, server2 returns parity p′j of S′
j , and client computes DB[i] = pj ⊕ p′j .

In the final step, client generates a fresh random set S∗
j that contains i, sends S∗

j \ {i} to server1, gets
back its parity p∗j , and replaces (Sj , pj) with (S∗

j , p
∗
j ⊕ DB[i]) (We note that the final step is crucially

needed to maintain the distribution of the sets at the server side and ensure security of future queries.)

While the complexities of the above protocol are linear (such as client storage and bandwidth), Corrigan-
Gibbs and Kogan [CGK20] achieved Õ(

√
n) complexities by introducing the notion of pseudorandom sets:

Instead of sending the sets in plaintext, the client sends a Pseudorandom Permutation (PRP) key so that the
server can regenerate the sets as well as check membership efficiently. However, the first step of the online
phase above requires removing element i from the set Sj . This cannot be done efficiently with a PRP key,
so Corrigan-Gibbs and Kogan [CGK20] sent Sj \{i} in plaintext, incurring O(

√
n log n) online bandwidth.

In a followup work, Shi et al. [SACM21] addressed this issue. They use no PRPs and construct their sets via
privately-puncturable pseudorandom functions [BKM17, CC17]. Their primitive allows element removal
without key expansion in the online phase, thus keeping a short set description, yielding Õ(1) bandwidth.
Compiling 2PIR into 1PIR. The original protocol by Corrigan-Gibbs and Kogan [CGK20], their follow-
up work [KCG21], as well as Shi et al.’s polylog bandwidth protocol [SACM21], are all 2PIR protocols.
Henzinger et. al. [CGHK22] showed how to port the 2PIR protocols by Corrigan-Gibbs and Kogan [CGK20,
KCG21] into a 1PIR scheme with the same (amortized) Õ(

√
n) complexities. Their main technique, is to

transform their initial 2PIR scheme [CGHK22] into another 2PIR scheme that avoids communication with
1In particular, in Step 1 of the actual protocol’s online phase, the client sends Sj \ {i} with probability 1− 1/

√
n and Sj \ {r},

for a random element r, with probability 1/
√
n, to ensure no information is leaked about i. Also, ω(log λ) parallel executions are

required to guarantee overwhelming correctness in λ, e.g., when no set Sj can be found that contains i.
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Table 1: Comparison with related work. Server time and bandwidth are amortized (indicated with ∗). All
schemes presented have Õ(

√
n) client time, Õ(

√
n) client space and no additional server space.

scheme model server time∗ bandwidth∗ assumption
[CGHK22] 1PIR Õ(

√
n) Õ(

√
n) LWE

[SACM21] 2PIR Õ(
√
n) Õ(1) LWE

Theorem 5.2 1PIR Õ(
√
n) Õ(1) LWE

server1 in the online phase. We call such a 2PIR protocol 2PIR+. Then, they use fully-homomorhpic
encryption (FHE) [Gen09] to execute both offline and online phases on the same server, yielding 1PIR. To
build the crucial 2PIR+ protocol, they make two simple modifications of the high-level protocol presented
before: (i) In the offline phase, instead of preprocessing

√
n sets, they preprocess

√
n + Q sets, where

Q =
√
n is the number of queries they wish to support; (ii) In the final step of the online phase, instead

of picking a fresh random set S∗
j and then communicating with server1, they use a preprocessed set Sh

from above, avoiding communication with server1 in the online phase. Crucially, Sh must then be updated
to contain i. After Q queries there are no more preprocessed sets left and the offline phase is run again,
maintaining the same amortized complexity.

Based on the above, it seems that a natural approach to construct a sublinear-time, polylog-bandwidth
1PIR scheme (which is the central contribution of this paper) would be to apply the same trick of prepro-
cessing an additional Q random sets to the Shi et al. protocol [SACM21]. But this strategy runs into a
fundamental issue: We would have to ensure that, in Step 3 of the online phase, when we use one of the
preprocessed sets, Sh, to replace the set that was just consumed to answer query i, the set key corresponding
to Sh would have to be updated to contain i. However, this is not supported in the current construction
of pseudorandom sets by Shi et al. [SACM21]—one can only remove elements, but not add. Our work
capitalizes on this observation.

Technical highlight: Adaptable pseudorandom sets. A substantial part of our contribution is to define
and construct an adaptable pseudorandom set supporting both element removal and addition. In fact, our
technique can support addition and removal of a constant number of elements. At a high level, our primitive
can be used as follows. Key generation outputs a succinct key sk representing the set. Along with algorithms
for enumeration of sk and membership checking in sk, we define algorithms for removing an element x from
the set defined by sk and adding an element x into the set defined by sk, both of which output the updated
set’s new key sk′. We believe that this primitive can also be of independent interest outside of PIR.

Our final 2PIR+ and 1PIR protocols. Armed with adaptable pseudorandom sets, a high-level description
of our new 2PIR+ scheme is as follows. Below, APRS denotes “adaptable pseudorandom set”.

• Offline phase. client sends
√
n + Q APRS keys sk1, . . ., sk√n+Q to server1 and server1 returns

database parities p1, . . . , p√n+Q where pi = ⊕j∈skiDB[j]. The database parities are then stored
locally by client, together with the respective APRS keys.

• Online (query to index i). First, client finds APRS key skj that contains i, removes i from skj and
sends sk′j to server2. Then server2 returns parity p′j of sk′j , and client computes DB[i] = pj ⊕ p′j .
Finally, client adds i into key skh (for some h >

√
n) and replaces (skj , pj) with (skh, ph ⊕ DB[i]).

The above 2PIR+ protocol requires more work to ensure a small probability of failure and that the server’s
view is uniform. Also, again, we can convert the above 2PIR+ protocol to 1PIR with sublinear complexities,
using FHE [CGHK22]. Note that using FHE naively for 1PIR would incur Õ(n) server time—thus combin-
ing FHE with our above 2PIR+ protocol yields a much better (sublinear) FHE-based 1PIR instantiation.
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Our result and comparison with related work. As we discussed, if we require the server time to be
sublinear (with no additional storage), the most bandwidth-efficient 2PIR protocol is the one by Shi et
al. [SACM21]. However, when we consider 1PIR, the Corrigan-Gibbs, Henzinger and Kogan [CGHK22]
construction increases the bandwidth from polylogarithmic to O(

√
n log n).

In this paper, we fill this gap. Our result (Theorem 5.2) provides the first 1PIR protocol with sublinear
amortized server time and polylogarithmic amortized bandwidth.

We note that our scheme is optimal up to polylogarithmic factors in every dimension, given known
lower bounds for client-dependent preprocessing PIR [BIM00, CGK20, CGHK22]. For client-independent
preprocessing PIR, Persiano and Yeo [PY22] showed the product of online bandwidth and amortized server
time should be linear, and existing constructions are either very far from realizing this bound [BIM00,
GHPS22] or use infeasible primitives such as Virtual Blackbox Obfuscation [BIPW17]. For a comparison
with prior sublinear-server-time-no-additional-server-storage schemes, see Table 1.

Concurrent work. We note independently the notion of 1PIR with polylogarithmic bandwidth and sub-
linear server time was studied by Zhou et al. [ZLTS22], whose work appeared on the crypto eprint archive
subsequent to a submission of an earlier manuscript of this work.

Notation. We use the abbreviation PPT to refer to probabilistic polynomial time. Unless otherwise noted,
we define a negligible function negl(·) to be a function such that for every polynomial p(·), negl(·) is less
than 1/p(·). We fix λ ∈ N to be a security parameter. We will also use the notation 1z or 0z to represent 1
or 0 repeated z times. For any vector or bitstring V , we index V using the notation V [i] to represent the i-th
element or i-th bit of V , indexed from 0. We will also use the notation V [i :] to denote V from the i-th index
onwards. We use x||y to denote the concatenation of bitsring x and bitstring y. We use S ∼ D to denote
that S is “sampled from distribution” D. We use the notation [x, y] to represent the set {x, x+1, . . . , y−1}.
Finally, we use Õ(·) to denote the big-O notation that ignores polylogarithmic terms and any polynomial
terms in the security parameter λ.

2 Background: PIR, Puncturable Functions and Puncturable Sets

We now introduce definitions for 2PIR. We consider 2PIR protocols where only one server (the second
one) participates in the online phase. We refer to these protocols as 2PIR+. We also introduce privately-
puncturable PRFs [BKM17] and privately-puncturable pseudorandom sets [CGK20, SACM21], both crucial
for our work. Moving forward, “PRF” stands for “pseudorandom function” and “PRS” stands for “pseudo-
random set”.

Definition 2.1 (2PIR+ scheme). A 2PIR+ scheme consists of three stateful algorithms (server1, server2,
client) with the following interactions.

• Offline: server1 and server2 receive the security parameter 1λ and an n-bit database DB. client
receives 1λ. client sends one message to server1 and server1 replies with one message.

• Online: For each query x ∈ {0, . . . , n−1}, client sends one message to server2 and server2 responds
with one message. In the end, client outputs a bit b.

Definition 2.2 (2PIR+ correctness). A 2PIR+ scheme is correct if its honest execution, with any database
DB ∈ {0, 1}n and any polynomial-sized sequence of queries x1, . . . , xQ, returns DB[x1],. . . , DB[xQ] with
probability 1− negl(λ).

Definition 2.3 (2PIR+ privacy). A 2PIR+ scheme (server1, server2, client) is private if there exists a PPT
simulator Sim, such that for any algorithm serv1, no PPT adversary A can distinguish the experiments
below with non-negligible probability.
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• Expt0: client interacts withA who acts as server2 and server∗1 who acts as the server1. At every step
t, A chooses the query index xt, and client is invoked with input xt as its query.

• Expt1: Sim interacts with A who acts as server2 and server∗1 who acts as the server1. At every step
t, A chooses the query index xt, and Sim is invoked with no knowledge of xt.

We note that in the above definition our adversaryA can deviate arbitrarily from the protocol. Intuitively
the privacy definition implies that queries made to server2 will appear random to server2, assuming servers
do not collude (as is the case in our model). Also, note that the above definition only captures privacy for
server2 since by Definition 2.1, server1 interacts with client before the query indices are picked.

Privately-puncturable PRFs. A puncturable PRF is a PRF F whose key k can be punctured at some point
x in the domain of the PRF, such that the output punctured key kx reveals nothing about Fk(x) [GGM84].
A privately-puncturable PRF is a puncturable PRF where the punctured key kx also reveals no information
about the punctured point x (by re-randomizing the output Fk(x)). Privately-puncturable PRFs can be
constructed from standard LWE (learning with errors assumption) [BKM17, BTVW17, CC17] and can be
implemented to allow puncturing on m points at once [BKM17]. We now give the formal definition.

Definition 2.4 (Privately-puncturable PRF [BKM17]). A privately-puncturable PRF has four algorithms:
(i) Gen(1λ, L,m)→ sk: Outputs secret key sk, given security parameter λ, input length L and number of
points to be punctured m; (ii) Eval(sk, x)→ b: Outputs the evaluation bit b ∈ {0, 1}, given sk and input x;
(iii) Puncture(sk, P )→ skP : Outputs punctured key skP , given sk and set P of m points for puncturing;
(iv) PEval(skP , x)→ b: Outputs the evaluation bit b ∈ {0, 1}, given skP and x.

There are three properties we require from a privately-puncturable PRF: First, functionality preservation,
meaning that PEval(skP , x) equals Eval(sk, x) for all x /∈ P . Second, pseudorandomness, meaning that
the values Eval(sk, x) at x ∈ P , appear pseudorandom to the adversary that has access to skP , as long
as the adversary cannot query PEval(skP , x) for x ∈ P , in which case it is trivial to distinguish. Third,
privacy with respect to puncturing, meaning that the punctured key skP does not reveal anything about the
set of points that was punctured. Formal definitions are in Appendix A ( Definitions A.2, A.1, A.3).

It is important to note here that we will be using a privately-puncturable PRF with a randomized punc-
turing algorithm. Although initial constructions were deterministic [BKM17], Canetti and Chen [CC17]
show how to support randomized puncturing without extra assumptions and negligible extra cost.

Privately-puncturable PRSs. A privately-puncturable PRS is a set that contains elements drawn from a
given distribution Dn. The set can be represented succinctly with a key sk. Informally, one can “puncture”
an element x, producing a new key that represents a set without x. Privatety-puncturable PRSs were first
introduced by Corrigan-Gibbs and Kogan [CGK20] and were further optimized by Shi et al. [SACM21]
(See Figure 3 in Appendix C for the [SACM21] construction.) The formal definition is as follows.

Definition 2.5 (Privately-puncturable PRS [CGK20, SACM21]). A privately-puncturable PRS has four al-
gorithms: (i) Gen(1λ, n) → (msk, sk): Outputs a set key sk and a master key msk, given security pa-
rameter λ and the set domain {0, . . . , n − 1}; (ii) EnumSet(sk) → S: Outputs set S given sk; (iii)
InSet(sk, x) → b: Outputs a bit b denoting whether x ∈ EnumSet(sk); (iv) Resample(msk, x) → skx:
Outputs a secret key skx for a set generated by sk, with x’s membership resampled.2

We require three properties from a privately-puncturable PRS: First, pseudorandomness with respect
to a distribution Dn, meaning that Gen(1λ, n) generates a key that represents a set whose distribution
is indistinguishable from Dn. Second, functionality preservation with respect to resampling, informally
meaning that the set resulting from resampling should be a subset of the original set. This means we can

2Previously this was called “puncture”. We rename it to “resample” for ease of understanding and consistency with our work.
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only resample elements already in the set. Third, security in resampling, states that for some (msk, sk)
output by Gen(1λ, n), sk is computationally indistinguishable from a key sk′x where (msk′, sk′) is a key
output by calling Gen(1λ, n) until InSet(sk, x)→ 1 and sk′x is the output of Resample(msk′, x). Formal
definitions can be found in Appendix A (Definitions A.6, A.4, A.5).

Privately-puncturable PRSs from privately-puncturable PRFs. Shi et al. [SACM21] constructed a
privately-puncturable PRS from a privately-puncturable PRF. Let F be a privately-puncturable PRF and
let x ∈ {0, 1}logn be an element of the set domain. We provide the intuition behind the construction.
Consider that we require both concise description and fast membership testing. One first approach to con-
structing a PRS could be to define x ∈ S iff F.Eval(sk, x) is 1. Resampling x would then be equivalent
to puncturing F ’s key at point x. Unfortunately, this approach creates sets proportional to the size of the
PRF domain, which is undesirable for our application; we want sets of size approximately

√
n. To deal with

this problem, one can add additional constraints with respect to suffixes of x. In other words, define x ∈ S
iff F.Eval(sk, x[i :]) equals 1, for all i = 1, . . . ,m, where m = log n/2. Recall x[i :] denotes the suffix
of bitstring x starting at position i. Puncturing in this case would require puncturing at m points. While
this approach generates sets of expected size

√
n, it introduces too much dependency between elements in

the set: Elements with shared suffixes are very likely to be together in the set. To deal with this, Shi et
al. [SACM21] changed the construction as follows. Let B be an integer greater than 0. Then, let z = 0B||x.
We say that x ∈ S iff

F.Eval(sk, z[i :]) = 1, for all i = 1, . . . ,m+B .

For clarity we provide a small example here. Suppose n = 16 and that we want to check the membership
of element 7 for set S. First, we represent 7 with log 16 = 4 bits, 72 = 0111. Next, we append B = 4 zeros
to the front of the bitstring, so that we have the string 00000111. Now, we say that 7 ∈ S iff

F.Eval(sk, 00000111) = 1 ∧ F.Eval(sk, 0000111) = 1 ∧ F.Eval(sk, 000111) = 1

∧ F.Eval(sk, 00111) = 1 ∧ F.Eval(sk, 0111) = 1 ∧ F.Eval(sk, 111) = 1 .

Note that adding these B extra checks decreases dependency between elements proportional to 2B , since
it adds bits unique to each element. As a tradeoff, it decreases the size of the set proportional to 2B . By
picking B = ⌈2 log log n⌉, we maintain the set size to be

√
n/ log2 n while having small enough dependency

between elements—which can be addressed. We give an overview of our remaining algorithms below.

Set enumeration. Naively, set enumeration would take n(m+B) time, since it requires checking membership
for each element in {0, . . . , n−1}. However, Shi et al. [SACM21] observed that due to the light dependency
introduced, we can enumerate the set in expected time Õ(

√
n).

Resampling. To resample an element x from the set S, we puncture the PRF key at the M = m + B =
log n/2 + 2 log log n points that determine x’s membership by running

skx ← F.Puncture(sk, {z[i :]}i=1,...,M ) .

By the pseudorandomness of F , this will resample x’s membership in S and x will not be in the set defined
by skx with probability 1 − 1/2M = 1 − 1/

√
n log2 n. Clearly, we do not remove elements from the set

with overwhelming probability. Aside from that, there is still dependency among elements, and puncturing
x may also remove other elements in S with some small probability. Shi et al. [SACM21] resolve this by
bounding these probabilities to less than 1/2 and running λ parallel executions of the protocol and taking a
majority. Looking ahead, we will require this too.

Key generation. By Definition 2.5, key generation for a privately-puncturable PRS outputs two keys, key
sk that represents the initial set and key msk that is used for puncturing. To output msk, we simply
call F.Gen(1λ, L,M). To output sk, we pick a set P of M “useless” strings of L = log n + B bits
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that start with the 1 bit and output a second key sk ← F.Puncture(msk, P ). The reason for that is to
ensure that resampled keys keys are indisinguishable from freshly sampled keys as required by the “security
in resampling” property. Therefore we artificially puncture msk in a way that does not affect the set of
elements represented by it, yet we change its format to be the same as a set key resampled at a given point.

Efficiency and security. To summarize, the scheme described above by Shi et al. [SACM21] has the follow-
ing complexities: Algorithms Gen, InSet and Resample run in Õ(1) time. All keys have Õ(1) size. Al-
gorithm EnumSet runs in expected Õ(

√
n) time. It satisfies Definitions A.4 and A.5 assumming privately-

puncturable PRFs (that satisfy Definitions A.2, A.1, A.3).

3 Preliminary 2PIR+ Protocol

We first design a preliminary 2PIR+ protocol (Figure 1) that helps with the exposition of our final protocol.
In this preliminary 2PIR+ protocol the client has linear local storage and the communication is amortized
Õ(
√
n). Later, we will convert this 2PIR+ scheme into a space and communication-efficient 2PIR+ protocol

(by using our new adaptable PRS primitive of Section 4) that will yield our final 1PIR scheme. Crucially,
the analysis of the preliminary protocol is almost the same as that of our final PIR protocol in Section 5.

Overview of our preliminary protocol. Our preliminary protocol works as follows. During the prepro-
cessing phase, the client constructs a collection T of ℓ =

√
n log3 n “primary” sets and a collection Z

of an additional
√
n “reserve” sets. All sets are sampled from a fixed distribution Dn over the domain

{0, . . . , n − 1}. While we can use any distribution for our preliminary protocol, we use a specific one that
will serve the use of PRSs in Section 5. Both T and Z are sent to server1 and client receives the hints back,
as explained in the introduction. Client stores locally the collections T and Z along with the hints. This is
the main difference with our final protocol, where we will be storing keys instead of the sets themselves. To
query an index x during the query phase, the client finds some Tj = (Sj , pj) in T such that that Sj contains
x, “removes” x and sends the new set to server2. Then server2 computes the parity of the new set and
sends the parity back, at which point the client can compute DB[x], by xoring server2’s response with pj .
As we will see, element removal in this context means resampling the membership of x via a Resample
algorithm introduced below. To ensure the set distribution of T does not change across queries, our protocol
has a refresh phase, where element x is “added”, to the next available reserve set, via an Add algorithm
introduced below. The protocol allows for

√
n queries and achieves amortized sublinear server time over

these
√
n queries. After

√
n queries, we re-run the offline phase.

The above protocol can fail with constant probability, as we will analyze in Lemma 3.1 below. To avoid
this, as we indicate at the top of Figure 1, we run log n log log n parallel instances of the protocol and take
the majority bit as the output answer. We now continue with the detailed description of the building blocks
(such as algorithms Resample and Add) that our protocol uses.

Sampling distribution Dn. For our preliminary protocol we are using the same distribution as the one
induced by the PRS construction by Shi et al. [SACM21] described in Section 2. This will help us seamlessly
transition to our space-efficient protocol in Section 5. To sample a set S with elements from the domain
{0, . . . , n− 1} we define, for all x ∈ {0, . . . , n− 1},

x ∈ S ⇔ RO(z[i :]) = 1 for all i ∈ 1, . . . ,m+B ,

where we recall that m = log n/2, B = 2 log log n and z = 0B||x. Also, RO : {0, 1}∗ → {0, 1} denotes
a random oracle. We use the random oracle for exposition only—our final construction does not need one.
Note for our preliminary protocol, the adversary cannot call the RO function or otherwise all the sets would
revealed. We also define Dx

n to be a distribution where a set S is sampled from Dn until x ∈ S.
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• Run log n log log n instances of the protocol below, output the majority bit maj in Step 4 of Query.
• Use maj as DB[x] in Step 2 of Refresh.
Offline phase: Preprocessing

1. client samples ℓ +
√
n sets from Dn

S1, . . . , Sℓ+
√
n ,

where ℓ =
√
n log3 n.

2. client sends sets S1, . . . , Sℓ+
√
n to

server1 and server1 returns a set of
bits p1, . . . , pℓ+√

n, where

pi = ⊕j∈SiDB[j] .

3. client stores pairs of sets/hints

T = {Tj = (Sj , pj)}

Z = {Zk = (Sk, pk)} ,

where j ∈ [ℓ] and k ∈ [ℓ+1, ℓ+
√
n].

Online phase: Query (input is index x ∈ {0, . . . , n− 1})

1. client finds the first Tj = (Sj , pj) in T such that x ∈
Sj . If such Tj is not found, set j = |T| + 1 and
Tj = (Sj , pj) where Sj ∼ Dx

n and pj is uniform bit.

2. client sends S′ = Resample(Sj , x) to server2.

3. server2 returns r =
⊕

k∈S′ DB[k].

4. client computes DB[x] = r ⊕ pj .

Online phase: Refresh (executed when j ≤ |T|)

1. Let Z0 = (S0, p0) be the first item from Z.

2. Let S∗
0 = Add(S0, x), and

p∗0 = p0 ⊕ (DB[x] ∧ (x /∈ S0)) .

3. client sets Tj = (S∗
0 , p

∗
0), where Tj was consumed

earlier, and removes Z0 from Z.

Figure 1: Our preliminary 2PIR+ protocol. With n we denote the size of the database DB and [ℓ] = [1, ℓ].

Functions with respect to Dn. We define two functions with respect to the distribution Dn —these functions
will be needed to describe our preliminary scheme. To define these functions, we first introduce what it
means for two elements to be related.

Definition 3.1. Function Related(x, y), where x, y ∈ {0, . . . , n − 1}, returns a bit b ∈ {0, 1} where
b = 1 (in which case we say that x is related to y) iff x and y share a suffix of length > log n/2 in their
binary representation.

For example Related(1000001, 1100001) = 1 and Related(1000001, 1101111) = 0. Equipped
with this, we define our two functions.

• Resample(S, x)→ S′: Define z = 0B||x for some x ∈ S. We sample a uniform bit for each suffix
of z, z[i :], for i ∈ 1, . . . ,m+B. For each y ∈ S such that Related(x, y) (including x), we check
if any suffix of y was mapped to 0, and if so, remove it from S and return this new set.

• Add(S, x) → S′: This function essentially “reprograms” the random oracle such that RO(z[i :]) = 1
for all i = 1, . . . ,m + B, where z = 0B||x. This may also affect membership of other elements
y ∈ {0, . . . , n − 1} not is S related to x with some probability. For us it will suffice that for most of
executions, Add(S, x) = S ∪ {x}. We bound the probability of this formally in Appendix B.

Efficiency analysis. Our preliminary protocol in Figure 1 is rather inefficient. In particular, while the
online server time is Õ(

√
n), client storage and computation is Õ(n) and bandwidth is Õ(

√
n). Also, the

preliminary protocol supports
√
n queries, after which we need to re-run the offline phase.

Correctness proof. As we mentioned before, our basic protocol that does not run parallel instances, has
constant failure probability, less than 1/2. We prove this through Lemma 3.1.
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Lemma 3.1 (Correctness of protocol with no repetitions). Consider the protocol of Figure 1 with no rep-
etitions and fix a query xi. The probability that the returned bit DB[xi] in Step 4 of Query is incorrect,
assuming DB[xi−1] used in Step 2 of Refresh is correct with overwhelming probability, is less than 1/2.

We give an overview of the intuition of the proof here and defer the full proof of Lemma 3.1 to Ap-
pendix B. We distinguish two cases. For the first query x1, there are three cases where our protocol can
fail. The first failure occurs if we cannot find an index j in T such that x ∈ Sj for Tj = (Sj , pj) (Step 1 of
Query). We can bound this failure by 1/n. The second failure occurs when our Resample function does
not remove x. This happens with probability 1/

√
n log2 n. The third failure case occurs when we remove

x, but also remove an element other than x within Resample. This can bounded by 1/2 log n.
For every other query xi, i greater than 1, we must consider an additional failure case which occurs

when, in the Refresh phase, we add an element other than x within Add—which we can also bound by
1/2 log n. Computing the final bound requires more work. It requires showing that Refresh only incurs a
very small additional error probability to subsequent queries, which can also be bounded at the query step.
We argue this formally in our proof of Theorem 3.1.

Amplifying correctness via repetition. In order to increase the correctness of our scheme, we run k parallel
instances of our protocol and set the output bit in Step 3 of Query to be equal to the majority of DB[x]
over these k instance. We run Refresh with the correct DB[x] computed in Query so that we can apply
Lemma 3.1. Let C be the event, where, over k instances of our preliminary PIR scheme, more than k

2
instances output the correct DB[x]. Using a standard lower-tail Chernoff bound, we have that, if p > 1/2
is the probability DB[x] is correct, C’s probability > 1 − exp(− 1

2pk(p −
1
2)

2) which is overwhelming for
k = ω(log n), satisfying Definition 2.2. The same technique is used in our final PIR scheme.

Privacy proof. We now show that our preliminary PIR protocol satisfies privacy, per Definition 2.3. Proving
privacy relies on two properties which follow in a straightforward manner from the construction of Dn.

Property 1: Let S ∼ Dx
n and S′ ∼ Dn. Then Resample(S, x) and S′ are computationally indistinguishable.

Property 2: Let S ∼ Dn and S′ ∼ Dx
n. Then Add(S, x) and S′ are computationally indistinguishable.

For the first query, we pick an entry Tj = (Sj , pj) from T whose Sj contains the index x we want to
query. Since Sj is the first set in T to contain x, Sj ∼ Dx

n. By Property 1, since what server2 sees is
S′ = Resample(Sj , x), S′ is indistinguishable from a random set drawn from Dn, and therefore, the
query reveals nothing about the query index x to server2.

For every other query, we argue that the Refresh step maintains the distribution of T. Note that after
a given set Sj is used, re-using it for the same query or a different query could create privacy problems.
That is why after each query, we must replace Sj with an identically distributed set. By Property 2, Sj

and Add(S0, x) are identically distributed. Then, the swap maintains the distribution of sets in T and
therefore the view of server2 is also simulatable without x. These arguments form the crux of the proof of
Theorem 3.1; we provide the full proof in Appendix B.

Theorem 3.1 (Preliminary 2PIR+ protocol). The 2PIR+ scheme in Figure 1 is correct (per Definition 2.2)
and private (per Definition 2.3) and has: (i) Õ(n) client storage Õ(n) client time; (ii) Õ(

√
n) amortized

server time and no additional server storage; (iii) Õ(
√
n) amortized bandwidth.

4 Adaptable Pseudorandom Sets

In this section, we introduce the main primitive required for achieving our result, an adaptable pseudoran-
dom set. The main difference from a privately-puncturable PRS introduced in Section 2 is the support for
the “add” procedure, as well as any constant number of additions or removals, as opposed to a single re-
moval. This will eventually allow us to port the protocol from Section 3 into a 1PIR protocol that has much
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improved complexities, such as sublinear client storage and polylogarithmic communication. We now give
the formal definition and then we present a construction that satisfies our definition.

Definition 4.1 (Adaptable PRS). An adaptable PRS has five algorithms: (i) Gen(1λ, n) → (msk, sk):
Outputs our set’s key sk and master key msk, given security parameter λ and set domain {0, . . . , n−1}; (ii)
EnumSet(sk) → S: Outputs set S given sk; (iii) InSet(sk, x) → b: Outputs bit 1 iff x ∈ EnumSet(sk);
(iv) Resample(msk, sk, x) → skx: Outputs secret key skx that corresponds to an updated version of the
set (initially generated by sk) after element x is resampled; (v) Add(msk, sk, x)→ skx: Outputs secret key
skx that corresponds to an updated version of the set (initially generated by sk) after element x is added.

Note that our interface differs from privately-puncturable PRSs introduced in Section 2 in that our re-
sample and add operations are dependent on both msk and sk; we will see why below.

Security definitions for adaptable PRSs. Our adaptable PRS must satisfy five definitions. Three of
them, functionality preservation with respect to resampling, pseudorandomness with respect to a distri-
bution Dn and security in resampling are identical to the equivalent definitions from privately-puncturable
PRSs, namely Definitions A.6, A.4, A.5 in Appendix A. We give two additional definitions in Appendix B
(definitions A.8 and A.7) that relate to addition. First, functionality preservation with respect to addition,
meaning that adding always yields a superset of the original set and can only cause elements related to x
(which are few) to be added to the set. Second, security in addition, meaning that generating fresh keys until
we find one where x belongs to the set is equivalent to generating one fresh key and then adding x into it.

Problems with enabling both addition and removal. The first step towards supporting addition is finding
a way to simulate the “Add” function from Section 3. In particular, to add element x, we can run the puncture
operation many times until a punctured key of a set containing x is output. This will take Õ(

√
n) time3

However, since the PRF’s puncturing is only defined for m points, we would not be able to remove an
element y after we add an element x. To deal with this issue, one idea is to instantiate our PRS with a
privately-puncturable PRF that allows puncturing at 2m points. Again, this is problematic since our PRF
interface only allows puncturing 2m points at once, and not on demand but we do need adding and removing
elements on demand. For example, in our preliminary protocol of Section 3, when we add an element into
a set S at the end of query i as part of Refresh, we do not know which element we will be potentially
removing from S at the beginning of query i + 1 since this depends on the next query. It also requires
special attention to deal with puncturing and adding related elements, since we would have to puncture the
key on the same point twice, an operation that is undefined.

Intuition of our construction: Introduce an additional key. Our core idea is to use two keys sk[1] and
sk[2] and define the evaluation on the suffixes that determines membership as the XOR of F.Eval(sk[1], ·)
and F.Eval(sk[2], ·). In this way, we can add to one key, and resample the other, independently. Note that
this idea can support any fixed number of additions or resamplings (removals), by adding extra PRF keys.
We present a summary of our construction below. The detailed implementation is in Figure 4 in Appendix C.

Key generation. Let F be a privately-puncturable PRF. For key generation, we run F.Gen twice, outputting
msk[1] and msk[2]. After puncturing on m “useless” points (for reasons we explained in Section 2), we
output sk[1] and sk[2]. And finally we output sk = (sk[1], sk[2]) and msk = (msk[1],msk[2]).

Set membership and enumeration. For each x ∈ {0, . . . , n− 1} we define

x ∈ S ⇔ F.Eval(sk[1], z[i :])⊕ F.Eval(sk[2], z[i :]) = 1 for all i = 1, . . . ,m+B ,

where we recall m = log n/2, B = 2 log log n and z = 0B||x. For enumeration, we use the same algorithm
as Shi et al. [SACM21], with the difference that evaluation is done as the XOR of two evaluations, as above.

3Importantly, our constuction requires a rerandomizable privately-puncturable PRF, as mentioned before in Section 2.
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• Run log n log log n instances of the protocol below, output the majority bit maj in Step 4 of Query.
• Use maj as DB[x] in Step 2 of Refresh.
Offline phase: Preprocessing

1. client generates ℓ +
√
n PRSet keys

(msk1, sk1), . . . , (mskℓ+
√
n, skℓ+

√
n)

with Gen(1λ, n), ℓ =
√
n log3 n.

2. client sends keys sk1, . . . , skℓ+
√
n to

server1 and server1 returns a set of
bits p1, . . . , pℓ+√

n, where

pi = ⊕j∈EnumSet(ski)DB[j] .

3. client stores pairs of keys/hints

T = {Tj = (mskj , skj , pj)} ,

Z = {Zk = (mskk, skk, pk)} ,

where j ∈ [ℓ] and k ∈ [ℓ+1, ℓ+
√
n].

Online phase: Query (input is index x ∈ {0, n− 1})

1. client finds the first Tj = (mskj , skj , pj) in T such
that InSet(skj , x) = 1. If such Tj is not found,
set j = |T| + 1 and Tj = (mskj , skj , pj) where
Gen(1λ, n)→ (mskj , skj) and pj is uniform bit.

2. client sends sk′ ← Resample(mskj , skj , x) to
server2.

3. server2 returns r =
⊕

k∈EnumSet(sk′) DB[k].

4. client computes DB[x] = r ⊕ pj .

Online phase: Refresh (executed when j ≤ |T|)

1. Let Z0 = (msk0, sk0, p0) be the first item from Z.

2. Let sk∗0 ← Add(msk0, sk0, x) and

p∗0 = p0 ⊕ (DB[x] ∧ (¬InSet(x, sk0))) .

3. client sets Tj = (msk0, sk
∗
0, p

∗
0), where Tj was con-

sumed earlier, and removes Z0 from Z.

Figure 2: Our 2PIR+ protocol for n-bit DB using adaptable PRS (Gen,EnumSet, InSet,Resample,Add).

Resampling. Resampling works exactly as resampling in privately-puncturable PRSs (by calling F.Puncture)
and uses, without loss of generality, msk[2] as input. The output replaces only the second part of sk—thus
we require sk as input so that we can output the first part intact.

Addition. To add an element x, we call F.Puncture on input msk[1] repeatedly until x’s membership test
succeeds. Naively, this takes Õ(

√
n) time, but we show in the Appendix how to reduce this to Õ(1) by

leveraging the puncturable PRF used. Our final theorem is Theorem 4.1. Our final construction and the
proof can be found in Appendix C.

Theorem 4.1 (Adaptable PRS construction). Assuming LWE, the scheme in Figure 4 satisfies correctness,
pseudorandomness with respect to Dn (Definition A.4), functionality preservation in resampling and ad-
dition (Definitions A.6 and A.8), security in resampling and addition (Definitions A.5 and A.7), and has
the following complexities: (i) keys sk and msk have Õ(1) size; (ii) membership testing, resampling and
addition take Õ(1) time; (iii) enumeration takes Õ(

√
n) time.

5 More Efficient 2PIR+ and Near-Optimal 1PIR

We now use adaptable PRSs introduced in the previous section to build a more efficient 2PIR+ scheme (one
with Õ(

√
n) client storage and Õ(1) communication complexity) which can be compiled, using FHE, into

a 1PIR scheme with the same complexities, as we explained in the introduction. The main idea is to replace

11



the actual sets, stored by the client in their entirety in our preliminary protocol, with PRS keys that support
succinct representation, addition and removal. In particular, our proposed protocol in Figure 2 is identical to
our preliminary protocol in Figure 1 except for the following main points: (i) In the offline phase, instead of
sampling sets from Dn, we generate keys (msk, sk) for adaptable PRSs that correspond to sets of the same
distribution Dn. (ii) In the online phase, we run Resample and Add defined in the adaptable PRS. These
have exactly the same effect in the output set, except the operations are done on the set key not the set. (iii)
We can check membership efficiently using InSet. We now introduce Theorem 5.1.

Theorem 5.1 (Efficient 2PIR+ protocol). Assuming LWE, the 2PIR+ scheme in Figure 2 is correct (per
Definition 2.2) and private (per Definition 2.3) and has: (i) Õ(

√
n) client storage and Õ(

√
n) client time;

(ii) Õ(
√
n) amortized server time and no additional server storage; (iii) Õ(1) amortized bandwidth.

Unlimited queries. Our scheme can handle
√
n queries but can be extended to unlimited queries: We just

rerun the offline phase after all secondary sets are used. This maintains the complexities from Theorem 5.1.
From 2PIR+ to 1 PIR with same complexities. As detailed in [CGHK22], we can port our 2PIR+ to 1PIR
by merging server1 and server2 and executing the work of server1 using FHE. We require a symmetric key
FHE scheme that is gate-by-gate [CGHK22], where gate-by-gate means that encrypted evaluation runs in
time Õ(|C|) for a circuit of size |C|. As noted in [CGHK22], this is a property of standard FHE based on
LWE [BV11, GSW13]. With this, we can use a batch parity Boolean circuit C that, given a database of size
n and l lists of size m, C computes the parity of the lists in Õ(l ·m+ n) time [CGHK22]. Our main result,
Theorem 5.2, is as follows.

Theorem 5.2 (Near-Optimal 1PIR protocol). Assuming LWE, there exists an 1PIR scheme that is correct
(per Definition 2.2) and private (per Definition 2.3) and has: (i) Õ(

√
n) client storage and Õ(

√
n) client

time; (ii) Õ(
√
n) amortized server time and no additional server storage; (iii) Õ(1) amortized bandwidth.

Our proof for both theorems introduced are located in Appendix D, but follow closely from our adaptable
pseudorandom set and the proof from our preliminary protocol, along with the tools introduced above.
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A Definitions

In this section we give relevant definitions that our primitives satisfy.

A.1 Definitions for Privately-puncturable PRFs

Definition A.1 (Pseudorandomness for privately-puncturable PRFs). A privately-puncturable PRF scheme
(Gen, Eval, Puncture, PEval) satisfies pseudorandomness if no PPT admissible adversary A can distin-
guish between the following experiments (An adversary is admissible if it never queries elements in P on
the original sk, and always picks a set P of size m.)

• Gen(λ, L,m)→ sk, A(λ)→ P , Puncture(sk, P )→ skP ;
AEval(sk,.) is given (skP , {Eval(sk, x)}x∈P ).

• Gen(λ, L,m)→ sk, A(λ)→ P , Puncture(sk, P )→ skP ;
AEval(sk,.) is given (skP , {Ri}i=1,...,m), where Ri are sampled uniformly at random.

Definition A.2 (Functionality preservation in puncturing for privately-puncturable PRFs). A privately-puncturable
PRF scheme (Gen, Eval, Puncture, PEval) satisfies functionality preservation if for any PPT adversary A
that outputs set of m points P of length ≤ L each, there exists a negligible function negl(·) such that, for
the following experiment

• P ← A(1λ), sk ← Gen(1λ, L,m), skP ← Puncture(sk, P );

• x← AEval(sk,·)(skP ).

it holds that
Pr[(x /∈ P ) ∧ (Eval(sk, x) ̸= PEval(skP , x))] ≤ negl(λ) .

Definition A.3 (Privacy with respect to puncturing for privately-puncturable PRFs). A privately-puncturable
PRF scheme (Gen, Eval, Puncture, PEval) satisfies privacy with respect to puncturing if for any PPT ad-
missible adversary A, experiments Expt0(λ, L,m) and Expt1(λ, L,m) are computationally indistinguish-
able (An adversary is admissible if it never queries elements in P1 ∪P2−P1 ∩P2 [Babis: please check] on the
original sk, and always picks sets of size m.) Experiment Exptb(λ, L,m) is defined as follows.

• Gen(λ, L,m)→ sk, A(λ)→ (P0, P1), Puncture(sk, Pb)→ skPb
;

• b′ ← AEval(sk,·)(skPb
).

A.2 Definitions for Privately-Puncturable PRSs

We give here definitions for privately-puncturable PRSs as defined in previous work by Shi et. al. [SACM21].

Definition A.4 (Pseudorandomness with respect to some distribution Dn for privately-puncturable PRSs).
A privately-puncturable PRS scheme (Gen,EnumSet, InSet,Resample) satisfies pseudorandomness with
respect to some distribution Dn if the distribution of EnumSet(sk), where sk is output by Gen(λ, n), is
indistinguishable from a set sampled from Dn.

Definition A.5 (Security in resampling for privately-puncturable PRSs). A privately-puncturable PRS scheme
(Gen, EnumSet, InSet, Resample) satisfies security in resampling if, for any x ∈ {1, . . . , n − 1}, the
following two distributions are computationally indistinguishable.
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• Run Gen(λ, n)→ (sk,msk), output sk.

• Run Gen(λ, n)→ (sk,msk) until InSet(sk, x)→ 1, output skx = Resample(msk, x).

Definition A.6 (Functionality preservation in resampling for privately-puncturable PRSs). We say that a
privately-puncturable PRS scheme (Gen,EnumSet, InSet,Resample) satisfies functionality preservation
in resampling with respect to a predicate Related if, with probability 1 − negl(λ) for some negligible
function negl(.), the following holds. If Gen(1λ, n)→ (sk,msk) and Resample(msk, x)→ skx where
x ∈ InSet(sk) then

1. EnumSet(skx) ⊆ EnumSet(sk);

2. EnumSet(skx) runs in time no more than EnumSet(sk);

3. For any y ∈ EnumSet(sk) \ EnumSet(skx), it must be that Related(x, y) = 1.

A.3 Additional Definitions for Adaptable PRSs

Our adaptable PRS primitive will satisfy Definitions A.4, A.5 and A.6, as well as the counterparts for
Definitions A.5 and A.6 (that account for the “add” functionality), which we state here.

Definition A.7 (Security in addition for adaptable PRSs). We say that an adaptable PRS scheme (Gen,
EnumSet, InSet, Resample, Add) satisfies security in addition if, for any x ∈ {0, . . . , n−1}, the following
two distributions are computationally indistinguishable.

• Run Gen(λ, n)→ (sk,msk) until InSet(sk, x)→ 1, output sk.

• Run Gen(λ, n)→ (sk,msk), output skx ← Add(msk, sk, x).

Definition A.8 (Functionality preservation in addition for adaptable PRS). We say that an adaptable PRS
scheme (Gen,EnumSet, InSet,Resample,Add) satisfies functionality preservation in addition with re-
spect to a predicate Related if, with probability 1 − negl(λ) for some negligible function negl(.), the
following holds. If Gen(1λ, n)→ (sk,msk) and Add(msk, sk, x)→ skx then

• EnumSet(sk) ⊆ EnumSet(skx);

• For all y ∈ EnumSet(skx) \ EnumSet(sk) it must be that Related(x, y) = 1.

B Correctness Lemmata

First, we prove Lemma 3.1. Then, we proceed to prove Theorem 3.1.

Lemma 3.1 (Correctness of protocol with no repetitions). Consider the protocol of Figure 1 with no rep-
etitions and fix a query xi. The probability that the returned bit DB[xi] in Step 4 of Query is incorrect,
assuming DB[xi−1] used in Step 2 of Refresh is correct with overwhelming probability, is less than 1/2.

Proof. Recall that we fix B = 2 log log n. As alluded to in Section 3, we can split our failure probability in
three cases:

• Case 1: xi is not in any primary set that was preprocessed.

• Case 2: The resampling does not remove xi.

• Case 3: Resampling removes more that just xi from the set.
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Case 1:
We first note that, from our distribution Dn, for any x ∈ {0, . . . , n− 1}, we have that, for S ∼ Dn,

Pr[x ∈ S] =

(
1

2

) 1
2
logn+B

=
1√
n

(
1

2

)B

=
1

2B
√
n
.

Then note that the expected size of S is the sum of the probability of each element being in the set, i.e.,

E [|S|] = E

[
n−1∑
x=0

1

2B
√
n

]

=
n−1∑
x=0

E
[

1

2B
√
n

]
=

√
n

2B
≤

√
n

(log n)2
.

We can conclude that the desired probability is

Pr[x /∈ ∪i∈[1,l]Si] =

(
1− 1√

n(log n)2

)√
n(logn)3

=

(
1

e

)logn

≤ 1

n
,

where ℓ =
√
n log3 n and S1, . . . , Sℓ ∼ (Dn)

ℓ.
Case 2:
Assuming there is a set S such that xi ∈ S, by construction of Resample, it is easy to see that the
probability that xi is not removed from S is equivalent to a Bernoulli variable that is 1 with probability
p = 1√

n·2B , since we toss 1/2 log n+B coins, and x is not removed only if all of these coins evaluate to 1.
Therefore

Pr[xi ∈ Resample(S, xi)] =
1√

n · 2B

≤ 1
√
n log2 n

.

Case 3:
Note that for any k less than log n, there are exactly 2logn−k − 1, or less than 2logn−k strings in {0, 1}logn,
that are different than x share a suffix of length ≥ k with x. Note that since x is in the set, for any k, the
probability that a string y that has a common suffix of length exactly k with x is included in the set is the
chance that its initial B bits and its remaining bits not shared with x evaluate to 1, namely, for any k less
than log n and y = {0, 1}k||x[k :] we have that

Pr[y ∈ S] =
1

2B2logn−k
.
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Let Nk be the set of strings in the set that share a longest common suffix with x of length k. Then, since we
know that there are at most 2logn−k such strings, we can say that for any k, the expected size of Nk is

E [|Nk|] ≤ E

2logn−k∑
x=1

1

2B2logn−k


=

2logn−k∑
x=1

E
[

1

2B2logn−k

]
= 2logn−k 1

2B2logn−k
=

1

2B
.

Then, for our construction, where we only check prefixes for k greater than log n, we can find that the sum
of the expected size of Nk, for each such k is

E

 logn−1∑
k= 1

2
logn+1

|Nk|

 =

logn−1∑
k= 1

2
logn+1

E [|Nk|]

≤
(
1

2
log n− 1

)
1

2B

=
log n− 2

2(log n)2
≤ 1

2 log n
.

Clearly, we can bound the probability of removing an element along with xi by the probability that there
exists a related element to xi in the set, by previous discussion in Section 3. Then, given each bound above,
assuming that the previous query was correct and that the refresh phase maintains the set distribution, we
see that the probability that the returned bit DB[xi] is incorrect for query step i is

Pr[DB[xi] is incorrect] ≤ 1

n
+

1
√
n log2 n

+
1

2 log n

≤ 3

2 log n
<

1

3
,

for n ≥ 32. ■

Now we introduce a new lemma that will help us prove Theorem 3.1. This lemma will bound the
probability that Add does not work as expected. The intuition here is that, just like Resample can remove
elements (already in the set) related to the resampled element, Add can add elements (not in the set) related
to the added element. Below, we are bounding the number of elements that are not x and are expected to be
added to the set when we add x. As we explained in Section 3, this is a “failure case”, since it means that
our set will not be what we expect.

Lemma B.1 (Adding related elements). For S ∼ Dn, and any x ∈ {0, . . . , n− 1}, the related set Salmost,x

is defined as
Salmost,x = {y | y ∈ Add(S, x) \ (S ∪ {x})} .

Then the expected size of Salmost,x is at most 1
2 logn .

Proof. Note that for any k less than log n, there are less than 2logn−k strings in {0, 1}logn that share a
suffix of length greater than or equal to k with x that do not equal x. The probability that a string y that
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has a common suffix of exactly k with x is included in Salmost,x is the chance that its initial B bits and its
remaining bits not shared with x evaluate to 1. Namely, let us say that

Salmost,x =
⋃

Nk ,

for any k ∈ N that is less than log n and more than (1/2) log n. We define each Nk as

Nk = {y : y = {0, 1}k||x[k :]} .

Since this is the same size as the Nk in Case 3 of Lemma 3.1, and we are iterating over the same k, the
expected size of Salmost,x is

E [|Salmost,x|] ≤
1

2 log n
.

■

We are now equipped with all the tools we need to prove Theorem 3.1. We restate it for completeness,
and prove it below.

Theorem 3.1 (Preliminary 2PIR+ protocol). The 2PIR+ scheme in Figure 1 is correct (per Definition 2.2)
and private (per Definition 2.3) and has: (i) Õ(n) client storage Õ(n) client time; (ii) Õ(

√
n) amortized

server time and no additional server storage; (iii) Õ(
√
n) amortized bandwidth.

Proof. We first prove privacy of the scheme, then proceed to prove correctness. The asymptotics follow by
construction and were argued in Section 3.
Privacy. Privacy for server1 is trivial. It only ever sees random sets generated completely independent of
the queries and is not interacted with online. We present the privacy proof for server2 below.

Privacy with respect to server2, as per our definition, must be argued by showing there exists a stateful
algorithm Sim that can run without knowledge of the query and be indistinguishable from an honest exe-
cution of the protocol, from the view of any PPT adversary A acting as server2 for any protocol server∗1
acting as server1. First, we note that the execution of the protocol between client and server2 is independent
of client’s interaction with server1. client generates sets and queries server1 in the offline phase for their
parity. Although this affects correctness of each query, it does not affect the message sent to server2 at each
step of the online phase, since this is decided by the sets, generated by client. Then, we can rewrite our
security definition, equivalently, disregarding client’s interactions with server1.

We want to show that for any query qt for t ∈ [1, Q], qt leaks no information about the query index xt to
server2, or that interactions between client and server2 can be simulated with no knowledge of xt. To do
this, we show, equivalently, that the following two experiments are computationally indistinguishable.

• Expt0: Here, for each query index xt that client receives, client interacts with server2 as in our PIR
protocol.

• Expt1 In this experiment, for each query index xt that client receives, client ignores xt, samples a
fresh S ∼ Dn and sends S to server2.

First we define an intermediate experiment Expt∗1.

• Expt∗1 : For each query index xt that client receives, client samples S ∼ Dxt
n . client sends S′ =

Resample(S, xt) to the server2.
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By Property 1 defined in Section 3, S′ is computationally indistinguishable from a fresh set sampled from
Dn. Therefore, we have that Expt∗1 and Expt1 are indistinguishable. Next, we define another intermediate
experiment Expt∗0 to help in the proof.

• Expt∗0: Here, for each query index xt that client receives, client interacts with server2 as in our
PIR protocol, except that on the refresh phase after each query, instead of picking a table entry Bk

= (Sk, Pk) from our secondary sets and running S′
k = Add(Sk, xt), we generate a new random set

S ∼ Dxt
n and replace our used set with sk instead.

First, we note that by Property 2 defined in Section 3, it follows directly that Expt0 and Expt∗0 are compu-
tationally indistinguishable. Now, we continue to show that Expt∗0 and Expt∗1 are computationally indistin-
guishable. At the beginning of the protocol, right after the offline phase, the client has a set of |T | primary
sets picked at random. For the first query index, x1, we

• either pick an entry (Sj , pj) ∈ T from these random sets where x1 ∈ Sj ;

• or, if the step above fails, we run Sj ∼ Dx1
n .

Then, we send to server2 S′
j = Resample(Sj , x). Note that the second case is trivially equivalent to

generating a random set with x1 and resampling it at x1. But in the first case, note that T holds a sets
sampled from Dn in order. As a matter of fact, looking at it in this way, Sj is the first output in a sequence
of samplings that satisfies the constraint of x being in the set. Then, if we consider just the executions from
1 to j, this means that picking Sj is equivalent to sampling from Dx1

n , by definition. Then, by Property 1, it
follows that the set that the server sees in the first query is indistinguishable from a freshly sampled set.

It follows from above that for the first query, q1, Expt∗0 is indistinguishable from Expt∗1. To show that
this holds for all qt for t ∈ [1, Q] we show, by induction, that after each query, we refresh our set table T to
have the same distribution as initially. Then, by the same arguments above, it will follow that every query qt
in Expt∗0 is indistinguishable from each query in Expt∗1.

Base Case. Initially, our table T is a set of |T | random sets sampled from Dn independently from the
queries, offline.

Inductive Step. After each query qt, the smallest table entry (Sj , pj) such that xt ∈ Sj is replaced with
a set sampled from Dxt

n . Since the sets are identically distributed, then it must be that the table of set keys T
maintains the same distribution after each query refresh.

Since our set distribution is unchanged across all queries, then using the same argument as for the first
query, each query qt from client will be indistinguishable from a freshly sampled set to server2. Then, we
can say that Expt∗1 is indistinguishable from Expt∗0. This concludes our proof for experiment indistinguisha-
bility. Since we have defined a way to simulate our protocol without access to each xt, it follows that we
satisfy server2 privacy for any PPT non-uniform adversary A.

Correctness. To show correctness, we consider a slightly modified version of the scheme: After the
refresh phase has used the auxiliary set (Sj , pj), the client stores (Sj , pj , zj), where zj is the element that
was added to Sj as part of the protocol—for the sets that have not been used, we simply set zj = null. Note
that the rest of the scheme functions exactly as in Figure 1 and therefore never uses zj . It follows, then, that
the correctness of this modified scheme is exactly equivalent to the correctness of the scheme we presented.
Note that the query phase will fail to output the correct bit only on the following four occasions:

• Case 1: xi is not in any primary set that was preprocessed.

• Case 2: The resampling does not remove xi.

• Case 3: Resampling removes more that just xi from the set.
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• Case 4: Parity is incorrect because Add added a related element during the refresh phase.

Case 1:
From the privacy proof above, we know that refreshing the sets maintains the primary set distribution. Then,
we can use the same argument as in Lemma 3.1 and say that, for a query xi, for all i ∈ {1, . . . , Q}, we have

Pr[xi /∈ ∪j∈[1,l]Sj ] =

(
1

e

)logn

≤ 1

n
.

Case 2:
Since Resample is independent from the set (just tossing random coins), we can again re-use the proof of
Lemma 3.1 and say that, for any xi, for all i ∈ {1, .., Q}, we have

Pr[xi ∈ Resample(S, xi)] ≤
1√

n(log n)2
.

Case 3:
Case 3 requires us to look into our modified scheme. For the initial primary sets, the probability of removing
an element related to the query is exactly the same as in Case 3 for our Lemma 3.1. However, for sets that
were refreshed, we need to consider the fact that these are not freshly sampled sets, in fact, they are sets that
were sampled and then had an Add operation performed on them. For a given query xi, let Sj be the first
set in T that contains xi. Let us denote PuncRel to be the event that we remove more than just xi when
resampling Sj on xi. We split the probability of PuncRel as

Pr[PuncRel] = Pr[PuncRel | Related(xi, zj) = 1 ∧ xi ̸= zj ]× Pr[Related(xi, zj) = 1 ∧ xi ̸= zj ]

∪ Pr[PuncRel | Related(xi, zj) = 0 ∨ xi = zj ]× Pr[Related(xi, zj) = 0 ∨ xi = zj ] .

The first term corresponds to the case where the added element in a previous refresh phase, zj , is related
to the current query element, xi. Note that if xi equals zj , we get the same distribution as the initial Sj by
Property 2 in Section 3. Then, we consider only the case where zj does not equal xi. Note that we can
bound

Pr[Related(xi, zj) = 1 ∧ xi ̸= zj ] ≤ Pr[Related(Sj , zj) = 1] ≤ 1

2 log n
.

Above, we use Related(Sj , zj) to denote the probability that there is any related element to zj (not equal
to zj) in Sj . We can bound this event by Lemma 3.1 (see Case 3). Then, we have

Pr[PuncRel | Related(xi, zj) = 1 ∧ xi ̸= zj ]×Pr[Related(xi, zj) = 1 ∧ xi ̸= zj ] ≤
1

2 log n
.

For the second term of our initial equation, since Related(xi, zj) is 0 or xi equals zj , note that our
probability of resampling incorrectly is either independent of zj , since zj does not share any prefix with
xi and therefore the resampling cannot affect zj or its related elements in any way, by definition; or it
is identical to the probability of the initial set, by Property 2. Therefore, we have that the probability of
removing a related element is at most the probability of removing a related element in the original set,
which by Lemma 3.1 is

Pr[PuncRel | Related(xi, zj) = 0 ∨ xi = zj ] ≤
1

2 log n
.
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And, therefore, it follows that

Pr[PuncRel | Related(xi, zj) = 0 ∨ xi = zj ]× Pr[Related(xi, zj) = 0 ∨ xi = zj ] ≤
1

2 log n
.

Finally, we have

Pr[PuncRel] ≤ 1

2 log n
+

1

2 log n
≤ 1

log n
.

Case 4:
Lastly, we have the case that query xi is incorrect because the parity pj from the set Sj where we found xi
is incorrect. This will only happen when we added elements related to zj when adding zj during the refresh
phase. We denote this event AddRel. By Lemma B.1, we have that

Pr[AddRel] ≤ 1

2 log n
.

We can conclude that at each query xi, i ∈ {1, . . . , Q}, assuming the previous query was correct, it follows
that the probability of a query being incorrect, such that the output of the query does not equal DB[xi], is:

Pr[incorrect query] ≤ 1

n
+

1
√
n log2 n

+
1

log n
+

1

2 log n

≤ 2

log n
≤ 1

3
for n > 405.

Because at each step we run a majority vote over ω(log n) parallel instances, we can guarantee that, since
our failure probability is less than 1

2 , each instance will get back the correct DB[xi] with overwhelming
probability. ■

C PRS Contructions and Proofs

This section presents a construction and proof for the Adaptable PRS, as introduced and defined in Section 4.
We present a construction of our Adaptable PRS in Figure 4. We also present the previous PRS construction
by [SACM21] in Figure 3 for contrast. In the proof, we use a function time: f(·) → N that takes in a
function f(·) and output the number of calls made in f(·) to any PRF function. We also prove Theorem 4.1
for our construction in Figure 4. We re-state it below for recall:

Theorem 4.1 (Adaptable PRS construction). Assuming LWE, the scheme in Figure 4 satisfies correctness,
pseudorandomness with respect to Dn (Definition A.4), functionality preservation in resampling and ad-
dition (Definitions A.6 and A.8), security in resampling and addition (Definitions A.5 and A.7), and has
the following complexities: (i) keys sk and msk have Õ(1) size; (ii) membership testing, resampling and
addition take Õ(1) time; (iii) enumeration takes Õ(

√
n) time.

Proof. We begin the proof by showing that our scheme in Figure 4 satisfies the definitions in Appendix A.
We then argue efficiencies.

Correctness and pseudorandomness with respect to Dn. Correctness follows from our construction and
functionality preservation of the underlying PRF. Pseudorandomness follows from pseudorandomness of
the underlying PRF (Definition A.2). Both incur a negligible probability of failure in λ, inherited from the
underlying PRF.
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Let B = 2 log log n, m = 1
2 log n+B.

• Gen(1λ, n)→ (sk,msk) :

1. Let msk ← PRF.Gen(1λ, log n+B,m).

2. Let P be a set of m arbitrary distinct strings in {0, 1}logn+B that start with a 1-bit.

3. Let sk = PRF.Puncture(msk, P ).

4. output (sk,msk).

• EnumSet(sk)→ S :

1. Let Z 1
2
logn be all bit-strings in ℓ ∈ {0, 1}

1
2
logn such that PRF.PEval(sk, l) = 1.

2. Then, For i in {12 log n+ 1, . . . , log n}:

(a) Set Zi+1 to be any string of the form b||ℓ where b ∈ {0, 1}, ℓ ∈ Zi and PRF.Eval(sk, b||ℓ) = 1.

3. Return S = {ℓ : ℓ ∈ Zlogn ∧ PRF.PEval(sk, 0k||ℓ) = 1} for k ∈ {1, . . . , B}.

• InSet(sk, x)→ b :

1. Let z = 0B||x.

2. output 1 if PRF.PEval(sk, z[i :]) = 1 for i ∈ {1,m}, otherwise output 0.

• Resample(msk, x)→ skx :

1. Let z = 0B||x, Z = {z[i :]} for i ∈ {1,m}.

2. Let skx = PRF.Puncture(msk,Z).

3. Return skx.

Figure 3: PRS Construction by Shi et al. [SACM21].

24



Let B = 2 log log n, m = 1
2 log n+B.

• Gen(1λ, n)→ (sk,msk) :

1. Let msk1 ← PRF.Gen(1λ, log n+B,m), msk2 ← PRF.Gen(1λ, log n+B,m).

2. Let P1, P2 be two sets of random
(
1
2 log n+B

)
strings in {0, 1}logn+B that start with a 1-bit.

3. Let sk1 = PRF.Puncture(msk1, P1), sk2 = PRF.Puncture(msk2, P2).

4. output (sk,msk) = ((sk1, sk2), (msk1,msk2)).

• Eval(sk, x)→ b : % internal function used to simplify algorithms

1. Return PRF.PEval(sk[1], x)⊕ PRF.PEval(sk[2], x).

• EnumSet(sk)→ S :

1. As in Figure 3 but using Eval instead of PRF.Eval.

• InSet(sk, x)→ b :

1. Let z = 0B||x.

2. Output 1 if Eval(sk, z[i :]) = 1 for i ∈ {1,m}, otherwise output 0.

• Resample(msk, sk, x)→ sk :

1. Let z = 0B||x, Z = {z[i :]} for i ∈ {1,m}.

2. Let skx = PRF.Puncture(msk[2], Z).

3. Return (sk[1], skx).

• Add(msk, sk, x)→ sk:

1. Write x ∈ {0, 1}logn as a binary string.

2. Define z = 0B||x, Z = {z[i :]} for i ∈ {1,m}.

3. While true: % puncture until we find skx such that Eval(sk, x) equals 1.

(a) Let skx = PRF.Puncture(msk[1], Z).

(b) If InSet((skx, sk[2]), x), output (skx, sk[2]).

Figure 4: Our Adaptable PRS Implementation.
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Functionality preservation in resampling and addition. Assuming pseudorandomness and functionality
preservation of the underlying PRF (Definition A.1 and Definition A.2), our PRS scheme satisfies the prop-
erties of Functionality Preservation in Addition.

For (sk,msk)← Gen(1λ, n) until InSet(sk, x), and skx ← Punc(msk, sk, x):

• From construction, EnumSet(skx) ⊆ EnumSet(sk), since puncturing strings that evaluate to 1 can
only reduce the size of the set (since we only resample elements in the set).

• From the point above, and construction of our EnumSet, it follows that time(EnumSet(sk)) ≥
time(EnumSet(skx)).

• By construction of our resampling operation and Related function, it must be that

y ∈ EnumSet(sk) \ EnumSet(skx)↔ Related(x, y) = 1.

Also, for any n, λ ∈ N,x ∈ {0, . . . , n − 1}, for (sk,msk) ← Gen(1λ, n), skx ← Add(msk, sk, x) we
note that:

• By construction, EnumSet(sk) ⊆ EnumSet(skx) since since we only ever make 0s into 1s.

• By the converse of same argument as Functionality Preservation in Resampling above, it follows that

y ∈ EnumSet(skx) \ EnumSet(sk)↔ Related(x, y) = 1.

Therefore, our scheme satisfies Functionality preservation in resampling and addition.
Security in resampling. We show that our scheme satisfies Definition A.5 below, assuming pseudorandom-
ness and privacy w.r.t. puncturing of the underlying PRF (Definition A.1 and Definition A.3, respectively).

To aid in the proof, we define an intermediate experiment, Expt∗1, defined as:

• Expt∗1: Run Gen(λ, n)→ (sk,msk), and return skx ← Resample(msk, sk, x).

For each sk output by Gen, sk = (sk[1], sk[2]), two keys of m-puncturable PRFs. First, we show indistin-
guishability between Expt∗1 and Expt0:

Assume that there exists a distinguisher D0 than can distinguish Expt∗1 and Expt0. Let us say that
D0 outputs 0 whenever it is on Expt0 and 1 when it is on Expt∗1. Then, we can construct a D∗

0 with
access to D0 that breaks the privacy w.r.t. puncturing of the PRF (as in Definition A.3) as follows, for any
x ∈ {0, . . . , n− 1}:

Let m = 1
2 log n+B, L = log n+B, z = 0B||x.

D∗
0(m,L, z):

1. Define P0 = {z[i :]}i∈[1,m] and let P1, P2 be a set of m random points of length L starting
with a 1-bit.

2. Send P0, P1 to the privacy w.r.t. puncturing experiment and get back skPb
and oracle access

to PRF.Eval(skPb
, ·).

3. Run PRF.Gen(1λ, L,m)→ sk, PRF.Puncture(sk, P2)→ skP2 .

4. Set secret key sk′ = (skP2 , skPb
).

5. Return D0(sk
′).

Note that in the case where b equals 0, the experiment is exactly equivalent to D0’s view of Expt0, since
sk′ is two random m-privately-puncturable PRF keys punctured and m points starting with a 1-bit. Also,
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when b is 1, D0’s view is exactly equivalent to Expt∗1, since we pass in two random m-privately-puncturable
PRF keys, one punctured at m points starting with a 1-bit, and the other at {z[i :]}i∈[1,m], with no constraints
on whether x was in the set before or after the puncturings. Then, since D0’s view is exactly the same as
its experiment, it will distinguish between both with non-negligible probability, and whatever it outputs, by
construction, will be the correct guess for b with non-negligible probability.

Now we proceed to show that Expt∗1 and Expt1 are indistinguishable, assuming pseudorandomness of
the underlying PRF. Now, assume there exists a distinguisher D1 that can distinguish between Expt∗1 and
Expt1 with non-negligible probability. Then, we can construct a distinguisher D∗

1 that uses D1 to break the
pseudorandomness of the underlying PRF (as in Definition A.1) as follows, for any x ∈ {0, . . . , n− 1}:

Let m = 1
2 log n+B, L = log n+B, z = 0B||x.

D∗
1(m,L, z) :

1. Send P = {z[i :]}i∈[1,m] to the PRF pseudorandomness experiment, get back skP and a set
of m bits {Mi}i∈[1,m].

2. Let P1 be a set of m random bit strings of length L starting with a 1-bit. Run
PRF.Gen(1λ, L,m)→ sk, PRF.Puncture(sk, P1)→ skP1 . Let sk′ = (skP1 , skP ).

3. If ∀i ∈ [1,m], PRF.PEval(skP1 , z[i :]) ⊕Mi = 1, output D1(sk
′), else output a random

bit.

Note that in the case D1’s view in the case where the evaluations as described above all output 1 is
exactly its view in distinguishing between our Expt1 and Expt∗1. With probability 1

2 , it is given a punctured
key where x was an element of the original set, and with probability 1

2 it is given a punctured key where x
was sampled at random. Then, in this case, it will be able to distinguish between the two with non-negligible
by assumption, and therefore distinguish between the real and random experiment for pseudorandomness
of the PRF. Since the probability of having all the evaluations output 1 is non-negligible, then we break the
pseudorandomness of the PRF. By contraposition, then, assuming pseudorandomness of the PRF, it must be
that Expt1 and Expt∗1 are indistinguishable. This concludes our proof.
Security in addition. We now show that our scheme satisfies Definition A.7, assuming privacy w.r.t. punc-
turing of the underlying PRF (Definition A.3). Assume there exists a distinguisher D that can distinguish
between these two with non-negligible probability. Then, we can construct a distinguisher D∗ that breaks
privacy w.r.t. puncturing of the PRF as follows, for any x ∈ {0, . . . , n− 1}:

Let m = 1
2 log n+B, L = log n+B, z = 0B||x.

D∗(m,L, z) :

1. Define P0 = {z[i :]}i∈[1,m] and let P1, P2 be two sets of random m points of length L
starting with a 1-bit.

2. Send P0, P1, to the privacy w.r.t. puncturing experiment and get back skPb
and oracle

access to PRF.Eval(skPb
, ·).

3. Run PRF.Gen(1λ, L,m)→ sk, PRF.Puncture(sk, P2)→ skP2 .

4. Set our secret key sk′ = (skPb
, skP2).

5. If InSet(sk′, x), output D(sk′), else output a random bit.
Consider the case where x ∈ EnumSet(sk′):

• If P0 was punctured, D’s view is exactly equivalent to Expt0 in his experiment, since in Add we
output a secret key sk = (sk[1], sk[2]) where sk[1] is punctured at x, sk[2] is punctured at m random
points starting with a 1, and InSet(sk, x) returns true.
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• If P1 was punctured, D’s view is exactly equivalent to Expt1 in his experiment, by construction of
Gen, P1 and P2, the sk outputted is equivalent to a key outputted by Gen(1λ, n) where InSet(sk, x)
returns true.

We conclude that, conditioned on InSet(skPb
, x) returning true, D’s view of the experiment is exactly

equivalent to the experiment from our Definition A.7, and therefore it will be able to distinguish between
whether P0 and P1 was punctured with non-negligible probability. If we fix a random sk[2], the probability

Pr
[
InSet(sk′, x) = true

]
=

1√
n
> negl(n).

Then, the algorithm D∗ we constructed will break the privacy w.r.t. puncturing of the PRF with non-
negligible probability. By contraposition, assuming privacy w.r.t. puncturing, security in addition holds.
Efficiencies. Efficiency for our Gen,InSet and Resample follow from the construction and efficiencies for
our underlying PRF. The two efficiencies which we will show are EnumSet and Add.

Note that in EnumSet, the step 1 takes Õ(
√
n) time to evaluate every string of size logn

2 , then, by pseu-
dorandomness of the PRF, at each subsequent step we only ever keep

√
n strings since half are eliminated.

Since there are a logarithmic number of steps, we can say that EnumSet runs in probabilistic Õ(
√
n) time.

We can also bound EnumSet to have a deterministic bound by incurring an additional small error for the
protocol (in the case that it doesn’t conclude). We show this formally in Appendix E.

For Add, by pseudorandomness of the PRF, our construction will take probabilistic Õ(
√
n) time. By

exploring the construction of our primitive, we reduce this to Õ(1). We prove this in Corollary 1 below.
Similar to the enumeration, we present a way to bound the execution deterministically without affecting
overall correctness (see Appendix E). ■

In Corollary 1, we present a proof that we can run our Add function in expected Õ(1) time, as alluded
to in the above. Although this is not necessary for the efficiencies claimed in Theorem 4.1, it shows a
significant improvement to the Add function; we note, however, that this speed-up only applies to the
privately-puncturable PRF construction from Boneh et al. [BKM17].

Corollary 1 (Efficient Add). Our construction can use the privately-puncturable PRF primitive to run Add
run in Õ(1) time.

Proof. Note that an m-privately-puncturable PRF is just the xor of m 1-privately-puncturable PRF keys
abstracted away. By using this property, we can make Add more efficient, from Õ(

√
n) time to Õ(1) by

puncturing each point individually checking if it is mapped to 1, rather than attempting to get them all right
at once. We replace the step 2 in the protocol with the steps as follows:

1. write msk[1] as {msk[1]p}p∈[1,m].

2. write sk[1] as {sk[1]p}p∈[1,m].

3. For i in [1,m]:

(a) p = Eval(sk, z[i :]).

(b) pi,old = PRF1.PEval(sk[1]i, z[i :]) .

(c) sk′i = PRF1.Puncture(msk[1]i, z[i :]).

(d) pi,new = PRF1.PEval(sk′i, z[i :]).

(e) If p⊕ pi,old ⊕ pi,new ̸= 1 return to (c).

4. Let sk′ = {sk′i}i∈[1, 1
2
logn+B] .
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It follows in a straightforward manner from construction of the PRF punctured at multiple points that
our algorithm for addition presented earlier and the one using this technique output indistinguishable keys.
This changes Add’s run-time from expected Õ(

√
n) to expected run-time Õ(1). ■

D Constructions and Proofs for Section 5

In this section, we give proof for our scheme presented in Figure 2. Then, we give a full construction and
proof for the 1PIR scheme from Theorem 5.2.

D.1 Theorem 5.1

We introduce a small lemma that will aid us in our task. This lemma, intuitively, tells us that our APRS’s
Resample is exactly equivalent to our Resample operation defined in Section 3 (incurring some negligi-
ble probability of failure), in other words, the new evaluations of punctured points are pseudorandom and
completely independent of the previous evaluations before puncturing.

Lemma D.1 (Randomness in resampling). In some distribution Dn, the following two distributions are
computationally indistinguishable for m = 1

2 log n+B and any x ∈ {0, . . . , n− 1}:

• Expt0: Run Gen(1λ, n) → (sk,msk) until InSet(sk, x), run skx ← Resample(msk, sk, x), Re-
turn the tuple (EnumSet(sk), x ∈ EnumSet(skx)).

• Expt1: Run Gen(1λ, n) → (sk,msk) until InSet(sk, x), sample some boolean b from Bernoulli(ϕ)
where ϕ = 2−m. Output the tuple (EnumSet(sk),Bernoulli(ϕ)).

Note that x ∈ EnumSet(sk) denotes a boolean denoting true or false for the expression.

Proof. Let us define an intermediary experiment to aid in the proof.

• Expt∗0: Run (sk,msk) ← Gen(1λ, n) once and let skx ← Add(msk, sk, x). Return the tuple
(EnumSet(skx), x ∈ EnumSet(sk)).

Note that by our two security properties above, it follows that Expt0 and Expt∗0 are indistinguishable, since
generating a key until finding one with x is equivalent to adding, and sampling a key with x and resampling
x is indistinguishable from sampling a fresh key. Well, by pseudorandomness of the PRF, it follows that
x ∈ EnumSet(sk) for a fresh sk is indistinguishable from Bernoulli(ϕ) expect with negligible probability,
and by security in addition as we saw above generating a set key until we find one with x is indistinguishable
from generating a fresh key and adding x. Then, it follows that Expt1 and Expt∗0 are also indistinguishable,
and this concludes our proof. ■

Now, we have all the tools we need to prove Theorem 5.1. We restate it here:

Theorem 5.1 (Efficient 2PIR+ protocol). Assuming LWE, the 2PIR+ scheme in Figure 2 is correct (per
Definition 2.2) and private (per Definition 2.3) and has: (i) Õ(

√
n) client storage and Õ(

√
n) client time;

(ii) Õ(
√
n) amortized server time and no additional server storage; (iii) Õ(1) amortized bandwidth.

Proof. For brevity, we recall previous proofs. The efficiencies follow in a straightforward manner by con-
struction in unison with Theorem 4.1. Correctness and privacy follow in the very same manner as Theo-
rem 3.1, except we require the properties from Theorem 4.1 along with Lemma D.1 to ensure privacy and
correctness, since we are dealing with short set keys, not plaintext sets. Specifically, we require Defini-
tion A.4 to ensure that our sets satisfy the same distribution as Dn introduced in Section 3. We require
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Definition A.6, Definition A.5 and Lemma D.1 to ensure that our ’Resample’ algorithm satisfied property
1 as introduced in Section 3. Note Lemma D.1 ensures for us that our privacy proof remains valid, since it
says that the outputs of the resample function are independent of msk, and therefore the server’s view of our
distribution is entirely considitoned on the sk it sees and not dependent on msk. We require Definition A.8
and Definition A.7 to show that our ’Add’ satisfies property 2 as described in Section 3. Other than this, the
proof maps exactly as Theorem 3.1, except we also incur a negligible probability of failure inherent from
drawing our distribution with a PRF and not an idealized model. ■

D.2 Theorem 5.2

As mentioned in Section 5, in order to port our two-server PIR scheme in Figure 2 to single server, we
require two building blocks:

• Batch Parity Circuit We will use a batch parity boolean circuit C. Given any database of size n and l
lists of size m, C computes the parity of the l lists in Õ(l ∗m + n) time. A construction for such C
was idealized and proved in [CGHK22] 4.

• Gate-by-gate FHE We require the existence of a symmetric key FHE scheme (Gen,Enc,Dec,Eval)
that is gate-by-gate (as defined in [CGHK22]), where gate-by-gate means Eval runs in time Õ(|C|)
for a circuit of size |C|. As noted in [CGHK22], this is a property of standard FHE schemes [BV11,
GSW13].

To use this for our new PIR algorithm that uses sets with variable size, we require three adjustments:

1. We must modify the circuit to have an n−th index hardcoded to 0. The reasoning for this will be clear
from item 2. This clearly does not affect correctness, efficiency or privacy of the scheme.

2. We must modify our PRS’s EnumSet algorithm to output a list instead of a set, and pad any list of
size strictly less than

√
n

logn with the index n until the list is of size
√
n

logn , and output ⊥5 if any set list is

of size strictly greater than
√
n

logn . The algorithm then incurs an expected additional log n run-time.

The reasoning for this is to use |C| as a black-box, which requires a fixed sized list. With this modified PRS
enumeration algorithm and circuit C, along with the FHE scheme introduced in 5 we finally construct our
single server PIR scheme in Figure 5.

On step 3 of the offline phase, if the client does not find ℓ+
√
n sets that were evaluated correctly pi not

equal to ⊥, it just runs each online phase with a freshly sampled set key and outputs DB[x] equals 0. We
bound the probability of this happening in the following Lemma:

Lemma D.2 (Set Size Bound). Let LargeSet(·, ·) be a function that takes in a list L and number w, and
outputs a bit b that is 1 if the size of L is strictly greater than w, and 0 otherwise. Let s = ℓ + Q for some
ℓ,Q ∈ N. Then, for S1, . . . , Ss·(logn)2 ∼ (Dn)

s·(logn)2 ,

Pr

s·(logn)2∑
i=1

LargeSet

(
Si,

√
n

log n

) > s · (log n)

 <
1

log n
.

4This circuit does not have polylog depth and therefore we require a circular-security assumption on FHE. This is well accepted
be true [Gen09].

5We denote ⊥ to mean an ’empty’ or null value.
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Run k = log n log log n instances of the following scheme. Let ℓ =
√
n(log n)3, s = (ℓ+

√
n)(log n)2.

Offline phase

• client generates s PRS keys (msk1, sk1), . . . , (msks, sks) each with Gen(1λ, n) .

• client encrypts all the secret keys, FHE.Enc(sk1), . . . , FHE.Enc(sks) → (esk1, . . . , esks) and
sends these to server1.

• server1 runs FHE.Eval(EnumSet(eski)) on each eski, i ∈ [1, s] and gets back s sets S1, . . . , Ss,
where it will be clear which Si =⊥ from the size.

• server1 evaluates the parity of each set under FHE using C and computes ep1, . . . , eps. For each
set key ski, if EnumSet(ski) = ⊥, server1 sets epi =⊥, and sends these to client

• client decrypts each epi using FHE.Dec into the parity pi and stores the first ℓ hints where pi ̸=⊥
in T = {Tj = ((mskj , skj), pj)}j∈[1,ℓ], and the next

√
n hints that pi ̸=⊥ in B = {Bk =

((mskk, skk), pk)}k∈[ℓ+1,ℓ+
√
n].

Online Phase: Invoked with some index x ∈ {0, .., n− 1}.
• Query

1. client finds smallest j s.t. Tj = ((mskj , skj), pj) ∈ T and InSet(skj , x). If no such j is found,
we let j = |T |+ 1, run Gen(1λ, n, x)→ (skj ,mskj), let pj be a uniform random bit.

2. client sends sk′ = Resample(mskj , skj , x) to server1, that returns r = ⊕k∈EnumSet(sk’)DB[k].

3. client computes DB[x] = r ⊕ pj .

4. client computes DB[x]′ to be the majority vote of the computed DB[x] over the k instances.

• Refresh (only run if j ≤ |T |)

1. client gets Bk = ((mskk, skk), pk) be the first item from set B.

2. client computes skxk = Add(mskk, skk, x).

3. client sets Tj = ((mskk, sk
x
k), pk ⊕ (DB[x]′ ∧ InSet(skk, x))), where Tj was the entry consumed

by the query earlier, and also sets B = B \Bk.

Figure 5: Our 1PIR protocol using an Adaptable PRSet (Gen,EnumSet, InSet,Resample,Add).
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We provide the proof in Appendix D.3. From this Lemma, we see that this restriction incurs an additional
correctness failure of 1/ log n compared to our normal scheme. Note that for larger n, we can potentially
tighten this bound and require less additional sets.

The online phase runs in exactly the same way as our scheme in Figure 2. Now, we set out to prove that
our scheme satisfies Theorem 5.2. We re-state it below.

Theorem 5.2 (Near-Optimal 1PIR protocol). Assuming LWE, there exists an 1PIR scheme that is correct
(per Definition 2.2) and private (per Definition 2.3) and has: (i) Õ(

√
n) client storage and Õ(

√
n) client

time; (ii) Õ(
√
n) amortized server time and no additional server storage; (iii) Õ(1) amortized bandwidth.

Proof. The efficiencies follow from the efficiencies in the scheme in Figure 2, except for extra polylogarith-
mic factors and λ factors incurred by using C and FHE in the offline phase, along with the extra number of
preprocessed sets. Neither of these affect the complexity of our scheme when examined under Õ(·).

Privacy for the scheme follows from the security of the FHE scheme and privacy of the scheme in
Figure 2 (Theorem 5.1).

Correctness follows from the correctness proof from Theorem 5.1 and Lemma D.2, along with correct-
ness of C and the FHE scheme we use. Note that for each single copy scheme, we incur exactly the same
errors as in the 2PIR scheme, with the addition of the of an extra small error probability (less than or equal
to 1

logn for any n greater than 4, as shown in Lemma D.2) offline when we do not have the right amount
of sets. It is clear to see that this extra factor does not take the correctness probability of the single copy
scheme to be greater than 1

2 and therefore the same arguments from Theorem 5.1 hold. ■

D.3 Lemma Proof

Below we give the proof for the Lemma used in this section.

Lemma D.2 (Set Size Bound). Let LargeSet(·, ·) be a function that takes in a list L and number w, and
outputs a bit b that is 1 if the size of L is strictly greater than w, and 0 otherwise. Let s = ℓ + Q for some
ℓ,Q ∈ N. Then, for S1, . . . , Ss·(logn)2 ∼ (Dn)

s·(logn)2 ,

Pr

s·(logn)2∑
i=1

LargeSet

(
Si,

√
n

log n

) > s · (log n)

 <
1

log n
.

Proof. From Lemma 3.1, we know that the expected size of S is
√
n

(logn)2
. Then, by a simple Markov bound:

Pr
[
|S| >

√
n

log n

]
<

1

log n
.

Then, over s · log n sets sampled independently from Dn, S1, . . . , Ss(logn), by linearity of expectation:

E

[
s·logn∑
i=1

LargeSet

(
Si,

√
n

log n

)]
< s.

Now, if we just apply the Markov bound again:

Pr

s·(logn)2∑
i=1

LargeSet

(
Si,

√
n

log n

) > s · (log n)

 <
1

log n
.

■
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E Deterministic Time Bounds

We discuss below how get deterministic time bounds for our randomized algorithms used, EnumSet and
Add.

EnumSet. To get deterministic run-time for EnumSet, we can cap the server enumeration time to be at
most 6

√
n(log n)3 function calls, after which it can output a random bit as the set parity. From a standard

Markov argument, we see that this incurs an additional 1
logn error per copy, which will be handled by the

Chernoff bound. It is clear to see that this does not affect privacy for the servers, and only slightly affects
correctness in a way that still leaves it overall greater than 1

2 for any relevant n.
Add. To get deterministic run-time for Add, we can cap the execution similarly as above, with 2(log n)2

iterations. We note that in order for this change not to affect privacy of the scheme, we must take precautions
to change the order of steps in our PIR scheme to ensure privacy. To make this change, we must run step 1
and 2 of the Refresh phase along with step 1 of the Query phase. If either of these fails to execute correctly,
then we send to the server (sk, _) ← Gen(1λ, n) and client sets DB[x] to be a uniform random bit. This
introduces a small probability of correctness failure but does not affect privacy since we send a random set
to server2. If we do not take this precaution of running the steps of the Refresh phase upfront, then our PIR
scheme for concrete performance bounds would potentially breach privacy in the case that Add fails.
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