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Abstract. Homomorphic Encryption (HE) is a modern cryptographic
technique that allows direct computations on encrypted data. While rel-
atively new to the mainstream debate, HE has been a solid topic in
research for decades. However, and despite the technological advances
of the past years, HE’s inefficiencies render it impractical for deploy-
ment in realistic scenarios. Hence research in the field is still in its initial
phase. To overcome certain challenges and bring HE closer to a real-
ization phase, researchers recently introduced the promising concept of
Hybrid Homomorphic Encryption (HHE) – a primitive that combines
symmetric cryptography with HE. Using HHE, users perform local data
encryptions using a symmetric encryption scheme and then outsource
them to the cloud. Upon reception, the cloud can transform the symmet-
rically encrypted data to homomorphic ciphertexts without decrypting
them. Such an approach can be seen as an opportunity to build new,
privacy-respecting cloud services, as the most expensive operations of
HE can be moved to the cloud.
In this work, we undertake the task of designing a secure cryptographic
protocol based on HHE. In particular, we show how HHE can be used
as the main building block of a protocol that allows an analyst to collect
data from multiple sources and compute specific functions over them, in
a privacy-preserving way. To the best of our knowledge, this is the first
work that aims at demonstrating how HHE can be utilized in realistic
scenarios, through the design of a secure protocol.

Keywords: Homomorphic Encryption · Hybrid Homomorphic Encryp-
tion · Multi-Client · Storage Protection

1 Introduction

Cloud computing has become an integral part of our lives. It has not only im-
pacted our daily functions but also how businesses and organizations manage
their data and customers. The wide use of cloud-services has, as expected, raised
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a plethora of challenging security and privacy problems. One of the main security
concerns related to cloud computing has to do with so-called internal attacks.
This is, a corrupted cloud service provider (CSP) exploiting customer data for
its own benefit, e.g. sharing customer data with third parties. To alleviate these
concerns CSPs have introduced support for data encryption. However, the prob-
lem of creating real privacy-respecting cloud services is not as easy as applying
encryption on the stored data. For this reason, the research community has
started looking into solutions that are not based on traditional encryption and
can successfully protect user data from internal attacks without jeopardizing
the main benefits of cloud computing. One of the most common solutions is
Structured Encryption (SE) [30], where data is encrypted locally with a key
that is unknown to the CSP. Hence, the CSP, which does not have access to the
encryption key cannot learn anything about the content of user data. Further-
more, whenever a user wishes to access her files, she can search directly over
the encrypted data for specific keywords. While this approach solves part of the
problem, (i.e. users do not have to download and decrypt the whole database),
ciphertexts remain “useless” in the sense that one can not operate on them as
if as they were plaintexts. With a view to addressing this issue, a number of
approaches to make ciphertexts “more useful” and operate on encrypted data
have been developed. The most promising solutions is Homomorphic Encryption
(HE) [37] and Functional Encryption [28] – two modern encryption techniques
that allow authorized entities (i.e. users, the cloud or third parties) to perform
computations on the encrypted data without accessing their contents.

Homomorphic encryption. Often dubbed as “the holy grail of cryptography”.
In an HE scheme a user first generates a public/private key pair (pk, sk) and
an evaluation key evk1. Then, given two ciphertexts c1, c2 encrypting messages
x1 and x2 respectively and the evaluation key evk, it is possible to compute
f(c1, c2), where f is a function associated either with addition or multiplication.
Moreover, what is fascinating about HE, is that in computing f(c1, c2) there
are no leaks about the underlying plaintexts x1 and x2 while decrypting the
result in only feasible by possessing the secret key sk. Naturally, this opens up
tremendous possibilities as, for the first time ever, it becomes possible to not only
outsource data, applications and services but also computations to the cloud, in a
privacy-preserving manner. However, despite its advantages, HE is unfortunately
characterized by its inefficiency. Homomorphically encrypting big loads of data
requires powerful machines and is time-consuming. As a result, to this day HE
is a topic of interest mainly among members of the academic community. To
address these inefficiencies however, researchers recently turned their attention
to Hybrid Homomorphic Encryption (HHE) [22].

Hybrid Homomorphic encryption. In an HHE scheme, a user encrypts data lo-
cally using a symmetric key K of a symmetric-key encryption scheme SKE. Sub-
sequently, K is encrypted under HE’s public key pk and is outsourced to the cloud

1 Sometimes, in literature, the evaluation key is part of the public key.
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along with the ciphertexts and the evaluation key evk. Upon reception, the CSP
can transform the symmetrically encrypted data to homomorphic ciphertexts
and hence operate on them. This promising approach significantly reduces com-
putation costs on the client side by moving the most expensive computations
on the cloud, where powerful machines are used traditionally for the process-
ing and storage of the data. In this work, while we do not design a novel HHE
scheme, we design a detailed protocol that aims at showing the applicability and
functionality of HHE in real-world scenarios.

Contributions: While multiple different HHE schemes have been proposed over
the past few years, to the best of our knowledge, none of these describe in detail
how HHE can be used as the main building block of a secure protocol. We believe
this is an important step forward that can bridge the gap between theoretical
cryptographic concepts and security engineering and can pave the way for the
implementation of a vast amount of privacy-respecting cloud services. The core
contributions of this work can be summarized as follows:

C1. We design a protocol that utilizes the concept of HHE and allows multiple
users to securely store and process their data in the cloud.

C2. We provide an efficient and novel way of using HE to securely store and
analyze data stored in a remote location. More precisely, our scheme can
run in any device that can run a typical symmetric encryption algorithm.

C3. We prove the security of our protocol in the presence of a malicious adversary
modelled after the Dolev-Yao adversarial model [24].

C4. Our theoretical evaluation, is coupled with extensive experimental results
that prove our protocol’s efficiency and applicability.

2 Related Work

– Homomorphic Encryption: While HE has attracted a lot of attention in
the recent years, it was first mentioned by Rivest et al. in 1978 [37]. How-
ever, the first HE constructions allowed only for one specific operation on
encrypted data. The operation could either be addition, using the Paillier
cryptosystem [36], or multiplication, under RSA [38]. It was not until 2009
and the work of Gentry that the first fully homomorphic encryption (FHE)
scheme was developed [26]. This was a major breakthrough in the field of
cryptography as, in theory, by using a FHE scheme one can perform any
operation directly on encrypted data. While fascinating, this work was un-
fortunately characterized by its inefficiency. However, it produced a series of
publications in the field [14,25,15,19,18]. These works addressed the imprac-
ticalities of Gentry’s work and lead to novel and more efficient schemes.

– Hybrid Homomorphic Encryption: HHE was first introduced as a con-
cept in [35], but the first formal definition was presented very recently in [23].
The first approaches for the design of HHE schemes, relied on existing and
well-established symmetric ciphers, like AES [27,17,21]. However, AES was
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not a good suitor for building HHE schemes, mainly due to its large multi-
plicative depth. Thus, research on the field of HHE took a new turn where
the main focus has been shifted to the design of symmetric ciphers with
different optimization criteria, depending on the use-case each work ad-
dresses [20,5,16,22,32,29,23]

– Different Approaches: Another emerging cryptographic primitive that
can be used to outsource computations in a privacy-preserving is Func-
tional Encryption (FE). In FE, each decryption key skf is connected to
a function f . Unlike traditional public-key cryptography, the use of skf on
a ciphertext Enc(x) does not recover x but a function f(x). In this way,
the actual value x remains private. A more recent work [28] has intro-
duced the general and promising notion of multi-input FE (MIFE). Here,
when ciphertexts Enc(x1), . . . ,Enc(xn) are provided, skf can be used to re-
cover f(x1, . . . , xn). To this day, most works in FE revolve around designing
schemes for sums [13,8,11], inner products [1,3,2], as well as quadratic func-
tions [40]. Unfortunately, except a handful works that rely on Multi-Party
Computation (MPC) [11,12], most of FE schemes are highly centralized and
require the existence of a fully trusted central authority.

– Provable Secure Protocols for Cloud Security using HHE : Designing
provable secure protocols that utilize modern cryptography is not novel. In-
deed, multiple solutions have been proposed [7,34,6,33], based on Attribute-
Based Encryption (ABE) [39,4], as well as on Symmetric Searchable En-
cryption (SSE) [9,10]. However, to the best of our knowledge, this is the
first work that aims at designing a provable secure protocol leveraging the
functionality of HHE.

3 Preliminaries

Notation If Y is a set, we use y
$←− Y if y is chosen uniformly at random from Y.

Concatenation of two strings x, y is denoted by x∥y. A probabilistic polynomial
time (PPT) adversary ADV is a randomized algorithm for which there exists a
polynomial p(z) such that for all input z, the running time of ADV(z) is bounded
by p(|z|). A function negl(·) is called negligible if ∀ c ∈ N,∃ ϵ0 ∈ N such that
∀ ϵ ≥ ϵ0 : negl(ϵ) < ϵ−c.

Definition 1 (Homomorphic Encryption). A (public-key) homomorphic en-
cryption scheme is a quadruple of PPT algorithms HE = (HE.KeyGen,HE.Enc,
HE.Dec,HE.Eval) such that:

– Key Generation: The Key Generation algorithm (pk, evk, sk)← He.Keygen
(1˘) takes as input a unary representation of the security parameter λ, and
outputs a public key pk, a public evaluation key evk and a secret decryption
key sk.

– Encryption: This algorithm c← HE.Enc(pk,m) takes as input the public
key pk and a message m and outputs a ciphertext c.
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– Decryption: This algorithm m ← HE.Dec(sk, c), takes as input the secret
key sk and a ciphertext c, and outputs a plaintext m.

– Homomorphic Evaluation: This algorithm cf ← He.Eval(evk, f, c1, . . . , cn)
takes as input the evaluation key evk, a function f , and a set of n ciphertexts,
and outputs a ciphertext cf .

Correctness: An HE scheme is said to be correct if and only if:

(1)Pr[HE.Decsk (HE.Evalevk (f, c)) ̸= f(m)|HE.Encpk (m) = c] ≤ negl(λ)

Before we proceed with the formal definition of HHE, we discuss its func-
tionality at a high-level. An HHE scheme is built on top of a traditional HE
scheme as well as a symmetric cipher SKE. The Key Generation algorithm of
HHE invokes the corresponding algorithms of both the HE and SKE and out-
puts (pk, sk, evk) for the HE scheme, and K for the SKE scheme. As a next step,
the Encryption algorithm takes as input a message m, HE’s public key pk, and
K. The message m will be encrypted symmetrically using K, resulting to a ci-
phertext c. Moreover, the symmetric key K will be homomorphically encrypted
under pk, resulting to another ciphertext cK. These two ciphertexts will then be
given as input, along with the decryption function of SKE, to HHE’s Decom-
pression algorithm. This algorithm homomorphically performs the symmetric
decryption circuit to transform the symmetric ciphertext c into a homomorphic
ciphertext c′, by invoking the evaluation algorithm of the HE scheme. Finally,
the evaluation and decryption algorithms of HHE, are identical to those of the
HE scheme.

Definition 2 (Hybrid Homomorphic Encryption). Let HE be a Homomor-
phic Encryption scheme and SKE = (Gen,Enc,Dec) be a symmetric-key encryp-
tion scheme. Moreover, let M = (m1, . . . ,mn) be the message space and λ the
security parameter. An HHE scheme then consists of five PPT algorithms such
that HHE = (KeyGen,Enc,Decomp,Eval,Dec) and it is constructed as follows:

HHE.KeyGen(1λ):

(pk, sk, evk)← HE.KeyGen(1λ)
Return (pk, sk, evk)

HHE.Enc:
K← SKE.Gen(1λ)
cK ← HE.Enc(pk,K)
c← SKE.Enc(K,m)
Return (cK, c)

HHE.Decomp(evk, c, cK):

c′ ← HE.Eval(evk, SKE.Dec, cK, c)
Return c′

HHE.Eval(evk, f, c′1, . . . , c
′
n):

Return HE.Eval(evk, f, c′1, . . . , c
′
n)

HHE.Dec(sk, c′) :

Return HE.Dec(sk, c′)

Fig. 1: Hybrid Homomorphic Encryption Scheme
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The correctness of an HHE scheme follows directly from the correctness of
the underlying public-key HE scheme.

For the security of HHE we rely on the following theorem that was first
proved for the KEM/DEM paradigm in [31], and then later modified for HHE
in [23]:

Theorem 1. Let HE be an IND-CPA secure public-key homomorphic encryption
scheme. Moreover, let SKE be an IND-CPA secure symmetric-key encryption
scheme. Then the HHE scheme instantiated by HE and SKE is IND-CPA secure.

4 Architecture

For the needs of our construction, we assume the existence of the following three
entities:

– Cloud Service Provider (CSP): An honest-but-curious cloud service
provider that is primarily responsible for gathering symmetrically encrypted
data from multiple sources. The CSP undertakes the task of transforming
the symmetrically encrypted data to homomorphic ciphertexts and, upon
request, operate on them in a blind way.

– Analyst (A): The analyst is an entity that wishes to perform computations
on the data of various users. A is the only entity in our construction that
can perform the homomorphic decryption and thus, gain insights from user
data.

– Users (U): Users encrypt their data locally using a symmetric-key encryp-
tion scheme and outsource them to the CSP.

5 Symmetrical Disguise

Before we proceed with the formal construction of the scheme, we provide a
high-level overview.

5.1 High-Level Overview

An analyst A generates (pk, sk, evk) for the HHE scheme, outsources evk to the
CSP and publishes pk. As a next step, each user ui (ui ∈ U), can generate a
symmetric key locally, encrypt their data, and outsource them to the CSP along
with a homomorphic encryption of the symmetric key under A’s public key. Upon
reception, the CSP transforms the symmetric ciphertexts to homomorphic, and
stores them online in its database. A can request the evaluation of a function f
on the collection of the ciphertexts from the CSP. The CSP uses evk and outputs
an encrypted result which then sends back to A. Finally, A decrypts the result
using their secret key sk.
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5.2 Formal Construction

We are now ready to present SD that constitutes the core of this paper’s contri-
bution. For the realization of our construction we rely on the following building
blocks:

– An IND-CPA secure symmetric cipher SKE = (Gen,Enc,Dec).
– An IND-CPA secure homomorphic encryption scheme HE = (KeyGen,Enc,

Dec,Eval).
– A CCA2 secure public-key encryption scheme PKE = (Gen,Enc,Dec)
– An EUF-CMA secure signature scheme S = (sign, ver).
– A first and second pre-image resistant hash function H.

SD is built around three main protocols: Setup,Add,Query such that:

SD.Setup: Each entity from the described architecture generates a signing/ver-

ification key pair for an EUF-CMA secure signature scheme S and publishes its
verification key while keeping the signing key private. Apart from that, the CSP,
generates a public/private key pair (pk, sk) for a CCA2-secure public-key en-
cryption scheme PKE. Finally, the analyst A runs HHE.KeyGen to generate the
public, secret and evaluation keys for an IND-CPA secure homomorphic encryp-
tion scheme HE, and each user ui runs SKE.KeyGen to generate a symmetric key
Ki for an IND-CPA secure symmetric cipher SKE. Below we provide a list of the
generated keys:

– Signing/Verification keys for each entity.
– (pkCSP, skCSP): Public/private key pair of the CSP.
– (pkA, skA, evkA): Public/private/evaluation keys of A.
– Ki: Symmetric key for each user ui.

Once the keys are generated, A outsources its evaluation key evk to the CSP
via m1 = ⟨t1,Enc(pkCSP, evk), σA(H(t1||evk)))⟩, where t1 is a timestamp, σA is
a signature encrypted with A’s private key, and H is a hash function. Upon
reception, the CSP verifies the signature of A, using A’s verification key, and
the freshness of the message through the timestamp. If a verification fails, the
CSP aborts the protocol and outputs ⊥. Otherwise, the CSP stores evkA.

SD.Add: This protocol is initiated by any user ui ∈ U that wishes to out-
source some data x = (x1, . . . , xn) to the CSP. To do so, ui first runs ci ←
SKE.Enc(Ki, xi). As a next step, ui, homomorphically encrypts is symmetric key
Ki under A’s public key, by running cKi

← HE.Enc(pkA,Ki). Finally, the (c, cKi
)

pair is outsourced to the CSP via the following message:

m2 = ⟨t2, c = (ci, . . . , cn), cKiσui
(H(t2∥c∥cKi))⟩.

Upon receiving m2, the CSP verifies the freshness and integrity of the message.
If the verifacation fails, CSP outputs ⊥. Otherwise, it transforms the symmetric
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ciphertext ci to a homomorphic one, by running c′i ← HHE.Decomp(ci, cKi
, evkA).

Finally, the CSP stores c′i in its database.

SD.Query: The Query protocol is initiated by A whenever she wishes to is-

sue a query to the encrypted data for a function f . To do so, A sends m3 =
⟨t3,Enc(pkCSP, f), σA(H(t3∥f)⟩) to the CSP. Upon reception, the CSP verifies
both the integrity and the freshness of the message. If the verification fails,
the CSP will abort the protocol and output the error symbol ⊥. Otherwise, it
runs HHE.Eval(f, evkA, c

′
1, . . . , c

′
n) → cres to get an encrypted result cres. Due to

the homomorphic properties of the encryption scheme HE, the encrypted result
cres can be viewed as an encrypted version of f(x′

1, . . . , x
′
n), where each x′

i corre-
sponds to a ciphertext c′i, and that can only be dercypted using A’s secret key sk.
Subsequently, the CSP forwards cres to A via m4 = ⟨t4, cres, σCSP (H(t4∥cres))⟩.
Upon reception, A verifies both the integrity and the freshness of the message.
If a verification fails, A aborts the protocol and outputs ⊥. Otherwise, they run
HHE.Dec(sk, cres) → res to retrieve the result res. Having acquired the result
in plaintext, A can use it to perform statistics or data analysis, in a privacy-
preserving manner, since she never got access to the actual plaintexts. Our pro-
tocol is illustrated in Figure 2.

6 Threat Model

In this section, we define the threat model under which we prove the security
of SD. More specifically, we formalize the capabilities of the adversary ADV
through the following set of possible attacks:

Attack 1 (Analyst Substitution Attack) Let ADV be a malicious adver-
sary. ADV successfully performs an Analyst Substitution Attack if she manages
to convince the users that their data are processed for the needs of an analyst A,
while in reality they are processed for an analyst AADV .

Attack 2 (Ciphertext Substitution Attack) Let ADV be a malicious ad-
versary. ADV successfully launches a Ciphertext Substitution Attack if she man-
ages to replace the ciphertexts sent by users to the CSP in an indistinguishable
way.

Attack 3 (Query Substitution Attack) Let ADV be a malicious adversary.
ADV successfully launches a Query Substitution Attack if she manages to replace
the query sent by A to the CSP, with another one of her choice, in an indistin-
guishable way.

Attack 4 (Result Substitution Attack) Let ADV be a malicious adversary.
ADV successfully launches a Result Substitution Attack if she manages to replace
the result sent by the CSP to the analyst A, in an indistinguishable way.

In our threat model, we assume that the CSP cannot collude with the Analyst
A. This is a valid assumption as otherwise we would be required to prove security
in a setting where the decryption keys are publicly-available.
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Analyst A User ui CSP

Run HHE.KeyGen

Run SKE.KeyGen

Ki

(pkA, skA, evkA)

m1 = ⟨t1,Enc(pkCSP, evk), σA(H(t1∥evk)))⟩

Run HE.Enc(pkA,Ki)

cKi

m2 = ⟨t2, c = (ci, . . . , cn), cKiσui(H(t2∥c∥cKi))⟩.

Run HHE.Decomp

c′ = (c′1, . . . , c
′
n)

m3 = ⟨t3,Enc(pkCSP, f), σA(H(t3∥f)⟩)

Run HHE.Eval

cres

m4 = ⟨t4, cres, σCSP (H(t4∥cres))⟩

Run HHE.Dec

res

Fig. 2: Complete run of our protocol with one user ui. More users would behave
exactly like ui.
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7 Security Analysis

We are now ready to prove the security of our construction assuming the threat
model defined in section 6. In particular, we will prove the following theorem:

Theorem 2 (SD Security in the presence of Malicious Adversaries).
Let PKE be an INC-CPA secure public-key encryption scheme and S an EUF-
CMA secure signature scheme with security parameter λ. Moreover, let SKE be
an IND-CPA secure symmetric-key encryption scheme with security parameter
κ. Finally, let ADV be a malicious adversary. Then, SD is secure against the
threat model defined in section 6.

Proof. To prove Theorem 2, we will start with a sequence of lemmas. Then, we
will combine our results to derive a proof for the main theorem.

Lemma 1 (Analyst Substitution Attack Soundness). Let PKE be an INC-
CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. In this case ADV
cannot successfully launch an Analyst Substitution Attack against SD.

Proof. ADV will successfully launch an Analyst Substitution Attack, by target-
ing either the SD.Setup or the SD.Add protocol. To this end, we distinguish the
following cases:

C1: Attacking SD.Setup: To perform an attack against SD.Setup, ADV needs
to swap the evaluation key of A, evkA, with an evaluation key evkAADV ,
for an analyst AADV such that A ̸= AADV . To this end, ADV targets the
m1 = ⟨t1,Enc(pkCSP, evk), σA(H(t1∥evk)))⟩ message sent from A to the CSP
and tries to swap evkA with evkAADV . Generating a valid EncpkCSP(evk

′
A) is

straightforward for ADV as pkCSP is publicly known. However, swapping
evkA for evk′A in the σA(H(t1||evk)) term, is equivalent with forging A’s sig-
nature, and given the EUF-CMA security of the signature scheme S, this can
only happen with negligible probability. More specifically, if λ is the security
parameter of S, then the advantage ϵ1 of ADV is successfully tampering with
m1 in an indistinguishable way is:

(2)ϵ1 = negl(λ)

C2: Attacking SD.Add: Another option for ADV is to target

m2 = ⟨t2, c = (ci, . . . , cn), cKiσui
(H(t2∥c∥cKi))⟩.

The motivation for this attack is to use user data for an analyst AADV

while the users believe that their data will be processed for an analyst A.
Recall that cKi is generated as cKi ← HE.EncpkA(Ki). Hence, for ADV to
successfully attack this protocol, they need to simultaneously satisfy the
following three conditions:

(a) Guess the symmetric key Ki;
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(b) Encrypt it with the public key of another analyst AADV ;
(c) Tamper with m2 in an indistinguishable way.

However, assuming that the symmetric cipher SKE is IND-CPA secure, the
probability of correctly guessing the key (e.g. brute force attack) is negligible
in the security parameter κ of SKE. Hence, if the advantage of ADV in
guessing they key is ϵ2:

(3)ϵ2 = negl(κ)

Since condition (1) can never be fulfilled, except with negligible probability,
there is no need to separately examine conditions (2) and (3).

Hence, we conclude that in every case, ADV can successfully launch an An-
alyst Substitution Attack with only negligible probability.

Lemma 2 (Ciphertext Substitution Attack Soundness). Let PKE be an
INC-CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. Then ADV cannot
successfully launch a Ciphertext Substitution Attack against SD.

In contrast with the previous attack that aimed at processing real user data,
this attack aims at substituting the actual ciphertexts (c1, . . . , cn) with a se-
quence of data (c′1, . . . , c

′
n) generated by ADV. By succeeding in this attack,

ADV can control the outcome of a query to the CSP and hence, manipulate the
analyst A.

Proof. Successfully performing a Ciphertext Substitution Attack, requires at-
tacking the SD.Add protocol. More precisely, when a user ui outsources their
data to the CSP via m2 = ⟨t2, c = (ci, . . . , cn), cKiσui

(H(t2∥c∥cKi))⟩, ADV needs
to substitute c = (ci, . . . , cn) with c′ = (c′1, . . . , c

′
n). Apart from that ADV needs

to generate a cK′ term where K′ is the key used to encrypt c′. More precisely,
ADV needs to successfully:

1. Generate a symmetric key KADV ;
2. Use K′ to generate a sequence of ciphertexts c′ = (c′1, . . . , c

′
n);

3. Encrypt KADV with pkA to get cKADV ;
4. Tamper with m2 in an indistinguishable way.

Conditions (1), (2) and (3) are trivial to achieve. Moreover, substituting c
with c′ and cKi with cK in the first part of m2 is straightforward. However, these
terms are also included in the signature and hence, successfully substituting the
terms is equivalent to forging ui’s signature. Given the EUF-CMA security of
the signature scheme S, this can only happen with negligible probability in the
security parameter λ of S. As a result, the advantage ϵ2 in tampering with m2

in an indistinguishable way is:

(4)ϵ3 = negl(λ)
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Lemma 3 (Query Substitution Attack Soundness). Let PKE be an INC-
CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. Then ADV cannot
successfully launch a Query Substitution Attack against SD.

Proof. For ADV to successfully perform a Query Substitution Attack, they
need to attack the SD.Query protocol. More precisely, when A sends m3 =
⟨t3,Enc(pkCSP, f), σA(H(t3∥f)⟩) tries to substitute the function f with another
function f ′ of their choice. Since f is encrypted with the public key of the CSP
pkCSP, ADV simply needs to encrypt f ′ under pkCSP as well. However, f is also
included in the signature part of m3 and hence, tampering with m3 requires forg-
ing AADVs signature. Given the EUF-CMA security of the signature scheme S
this can only happen with negligible probability in the security parameter λ of S.
As a result, ADV’s advantage ϵ4 is in tampering with m3 in an indistinguishable
way is:

(5)ϵ4 = negl(λ)

Lemma 4 (Result Substitution Attack Soundness). Let PKE be an INC-
CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. Then ADV cannot
successfully launch a Result Substitution Attack against SD.

Proof. The proof is identical to that of Lemma 3 with the main difference being
that ADV targets m4 instead of m3. Hence, following the exact same reasoning
as in the proof of Lemma 3, we conclude that the advantage ϵ5 of ADV is in
tampering with m4 in an indistinguishable way is:

(6)ϵ4 = negl(λ)

Having examined each possible attack separately, what remains to be done is
to prove that the overall advantage ϵtotal of ADV is negligible. Given the security
parameter λ and grouping up the results from equations 2- 6 we get that:

(7)ϵtotal = ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5

= 4 · negl(λ) + negl(κ)

However, it is a standard result in real analysis that the finite sum of negli-
gible functions is still negligible and hence:

(8)ϵtotal = negl′(λ, κ),

where negl′(λ, κ) is negligible function produced as a linear combination of
negl(λ) and negl(κ) ⊓⊔
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8 Evaluation

In this section, we evaluate the performance of the core algorithms of our proto-
col. Our primary testbed for these experiments was an Intel Core i7 laptop with
16GB RAM running an Ubuntu 20.04 operating system. For these experiments,
we utilized the SEAL cryptographic library [41] for basic HE operations, PASTA
library [23] to implement the secure symmetric cipher, and OpenSSL2. PASTA
was chosen over more established Symmetric ciphers such as AES due to its
low multiplicative index. All HE operations in this section were based on the
BFV [14] scheme, with a polynomial modulus degree of 16384. We note that the
choice of polynomial modulus degree impacted the efficiency of the implemented
scheme and increased the size of the ciphertexts, however, this was necessary due
to the complex operations involved. Finally, to provide a comprehensive overview
of each algorithm’s performance, each experiment was conducted 50 times with
the average taken.

8.1 Performance of Core Protocols

In this phase of our evaluations, we focused on the performance of the SD.Setup,
SD.Add, and SD.Query protocols.

SD.Setup : When evaluating the SD.Setup protocol, we first measured the

time taken to generate an RSA public and private key pair (2048 bit long),
which we used for both Signing/Verification and Encryption/Decryption, and
the time taken to generate the HE keys for the Analyst (i.e., Public, Secret
and Evaluation keys). On an average, it took 34.6 milliseconds to generate
the RSA public and private keypair, and 88.4 milliseconds to generate the
HE keys. Finally, we measured the time taken by a user to construct m1 =
⟨t1,Enc(pkCSP, evk), σA(H(t1∥evk)))⟩, and the time taken by the CSP to verify
m1 and decrypt Enc(pkCSP, evk). Constructing m1 took 1.478 milliseconds, while
verifying and decrypting m1 took 1.174 milliseconds (Table 2).

SD.Add : For the SD.Add protocol, we evaluated the cost of homomorphically
encrypting the symmetric key (HE.Encpk), cost of symmetrically encrypting the
user’s data (SKE.Enc), and cost of transforming the symmetric ciphertext to
a homomorphic ciphertext (HHE.Decomp). Additionally, we measured the time
taken for a user to construct m2 = ⟨t2, c = (ci, . . . , cn), cKiσui(H(t2∥c∥cKi))⟩,
and time taken for the CSP to verify m2. Each experiment was run with a
varying number of user data from 1 to 200. It is worth re-iterating that one of
the primary advantages of SD is that irrespective of the amount of data being
outsourced, HE.Encpk is executed once. The cost of executing HE.Encpk once
was 18 milliseconds. When outsourcing one data value, it took 7 milliseconds
to execute the SKE.Enc algorithm and 17.7 seconds to run the HHE.Decomp

2 https://github.com/openssl/openssl
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algorithm on average. On the other hand, when outsourcing 200 data values,
the SKE.Enc algorithm took 1.22 seconds to execute, while the HHE.Decomp
algorithm took 3824 seconds to execute (Table 1). Constructing m2 took 1.057
milliseconds, while verifying m2 took 0.101 milliseconds (Table 2).

SD.Query : Meanwhile for the SD.Query protocol, we focused on the cost of

executing the HHE.Eval and HHE.Dec algorithms. Once again, each experiment
was run with a varying number of user data from 1 to 200. Additionally, for the
HHE.Eval algorithm, we evaluated a simple squaring function. For a single data
value, it took 91 milliseconds to execute the HHE.Eval algorithm, and 5 millisec-
onds to execute the HHE.Dec algorithm. While for 200 data values, the HHE.Eval
algorithm took on average 16.9 seconds to execute, with the HHE.Dec algorithm
taking 1.07 seconds to execute (Table 1). Furthermore, the analyst takes 1.098
milliseconds to construct m3 = ⟨t3,Enc(pkCSP, f), σA(H(t3∥f)⟩), while the CSP
takes 1.56 milliseconds to verify m3 and decrypt Enc(pkCSP, f). Finally, the CSP
took 1.118 milliseconds to construct m4 = ⟨t4, cres, σCSP (H(t4∥cres))⟩ (Table 2).

From our evaluations, it is quite obvious that the HHE.Decomp algorithm is
the most computationally expensive function, which explains why it is executed
by the CSP. We provide a complete overview of SD protocol measurements when
outsourcing 200 data values in Table 2.

Data Values SKE.Enc HHE.Decomp HHE.Eval HHE.Dec

1 7 ms 17765 ms 91 ms 5 ms

50 0.31 s 990.2 s 4.916 s 0.275 s

100 0.61 s 1920.8 s 8.418 s 0.54 s

150 0.93 s 2832.1 s 12.592 s 0.81 s

200 1.22 s 3823.8 s 16.902 s 1.07 s
Table 1: Algorithm Execution

8.2 Comparison with plain BFV

To provide concrete evidence of the efficiency of SD, we compare the operations
at its user side with that of a plain BFV scheme. To be more precise, we measured
the performance of a plain BFV scheme where a user continuously encrypts each
data value homomorphically before the data is outsourced to the CSP. We used
the same encryption parameters as with SD. For these experiments, we compared
the total cost of executing the HE.Encpk and SKE.Enc algorithms of the SD.Add
protocol, and the cost of continuously using HE encryption in the plain BFV.

As with the previous experiments, we vary the amount of data from 1 to 200.
For a single data value, SD.Add takes 25 milliseconds to execute, while the plain



SD 15

Sub-Protocol Messages Analyst Functions User Functions CSP Functions Time (s)

SD.Setup m1

PKE Keygen
HHE.KeyGen

m1 construction
PKE Keygen

PKE Keygen
m1 verification

0.19

SD.Add m2 -
HHE.Enc
SKE.Enc

m2 construction

m2 verification
HHE.Decomp

3825

SD.Query m3,m4 m3 construction -
m3 verification

HHE.Eval
m4 construction

16.91

Table 2: Protocol Measurements in the case of 200 data values

BFV scheme takes 21 milliseconds to perform one HE encryption. It is worth
mentioning that for a single data value, the plain BFV scheme is marginally
faster than SD at the user side. However, this is easily attributed to the fact
that SD requires two operations (a symmetric encryption operation plus an HE
encryption operation) at the user side, while the plain BFV scheme involves just
the one HE encryption operation. When the number of data values is increased
to 200, the SD.Add algorithm executes in 1.22 seconds, while the plain BFV
scheme executes in 3.1 seconds. Figure 3 provides an overview of all the results
obtained from this phase of our experiments. From these results, it is evident
that SD considerably reduces the computational costs of the user and transfers
majority of the computational costs to the CSP.
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Fig. 3: Computation Time on the user’s side
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Science & Reproducible Research: To support open science and repro-
ducible research, and provide other researchers with the opportunity to use,
test, and hopefully extend our scheme, the source code used for the evaluations
is publicly available online3.

9 Conclusion

In this paper we presented SD; a secure cryptographic protocol based on Hybrid
Homomorphic Encryption. The security and applicability of our construction
have been demonstrated through a detailed security analysis and an extensive
experimental evaluation. It is our firm belief that in the years to come, cloud
storage services will rely less on traditional cryptographic primitives and more
on modern cryptographic techniques allowing flexible computations over the
encrypted data – such as HE. To this end, we believe it is vital to start designing
realistic architectures based on HE in an attempt to demonstrate the feasibility
and applicability of modern cryptography. We hope that our work will incentivize
other researchers to look into the same direction. Most importantly, though, we
hope it will help companies to create modern privacy-respecting cloud services.
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