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Abstract

We present BalanceProofs, the first vector commitment scheme that is maintainable (i.e.,
supporting sublinear updates) while also supporting fast proof aggregation and verification.
The basic version of BalanceProofs has O(

√
n logn) update time and O(

√
n) query time

and its constant-size aggregated proofs can be produced and verified in milliseconds. In
particular, BalanceProofs improves the aggregation time and aggregation verification time
of the only known maintainable and aggregatable vector commitment scheme, HyperProofs
(USENIX SECURITY 2022), by up to 1000×. Fast verification of aggregated proofs is
particularly useful for applications such as stateless cryptocurrencies (and was a major bot-
tleneck for Hyperproofs), where an aggregated proof of balances is produced once but must
be verified multiple times and by a large number of nodes. As a limitation, BalanceProofs’ up-
date time compared to Hyperproofs roughly doubles, but always stays in the range from 2 to
3 seconds. BalanceProofs can be viewed as a compiler that transforms any non-maintainable
vector commitment with fast aggregation to a maintainable one with the aforementioned
complexities. We finally study useful tradeoffs in BalanceProofs between (aggregate) proof
size, update time and (aggregate) proof computation and verification, by introducing a buck-
eting technique, and present an extensive evaluation, including a comparison to Hyperproofs
as well as applications of BalanceProofs to Verkle trees.

1 Introduction

Vector commitments (VC) is a cryptographic primitive recently proposed as a powerful alter-
native to traditional Merkle trees [29], due to their additional attractive properties, such as
compact, even constant-size proofs, efficient and homomorphic updates as well as the ability
to aggregate proofs into a single object. Catalano and Fiore [12] were the first to formalize
the notion of VCs. In a VC scheme, a prover computes a succinct commitment C of a vector
m = [m0, . . . ,mn−1] and proofs π0, . . . , πn−1 for each position. A verifier who has the commit-
ment C can later verify a proof πi attesting that mi is the correct value at position i. As with
other commitment schemes, VCs maintain the binding property that ensures that an adversary
cannot forge a commitment or proof that might convince the verifier of false information (e.g.,
that the value of index i is m′

i, instead of mi). Inspired by applications of VCs, such as stateless
cryptocurrencies and proof-of-space protocols (e.g., [38, 42, 2, 15, 36, 48, 40, 6, 26, 11, 30, 1, 25]),
in this paper we are interested in two features of VCs, maintainability and aggregatability, which
were recently explored by Srinivasan et al. in their Hyperproofs work [38].
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Scheme |πi| |πI | Aggregate UpdateAllProofs Query πi Verify πi Verify πI Gen |pp|

Hyperproofs[38] logn log(k logn) k logn logn logn logn k logn n n

BalanceProofs 1 1 k log2 k
√
n logn

√
n 1 k log2 k n logn n

aSVC-bucketing 1 min{k, n1/3} k log2 k n1/3 logn n1/3 1 k log2 k n4/3 logn n4/3

AMT-bucketing logn min{k logn, n1/3} k log2 k n1/3 logn n1/3 logn k log2 k n log2 n n logn

Table 1: Asymptotic comparisons with Hyperproofs. Proof sizes are in terms of group elements.
Variable n denotes the vector size, πi represents the individual proof for position i, πI represents
the aggregated proof for an index set I, pp represents public parameters and k = |I|.

A VC scheme is maintainable, if the commitment C and all proofs can be updated efficiently
(in sublinear time) after receiving an update to one position of the original vector (Typically the
sublinear time is achieved by maintaining a data structure that efficiently stores overlapping parts
of the proofs, e.g., [38].) A VC scheme is aggregatable, if, given an index set I, the prover can take
several individual proofs πi for i ∈ I and aggregate them into a single, succinct proof πI efficiently.
There are several VC schemes that are maintainable but not aggregatable [29, 43, 32, 35, 41]. For
example, Merkle trees [29] or the vector commitment by Tomescu [41] (referred to as AMT for the
rest of the paper) are such schemes: While one can update proofs in O(log n) time, no algorithms
are known for proof aggregation. Similarly, there are VC schemes that are aggregatable but not
maintainable. For example, the vector commitment scheme by Tomescu et al. [42] (referred to
as aSVC for the rest of the paper), based on the KZG polynomial commitment [22] as well as
the recently proposed Pointproofs [18] support proof aggregation but their updates take linear
time.

Naturally, there is a fundamental question as to whether we can build a vector commitment
that is both maintainable and aggregatable. To the best of our knowledge, Hyperproofs [38] is
the only work to satisfy both properties. In Hyperproofs, aggregation and verification times
both take sublinear time. However, the practical aggregation and verification costs of Hyper-
proofs are very large (e.g., about 100× to 1000× larger than aggregation using other VCs such
as aSVC [42]). This could limit the applicability of Hyperproofs in cryptocurrencies where the
aggregated proof computed by the miner that finds the next block must be verified by all the
nodes in the distributed blockchain. The main reason for the increased aggregation and verifi-
cation cost is the almost black-box use of an inner-product argument [8] used to produce the
aggregate proof. In this paper we are therefore interested in the following question:

Can we build a vector commitment scheme that is both maintainable and naturally aggregatable?

(Here, by “natural aggregation” we refer to the goal of avoiding the use of any black-box argu-
ments in implementing the aggregation—this can lead to significant practical improvements in
the aggregation and verification time.) Our work answers the above question in the affirmative.
Our detailed contributions are as follows.

First contribution: Our BalanceProofs compiler. Our first contribution is BalanceProofs, a
compiler that takes as input any naturally aggregatable vector commitment that is not maintain-
able, such as aSVC [42] and Pointproofs [18], and produces another naturally-aggregatable and
maintainable vector commitment—in particular one with O(

√
n log n) update-all time (In our

evalution, we instantiate BalanceProofs with the aSVC vector commitment.) For the compilation
to work, the input vector commitment must support opening all proofs in O(n log n) time (as

2



is the case with aSVC [42] and Pointproofs [18]). Of course, this transformation introduces a
tradeoff: The query time for a single proof of the output vector commitment increases to O(

√
n)

(which is O(1) in both aSVC and Pointproofs)—however this is still sublinear, and as we will
see, a cost worth paying to support much faster aggregation.

The main idea of our compiler is simple: Suppose we have a non-maintainable vector commit-
ment for a vector m = [m0, . . . ,mn−1] and suppose we have computed initial proofs π0, . . . , πn−1

for every position of the vector. Whenever there is an update (i, δ) (change mi to mi + δ) to the
vector, a non-maintainable vector commitment would typically apply update (i, δ) to all proofs
π0, . . . , πn−1, leading to Ω(n) time. Instead of doing this expensive operation, we just store
the update (i, δ) in a log—this is our data structure to maintain all proofs! Of course this is
problematic. Whenever we want to query a proof πj for an index j in the future, we need to
first apply all updates in the log on the proof πj . However, given that updating a single proof πj

is cheap (in particular for aSVC and Pointproofs it is O(1)), we can fetch the updated proof πj

after t updates in time O(t) by applying all t updates one-by-one on πj . We make sure that t is
kept below

√
n, by recomputing all proofs from scratch after

√
n updates. Clearly, since recom-

puting all proofs from scratch takes time O(n log n) (which is a requirement for our compiler),
the amortized time for our update algorithm is O(

√
n log n). We finally show how to deamortize

this algorithm in practice, leading to O(
√
n log n) worst-case update time.

Second contribution: Bucketing BalanceProofs. Unfortunately, the O(
√
n log n) update

operation of the above basic version of BalanceProofs is quite slow in practice. For example, we
found it takes around 130 seconds to perform a single update for a vector of 230 positions—this
is approximately 1000× slower than Hyperproofs, the only maintainable and aggregatable vector
commitment and hence our baseline for comparison. To address this problem, we propose a
bucketing technique, which is a hybrid that uses another “base” vector commitment (e.g., aSVC
and AMT) along with BalanceProofs.

The main idea is to spit the vector in p buckets P0, . . . , Pp−1 of n/p indices each (Note that
for efficiency reasons, we have to carefully pick the split of indices into the buckets—we analyze
this in the main body of the paper.) Then we apply the base vector commitment (such as aSVC)
over the buckets P0, . . . , Pp−1 (namely over sets of indices instead of single indices) and our
BalanceProofs compiler within each bucket Pi. Our data structure now maintains the following
components.

1. Proofs Πi, with respect to the commitment C of the whole vector, are maintained for the
commitment Ci of each bucket Pi (i = 0, . . . , p − 1). Note that each proof Πi is really
an aggregate proof because each Pi contains n/p indices. Proofs Πi are always updated
immediately when there is an update, leading to O(u(p)) update time, where u(p) is the
update time of the base vector commitment.

2. Individual proofs πi,j , with respect to the vector commitment Ci that corresponds to
bucket Pi, for every index j ∈ Pi are also maintained. Since we are using the BalanceProofs
technique within each bucket, updating those proofs take O(

√
n/p log(n/p)) time.

It is easy to see that for p = n1/3, our update time becomes

u(n1/3) + n1/3 log n .

In our experiments, we instantiate the bucketing approach using two base commitments, aSVC
and AMT, leading to different tradeoffs (For AMT u(n) = log n while for aSVC u(n) = n and
therefore, while asymptotically the same, bucketing with AMT has slightly better update time.)
Interestingly enough, the bucketing technique increases the size of individual proofs by just a
single group element (e.g., when using aSVC). This is because, for proving a single vector index
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i, one needs to prove the correctness of i within Pj as well as the correctness of Pj within the
original vector. However, the size of the aggregate proof is not constant anymore: This is because
to support aggregation of an arbitrary set of indices I, one might need to touch more than one
buckets, and in particular, up to p = n1/3 buckets. Therefore the aggregated proof size becomes
n1/3. However, as we will see in the experimental section, this compares very favorably in practice
to Hyperproofs (Recall Hyperproofs is using a black-box argument system [8] to aggregate proofs
and this leads to increased aggregate proof size.)

Evaluation. We perform an extensive evaluation of BalanceProofs. Our evaluation has three
main components.

Benchmarking BalanceProofs (with bucketing). We observe that the basic BalanceProofs version
(without bucketing and with aSVC as input to the compiler) has aggregation and aggregate
verification that is in the order of milliseconds (for aggregating 1024 individual proofs), but
has costly updates (more that 100 seconds for performing a single update on a vector of 230

entries). We show that our bucketing approach can improve the update time to approximately
2.5 seconds, by increasing the aggregate proof size to 96KB. We believe this manifests that value
of our bucketing approach—96KB is a reasonable proof size that is worth having to enjoy much
smaller update time.

Comparison with Hyperproofs. BalanceProofs’ main competitor is Hyperproofs [38], the only vec-
tor commitment that is both maintainable and aggregatable. Our main findings from comparing
with Hyperproofs are as follows.

1. Both verification of aggregate proofs and aggregation of individual proofs using our buck-
eting technique outperform Hyperproofs by around 1000×. Again, this is because Balance-
Proofs is naturally aggregatable, as opposed to Hyperproofs that uses an argument system
like IPA [8] as a black box. We consider this to be our central contribution.

2. In terms of proof size, Hyperproofs and BalanceProofs with bucketing have approximately
the same performance (i.e., within a factor of 2 from each other for aggregating k = 1024
individual proofs). However, we expect that Hyperproofs aggregate proof size will be larger
as k grows since it depends on k, as opposed to BalanceProofs’ proof size that does not.

3. Hyperproofs outperforms BalanceProofs in update time. Still BalanceProofs’ update time
is practical: When AMT bucketing is used, update time is at most 2 seconds—and could
be improved with a multi-threaded implementation.

Applications to Verkle trees. We finally explore using our aSVC-bucketing technique in Verkle
trees [24] for producing maintainable vector commitments with small proof sizes. Verkle trees is
a bandwidth-efficient alternative to Merkle trees [29]. A Verkle tree uses the same hierarchical
technique as Merkle trees, with the difference that a parent node is the vector commitment of
its children. A Verkle tree with branching factor b has O(logb n) proof size. However updating a
Verkle tree requires O(u(b) · logb n) time, where u(b) is the update time of the underlying vector
commitment, which is O(b1/3 · logb n) when our bucketing technique is used. Additionally, with
the help of Verkle trees, we can achieve small size public parameters. We provide a comparison
of Verkle trees using BalanceProofs with bucketing with Hyperproofs, showing a decrease in proof
size at the expense of a slighly worse update time. Finally, we note here that supporting efficient
aggregation in Verkle trees is challenging—we leave this as an open problem.

Limitations. There are two main limitations in BalanceProofs. First, note that when we are
using the bucketing technique, the aggregate proof size increases to n1/3. As we saw this is
not an issue in practice, but it is an open problem to construct a maintainable and naturally-
aggregatable vector commitment that has constant-size aggregate proof, yet with n1/3 update
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time. The second limitation is the fact the the bucketing technique requires quasilinear-size
public parameters. See Table 1 for an asympotic comparison with Hyperproofs.

1.1 Paper outline

The paper outline is as follows. In Section 2 we give preliminary definition and notations. In
Section 3 we present our basic BalanceProofs compiler. In Section 4 we introduce the bucketing
technique used with BalanceProofs, including aSVC-bucketing and AMT-bucketing. In Section 5
we present our evalution.

2 Preliminaries

We use λ to denote the security parameter and negl(·) to denote any negligible function. We
also use multiplicative notation for all groups. With ω we denote a primitive n-th root of unity
in Zp [44]. Also, let [i, j) = {i, i+ 1, . . . , j − 2, j − 1} and [i, j] = {i, i+ 1, . . . , j − 1, j}. Vectors
are in bold, lower-case symbols, for example m = [m0, . . . ,mn−1].

Lagrange polynomials [10, 3]. For i = 0, . . . , n− 1, we denote the i-th Lagrange polynomial,
with roots of unity as an index, as

Li(x) =
∏

j∈[0,n),j ̸=i

x− ωj

ωi − ωj
.

The Lagrange interpolation of one vector m = [m0, . . . ,mn−1] should be

ϕ(x) =
∑

i∈[0,n)

Li(x) ·mi .

It is easy to see that for any i ∈ [0, n), ϕ(ωi) = mi.

Bilinear pairings [28, 21]. We use (p,G1,G2,GT , e, g1, g2) to denote the parameters associated
with pairings. In particular G1,G2 and GT are groups of prime order p, gi is a generator of
Gi and pairing function e : G1 × G2 → GT is such that ∀u ∈ G1, w ∈ G2 and a, b ∈ Zp, it is
e(ua, wb) = e(u,w)ab. In this paper, we use symmetric pairings notation where G1 = G2 = G
for simplicity.

2.1 Vector commitments (VCs)

We formalize vector commitments below, similar to Hyperproofs [38]. We provide a generalized
version that uses some auxiliary information aux to represent the underlying data structure used
to maintain the proofs.

Definition 2.1 (Vector Commitment). A vector commitment (VC) scheme is a set of the fol-
lowing nine PPT algorithms.

(1) VC.Gen(1λ, n)→ pp: Given security parameter λ and vector size n, it outputs public param-
eters pp.

(2) VC.Commitpp(m) → (C, aux): It outputs commitment C of vector m along with auxiliary
information aux.

(3) VC.Openpp(i,m, aux)→ πi: It outputs a proof πi for position i in m, based on the auxiliary
information aux.
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(4) VC.OpenAllpp(m)→ (π0, π1, . . . , πn−1): It outputs all single proofs for m.

(5) VC.Aggpp(I, (mi, πi)i∈I)→ πI : It combines individual proofs πi for values mi into an aggre-
gate proof πI .

(6) VC.Verifypp(C, I, (mi)i∈I , πI)→ {0, 1}: It verifies proof πI that each position i ∈ I has value
mi against commitment C.

(7) VC.UpdateCompp(i, δ,C)→ C′: It updates commitment C to C′ to reflect position i changing
by δ ∈ Zp.

(8) VC.UpdateAllProofspp(i, δ, π0, . . . , πn−1, aux)→ (π′
0, π

′
1, . . . , π

′
n−1, aux

′): It updates all proofs
πi to π′

i to reflect position i changing by δ ∈ Zp. It also updates the auxiliary information.

(9) VC.UpdateProofpp(i, δ, j, πj)→ π′
j : It updates proof πj to π′

j to reflect position i changing by
δ ∈ Zp.

Definition 2.2 (VC Correctness). A VC scheme is correct if for all λ ∈ N and n = poly(λ), for all
pp← VC.Gen(1λ, n), for all vectorsm, if (C, aux) = VC.Commitpp(m) and πi = VC.Openpp(i,m, aux),
∀i ∈ [0, n) (or πi from VC.OpenAllpp), then, for any polynomial number of updates (i, δ) resulting
in a new vector m′, if C′ and π′

i are obtained via calls to VC.UpdateCompp and VC.UpdateProofpp
(or VC.UpdateAllProofspp with aux replaced by aux′ ) respectively, then

(1) Pr[1← VC.Verifypp(C
′, {i}, (m′

i), π
′
i)] = 1 for all i;

(2) ∀I ⊆ [n],

Pr[1← VC.Verifypp(C
′, I, (m′

i)i∈I ,VC.Aggpp(I, (m
′
i, π

′
i)i∈I))] = 1.

Definition 2.3 (VC Soundness). For all PPT adversaries A,

Pr



pp← VC.Gen(1λ, n),

(C, I, J, (mi)i∈I , (m
′
j)j∈J , πI , πJ)← A(1λ, pp) :

1← VC.Verifypp(C, I, (mi)i∈I , πI) ∧
1← VC.Verifypp(C, J, (m

′
j)j∈J , π

′
J) ∧

∃k ∈ I ∩ J s.t. mk ̸= m′
k

 ≤ negl(λ) .

2.2 aSVC

Our construction (compiler) will be using the aSVC [42] vector commitment (Although other
commitments can be used as input to our compiler, we have chosen aSVC due to its simplicity
and efficiency.) aSVC is based on KZG polynomial commitments [22]. With linear-sized public
parameters, it can compute all constant-sized individual proofs in quasilinear time and update
proofs in constant time. Furthermore, it is aggregatable since one can aggregate b proofs for
individual positions into a single constant-sized batch proof for those positions. Given SDH
public parameters [4]

(g, gτ , . . . , gτ
n−1

) ,

for a vectorm = [m0, . . . ,mn−1], aSVC representsm as the polynomial ϕ(x) =
∑

i∈[0,n) Li(x)·mi

such that ϕ(ωi) = mi, where ωi is the i-th n-th root of unity. Similar to [9], the proving keys
include commitments to all Lagrange polynomials gLi(τ).

Aggregating KZG proofs. aSVC [42] shows how to aggregate a set of proofs (πi)i∈I for
elements mi of m into a constant-sized batch proof πI for an index set I based on partial fraction
decomposition [47] and Drake and Buterin’s observation [7]. More specifically, in KZG proofs,

πi is actually a commitment to qi(x) =
ϕ(x)−mi

x−ωi and πI is a commitment to q(x) = ϕ(x)−R(x)
AI(x)

,
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where AI(x) =
∏

i∈I(x−ωi) and R(x) is such that R(ωi) = mi, ∀i ∈ I. Let A′
I(x) =

∑
j∈I

AI(x)
x−ωj

be the derivative of AI(x) [45]. They observe that

q(x) =
∑
i∈I

1

A′
I(ω

i)
· qi(x) ,

thus we can compute ci = 1/A′
I(ω

i) with O(|I| log2 |I|) field operations [45] and aggregate πI =∏
i∈I π

ci
i with an O(|I|)-sized multi-exponentiation. We now describe the aSVC algorithms in

detail (Note that in the following algorithms aux is always empty, so we do not include it for
convenience.)

(1) VC.Gen(1λ, n) → pp: It generates SDH public parameters (gτ
i

)i∈[0,n) . It then computes

a = gA(τ) where A(x) = xn − 1, ai = gA(τ)/(x−ωi) and li = gLi(τ), for all i ∈ [0, n). Then it also

computes KZG proofs ui = g
Li(τ)−1

x−ωi for the evaluation Li(ω
i) = 1. Finally it sets

pp =
(
(gτ

i

)i∈[0,n), (li)i∈[0,n), (ai, ui)i∈[0,n), a
)
.

(2) VC.Commitpp(m)→ C: Outputs C =
∏

i∈[0,n)(li)
mi .

(3) VC.Openpp(i,m)→ πi: Divides ϕ(x) =
∑

i∈[0,n) miLi(x) by x−ωi, obtaining a quotient q(x)

and a remainder r(x). Output a proof πi = gq(τ).

(4) VC.OpenAllpp(m) → (π0, π1, . . . , πn−1): Outputs all proofs for m. This can be done in
O(n log n) time.

(5) VC.Aggpp(I, (mi, πi)i∈I)→ πI : Computes AI(x) =
∏

i∈I(x−ωi), its derivative A′
i(x) and all

ci = (A′
I(ω

i))−1 in O(|I| log2 |I|) time. Outputs πI =
∏

i∈I π
ci
i .

(6) VC.Verifypp(C, I, (mi)i∈I , πI)→ {0, 1}: Computes AI(x) =
∏

i∈I(x−ωi) in O(|I| log2 |I|) time

and commits to it as gAI(τ) in O(|I|) time. Interpolates RI(x) such that RI(ω
i) = mi, ∀i ∈ I in

O(|I| log2 |I|) time and commits to it as gRI(τ) in O(|I|) time. Outputs 1 iff

e(c/gRI(τ), g) = e(πI , g
AI(τ)).

(7) VC.UpdateCompp(i, δ,C)→ C′: Outputs C′ = C · (li)δ.
(8) VC.UpdateAllProofspp(i, δ, π0, . . . , πn−1)→ (π′

0, π
′
1, . . . , π

′
n−1): Not available. Call VC.UpdateProofpp

multiple times instead.

(9) VC.UpdateProofpp(i, δ, j, πj) → π′
j : If i = j, outputs π′

i = πi · (ui)
δ. If i ̸= j, computes

wi,j = a
1/(ωi−ωj)
i · a1/(ω

j−ωi)
j and ui,j = w

1/A′(ωi)
i,j , and returns π′

j = πj · (ui,j)
δ.

2.3 AMT proofs

For our bucketing technique, we will also be using AMT proofs by Tomescu [41]. AMT proofs ex-
tend KZG proofs [22] to proofs that have logarithmic size while at the same time being efficiently
updatable (i.e., in logarithmic time). The technique used in AMT is similar to [13, 12]. Here we

directly present AMT proofs formally. Given (n − 1)-SBDH public parameters [19] (gτ
i

)i∈[0,n),
consider a vector m = [m0, . . . ,mn−1] where n = 2L. The commitment for m is the same as in
aSVC, C = gϕ(τ), where ϕ(x) =

∑
i∈[0,n) mi · Li(x) is the Lagrange interpolation.

In order to simplify notation we define the following index sets. Set Pi,j contains all the
indices of one subtree in level i (root is in level 0). See Figure 1 for an example of n = 8. We
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P0,0

P1,0 P1,1

P2,0 P2,2 P2,1 P2,3

P3,0 P3,4 P3,2 P3,6 P3,1 P3,5 P3,3 P3,7

0 4 2 6 1 5 3 7

Figure 1: Pi,j example when n = 8.

define
P0,0 = [0, n) . . .

Pi,j =
{
j + k · 2i : k ∈

[
0,

n

2i

)}
,∀j ∈ [0, 2i)

PL,j = {j},∀j ∈ [0, n)

From observation, we have Pi,j = Pi+1,j ∪ Pi+1,j+2i , ∀j ∈ [0, 2i). The intuition we define Pi,j in
this way is like FFT[14]. In fact, all PL,js in the leaf level are organized in the reversed bit order
(see Figure 1). More importantly, if ω is an n-th root of unity, we have the following:∏

k∈Pi,j

(x− ωk) = xu − (ωj)u, u =
n

2i+1
. (1)

xu − (ωj)u is very helpful to make polynomial multiplication and division easier in AMT.
Similarly, we define ϕi,j(x) as Lagrange interpolation over points in Pi,j and thus we have

ϕi,j(x) = ϕi+1,j(x) + qi,j(x)
(
xu − (ωj)u

)
= ϕi+1,j+2i(x) + qi,j(x)

(
xu − (ωj+2i)u

)
, u =

n

2i+1

(2)

for some polynomial qi,j(x). In this way, we can rewrite ϕ(x) in the following way for any
ϕL,j(x) = mj , j ∈ [0, n):

ϕ(x) = ϕ0,0(x) = ϕ1,j1(x) + q0,0(x)(x
u0 − (ωj1)u0)

= ϕ2,j2(x) + q1,j1(x)(x
u1 − (ωj2)u1)

+ q0,0(x)(x
u0 − (ωj1)u0)

= . . .

= ϕL,j(x) +
∑

k∈[0,L)

qk,jk(x)(x
uk − (ωjk+1)uk)

= mj +
∑

k∈[0,L)

qk,jk(x)(x
uk − (ωjk+1)uk)

(3)

where uk = n
2k+1 , jk = jk−1 or jk = jk−1 + 2k−1. In fact,

jk = j mod 2k, ∀k ∈ [0, L].
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𝑚[0: 2] 𝑚[6: 8] 𝑚[9: 11] 𝑚[12: 14] 𝑚[15: 17]

𝐶0

𝐶1, 𝜋1 𝐶3, 𝜋3

𝐶4, 𝜋4 𝐶6, 𝜋6 𝐶10, 𝜋10 𝐶12, 𝜋12

𝑚[3: 5] 𝑚[18: 20] 𝑚[24: 26]𝑚[21: 23]

𝐶2, 𝜋2

𝐶7, 𝜋7 𝐶9, 𝜋9𝐶5, 𝜋5 𝐶11, 𝜋11𝐶8, 𝜋8

Figure 2: Verkle tree example. C4, . . . , C12 are vector commitments for subvectors of size 3; C1

is a vector commitment for (C4, C5, C6); C2 is a vector commitment for (C7, C8, C9); C3 is a
commitment for (C10, C11, C12); C0 is the root commitment for (C1, C2, C3).

Thus, the log-size AMT proof for position j is(
gqk,jk

(τ)
)
k∈[0,L)

.

A verifier who has the commitment C, the claimed evaluation (i, ϕ(ωi) = z) and log-size

verification key
(
sk = gτ

2k
)
k∈[0,L)

can verify the proof (wk)k∈[0,L) by checking if the following

holds:
e(C/gz, g) =

∏
k∈[0,L)

e
(
wk, sL−1−k/g

ωjk+1·uk
)

(4)

Updating AMT proofs [41]. After receiving an update request for the vector, we can update
all AMT proofs in O(log n) = O(L) time. For all i ∈ [0, n), consider a new vector m′ where only
mi = 1 and in all other positions mj = 0. In this case we have ϕ(x) = Li(x) and we can pre-
compute in O(n log2 n) time all the group elements (upkTreei,j,k = gqj,k(τ))i∈[0,n),j∈[0,L),k∈[0,2j)

in the tree (In fact, only those elements in the path from the root to the leaf of position i are
non-trivial, i.e., qj,k(x) ̸= 0 if and only if i ∈ Pj,k.) After receiving an update request (i, δ), it is
ϕ′(x) = ϕ(x) + δLi(x), and therefore we can update the proofs by setting

gq
′
j,k(τ) = gqj,k(τ) · (upkTreei,j,k)δ. (5)

2.4 Verkle trees

Verkle trees [24, 27] are similar to Merkle trees [29] except for that fact that hash functions
are replaced with vector commitments. In order to compute a Verkle Tree over messages m =
(m0, . . . ,mn−1), we choose b as the branching factor of the tree. Then we group messages into
subsets of b messages and compute vector commitments and corresponding proofs over each of
those subsets. See Figure 2 for an simple example of Verkle Tree with n = 27 and b = 3.

One of the main advantages of Verkle trees comparing to Merkle trees is that they can reduce
the proof size. For example, for n = 2L messages, a Merkle tree with branching factor 2 has
proof size O(L) while a Verkle tree with branching factor b has proof size O(logb n) =

1
log bO(L)

if the Verkle tree uses a vector commitment with constant-sized proofs.
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3 Our BalanceProofs Compiler

In this section, we introduce BalanceProofs, which can be viewed as a compiler that takes as
input a vector commitment VC that is not maintainable and outputs a maintainable vector
commitment VC′. The input vector commitment VC must satisfy certain requirements for our
compilation to work and produce an improved vector commitment VC′. We list them here.

• VC.OpenAllpp(m) should run in O(n log n) time.

• VC.UpdateCompp(i, δ,C) should run in O(1) time.

• VC.UpdateProofpp(i, δ, j, πj) should run in O(1) time.

• VC should have an aggregation algorithm VC.Aggpp(I, (mi, πi)i∈I).

Remarks on asymptotics. We note here that the first three requirements can be relaxed to
some extent. For example, in the first requirement, the time complexity of VC.OpenAllpp(m) can
be relaxed to any O(n ·poly log(n)) time, resulting in a slight change of the final time complexity
analysis. However, we cannot relax the time complexity of VC.OpenAllpp(m) to O(n2) (See details
in later analysis.)

3.1 Compiler details

The main idea of our compiler is the following. First, the expression of the commitment of
the output vector commitment VC′ is exactly the same as the commitment of the input vector
commitment VC. For example, in the case of aSVC being used as input, the commitment of
the output vector commitment will be gϕ(τ), where ϕ(x) =

∑
i∈[0,n) Li(x) · mi. Similarly the

individual proofs and aggregate proofs are exactly the same as the ones defined for the input
vector commitment.

Whenever an update (i, δ) appears, we do not use the VC.UpdateProofspp(i, δ) algorithm
since this would incur linear cost. What we do is append the update in a list L, which takes just
constant time. The list L serves as the auxiliary information aux. When the size of L reaches

√
n,

our compiler calls VC.OpenAllpp to compute fresh proofs (π0, . . . , πn−1) for all positions. After
that, our compiler empties the list L. If a query for an individual proof comes before computing
the fresh proofs (i.e., before the list reaches

√
n elements), then all the updates are applied to

the proof that is requested and an updated fresh individual proof is returned.
Since VC.OpenAllpp runs O(n log n) time to update all proofs, our compiler needs amortized

O

(
n log n√

n

)
= O(

√
n log n)

time to update the proofs. Therefore VC′.UpdateAllProofspp runs in O(
√
n log n) amortized time.

Also note that since the maximum size of the list L is
√
n and algorithm VC.UpdateProofpp to

update an individual proof runs in constant time, returning a fresh individual proof takes at
most O(

√
n) time.

3.1.1 Algorithms for VC′

We now provide the detailed algorithms for VC′:

(1) VC′.Gen(1λ, n)→ pp: Returns VC.Gen(1λ, n).
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(2) VC′.Commitpp(m)→ (C, aux): Calls VC.Commitpp(m)→ (C, aux0). For simplicity, we ignore
aux0 later in this section. Calls VC.OpenAllpp(m) and returns π0, . . . , πn−1. Initializes an empty
list L. Returns (C, [L;π0, . . . , πn−1]).

(3) VC′.Openpp(i,m, aux)→ πi: Parses aux = [L;π0, . . . , πn−1]. If L = Ø, outputs πi. Otherwise
calls

VC.UpdateProofpp(j, δj , i, πi)

for each update request (j, δj) in L and finally returns the correct latest proof π′
i.

(4) VC′.OpenAllpp(m)→ (π0, π1, . . . , πn−1): Returns VC.OpenAllpp(m)→ (π0, π1, . . . , πn−1).

(5) VC′.Aggpp(I, (mi, πi)i∈I)→ πI : Calls VC.Aggpp(I, (mi, πi)i∈I) → πI and returns πI .

(6) VC′.Verifypp(C, I, (mi)i∈I , πI) → {0, 1}: Calls VC.Verifypp(C, I, (mi)i∈I , πI) → b and returns
b.

(7) VC′.UpdateCompp(i, δ,C)→ C′: Calls VC.UpdateCompp(i, δ,C) → C′ and returns C′.

(8) VC′.UpdateAllProofspp(i, δ, aux)→ aux′: Parses aux = [L;π0, . . . , πn−1]. If |L| <
√
n, appends

(i, δ) to L and return [L ∪ (i, δ);π0, . . . , πn−1]; Otherwise calls

VC.OpenAllpp(m)

to compute new proofs π′
0, . . . , π

′
n−1 and returns [Ø;π′

0, . . . , π
′
n−1].

(9) VC′.UpdateProofpp(i, δ, j, πj)→ π′
j : Calls VC.UpdateProofpp(i, δ, j, πj)→ π′

j and returns π′
j .

3.2 De-amortization for UpdateAllProofs

The main problem of the compiler is that, since the algorithm VC.OpenAllpp is very time-
consuming, the time complexity of VC′.UpdateAllProofs will be extremely large every other

√
n

updates. It is not realistic in practice to implement our compiler in this naive way due to the
instability of the time cost. In this subsection, we will show how to de-amortize the computation
to make VC′.UpdateAllProofs need time O(

√
n log n) in the worst case.

3.2.1 Separation of VC.OpenAll

Our plan is to try to separate the computation in the O(n log n)-time algorithm VC.OpenAll as
long as it can be separated into

√
n O(

√
n log n)-time sub-steps. In fact, we examined some

recent VC schemes that can serve as input to our compiler, such as [42, 18], and found that their
VC.OpenAll algorithm can indeed be separated. We formalize this as follows.

Definition 3.1 (Separation of VC.OpenAll). We say a set of algorithms

{VC.OpenAllStepi : 0 ≤ i <
√
n}

is a valid separation of VC.OpenAllpp(m)→ (π0, π1, . . . , πn−1) if the following conditions hold:
(1) VC.OpenAllStep0(pp,m)→ out0 runs in O(

√
n log n) time.

(2) Every VC.OpenAllStepi(outi−1)→ outi for 1 ≤ i <
√
n− 1 runs in O(

√
n log n) time.

(3) VC.OpenAllStep√n−1(out
√
n−2) → (π0, . . . , πn−1) runs in O(

√
n log n) time and outputs

the same proofs as VC.OpenAll.

Implementing separation in practice. Intuitively, there are two methods to implement this
kind of separation in practice. The first is to rewrite the original algorithm in a separated way.
Take aSVC[42] as an example. The VC.OpenAll algorithm of aSVC in O(n log n) time is basically
the technique from FK20[16], which contains several single loops including FFT[14] (say there
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are k = O(1) single loops). Each single loop has loop size at most n and needs at most O(n log n)
operations. We can then separate each single loop into

√
n small loops, where each small loop

requires O(
√
n log n) operations. Finally, we have k

√
n small loops and each of them can be

configured into one step VC.OpenAllStepi.
While the first method is efficient and reasonable, there might be some situations where it is

not convenient or even feasible to separate the single loops easily. The second method is more
generalized. It simply focuses on the operations with the highest cost in the algorithm. This type
of operation could be, for instance, group operations on elliptic curves. Since there are at most
O(n log n) operations with the highest cost, we can use a counter to count how many operations
we have done so far. As soon as the counter reaches O(

√
n log n) we should log everything, save

the current configuration locally, and exit the algorithm temporarily. In next round, we can
start a new counter and do those things again. In this way, we can finish the whole algorithm in
exactly

√
n rounds where each round requires almost equal time to complete.

3.2.2 Updating all proofs with de-amortization

Assume now we have a valid separation {VC.OpenAllStepi : 0 ≤ i <
√
n} for VC.OpenAll. We

show how to make some slight changes to our compiler to de-amortize UpdateAllProofs. In the
beginning, the compiler has an empty record list and L = Ø. When receiving an update request
(i, δ), the compiler updates the commitment C as before if needed and appends (i, δ) to the end
of record list L.

1. If |L| =
√
n, the compiler calls

VC.OpenAllStep0(pp,m
′)

and saves out0. Note that m′ here should be the original vector applied by
√
n update

request in L;

2. If |L| =
√
n+ i, 1 ≤ i <

√
n− 1, the compiler calls VC.OpenAllStepi(outi−1) and saves outi.

3. If |L| = 2
√
n− 1, the compiler calls VC.OpenAllStep√n−1(out

√
n−2) and receives proofs for

all positions. Then it replaces the old proofs it stored with the newly received ones (this is
actually the behavior of “reading n old proofs and outputting n new proofs”), and removes
the first

√
n update requests in the record list. Now |L| =

√
n− 1.

Therefore, |L| will never reach 2
√
n. Actually, in each round VC′.UpdateProofspp(i, δ) runs in

at most O(
√
n log n) time according to the previous definition of valid separation.

4 Bucketing BalanceProofs

In addition to the balance of the time complexity between updating all proofs and querying
single proofs, we can also balance between the time complexity and proof size. The intuitive
idea is bucketing, i.e., to separate the original vector into p parts. Then we can perform updates
and aggregation inside each part. The resulting batch proof size is O(p). In practice we can
choose the bucketing size p = n1/3 or p = n1/4 to get best performance. It is not useful to
choose too small p like p = log n since that would be make no change on updating and querying
asymptotically, or too large p like p = n

logn since the resulting batch proof size will be too large.
We must modify how the proofs look for each bucket to make this tradeoff. In this section,

we will first present the definition of the new proofs when using the bucketing method. Next, we
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Proof for index set {0, 1, 2𝑛/𝑝, 𝑛 − 1}:  Π0, 𝜋0 , Π2, 𝜋2 , Π𝑝−1, 𝜋𝑝−1

𝜋2

Figure 3: Aggregating example for aSVC-bucketing.

will show how this tradeoff works taking aSVC [42] as an example of the input VC scheme (see
Section 2.2 for the details of aSVC algorithms).

In aSVC, proofs are just KZG proofs [22] (one group element for both individual proofs and
batch proofs). Now, we still consider a vector m = [m0, . . . ,mn−1] and its Lagrange interpolation
ϕ(x) =

∑
i∈[0,n) miLi(x). Say n = 2L and we are given (n − 1)-SBDH public parameters [19]

(gτ
i

)i∈[0,n). The commitment for the whole vector is still KZG commitment: C = gϕ(τ).

4.1 First method: aSVC-bucketing

In this subsection, we introduce aSVC-bucketing, which uses aSVC technique to deal with
batch proofs for each bucket. We will give the fully-detailed scheme of aSVC-bucketing Bal-
anceProofs taking aSVC as an input VC scheme in Appendix A.

We choose some L′ ∈ [1, L) and set the bucketing size p = 2L
′
, e.g. choose L′ = L/3 to set

p = n1/3. Note that n
p = 2L−L′

. We partition the index set [0, n) into p parts:

Pi =

[
i · n

p
, (i+ 1) · n

p

)
, ∀i ∈ [0, p).

Then, based on this partition of indices, we can cut m into p subvectors v0,v1, . . . ,vp−1 and for
each vi we have |vi| = n

p . Specifically,

vi =
[
mi·np ,mi·np +1, . . . ,m(i+1)·np −1

]
, i ∈ [0, p).

Similarly, we can write Lagrange interpolations ϕi(x) for each vi:

ϕi(x) =
∑
j∈Pi

Li,j(x) ·mj , where Li,j(x) =
∏

k∈Pi,k ̸=j

x− ωk

ωj − ωk
(6)

and derive from division that

ϕ(x) = ϕi(x) + qi(x)
∏
j∈Pi

(x− ωj) (7)
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for some polynomial qi(x). Thus Πi := gqi(τ) is in fact a KZG batch proof for the index set Pi

of vector m.
We can still provide individual proofs inside any subvector vi based on the equation:

ϕi(x) = qi,j(x)(x− ωj) + ϕi(ω
j)

= qi,j(x)(x− ωj) + ϕ(ωj), j ∈ Pi.
(8)

Namely πi,j := gqi,j(τ) is in fact an individual KZG proof for position j of subvector vi.

Individual bucketing proofs. When we need to compute one individual bucketing proof for
one position i, we should first find j such that i ∈ Pj , then we provide both the batch proof
Πj for index set Pj inside vector m and the individual proof πj,i for position i inside vector vj .
Therefore, the resulting individual bucketing proof for position i is (Πj , πj,i).

A verifier who has the commitment C, the claimed evaluation (i, ϕ(ωi) = z) and verification
key (gτ , (gak(τ))k∈[0,p)), where ak(x) =

∏
j∈Pk

(x−ωj), can verify one individual bucketing proof
(w0, w1) by checking the following equation (say i ∈ Pi0):

e(C/gz, g) = e
(
w0, g

ai0 (τ)
)
· e

(
w1, g

τ/gω
i
)

(9)

Although the verifier needs O(p) size verification key, we can reduce it to constant size if we
use the partitions (Pi)i∈[0,p) in Section 4.2. More specifically, with the new partitions, ak(x) =∏

j∈Pk
(x− ωj) = xn/p − (ωk)n/p, thus we only need gτ

n/p

and g as verification keys to compute

gak(τ).

Batch bucketing proofs. When we need to compute one batch bucketing proof for an index
set I, we first partition I using (Pi)i∈[0,p), i.e., find j0, . . . , jk−1 and I0, . . . , Ik−1 such that ju ̸= jv
if u ̸= v, I =

⋃
t∈[0,k) It and It ⊆ Pjt , ∀t ∈ [0, k). Note that here 1 ≤ k ≤ p. Then we provide k

batch proofs Πjt for each Pjt , t ∈ [0, k), and k other batch proofs πjt for each It inside vector
vjt , t ∈ [0, k). Our final batch bucketing proof for index set I is (Πjt , πjt)t∈[0,k), which contains
O(k) group elements, and is of size O(min{|I|, p}).

To verify the batch bucketing proofs, the verifier just needs to verify each pair (Πjt , πjt) is a
correct batch proof for positions in It. The verifier checks if the following holds when given one
claimed proof (w0, w1) for jt, t ∈ [0, k):

e(C/gcjt (τ), g) = e
(
w0, g

ajt (τ)
)
· e

(
w1, g

bjt (τ)
)

(10)

where bjt(x) =
∏

h∈It
(x − ωh) and cjt(τ) is the Lagrange interpolation over It and claimed

evaluations.

Aggregating individual bucketing proofs. Given the definitions above, we can aggregate
multiple individual bucketing proofs to one batch bucketing proof naturally. See the example
in Figure 3: The index set is I = {0, 1, 2n/p, n − 1} and we are given four individual bucketing
proofs (Π0, π0,0), (Π0, π0,1), (Π2, π2,2n/p), (Πp−1, πp−1,n−1). In this case we can determine k = 3,
I0 = {0, 1} ⊆ P0, I1 = {2n/p} ⊆ P2, and I2 = {n− 1} ⊆ Pp−1. We only need to aggregate π0,0

and π0,1 to one small batch proof π0 inside v0 and the aggregation result is one batch bucketing
proof
((Π0, π0), (Π2, π2) , (Πp−1, πp−1)) where π2 = π2,2n/p and πp−1 = πp−1,n−1.

Applying our compiler in subvectors. Based on the bucketing technique, we can now apply
our compiler inside those subvectors. More specifically, in order to update all the individual
bucketing proofs, we maintain p update record lists (Li)i∈[0,p) for each subvector. When receiving
an update request (i, δ), we first determine which subvector position i belongs to, assuming it
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is vj . Next, we require O(p) time to update all the batch proofs (Πi)i∈[0,p). Then we append

(i, δ) to the end of the list Lj . If now the size of Lj reaches
√

n
p , we call VC.OpenAllpp(vj , aux)

(de-amortized or not) to get and replace all individual proofs for vj , and then empty Lj . The
behavior to query any latest proof at any time is similar for each subvector with the help of
record lists (Li)i∈[0,p).

4.1.1 Updating all batch proofs (Πi)i∈[0,p)

We mentioned that we can update all p batch proofs in O(p) time after receiving an update
request (i, δ). Here we show how we can update each batch proof Πj in constant time for any
j ∈ [0, p). Recall that after this update, the polynomial ϕ(x) is updated to ϕ′(x) = ϕ(x)+δ·Li(x).
Say that i ∈ Pi0 , then we also have ϕ′

i0
(x) = ϕi0(x) + δ · Li0,i(x).

The i ∈ Pj (i0 = j) Case. The polynomial ϕj(x) is also updated in the way that ϕ′
j(x) =

ϕj(x) + δ · Lj,i(x). Consider the quotient polynomial qj(x) from definition:

q′j(x) =
ϕ′(x)− ϕ′

j(x)∏
k∈Pj

(x− ωk)
= qj(x) +

δ · (Li(x)− Lj,i(x))∏
j∈Pi

(x− ωj)
. (11)

Thus we can pre-compute ri(x) =
Li(x)−Lj,i(x)∏

k∈Pj
(x−ωk)

and save update parameters (gri(τ))i∈[0,n) in the

generation algorithm. The proof Πj can be updated to Π′
j = Πj · (gri(τ))δ.

The i /∈ Pj (i0 ̸= j) Case. Since i /∈ Pj , there is no change of the polynomial ϕj(x). Consider
the quotient polynomial qj(x) again:

q′j(x) =
ϕ′(x)− ϕj(x)∏
k∈Pj

(x− ωk)
=

(ϕ(x)− ϕj(x)) + δ · Li(x)∏
k∈Pj

(x− ωk)

= qj(x) +
δ · Li(x)∏

k∈Pj
(x− ωk)

.

(12)

Thus we can just pre-compute ri,j(x) =
Li(x)∏

k∈Pj
(x−ωk)

and save update parameters (gri,j(τ))i∈[0,n),j∈[0,p)

in the generation algorithm. The proof Πj can be updated to Π′
j = Πj · (gri,j(τ))δ.

4.1.2 Updating individual proofs inside subvectors

After receiving an update (i, δ), assuming i ∈ Pj , we only need to update individual proofs inside
vj since for any k ̸= j, ϕk(x) does not change at all. In order to update individual proofs inside
vj , recall that there is an update record list Lj for vj . We append (i, δ) to the end of Lj and

check if |Lj | ≥
√

n
p . If so, we re-open all the individual proofs for vj and empty Lj .

4.2 Second method: AMT-bucketing

While the first method is very direct and simple, it requires O(np) size public update keys,
which could be O(n4/3) if we set p = n1/3. This extra cost of public parameters seems to be
inherent when we are only using aSVC for bucketing. In this subsection, we will propose AMT-
like [41] batch proofs for bucketing together with same subproofs inside subvectors as before.
This method requires O(n log n)-size public update keys and it has better performance (O(log n)
time) to update all batch proofs at the same time.
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The key point here is to use polynomial multipoint evaluation techniques [45] and make our
index set (Pi)i∈[0,p) consistent with the index sets of AMT proofs defined in Section 2.3. Thus
we need a new partition of [0, n) here:

Pi =

{
kp+ i : k ∈

[
0,

n

p

)}
, ∀i ∈ [0, p).

Based on this partition of indices, we can also rearrange m into p subvectors v0,v1, . . . ,vp−1:

vi = [mi,mi+p, . . . ,mi+n−p], i ∈ [0, p).

Again we write Lagrange interpolations ϕi(x) for each new vi and derive that

ϕ(x) = ϕi(x) + qi(x)
∏
j∈Pi

(x− ωj)

= ϕi(x) + qi(x)
∏

k∈[0,np )

(x− ωkp+i)

= ϕi(x) + qi(x)
(
x

n
p − (ωi)

n
p

)
.

(13)

Note that here the polynomial x
n
p − (ωi)

n
p can be perfectly factorized, which leads us to the

following AMT-like batch proofs.

AMT-like batch proofs Πj. We re-define the same index sets as Section 2.3:

P0,0 = [0, n) . . .

Pi,j =
{
j + k · 2i : k ∈

[
0,

n

2i

)}
,∀i ∈ [0, L′], j ∈ [0, 2i).

Recall that p = 2L
′
and Pj in previous sections is actually PL′,j . Similarly, we define ϕi,j(x) as

the Lagrange interpolation[10, 3] over points in Pi,j , and also ϕL′,j(x) = ϕj(x). Then we can
rewrite ϕ(x) in the following way for any ϕL′,j(x), j ∈ [0, p):

ϕ(x) = ϕL′,j(x) +
∑

k∈[0,L′)

qk,jk(x)(x
uk − (ωjk+1)uk) (14)

where uk = n
2k+1 and jk = j mod 2k, k ∈ [0, L′]. Therefore, naturally we define the AMT-like

batch proof for Pj = PL′,j to be Πj = (gqk,jk
(τ))k∈[0,L′), and one individual AMT-bucketing

proof for position i is (Πj , πj,i) where i ∈ Pj . The verification of individual AMT-bucketing
proofs is the combination of verifying AMT proofs and verifying individual aSVC-bucketing
proofs: The verifier checks if the following holds when given one claimed proof ((w0,k)k∈[0,L′), w1)
with claimed evaluation (i, ϕ(ωi) = z) and i ∈ Pj :

e(C/gz, g) = e
(
w1, g

τ/gω
i
)
·

∏
k∈[0,L′)

e
(
w0,k, g

τuk
/gω

jk+1uk
)

(15)

Aggregating individual AMT-bucketing proofs. Given the definitions above, we can ag-
gregate individual AMT-like bucketing proofs for an index set I using the same way as in Section
4.1. The only difference is that the same item in Πj1 ,Πj2 , j1 ̸= j2 can be provided just once, so
that the size of the final batch proof will be O(min{|I| ·L′, p}). See Figure 4 for a brief example.
In this case, L′ = 2, p = 4, The batch proof for P4 is Π4 = (gq0,0(τ), gq1,0(τ), gq2,0(τ)) and the
batch proof for P2 or P6 is Π2 = Π6 = (gq0,0(τ), gq1,0(τ), gq2,2(τ)). Then the aggregated result of
Π2,Π4 and Π6 would be (gq0,0(τ), gq1,0(τ), gq2,0(τ), gq2,2(τ)). The verification of batch AMT-like
bucketing proofs is just a combination of Eq 10 and Eq 15.
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… … … … … … …

Figure 4: Batch proof example for AMT-bucketing

4.2.1 Updating all batch proofs (Πi)i∈[0,p)

With the help of tree-structure batch proofs, we can update all batch proofs in O(log p) = O(L′)
time using the same technique in AMT [41]. Recall the same notations in Section 2.3. After
receiving an update request (i, δ), ϕ′(x) = ϕ(x) + δLi(x), we can update those proofs using

gq
′
j,k(τ) = gqj,k(τ) · (upkTreei,j,k)δ (16)

4.3 Analysis

Correctness and security. Correctness follows directly by inspection. We prove that our
bucketing technique can generate sound VC schemes in Appendix C.

5 Evaluation

In this section, we measure the performance of BalanceProofs. We analyze the time and space
complexity asymptotically first. For the experiments, we fully implemented three versions of
our compiler taking aSVC as input VC scheme: basic BalanceProofs (no-bucketing), aSVC-
bucketing BalanceProofs and AMT-bucketing BalanceProofs. We take go-kzg [34] as a reference
to implement KZG proofs. We also implemented the de-amortization version for UpdateAllProofs.

5.1 Asymptotics

Recall that the vector size is n = 2L. The bucketing size is p = 2L
′
and each subvector has size

n
p = 2L−L′

. I is the index set to be aggregated.

Public parameters. For BalanceProofs, the public parameters are the same as aSVC, which
is O(n) size and needs O(n log n) time to generate. For aSVC-bucketing, we need O(np) size
public parameters and the main extra cost comes from the keys to update all the batch proofs:
(gri,j(τ))i∈[0,n),j∈[0,p), which requires O(n4/3 log n) time to generate. For AMT-bucketing, we
need O(n log n) size extra public parameters to update the AMT-like batch proofs, which requires
O(n log2 n) time to generate [41].

Committing. For all of our schemes, the commitment is a KZG commitment. Given commit-
ments to Lagrange polynomials as O(n)-size public parameters we can compute the commitment
in O(n) time without DFT and interpolation [9, 42, 14].
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Opening and updating all proofs. For all of our schemes, it takes O(n log n) time to open
all proofs using FK20[16] technique. According to the analysis in previous sections, UpdateAll-
Proofs() takesO(

√
n log n) time for BalanceProofs, O(p+

√
n/p log(n/p)) time for aSVC-bucketing

and O(log n+
√
n/p log(n/p)) time for AMT-bucketing. Therefore, if the bucketing size p is large,

it is better to use AMT-bucketing in practice to get smaller time of updating all the proofs.

Querying the latest individual proofs. This algorithm depends on the size of the auxiliary
information. In the worst case, it takes O(

√
n) time for BalanceProofs, and O(

√
n/p) time for

bucketing versions.

Aggregation. For BalanceProofs, Aggregate() takes O(|I| log2 |I|) time (same as aSVC) [42,
44, 46, 45]. For the bucketing versions, we just grab those batch proofs together and aggregate
inside each subvectors, which also results in O(|I| log2 |I|) time (considering the worst case when
I ⊆ Pj for some j).

Proof size. For BalanceProofs, both individual proofs and batch proofs have size O(1) (same as
aSVC). For aSVC-bucketing, the individual proofs contain 2 group elements, which is also O(1)
size, while the batch proof size relies on the relation between I and (Pi)i∈[0,p), which in worst
case is O(min{k, p}). Similarly, for AMT-bucketing, the individual proof size is O(log n) and
batch proof size is O(min{k log n, p}).
Verification. For BalanceProofs, Verify() takes O(1) time for individual proofs and O(|I| log2 |I|)
time for batch proofs (same as aSVC) [42, 45]. For aSVC-bucketing, Verify() takes O(1) time
for individual proofs and O(|I| log2 |I|) time for batch proofs (also considering the worst case
directly). Similarly, for AMT-bucketing, Verify() takes O(log n) time for individual proofs and
O(|I| log2 |I|) time for batch proofs. The verification key is O(|I|) size.

5.2 Experimental settings

Our implementation is in Golang. We choose BLS12-381 [23], a pairing friendly elliptic curve to
implement pairings, which is also the elliptic curve used in Hyperproofs and offers 128 bits of
security. We run each experiment 8 times and report the average.

Hardware. We ran all the experiments on an AWS EC2 m5d.4xlarge instance with Intel(R)
Xeon(R) Platinum 8259CL CPU with 2.50GHz, 8 cores and 64GB of RAM. Although our current
implementation is not parallelized and we only utilize a single CPU core in our experiments, all
of our algorithms are parallelizable.

5.3 Benchmarks

We benchmark the performance of BalanceProofs of all three versions in Table 2 (without
bucketing) and Table 3 (with bucketing). For the two bucketing versions, aSVC-bucketing and
AMT-bucketing, their experimental results are almost equal except for UpdateAllProofs() and
aggregated proof sizes, so we combine their results in Table 3 where each row without “AMT-
like” tag is for aSVC-bucketing by default.

Committing. We commit to vectors of size n = 2L where L ranges from 20 to 30. There is no
difference between the three versions of BalanceProofs. For L = 28 it takes roughly 144 minutes
to compute the commitment.

Opening all the proofs. It takes hour-level time to open all the proofs so that we can only
run experiments when L < 24. For bucketing versions, we first compute n1/3 batch proofs and
then compute n1/3 ·n2/3 subproofs inside n1/3 subvectors in O(n1/3 ·n2/3 log(n2/3)) = O(n log n)
time with smaller constants than no-bucketing version.
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L = log2 n 20 22 24 26 28 30

Commit (min) 0.57 2.12 8.74 35.62 143.58 *

OpenAll (hrs) 0.87 4.27 * * * *

UpdAllProofs (s) 3.03 6.63 14.35 30.55 64.49 135.69

Query Indiv. (s) 0.09 0.17 0.39 0.81 1.53 3.09

Indiv. Verify (ms) 1.47 1.50 1.51 1.49 1.51 1.51

Aggregate (s) 1.58 1.57 1.58 1.57 1.58 1.59

Agg. Verify (ms) 120.5 122.7 120.3 123.7 122.6 120.9

Indiv. proof size 48 bytes

Agg. proof size 48 bytes

Table 2: Single-thread benchmarks for basic BalanceProofs taking aSVC as input. Running
times with an asterisk(*) are too long to test (more than 5 hours).

L = log2 n 20 22 24 26 28 30

Commit (min) 0.57 2.12 8.74 35.62 143.58 *

OpenAll (hrs) 0.59 2.51 * * * *

UpdAllProofs (s) 0.39 0.57 0.82 1.19 1.70 2.52

–AMT-bucketing 0.26 0.39 0.58 0.84 1.21 1.77

Query Indiv. (s) 0.012 0.017 0.025 0.051 0.069 0.098

Indiv. Verify (ms) 1.96 1.96 1.99 1.95 1.97 1.99

Aggregate (s) 0.12 0.12 0.10 0.11 0.11 0.10

Agg. Verify (ms) 5.15 4.12 4.75 5.16 4.51 4.93

Indiv. proof size 96 bytes

Agg. proof size 6KB 12KB 24KB 24KB 48KB 96KB

–AMT-bucketing 12KB 24KB 48KB 48KB 96KB 192KB

Table 3: Single-thread benchmarks for BalanceProofs (aSVC-bucketing and AMT-bucketing).
Numbers are for aSVC-bucketing by default. Running times with an asterisk(*) are too long to
test (more than 5 hours).
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Updating all the proofs. Since we have implemented the de-amortization version for Up-
dateAllProofs, we do not need to run at least O(

√
n) updates to measure the real update time

correctly. We choose a batch of 1024 random updates and measure their running time on average.
Although for no-bucketing version we need about 135 seconds to update all proofs when L = 30,
we can reduce the time to second-level (1 ∼ 2 s) with the help of bucketing, which is acceptable
and realistic in practice.

Also, AMT-bucketing reduces 20% ∼ 30% of the time to update all the proofs comparing to
aSVC-bucketing. Based on previous analysis, we believe that if we set the bucketing size p much
larger the improvement of AMT-bucketing will be more significant comparing to aSVC-bucketing.

Querying individual proofs. It requires about 3s to query one proof on average for L = 30 in
no-bucketing version, and 0.1s to query one proof on average for L = 30 in bucketing versions.
Note that when L = 30, update record list size is at most n1/2 ≈ 215 ≈ 30 · 210 in no-bucketing
version and at most n1/3 ≈ 210 in bucketing versions.

Proof size and verification time. The individual proof size is 1 G1 element for no-bucketing,
2 G1 elements for aSVC-bucketing and 1

3L+1 G1 elements for AMT-bucketing. The verification
of one individual proof needs 2 pairings without bucketing, 3 pairings for aSVC-bucketing and
1
3L+ 2 pairings for AMT-bucketing. We optimize those pairings to computation of Miller loops
and final exponentiations.

Aggregation. We aggregate 1024 individual proofs in our experiments, since 1024 is a common
average number of transactions in one block of cryptocurrencies [31, 20]. Therefore, the time of
Aggregate in Table 2 and Table 3 remains almost unchanged when l ranges from 20 to 30 because
the time complexity of Aggregate is O(|I| log2 |I|). In the next subsection, we will show that our
aggregation can be 1000× faster than Hyperproofs.

Size and verification time of aggregated proofs. The aggregated proof size is 1 G1 element
without bucketing, 21+L/3 G1 elements for aSVC-bucketing and 22+L/3 G1 elements for AMT-
bucketing. The verification of one aggregated proof needs 2 pairings without bucketing, 3 pairings
for aSVC-bucketing and 1

3L + 2 pairings for AMT-bucketing, together with O(|I| log2 |I|) time
to do polynomial calculations.

5.4 Comparison with Hyperproofs

In this subsection, we compare BalanceProofs with other VC schemes. We do not compare with
VC schemes that are not aggregatable, such as Lattice-based VC[32, 35, 33] and AMT[41]. We
also do not compare with VC schemes that use at least linear time to update all proofs, since it is
not meaningful to update all the proofs in Ω(n) time where n > 220. Thus we choose Hyperproofs
and do all the experiments on the same machine. Both implementations are in Golang and use
BLS12-381[23] as elliptic curves. The code of Hyperproofs we used is cloned from Github[37].
We show some of comparison results in Figure 5.

Opening proofs. Hyperproofs involve computing a multilinear tree (MLT) to open all proofs,
which needs O(n log n) time asymptotically and about 2.5 hours in experiments when L = 24.
While our schemes may require 10+ hours to open all proofs when L = 24, in practice we rarely
run the whole OpenAll algorithm frequently.

Updating all proofs. We choose a batch of 1024 random updates and evaluate their average
time. The time required by Hyperproofs to update all proofs is relatively small since their
proofs are in tree-structure and they just need O(L) = O(log n) group operations to update all
proofs. Although our UpdateAllProofs() runs in slower time, the numbers are all reasonable in
practice (up to 3s for L = 30) if using the bucketing technique. Hyperproofs can query one latest
individual proof by grabbing proofs from the proof tree without any group or field operations,
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Figure 5: Comparison between BalanceProofs and Hyperproofs. Including time to update all
proofs (average time of 1024 updates), aggregated proof size (aggregating 1024 individual proofs),
time to aggregate 1024 proofs and time to verify aggregated proofs.

while our schemes needs to go through the auxiliary information (up to 0.12s for L = 30 in
bucketing versions).

Aggregation. The size of individual proofs to be aggregated is 1024. Due to the black-box use
of IPA argument [8], Hyperproofs needs about 90 ∼ 110s to aggregate 1024 proofs and about
10 ∼ 15s to verify the aggregated proofs, with L ranging from 20 to 30. This large cost limits
the applicability of Hyperproofs in cryptocurrencies where the proof must be computed once and
the verification has to be performed by multiple parties. As a comparison, in all of our schemes
the aggregation time is at most 1.58s and the verification is even millisecond-level, which is very
efficient for practical use.

For aggregated proof size, basic BalanceProofs has 1000× smaller aggregated proof size,
while bucketing versions has almost same-level aggregated proof size comparing to Hyperproofs.
However, the size of aggregated proofs in Hyperproofs depends on the smallest power of two
≥ log(|I| log n) = log |I| + log log n, which is 16 if |I| = 1024 and L ranges from 20 to 30. If
|I| ≥ 4096 = 212 and L still ranges from 20 to 30, this power of two will be 32 and the aggregated
proof size will be doubled, i.e., 103KB, while our bucketing versions will remain no change in
O(2L/3) = O(n1/3) size.

Parameterization. Furthermore, we want to stress that with different versions BalanceProofs are
more flexible comparing to Hyperproofs. In practice, if you want an application involving many
aggregating operations and aggregated proof size matters a lot, you can choose the scheme with-
out bucketing to achieve constant-size aggregated proof. If you want an application involving
many update requests and aggregation is a useful but not commonly used operation, you can
choose the scheme in the bucketing versions and determine the bucketing size p on your choice.
However, Hyperproofs provide just one option where you can update all proofs quickly but
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L = 20 Our scheme Hyperproofs Merkle trees

UpdAllProofs 2.51 ms 1.59 ms ∼ 14 µs

Indiv. proof size 0.18 KB 0.96 KB 0.63 KB

L = 30 Our scheme Hyperproofs Merkle trees

UpdAllProofs 3.75 ms 2.68 ms ∼ 21 µs

Indiv. proof size 0.28 KB 1.44 KB 0.94 KB

Table 4: Comparison between our schemes with Verkle trees, Hyperproofs and Merkle trees

aggregate proofs inefficiently in practice.

5.5 Applying our compiler to Verkle trees

As we mentioned in the last subsection, although the running time of UpdateAllProof() in our
schemes is realistic and applicable in practice, it is still about 1000× of time of UpdateAllProof() in
Hyperproofs when L = 30. In this subsection, we can try to improve the time of UpdateAllProof()
in our schemes even further with the help of Verkle trees[24] if we do not need to do aggregation
among individual proofs. Additionally, Verkle trees also have a great feature that it can reduce
the proof size from log2 n to logb n with branching factor b, comparing to other tree-structure
proofs like Merkle trees[29]. If we apply aSVC-bucketing BalanceProofs (with constant individual
proof size) to Verkle trees, we can not only improve the performance of UpdateAllProof() but
reduce the individual proof size to O(logb n) as well.

Since one of our main goals is to reduce the individual proof size as much as possible (from
O(log2 n) to O(logb n)), we do not apply any VC scheme with log-size individual proof (including
AMT-bucketing BalanceProofs) to Verkle trees (otherwise there will be no change of the individual
proof size: O(logb n) ·O(log2 b) = O(log2 n)).

Experimental settings. We apply aSVC-bucketing BalanceProofs to Verkle trees, and compare
its performance with Hyperproofs and Merkle trees. We take go-verkle [17] as a reference to
implement Verkle trees. We evaluate everything on L = 20, 30, i.e., we are computing and
updating proofs for a vector of size n = 220 and n = 230. For our scheme, we choose b = 210.
Thus the height of the Verkle Tree is logb n = 2 or 3, so there are only 2 or 3 vector commitments
from the root to any leaf. We use SHA256 as the hash function to hash each commitment in the
internal node to bytes. Those hashed bytes will be converted into one field element and involve
vector commitment computation in their parent nodes. For the bucketing size of our scheme, we
choose p =

√
b = 25.

For Merkle trees, we also choose SHA256 as the hash function to conduct fair comparisons.

Discussion. The experiment results are shown in Table 4. We are only interested in the time
of UpdAllProofs and individual proof size. For the time of UpdAllProofs, our scheme has very
close performance to Hyperproofs (less than twice as theirs). More importantly, the time of
UpdAllProofs in our scheme will increase logarithmically when n = 2L increases, since the size
of the vector commitment in the Verkle Tree b does not change at all. This can make our
scheme much more useful if we may deal with datasets of size 260 or even larger in the future.
Furthermore, both the public parameter size (including update keys) and the generation time
for our scheme is relatively small, comparing to Hyperproofs (b4/3 = 10000 ≪ n = 230). For
the individual proof size, our scheme is about 0.2× as Hyperproofs and 0.3× as Merkle trees.
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We can also cut the individual proof size in half if we choose basic BalanceProofs as the vector
commitment in the Verkle trees with reasonable increases in the update time.

6 Conclusion

We presented BalanceProofs, a new compiler that produces efficiently maintainable and aggre-
gatable VC schemes. We also presented two bucketing variants of BalanceProofs which support
making the tradeoff between time complexity and proof size. We showed that aSVC-bucketing
BalanceProofs has practical UpdateAllProofs() time and 10× to 100× better performance than
Hyperproofs. Also, with the help of Verkle trees and ignoring aggregation, our scheme has close
performance and much smaller public parameter size and proof size than Hyperproofs.

Future work. We picked aSVC [42] as the input VC to our compiler. It would be very
interesting to input some other VC schemes, such as Pointproofs[18], BBF[5], etc, to achieve
possible improvements in public parameters, update time and proof sizes. Also, we can try using
multilinear trees and PST commitments [39, 50, 49] instead of AMTs[41] and KZG proofs[22] in
the bucketing technique to see if there is any other improvement. Lastly, the idea of bookkeeping
to balance the time of updating and querying may be applicable in some other cryptographic
building blocks.
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A Detailed description of aSVC-bucketing BalanceProofs

We present the whole aSVC-bucketing BalanceProofs by taking aSVC[42] as the input VC scheme.
Note that since original aSVC does not use any auxiliary information, we just remove it in their
interface to simplify notations.

(1) VC′.Gen(1λ, n, p)→ pp′: Calls VC.Gen(1λ, n)→ pp where

pp =
(
(gτ

i

)i∈[0,n), (li)i∈[0,n), (ai, ui)i∈[0,n), a
)
.

Returns pp′ = (pp, (gri(τ))i∈[0,n), (g
ri,j(τ))i∈[0,n),j∈[0,p)).

(2) VC′.Commitpp′(m) → (C, aux): Calls VC.Commitpp(m) → C. Calls VC′.OpenAllpp(m) and
returns (Πj , (πj,k)k∈Pj

)j∈[0,p). Initializes empty lists (Lj)j∈[0,p). Returns

(C, [(Lj)j∈[0,p); (Πj , (πj,k)k∈Pj )j∈[0,p)])

.

(3) VC′.Openpp′(i,m, aux)→ (Πj0 , πj0,i): Parses aux = [(Lj)j∈[0,p); (Πj , (πj,k)k∈Pj
)j∈[0,p)]. Finds

j0 such that i ∈ Pj0 . If Lj0 = Ø, outputs (Πj0 , πj0,i). Otherwise for each update request (j, δj)
in Lj0 calls VC′.UpdateProofpp(j, δj , i, (Πj0 , πj0,i)) in turn and finally returns the correct latest
proof (Πj0 , πj0,i).

(4) VC′.OpenAllpp′(m) → (Πj , (πj,k)k∈Pj )j∈[0,p): Computes batch proofs (Πj)j∈[0,p) from m.
Parses m = (v0, . . . ,vp−1). Calls VC.OpenAllpp(vj) → (πj,k)k∈Pj

for all j ∈ [0, p) and returns
(Πj , (πj,k)k∈Pj

)j∈[0,p).

(5) VC′.Aggpp′(I, (mi, (Πji , πji,i))i∈I)→ πI : First, partitions I as I0,. . .,Ik−1 and finds j0, . . . , jk−1

such that It ⊆ Pjt , ∀t ∈ [0, k). For all t ∈ [0, k), calls VC.Aggpp(It, (mc, πjt,c)c∈It) → πIt and
returns (Πjt , πIt)t∈[0,k).

(6) VC′.Verifypp′(C, I, (mi)i∈I , πI) → {0, 1}: If |I| = 1, then parses πI as (Πj , πj,i) and then
checks if Equation 9 holds; If |I| > 1, then parses πI as pairs of form (Πjt , πjt) and then checks
if Equation 10 holds.

(7) VC′.UpdateCompp′(i, δ,C)→ C′: Calls VC.UpdateCompp(i, δ,C)→ C′ and returns C′.

(8) VC′.UpdateAllProofspp′(i, δ, (Πj , (πj,k)k∈Pj
)j∈[0,p), aux)→ ((Π′

j , (π
′
j,k)k∈Pj

)j∈[0,p), aux
′): Parses

aux = [(Lj)j∈[0,p); . . .]. Uses (gri,j(τ))i∈[0,n),j∈[0,p) to update all batch proofs to (Π′
j)j∈[0,p). Parses

m′ = (v0, . . . ,vp−1). Finds j0 such that i ∈ Pj0 . Set (π′
k,l)k ̸=j0 = (πk,l)k ̸=j0 . Appends (i, δ)

to Lj0 . If |Lj0 | ≥
√

n
p , then calls VC.OpenAllpp(vj0) to get all new single proofs inside vj0 :

(π′
j0,l

)l∈Pj0
and empties Lj0 ; otherwise set (π

′
j0,l

)l∈Pj0
= (πj0,l)l∈Pj0

. Lets aux′ collect all the new
lists and proofs. Returns ((Π′

j , (π
′
j,k)k∈Pj )j∈[0,p), aux

′).

(9) VC′.UpdateProofpp′(i, δ, j, (Πj0 , πj0,j)) → (Π′
j0
, π′

j0,j
):If i ∈ Pj0 , then calls VC.UpdateProofpp

(i, δ, j, πj0,j)→ π′
j0,j

and returns (Πj0 , π
′
j0,j

)); otherwise, returns (Π′
j0

= Πj0 · (gri,j0 (τ))δ, πj0,j)).

B Assumptions

We first present q-SDH assumption [4].

Assumption B.1 (q-Strong Diffie-Hellman (q-SDH)). Let τ ∈R Z∗
P . Given as input a (q + 1)-

tuple (g, gτ , . . . , gτ
q

) ∈ Gq+1, for any adversary Aq-SDH, we have the following for any a ∈ Zp/
{−τ}:

Pr[Aq-SDH(g, g
τ , . . . , gτ

q

) = (a, g
1

τ+a )] ≤ negl(λ)
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Next, we show the q-SBDH assumption [19] which will be used to give soundness proofs for our
VC schemes. q-SBDH assumption is a variant of q-SDH (q-Strong Diffie-Hellman) assumption.

Assumption B.2 (q-Strong Bilinear Diffie-Hellman (q-SBDH)). Let τ ∈R Z∗
P . Given as input

a (q+1)-tuple (g, gτ , . . . , gτ
q

) ∈ Gq+1, for any adversary Aq-SBDH, we have the following for any
a ∈ Zp/{−τ}:

Pr[Aq-SBDH(g, g
τ , . . . , gτ

q

) = (a, e(g, g)
1

τ+a )] ≤ negl(λ)

C Security Proofs

In this section, we show security proofs for BalanceProofs in bucketing versions.

C.1 Soundness for aSVC-bucketing proofs.

For aSVC-bucketing technique, we present the soundness proof for individual proofs first.

Theorem C.1. Our individual aSVC-bucketing proofs from Section 4.1 are sound as per Defi-
nition 2.3 under q-SBDH assumption.

Proof. Suppose there exists some adversary A that breaks Definition 2.3 where I = J and |I| = 1.
We show how to break (n− 1)-SBDH assumption.
A should output some i ∈ Pi0 , w0, w

′
0, w1, w

′
1, zi, z

′
i such that we have the following, where

ai0(x) =
∏

j∈Pi0
(x− ωj):

e(C/gzi , g) = e
(
w0, g

ai0 (τ)
)
· e

(
w1, g

τ/gω
i
)

(17)

e(C/gz
′
i , g) = e

(
w′

0, g
ai0 (τ)

)
· e

(
w′

1, g
τ/gω

i
)

(18)

Divide the two equations:

e(gz
′
i−zi , g) = e

(
w0/w

′
0, g

ai0
(τ)

)
· e

(
w1/w

′
1, g

τ−ωi
)

(19)

Rewrite ai0(x) = a′i0(x) · (x− ωi), then we have

e(g, g)z
′
i−zi = e

(
w0/w

′
0, g

a′
i0

(τ)
)τ−ωi

· e (w1/w
′
1, g)

τ−ωi

=
(
e
(
w0/w

′
0, g

a′
i0

(τ)
)
· e (w1/w

′
1, g)

)τ−ωi
(20)

Finally we have

e(g, g)
1

τ−ωi =
(
e
(
w0/w

′
0, g

a′
i0

(τ)
)
· e (w1/w

′
1, g)

) 1
z′
i
−zi , (21)

which breaks the (n− 1)-SBDH assumption.

Then we present the soundness proof for batch proofs.

Theorem C.2. Our batch aSVC-bucketing proofs from Section 4.1 are sound as per Defini-
tion 2.3 under q-SBDH assumption.
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Proof. Suppose there exists some adversary A that breaks Definition 2.3 where |I| > 1. We show
how to break (n− 1)-SBDH assumption.
A should output some I, J where some i ∈ I ∩J is the position A will forge. Suppose i ∈ Pi0

and let I0 = I ∩ Pi0 , J0 = J ∩ Pi0 . A should also provide w0, w
′
0, w1, w

′
1, c(x), c

′(x) such that we
have the following:

e(C/gc(τ), g) = e
(
w0, g

ai0
(τ)

)
· e

(
w1, g

b(τ)
)

(22)

e(C/gc
′(τ), g) = e

(
w′

0, g
ai0 (τ)

)
· e

(
w′

1, g
b′(τ)

)
(23)

where b(x) =
∏

k∈I0
(x− ωk), b′(x) =

∏
k∈J0

(x− ωk), c(x) is interpolation of claimed values for

I0, c
′(x) is interpolation of claimed values for J0 and c(ωi) ̸= c′(ωi).
Divide the two equations:

e(gc
′(τ)−c(τ), g) = e

(
w0/w

′
0, g

ai0
(τ)

)
·
e
(
w1, g

b(τ)
)

e
(
w′

1, g
b′(τ)

) (24)

Rewrite ai0(x) = a′i0(x) · (x− ωi):

e(gc
′(τ)−c(τ), g) = e

(
w0/w

′
0, g

a′
i0

(τ)
)τ−ωi

·
e
(
w1, g

b(τ)
)

e
(
w′

1, g
b′(τ)

) (25)

Let ci = c(ωi) and c′i = c′(ωi), then we can write c(x) = d(x)(x − ωi) + ci and c′(x) =
d′(x)(x− ωi) + c′i:

e(gd
′(τ)−d(τ), g)τ−ωi

·e(g, g)c
′
i−ci =

e
(
w0/w

′
0, g

a′
i0

(τ)
)τ−ωi

·
e
(
w1, g

b(τ)
)

e
(
w′

1, g
b′(τ)

) (26)

Let b(x) = b0(x)(x− ωi) and b′(x) = b′0(x)(x− ωi):

e(gd
′(τ)−d(τ),g)τ−ωi

· e(g, g)c
′
i−ci =

e
(
w0/w

′
0, g

a′
i0

(τ)
)τ−ωi

·
e
(
w1, g

b0(τ)
)τ−ωi

e
(
w′

1, g
b′0(τ)

)τ−ωi

(27)

Finally we have

e(g, g)
1

τ−ωi =

e
(
w0/w

′
0, g

a′
i0

(τ)
)
e
(
w1, g

b0(τ)
)

e
(
gd′(τ)−d(τ), g

)
e
(
w′

1, g
b′0(τ)

)


1
c′
i
−ci

, (28)

which breaks the (n− 1)-SBDH assumption.

C.2 Soundness for AMT-like bucketing proofs

For AMT-like bucketing technique, we present the soundness proof for individual proofs first.

Theorem C.3. Our individual AMT-bucketing proofs from Section 4.2 are sound as per Defi-
nition 2.3 under q-SBDH assumption.
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Proof. Suppose there exists some adversary A that breaks Definition 2.3 where I = J and |I| = 1.
We show how to break (n− 1)-SBDH assumption.
A should output some forged position i ∈ Pj . A should also provide w0 = (w0,k)k∈[0,L′),

w′
0 = (w′

0,k)k∈[0,L′), w1, w
′
1, zi, z

′
i such that we have the following (we use the same notations as

Section 4.2, i.e., uk = n
2k+1 and jk = j mod 2k, k ∈ [0, L′]):

e(C/gzi , g) = e
(
w1, g

τ/gω
i
)
·

∏
k∈[0,L′)

e
(
w0,k, g

τuk−ωjk+1uk
)

(29)

e(C/gz
′
i , g) = e

(
w′

1, g
τ/gω

i
)
·

∏
k∈[0,L′)

e
(
w′

0,k, g
τuk−ωjk+1uk

)
(30)

Divide the two equations:

e(gz
′
i−zi , g) = e

(
w1/w

′
1, g

τ−ωi
)
·

∏
k∈[0,L′)

e
(
w0,k/w

′
0,k, g

τuk−ωjk+1uk
)

(31)

Note that for each k ∈ [0, L′), xuk − ωjk+1uk has a factor x − ωi, then we can rewrite
xuk − ωjk+1uk = bk(x)(x− ωi):

e(gz
′
i−zi , g) = e

(
w1/w

′
1, g

τ−ωi
)
·

∏
k∈[0,L′)

e
(
w0,k/w

′
0,k, g

bk(τ)
)τ−ωi

(32)

e(g, g)z
′
i−zi = e (w1/w

′
1, g)

τ−ωi

 ∏
k∈[0,L′)

e
(
w0,k/w

′
0,k, g

bk(τ)
)τ−ωi

(33)

Finally we have

e(g, g)
1

τ−ωi =

e (w1/w
′
1, g)

∏
k∈[0,L′)

e
(
w0,k/w

′
0,k, g

bk(τ)
) 1

z′
i
−zi

(34)

which breaks the (n− 1)-SBDH assumption.

Then we present the soundness theorem for batch proofs, whose proof can be derived directly
from the proofs of Theorem C.2 and Theorem C.3.

Theorem C.4. Our batch AMT-bucketing proofs from Section 4.2 are sound as per Defini-
tion 2.3 under q-SBDH assumption.
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