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Abstract. We investigate the security of succinct arguments against quantum adversaries. Our main
result is a proof of knowledge-soundness in the post-quantum setting for a class of multi-round interactive
protocols, including those based on the recursive folding technique of Bulletproofs.
To prove this result, we devise a new quantum rewinding strategy, the first that allows for rewinding
across many rounds. This technique applies to any protocol satisfying natural multi-round generalizations
of special soundness and collapsing. For our main result, we show that recent Bulletproofs-like protocols
based on lattices satisfy these properties, and are hence sound against quantum adversaries.
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1 Introduction

Succinct arguments [Kil92,Mic94] allow a prover to convince a verifier that a statement x belongs to a
language L, with communication shorter than the witness length for the corresponding relation. Succinct
arguments have become a cornerstone of modern cryptography and fueled the development of many real-world
applications, such as verifiable computation and anonymous cryptocurrencies. Recent years have seen an
explosion of new constructions of succinct arguments, based on a variety of cryptographic assumptions.

However, the advent of quantum computation poses a significant threat to these advancements. On the
one hand, Shor’s algorithm [Sho94] forces us to transition to cryptographic systems based on post-quantum
assumptions, such as the hardness of the learning with errors (LWE) problem [Reg05]. On the other hand,
some known techniques to prove security of cryptographic protocols no longer apply in the post-quantum
regime, due to the fundamentally different nature of quantum information. Most notable are rewinding
techniques, which are ubiquitous in security proofs for succinct arguments.

In a rewinding proof, it is argued that an adversary that succeeds on a single random challenge with high
enough probability must succeed on multiple challenges. This classically intuitive idea fails in the quantum
setting, because measuring the adversary’s response to one challenge causes an irreversible loss of information
which may render it useless for answering other challenges.

An important family of succinct arguments are interactive protocols based on the recursive folding
technique of [BCC+16,BBB+18], also known in the literature as Bulletproofs. Leveraging algebraic properties
of cryptographic schemes, Bulletproofs-like protocols can achieve much smaller proof sizes than PCP- and
IOP-based succinct arguments [Kil92,BCS16] while retaining the benefit of a public-coin setup. Unlike PCP-
and IOP-based arguments, however, the original Bulletproofs constructions are not post-quantum secure,
being based on the hardness of the discrete logarithm problem. This has motivated a line of work that
aims to design “post-quantum Bulletproofs” [BLNS20,AL21,ACK21,BCS21]. While these works do not rely
on cryptographic assumptions which are quantum-insecure, their analysis of post-quantum security is only
heuristic, in the sense that soundness is only shown against a classical adversary. Motivated by this state of
affairs, we ask the following question:
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Can we prove post-quantum security for Bulletproofs-like protocols?

Known techniques for rewinding quantum adversaries [Unr12,CMSZ21] do not appear to generalize to multi-
round challenge-response protocols, let alone to logarithmic-round protocols like Bulletproofs. Thus, answering
the above question requires us to develop new quantum rewinding techniques.

1.1 Our Results

In this work, we show that a class of “recursive” many-round interactive protocols is knowledge-sound against
quantum adversaries. As a special case, we establish that lattice-based Bulletproofs protocols are post-quantum
secure, assuming the quantum hardness of LWE. Loosely speaking, our main result can be restated as follows.

Theorem 1 (Informalversion of Theorem 4). Assuming the quantum hardness of the (Ring-)LWE
problem, lattice-based Bulletproofs protocols are knowledge-sound against quantum algorithms.

Our main result is obtained by developing two technical contributions of independent interest:

Fold-Collapsing Hash: We show that the lattice-based hash function HashA(x) = Ax mod q, where A is
sampled uniformly at random and x is a “short” vector, satisfies a strong collapsing property4. Intuitively,
we show that HashA remains collapsing even when the key A is compressed via linear combinations of its
columns with coefficients being short units in the base ring. This fold-collapsing property can be based
on a variety of computational assumptions, including the (Ring-)LWE assumption.

Quantum Tree Rewinding: We develop a new quantum rewinding technique that allows us to extract
from multi-round interactive protocols with certain collapsing and “recursive special soundness” properties.
Our method combines the state-repair procedure of [CMSZ21] with a probability estimation step that
determines the success probability of the adversary on a given sub-tree. Combined with the collapsing
property above and the recursive special soundness of Bulletproofs-like arguments, this establishes the
post-quantum security of these protocols.

1.2 Related Work

The witness folding technique for constructing succinct arguments was first introduced by Bootle et al. [BCC+16]
and later optimized by Bünz et al. [BBB+18], who called their protocols Bulletproofs. The term “Bulletproofs”
is now used to refer to a family of succinct arguments with a certain recursive structure. The early Bulletproofs
protocols [BCC+16,BBB+18] prove quadratic relations of exponents of elements in prime-order cyclic groups,
and their soundness relies on the discrete logarithm assumption over these groups. Lai, Malavolta, and
Ronge [LMR19] generalized the folding technique to prove quadratic relations over bilinear pairing groups
under a variant of the discrete logarithm assumption defined over these groups. As the discrete logarithm
problems can be solved by Shor’s algorithm [Sho94] in quantum polynomial time, none of these protocols are
post-quantum sound.

While it is necessary to consider non-linear relations to obtain an argument for NP, Attema and
Cramer [AC20] showed how to linearize the non-linear relations using secret-sharing techniques, and apply
the folding technique to compress the argument for the linearized relations. Although their protocols for
proving linear relations over groups are in fact unconditionally sound, they are trivial in the quantum setting
because the relations that they prove are in BQP.

Bootle et al. [BLNS20] adapted the Bulletproofs folding technique to the lattice setting, giving a succinct
argument for proving knowledge of the witness of a short integer solution (SIS) instance, i.e. a short vector x
satisfying Ax = y mod q, over the m-th cyclotomic ring with m being a power of 2. The protocol, however,
has large “slack”: the knowledge extractor is only able to extract a short vector x′ satisfying Ax′ = 8t ·y mod q,
where ℓ = 2t is the dimension of the witness x. Albrecht and Lai [AL21] revisited this protocol and reduced
4 Collapsing can be thought of as the quantum analogue of collision-resistance, and loosely speaking it requires that

it is hard to determine whether a register containing valid pre-images of a given y was measured or not.
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the slack from 8t to 2t with a careful choice of the challenge set R. They further eliminated the slack in
the case of prime-power cyclotomic rings, i.e. when m is a power of a polynomially-large prime. Attema,
Cramer, and Kohl [ACK21] improved the soundness analysis of [BLNS20,AL21], reducing the knowledge
error from O(log ℓ/|R|) to 2 log ℓ/|R|, which is tight. Bootle, Chiesa, and Sotiraki [BCS21] proposed the
abstract framework of sumcheck arguments which captures all Bulletproofs-like protocols, particularly lattice-
based ones, mentioned above. Although lattice-based Bulletproofs for proving SIS relations are shown to
be unconditionally sound against classical provers, the security proofs implicitly assume that the success
probability of a prover remains unchanged after rewinding, which is generally false in the quantum setting.

1.3 Organization

In Section 2 we give an overview of our technical results. In Section 3 we recall standard preliminaries.
In Section 4 we recall the notion of public-coin interactive arguments and introduce the notions of recursive
special soundness and last-round collapsing. In Section 5 we show that protocols satisfying these properties
are also knowledge-sound, even against quantum provers. In Section 6 we study the collapsing properties of
hash function families implicit in lattice-based Bulletproof protocols. In Section 7we build upon the results
of Section 6 to show that lattice-based Bulletproof protocols are recursive special sound and last-round
collapsing, and hence knowledge-sound, even against quantum provers.

2 Technical Overview

We give a brief overview of the main technical steps of our work. Before delving into the details of our analysis,
we summarize the main conceptual steps of our proof:

Step I: We formalize a family of public-coin protocols Σ that satisfy two main properties of interest, namely
recursive special soundness and last-round collapsing.

Step II: We describe a new quantum rewinding strategy that allows us to extract a witness from any
recursive special sound and last-round collapsing protocol of the above defined family.

Step III: We show that the lattice-based hash function HashA(x) = Ax is fold-collapsing, assuming that
the (Ring-)LWE problem is intractable for quantum algorithms.

Step IV: Using the result from the previous step, we show that lattice-based Bulletproofs protocols are
recursive special sound and last-round collapsing.

The remainder of the technical overview will be split into two parts, detailing Step I-II and Step III-IV
respectively.

2.1 Quantum Rewinding

We first establish some context. Consider a (2t+ 1)-message public-coin interactive argument Σ where both
the prover and the verifier input a statement x and the prover additionally inputs a witness w. The first 2t
rounds of the protocol consists of the prover sending a “commitment” zi and the verifier sending a challenge
ri for i ∈ [t]. The protocol ends with the prover sending a response wt+1 and the verifier outputting a single
bit. The protocol Σ is k-tree-special sound, or (k, . . . , k)-special sound, for a relation R if the following holds:
There exists an efficient extractor E which, given a statement x and complete k-ary tree of (edge-)depth t
where the nodes and edges in each root-to-leaf path are labelled by a transcript (z1, r1, . . . , zt, rt, wt+1) of Σ
which is accepting, extracts a witness w satisfying R(x,w) = 1.

In the following, we first review how tree-special soundness classically implies knowledge-soundness, and
discuss where the classical reduction fails in the quantum setting. We then overview how post-quantum
knowledge-soundness can be proven for protocols which satisfy a strengthening of tree special soundness
along with a natural “collapsing” property.
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Classical Tree Rewinding. To prove that a tree-special sound argument is knowledge-sound, the classical
extraction proof (e.g. given in [BLNS20]) is based on the tree extraction technique of [BCC+16]. This technique
obtains a k-ary tree of transcripts using a simple recursive strategy. This tree can then be provided to E
in order to obtain the witness. For i ∈ [t], [BCC+16] define subtree extractors Ti which, given a transcript
prefix, obtain a k-ary subtree rooted at that prefix:

Ti(r1, . . . , ri−1):
1. Let τ be a graph containing a single (root) node v.
2. Query the adversary at (r1, . . . , ri−1) to obtain the i-th round commitment zi. Label v with zi.
3. Repeat until v has k children: Choose ri ← Ri uniformly at random, and run τ ′ ← Ti+1(r1, . . . , ri). If
Ti+1 does not abort, attach τ ′ to v via an edge labelled with ri.
If Ti+1 aborts, and this is the first loop iteration, then abort.

4. Return τ .

The base case Tt+1(r1, . . . , rt) queries the adversary at (r1, . . . , rt) to obtain a full protocol transcript
(z1, . . . , zt+1) and returns zt+1 if that transcript is accepting (and otherwise aborts). The italicized condition
above ensures that the procedure runs in expected polynomial time. Concretely, let ε denote the probability
for ri chosen uniformly at random that Ti+1(r1, . . . , ri) does not abort. The number of calls that Ti makes to
Ti+1 is then 1 with probability 1− ε (due to the italicized condition) and 1 + (k − 1)/ε (in expectation) with
probability ε. Hence the overall expected number of calls is k, and by induction Ti runs in expected time
O(kt−i · tA), where tA is the running time of the adversary.

Quantum Tree Rewinding. Moving now to the quantum setting, the immediate problem is that Step 3 is
a rewinding step: The above argument implicitly uses the fact that a classical adversary can be rewound
to ensure that the success probability of Ti+1 in each iteration is always ε. For quantum adversaries, the
situation is more complicated, since measurements are in general irreversible operations. Known techniques
[Unr12,CMSZ21] allow one to recover this type of rewinding in the quantum setting, provided the protocol
satisfies a special “collapsing” condition.

Roughly speaking, this condition says the measurement performed by the reduction in the rewinding loop
to obtain the response (in this case τ) is indistinguishable (to the adversary) from a binary measurement
of whether the obtained response is valid or not (in this case, whether Ti+1 aborts). Unfortunately, for the
extractor above for general tree-special sound protocols we do not have this guarantee. The issue is that
τ contains information about the set of challenges to which the adversary produces an accepting response.
Measuring this information can cause the adversary’s state to be disturbed in a detectable way. As a result,
we do not know how to achieve general tree extraction in the quantum setting.

Instead, we observe that Bulletproofs-like protocols satisfy additional structural properties such that
extracting the full tree is not necessary. Specifically, we can identify a family of protocols (Σi)

t
i=0 associated

to Σ, where Σi has 2i+ 1 messages, Σt = Σ and Σ0 is a noninteractive protocol where the prover sends w
and the verifier checks R(x,w).

This family has the property that, given a k-ary tree of accepting transcripts for Σi, we can obtain a
k-ary tree of accepting transcripts for Σi−1 by applying only “local” operations at the i-th layer: specifically,
we compute a new label for each node vi at depth i by applying a function Ei to the labels of its children.
With this structural property, we can modify Ti (for all i) to directly output a witness (label) wi instead of a
tree τ . As a result, T0 will directly output a witness w for x.

Moreover, we identify that if each Σi satisfies another property called last-round collapsing and, crucially,
Ti+1 is executed projectively by Ti, then measuring the output of Ti+1 is in fact indistinguishable from a
binary measurement. It turns out that the key technical challenge here is the projectivity of Ti+1.

The Extractor. A general quantum measurement given by a circuit can be implemented projectively in a
standard way using the principle of deferred measurement. Specifically, a circuit C has a corresponding unitary
dilation U (given by replacing measurement gates with controlled-NOTs); the projective implementation is
obtained by applying U , measuring the output register, and then applying U†.
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Unfortunately, this method only applies to circuits, whereas in the above template, Ti+1 is an algorithm
with variable (expected polynomial) runtime. The unitary dilation of an expected (quantum) polynomial time
(EQPT) algorithm is not generally efficiently implementable.5 To avoid this problem, we design an extractor
where the recursive call is to a strict polynomial-time algorithm. To give a sense of our construction, we will
(for now) return to the classical setting. A natural first attempt is to simply truncate Ti+1 to some strict
number of repetitions N ; applying this to all layers of the tree yields an extractor that makes N t calls to the
adversary. How large does N need to be? By Markov’s inequality, the error incurred by truncation is O(k/N);
hence to achieve any guarantee, we require that N = Ω(k/ε). As a result, N t is superpolynomial (since ε is
an arbitrary inverse polynomial).

The key to overcoming this issue is to ensure that, no matter how many repetitions of Step 3 we execute,
we only make k recursive calls. In particular, we must guarantee that whenever we make a call to Ti+1, it
succeeds with high probability. To do this in the classical setting, we can modify the extractor as follows.

Ti,ε(r1, . . . , ri−1):
1. Repeat at most N times until |W | = k:

(a) Choose ri ← Ri uniformly at random.
(b) Estimate ε′ ← Prri+1,...,rt [A(r1, . . . , rt) convinces V ].
(c) If ε′ ≥ ε− β, compute wi ← Ti+1,ε−β(r1, . . . , ri). Add (ri, wi+1) to W .

2. Return wi ← Ei(W ).

Note that we explicitly provide T with a lower bound ε on the success probability ofA. We choose β = 1/poly(λ)
to be small enough so that the adversary still has high enough success probability at the base of the recursion.
The estimation step must be accurate to within an additive o(β) = 1/poly(λ) factor, which can be achieved
using polynomially many calls to A. By Markov’s inequality, the probability that ε′ ≥ ε− β is at least β, and
so by setting N = O(λ/β) = poly(λ) we see k successful iterations with probability 2−λ. The running time of
Ti,ε is then k · |Ti+1,ε−β |+N · poly(λ) = O(kt−i · poly(λ)).

Instantiating the above template in the quantum setting requires some care. The estimation step is
achieved using e.g. the Marriott-Watrous algorithm [MW04] as described in [CMSZ21]. We facilitate the
main rewinding loop using the state repair technique of [CMSZ21]. The state repair technique recovers the
success probability of a state after it is disturbed by a (binary) projective measurement. In our setting, this
measurement is “does the estimation step output ε′ ≥ ε− β?” All of these procedures have associated error;
this error must be managed to ensure that it does not increase too much throughout the recursion. For more
details, we refer the reader to Section 5.

2.2 Lattice-based Bulletproofs

In the above, we established that if a (2t+1)-message public-coin argument Σ induces a family (Σi)
t
i=0 which

is recursive special sound, and each Σi is last-round collapsing, then Σ has post-quantum knowledge-soundness.
In the following, we consider the case where Σ is a lattice-based Bulletproofs protocol, describe what it means
for (Σi)

t
i=0 to be recursive special sound and Σi to be last-round collapsing, and outline how the properties

can be achieved.
We recall the lattice-based Bulletproofs protocols from [BLNS20,AL21,ACK21]. In such protocols, both

the prover and the verifier receive as input a SIS instance (A,y) defined over a ring R,6 and the prover
additionally receives a short vector x satisfying Ax = y mod q.7 The interactive protocol consists of a
5 [LMS21] proposes an extended computational model (in the context of zero knowledge simulation) which does

permit this. However, this is not sufficient for our setting: While the model supports black-box access to unitary
dilations of EQPT algorithms, here we would require a unitary dilation of an EQPT algorithm which itself calls the
unitary dilation of an EQPT algorithm, etc.

6 Rigorously, the matrix A is sampled uniformly at random by a setup algorithm, and is taken as input by the prover
and the verifier as a public parameter.

7 We focus only on the component of lattice-based Bulletproofs protocols where the witness folding technique is
applied, since this is the technically challenging component in the quantum setting.
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recursive application of a subroutine that allows the prover and the verifier to cut the size of the relation
in half at each iteration: On input a hash key A = A0∥A1 and an image y, the verifier samples a random
(short) ring element r from a challenge set R ⊆ R. The hash key is then “folded” by taking the appropriate
linear combination of the columns A′ = r ·A0 +A1. Next, the prover updates the witness x = x0∥x1 to
x′ = x0 + r · x1, thus defining a new SIS instance (A′,y′) satisfying

A′x′ = (r ·A0 +A1)(x0 + r · x1)

= A1x0 + r · (A0x0 +A1x1) + r2 ·A0x1

= A1x0︸ ︷︷ ︸
l

+r · y + r2 ·A0x1︸ ︷︷ ︸
r

= y′

where the terms (l, r) are sent by the prover to help the verifier compute the new image y′. This effectively
reduces the dimension of the statement by half. Repeating this procedure t-times, where ℓ = 2t is the
dimension of the witness x, brings the dimension down to 1, at which point the prover can simply send the
witness in the plain to the verifier.

Recursive Special Soundness. To define recursive special soundness, we first specify the family of protocols
(Σi)

t
i=0 induced by a lattice-based Bulletproofs protocol Σ. For each i, the (2i + 1)-message protocol Σi

applies the folding technique recursively on the input statement (A,y) for i times, each taking 2 messages,
and the final message is simply the witness xi of the i-th folded statement (Ai,yi). Note that Σ0 is the
trivial 1-message protocol where the prover simply sends the witness x of (A,y), while Σt = Σ. Recursive
special soundness requires that, for each i ∈ [t], given k accepting transcripts (for Bulletproofs k = 3) for Σi

that differ only in the last challenge-response rounds (i.e. messages 2i and 2i+ 1), it is possible to efficiently
recover a valid last-round (i.e. (2i− 1)th) message for the protocol Σi−1. From this definition, we can see that
given a complete k-ary tree of accepting transcripts for Σt, it is possible to recursively recover a valid prover
message x for the trivial protocol Σ0.

With its close connection to the standard special soundness property, it is natural that the recursive
special soundness of (Σi)

t
i=0 can be proven similarly: Given an accepting transcript of Σi of the form

(A,y, (l1, r1), r1, . . . , (li−1, ri−1), ri−1, (li, ri), (r
(j)
i ,x

(j)
i )j∈[k])

the extractor Ei first derives (Ai,y
(j)
i )j∈[k] satisfying

Ai

(
x
(1)
i x

(2)
i x

(3)
i

)
= yi mod q,

then extracts xi−1 satisfying Ai−1xi−1 = yi−1 mod q, provided that the challenges (r(j)i )j∈[k] are chosen from
a subtractive set [AL21]8. The tuple

(A,y, (l1, r1), r1, . . . , (li−1, ri−1), ri−1,xi−1)

is then an accepting transcript of Σi−1. As usual, two subtleties in the lattice setting are that the norm of the
witness is slightly increased with each extraction step, and that the extracted witness may only be a preimage
of s · yi−1 for some short slack element s ∈ R. These soundness gap issues can be handled by making an
appropriate choice of (extraction relation) R, and choosing the challenge set and other parameters carefully.

Fold-Collapsing. Finally, we describe what it means for Σi to be last-round collapsing and how it is achieved.
Last-round collapsing requires that, provided an accepting transcript of Σi where all messages but the last
one are measured, it is computationally hard to tell whether the last message was also measured or not. In
8 A subtractive set, also known as an exceptional sequence, is a set of ring elements such that the difference between

any distinct members is invertible over the ring.
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the procotol Σi induced above, the last message consists of a witness xi of the statement (Ai,yi) defined
by the previous rounds of interaction. Importantly, (Ai,yi) is fixed by the first 2i messages of the protocol.
Thus, proving the above property is equivalent to establishing that the hash function

HashAi(xi) = Aixi mod q

is collapsing for all i ∈ {0, . . . , t}. It is known that such function satisfies the collapsing property, if the key A
is uniformly chosen [LZ19,ACL+22]. However, recall that Ai is obtained by progressively folding the original
key A, so we need to show that the function remains collapsing even after we perform such operations over
the hash key. We refer to this notion as fold-collapsing.

Our strategy to prove that the function is fold-collapsing proceeds in three steps: First, we appeal to the
well-known fact that collapsing is implied by the stronger notion of somewhere statistically binding (SSB).
Loosely speaking, SSB requires that the hash function has an alternative key generation mode, which is (i)
computationally indistinguishable from the original mode, and that (ii) makes the hash statistically binding
for a chosen position (say the j-th one) of the pre-image. Second, we show that the function HashA is SSB.
This is done by embedding ciphertexts of a linearly homomorphic encryption (with the appropriate ciphertext
space) as the columns of the key A. In the alternative mode, the key Ãj consists of

Ãj =

Enc(0) . . .Enc(0) Enc(1)︸ ︷︷ ︸
j-th position

Enc(0) . . .Enc(0)

 .

Since HashÃj
is a linear function, by the linearly-homomorphic property of the encryption scheme, we have

Ãjx = Enc(xj) mod q. Then, by the correctness of the encryption scheme, the hash function statistically
binds the j-th coordinate of x, as desired. Finally, to show that the folded key is still SSB, it suffices to observe
that if the challenge set R consists of only units, i.e. R ⊆ R×, then rA0 +A1 still preserves the invariant
that exactly one ciphertext is not an encryption of 0 for any r ∈ R, again invoking the linear homomorphism
of the encryption scheme. Thus, the folded key is still statistically binding on exactly one position of the
input vector. Repeating this process recursively yields the desired statement.

Conveniently, for each of the subtractive sets R′ suggested in [AL21] to be used as a challenge set, all but
one element (i.e. 0) in R′ are units in R. Instantiating R with R′ \ {0} therefore meets all our requirements.

Remark 1. We stress that all of our results concern the protocol in the interactive setting. In particular, it
should be noted that all lattice-based Bulletproofs protocols have at most inverse polynomial soundness, due
to the fact that the challenge space is only polynomial size. While one can always reduce this to negligible
by sequentially repeating the protocol, parallel repetition for super-constant round arguments is much less
well-understood. In the classical setting, this was recently solved for tree special sound protocols in [AF21];
we leave open the problem of extending this to the quantum setting. Note that this required to establish
that existing lattice-based Bulletproofs protocols can be made non-interactive in the QROM via Fiat-Shamir;
importantly, sequential repetition does not suffice.

3 Preliminaries

Let λ ∈ N be the security parameter. We write [n] := {1, 2, . . . , n} and Zn := {0, 1, . . . , n− 1} for n ∈ N. We
write φ(n) for the Euler totient function, i.e. the number of positive integers at most and coprime with n. If
a is a ring element, we write ⟨a⟩ for the ideal generated by a.

We make use of the following simple fact, a consequence of Markov’s inequality.

Proposition 1. Let X be a random variable supported on [0, 1]. Then for all α ≥ 0, Pr [X ≥ α] ≥ E[X]− α.
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3.1 Lattices

For m ∈ N, let ζ = ζm ∈ C be any fixed primitive m-th root of unity. We write K = Q(ζ) for the cyclotomic
field of order m ≥ 2 and degree φ(m), and R = Z[ζ] for its ring of integers, called a cyclotomic ring for short.
It is well-known that R ∼= Z[x]/ ⟨Φm(x)⟩, where Φm(x) is the m-th cyclotomic polynomial. For q ∈ N, write
Rq := R/q · R.

For elements x ∈ R we denote the infinity norm of its coefficient vector (with the powerful basis{
1, ζ, . . . , ζφ(m)−1}) as ∥x∥. If x ∈ Rk we write ∥x∥ for the infinity norm of x.

The ring expansion factor of R is defined as γR := maxa,b∈R
∥a·b∥
∥a∥·∥b∥ . By definition, we have for any

x, y ∈ R that ∥x · y∥ ≤ γR · ∥x∥ · ∥y∥.
For any ordered set T = (ri)i∈Zt ⊆ R, we write

VT :=


1 1 . . . 1
r0 r1 . . . rt−1
...

...
. . .

...
rt−10 rt−11 . . . rt−1t−1


for the (column-style) Vandermonde matrix induced by T .

Definition 1 ((s, t)-Subtractive Sets [AL21]). Let s ∈ R and t ∈ [n]. A set R ⊆ R is said to be
(s, t)-subtractive if for any t-subset T = {ri}i∈Zt

⊆ R, it holds that s ∈ ⟨det(VT )⟩. If R is (1, 2)-subtractive,
we simply say that R is subtractive.

Proposition 2 ([AL21]). If m is a power of a prime p and R is the m-th order cyclotomic ring, then the set
R :=

{
1, 1 + ζ, . . . ,

∑
i∈Zp−1

ζi
}
⊆p−1 R is subtractive. Furthermore, for any ordered set T = (r0, r1, r2) ⊆ R

and any x0, x1, x2 ∈ R with ∥xj∥ ≤ β,∥∥∥∥∥∥
(
r0 · x0 r1 · x1 r2 · x2
x0 x1 x2

)
·V−1T ·

0
1
0

∥∥∥∥∥∥ ≤ 24 · φ(m) · γR · β.

If m is a power of 2 and R is the m-th order cyclotomic ring, then the set R :=
{
1, ζ, . . . , ζφ(m)−1} ⊆φ(m) R is

(2, 3)-subtractive. Furthermore, for any ordered set T = (r0, r1, r2) ⊆ R and any x0, x1, x2 ∈ R with ∥xj∥ ≤ β,∥∥∥∥∥∥
(
r0 · x0 r1 · x1 r2 · x2
x0 x1 x2

)
· s ·V−1T ·

0
1
0

∥∥∥∥∥∥ ≤ 3 · φ(m) · γR · β.

3.2 Quantum Information

We recall the basics of quantum information. Most of the following is taken almost in verbatim from [CMSZ21].
A (pure) quantum state is a vector |ψ⟩ in a complex Hilbert space H with ∥|ψ⟩∥ = 1; in this work, H is
finite-dimensional. We denote by S(H) the space of Hermitian operators on H. A density matrix is a positive
semi-definite operator ρ ∈ S(H) with Tr(ρ) = 1. A density matrix represents a probabilistic mixture of pure
states (a mixed state); the density matrix corresponding to the pure state |ψ⟩ is |ψ⟩⟨ψ|. Typically we divide a
Hilbert space into registers, e.g. H = H1 ⊗H2. We sometimes write, e.g., ρH1 to specify that ρ ∈ S(H1).

A unitary operation is a complex square matrix U such that UU† = I. The operation U transforms the
pure state |ψ⟩ to the pure state U |ψ⟩, and the density matrix ρ to the density matrix UρU†. We write U(H)
for the set of unitary operators on H.

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π. A projective measurement is a
collection of projectors P = (Πi)i∈S such that

∑
i∈S Πi = I. This implies that ΠiΠj = 0 for distinct i and j

in S. The application of P to a pure state |ψ⟩ yields outcome i ∈ S with probability pi = ∥Πi |ψ⟩∥2; in this
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case the post-measurement state is |ψi⟩ = Πi |ψ⟩ /
√
pi. We refer to the post-measurement state Πi |ψ⟩ /

√
pi

as the result of applying P to |ψ⟩ and post-selecting (conditioning) on outcome i. A state |ψ⟩ is an eigenstate
of P if it is an eigenstate of every Πi. A two-outcome projective measurement is called a binary projective
measurement, and is written as P = (Π, I−Π), where Π is associated with the outcome 1, and I−Π with
the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via a completely-positive trace-
preserving (CPTP) map T : S(H)→ S(H′). We omit the precise definition of these maps in this work; we
only use the facts that they are trace-preserving (for every ρ ∈ S(H) it holds that Tr(T (ρ)) = Tr(ρ)) and
linear. For every CPTP map T : S(H)→ S(H) there exists a unitary dilation U that operates on an expanded
Hilbert space H⊗K, so that T (ρ) = TrK(U(ρ⊗ |0⟩⟨0|K)U†). This is not necessarily unique; however, if T is
described as a circuit then there is a dilation UT represented by a circuit of size O(|T |).

For Hilbert spaces A,B the partial trace over B is the unique CPTP map TrB : S(A⊗ B)→ S(A) such
that TrB(ρA ⊗ ρB) = Tr(ρB)ρA for every ρA ∈ S(A) and ρB ∈ S(B).

A general measurement is a CPTP map M : S(H)→ S(H⊗O), where O is an ancilla register holding a
classical outcome. Specifically, given measurement operators {Mi}Ni=1 such that

∑N
i=1MiM

†
i = I and a basis

{|i⟩}Ni=1 for O, M(ρ) =
∑N

i=1(MiρM
†
i ⊗ |i⟩⟨i|

O
). We sometimes implicitly discard the outcome register. A

projective measurement is a general measurement where the Mi are projectors. A measurement induces a
probability distribution over its outcomes given by Pr [i] = Tr

(
|i⟩⟨i|OM(ρ)

)
; we denote sampling from this

distribution by i← M(ρ). The trace distance between states ρ, σ, denoted d(ρ, σ), is defined as

d(ρ, σ) =
1

2
Tr
(√

(ρ− σ)2
)
.

The trace distance is contractive under CPTP maps (for any CPTP map T , d(T (ρ), T (σ)) ≤ d(ρ, σ)). It
follows that for any measurement M, the statistical distance between the distributions M(ρ) and M(σ) is
bounded by d(ρ, σ).

We also define a notion of quantum computational distinguishability. Specifically, for states ρ, σ,

dcomp(ρ, σ)N := max
D,|D|≤N

|Pr [D(ρ)→ 1]− Pr [D(σ)→ 1] | ,

where D is a quantum circuit. For sequences of states (ρλ)λ, (σλ)λ we say that dcomp(ρλ, σλ) ≤ ε+ negl(λ) if
for all polynomials p, dcomp(ρλ, σλ)p(λ) ≤ ε+ negl(λ).

Clearly dcomp satisfies the triangle inequality and for all λ ∈ N, dcomp(ρ, σ)(λ) ≤ d(ρ, σ). For bipartite
states on A⊗ B we affix a superscript A to d and dcomp to indicate that the distance is with respect to A
only, i.e.

dA(ρ, σ) = d(TrB(ρ),TrB(σ)) .

Gentle Measurement. We have the following gentle measurement lemma, which bounds how much a state
is disturbed by applying a measurement whose outcome is almost certain.

Lemma 1 (Gentle Measurement [Win99]). Let ρ ∈ S(H) and P = (Π, I−Π) be a binary projective
measurement on H such that Tr(Πρ) ≥ 1− δ. Let

ρ′=
ΠρΠ

Tr(Πρ)
and ρ′′=ΠρΠ + (I −Π)ρ(I −Π).

Then

d(ρ, ρ′) ≤ 2
√
δ and d(ρ, ρ′′) ≤ 2

√
δ.
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Quantum Algorithms. In this work, a quantum adversary is a family of quantum circuits {Aλ}λ∈N
represented classically using some standard universal gate set. A quantum adversary is polynomial-size if
there exists a polynomial p and λ0 ∈ N such that for all λ > λ0 it holds that |Aλ| ≤ p(λ) (i.e., quantum
adversaries have classical non-uniform advice).

A circuit C with black-box access to a unitary U , denoted CU , is a standard quantum circuit with special
gates that act as U and U†. We also use CT to denote black-box access to a map T , which we interpret as
CUT for a unitary dilation UT of T ; all of our results are independent of the choice of dilation. This allows,
for example, the “partial application” of a projective measurement, and the implementation of a general
measurement via a projective measurement on a larger space.

Interactive Quantum Circuits. We introduce the definition for interactive quantum circuits.

Definition 2. A t-round interactive quantum circuit A is a sequence of maps (U1, . . . , Ut) where Ui : Ri →
U(I ⊗ Zi). We also denote by Ui the unitary

∑
ri∈Ri

|ri⟩⟨ri| ⊗ Ui(ri). The size of an interactive quantum
circuit is the sum of the sizes of the circuits implementing the unitaries U1, . . . , Ut.

Let P ∗ = (U1, . . . , Ut, |ψ⟩); then EP∗
is a quantum circuit with special gates corresponding to the unitaries

Ui and (Ui)
† for i ∈ [t]. The requirement that the Ui be unitary is without loss of generality, in the sense that

any interactive quantum adversary not of this form can be “purified” into a circuit of this form that is only a
constant factor larger with the same observable behavior. Using this formulation, we can sample the random
variable ⟨P ∗(|ψ⟩), V ⟩ equivalently as:

1. Initialize the register I to |ψ⟩, and τ = ().
2. For i = 1 . . . t:

(a) Sample ri ← Ri.
(b) Apply unitary Ui(ri) to I ⊗ Zi.
(c) Measure Zi in the computational basis to obtain response zi. Append (ri, zi) to τ .

3. Return the output of V (τ).

In particular, the interaction is public coin. Note again that we restrict the operation of P ∗ in each round to
be unitary except for the measurement of Zi in the computational basis.

4 Recursive Special Sound and Last-Round Collapsing Arguments

We recall the definitions of interactive arguments and their knowledge soundness. We then define the new
notions of recursive special soundness and last-round collapsing.

Definition 3 (Arguments). Let i ≥ 0 be an integer. A (2i + 1)-message public-coin argument system
Π = (Setup, Σ = (P, V )) consists of a PPT algorithm Setup and a (2i + 1)-message protocol Σ = (P, V )
between an interactive PPT prover P and an interactive PPT verifier V , is associated to a tuple of spaces
(X,W, (Zj , Rj)j∈[i],Wi+1), and has the following structural properties:

– The Setup algorithm takes as input the security parameter 1λ and outputs some public parameters pp.
– Both P and V receive as input the public parameters pp and a statement x ∈ X. The prover P additionally

receives a witness w ∈W .
– The public parameters, the statement x, and the 2i+1 messages sent by P and V in the protocol Σ, called

collectively a transcript, is labelled by (pp, x, z1, r1, . . . , zi, ri, wi+1), where zj ∈ Zj sent by P are called
commitments, rj ∈ Rj sent by V are called challenges, and wi+1 ∈Wi+1 sent by P is called a response.

– The challenges rj are sampled by V uniformly randomly from Rj.9

9 In general, rj could be sampled from a public distribution over Rj .
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A transcript (pp, x, z1, r1, . . . , zi, ri, wi+1) is said to be accepting forΣ if it holds that V (pp, x, z1, r1, . . . , zi, ri, wi+1) =
1. A k-branch of transcripts of Σ is a tuple consisting of some public parameters, a statement, and a prefix of
messages

(pp, x, z1, r1, . . . , zi−1, ri−1, zi)

along with k distinct i-th round challenges (r
(j)
i )j∈[k], and k responses (w

(j)
i+1)j∈[k]. A k-branch of transcripts

is said to be accepting for Σ if

(pp, x, z1, r1, . . . , zi−1, ri−1, zi, r
(j)
i , w

(j)
i+1)

is accepting for Σ for all j ∈ [k].

Note that if i = 0 then the protocol is non-interactive: the transcript consists only of (pp, x, w1).
For the protocols we consider, the statement to be proved depends on the public parameters pp. As such,

we will define proofs of knowledge with respect to relations on triples (pp, x, w). Observe, in particular, that
when i = 0 in Definition 3 the verifier itself defines such a relation. Our proof of knowledge definition is
somewhat weaker than standard definitions of proof of knowledge in that the extractor is permitted a given
additive inverse polynomial loss.

Definition 4 (Proof of knowledge). We say that an argument system Π = (Setup, Σ = (P, V )) is a
(post-quantum) proof of knowledge with knowledge error κ for a relation R if there exists a (quantum)
polynomial-time extractor E and such that for any inverse polynomial ν and any (quantum) polynomial-size
adversary P ∗,

Pr

[
R(pp, x, w)

∣∣∣∣ pp← Setup(1λ)

w ← ExtractP
∗
(pp, x, 11/ν)

]
≥ Pr [⟨P ∗, V ⟩ = 1]− κ(λ)− ν(λ) .

Definition 5 (Recursive k-Special Soundness). For i ∈ Zt+1, let Πi = (Setup, Σi = (Pi, Vi)) be a
(2i + 1)-message public-coin argument system with a common Setup algorithm associated to the spaces
(X,W, (Zj , Rj)j∈[i],Wi+1). The family (Πi)

t
i=0 is said to be recursive k-special sound if for each i ∈ [t] there

exists an efficient extractor Ei satisfying the following properties:

– The extractor Ei takes as input (r(j)i , w
(j)
i+1)j∈[k] ∈ (Ri ×Wi+1)

k and outputs wi ∈Wi.
– If

(pp, x, z1, r1, . . . , zi−1, ri−1, zi, (r
(j)
i , w

(j)
i )j∈[k])

is an accepting k-branch of transcripts for Σi, and wi = Ei((r
(j)
i , w

(j)
i+1)j∈[k]), then

(pp, x, z1, r1, . . . , zi−1, ri−1, wi)

is an accepting transcript for Σi−1.

Definition 6 (Last-Round Collapsing). Let Π be a (2i + 1)-message public-coin argument system
associated to the spaces (X,W, (Zj , Rj)j∈[i],Wi+1). We say that Π is last round collapsing if for any efficient
(quantum) adversary A∣∣Pr[LastRoundCollapsing0Π,A(1

λ) = 1
]
− Pr

[
LastRoundCollapsing1Π,A(1

λ) = 1
]∣∣ ≤ negl(λ),

where the experiment LastRoundCollapsingbΠ,A is defined as follows:

LastRoundCollapsingbΠ,A(1
λ):

1. The challenger generates pp← Setup(1λ).
2. The challenger runs x← A(pp).
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3. The challenger executes the interaction (A, V (pp, x)) up until measuring the last message of the adversary.
Let τ = (pp, x, z1, r1, . . . , zt, rt) be the protocol transcript thus far (excluding the last message) and let W
be the register that contains the state corresponding to the last message of the adversary.

4. Let Vτ be the unitary that acts on W and a fresh ancilla, and CNOTs into the fresh ancilla the bit that
determines whether the transcript is valid. Apply Vτ , measure the ancilla, and apply V †τ .

5. If the output of the measurement is 0, then abort the experiment. Else proceed.
6. If b = 0 do nothing.
7. If b = 1 measure the register W in the computational basis, discard the result.
8. Return to A all registers and output whichever bit A outputs.

5 Quantum Tree-Extraction

In this section we give an algorithm for extracting a witness from a recursively k-special sound, last-round
collapsing protocol. We prove the following general theorem.

Theorem 2. Let (Πi = (Setup, Σi = (Pi, Vi)))
t
i=0 be a recursively k-special sound family where Πi is last-

round collapsing for all i. Then Πt is a post-quantum proof of knowledge for (the relation induced by) V0 with
knowledge error

t∑
i=1

k − 1

|Ri|
.

In Section 5.1 we give some notation which will be used in this section, and specify the quantum algorithms
we require. We also prove a new result about the Repair algorithm of [CMSZ21], which gives a better
characterization of the distribution of outcomes from repeated applications of the repair experiment; this is
necessary for our main result. In Section 5.2 we specify our extractor and show that it runs in polynomial
time. In Section 5.3 we prove that the extractor is correct.

5.1 Notation and quantum algorithms

For a classical predicate f : R×Z → {0, 1}, let Πf(r,·) :=
∑

z∈Z,f(r,z)=1 |z⟩⟨z|Z . Given also a mapping U : r →
U(A,Z), we define the Hermitian matrix EU,f := 1

|R|
∑

r∈R U(r)†Πf(r,·)U(r). Let TU,f
≥p := (ΠU,f

≥p , I −Π
U,f
≥p ),

where
ΠU,f
≥p :=

∑
j,pj≥p

|j⟩⟨j| ,

for
∑

j pj |j⟩⟨j| the spectral decomposition of EU,f . Note that 0 ≤ pj ≤ 1 for all j.

Lemma 2 ([Zha20,CMSZ21]). For every ε, δ > 0 there is a quantum algorithm Estimateε,δ with the
following guarantees. For any classical predicate f : R × Z → {0, 1}, mapping U : r → U(A,Z) and state
ρ ∈ A⊗ Z:

– E[p | (p, ρ′)← EstimateU,f
ε,δ (ρ)] = Tr(EU,fρ) =

1
|R|
∑

r∈R Tr
(
Πf(r,·)UrρU

†
r

)
;

– EstimateU,f
ε,δ is (ε, δ)-almost projective; and

– For any q ∈ [0, 1],

Pr

[
p ≥ q ∧ b = 0

∣∣∣∣∣ (p, ρ′)← EstimateU,f
ε,δ (ρ)

b← TU,f
≥q−ε(ρ

′)

]
≤ δ .

EstimateU,f
ε,δ has quantum circuit complexity O(|f | · 1ε log

1
δ ) given oracle access to U :=

∑
r∈R |r⟩⟨r| ⊗ U(r).

We denote by Thresholdγ,ε,δ the quantum algorithm which runs Estimate and outputs 1 if its output is at
least γ, and 0 otherwise.

We recall the state repair theorem of [CMSZ21].
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RepExptM,P
T :

1. (Estimate) Apply the (ε, δ)-almost-projective measurement M, obtaining outcome p;
2. (Disturb) Apply the projective measurement P, obtaining outcome k ∈ [N ];
3. (Repair) Run RepairT [M,P](k, p).
4. (Re-estimate) Apply M again, obtaining outcome p′.
5. Output (p, p′).

MultiExpt
(Ds)

N
s=1,(Mi)i∈N

T :
1. Apply Estimate, obtaining outcome p0.
2. For s = 1, . . . , N :

(a) Apply Estimate, obtaining outcome ps.
(b) Sample is ← Ds(i1, b1, . . . , is−1, bs−1), and measure bs ← Mis .
(c) Run RepairT [Estimate,Mis ](bs, ps).

3. Output
∑N

s=1 bs.

Fig. 1. Experiments involving the Repair algorithm.

Theorem 3 (State repair, [CMSZ21]). Let M be an (ε, δ)-almost projective measurement on H, let
P be an n-outcome projective measurement on H, and let T be any positive integer. There is quantum
procedure Repair such that RepExptM,P

T (see Fig. 1) satisfies the following guarantee. For any state ρ on H
and (p, p′)← RepExptM,P

T (ρ):
Pr [|p′ − p| > 2ε] ≤ n(δ + 1/T ) + 4

√
δ.

Moreover, Repair has quantum circuit complexity O(T ) given oracle access to P and M.

Fix M to be the procedure EstimateU,f
ε,δ from Lemma 2, and for r ∈ R, denote by Pr the binary measurement

(U†rΠf(r,·)Ur, I − U†rΠf(r,·)Ur). In [CMSZ21] it is observed that Theorem 3 directly implies the following.
If we choose a uniformly random sequence (r1, . . . , rN ) ∈ RN and apply RepExpt

M,Pr1

T , . . . ,RepExpt
M,PrN

T

sequentially, the expected number of 1-outcomes for the Pri is at least p−O(εN), where p is the prover’s
success probability in the protocol.

For our application we will need to strengthen this result in two ways. First, we allow the sequence to be
drawn from a more general distribution, even depending on prior measurement outcomes. Second, we require
a strong concentration guarantee, which we obtain by showing that the number of successes dominates a
binomial distribution of the appropriate parameters. The relevant experiment is given as MultiExpt in Fig. 1.
Note that the setting in [CMSZ21] is obtained by choosing Ds as the uniform distribution over R for all s.

Lemma 3. For each s = 1, . . . , N , let Ds be a randomized function that takes an element of (N× {0, 1})s−1
and outputs is ∈ N. Let (Mi)i∈N be a list of measurements.

For any state ρ ∈ S(A⊗Z), the following holds:

PrS←MultiExpt(ρ) [S < k] ≤ Pr

[
N∑
i=1

Ys < k

]
+N/T +O(

√
δ + (N/T )2) ,

where the (Ys)
N
s=1 are distributed as follows:

1. Apply EstimateU,f
ε,δ to ρ, obtaining outcome p0. Let α := p0 − 2εN .

2. For each s ∈ [N ], sample Ys from a Bernoulli distribution with parameter

ζ := min
|v⟩∈im(ΠU,f

≥α
)

min
i∈Ns−1

b∈{0,1}s−1

Eis←Ds(i,b)Pr [Mis(|v⟩⟨v|)→ 1] .
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Proof. By Theorem 3, for each s ∈ [N ] it holds that

Pr [ps < ps−1 − 2ε] ≤ 2/T +O(
√
δ) .

Denote by E the event that, for any s ∈ [N ], ps < ps−1 − 2ε. By a union bound,

Pr [E] ≤ 2N/T +O(N
√
δ + (N/T )2) .

Now consider the following hybrid experiment:

HybPT :
1. Apply Estimate, obtaining outcome p0.
2. For s = 1, . . . , N :

(a) Apply Estimate, obtaining outcome ps.
(b) Apply TU,f

≥ps−ε, and postselect on obtaining outcome 1.
(c) Sample (is,M)← Ds(i1, b1, . . . , is−1, bs−1), and measure bs ← M.
(d) Run RepairT [Estimate,Mi](bs, ps).

By Lemma 2, in each iteration s, TU,f
≥ps−ε yields outcome 1 with probability at least 1− δ. Hence by gentle

measurement, d(MultiExpt,Hyb) = O(N
√
δ). Switching to Hyb, it holds by definition of ζ that

PrHyb [bs = 1 | ¬E, i1, b1, . . . , is−1, bs−1] ≥ ζ .

Therefore the distribution of (
∑N

s=1 bs | ¬E) induced by Hyb stochastically dominates
∑N

s=1 Ys; that is, for
all k,

PrHyb

[
N∑
s=1

bs < k

∣∣∣∣∣ ¬E
]
≤ Pr

[
N∑
s=1

Ys < k

]
.

Since Pr [A] ≤ Pr [A|B]Pr [B], we have that

PrHyb

[
N∑
s=1

bs < k

]
≤

Pr
[∑N

s=1 Ys < k
]

PrHyb [E]

≤ Pr

[
N∑
s=1

Ys < k

]
+ 2N/T +O(N

√
δ + (N/T )2) .

The lemma then follows by trace distance. ⊓⊔

5.2 Description of the extractor

For a measurement channel M : S(A)→ S(A⊗O), we denote by M ∈ U(A⊗O⊗B) some unitary dilation of
M. We denote by M : S(A⊗ B)→ S(A⊗O ⊗ B) a projective dilation of M, given by

M(ρ) :=
∑
i

M
† |i⟩⟨i|OMρM

† |i⟩⟨i|OM

where {|i⟩}i is a basis for O. All of our procedures and correctness analyses are independent of the choice of
dilation, and we assume that the circuit complexity of M,M is linear in the circuit complexity of M.

We now describe the extractor, which is a measurement channel Extracti,ν : S(A⊗Z)→ S(A⊗Z ⊗O),
where Z = (Z1, . . . ,Zt,Wt+1) are the prover’s output registers. Recall that we model the prover as a sequence
of unitaries U1, . . . , Ut.

For i ∈ [t], denote by U (i) : Ri × · · · ×Rt → U(A⊗Zi+1 ⊗ · · · ⊗ Zt ⊗Wt+1) the map

U (i)(ri, . . . , rt) = Ut(rt) · · ·Ui(ri) .

For i ∈ [t], r = (r1, . . . , ri−1) ∈ R1 × · · · ×Ri−1, let f (i)(r) : (Ri × · · · ×Rt)× (Z1 × · · · × Zt ×Wt+1)→ {0, 1}
denote the function f (i)(r)(ri, . . . , rt, z1, . . . , zt, wt+1) := V (z1, r1, . . . , zt, rt, wt+1).
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Extracti,ν(r1, . . . , ri−1):

1. Set N := ⌈2t ln(1/δ)/ν2⌉, ε := ν/4kNt, β := ν/2kt.
2. Compute p0 ← Estimate

U(i),f(i)
r

ε,δ . If p0 < γ :=
∑t

j=i
k−1
Ri

+ ν, stop and output ⊥.
3. For j = 1, . . . , k:

(a) Set b := 0.
(b) For s = 1, . . . , N , apply the following steps:

i. Compute ps ← Estimate
U(i),f(i)

r

ε,δ .
ii. Choose ri ← Ri \ Supp(W ) uniformly at random and apply Ui(ri).
iii. Initalize ancilla register B (for Threshold) to |0⟩.
iv. Measure b ← ThresholdU

(i+1),f(i+1)

γ′,ε,δ , where γ′ :=
∑t

j=i+1
k−1
Ri

+ ν · t−i−1t−i + ε. If
b = 1, go to Step 3c.

v. Apply Ui(ri)
†.

vi. Run RepairkN/2β2 [Estimate
U(i),f(i)

r

ε,δ , (Ui(ri))
† · ThresholdU

(i+1),f(i+1)

γ′,ε,δ · Ui(ri)].

(c) Apply Threshold
U(i+1),f(i+1)

γ′,ε,δ .
(d) Compute Wi+1 ← Extracti+1,ν′(r1, . . . , ri) coherently, for ν′ := ν · t−i−1t−i .
(e) If b = 1, measure b′ ← Vi(Z1, r1, . . . ,Zi, ri,Wi).
(f) If b = b′ = 1, measure wi+1 ←Wi+1 and add (ri 7→ wi) to W .
(g) Apply Extracti+1,ν′(r1, . . . , ri)

†.

(h) Apply (Threshold
U(i+1),f(i+1)

γ′,ε,δ )†, then Ui(ri)
†.

(i) Run RepairkN/2β2 [Estimate
U(i),f(i)

r

ε,δ , (Ui(ri))
† · ThresholdU

(i+1),f(i+1)

γ′,ε,δ · Ui(ri)].
4. Output wi ← Ei(W ).

Extractt,ν(r1, . . . , rt−1) is simply the [CMSZ21] extractor, modified to sample rt without replacement:

Extractt,ν(r1, . . . , rt−1):

1. Compute p0 ← Estimate
U(i),f(i)

r

ε,δ . If p0 < γ := k−1
Rt

+ ν, stop and output 0.
2. For j = 1, . . . , k:

(a) Set b := 0.
(b) For s = 1, . . . , N , and while b = 0, apply each of the following steps:

i. Compute ps ← Estimate
Ut,f

(t)
r

ε,δ .
ii. Choose rt ← Rt \ Supp(W ) uniformly at random and apply Ut(rt).
iii. Measure b← Vt(Z1, r1, . . . ,Zt, rt,Wt+1).
iv. If b = 1, measure wt+1 ←Wt+1 and add (rt 7→ wt+1) to W .
v. Apply Ut(rt)

†.
vi. Run RepairkN/2β2 [Estimate

Ut,f
(t)
r

ε,δ , (Ut(rt))
† ·ΠVt(r,·) · Ui(ri)].

3. Output Et(W ).

Lemma 4. Extracti,ν is a circuit of size P (t, k, log(1/δ), 1/ν) · (ck)t−i for some polynomial P and constant
c. In particular, if k = O(1), t = O(log n), δ = 2−λ and ν = 1/poly(λ) then Extractν = Extract1,ν is a
polynomial-size quantum circuit.

Proof. Let P be a polynomial (with positive coefficients) such that for any i,

|Extracti,ν | ≤ P (t, k, log(1/δ), 1/β, 1/ν) + k · 2|Extracti+1,ν′ | .
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Such a polynomial exists by Lemma 2 and Theorem 3. Let c be a constant such that P (1, 1, 1, 1, 2) ≤
c · P (1, 1, 1, 1, 1). The circuit size of Extracti,ν is then bounded by

P (t, k, log(1/δ), 1/β, 1/ν) + k · 2|Extracti+1,ν′ |
≤ P (t, k, log(1/δ), 1/β, 1/ν) + 2ct−i−1kt−i · P (t, k, log(1/δ), 1/β, 1ν ·

t−i
t−i−1 )

≤ (ck)t−iP (t, k, log(1/δ), 1/β, 1/ν) ,

since t−i
t−i−1 ≤ 2 for all i ∈ {1, . . . , t− 1}. ⊓⊔

5.3 Correctness

The key lemma which establishes the correctness of the extractor is the following.

Lemma 5. Let Extract′ be as Extract, except that its output is 0 if Extract outputs ⊥ and

Vi−1(z1, r1, . . . , zi−1, ri−1, wi−1)

otherwise. Then for γ :=
∑t

j=i
k−1
Ri

+ ν and all r = (r1, . . . , ri−1),

dA,Z,O
comp (Extract′i,ν(r; ρ),Threshold

U(i),f(i)
r

γ,ε,δ (ρ))

≤ kt−i · (β +O(β2) + poly(λ) · 4
√
δ) + negl(λ) .

Before proving the lemma, we discuss the intuition behind it and then show how to use it to prove
Theorem 2. Extract′i,ν measures whether the extractor succeeds at the i-th level. ThresholdU

(i),f(i)
r

γ,ε,δ measures
whether the prover’s success probability in the i-th round is at least γ. The lemma bounds the computational
distinguishability of these measurements; in particular, it implies that if we first measure Threshold

U(i),f(i)
r

γ,ε,δ

and obtain an outcome b ∈ {0, 1}, then the outcome of applying Extract′i,ν to the post-measurement state
is also b with all but inverse polynomial probability. Hence to determine whether Extract′i,ν will succeed it

suffices to measure Threshold
U(i),f(i)

r

γ,ε,δ ; the complexity of the latter does not grow with decreasing i.
We note that it is crucial that Lemma 5 bounds the distinguishability of these measurements and not simply

the probability that they produce different outcomes when applied in sequence. While gentle measurement
allows one to move from the latter property to the former, this incurs a square-root loss in the bound.
Compounding this loss over log n rounds would make the bound trivial.

Proof (Theorem 2). Let P ∗ = (U1, . . . , Ut, ρ) be an adversary for Πt. By Lemma 2, E[EstimateU
(1),f(1)

ε,δ (ρ)] =
Pr [⟨P ∗, Vt⟩ → 1]. Hence by Proposition 1,

Pr
[
ThresholdU

(1),f(1)

γ,ε,δ (ρ)→ 1
]
≥ Pr [⟨P ∗, Vt⟩ → 1]− γ.

It follows by Lemma 5 that

Pr
[
Extract′1,ν/2 → 1

]
≥ Pr [⟨P ∗, Vt⟩ → 1]− κ− ν

for κ :=
∑t

i=1
k−1
|Ri| and since β = ν/2kt. The theorem follows by noting that, by definition, the probability

that Extract succeeds is equal to the probability that Extract′ outputs 1. ⊓⊔

Proof. We argue the inductive step. The base case follows by a similar (simpler) argument.
Consider a hybrid extractor Hyb1 in which we replace Steps 3f and 4 with

3f’. If b′ = 1, add (ri 7→ ⊥) to W .
4’. Output 1 if |W | = k, else 0.
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By last-round collapsing, dA,Z,O
comp (Extract′i,γ,ε,Hyb1) = negl(λ).

Observe that after removing the measurement of Wi in Extract′, Steps 3d, 3e and 3g are equivalent to an
invocation of Extract′i+1,ν′ . We can now invoke the inductive hypothesis. Specifically, we consider another
hybrid extractor Hyb2, in which we replace Steps 3d to 3g with the following:

– If b = 1, measure b′ ← ThresholdUr,fr
γ′−ε,ε,δ. If b′ = 1, add (ri → ⊥) to W .

By induction and the triangle inequality, d(Hyb1,Hyb2) ≤ kt−i · (ε+O(ε2) + poly(λ) · 4
√
δ + negl(λ)).

Hyb3 is obtained from Hyb2 by replacing Step 5.3 with

5.3’ If b = 1, add (ri → ⊥) to W .

If b = 1, then by Lemma 2, Pr [b′ = 1] ≥ 1− δ. Hence by gentle measurement, dA,Z,O(Hyb2,Hyb3) = O(k
√
δ).

We write out Hyb3 in full, simplifying where possible.

Hyb3:

1. Compute p0 ← Estimate
U(i),f(i)

r

ε,δ . If p0 < γ, stop and output 0.
2. For j = 1, . . . , k:

(a) Set b := 0.
(b) For s = 1, . . . , N , and while b = 0, apply each of the following steps:

i. Compute ps ← Estimate
U(i),f(i)

r

ε,δ .
ii. Choose ri ← Ri \ Supp(W ) uniformly at random and apply Ui(ri).
iii. Initalize ancilla register B to |0⟩.
iv. Measure b← ThresholdU

(i+1),f(i+1)

γ′,ε,δ , where γ′ :=
∑t

j=i+1
k−1
Ri

+ ν · t−i−1t−i + ε.
v. If b = 1, add (ri 7→ ⊥) to W .
vi. Apply Ui(ri)

†.
vii. Run RepairkN/2β2 [Estimate

U(i),f(i)
r

ε,δ , (Ui(ri))
† · ThresholdU

(i+1),f(i+1)

γ′,ε,δ · Ui(ri)].
3. Output 1 if |W | = k, else 0.

Consider now the j-th iteration of the outer loop. We compute the quantity ζ from Lemma 3. Let
|v⟩ ∈ im(Π

U(i),f(i)
r

≥α ). Then

Eri←Ri\Supp(W )[EstimateU
(i+1),f(i+1)

ε,δ (Ui(ri) |v⟩)]

≥ ⟨v|E
U(i),f

(i)
r
|v⟩ − j − 1

|Ri|
≥ α− k − 1

|Ri|
.

So by Proposition 1,

Prri←Ri\Supp(W )

[
ThresholdU

(i+1),f(i+1)

γ′,ε,δ (Ui(ri) |v⟩)→ 1
]
≥ α− k − 1

|Ri|
− γ′.

Since we abort if p0 < γ, by our choice of ε we have that α− k−1
|Ri| ≥ γ

′ + ν
2t . Hence ζ ≥ ν/2t.

Then by Lemma 3, the probability that b is never set to 1 is at most

(1− ν/2t)N +O(N(1/T +
√
δ)) ≤ β2/2k +O(N

√
δ + β4/k2)

given our choice of N . Hence the probability that p0 ≥ γ and Hyb3 outputs 0 is at most β2/2+O(kN
√
δ+β4).

By gentle measurement,

dA,Z,O(Hyb
3
,Threshold

U(i),f(i)
r

γ,ε,δ ) ≤ β +O(
√
kN

4
√
δ + β2).

The lemma then follows by the triangle inequality. ⊓⊔
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6 Collapsing Hash Function Families

In the following, we show that the hash functions HashA(x) = A · x mod q, indexed by the matrix A, are
collapsing and even when A is “folded” with coefficients being small units in the base ring.

6.1 Definitions

We recall the definition of a hash function family and the desired properties.

Definition 7 (Hash Function Family). Let ℓ, k ∈ poly(λ). A hash function family Hash = (Setup,H) from
X ℓ to Yh consists of a PPT Setup algorithm and a deterministic polynomial-time H algorithm. The Setup
algorithm inputs a security parameter 1λ and outputs the public parameters pp. The H algorithm inputs pp
and a preimage x ∈ X ℓ. It outputs an image y ∈ Yh. When it is clear from the context, we omit the input pp
and write y = H(x).

We define below the notion of collapsing for hash functions [Unr16].

Definition 8 (Collapsing). Let ℓ, k ∈ poly(λ) and W ⊆ X . Let Hash = (Setup,H) be a hash function from
X ℓ to Yh. We say that Hash is collapsing over Wℓ if for any efficient (quantum) adversary A∣∣Pr[Collapsing0A(1λ) = 1

]
− Pr

[
Collapsing1A(1

λ) = 1
]∣∣ ≤ negl(λ),

where the experiment CollapsingbA is defined as follows:

CollapsingbA(1
λ):

1. Sample pp using the Setup(1λ) algorithm and send it over to A.
2. A replies with a classical bitstring y and a quantum state on a register X .
3. Let UH,y be the unitary that acts on X and a fresh ancilla, and CNOTs into the fresh ancilla the bit that

determines whether the output of H(·) equals y and the input belongs to Wℓ. Apply Upp,y, measure the
ancilla, and apply U†pp,y.

4. If the output of the measurement is 0, then abort the experiment. Else proceed.
5. If b = 0 do nothing.
6. If b = 1 measure the register X in the computational basis, discard the result.
7. Return to A all registers and output whichever bit A outputs.

Note that the security experiment CollapsingbA in the definition of collapsing is a quantum algorithm. It is
often easier to work with the classical security notion of somewhere-statistically binding (SSB), defined below,
which is known to imply collapsing.

Definition 9 (Somewhere-Statistically Binding). Let h, ℓ ∈ poly(λ) and W ⊆ X . A hash function
family Hash = (Setup,H) from X ℓ to Yh is said to be somewhere-statistically binding (SSB) over Wℓ if there
exists a PPT BSetup algorithm such that the following hold:

– The BSetup algorithm inputs a security parameter 1λ and an index i ∈ Zℓ. It outputs the public parameters
pp.

– For all i ∈ Zℓ, the distributions Setup(1λ) and BSetup(1λ, i) are computationally indistinguishable.
– For all i ∈ Zℓ,

Pr
[
∃ x0,x1 ∈ Wℓ : x0,i ̸= x1,i ∧ H(pp,x0) = H(pp,x1)

∣∣ pp← BSetup(1λ, i)
]
≤ negl(λ).

Lemma 6 ([Ma20,ACL+22]). Let Hash = (Setup,H) be a hash function family from X ℓ to Yh and W ⊆ X .
If Hash is SSB over Wℓ, then Hash is collapsing over Wℓ.
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6.2 Bounded Homomorphic Public-Key Encryption

We recall the notion of public-key encryption. Note that we define a variant of public-key encryption with
perfect correctness.

Definition 10 (Public-Key Encryption). A public-key encryption (Gen,Enc,Dec) consists of a key gen-
eration algorithm Gen that takes as input the security parameter 1λ and returns a key pair (pk, sk). The
encryption algorithm Enc takes as input pk and a message m an produces a ciphertext c. We require that for
all λ ∈ N, all (pk, sk) in the support of Gen(1λ) and all messages m, it holds that Dec(sk,Enc(pk,m)) = m.

To prove the security of the hash function family fA we assume the existence of a bounded linearly
homomorphic encryption scheme, that we define in the following.

Definition 11 ((ℓ, β)-Bounded Linearly Homomorphic Encryption over Rh
q ). Let h, q ∈ N. An

encryption scheme (Gen,Enc,Dec) is (ℓ, β)-bounded linearly homomorphic over Rh
q if the following hold:

– (Ciphertext Indistinguishability) For a uniformly sampled key pair (pk, sk) ← Gen(1λ), and for all bits
b ∈ {0, 1} it holds that the following distributions are computationally indistinguishable:

c←$Enc(pk, b) ≈ u←$Rh
q .

– (Bounded Homomorphism) For all key pairs (pk, sk) in the support of Gen(1λ), all bits (b1, . . . , bℓ) ∈ {0, 1}ℓ,
all ciphertexts (c1, . . . , cℓ) ∈ Rh×ℓ

q in the support of (Enc(pk, b1), . . . ,Enc(pk, bℓ)), and all vectors x ∈ Rℓ

where ∥x∥ ≤ β, it holds that:

Dec(sk, (c1, . . . , cℓ) · x mod q) =

ℓ∑
i=1

bi · xi.

Examples of encryption schemes that satisfy the above property are NTRU [HPS98,SS11] (for h = 1) and
Regev encryption based on (Ring)-LWE [Reg05,LPR10] (for h > 1).

6.3 A Fold-Collapsing Hash Function

Let h, t ∈ N, ℓ = 2t, i ∈ {0, 1, . . . , t}, and (rj)j∈[i]] ∈ Ri. Define ℓi := ℓ/2i = 2t−i. For any matrix Ai ∈ Rh×ℓi
q ,

we denote by (Ai,0,Ai,1) ∈ (Rh×ℓi+1
q )2 an arbitrary fixed partitioning of the columns of A into two disjoint sets

of columns of identical cardinality. Similarly, for any vector xi ∈ Rℓi , we denote by (xi,0,xi,1) ∈ (Rℓi+1
q )2 the

partitioning of x induced by that of A. In Figure 2 we define a hash function family Hashi := Hash[h, ℓ, (rj)j∈[i]]

from X ℓi to Yh.

Hashi.Setup(1
λ)

if i = 0 then return A0 ←$Rh×ℓ
q

else Ai−1 ← Hashi−1.Setup(1
λ)

Ai := ri ·Ai−1,0 +Ai−1,1 mod q

return pp := Ai

Hashi.H(xi)

return y := Ai · xi mod q

Fig. 2. Construction of hash function families Hashi from X ℓi to Yh, where ℓi := ℓ/2i = 2t−i. For i = 0, we denote
the family by Hash0 = Hash[h, ℓ].

We are now ready to show that the hash function as defined above is SSB, generalizing a Theorem
from [ACL+22]. As an immediate corollary, we obtain that the hash function is also collapsing.
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Lemma 7 (Collapsing). Let β0 ∈ R. Let W0 := {x ∈ R : ∥x∥ ≤ β0}. If there exists an (ℓ, β0)-bounded
linearly homomorphic encryption over Rh

q , then Hash[h, ℓ] is SSB over W0.

Proof. Let (Gen,Enc,Dec) be an (ℓ, β0)-bounded linearly homomorphic encryption over Rh
q . Let A be a

uniformly sampled hash key. We define ℓ hybrid distributions where we gradually substitute the columns of
A with encryptions of 0. That is, in the i-th hybrid, the key of the hash function consists of

(c1, . . . , ci,Bi)

where (ci . . . ci)←$Enc(pk, 0) and Bi←$Rh×(ℓ−i)
q . It is easy to show that the hybrids of each neighbouring

pair are computationally indistinguishable by the ciphertext indistinguishability of the encryption scheme.
Note that, in the ℓ-th hybrid, the hash key consists of a concatenation of encryption of 0.

We will now show that the hash function defined in the ℓ-th hybrid is SSB, and the lemma statement
will follow. We define BSetup(1λ, i) to be identical to the distribution above, except that we substitute the
i-th column of the key with ci←$Enc(pk, 1). The two distributions are computationally indistinguishable
by another application of ciphertext indistinguishability. We now show that there does not exist a pair
(x0,x1) ∈ W2ℓ

0 such that H(x0) = H(x1) and x0,i ̸= x1,i. Assume towards contradiction that it exists, then we
have that

c̃ = (c1, . . . , cℓ) · x0 = (c1, . . . , cℓ) · x1 mod q.

By the (ℓ, β0)-bounded linear homomorphism of the encryption scheme, it holds that c̃ decrypts to two
different x0,i and x1,i. This contradicts the correctness of the scheme. ⊓⊔

Next we show that the function remains collapsing even if we fold the hashing key by linear combinations
with short units. We refer to this property as fold-collapsing.

Lemma 8 (Fold-Collapsing). Let βi ∈ R, i ∈ Zt, ri+1 ∈ R× be a unit with ∥ri+1∥ = 1, Wi :=
{x ∈ R : ∥x∥ ≤ βi}, Wi+1 :=

{
x ∈ R : ∥x∥ ≤ γ−1R · βi

}
, Hashi := Hash[h, ℓ, (rj)j∈[i]] = (Setupi,Hi), and

Hashi+1 := Hash[h, ℓ, (rj)j∈[i+1]] = (Setupi+1,Hi+1). If Hashi is SSB over Wℓi
i , then Hashi+1 is SSB over

Wℓi+1

i+1 .

Proof. Since Hashi is SSB over Wℓi
i , there exists a PPT algorithm BSetupi such that

1. BSetupi inputs 1λ and j ∈ Zℓi and outputs pp.
2. For any j ∈ Zℓi , Setupi(1λ) and BSetupi(1

λ, j) are computationally indistinguishable.
3. For any j ∈ Zℓi ,

Pr
[
∃ xi,0,xi,1 ∈ Wℓi

i : xi,0,j ̸= xi,1,j ∧Ai · xi,0 = Ai · xi,1 mod q
∣∣∣Ai ← BSetupi(1

λ, j)
]
≤ negl(λ)

We construct a PPT algorithm BSetupi+1 which, on input j′ ∈ Zℓi+1
, samples b ∈ {0, 1}, runs BSetupi on

j = j′ + b · ℓi+1 to obtain Ai, and returns Ai+1 := ri+1 ·Ai,0 +Ai,1 mod q. By Property 2 above, we clearly
have that Setupi+1(1

λ) and BSetupi+1(1
λ, j′) are computationally indistinguishable for all j′ ∈ Zℓi+1 .

Fix any j ∈ Zℓi and j′ ∈ Zℓi+1 satisfying j = j′ mod ℓi+1, any Ai ∈ BSetupi(1
λ, j), any Ai+1 = ri+1 ·Ai,0+

Ai,1 mod q ∈ BSetupi+1(1
λ, j′), and any xi+1,0,xi+1,1 ∈ Wℓi+1

i+1 satisfying Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q.
Define xi,0 := (ri+1 · xi+1,0,xi+1,0) and xi,1 = (ri+1 · xi+1,1,xi+1,1).

Note that ∥xi+1,0∥ ≤ γ−1R ·βi and ∥xi+1,1∥ ≤ γ−1R ·βi. Clearly ∥xi,0∥ ≤ βi and ∥xi,1∥ ≤ βi. In other words,
we have xi,0,xi,1 ∈ Wℓi

i .
Since Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q, we have

Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q,

(ri+1 ·Ai,0 +Ai,1) · xi+1,0 = (ri+1 ·Ai,0 +Ai,1) · xi+1,1 mod q,

Ai · (ri+1 · xi+1,0,xi+1,0) = Ai · (ri+1 · xi+1,1,xi+1,1) mod q,

Ai · xi,0 = Ai · xi,1 mod q.
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Furthermore, if xi+1,0,j′ ̸= xi+1,1,j′ , we have xi,0,j′ ̸= xi,1,j and xi,0,j′+ℓi+1 ̸= xi,1,j′+ℓi+1 since ri+1 ∈ R×
is a unit in R.

Suppose Hashi+1 is not SSB over Wℓi+1

i+1 , then there exists j′ ∈ Zℓi+1
such that

Pr
[
∃ xi+1,0,xi+1,1 ∈ Wℓi+1

i+1 : xi+1,0,j′ ̸= xi+1,1,j′ ∧Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q
∣∣∣Ai+1 ← BSetupi+1(1

λ, j′)
]

is non-negligible. Consequently, by the above derivation, the average

1

2
· Pr
[
∃ xi,0,xi,1 ∈ Wℓi

i : xi,0,j′ ̸= xi,1,j′ ∧Ai · xi,0 = Ai · xi,1 mod q
∣∣∣Ai ← BSetupi(1

λ, j′)
]

+
1

2
· Pr
[
∃ xi,0,xi,1 ∈ Wℓi

i : xi,0,j′+ℓi+1
̸= xi,1,j′+ℓi+1

∧Ai · xi,0 = Ai · xi,1 mod q
∣∣∣Ai ← BSetupi(1

λ, j′ + ℓi+1)
]

is non-negligible. We conclude that there exists j ∈ {j′, j′ + ℓi+1} ⊆ Zℓi such that

Pr
[
∃ xi,0,xi,1 ∈ Wℓi

i : xi,0,j ̸= xi,1,j ∧Ai · xi,0 = Ai · xi,1 mod q
∣∣∣Ai ← BSetupi(1

λ, j)
]

is non-negligible, contradicting Property 3 above. ⊓⊔

Note that the elements rj of the sets R defined in Proposition 2 satisfy the requirements in Lemma 8.

7 Bulletproofs

In this section, we recall the family of lattice-based Bulletproofs protocols [BLNS20,AL21,ACK21] and prove
that they are recursive special sound and last-round collapsing.

Let h, ℓ,m, q, t = poly(λ) with ℓ = 2t, R ⊆ R a finite subset, s ∈ R a slack element, and (βi)
t
i=0 ∈ Rt+1 a

sequence of norm bounds. In Fig. 3, we recall the construction of lattice-based Bulletproofs stated as a family
of protocols (Setup, Σi)

t
i=0 parametrized by the above parameters. Each Σi is a public-coin (2i+ 1)-message

protocol associated to the spaces (Rh
q ,Rℓ, (R2h

q , R)i,Rℓ/2i) where both the prover Pi and the verifier Vi input
the public parameters consisting of a matrix A ∈ Rh×ℓ

q and a statement consisting of a vector y ∈ Rh
q . The

prover Pi additionally inputs a witness which consists of a vector x ∈ Rℓ. Note that Σt is the lattice-based
Bulletproofs protocol as described in prior works [BLNS20,AL21,ACK21].

Remark 2. It is common in the lattice setting that a soundness gap exists in argument systems, i.e. the
relation that the argument is complete for is a subset of the relation that the argument is sound for. For
lattice-based Bulletproofs, it means that while the prover is able to convince the verifier about (A,y) if it has
a short preimage x satisfying A · x = y mod q, the knowledge extractor would only be able to extract another
slightly longer vector x′ satisfying A · x′ = s · y mod q for some slack element s ∈ R depending on the choice
of R. Since we mainly focus on the soundness of lattice-based Bulletproofs protocols in this work, we let the
verifier in the protocol in Fig. 3 check the relaxed soundness relation instead of the completeness relation.

It is well-known that the lattice-based Bulletproofs protocol is (3, 3, . . . , 3)-special sound. Analogously, we
show that the family of lattice-based Bulletproofs protocols constructed in Fig. 3 is recursive 3-special sound.

Lemma 9. If m is a power of a prime p, let R =
{
1, 1 + ζ, . . . ,

∑
i∈Zp−1

ζi
}
, s = 1, and (βi)

t
i=0 be such that

βi = 24−i ·φ(m)−i ·γ−iR ·β0 for all i ∈ [t]. If m is a power of 2, let R =
{
1, ζ, . . . , ζφ(m)−1}, s = 2, and (βi)

t
i=0

be such that βi = 3−i · φ(m)−i · γ−iR · β0 for all i ∈ [t]. In either case, the family of lattice-based Bulletproofs
protocols (Πi)

t
i=0 constructed in Fig. 3 is recursive 3-special sound.

Proof. For each i ∈ [t], we construct the following deterministic polynomial-time extractor Ei:

Ei((r
(j)
i ,x

(j)
i )j∈[3]) :=

(
r
(1)
i · x

(1)
i r

(2)
i · x

(2)
i r

(3)
i · x

(3)
i

x
(1)
i x

(2)
i x

(3)
i

)
· s ·V−1T ·

0
1
0
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Σi = (Pi, Vi)

Pi(A,y,x) Vi(A,y)

(A0,y0) := (A,y) (A0,y0) := (A,y)

x0 := x

for j ∈ [i] do for j ∈ [i] do

lj−1 := Aj−1,1 xj−1,0 rj ←$R

rj−1 := Aj−1,0 xj−1,1

lj−1, rj−1

rj

Aj := rj ·Aj−1,0 +Aj−1,1 Aj := rj ·Aj−1,0 +Aj−1,1

yj := lj−1 + rj · yj−1 + r2i · rj−1 yj := lj−1 + rj · yj−1 + r2i · rj−1

xj := xj−1,0 + rj · xj−1,1

endfor endfor

xi := st−i · xi

xi

return (Ai · xi = st−i · yi mod q) ∧ (∥xi∥ ≤ βi)

Fig. 3. Family of lattice-based Bulletproofs protocols (Πi)
t
i=0 = (Setup, Σi)

t
i=0 over R parametrized by a challenge set

R ⊆ R, a slack s ∈ R, and norm bounds (βi)
t
i=0 ∈ Rt+1, where Setup(1λ) returns A sampled uniformly at random

from Rh×ℓ
q .
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where T := (r
(1)
i , r

(2)
i , r

(3)
i ). For r(j)i ∈ R and x

(j)
i ∈ Rℓ/2i , Proposition 2 implies that s ·V−1T ∈ R3×3, and

therefore Ei((r
(j)
i ,x

(j)
i )j∈[3]) outputs a vector xi−1 ∈ Rℓ/2i−1

.
Fix any i ∈ [t]. Suppose (A,y, (l1, r1), r1, . . . , (li−1, ri−1), ri−1, (li, ri), (r

(j)
i ,x

(j)
i )j∈[3]) is an accepting

3-branch of transcripts for Σi. Let T := (r
(1)
i , r

(2)
i , r

(3)
i ) and xi−1 := Ei((r

(j)
i ,x

(j)
i )j∈[3]). We have

Ai

(
x
(1)
i x

(2)
i x

(3)
i

)
= yi mod q

Ai−1

(
r
(1)
i · x

(1)
i r

(2)
i · x

(2)
i r

(3)
i · x

(3)
i

x
(1)
i x

(2)
i x

(3)
i

)
=
(
li−1 yi−1 ri−1

)
VT mod q

Ai−1

(
r
(1)
i · x

(1)
i r

(2)
i · x

(2)
i r

(3)
i · x

(3)
i

x
(1)
i x

(2)
i x

(3)
i

)
· s ·V−1T ·

0
1
0

 =
(
li−1 yi−1 ri−1

)
VT · s ·V−1T ·

0
1
0

 mod q

Ai−1 xi−1 = yi−1 mod q

Furthermore, since
∥∥∥x(j)

i

∥∥∥ ≤ βi for all j ∈ [3], by Proposition 2, we have xi−1 ≤ βi−1. In other words,
(A,y, (l1, r1), r1, . . . , ri−1,xi−1) is an accepting transcript for Σi−1. ⊓⊔

Finally, we show that the family of lattice-based Bulletproofs protocols constructed in Fig. 3 is last-round
collapsing.

Lemma 10. Let R, s, and (βi)
t
i=0 be as in Lemma 9. Furthermore, let (β̂i)ti=0 be such that β̂i = γ−iR · β0

for all i ∈ [t]. If there exists an (ℓ, β0)-bounded linearly homomorphic encryption over Rℓ
q, then for each

i ∈ {0, 1, . . . , t} the lattice-based Bulletproofs protocol Πi constructed in Fig. 3 is last-round collapsing.

Proof. The theorem statement holds trivially for i = 0. In the following, let i ∈ [t]. LetWi+1 = {x ∈ R : ∥x∥ ≤ βi}
and Ŵi+1 =

{
x ∈ R : ∥x∥ ≤ β̂i

}
. We observe that upon receiving the last prover message xi, the conditions

checked by the verifier are Hashi(xi) = st−i · yi mod q and xi ∈ Wℓi
i+1, where Hashi := Hash[r1, . . . , ri] with

rj being the j-th challenge sent by the verifier, for some yi which is independent of the last-round message xi.
By Lemmas 7 and 8, we have that Hashi is collapsing over Ŵi+1 for all possible choices of (r1, . . . , ri). Since
Wi+1 ⊆ Ŵi+1, Hashi is also collapsing over Wi+1 for all possible choices of (r1, . . . , ri). In other words, the
argument system Πi is last-round collapsing. ⊓⊔

Combining Theorem 2 and Lemmas 9 and 10, we obtain Theorem 4 as the main result of this work.

Theorem 4 (Formal version of Theorem 1). Let m, R, R, s, and (βi, β̂i)
t
i=0 be as in Lemmas 9 and 10,

where m is either a prime or a power of 2. If there exists an (ℓ, β0)-bounded linearly homomorphic encryption
over Rℓ

q, then the lattice-based Bulletproofs protocol Πt constructed in Fig. 3 is a post-quantum proof of
knowledge for the relation{

(A,y,x) ∈ Rh×ℓ
q ×Rh

q ×Rℓ : Ax = st · y mod q ∧ ∥x∥ ≤ β0
}

with knowledge error 2 log ℓ/φ(m).
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A Composition of Arguments

In this section, we establish a connection between special sound arguments and recursive special sound
arguments. Specifically, we observe that a family of special sound arguments with compatible structural
properties can be composed to obtain a family of recursive special sound arguments.

Definition 12 (k-Special Soundness). Let Π = (Setup, Σ = (P, V )) be a 3-message public-coin argument
system associated to the spaces (X,W,Z,R,W ′). The system Π is said to be k-special sound for a relation R
if there exists an efficient extractor E satisfying the following properties:

– The extractor E takes as input (r(j), w(j))j∈[k] ∈ (R×W ′)k and outputs some value w ∈W .
– If (pp, x, z, (r(j), w(j))j∈[k]) is an accepting k-branch of transcripts for Σ, and w = E((r(j), w(j))j∈[k]),

then R(pp, x, w) = 1.

Definition 13 (Trivial Protocol). The trivial protocol Σ = (P, V ) for a relation R is a 1-message protocol
where P (pp, x, w) sends w and V (pp, x) outputs R(pp, x, w).

The following theorem is immediate by observing the definitions of special soundness and recursive special
soundness.

Theorem 5. Let R be a relation,Σ0 = (P0, V0) be the trivial argument for R, andΠ1 = (Setup, Σ1 = (P1, V1))
be a 3-message public-coin argument system which is k-special sound for R. Let Π0 = (Setup, Σ0). The family
(Πi)

1
i=0 is recursive k-special sound.

Definition 14 (Argument System Composition). Let (Πi = (Setup, Σi = (Pi, Vi)))
t
i=0 and (Π ′i =

(Setup′, Σ′i = (P ′i , V
′
i )))

t′

i=0 be families of public-coin argument systems, where Πi and Π ′i are (2i+1)-message,
associated to the spaces (X,W, (Zj , Rj)j∈[i],Wi+1)

t
i=0 and (X ′,W ′, (Z ′j , R

′
j)j∈[i],W

′
i+1)

t′

i=0 respectively. Sup-
pose Πt and Π ′0 satisfy the following structural properties:

– There exists a polynomial-time TransSetup algorithm such that the ensembles of distributions

{
pp′ : pp′ ← Setup′(1λ)

}
λ∈N and

pp′ :
pp← Setup(1λ)
ri ← Ri, ∀i ∈ [t]

pp′ ← TransSetup(pp, r1, . . . , rt)


λ∈N

are computationally indistinguishable.
– Wt =W ′.
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– After the 2t-th message rt is being sent by Vt(pp, x), both Pt(pp, x, w) and Vt(pp, x) can derive some
statement xt ∈ X ′.

– After the (2t+ 1)-th message wt is being sent by Pt(pp, x, w), Vt(pp, x) accepts if V ′0(pp′, xt) accepts wt,
where pp′ := TransSetup(pp, r1, . . . , rt) and r1, . . . , rt are the challenges sent by Vt.

The TransSetup-compositon of the two families, written as (Πi)
t+t′

i=0 = (Πi)
t
i=0 ⋄TransSetup (Π ′i)t

′

i=0, is a family of
public-coin argument systems where, for j ∈ [t′],Πt+j = (Setup, Σt+j = (Pt+j , Vt+j)) is a (2(t+j)+1)-message
public-coin argument system, where (Pt+j(pp, x, w), Vt+j(pp, x)) is constructed as follows:

– Execute the interaction (Pt(pp, x, w), Vt(pp, x)) until the 2t-th message is sent, with Pt+j playing the role
of Pt and Vt+j playing the role of Vt, so that both Pt+j and Vt+j derive a statement xt ∈ X ′.

– Let r1, . . . , rt be the challenges sampled by Vt, and wt be the (2t+1)-th message supposed to be sent by Pt

in Σt.
– Both Pt+j and Pt and Vt+j compute pp′ := TransSetup(pp, r1, . . . , rt).
– Execute the interaction (P ′j(pp

′, xt, wt), V
′
j (pp

′, xt)) with Pt+j playing the role of P ′j and Vt+j playing the
role of V ′j .

– Vt+j outputs whatever V ′j outputs.

By the construction of the composition in Definition 14, the following theorem is immediate.

Theorem 6. If (Πi)
t
i=0, (Π ′i)t

′

i=0, and TransSetup be as in Definition 14, then the family

(Πi)
t+t′

i=0 = (Πi)
t
i=0 ⋄TransSetup (Π ′i)t

′

i=0

is recursive k-special sound. Furthermore, for each j ∈ [t], if Π ′j is last-round collapsing, then Πt+j is last-round
collapsing.

Combining Theorems 5 and 6, we obtain the following corollary.

Corollary 1. For i ∈ [t], let Ri be a relation, Σi,0 be the trivial argument for Ri, and Πi,1 = (Setupi, Σi,1)
be a 3-message public-coin argument system which is k-special sound for Ri. Let Πi,0 = (Setupi, Σi,0) for
i ∈ [t]. If (Πi,j)

1
j=0, (Πi+1,j)

1
j=0, and TransSetupi satisfy the conditions in Definition 14 for all i ∈ [t−1], then

the family (Π ′i)
t
i=0 = (Π1,j)

1
j=0 ⋄TransSetup1 (Π2,j)

1
j=0 ⋄TransSetup2 . . . ⋄TransSetupt−1

(Πt,j)
1
j=0 is recursive k-special

sound. Furthermore, for all i ∈ [t], if Πi,1 is last-round collapsing, then Π ′i is last-round collapsing.

The lattice-based Bulletproofs protocols family described in the fashion of Fig. 3 can be seen as the
result of applying Corollary 1 to lattice-based Bulletproofs in the fashion those described in the litera-
ture [BLNS20,AL21,ACK21].
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