
XXXX 1

Toward Full Accounting for Leakage Exploitation
and Mitigation in Dynamic Encrypted Databases

Lei Xu, Anxin Zhou, Huayi Duan, Cong Wang, Qian Wang, Xiaohua Jia

Abstract—Encrypted database draws much attention as it provides privacy-protection services for sensitive data outsourced to a third
party. Recent studies show that the security guarantee of encrypted databases are challenged by several leakage-abuse attacks on
its search module, and corresponding countermeasures are also proposed. Most of these studies focus on static databases, yet the
case for dynamic has not been well investigated. To fill this gap, in this paper, we focus on exploring privacy risks in dynamic encrypted
databases and devising effective mitigation techniques. To begin with, we systematically study the exploitable information disclosed
during the database querying process, and consider two types of attacks that can recover encrypted queries. The first active attack
works by injecting encoded files and correlating file volume information. The second passive attack works by identifying queries’ unique
relational characteristics across updates, assuming certain background knowledge of plaintext databases. To mitigate these attacks, we
propose a two-layer encrypted database hardening approach, which obfuscates both search indexes and files in a continuous way. As
a result, the unique characteristics emerging after data updates can be eliminated constantly. We conduct a series of experiments to
confirm the severity of our attacks and the effectiveness of our countermeasures.

Index Terms—Encrypted search, Cryptographic databases, Leakage abuse attack, Defenses.

F

1 INTRODUCTION

THE last few years have witnessed the fast development
of encrypted database systems [1], [2], [3], which pro-

vide practical and provable confidential service for host-
ing the outsourced data. For commercial and practicality
concerns, many advanced property-preserving encryption
schemes are employed, aiming to preserve various flavor
of properties for encrypted data, particularly in the area
of encrypted search [4], [5], [6], in which the client can
retrieve the expected encrypted data without decryption.
However, recent studies [7], [8], [9], [10], [11] show that most
of these encrypted databases are vulnerable to potential
attacks because the fundamental search module is not as
secure as they claimed. Here the search module is usually
implemented by various searchable encryption (SE) scheme
which enables a client to perform search on encrypted data
directly through an untrust server without decryption [4].

Leakage abuse attack (LAA) [12], [13], [14] is such
an attack mentioned above. Empiric results show that,
in LAAs, an adversary with certain prior knowledge can
easily leverage the admitted leakage in SE to compromise
encrypted databases. A typical example is count attack,
proposed by Cash et al. [8], which recovers the query’s

• L. Xu is with the School of Science, Nanjing University of Science and
Technology, Nanjing, 210094, China.E-mail: xuleicrypto@gmail.com

• A. Zhou, H. Duan, C. Wang, X, Jia are with the Department of Computer
Science, City University of Hong Kong, Hong Kong SAR, China, and are
also with the City University of Hong Kong Shenzhen Research Institute,
Shenzhen 518057, China.E-mail: anxizhou-c@my.cityu.edu.hk, hduan2-
c@my.cityu.edu.hk, congwang@cityu.edu.hk, csjia@cityu.edu.hk

• Q. Wang is with the School of Cyber Science and Engineer, Wuhan
University, Wuhan, 430070, China.E-mail: qianwang@whu.edu.cn

Manuscript received April 19, 2005; revised August 26, 2015.

content by matching the co-occurrence count of the query
and the background information. Recently, according to the
goal of the attack, most existing LAAs can be classified
in two categories: 1) data reconstruction attack, which fo-
cuses on recovering the content of encrypted data (numeric
data) [15], [16]; 2) query recovery attack that aims to mine
the underlying content of the encrypted query [8], [13].
Along with the development of LAAs, many countermea-
sures are proposed, such as database padding to hide the
query result’s length [17], [18], [19], in order to sustain the
long-term growth of encrypted databases.

While so many LAAs and countermeasures have been
actively studied, most of them focus on static databases, few
works are discussed on dynamics that supports addition
and deletion operations [20], [21], [22]. As known, apart
from access pattern, dynamic databases also leaks whether
the update encrypted entries contain the keyword corre-
sponding to previous queries, aka “update pattern” [23],
but how much this term leaks has not been fully under-
stood. In light of this view, in this paper, we will focus on
the investigation of security issues in dynamic databases,
especially the file storage database that supports keyword-
based search. Specifically, we first revisit LAAs under differ-
ent settings, including passive and active adversaries, and
demonstrate that dynamic databases are more easily to be
damaged than static ones. Then based on the understanding
of these well-designed attacks, we devise comprehensive
countermeasures to hardening the security of existing en-
crypted databases.

1.1 Motivation and Our Approaches
Following we overview the limitation of prior leakage ex-
ploitation on dynamic encrypted databases and illustrate
our new approaches on both leakage exploitation and cor-
responding mitigations.

XXXX 2

Limitation of prior LAAs on DSSE and Mitigations. File
inject attack is one of the few known attacks against DSSEs
suggested by Cash et al. [8] and improved by Zhang et
al. [24]. It allows the active adversary to inject designated
files in the database and then identifies the query by ob-
serving the returned document combinations. For example,
f1, f2, f3 are three injected files and they have the only one
common keyword w. Later, if a query q is responded with
the result set containing f1, f2, f3, the adversary can infer
that q is w. To ensure the generated file can be injected
into the database successfully, they provide a solution for
adjusting file volume, because files too large or too small
may be recognized as outliers.

An implicit assumption in this attack is that the file
IDs in the encrypted index are exactly the plaintext ones.
Otherwise, the adversary cannot identify which this injected
file is. Zhang et al. argue that this assumption can be
removed by assigning these files a distinctive volume and
leveraging the volume leakage to identify them. However,
how to implement it has not been well-investigated. For this
concern, in this paper, we will instantiate this solution and
show how to specify admissible volume size for injected
files and generate these injected files. The key to our solution
is to introduce the total query result volume to help identify
the query rather than the individual file size only.
Revisiting LAA from the Update Pattern. In addition to
the assumption of knowing file size, file injection attack also
requires that the adversary can induce the data owner to
inject his generated files into the database. This requirement
is too harsh and not suitable for most real-world database
applications. Is there any other effective way that can solve
the above problem? Prior LAAs on static databases show
that allowed leakage in SSE can significantly devastate the
database’s confidentiality, because some characteristics (e.g.,
query result length) are invariant in plaintext and encrypted
databases. The adversary can easily recover the query by
matching above characteristics. For example, the queries
and keywords with the same unique result length can be
matched. However, such an attack requires that the adver-
sary (possibly) captures the full knowledge of the encrypted
database, which is almost impossible in dynamic databases.
Can this philosophy still be applied to attack DSSE?

We answer the above problem by proposing a new LAA
from update pattern leakage, which reveals the database
changes before and after performing update operations. We
find that the above assumption of capturing full knowing
database knowledge in LAAs can be naturally weakened
in dynamic databases, because files in a dynamic database
are uploaded one after another and can be distinguished
by the query timestamps. Update pattern leakage makes it
easy to know which part is the newly updated files. When
the background knowledge of encrypted data for this part
(not all) is known (trending topic), the passive adversary can
efficiently recover the query’s content by using prior LAAs.
Attack details can be seen in our constructions.
Two-layer Padding Countermeasures. Three observations
can be made from the above studies: 1) the leakages in
dynamic encrypted databases are diverse, including char-
acteristics derive from update pattern (passive adversary v.s
index) and volume of the file (active adversary v.s file); 2) the
leakage in dynamic encrypted databases exist in its whole

life cycle, the exposure of any updates will leak the content
of the query.

In light of the above observations, we devise a two-layer
countermeasure from both index and file layers. Consistent
with prior studies against LAAs in static’s, padding is
necessary for dynamic settings unless using costly ORAM.
Our goal is to ensure that all generated leakage are hardly be
distinguished after doing padding. However, achieving this
goal requires executing padding over the whole keyword
set and will incur heavy storage overhead. Inspired by Bost
et al.’s cluster-based strategy [17], mostly it just requires
that the adversary cannot distinguish the exact content of
the query in an admissible subset. Thus we leverage cluster
padding to boost storage efficiency. In addition, empirical
results show that high-frequency padding will also enlarges
this overhead, we answer this question by introducing batch
padding as as to further reduce the padding overhead.
Our Contributions. We summarize the contributions of this
paper as follows:

1) We develop two generic attack models against the
dynamic encrypted database, which can break the con-
fidentiality of the query by analyzing its revealed re-
sults. They awake our awareness of overlooked update
pattern and figure out that the leakage in encrypted
databases is two-folder, including both index informa-
tion and file information.

2) We devise the first two-layer countermeasures to de-
fend both active and passive adversaries for dynamic
encrypted databases. More specifically, we doo padding
on the index to hide the leakage produced in ac-
cess/update pattern and do padding on the file to
prevent the adversary from learning the encrypted
database by volume pattern.

3) We conduct a series of experiments to evaluate the per-
formance of our attacks and countermeasure. The ex-
periment results show that our attacks present superior
performances in recovering encrypted queries against
dynamic databases. Even though 50% of background
knowledge is known, the query recovery rate can still
up to 86.5% in a real-world dataset. For countermea-
sures, experiment results show that we can introduce
less than 1.2× total overhead to reduce the recovery
rate to below 0.5%.

2 DYNAMIC SSE AND LEAKAGE PROFILES

We take the dynamic searchable encryption (DSSE) as an
example to illustrate the attack and defense for dynamic
encrypted database that leaks access pattern and volume in
this work. Here we first review the definition of DSSE and
relevant background knowledge.

LetW = {w1, . . . , wm} be the keyword space, a database
over W can be represent by a n-tuple keyword/identifier
set DB = {(idi,Wi)}ni=1, where Wi ⊂ {0, 1}∗ is the set of
distinct keywords that appear in the file fi and idi denotes
the identifier of fi. For a given keyword w ∈ W , we use
DB(w) = {idi : w ∈ fi} to denote the identifier set of files
that contains of keyword w. The size of the set DB(w) is
written as |DB(w)|, the size of the document fi is denoted
as #fi = |Wi|. More notations can be viewed in Table 1.

XXXX 3

Dynamic Searchable Symmetric Encryption. A DSSE [20]
consists of three protocols, Setup, Update and Search,
between the client and the server. They proceed as follows:
Setup protocol takes the security parameter λ and database
DB as inputs and outputs the encrypted database EDB,
a secret key K, and the client’s internal state σ; Search
protocol takes the EDB, secret key K, the internal state σ
of client and the keyword w ∈ W as inputs, and outputs
the query results R; Update protocol takes the encrypted
database EDB, secret key K, newly added entries in, client’s
internal state σ and the operation op as input, and outputs
an update encrypted database EDB′. We say that a DSSE
scheme is correct if the Search protocol returns all matched
results for the query with overwhelming probability, i.e.,
Pr[Search(EDB, qw) = DB(w)] = 1 − neg(λ), where qw
denotes the query about w and neg(λ) is the negligible
function in security parameter λ.
Formalization of Leakage Profile and Security. Leakage
profiles are defined to characterize the leakage of DSSE,
which indicates the information revealed from each pro-
tocol. Let DSSE = (Setup, Search, Update) be a DSSE
scheme, their leakage profiles can be parameterized as a
triple of stateful functions LDSSE = (LStp,LSrch,LUpdt), re-
spectively. Before giving the details, we first review a notion
history, which will be utilized to define leakage profiles
later. Specifically, a t-query history H is a tuple (DB,w),
wherew = (w1, · · · , wt) is a sequence of queried keywords.
With this notion, typical leakage profiles of DSSE can be
defined as follows:

• Setup protocol reveals the total number of key-
word occurrences in database DB, i.e., Lstp(DB, σ) =∑
w∈W |DB(w)|.

• Search protocol reveals the search result and
the number of the matched result, i.e., Lsrch(DB,
q1, . . . , qt) = {DB(q1), · · · , DB(qt)}, also known as
access pattern.

• Update protocol reveals the discrepancy of
the database before and after update, i.e.,
LUpdt(DB, in, σ) = {old(DB(w)), new(DB(w))}.

We say that a DSSE is L-semantic secure against any
probabilistic polynomial time (PPT) adversary if it cannot
distinguish the view of any two histories which have the
same leakage profiles with a non-negligible probability.
However, recent studies show that the existing encrypted
search schemes are not secure as they claimed. The direct
reason resulted in this dilemma are the invariant character-
istics derived from the above leakages profiles, they may
expose the connection between the query and keyword if a
certain characteristic is unique. Here we introduce some of
the invariant characteristics that will used later. The details
are given as follows:

Result length pattern records the number of files (IDs)
returned for each query. For given queries q1, . . . , qt, the
result length pattern is defined as

Krlp(DB, q1, . . . , qt) = {|DB(q1)|, · · · , |DB(qt)|}
Query volume pattern records the size of files returned

for each query. Let V(qi) =
∑
f∈DB(qi)

#f . For given
queries q1, . . . , qt, the query volume pattern is defined as

Kqvp(DB, q1, . . . , qt) = {V(q1), · · · ,V(qt)}

TABLE 1
Notations

Notation Description
w keyword selected from the file
q encrypted query of some keyword
Wi the set of keywords appeared in fi
idi the identifier of the i-th plaintext file
[n] the integer set {1, . . . , n}
|S| the cardinality of the set S
#f the size of the file f
∩ the intersection operation of two or more objects
W dictionary, aka, keyword space
DB plaintext database
EDB encrypted database
KR relation characteristic
KI independent characteristic

A � B all elements in collection in A exits in set B
‖x‖p Lp norms of vector x

File volume pattern records the size of each file stored
in the storage server. For given files f1, f2, . . . , the file size
pattern is defined as

Kfvp(DB, f1, f2, . . .) = {#f1,#f2, · · · }

Query relation pattern Kqrp records the correlation of
the queries, e.g., co-occurrence count, similar coefficient, For
given queries q1, . . . , qt, the relation pattern is defined as

Kqrp(DB, q1, . . . , q2) = {ri,j : i, j ∈ [t]}

Observe that, only the query with unique characteristic
can be recovered. Thus, if the characteristic can distinguish
each query more finely, then it can recover the content of
the query more accurately. Without loss of generality, we
classify these characteristics into two categories, independent
and relational characteristics, where the former one describes
the feature for one query and the later one describes the
relation between queries like co-occurrence count.

3 ATTACK MODEL

3.1 Adversary, Knowledge and Target Goals

For achieving a comprehensive understanding of leakage
abuse attack, we start with the three elements of the attack,
the details are as follows:
Adversary. The adversary is the executor of an attack,
which can always be classified into two categories, i.e.,
active adversary and passive adversary, depending on her
capabilities. For an active adversary, she can be proactive in
asking the client to perform the required addition, deletion,
and search operations for some designated items and then
observe the query response. While for the passive adversary,
she could only monitor the client and the server’s commu-
nication channel and learn their communication transcripts,
including query tokens and corresponding responses.
Knowledge. Knowledge captures the background informa-
tion that is exposed to the adversary, including plaintext files
and underlying auxiliary data. The plaintext files are the
collections of keywords selected from the keyword space,
and the auxiliary data is the attribute information of the
plaintext database, like keyword distribution, file volume,
and search frequency. Generally, the amount of knowledge
an adversary captured has a crucial impact on the attack
effectiveness.

XXXX 4

Target goal. The goal of the attack reports the target objec-
tive of the adversary. According to the target goal, existing
attacks can be classified into two categories, i.e, query re-
covery attack and data reconstruction attack. Query recover
attack is to mine the content of the encrypted requests issued
by the clients, and data reconstruction attack is to recon-
struct the encrypted database that supports rich queries. In
this work, we mainly focus on the former one.

3.2 Threat Assumption and Attack Models
With an understanding of the three elements of leakage
abuse attack, now we illustrate the threat assumptions of
this work and give an overview of our attack models.

For the above goals, we first consider a generally persis-
tent attack model in which the adversary can freely access
the encrypted data and fetch updated information. Specifi-
cally, for passive adversaries, we assume that she knows the
all plaintext index information of the encrypted database,
and he can continually observe the query transcripts be-
tween the cloud and the server. Thus the discrepancy of the
database in different stages can be observed. Moreover, we
assume plaintext IDs are encrypted and never revealed to
the adversary, i.e., she does not know the mapping between
the encrypted IDs and plaintext IDs.

While for an active scenario, the adversary is assumed to
have some additional abilities. For example, she can induce
the client to inject some designated files with specific size
into the database (also seen as [8]) adaptively, and she can
learn the returned file volume of all queries by observing
the communication volume. In particular, she can learn the
discrepancy of the file volume between two update stages,
which is the key contributing to identifying injected files.
Both of the above adversaries are aimed at recovering the
content of the encrypted queries.

3.3 Revisiting Leakage Abuse Attacks
Combing with the above description, we will review some
classic leakage abuse attack models in this subsection.
IKK and Count Attack. As two state-of-art works in ex-
isting passive attacks, IKK attack [7] and count attack [8]
are known for their efficiency and theoretical significance
on understanding the influence of leakage revealed from
the encrypted search problem. Specifically, the IKK attack
first shows that the access pattern disclosure may bring
devastating damage to the encrypted query while the co-
occurrence probabilities of two keywords in the plaintext
database are revealed. Cash et al.’s improve their work and
point out to use more precise metrics, result length and co-
occurrence count, to replace the co-occurrence probabilities.
Besides, they also propose to use the result length to recover
the queries with the unique result first, which significantly
boosts the attack efficiency.
File Injection Attack. File injection is first proposed by
Cash et al.’s and optimized by Zhang et al [24]. It’s main
idea is to encode each keyword with a specified binary
index vector, and then observe the query result to rebuild
the index vector to mine the content of the query. For
example, let w1, · · · , w8 be keywords and q1, · · · , q8 be the
corresponding queries. For each keyword, we first encode
the keyword as a 3-bit index vector with its serial number

i − 1, i.e., r1 = (0, 0, 0), r2 = (0, 0, 1), · · · , r8 = (1, 1, 1),
then design the injected file as fi = {wj : rj,i = 1}, where
i ∈ [log 8]. In a query, if a query returns only f1 of these
3 files, the index vector is (1, 0, 0), then we know that the
content of this query is w1.

4 REFINING LEAKAGE ABUSE ATTACKS

We present two new attack models to refine prior ones.
The first is an active attack named structure-based decoding
attack. In particular, it leverages individual file volume
leakage to encode each keyword, which can be deployed
easily. The second attack is the relation-based inference
attack, which exploits a more precise metrics, similarity,
rather than co-occurrence count, to quantify the relationship
between two queries. Therefore, the corresponding candi-
date keywords of one query can be further distinguished
for matching. In the following, we give the technical details
of the design.

4.1 Active Attack: Structure-based Decoding

In an active attack, a significant nature is that the adversary
can guide the client to execute designated operations like
addition, deletion and search. In this part, we mainly discuss
how active attack works, in particular file injection attacks.
As mentioned before, launching such an attack requires an
additional condition that the adversary can identify when
the injected files are returned, but how to implement it
has not been well-investigated. Following, we will show
how to implement it by exploiting individual file volume
leakage. We call it structure-based decoding attack because
it leverages the binary or volume structure of the query
result.

Before that, we extend Zhang et al.’s file generation
protocol by adding a constraint on file size so that each
generated file has the designated size. Such a protocol is
denoted as F ← FileDes(C, s), where C ⊂ W is the set of
keywords to be used and s = (s1, . . . , slog |C|) is the size of
files f1, . . . , flog |C| in F. We perform padding on each file to
satisfy the file size constraint. Specifically, we set fi ← f ′i‖f ′i ,
where f ′ � Wi, fi � W and #fi = si. With the protocol,
the refined file injection attack with admissible injected
volume is given in Fig. 1. Assume that q = (q1, . . . , qk)
are k queries to be recovered, and the underlying keyword
space is W . Then the total file-injection attack consists of
two steps, following are the technical details.

The first step is to generate the injected files, we im-
plement it with File− design protocol. Let C1, · · · , Ct be
a partition of the keyword space W , where each group
has the same size ` = m/t. For each i ∈ [t/2], we
first specify the size of files generated with keywords in
C2i−1 ∪ C2i as rji = ` + j for j = 1, . . . , log 2`, then call
FileDes(C2i−1∪C2i, {r1i , . . . , r

log(2`)
i }) protocol to generate

a file set Gi. Here Gi satisfies |Gi| = rji . After that,
we continue generate another t files with keywords in
Wi, . . . ,Wt, respectively. Specifically, for i = 1, . . . , t, we
put all keywords in Wi into file Fi first, and then use these
keywords to do padding until the final size of Fi satisfies
|Fi| = max{~, ` + log(2`)} + i. Finally, when all the files
are generated, we gradually inject them into the encrypted

XXXX 5

Let W = {wi}mi=1 be the keyword space, let FileDes be the
binary file design approach before. The goal is to recover the
content of q = (q1, . . . , qk).
File− design(W, ~) . ~ be the largest file volume in EDB

1: PartitionW into t parts {Ci}ti=1 with equal size ` := m/t
2: for each i ∈ t/2 do
3: Set rji ← `+ j for j = 1, . . . , log(2`)

4: Set Gi ← FileDes(C2i−1 ∪W2i, {r1i , . . . , r
log(2`)
i })

5: end for
6: for each i ∈ [t] do
7: Let s′ ← max{~, `+ log(2`)}, si ← s+ i
8: Set fi ←Wi‖C′i, where W′i �Wi and #fi = si
9: end for

10: Inject files F = {f1, . . . , ft,G1, . . . ,Gt/2} into EDB.
Query− recover(q,EDB)

1: Initialize an empty map M = (null,null)
2: for each query qi ∈ q do
3: Record the received files volume vi ← {v1i , v2i , . . . }
4: Set b← {0}log(2`) and find k ← {j : |fj | ∈ vi}
5: for each Gt

i ∈ Gi do
6: Set bt ← 1 if ∃ vji ∈ vi s.t. |Gt

i| = vji
7: end for
8: Compute the hex value of binary number b and get d
9: Let w′ is the (d+ 1)-th keyword in C2k−1 ∪ C2k

10: M← M ∪ (qj , w
′)

11: end for
12: return the recovery query/keyword map M

Fig. 1. Structure-based Decoding Attack

database at different time interval. We give this constraint
in order to distinguish G1, . . . ,Gt/2.

Now we show how to use this injected files to recover
an observed query qi ∈ q. Assume that vi = {v1, vk, . . . }
be the set of file volumes corresponding to qi. Then, we
find a k so that #fk ∈ vi. If such k is unique, we can
determine that the underlying content of qi is in C2k−1∪C2k.
As mentioned before, we are assumed to have the ability
to observe the operation of the database, we can know
which part of the returned (encrypted) files, as well as their
individual volume. Based on this, we check which files
in G1 are returned according to their distinctive volume.
Given a log 2`-bit string b = {0}log 2`, we set bt = 1 if
there exists a returned file has the same volume with Gtk.
By checking all the volume, we obtain a new string b and
compute it value d. The (d+ 1)-th keyword in C2k−1 ∪ C2k

is the content we are looking for qi.

4.2 Passive Attack: Relation-based Inference

As mentioned above, we first consider a baseline scenario
that plaintext database DB and later update data sequence
DB = (DB(1),DB(2), . . .) are fully exposed to the adver-
sary. Accordingly, let EDB = (EDB(1),EDB(2), . . .) be the
encrypted database after every update. A passive adversary
(server) receives a sequence of query q = (q1, . . . , qk)
from the client, each qi comes with a corresponding list
of returned identifiers. Note that, the returned IDs may
be encrypted. The goal is to recover the content of these
queries. The core methodology we used to deal with this
case is called relation-based inference. That is, exploiting
the relational characteristics between the queries in updates
to gradually determine the candidates of the target query,

Let W = {wi}mi=1 be the keyword space and M∗ be the
known query/keyword map. Let DB and EDB the plain-
text and encrypted database, respectively. Assume DB =
{DB(1),DB(2), · · · } and EDB = (EDB(1),EDB(2), . . .) are
the plaintext and encrypted databases after i-th update,
respectively. The goal is to recover q = (q1, . . . , qk).
Candidate infer(DB,EDB, q,M∗)

1: Initialize an empty set S = ∅
2: Set S← {w : KI(EDB, q) = KI(DB, w)}
3: if M∗ 6= (null, null) then
4: for (q∗, w∗) ∈ M∗ and w ∈ S do
5: S← S/{w} if KR(EDB, q∗, q) 6= KR(DB, w∗, w)
6: end for
7: end if
8: return S

Recover attack(DB,EDB, q)

1: Initialize an empty map M, a set S and a count i = 1
2: for q ∈ q do
3: while S 6= 1 do
4: ∆(i) ← DB(i) −DB(i−1)

5: ∇(i) ← EDB(i) − EDB(i−1)

6: Set S← Candidate infer(∆(i),∇(i), q)
7: i← i+ 1
8: end while
9: end for

10: M← M ∪ (q, w) if |S| = 1, here w ∈ S
11: return the recovery query/keyword map M

Fig. 2. Relation-based Inference Attack

and matching the query and the candidate if there is only
one candidate remained. In dynamic scenario, more unique
characteristics can be revealed in the update procedure
while compared with static scenario.

As depicted in Fig. 2, let KI and KR be the inde-
pendent and relational characteristics derivation functions
mentioned in Section 2. To recover the content of the query,
the first step is to determine the possible candidate keyword
set of the query. Specifically, for each query q, the adversary
first computes its independent characteristic KI(q), then set
S← {w : KI(EDB, q) = KI(DB, w)} as the set of keywords
that may be the content of q. Then she further leverages
known query/keyword pair and relational function to help
refine the candidate set. For example, assume (q∗, w∗) is
a pair of known query/keyword pair, for w ∈ S, the ad-
versary checks whether KR(EDB, q∗, q) 6= KR(DB, w∗, w)
holds, where KR is the relational function. If yes, she remove
w from S.

With the above approach, the adversary observes the
status of candidate set of each query in updates. If there
is only one keyword w remained in above S, the adver-
sary outputs w as the content of q. Otherwise, the adver-
sary continues to refine the candidate set by updating the
dataset in Candidate-Infer function, i.e., setting ∆(i) =
DB(i) − DB(i−1) and ∇(i) = EDB(i) − EDB(i−1). Since the
leakage changes with the updated pattern, the probability
of appearing unique characteristics in the dynamic database
is more significant than that in statics. Our latter experiment
evaluations will confirm this argument.
Remark on Attack with Partially Known Knowledge. We
now discuss how to modify the above attack to deal with
the case with partially known background knowledge. Note
that, in such a case, there is a gap between the character-

XXXX 6

Index	Vectorkeyword

𝑤0
𝑤1

𝑤2

𝑤3

0 5 1 5 0 5 1 5 0 5 0

1 5 1 5 0 5 1 5 1 5 0

Length
2
2

4
3

1 5 1 5 0 5 0 5 0 5 0
0 5 1 5 1 5 1 5 0 5 0

Encoded	Vector
1 5 1 5 0 5 1 5 0 5 0

1 5 1 5 1 5 1 5 1 5 0

1 5 1 5 0 5 1 5 0 5 0
1 5 1 5 1 5 1 5 1 5 0

Length
3
3

5
5

𝜏0

𝜏1

𝜏2

𝜏3

𝜏0∗

𝜏1∗

𝜏2∗
𝜏3∗

Fig. 3. An example of indistinguishable leakages

istics learned from the encrypted query and background
knowledge. It is hard for us to leverage the prior equality
test approach to determine the candidate set of the query.
In prior works [8], [13], researchers modify the approach
to select the candidate set of q as S ← {w : KI(Db, w) ∈
[KI(EDB, q) − δ,KI(EDB, q) + δ]}, where Db ⊂ DB is the
known data of EDB and δ is the error term. The error term
denotes the discrepancy between the characteristic derived
from full background knowledge and that of partial back-
ground knowledge. For example, if KI denotes the query
result length leakage and Db is randomly selected from DB,
then we have δ = KI(EDB, q)(1− |Db|/|EDB|).

We find that the above δ can be naturally narrow down
in dynamic databases due to the update pattern leakage. As
mentioned before, the data in dynamic data can be identified
by the query timestamps. With the help of update pattern
leakage, the adversary is easy to find the corresponding
encrypted copy Edb ⊂ EDB of the revealed data Db. Ac-
cordingly, the candidate set for query q can be narrow down
to S′ ← {w : KI(Db, w) ∈ [KI(Edb, q)−δ′,KI(Edb, q)+δ′]},
where δ = KI(Edb, q)(1−|Db|/|Edb|). It is clear that δ′ ≤ δ
and S′ ⊂ S, namely, the adversary has a higher probability
that recovers the query’s content successfully.
Summary. In this section, we present two attacks from the
perspective of passive and active adversaries, respectively.
From Fig. 1 and Fig. 2, we can find that the key fac-
tors contributing to leakage abuse attack are those unique
characteristics derived from the search results, e.g., length,
volume, similarity, and fixed combination of search result.
Thus, eliminating or hiding all these unique characteristics
in the search results can be considered as a straightforward
approach to mitigate the above or more LAAs.

5 NEW SECURITY NOTION AND DISCUSSION

5.1 Leakage Indistinguishability

As mentioned before, an adversary can successfully recover
the content of the query if and only if only one candidate
has the same characteristic with the query. To this end, to
protect the content of query, we should guarantee that a
large amount of candidates are involved in the candidate
set. In other words, the characteristic regarding the query
to the encrypted database should be computationally indis-
tinguishable with that of their candidates in the plaintext
database. Inspired by the notion of Local Differential Pri-
vacy [25] and ε-indistinguishable multiple views [26], we
suggest the notion as follows.

Definition 1 (ε-indistinguishable leakages). For any PPT
adversary, an encrypted search scheme is said to achieve ε-leakage
indistinguishable security if and only if for any candidate keyword

keyword

𝑤)
𝑤*

𝑤+
𝑤,

Length

5
5

5
5

d), d*
d*, d,

keyword

𝑤)
𝑤*

𝑤+
𝑤,

Length

5
7

5
7

d+, d5, d6
d7, d8, d9

keyword
𝑤)
𝑤*

𝑤+
𝑤,

Length

8
10

5
7

Fig. 4. An example of the leakage in update

wi, wj ∈ W , the probabilities of recognizing the content of query
q through the leakage satisfies

e−ε ≤ Pr(wi is the content of query q)

Pr(wj is the content of query q)
≤ eε (1)

where q denotes an encrypted query randomly selected in the
query set. We define 0

0 to be 1. In the rest of this work, we use
q , w to denote that w may be the content of q.

Example 1. Figure 3 illustrates an example of access pat-
tern leakage indistinguishability. Let τ1 = (0, 1, 0, 1, 0, 0) and
τ2 = (0, 1, 0, 1, 0, 0) be the index vector of keyword w1 and
w2, let τ∗1 = τ∗2 = (1, 1, 0, 1, 0, 0) be their result vector (aka
access pattern leakage) derived from the query result over database
equipped with an encode scheme. We say that this encrypted search
scheme is indistinguishable secure because access pattern leakage
(1, 1, 0, 1, 0, 0) here has the indistinguishable candidates w1 and
w2, which cannot be identified by the adversary.

Recall that, in the statics setting, the client can build
index vectors for all the keywords first, and then obfus-
cate these index information (perform padding) to meet
the demands of above indistinguishability. However, it is
not trivial to realize such a ε-indistinguishable security
encrypted search scheme that supports data dynamics. Be-
cause the update pattern may also leak the information of
the raw data, unless all keywords in the keyword universal
appear together every time they are updated. Otherwise, the
adversaries can exploit the discrepancy generated during
the update procedure to infer the content of the query.

Example 2. Figure 4 is employed to show that why previous
countermeasures cannot directly apply to dynamic databases. We
take the real-time result query lengths as an example to explain
this issue. As seen in Fig. 4, keywords w1, . . . , w4 appear with the
same length of IDs 5 in the initial stage, after the first update, IDs
of w2 and w3 are involved and both of them have the IDs length
2. In the second round, IDs of w1 and w2 are uploaded, and each
of them adds 3 new IDs. After two rounds of update, however, we
can see that all of the keywords can be uniquely identified by their
distinctive length.

The above discussion does not indicate that there is
no way to provide full protection for dynamic encrypted
databases. Padding all the keywords in the keyword univer-
sal, including those absented, to the maximum in all update
process may be a straightforward approach (The extreme
case that only one or few keywords absented seems to be
minuscule). Nevertheless, the high costs of maintaining up
to above security strength doom that it cannot be applied to
the real scenarios. To take one step back, a relaxed version of
Definition 1, locally indistinguishable leakages, is required,
which also aims at balancing the security and overhead.
Following are the details:

XXXX 7

Definition 2 (Locally indistinguishable leakages). An en-
crypted search scheme is said to be (α, ε)-locally indistinguishable
against any passive or active PPT adversary if for any query q,
there must exist a subset W ⊂ W such that for any wi, wj in W

e−ε · Pr(q , wj) ≤ Pr(q , wi) ≤ eε · Pr(q , wj) (2)

holds with overwhelming probability, where |W | > α.

Compare with the Definition 1, Definition 2 only requires
that the candidates in a designated range are indistinguish-
able. Under this setting, the practicer can first partition
the keyword space into several clusters via the keyword
frequency [27], and then run a locally indistinguishable leak-
ages secure protocol upon each update. Empirical results
show that doing so can significantly reduce the storage over-
head. The above frequency indicates the appearance trends
of keywords in data dynamics. The following theorem estab-
lishes an upper bound on security guarantees of applying
the above local indistinguishability to the encrypted search
scheme that supports data dynamics.

Theorem 1 (Sequential Composition). For a file sequence
F = {F1, . . . ,Fk}, let P1, . . . ,Pk be k leakage-hiding protocols
for encrypted search scheme, where each of them is (α, εi)-locally
indistinguishable secure on the same keyword cluster W ⊂ W
and i ∈ [k]. Then we have that P(F1), . . . ,Pk(Fk) satisfy
(α,maxi∈[k](εi))-locally indistinguishable security.

Proof. Let F = {F1, · · · ,Fk} be the total data collection,
let P(F) = {P1(F1), · · · ,Pk(Fk)} be the corresponding
image of all Pi on Fi. Let Pr[P(F) : q , wi] be the
probability that LAA outputs w as the content of q. Since
the LAA against dynamic encrypted database is launched
along with the updates, then we have Pr[P(F) : q , wi] ≤
maxi Pr[P(Fi) : q , wi]. Combining with that fact each Pi
is (α, εi) locally-indistinguishable secure knowledge-hiding
protocols on W̃ ⊂ W it is clear that

Pr[P(F) : q , wi]

Pr[P(F) : q , wj]
=

maxt∈[k]{Pr[Pt(Ft) : q , wi]}
maxt∈[k]{Pr[Pt(Ft) : q , wi]}

≤
eεmaxt∈[k]{eεi−εPr[Pt(Ft) : q , wj]}

maxt∈[k]{Pr[Pt(Ft) : q , wi]}

≤
eεmaxt∈[k]{Pr[Pt(Ft) : q , wj]}
maxt∈[k]{Pr[Pt(Ft) : q , wi]}

≤ eε

where ε = max{ε1, · · · , εk}. In the same way, we also have
that Pr[P(F) : q , wi] ≥ e−εPr[P(F) : q , wj]. Thus the
property of locally indistinguishability is guaranteed. This
completes the proof.

5.2 Basic cluster-based Encoding Protocol

We describe a cluster-based encoding protocol here to
implement the above leakages indistinguishable prop-
erty. As shown in Fig. 5, the encoding protocol con-
sists of two sub-protocols EncodeFile and EncodeIndex,
where EncodeFile aims at protecting the file volume and
EncodeIndex prefers to hide the information derived from
index, aka access pattern.

Let M ∈ {0, 1}t×l be the index matrix, where M[i, j] = 1
indicates wi appears in file fj and otherwise not. Let

Let W be the keyword space, let F = {f1, · · · , fl} be a
set of files and ID = {id1, · · · , idl} be their corresponding
identifiers, let α and β be security parameters for index
encoding and file encoding, respectively. The EncodeIndex
and EncodeFile protocols work as follows:
EncodeIndex(F , α)

1: GroupW into k clusters C1, · · · ,Ck, s.t. all |C| ≥ α
2: for each cluster C and F do
3: Set J ← {idj : C∩Wj 6= ∅} be files containing w in

C
4: Build the index matrix M[i, j]← BuiltInd(C, J)
5: Let s← maxwi∈C ‖M[i, :]‖p=1

6: for each wi ∈W do
7: q ← (s− ‖M[i, :]‖p=1)/(|J | − ‖M[i, :]‖p=1))
8: If M[i, j] = 0, set M[i, j]← 1 with probability q
9: end for

10: end for
11: Set DS← {(wi, idj) : M[i, j] = 1}
12: return the indexes DS

EncodeFile(F , β)

1: Group F into t clusters F1, · · · ,Ft s.t. all |Fi| ≥ β
2: Let vi = maxf∈Fi #f be the padding size for the i-th

cluster
3: for each i and f ∈ Fi do
4: Set Wf ← {w : w appears in f}
5: Compute s← v −#f
6: Let f ′ ← {w : w ∈ Wf} be the collection such that

#S = s
7: Set f+ ← f‖f ′ be the encoded file
8: end for
9: return the files set F ′ = {f+}f∈F

Fig. 5. Basic Cluster-based Encoding Protocol

BuiltInd(W,F) be the function that takes as input a key-
word set W and a file set F and output the index matrix.
The following are the details of our encoding protocols.

For EncodeIndex protocol, it is designed to protect the
aforementioned invariant characteristics derived from the
index, so as to break the connection between the plaintext
keyword and encrypted query. We fundamentally instanti-
ate this goal by perturbing the plaintext index based on key-
word clusters. As depicted in Fig. 5, let W be the keyword
space and ID be the set of identifiers, then EncodeIndex
protocol proceeds as follows. The client first groups W
into a set of non-intersection subsets {C1, · · · ,Ck}, where
|Ci| ≥ α for i = 1, · · · , k. For each cluster Wi, she defines
J as the identifiers of files containing keywords in Wi

and set M = BuiltInd(Ci, J) as the index matrix of Ci
and J . Let s = maxwi∈W ‖M[i, :]‖p=1 be the maximum
row hamming distance in the index matrix, which indi-
cates the largest length of ID list of the keyword in the
cluster. After that, we show how to perturb the index of
the files over this keyword cluster. For each index row
of the keyword, the client converts then entry Mind[i, j]
from “0” to “1” with probability q if M[i, j] = 0, where
q = (s−‖M[i, :]‖p=1)/(|J |−‖M[i, :]‖p=1). Finally, the client
transforms the new index matrix to the keyword-identifier
pairs for future encrypting.

Observe that, by perturbing the rows in such a way,
these rows’ hamming weights all fluctuate around s. Ac-
cordingly, all the corresponding queries will have a similar
result length. Thus the result length is hidden. Naturally,
all other characteristics will also be obfuscated since they

XXXX 8

Streaming Data Encrypted Data

Build Index

Plaintext Index
⋯

Padding Index

Padding Files

Filter

Encrypted IndexEncrypt

Encrypt

Data Storage

⋯

Encrypted database protection framework

Server

Client

Q
ue
ry

Fetch File

Search

Result

Search

Fig. 6. Two-layer Privacy-preserving Framework

are extracted from these perturbed index vectors (i.e., access
pattern). We would like to clarify that we even encode the
index vector of the keyword that does not appear in the
file because of the security requirements. We write such a
non-appear keyword’s index vector as 0.

For EncodeFile protocol, as the confidentiality of files
is guaranteed by the cryptographic scheme, we only need
to protect their volume. Intuitively, a feasible approach is
to pad their volume into the same one. Without loss of
generality, we assume that all keywords in W have the
same bit length. Let β be the padding parameter, which
determines security strength and the number of required
padding keywords for each file. Similar to EncodeIndex
protocol, we also encode the files by clusters. For example,
for a given file set F = {f1, · · · , fl}, the client first groups
these files into t clusters F1, · · · ,Ft. Then for each cluster,
she computes vi = maxf∈F #f as the final padding size.
Then for file fi ∈ Fi, she randomly selects vi−#fi keywords
in the set fi and appends them after the file. After that, the
files in the same cluster will keep the same volume, and the
adversary cannot exploit the volume information to identify
each file. Therefore, the active attack can be denied. Note
that, selecting keywords from Wf is to maintain the original
index information.

The EncodeFile and EncodeIndex protocols are de-
signed to mitigate aforementioned privacy risks in DSSE.
We provide in Section 6 an detail construction about how it
works to hardening prior DSSE schemes, together with their
privacy analysis.

6 TWO-LAYER COUNTERMEASURES

In this section, we present a two-layer privacy-preserving
encrypted database protection mechanism. More specifi-
cally, we focus on mitigating the privacy risks from file
volume and leakage derived from access pattern simulta-
neously against both active and passive adversaries.

6.1 Design Intuition
As mentioned before, the passive attacks work relying on
the existence of unique knowledge (characteristics) derived
from leakage profiles, and active attacks leverage the spe-
cific index structure and volume discrepancy to uniquely
identify the content of the query. Ground on these results,

a natural idea to defeat the above attacks is to eliminate or
hide the above unique characteristics.

First, obfuscating the size of the files is necessary, no
matter for the passive attack or the active attack. On the one
hand, a significant assumption of file-injection attack or our
structure-based attack is that the adversary can exploit the
volume information to recognize which encrypted files are
they inject, so we need to hide the volume by obfuscating
every file size. On the other hand, for a passive adversary,
once the mapping between the encrypted file IDs and plain-
text IDs are determined, she can easily recover the content
of the query by comparing the search results. Thus, hiding
the file size is vital. For the question of how to obfuscate file
size, a simple solution is to inject the existing keywords in
that file as described in Fig. 5. Leveraging this strategy can
also guarantee that |f∗i | = |fi|, ensuring the search accuracy
from the file perspective, where f∗i is the encoded file for fi.

Second, it’s also necessary to hide the knowledge de-
rived from the indexes, because the passive (inference)
attack can exploit the similarity of these knowledge to infer
the content of encrypted queries. Generally, we can achieve
this goal by inserting file IDs that are randomly generated or
selected from the existed ones. As mentioned in Section 5,
we consider to use the existing file IDs because of these
two benefits: (1) mitigate the additional storage overhead
by avoiding introducing newly bogus files; (2) better ob-
fuscate the access pattern, hiding the similarity of different
queries. Furthermore, motivated by Bost et al’s clustering
padding strategy to reduce storage overhead, we also prefer
to employ this strategy to reduce the storage overhead.

6.2 Two-layer Dynamic Encrypted Search Scheme

Now we begin to illustrate our two-layer privacy-preserving
approach to secure the encrypted search scheme. As de-
picted in Fig. 6, the total protection mechanism includes
three modules, Setup, Search, Update. Following we will
present the details:
Setup: Let M = (null,null) be an empty map and IND be
an empty set. To build a secure encrypted search system,
the client takes the security parameter λ and the file set
F0 as inputs, and runs the Setup protocol to output the
encrypted file set M, the encrypted index IND with the
secret key pair (ek, sk). Specifically, for a given file set F0,

XXXX 9

Let DSSE = (Setup, Search, Update) be a dynamic search-
able encryption scheme, let SE = (Encrypt, Decrypt) be a
secure encryption scheme, let F = F0,F1,F2, · · · be the file
streaming, where F0 denotes the files in initial stage, let
Encode = (EncodeIndex, EncodeFile) be the index and file
encoding algorithm. Following are our designs:
Setup(λ,F0, α)

1: Initialize an empty map M = {null,null}
2: Encrypt the plaintext files F′0 ← EncodeFile(F0, β)
3: for F′0,i ∈ F′0 do
4: Encrypt the files (E0,i, ek)← SE.Encrypt(λ,F′0,i)
5: Store the encrypted file in the map M[id0,i]← E0,i

6: end for
7: Encode the index DS′0 ← EncodeIndex(F0, α)
8: for w ∈ W, id ∈ DS′0 do
9: (IND, sk)← DSSE.Setup(λ,DS′0)

10: end for
11: Store (IND,M) at the server and keep the keys (sk, ek)

Search(sk, w, IND,M)

1: Initialize an empty set R
2: Run Id← DSSE.Search(ek, IND) to fetch the file IDs
3: for id ∈ Id do
4: Invoke E← M[id] to fetch the encrypted file
5: Set R← R ∪ E
6: end for
7: Send R to the client
8: Decrypt encrypted files F← SE.Decrypt(R)

Update(sk, ek,Fj , IND,M)

1: Encrypt the plaintext files F′j ← EncodeFile(Fj , β)
2: for F′j,i ∈ F′j do
3: Encrypt the files (Ej,i, ek)← SE.Encrypt(λ,F′j,i)
4: Store the encrypted file in the map M[idj,i]← Ej,i

5: end for
6: Encode the index DS′j ← EncodeIndex(Fj , α)
7: for w ∈ W, id ∈ DS′j do
8: Run (IND, sk)← DSSE.Update(sk,DS′j , IND)
9: end for

10: Update the map IND and M.

Fig. 7. Two-layer Database Hardening Approach

the client first invokes Encode.File protocol to encode the
files and obtains F′0. Then she uses SE.Encrypt protocol to
encrypt each file F′0,i ∈ F′0 and gets the encrypted file E0,i

and encrypted key ek. After all the files are encrypted, she
stores the E at the server and builds up the position map M,
where M[id0,i] = E0,i. To enable search, the client continues
to build the inverted index DS0 = {(w, id)}w∈W for files
F0, and deploys Encode.Index protocol to encode the index
information. After that, the client applies the DSSE.Setup
protocol to the index DS0 and gets the encrypted index IND
and search key sk. Finally, the client uploads the encrypted
index to the server and keeps the secret key (ek, sk).
Search: When the client wants to search the encrypted files
with some keyword w, she takes the secret key (ek, sk)
as inputs, and runs the Search protocol to get the search
results. Specifically, the client first runs the DSSE.Search
protocol with her search key and the keyword w to compute
the search token st, then she submits the query request
to the sever with token st, the server uses token to find
the matched files‘s position Id and returns the encrypted
files R to the client. Once the client gets the encrypted files,
she decrypts them to get the plaintext through SE.Decrypt
protocol. Note that, as the original search index has been
obfuscated in the Setup stage, some additional files may be

returned even they do not contain the keyword w, resulting
in communication overhead.
Update: Our encrypted database also supports data dy-
namics while maintaining search functionality. When new
files appear and need to be uploaded, the client will take
these newly files Fj and the key pair (ek, sk) as inputs and
calls the Update protocol to insert them into the encrypted
database. As seen in Fig. 7, Update protocol proceeds as
follows: similar to Setup stage, for newly coming file set Fj ,
the client first encodes the file set with EncodeFile protocol
and then runs SE.Encrypt protocol to encrypt them. Then
she stores these encrypted files at the server and renews the
position map M[idj,i] = Ej,i, where idj,i can be viewed as
the identifier (pointer) of the encrypted file Ej,i. Following,
the client continues to build the index DSj for Fj and use
sk to encrypt the index. It is worth to note that, we need
to follow the constraints mentioned in Section 5, i.e., encode
the files and index before encrypting them.

6.3 Security Analysis
Given the following two theorems, we show the privacy
guarantees brought by EncodeIndex and EncodeFile pro-
tocols. The first one is to protect the file volume and the
other one is to protect to protect information derived from
access pattern.

Theorem 2. Let β = (βmin, βmax) be the privacy parameter for
the EncodeFile protocl, then for any keywords wi and wj whose
maximum Hamming distance is d, for any encrypted query q, the
probability of recovering the content q under a k-bits structure-
based decoding attack satisfies

e−ε · Pr[q , wj] < Pr[q , wi] < eε · Pr[q , wj] (3)

where ε = d log (βmax/βmin).

Proof. Assume that the keyword w can be represented by a
well-designed unique k-bits index vector τw ∈ {0, 1}k based
on a set of designated file IDs. In a structure-based decoding
attack, as the adversary can identify whether an encrypted
file is in above set through its file size, so each w can also
be denoted as a unique volume vector vw. Knowing that
the EncodeFile protocol encodes all files with parameter β
in each stage, so there are at least β files have the same as
the designated ID. Hence, the probability the adversary can
view w as the content of q is

Pr[τ∗q [1] = τw[1] ∧ · · · ∧ τ∗q [k] = τw[k]] =
1

|ρ1| × · · · × |ρk|
where ρi = 1/|Vi| if τ∗q [i] = 1 and ρi = 1 − 1/|Vi| when
τ∗q [i] = 0. Here Vi is the candidate of IDs which file size is
vw[i] and βmin ≤ |Vi| ≤ βmax. The for any wi and wj which
have at most d different bits, we have

Pr[q , wi]

Pr[q , wj]
=

Pr[τ∗q [1] = τwj
[1] ∧ · · · ∧ τ∗q [k] = τwj

[k]

Pr[τ∗q [1] = τwi
[1] ∧ · · · ∧ τ∗q [k] = τwi

[k]

=
|ρi,1| × · · · × |ρi,k|
|ρj,1| × · · · × |ρj,k|

< eε

where ε = d log (βmax/βmin). This completes the proof.

Theorem 3. Our two-layer countermeasure is (α, ε)-locally
indistinguishability secure against passive adversaries.

XXXX 10

Proof. We use a two-step strategy to analyze the privacy
of our countermeasure. More specifically, we first show
that the EncodeIndex in Fig. 5 is (α, ε)-indistinguishable
secure and then prove that our countermeasure is (α, ε)-
indistinguishable secure as well.

Let TW be the set of index vectors of keywords in W
and TQ be the set of output index vectors. We claim the
adversary does not know the correlation between the en-
crypted IDs and plaintext IDs because the volume is hiding.
Thus, their relationship can be formulated as a random
permutation. Without loss of the generality, the probability
that one entry in the index is permuted with another can
be assumed to be 1/n. Combined with the EncodeIndex
protocol, we can easily get

e−ε <
Pr[EncodeIndex(τwi

) = τq]

Pr[EncodeIndex(τwj) = τq]
< eε (4)

where τwi
and τwj

are arbitrary index vectors in TW and τq
is randomly selected in TQ.

Recall that, previous discussion has shown that the key
factor contributing to query privacy is the characteristic
derived from access pattern. Thus the probability that q′ can
be recovered must satisfy

Pr[q , wi] =
∑
τq∈TQ

Pr[Kτq = oq′]Pr[EncodeIndex(τwi
) = τq]

≤
∑
τq∈TQ

eεPr[Kτq = oq′]Pr[EncodeIndex(τwj) = τq]

≤ eεPr[q , wj]

where Kτq denotes the leakage of τq , oq is the observed
leakage of q, τwi , τwj ∈ TW and τq ∈ TQ. The above result
directly implies that if the EncodeIndex protocol is indistin-
guishable secure then the encrypted search scheme is (α, ε)-
indistinguishable secure. This completes the proof.

Combining the above theorems, we observe that for
an encrypted scheme equipped with EncodeIndex and
EncodeFile protocol, no active and passive adversaries can
identify the exact content of the query by comparing the
characteristic derived from the leakage profiles.

6.4 Balancing Efficiency and Security

While the encoded approach helps hide the privacy risk in
leakage profile, it also brings extra storage overhead. As
mentioned before, α and β are two parameters that are
security parameters. In general, larger α and β can provide
stronger security guarantees but will result in heavier stor-
age overhead. Specifically, for a larger cluster, the keywords
with various frequencies may be gathered together, padding
this keyword to the same frequency requires introducing
more overhead than that of the smaller clusters. Thus, how
to group the keywords to minimize the storage overhead
should be addressed. In addition, it is also hard to tell the
clients when to perform encoding on the updated data.
According to the principle of padding to the maximum
mentioned above, it is easy to find that: (1) high-frequency
encoding will result in heavy storage overhead (2) low-
frequency encoding makes large amount of files stay at the
client-side.

In order to address first problem, for the given α and β,
we follow the grouping strategy proposed by Bost et al. [17].
In their work, they formulate the grouping strategy as a
optimize problem, which studies how to smooth the key-
word with minimum keyword/ID pairs. In their solution,
the keywords with a similar frequency will be gathered in
the same cluster, thus light overhead is needed. To deal
with the second problem and further reduce the storage
cost, we propose the batch padding and introduce buffer
memory (fixed size) at the client’s side to help temporarily
store the data to be uploaded and encoded. Doing so can
avoid frequently padding and leave the client more space
to make padding strategy. Specifically, the client predefine
the maximum number of files that can store at local device,
i.e., γ. Moreover, to mitigate the local storage overhead
simultaneously, three trigger conditions are provided for
perform encoding:
(1) Batch size. When number of files stored at client

achieves γ, the client runs the padding.
(2) Buffer-full. Once the buffer is full, the client releases all

existed keyword-identifier pairs.
(3) Time-out. Considering the freshness issue, we set a time

limit for enforcing releasing.
Observe that, once one of the above limits is reached, the
client selectively release buffer clusters and then encode
them through EncodeIndex protocol. In the long run, as
more fake entries are gained with the updates, it will
bring heavy storage overhead for the server. Deleting the
unnecessary ones or rebuild the index may be two possible
solutions, but when and how to do this should be further
considered.

7 PERFORMANCE EVALUATIONS

Previous sections theoretically analyze the privacy risk of
encrypted database supporting data dynamics and present
a corresponding countermeasure. In this section, a se-
ries of experiments will be conducted on three real-world
databases to confirm our theoretical results, including at-
tacks and countermeasures.

7.1 Experiment Setup
To evaluate the performance of the attacks and counter-
measures proposed in this work, we conduct a series of
experiments with a desktop with the Intel Core i7, 3.2GHz
processor and 16GB memory running MacOS. Specifically,
we first implement our passive and active attacks on three
real-world dataset, Enron email dataset1, IMDB movie com-
ments dataset2 and Blogger corpus dataset 3. For each
attack experiment, we randomly choose 10,000 files from the
original dataset as the test dataset, the keyword space used
to build index consists of 10,000 keywords selected from
those 10,000 files. We simulate the update procedures and
observe how recovery rate changes as the database updates.
For countermeasures, we focus on observing how much
storage overhead and time cost are needed for different
security strength, including both file and index. For this

1. Enron email dataset: https://www.cs.cmu.edu/∼./enron/.
2. IMDB movie comments dataset: https://datasets.imdbws.com/.
3. Blogger Corpus Dataset: http://u.cs.biu.ac.il/∼koppel/.

https://www.cs.cmu.edu/~./enron/
https://datasets.imdbws.com/
http://u.cs.biu.ac.il/~koppel/

XXXX 11

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Update rounds

Q
ue

ry
re

co
ve

ry
ra

te

D-Enron S-Enron
D-IMDB S-IMDB
D-Blogger S-Blogger

(a) Full: randomly selected queries

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

Update rounds

Q
ue

ry
re

co
ve

ry
ra

te

D-Enron S-Enron
D-IMDB S-IMDB
D-Blogger S-Blogger

(b) Full: top frequency queries

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Partial known dataset in %

Q
ue

ry
re

co
ve

ry
ra

te

D-Enron S-Enron
D-IMDB S-IMDB
D-Blogger S-Blogger

(c) Partial: random selected queries

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Partial known dataset in %

Q
ue

ry
re

co
ve

ry
ra

te

D-Enron
S-Enron
D-IMDB
S-IMDB
D-Blogger
S-Blogger

(d) Partial: top selected queries
Fig. 8. Query recovery rate of relation-based inference attack on fully and partially known dataset. The left two figures show the attack recovery
rate against the encrypted database with fully known background and the right two are for the encrypted database with partially known background.
Regarding notations, we use “D” to denote the attack on dynamic scenario and “S” to denote that of static scenario.

part, we take the above datasets as the experiment set,
and record the storage overhead for index, file and batch
padding parameters α, β and γ.

7.2 Implementation of Proposed LAAs
This subsection starts with the passive attack experiments.
We exploit the experiments to answer following questions:
(1) what is the relationship between leaks and updates in
dynamic databases? (2) whether the dynamic database leak
more than that of statics?
Passive attack on Fully and Partially Known Dataset.
To answer the first question, our first experiment is set
as follows: we assume that the encrypted database runs
updates every 1,000 files and choose the files in 10 updates,
i.e., 10,000 files as the test dataset. With the update goes, we
launch our passive attack under the setting that fully and
partially dataset are revealed to the adversary, respectively,
and record their attack recovery rates. As mentioned before,
partially known dataset means that files in some of the
updates can be fetched.

As shown in Fig. 8(a) and Fig. 8(b), they report the
recovery rate of 10,000 randomly selected queries and 10,000
most frequent queries against the encrypted database with
full knowledge known. The plots in the figures show that
the recovery rate increases along with the updates. Because
with the update operation going, more and more unique
characteristics are gradually emerging. For example, in the
IMDB database, for randomly selected queries, the recovery
rate increases from 49.99% to 90.41%, and for 10,000 most
frequent queries, it increases from 81.16% to 96.71%. As
for the attack result for encrypted database with partial
known background knowledge, it is presented in Fig. 8(c)
and Fig 8(d). The similar result can be seen, just like that of
full background known attack, more and more queries will
be leaked as the update progresses.

To answer the second question, we should demonstrate
that the update pattern in dynamic databases does leak
more than that of static databases. With regard to the attack
for the static case, we run the attack over the overall en-
crypted database after 10 updates and compare its results
with that of dynamic’s. The attack results are given by
dotted lines in Fig. 8(a), Fig. 8(b), Fig. 8(c) and Fig 8(d).
From the experiment results in above four figures, we can
find that more queries in dynamic databases are recovered
while compared with that in static’s, particularly in the case
of partial background attack. The most significant is that,
according to the update pattern, the adversary can lock

TABLE 2
Storage cost of Structured-based Decoding Attack

Size ofW Number of files Totoal volume size
T=256 T=512 T=256 T=512

1024 40 22 68.5 KB 74.7 KB
2048 80 44 150.8KB 150.6 KB
3072 120 66 452.8KB 328.6 KB
4096 160 88 4.27MB 422.6 KB
5120 200 110 64.33MB 496.7 KB

the candidates of a unknown query in a certain subset of
keywords that appear in some certain update stages (time
interval). For instance, the adversary may only know the
background of the files in the third update round, then she
can fetch the query result in that time for infer the content
of the query rather than all of that in the database.
File-injection Cost for Active Attack. For the structure-
based decoding attack, as the adversary can identify the
injected file through its volume size and then decoding them
to recover the unknown queries, the recovery rate will be
always “1”. Regarding this, in this part we only concern the
cost the adversary required for launching injection attacks.
Table 2 displays the number of files and corresponding
volume required for executing structured-based decoding
attack. It shows the relationship of the storage cost, number
of various keywords in one file (threshold T) and size of
keyword space. The results show that, with the size of
keyword space increasing, the adversary needs to inject
more files for recovering the content of the query. And the
total storage overhead will deduce if it allows the file to
involve more keyword. For example: when setting T = 256,
the adversary just needs to inject 40 files with total volume
68.5 KB for recovering 1024 queries.

7.3 Performance of Our Countermeasures

In this section, we evaluate the performance of our two-
layer countermeasure from two metrics, i.e., computation
cost, communication cost and security strength . In a nut
shell, we first equip the database with our countermeasure
and measure the storage overhead it cost on real-world
datasets, then run both above attacks on those hardening
encrypted datasets to check its effectiveness.
Storage Cost of Countermeasures. The storage overhead
of our two-layer countermeasure are two folders, including
client storage cost and server storage cost. Here, we mainly
focus on investigating the influence of update rounds and

XXXX 12

2 4 6 8 10
0

20

40

60

80

100

Number of update rounds

St
or

ag
e

co
st

of
in

de
x

(K
b) Enron IMDB Blogger

(a) Storage cost of index

2 4 6 8 10
0

1

2

3

4

5

Number of update rounds

St
or

ag
e

co
st

of
fil

es
(M

B)

Enron IMDB Blogger

(b) Storage cost of file

2 4 6 8 10
0

0.5

1

1.5

Number of update rounds

Ti
m

e
co

st
of

en
co

di
ng

in
de

x
(s

)

Enron IMDB Blogger

(c) Time cost of encoding index

2 4 6 8 10
5

5.5

6

6.5

7

Number of update rounds

Ti
m

e
co

st
of

en
co

di
ng

fil
e

(s
)

Enron IMDB Blogger

(d) Time cost of encoding file
Fig. 9. Client-side: storage cost and extra time cost for our two-layer countermeasures on dataset consisting of 10,000 files and 10,000 keywords.
The left two figures draw the stroage cost of index and files with privacy parameters α = 200, β = 200, γ = 1000, and the right two figures draw the
time cost of encoding index and files.

0 200 400 600 800 1,000
0

0.5

1

1.5

2

privacy parameter α

St
or

ag
e

ov
er

he
ad

of
in

de
x Enron IMDB Blogger

(a) Storage overhead of index

0 50 100 150 200 250
0

0.5

1

1.5

privacy parameter β

St
or

ag
e

ov
er

he
ad

of
fil

e Enron IMDB Blogger

(b) Storage overhead of file

2 4 6 8 10
0.2

0.3

0.4

0.5

update round (α = 500)

St
or

ag
e

ov
er

he
ad

of
in

de
x Enron IMDB Blogger

(c) Storage overhead of index

2 4 6 8 10
0

2

4

6

8

update round (β = 200)

St
or

ag
e

ov
er

he
ad

of
fil

e Enron IMDB Blogger

(d) Storage overhead of file

Fig. 10. Server-side: storage overhead of two-layer countermeasures with different security parameters. The left two figures present the storage
overhead on index and the right two figures present the stroage overhead for files.

privacy parameter on the storage overhead. Regarding this,
we select different security parameters and run our encod-
ing protocol on the selected datasets, where each dataset
consists of 10,000 files and 10,000 most frequent keywords.

From the client perspective, we focus on measuring the
communication cost and the computation cost produced
from the encoding algorithm. As seen in Fig. 9(a) and
Fig. 9(b), when we set α = 200, β = 200, γ = 1000, the
overall storage costs for index and files stored at the client-
side are about 40.2Kb and 3.92Mb for Enron dataset. It is
clear that such storage cost will increase as the size of γ
grows. For efficiency, the time costs of executing index and
file encoding are presented in Fig. 9(c) and Fig. 9(d). From
the figures, we can see that it takes about 0.65s to encode
the index and 5.2s to encode the files per update.

From the server perspective, we mainly compute the
storage overhead of countermeasures under different secu-
rity parameters, especially α and β. Figure. 10(a) reports
the relationship between the index overhead and privacy
parameters, it shows that the overhead increases as α in-
creases; For example, when we set α = 250, it requires to
introduce about 36.9% file-keyword pairs in index, and it
will increase to 164% while we set α = 1000. Figure 10(b)
shows the relationship between the extra storage cost of
files and parameter β, it also increases with β. When we set
α = 500 and β = 200, Figure. 10(c) and Fig. 10(d) display
the introduced overhead in each update stage, both of them
can be bounded in an admissible ratio.
Effectiveness of Countermeasures. Following we show the
effectiveness of the proposed two-layer countermeasure.
Specifically, we demonstrate that there should be no trade-
off between encoding the index and files. For index, it is
clear that encoding index only is not sufficient, because
in the active attack the adversary determines the content

of the query by files she injects. For files, as the dummy
keywords added into the document lacks full accounting
for the leakage profiles, it also may be invalid if we only
encode the file without obfuscating the index. To verify
this argument, we run the passive attack on the database
produced by file encoding. From the attack results listed in
Fig. 11(a) and Fig. 11(b), we can see that there are still quite
a few encrypted queries can be recovered, which validates
the necessity of the two-layer solution.

In order to provide a more intuitive grasp of the pro-
posed two-layer solution, we then run our attacks on the
databases whose file volumes and the index are both ob-
fuscated. The detailed experimental results are recorded
in Fig. 11(c) and Fig. 11(d). Specifically, Fig. 11(c) shows
the query recovery rate for encrypted index encoded with
privacy parameter α. From the lines in Fig. 11(c), we can see
that the recovery rate decreases as α increases. Taking the
Enron email dataset as an example, when α = 250, 10.4% of
selected queries can be recovered, and it decreases to 1.5%
when α = 1000. Namely, the larger the privacy parameter α
is, the more secure the encrypted databases are. Figure. 11(d)
draws the attack results for different β’s, it also shows that
larger β can brings better security performance. Overall, for
Enron dataset, our two-layer can introduce less than 1.2×
total overhead to reduce the recovery rate to below 0.5%.

8 RELATED WORK

Cryptographic Databases and Encrypted Search. En-
crypted databases [28], [29], a type of storage system de-
signed to deal with data disclosure problems [30], [31],
have drawn much attention from both industries and aca-
demics. Using the encrypted database can save industries,
governments or individuals the trouble of having to store

XXXX 13

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Size of keyword space (top 103)

Q
ue

ry
re

co
ve

ry
ra

te

Enron IMDB Blogger

(a) Passive attack v.s encoded file

0 2 4 6 8 10
0.7

0.8

0.9

1

Size of keyword space (random 103)

Q
ue

ry
re

co
ve

ry
ra

te

Enron IMDB Blogger

(b) Pasive attack v.s encoded file

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

privacy parameter α

Q
ue

ry
re

co
ve

ry
ra

te

Enron IMDB Blogger

(c) Passive attack v.s two-layer’s

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

privacy parameter β

Q
ue

ry
re

co
ve

ry
ra

te

Enron IMDB Blogger

(d) Active attack v.s two-layer’s

Fig. 11. Recovery rate of our passive attack and active attack on hardening dataset produced by one-layer file encoding countermeasures and
two-layer solution

sensitive information in a network-isolated environment,
enabling them to enjoy the more cost-effective cloud service.
However, for security concerns, the data stored in the en-
crypted database is always transformed into the ciphertext
that is incomprehensible. To preserve the utility, many ad-
vanced cryptographic primitives [32], [33], [34] or hardware-
assisted techniques [28], [29] are adopted in. Searchable
encryption (SE) [4], [35] is one of them which is leveraged
to secure the private search of encrypted data without
decryption. Early efforts in SE always focus on improv-
ing efficiency [20], [21], [36], expressiveness [37], [38], [39],
[40] and security [19], [41], [42]. For example, searchable
symmetric encryption [32], order-preserving encryption and
order-revealing encryption (OPE/ORE) are more flexible
to support sorting, performing range queries, and filtering
data [34], [38]. A notable feature of most of existing secure
search schemes is that they do not protect the search pattern
and access pattern, i.e., the adversary can know which query
is repeated and which files are returned for a query.
Leakage Abuse Attacks. The problem of how strong secu-
rity can the encrypted database provide has been investi-
gated for many years. In the early years, researchers always
leverage the notion of leakage profile to quantify what will
be fundamentally leaked in encrypted databases or crypto-
graphic primitives [20], [32]. But the security implication of
such leakage is not well understood in early days. In fact,
beyond the above leakage profiles are the invariant charac-
teristics that come along with access pattern and search pat-
tern before and after encryption, e.g., result length pattern,
volume pattern. It is first empirically studied by Islam et al.
that the access pattern, given some background knowledge,
can be utilized to infer the queried keywords and infringe
privacy [7]. Later, Cash et al. show improved attacks by
combining both co-occurrence of keywords and query result
size, and investigate their effectiveness in varying degree of
adversary’s prior knowledge [8]. Subsequently, a series of
leakage-abuse attacks targeting range query [15], [43] and
dynamic setting [24] are proposed, amplifying the fact that
the existing security models of encrypted search schemes
can no longer capture the power of real-world adversaries.
Mitigation Exploration. In the countermeasures front, vari-
ous padding strategies are widely employed to remove the
unique result length by adding extra document/keyword
pairs in the database [8], [17], [41]. Hence, the adversary
can no longer exploit the volume information to launch the
attack. However, such defenses cannot provide privacy pro-
tection comprehensively. The effectiveness of the protection

on other invariant characteristics like query co-occurrence
counts is not guaranteed. Note that though ORAM-based
algorithms [44], [45], [46] can be theoretically applicable to
hide query leakage, more computation and communication
overhead are essentially brought in compared to SSE. Nev-
ertheless, the ORAM cannot serve protection for volume
information, which may also result in privacy explosive.
Very recently, Chen et al. [47] use the concept of differ-
ential privacy to obfuscate the access pattern and Patel et
al. [18] exploit hashing on multi-map to realize volume-
hiding. However, these countermeasures are not grounded
on proper understanding of the intrinsic security limitations
of encrypted databases.

9 CONCLUSION

Privacy risk and defense related to the static database
has been explored in past literatures, but few works are
concerned on that about dynamics. In this paper, we
systematically investigate the leakage exploitation of en-
crypted database that supports data dynamics and devise
a two-layer database hardening approach. Our findings
give a comprehensive view of the privacy risk of dynamic
databases against both passive and active attacks, and
provide a guidance on how to mitigate them. Similar to
previous works, security and overhead trade-offs also exist.
Reducing system overhead without losing security strength
is still an issue for us to study in the future.

REFERENCES

[1] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrish-
nan, “Cryptdb: protecting confidentiality with encrypted query
processing,” in Proc. of SOSP, 2011.

[2] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin,
V. Gadepally, R. Shay, J. D. Mitchell, and R. K. Cunningham, “Sok:
Cryptographically protected database search,” in Proc. of IEEE
S&P, 2017.

[3] A. Agarwal, M. Herlihy, S. Kamara, and T. Moataz, “Encrypted
databases for differential privacy,” PoPETs, vol. 2019, no. 3, pp.
170–190, 2019.

[4] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private
information retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

[5] M. Chase and S. Kamara, “Structured encryption and controlled
disclosure,” in Proc. of ASIACRYPT, 2010.

[6] S. Kamara, T. Moataz, and O. Ohrimenko, “Structured encryption
and leakage suppression,” in Proc. of CRYPTO, 2018.

[7] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: Ramification, attack and mit-
igation,” in Proc. of NDSS, 2012.

[8] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proc. of the ACM CCS,
2015.

XXXX 14

[9] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and
V. Shmatikov, “The tao of inference in privacy-protected
databases,” PVLDB, vol. 11, no. 11, pp. 1715–1728, 2018.

[10] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Data
recovery on encrypted databases with k-nearest neighbor query
leakage,” in Proc. of IEEE S&P, 2019.

[11] ——, “The state of the uniform: Attacks on encrypted databases
beyond the uniform query distribution,” in Proc. of IEEE S&P,
2020.

[12] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Risten-
part, “Leakage-abuse attacks against order-revealing encryption,”
in Proc. of IEEE SP, 2017.

[13] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting leakage abuse
attacks,” In Proc. of NDSS, vol. 2020.

[14] Z. Gui, O. Johnson, and B. Warinschi, “Encrypted databases: New
volume attacks against range queries,” in Proc. of ACM CCS, 2019.

[15] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks
on secure outsourced databases,” in Proc. of ACM CCS, 2016.

[16] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson, “Learning
to reconstruct: Statistical learning theory and encrypted database
attacks,” in Proc. of IEEE S&P, 2019.

[17] R. Bost and P. Fouque, “Thwarting leakage abuse attacks against
searchable encryption - A formal approach and applications to
database padding,” IACR Cryptology ePrint Archive, vol. 2017, p.
1060, 2017.

[18] S. Patel, G. Persiano, K. Yeo, and M. Yung, “Mitigating leakage
in secure cloud-hosted data structures: Volume-hiding for multi-
maps via hashing,” in Proc. of ACM CCS, 2019.

[19] S. Kamara and T. Moataz, “Computationally volume-hiding struc-
tured encryption,” in Proc. of EUROCRYPT, 2019.

[20] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. of ACM CCS, 2012.

[21] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu,
and M. Steiner, “Dynamic searchable encryption in very-large
databases: Data structures and implementation,” in Proc. of NDSS,
2014.

[22] I. Miers and P. Mohassel, “IO-DSSE: scaling dynamic searchable
encryption to millions of indexes by improving locality,” in Proc.
of NDSS, 2017.

[23] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” in Proc. of ACM CCS, 2017.

[24] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in Proc. of USENIX Security, 2016.

[25] B. Bichsel, T. Gehr, D. Drachsler-Cohen, P. Tsankov, and M. T.
Vechev, “Dp-finder: Finding differential privacy violations by sam-
pling and optimization,” in Proc. of ACM CCS, 2018.

[26] M. Mohammady, L. Wang, Y. Hong, H. Louafi, M. Pourzandi, and
M. Debbabi, “Preserving both privacy and utility in network trace
anonymization,” in Proc. of ACM CCS, 2018.

[27] E. G. Altmann, Z. L. Whichard, and A. E. Motter, “Identifying
trends in word frequency dynamics,” Journal of Statistical Physics,
vol. 151, pp. 277–288, 2013.

[28] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix:
An efficient oblivious search index,” in Proc. of IEEE S&P, 2018.

[29] D. Vinayagamurthy, A. Gribov, and S. Gorbunov, “Stealthdb:
a scalable encrypted database with full SQL query support,”
PoPETs, vol. 2019, no. 3, pp. 370–388, 2019.

[30] C. Cadwalladr and E. Graham-Harrison, “Revealed: 50 million
facebook profiles harvested for cambridge analytica in major data
breach,” The guardian, vol. 17, p. 22, 2018.

[31] Y. Zou, S. Danino, K. Sun, and F. Schaub, “You ’might’ be affected:
An empirical analysis of readability and usability issues in data
breach notifications,” in Proc. of ACM CHI, 2019.

[32] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient con-
structions,” in Proc. of ACM CCS, 2006.

[33] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang,
“Practicing oblivious access on cloud storage: the gap, the fallacy,
and the new way forward,” in Proc. of the ACM CCS, 2015.

[34] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and
J. Zimmerman, “Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation,” in Proc.
of EUROCRYPT, 2015.

[35] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. of IEEE S&P, 2000.

[36] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Proc. of FC, 2013.

[37] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Proc. of CRYPTO, 2013.

[38] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order-preserving
encryption for numeric data,” in Proc. of the ACM SIGMOD, 2004.

[39] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked
keyword search over encrypted cloud data,” in Proc. of ICDCS,
2010, pp. 253–262.

[40] C. Wang, K. Ren, S. Yu, and K. M. R. Urs, “Achieving usable and
privacy-assured similarity search over outsourced cloud data,” in
Proc. of the IEEE INFOCOM, 2012, pp. 451–459.

[41] S. Kamara and T. Moataz, “Encrypted multi-maps with
computationally-secure leakage,” in Proc. of EUROCRYPT, 2019.

[42] C. Cai, J. Weng, X. Yuan, and C. Wang, “Enabling reliable keyword
search in encrypted decentralized storage with fairness,” IEEE
Trans. Dependable Secur. Comput., vol. 18, no. 1, pp. 131–144, 2021.

[43] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson, “Pump
up the volume: Practical database reconstruction from volume
leakage on range queries,” in Proc. of ACM CCS, 2018.

[44] T. H. Chan, K. Chung, B. M. Maggs, and E. Shi, “Foundations of
differentially oblivious algorithms,” in Proc. of SODA, 2019.

[45] E. Stefanov, M. van Dijk, E. Shi, T. H. Chan, C. W. Fletcher,
L. Ren, X. Yu, and S. Devadas, “Path ORAM: an extremely simple
oblivious RAM protocol,” Journal of ACM, vol. 65, no. 4, pp. 18:1–
18:26, 2018.

[46] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic
searchable encryption with small leakage,” in Proc. of NDSS, 2014.

[47] G. Chen, T. Lai, M. K. Reiter, and Y. Zhang, “Differentially private
access patterns for searchable symmetric encryption,” in Proc. of
INFOCOM, 2018.

	Introduction
	Motivation and Our Approaches

	Dynamic SSE and Leakage Profiles
	Attack Model
	Adversary, Knowledge and Target Goals
	Threat Assumption and Attack Models
	Revisiting Leakage Abuse Attacks

	Refining Leakage Abuse Attacks
	Active Attack: Structure-based Decoding
	Passive Attack: Relation-based Inference

	New Security Notion and Discussion
	Leakage Indistinguishability
	Basic cluster-based Encoding Protocol

	Two-layer Countermeasures
	Design Intuition
	Two-layer Dynamic Encrypted Search Scheme
	Security Analysis
	Balancing Efficiency and Security

	Performance Evaluations
	Experiment Setup
	Implementation of Proposed LAAs
	Performance of Our Countermeasures

	Related work
	Conclusion
	References

