
Estimating the Hidden Overheads
in the BDGL Lattice Sieving Algorithm

Léo Ducas1,2

1 Cryptology Group, CWI, Amsterdam, The Netherlands
2 Mathematical Institute, Leiden University, The Netherlands

Abstract. The lattice sieving algorithm based on list-decoding of Becker-
Ducas-Gama-Laarhoven (SODA 2016) is currently at the center of crypt-
analysis cost estimates of candidate lattice schemes for post-quantum
standardization.
Yet, only an idealized version of this algorithm has been carefully mod-
elled, i.e. given an efficient list-decoding oracle for a perfectly random
spherical code. In this work, we propose an experimental analysis of the
actual algorithm. The difficulty lies in estimating the probabilistic de-
fect with respect to perfectly random spherical codes for the task at
hand. While it should be in principle infeasible to run the algorithm in
cryptographically relevant dimensions, a few tricks allow to nevertheless
measure experimentally the relevant quantity.
Concretely, we conclude on an overhead factor of about 26 on the num-
ber of gates in the RAM model compared to the idealized model for
dimensions around 380 after an appropriate re-parametrization. Part of
this overhead can be traded for extra memory, at a costly rate. We also
clarify that these overheads apply to an internal routine, and discuss how
they can be partially mitigated in the whole attack.

Keywords: Concrete Cryptanalysis, Lattice, Sieving.

1 Introduction

1.1 Context

Sieving refers to a class of algorithm for finding the shortest vector in a Euclidean
lattice; it proceeds by continuously searching within a list L of lattice vectors
for pairs u,v ∈ L such that u− v is shorter than either of the original vectors.
Assuming that all the vectors have roughly the same length (say, length 1), this
is equivalent to searching for reducing pairs of vectors, i.e. pairs with angle less
than π/3.

While proving that sieving does indeed succeed requires convoluted and costly
tricks [AKS01], such a simple algorithm works well in practice [NV08] when
working with a list of size roughly N ≈ (4/3)n/2 in dimension n. A naive imple-
mentation of this strategy therefore leads to finding the shortest vector in time
roughly nO(1) · N2, for a complexity of 2.415n+o(n). A line of work initiated by

Laarhoven [Laa15a,Laa15b,LW15] has led to lower complexity, by the introduc-
tion of the Near Neighbour Search formalism (NNS), using Locality Sensitive
Hashing. This approach allows one to find (most of) the reducing pairs in a time
Lc for some constant c ∈ [1, 2].

Among many variants [Laa15b,LW15,BGJ15,Laa15a], the asymptotically fastest
is that of Becker-Ducas-Gama-Laarhoven [BDGL16], with a time complexity of
(3/2)n/2+o(n) = 2.292n+o(n). It is based on efficient list-decoding of well cho-
sen spherical codes. It also underlies the current fastest implementation on
CPUs [ADH+19,DSvW21], though the cross-over point with the simpler sieve
of [BGJ15] has not yet been reached on GPUs [DSvW21].

This algorithm has also been the object of precise gate cost estimation
in large dimensions [AGPS20], or more specifically its internal near-neighbors
search (NNS) routine. These estimates are used in the documentation of several
NIST post-quantum standardization candidates. In particular, the Kyber docu-
mentation [ABD+21, Sec. 5.3] gives a list of eight open question about various
approximations and foreseeable improvements that may affect these estimates,
both upward and downward.

1.2 This work

This work aims to resolve the open question Q2 of [ABD+21, Sec. 5.3] regarding
the idealized model for the near neighbors search procedure of [BDGL16]. In the
idealized model, the spherical code is assumed to be perfectly random, and to be
efficiently list-decodable. The instantiated NNS procedure instead resorts to a
product of random codes, which induces overheads. More specifically, there is a
trade-off between three overheads when instantiating the [BDGL16] framework
with product codes:

– a computation overhead CO×, to list-decode the spherical code,
– a memory overhead MO×, to store pointers to vectors in buckets,
– a probability overhead PO×, accounting for the randomness defect of product

codes

The computation and probability overhead both contribute to the gate count
of the algorithm, defining a time overhead TO× = CO× · PO×. It is known
from [BDGL16] that all three overheads can be made subexponential, and that
either the memory overhead or the computation overhead can be made negligible.

While the computation overhead CO× and memory overhead MO× are easy
to calculate concretely, the probability overhead PO× seems harder to model
precisely and rigorously, and naive measurements would not be feasible for cryp-
tographically relevant parameters. The main technical contribution of this work
resides in the design of feasible experiments to measure this overhead (Section 3).

Implementing this experiment leads to concrete conclusions on these over-
heads and their trade-off (Section 4). In dimension n = 384 (roughly what is
needed to break lattice candidates at level NIST 1) the idealized NNS procedure
is costed by [AGPS20] at 2134.1 gates and 297.6 bits of memory. We conclude on

a 26 slowdown factor on time for small memory overhead. A partial trade-off is
possible, but costly, and even with a factor 212 increase in memory consumption,
a slowdown factor of 22.5 remains.

We also discuss how these overheads of the internal NNS routine can be
somewhat mitigated inside a complete lattice attacks (Section 5), and propose
further open problems (Section 6) .

Source code. The artifact associated with this work are available at

https://github.com/lducas/BDGL_overhead .

Acknowledgments

The author wishes to thank Martin Albrecht, Vlad Gheorghiu, and Eamonn
Postlethwaite, John Schanck for open-sourcing and maintaining various research
artefacts making this research possible. The author was supported by the ERC-
StG-ARTICULATE project (no. 947821).

2 Preliminaries

Complexity. Time and memory complexity are given in the RAM model, and
for readability are given in terms of elementary operations during most of this
paper; constant factors will be gracefully ignored. Only in Section 4.3 do we
quantify costs more precisely in terms of binary gates.

Independent Small Probability Events. We will silently abuse the approximation
1− (1−W)M ≈ W ·M to our best convenience.

Euclidean Vector Space. In all this work, bold lowercase (u,v,w, . . .) letters
denotes row vectors of the real vector space Rn endowed with its canonical
Euclidean inner product: 〈x,y〉 :=

∑
xiyi, and associated Euclidean metric

‖x‖ =
√
〈x,x〉.

Spheres, Caps and Wedges. We define the following bodies in dimension Rn:

– The unit sphere : Sn := {x ∈ Rn | ‖x‖ = 1}
– The halfspace : Hnv,a := {x ∈ Rn | 〈x,v〉 ≥ a}
– The spherical cap : Cnv,a := Sn ∩Hv,a

– The (symmetric) spherical wedge:3 Wn
v,w,a := Cv,a ∩ Cw,a

where v,w ∈ Sn and a ∈ [0, 1]. Furthermore, we define the relative volume of
caps and wedges as follows.
3 The literature usually defines asymmetric spherical wedge with two different bounds
a, b for the halfspace in directions v and w. However the best choice appears to be
a = b [BDGL16,AGPS20].

https://github.com/lducas/BDGL_overhead

– Cn(a) := Vol(Cv,a)/Vol(Sn) for any v ∈ Sn
– Wn(a, c) := Vol(Wv,w,a)/Vol(Sn) for any v,w ∈ Sn such that 〈v,w〉 = c.

The dimension n being generally clear from context, the exponent n might be
omitted in the rest of this document. For asymptotic analysis, we have the fol-
lowing lemma.

Lemma 1 ([BDGL16]). For any fixed a ∈ [0, 1] and growing n,

– Cn(a) =
(
1− a2

)n/2 · nO(1)

– Wn(a, c) =
(
1− 2a2

1+c

)n/2
· nO(1).

These quantities Cn(a) andWn(a, c) can be efficiently computed precisely [AGPS20];
in particular C(a) directly relates to the incomplete beta function.

2.1 List-Decoding Sieve, Idealized

The idealized version of [BDGL16] proceeds by assuming that one is given ran-
dom yet efficiently list decodable spherical code F ⊂ Sn of size M . More pre-
cisely, it is assumed that one can compute the set of codewords falling in a
given spherical cap F (v, a) := F ∩ Cv,a, and this efficiently, that is in time,
say, #F (v, a) + LDO+ where LDO+ = 2o(n) denotes a sub-exponential additive
overhead for list decoding. In the idealized model, this factor is assumed to be
LDO+ = 1.

Given such a set and such an oracle, one proceeds with the search for reducing
pairs as follows:

1. Compute F (v, a) for each v ∈ L, and store v in buckets labelled by each
f ∈ F (v, a)

2. For each f ∈ F , and for each pair v,w in the bucket labelled by f , check
whether 〈v,w〉 ≤ 1/2.

Assuming that each codeword f ∈ F and each lattice vector of the list v ∈ L
is uniform and independent over the sphere, one expects each v to fall inM ·C(a)
buckets, and each bucket to contain N ·C(a) vectors, leading to a time complexity
of

N · (n ·M · C(a) + LDO+) + n ·M ·(N · C(a))2

≈ 2nM when a = 1/2

and a memory complexity of N ·M · C(a) for the procedure.
A reducing pair will be detected if and only if there is a codeword falling in

the wedgeWv,w,a = Cv,a∩Cw,a. Given that f ∈ F are uniform and independent,
this happens with probability 1−(1−W(a, 1/2))M ≈M ·W(a, 1/2). One should
therefore choose M ≈ 1/W(a, 1/2) to find essentially all reducing pairs.

Recalling that N ≈ 1/C(1/2) = (4/3)n/2 · nO(1), one finds that the optimal
asymptotic time complexity of T = 1/W(1/2, 1/2) = (3/2)n/2 · nO(1) is reached

at a = 1/2, and with a similar memory complexity M = (3/2)n/2 · nO(1). In
practice [BDGL16], a slightly smaller value of a < 1/2 seems preferable. How-
ever we note that after the update of [AGPS20] including the model correction
of [MAT22] for BDGL cost, a slightly larger a > 1/2 now gives optimal gate
count.

Low Memory Variant. Following an original remark of [BGJ15], [BDGL16] also
propose a variant where the memory cost is dominated by that of the list of
vectors, rather than by the buckets. One can simply choose a smaller value of
M = 1/C(a), and to repeat the whole procedure with a fresh spherical code
R = M/W(a, 1/2) = (9/8)n/2 · nO(1) many times. The new time complexity is
now

RN · (nM · C(a) + LDO+) + nRM ·(N · C(a))2

≈ nRM(2 + LDO+) when a = 1/2

which is similar to the above, up to an extra sub-exponential factor LDO+. That
is, we have traded an exponential factor (9/8)n/2 · nO(1) on memory for a sub-
exponential factor on time. Intermediate choices are also possible, ranging from
Mmin = 1/C(a) to Mmax = 1/W(a, 1/2).

2.2 List-Decoding Sieve, Instantiated

It remains to replace the random spherical code by one that is structured enough
to allow efficient list-decoding, while not affecting the success probability of
detecting reducing pairs too much. This is an issue of independence. Indeed,
consider for a second a code of size M = 1/W(a, 1/2), whose codewords would
all be concentrated in a small region. The average number of codewords in a
random wedgeWn

v,w,a would still be 1, yet most of the time a wedge will contain
no codewords at all, while the remaining rare case is a wedge containing almost
all of the M codewords. The desired situation is one there is always about 1
codeword in such a random wedge.

To do so, it is proposed in [BDGL16] to use a product of random codes
in smaller dimensions. That is, F is constructed as the Cartesian product of
m random spherical codes in dimension n/m, each of size B = M1/m. For
such a code, a decoding algorithm is devised [BDGL16, Sec. 5], running in time
essentially

nB +mB logB +m ·#F (v, a).

We will not describe the algorithm in detail (see [BDGL16, Sec. 5]), but briefly
explain the three terms:

1. nB corresponds to the cost of computing B inner products in dimension
n/m for each of the m subcode.

2. mB logB corresponds to sorting the m lists of inner products.
3. m ·#F (v, a) corresponds to a tree enumeration without any backtracking,

in a tree of depth m with #F (v, a) leaves.

In practice, these costs can be tackled further [MLB17,DSvW21,MAT22], as will
be discussed in Section 4.3, and a more optimistic model would be

mB +#F (v, a).

For now, one may simply consider that the additive overhead of the list
decoder is LDO+ = nB = nM1/m. Furthermore, it is proved [BDGL16, Theorem
5.1] that such random product codes are not that far off perfectly random codes
when m = log n; more precisely, the success probability for detecting a reducing
pair is only a sub-exponential factor PO× = 2Õ(

√
n) away of the idealized model:

PW [#(F ∩W) ≥ 1] =M · W(a, c)/PO×

where W is a random wedge with parameter (a, c). This multiplicative proba-
bility overhead must be compensated for by repeating the algorithm PO× many
times.

Low Memory Variant. For the low memory variant, one can ensure independence
across the R repetitions by applying a fresh random rotation to the input of each
repetition. This ensures that the overall probability overhead is the same as the
individual ones.

3 Analyzing the List-Decoding Sieve Instantiation

3.1 Overheads and Trade-offs

We have identified three overheads between the idealized and the instantiated
list-decoding sieving algorithm [BDGL16]: a cost overhead on the procedure CO×

induced by the non-trivial cost of list-decoding, a memory overhead MO× for
storing pointers to vectors in buckets, and a probabilistic overhead PO× induced
by the independence defect of random product codes. The overall time overhead
is given by TO× = CO× · PO×, and one may also consider the time-memory
overhead TMO× = TO× ·MO×.

The first two overheads CO× and MO× can be calculated from the algorithm
parameter, though the exact formula might be bulky and hard to parse. For
illustration, in a simple model ignoring constants, and assuming a = 1/2 and
N = 1/C(1/2), we have:

TO× ≈ 1 +
LDO+

nMC(a)
≈ 1 +

Mmin

M
·M1/m and MO× ≈ 1 +

M

Mmin
.

The overhead PO× is however more problematic, and the author admits to
having no clue on how to approach it analytically. In this position, one would
be tempted to just ignore PO×, and focus on the above; however such an anal-
ysis would result in essentially the same result as the idealized model: setting
M = Mmin and m = log2(M) = Θ(n) gives constants overheads TO× and

MO×. In such an extreme regime, the BDGL algorithm starts resembling the
hyperplane-LSH algorithm of Laarhoven [Laa15b], whose complexity is supposed
to be exponentially worse, that is, we’d expect PO× = 2Θ(n).

In conclusion, to refine the cost analysis of [BDGL16] one has no choice but
to estimate PO× some way or another. Before we explore how to experimentally
measure such a quantity, let us briefly recapitulate how the parameters affect
each overhead:

1. The parameter M can range from Mmin = 1/C(a) to Mmax = 1/W(a, 1/2).
Straightforwardly, increasing M decreases memory overhead and increases
time overhead. One may also guess that PO× grows withM ; indeed, a larger
value of R =Mmax/M improves independence of the success events bringing
us closer to the idealized model. This trend is confirmed by the experiments
of Section 4.2.

2. The parameter m is a positive integer, and time overhead decrease with it;
however we expect PO× to grow with m. This will also be confirmed by
experiments of Section 4.2.

3. The parameter a may also affect both the base-line performance and the
probabilistic overhead PO×. Though it is not clear a-priori in which direction.
Experiments of section 4.2 will show that for a fixed M , PO× increases as a
decrease.

3.2 Measuring PO×, Naively

In this section, we discuss how to experimentally measure PO×, hopefully up
to cryptographically relevant dimension. By definition, running the full sieve
algorithm is not an option. When giving explicit complexity, we tacitly assume
a = 1/2.

The Naive Approach. The naive approach consists in generating random
reducing pair on the sphere v,w such that 〈v,w〉 = 1/2, and simply testing
whether F (v, a) ∩ F (w, a) is non-empty.

Lemma 2. There is a polynomial time algorithm that, given a ∈ [0, 1] samples
a uniform pair v,w ∈ Sn conditioned on 〈v,w〉 = a.

Proof. The algorithm follows:

1. Sample v uniformly on S
2. Sample x uniformly on S ∩ v⊥, by sampling uniformly on S, projecting

orthogonally to v, and renormalizing.
3. Set w =

√
1− a2 · x+ a · v. ut

Testing whether this pair is detected costs time LDO+ +M/Mmin per trial,
and memory M/Mmin. However, the success probability is only M/(MmaxPO×),
so the experiments must be repeated(MmaxPO×)/M leading to a complexity of
(MmaxPO×)/Mmin = (9/8)n/2+o(n) = 2.085n+o(n) to get a single success. And we
may want to record up to a 1000 success for a decent estimate of the success
probability.

3.3 Measuring PO×, a First Speed-up

Because in this experimental set up we know in advance the reducing pair v,w
that the list-decoding is searching for, we can use this information to narrow
down the search. In particular, consider the following lemma.

Lemma 3. For any a, c ∈ [0, 1], and v,w ∈ Sn such that 〈v,w〉 = c, we have
the inclusion

Wn
v,w,a ⊂ Cnz,2·a/√2+2c

where z = v+w
‖v+w‖ is the midpoint of v,w on the sphere Sn.

Proof. Let x be in the wedge Wn
v,w,a; by definition we have 〈v,x〉 ≥ a and

〈w,x〉 ≥ a. Thus, it holds that 〈v +w,x〉 ≥ 2 · a, or equivalently that 〈z,x〉 ≥
2·a/‖v+w‖. We conclude noting that ‖v+w‖2 = ‖v‖2+‖w‖2+2〈v,w〉 = 2+2c.

ut

Further, we note that this inclusion Cn
z,2·a/

√
2+2c

⊃ Wn
v,w,a is rather a good

over-approximation: the ratio CW(a, c) := C(2a/
√
2 + 2c)/W(a, c) is not too

large.

Lemma 4 ([BDGL16, App. A]). For any a, c ∈ [0, 1), CW(a, c) = O(
√
n).

In our case, this implies that that F (v, a)∩F (w, a) is included in F (z, 2a/
√
3);

one can now test for each f ∈ F (z, 2a/
√
3) whether 〈f ,v〉 ≤ a and 〈f ,w〉 ≤ a.

This gives significant savings when M/Mmin > LDO+; in particular for M =
Mmax the time and memory complexity drop down to sub-exponential (LDO++
CW) · PO× = 2o(n) per successful sample.

3.4 Measuring PO×, a Second Speed-up

While the previous speed-up is appreciable in the high-memory regime, it is not
very effective in the low memory regime, the main issue being that it inherently
takes (MmaxPO×)/M trials to get a success. And we are indeed most interested
in the case where M is close to Mmin. To tackle it, we need not improve the
algorithm, but instead design a different experiment.

Consider the following distribution D : #(F (v, a) ∩ F (w, a)) where v,w
are uniform over the sphere conditioned on 〈v,w〉 = 1/2. In other word, the
distribution of the size of W ∩ F for a random (a, 1/2)-wedge. Let us call di :=
Pj←D[j = i] its density at i.

We know that the average size ofW ∩F isM ·W(a, 1/2), that is
∑
i≥0 di · i =

M ·W(a, 1/2) is essentially equal to the success probability of when F is perfectly
random. We are interested in the probability of success S, that i ≥ 1 for i← D,
i.e. S =

∑
i≥1 di. An idea would be to design an experiment that focuses on the

cases i ≥ 1, i.e. an experiment that is conditioned on successful detection.

Conditioned sampling We start with a sampling procedure for generating
pairs that are successfully detected by a given filter f .

Lemma 5. There is a polynomial time algorithm that, given a, c ∈ [0, 1] and f ∈
Sn samples a uniform pair v,w ∈ Sn conditioned on 〈v,w〉 = c andWv,w,a 3 f .

Proof. Setting z = v+w
‖v+w‖ , we know by the previous lemma that f ∈ Wv,w,a

implies f ∈ Cz,2·a/√2+2c, which is equivalent to z ∈ Cf ,2·a/√2+2c. Our strategy is
therefore to

1. Sample z uniformly in Cf ,2·a/√2+2c

2. Sample v,w such that z is their midpoint, and 〈v,w〉 = c

3. Return (v,w) if f ∈ Wv,w,a, otherwise restart.

For the first step, note that r := 〈f , z〉 is not determined, but constrained to
r ∈ [b := 2·a√

2+2c
, 1]. Defining β = cos−1(b), ρ = cos−1(r), we sample ρ uniformly

in [0, β] and use rejection sampling with acceptance probability (sin(ρ)/ sin(β))n−2.
Finally, we choose z ∈ S under the constraint 〈f , z〉 = r.

The second step is easy, by first choosing v conditioned an inner product of
1+c√
2+2c

with z, and then setting w to be its reflection against the axis z.
Regarding last step, we note that the accepting probability is 1/CW(a, c) =

1/O(
√
n) by Lemma 4. ut

An auxiliary distribution. We can now consider the following distribution
D′ of #(F (v, a)∩F (w, a)), where f is chosen uniformly from F , and v,w chosen
uniformly conditioned on 〈v,w〉 = 1/2 and on Wv,w,a 3 f . By construction, it
always holds that i ≥ 1 for i ← D′. In fact, the density at i is proportional to
idi, because there are i many ways to get to that same pair (v,w); that is, the
density of D′ is given by d′i = idi/

∑
j jdj .

Conclusion. Now consider the expectation of 1/i for i← D′:

E[1/i] =
∑
i≥1 idi/i∑
j jdj

=

∑
i≥1 di∑
j jdj

=
S

M · W(a, 1/2)
=

1

PO×
.

This means we can estimate PO× simply as the average of E[1/i] where i← D′.
The remaining question is how many sample do we need to get a precise esti-

mate ? The variance of the empirical average grows as Θ(V/k) using k samples
and where V denotes the variance of individual samples; drawing k = Θ(V/E2)
samples one therefore reaches a relative error of

√
V/E = O(1). Because the 1/i

is supported by [0, 1], it holds that V ≤ E, and we get k ≤ Θ(1/E) = O(PO×).
We therefore only need a sub-exponential amount O(PO×) of sample in any

regime, to be compared to (MmaxPO×)/M , a quantity as large as (9/8)n/2+o(n)
in the low memory regime.

4 Implementation and Experiments

We implemented BDGL list-decoder in python, with the library numpy for vector
operation, which makes most of the operation reasonably fast. The experiments
to measure PO× are proudly parallel4 over the many samples they require.

Only the tree enumeration is implemented without numpy acceleration, how-
ever this is reasonably mitigated by our first speed-up: the tree should be small
on average for the regime we are interested in. We nevertheless experienced
that a few instances had unreasonably large tree (enough to fill gigabytes worth
of leaves); we therefore implemented a cap on the number of leaves at which
the tree enumeration is halted, with a default value of 107. This might lead to
under-estimating PO× in the experiments of Section 3.4, but no significantly
unless PO× itself reaches similar order of magnitude. In particular, this is not
significant in the regime of our experiments.

We also depend on the software of [AGPS20] for computing C andW exactly,
as well as for computing baseline cost, that is the cost of idealized near neighboor
search.

4.1 Consistency checks

In consistency_check.py, we implement some consistency checks for both
speed-ups described in Section 3.3 and 3.4. For the first speed-up, we check that
it is indeed the case that F (v, a) ∩ F (w, a) is included in F (z, 2a/

√
3) where z

is the spherical midpoint of v and w.
For the second speed-up, we simply measure PO× using both methods, using

216 samples, and check that both results are equal up to a 20% relative error.

4.2 Trends

We plot the variation of PO× as a function of various parameters in Figure 1.
These plots confirm that PO× indeed increases with m and M . Interestingly, for
fixed m and either M =Mmin or M =Mmax, PO× appears to be converging as
n grows. We also note that PO× decrease with a for a fixed M .

4.3 Concrete estimate in dimension 384

In this section, we will be more precise about costs, giving an gate count for
time and a bit count for memory.

4 The terminology was communicated to us by M. Albrecht, and is meant as a synonym
of embarrassingly parallel.

20 30 40 50 60 70 80
0

1

2

3

n

lo
g
2
P
O

×

m = 2,M =Mmax

m = 3,M =Mmax

m = 4,M =Mmax

m = 2,M =Mmin

m = 3,M =Mmin

m = 4,M =Mmin

Parameters: a = 1/2.

20 22 24 26 28
0

1

2

3

log2M

lo
g
2
P
O

×

m = 2
m = 3
m = 4

Parameters: n = 80, a = 1/2.

0.46 0.48 0.5 0.52 0.54
0

1

2

3

a

lo
g
2
P
O

×

m = 2
m = 3
m = 4

Parameters: n = 80, M = 1/C(0.55).

Fig. 1: Variations of PO× as a function of various parameters. Measured over 214
samples per datapoint.

The [AGPS20] estimates. The original version of the software associated
with [AGPS20] was costing list-decoding in the idealized model, that is, the cost
of bucketing a vector was proportional to the number of buckets it falls into,
following the formula5:

m ·M · C(a) · Cip(n) (1)

5 https://github.com/jschanck/eprint-2019-1161/blob/
09d72d2125e75fdd35e49e54c35663a1affa212a/cost.py#L783

https://github.com/jschanck/eprint-2019-1161/blob/09d72d2125e75fdd35e49e54c35663a1affa212a/cost.py#L783
https://github.com/jschanck/eprint-2019-1161/blob/09d72d2125e75fdd35e49e54c35663a1affa212a/cost.py#L783

choosing m = log2(n) and where Cip(n) = 210 · n denotes the cost of an inner
product in dimension n in gates (computed at 32 bit precision). Not withstand-
ing the idealization of ignoring the additive overhead LDO+, this formula does
not adequately reflects the cost stated in the original [BDGL16] paper; this
was pointed out in [MAT22]. Indeed, in [BDGL16] the inner products are pre-
computed and reused through the tree enumeration, reducing the Cip(n) factor6
to a Cadd = 160 factor, the cost of a single 32 bit addition. Furthermore, the
work of [MAT22] propose a variation on the tree enumeration order to tackle
the m factor7.

Following this report and further discussion on the NIST forum8, this cost
has been revised to9

m ·B · Cip(n/m) +mB log2B(Ccp + log2B)︸ ︷︷ ︸
LDO+

+M · C(a) · (Cadd + log2B) (2)

where Ccp = 32 is the cost of a comparision (for sorting), and the additive terms
log2(B) are meant to account for moving and adressing pointers10.

The addition of the LDO+ term is in fact negligible, because the whole al-
gorithm is costed in its high-memory regime M = Mmax, R = 1. Though, the
memory consumption is not reported upon by the software, nor by other report
using this software, nor in the reports of [AGPS20,GJ21,MAT22]. In the Kyber
documentation (Round 3 version) [ABD+21], a memory cost of 293.8 bits for
sieving dimension 375, which corresponds to storing N = 1/C(1/2) vectors of
dimension n at 8-bit precision. That is, the memory was costed following the
low-memory regime.

Costing time in the high memory regime, while costing memory in the low
memory regime, all while ignoring the probabilistic overhead essentially corre-
sponds to the idealized model for [BDGL16].

Further improvement on LDO+. There has been some further improvement
on implementing [BDGL16], in particular improving the LDO+ term. In per-
sonal communication about [MLB17], Laarhoven mentioned that partial inner
products need not be entirely sorted as only the top fraction is visited during
the tree enumeration. In the low memory regime, one would expect that the tree
visit about a single branch on average, so this sorting may be reduced down to

6 Even without this precomputation, this cost should have been Cip(n/m).
7 Though in the original [BDGL16] this factor comes from a worst-case analysis on
the tree shape, and one would expect this factor to also vanish to 1 for large random
trees without tweaking the tree enumeration.

8 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s/m/
m1vVrpoAAgAJ

9 https://github.com/jschanck/eprint-2019-1161/blob/
a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c/cost.py#L801

10 We believe the last term should be log2(M) rather than log(B) since there are M
buckets to point to.

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s/m/m1vVrpoAAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s/m/m1vVrpoAAgAJ
https://github.com/jschanck/eprint-2019-1161/blob/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c/cost.py#L801
https://github.com/jschanck/eprint-2019-1161/blob/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c/cost.py#L801

finding a single maximum. We will therefore ignore this cost which is dominated
by the other LDO+ term.

A second improvement comes from the implementation of [DSvW21], which
replace explicit inner products with random vectors, by a sequence of implicit
inner products using permutations and Hadamard matrices. This allows to de-
crease the cost from m ·B · Cip(n/m) to essentially

m · log2 n/m ·B · Cadd (3)

where the additions are computed at 16-bit precision (Cadd = 80).

First Overhead Estimation. Having now costed the overheads following the
state of the art [MLB17,DSvW21], and being equipped with an efficient method
to measure the probability overhead, we may now provide an analysis of the
previously neglected overheads. We fix parameters according to the optimization
provided by the (revised) software of [AGPS20]:

– Dimension is n = 384

– Xor-popcount parameters [FBB+14,Duc18,ADH+19] are done over 511 bits,
with a threshold at 170, giving an positive detection rate of η = 0.456

– The number of vectors for the sieve is set to N = 2/((1− η)C(1/2)) = 286.0,
– The filter parameter is optimized at a = 0.512 by the revised script of [AGPS20],

giving Mmin = 289.0 and Mmax = 2127.6.

The revised script of [AGPS20] concludes on a cost of Tideal = 2134.1 gates,
while we need at least Mideal = 8nN = 297.6 bits of memory for storing all
the sieve vectors. In Figure 2a we report on the time and memory overheads
(TO×,MO×) for various values of m and M .

For each value of m, we first see time decrease as we increase the memory
overhead, until a certain point, after which is starts increasing again. In other
words, and perhaps surprisingly, the minimal time is not reached at the high-
memory regime M = Mmax, but somewhere halfway Mmin < M < Mmax. A
breakdown of the time overhead TO× = CO× · PO× explains the phenomenon
(Figure 2b): while CO× tends to 0, PO× increases at a steady rate; once CO×

approaches 0, the decay of CO× gets lower than the increase of PO×.
The plot shows that whatever the parametrization, the overhead on time-

memory is TO× ·MO× ≥ 28; furthermore, even for very large memory overhead
the time overhead remains non-negligible.

One can also note that the number of vectors per bucket is NC(a) ≈ 1/8,
which is surprisingly low; only one bucket in 64 will actually have a pair to
attempt reduction. This is understandable in the idealized model, because the
cost of bucketing Cadd +log2B is significantly lower than a xor-popcount on 511
bits (costed at 3072 gates by [AGPS20]). But this could be sub-optimal when
considering overheads. That is, to conclude, we first need to re-optimize the value
of a with the overhead in the equation.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

log
2 (TO ×

·MO ×
) =

8

log2 MO×

lo
g
2
T

O
×

m = 6
m = 8
m = 10
m = 12
m = 14
m = 16
m = 18

(a) Overall Time Overhead TO× as a function of the Memory Overhead MO×.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

log2 MO×

lo
g
2
P
O

×
(p
la
in
),

lo
g
2
C
O

×
(d
ot
te
d)

m = 6
m = 8
m = 10
m = 12
m = 14
m = 16
m = 18

(b) Breakdown of Time Overhead TO× = CO× · TO× as a function of the Memory
Overhead MO×.
Each measure of PO× was done over 212 samples. The computation took about 20 core-
days.

Fig. 2: Overheads in dimension 384 for a = 0.512.

98 100 102 104 106 108 110 112 114 116

136

138

140

142

144

146

148

log
2 (TM

) =
idealized

+
6

log2 M

lo
g
2
T

m = 6
m = 7
m = 8
m = 9
m = 10
m = 12

Idealized [AGPS20]

Each measure of PO× was done over 213 samples. The computation took about 40 core-
days.

Fig. 3: Cost in dimension 384 when optimizing a with overheads.

Reparametrizing, with Overheads. We now have three parameters to op-
timize over, m,M, and a, so we need to be mindful of the search space for the
experiment to be feasible. We explore M by multiplicative increment of 2, and
for each M , we use the previous curve to determine the relevant range for a.
This explain the “hairy” appearance of our plot in Figure 3: each “thread” (for a
fixed m) is in fact a union of curves for a fixed M and a small range of relevant
a.

Qualitatively, the conclusion remain similar to that of the previous experi-
ments, but quantitatively, the gap with the idealized cost is now a bit smaller
near the low-memory regime (from 28 down to 26). Numerically, we can for ex-
ample parametrize the algorithm to have time and memory complexity about
(T = 2140.1,M = 298), against a baseline of (Tideal = 2134.1,Tideal = 297.6). The
time-memory trade-off is however costly: from this point, decreasing the time by
a factor 2−2 costs an extra factor of 24.5 on memory, and gets worse as the curve
flatten to minimal time around (T = 2136.5,M = 2112) .

5 Impact on Attacks

We clarify that the cost given all along this paper corresponds to the NNS task
of finding all reducing pairs once inside sieving, and not that of the whole attack.
In particular, we can not conclude that all attacks using sieving have their time-
memory cost increased by a 26 factor. The most advanced attacks [GJ21,MAT22]

have several stages, and reparametrizing them adequately should partially mit-
igate these overheads.

We also recall that there remain several known unknown in precisely model-
ing and costing lattice attacks, summarized in [ABD+21, Sec. 5.3]. This works
resolves question Q2 (Idealized Near-Neighbors Search) of [ABD+21, Sec. 5.3].
We note that question Q7 (Refined BKZ Strategies) is now accounted for in the
recent estimator of Albrecht [Alb22] under the label bdd.

We also warn against regressions on the accuracy of lattice attack esti-
mates [GJ21,MAT22], such as the use of the Geometric-Series Assumption in-
stead of a (progressive) BKZ simulator [CN11,DSDGR20,Alb22].

5.1 Mitigation inside Progressive-Sieve and Progressive-BKZ

Even in the simplest attack whose cost comes essentially from sieving, the over-
head can also be mitigated. The reason is that the routine at hand is not only
ran in the final sieving dimension (say n = 384) but also in dimension below it;
for those calls in smaller dimension we can move on the time-memory curve.

More specifically, the simplest primal BKZ attack11 makes about d(i+1) calls
in dimension n− i where d is the total lattice dimension; these calls accumulates
over progressive-sieving for each SVP oracle call [Duc18,ADH+19], and over
progressive-BKZ tours. In the idealized model, this adds an extra dC2 factor on
time where C =

∑∞
i=0 2

−.292i ≈ 5.46 stands for the progressivity overhead.
To correct the progressivity overhead using this strategy, we rely on the

data collected at n = 384, and make the working assumption12 that for small
i < 30, the time-memory curve of Figure 3 is simply shifted by (T = 2−.292i,M =
2−.2075i). We aim to make optimal use of M = 298 bits of memory throughout
all calls to the inner routine in dimension 384− i.

For each i, we collect the minimal time Ti such that Mi < 298, and finally
compute

∑
(i + 1)Ti/T0 ≈ 15.6. This is to be compared with the idealized

progressivity overhead squared C2 ≈ 29.6. That is, this strategy should mitigate
the 26 overhead of the inner routine by a factor 2−0.9 on the whole primal BKZ
attack, lowering the overhead down to 25.1. Given the concavity of the curve, one
would expect this mitigation works best in the low memory regime; for example,
at M = 2100 we get

∑
(i+ 1)Ti/T0 ≈ 20.0, i.e. a mitigation factor of 2−0.6.

For a single progressive sieve, we can also compare
∑

Ti/T0 ≈ 3.78 to C ≈
5.46, and conclude on a mitigation factor of 2−0.5 at M = 298.

6 Open Problems

The analysis of the overheads of the algorithm of [BDGL16] presented in this
work is based on instantiating it is random product codes. While this is the only
11 the BKZ blocksize β is here sligthly larger than n thanks to the dimensions for free

of [Duc18].
12 Collecting all those curves would be rather costly, about 40 core-days per curve.

Furthermore, the software of [AGPS20] which we rely on is only set for n a multiple
of 8.

proposed instantiation so far, the framework of [BDGL16] can also work with
other efficiently list-decodable spherical codes. A natural open problem would
therefore be to design spherical codes giving better trade-offs between PO×,CO×

and MO×.
Another natural problem would be to find a theoretical model for the prob-

abilistic overhead PO× as a function of the various parameters. We hope that
the experimental data provided by the method of this work can be helpful for
conjecturing or validating such a theoretical analysis.

References

ABD+21. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Vadim Lyubashevsky
Tancrède Lepoint, John M. Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. Crystals-kyber, algorithm specifications and supporting
documentation, 2021. Version 3.02. Available at https://pq-crystals.
org/kyber/data/kyber-specification-round3-20210804.pdf.

ADH+19. Martin R Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-
monn W Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 717–746.
Springer, 2019.

AGPS20. Martin R Albrecht, Vlad Gheorghiu, Eamonn W Postlethwaite, and
John M Schanck. Estimating quantum speedups for lattice sieves. In In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, pages 583–613. Springer, 2020.

AKS01. Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm
for the shortest lattice vector problem. In Proceedings of the thirty-third
annual ACM symposium on Theory of computing, pages 601–610. ACM,
2001.

Alb22. Martin Albrecht. Security estimates for lattice problems, 2022. Available
at https://github.com/malb/lattice-estimator.

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New di-
rections in nearest neighbor searching with applications to lattice sieving.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 10–24. SIAM, 2016.

BGJ15. Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice siev-
ing without increasing the memory, using sub-quadratic nearest neighbor
search. Cryptology ePrint Archive, 2015.

CN11. Yuanmi Chen and Phong Q Nguyen. Bkz 2.0: Better lattice security es-
timates. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 1–20. Springer, 2011.

DSDGR20. Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. Lwe
with side information: attacks and concrete security estimation. In Annual
International Cryptology Conference, pages 329–358. Springer, 2020.

DSvW21. Léo Ducas, Marc Stevens, and Wessel van Woerden. Advanced lattice
sieving on gpus, with tensor cores. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 249–279.
Springer, 2021.

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://github.com/malb/lattice-estimator

Duc18. Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 125–145. Springer, 2018.

FBB+14. Robert Fitzpatrick, Christian Bischof, Johannes Buchmann, Özgür Dagde-
len, Florian Göpfert, Artur Mariano, and Bo-Yin Yang. Tuning gausssieve
for speed. In International Conference on Cryptology and Information
Security in Latin America, pages 288–305. Springer, 2014.

GJ21. Qian Guo and Thomas Johansson. Faster dual lattice attacks for solving
lwe with applications to crystals. In International Conference on the The-
ory and Application of Cryptology and Information Security, pages 33–62.
Springer, 2021.

Laa15a. Thijs Laarhoven. Search problems in cryptography. 2015. Available at
http://thijs.com/docs/phd-final.pdf.

Laa15b. Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In Annual Cryptology Conference, pages 3–22.
Springer, 2015.

LW15. Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice
vectors using spherical locality-sensitive hashing. In International Con-
ference on Cryptology and Information Security in Latin America, pages
101–118. Springer, 2015.

MAT22. MATZOF. Report on the security of lwe: Improved dual lattice attack,
2022. Available at https://zenodo.org/record/6412487.

MLB17. Artur Mariano, Thijs Laarhoven, and Christian Bischof. A parallel variant
of ldsieve for the svp on lattices. In 2017 25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing (PDP),
pages 23–30. IEEE, 2017.

NV08. Phong Q Nguyen and Thomas Vidick. Sieve algorithms for the short-
est vector problem are practical. Journal of Mathematical Cryptology,
2(2):181–207, 2008.

http://thijs.com/docs/phd-final.pdf
https://zenodo.org/record/6412487

	Estimating the Hidden Overheads in the BDGL Lattice Sieving Algorithm

