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Universitat de Barcelona, Spain
3 Centre for Quantum Technologies, National University of Singapore, Singapore

4 SandboxAQ, Palo Alto, CA, United States
marc@sandboxaq.com

Abstract. The security of code-based constructions is usually assessed
by Information Set Decoding (ISD) algorithms. In the quantum setting,
amplitude amplification yields an asymptotic square root gain over the
classical analogue. However, already the most basic ISD algorithm by
Prange suffers enormous width requirements caused by the quadratic
description length of the underlying problem. Even if polynomial, this
need for qubits is one of the biggest challenges considering the application
of real quantum circuits in the near- to mid-term.
In this work we overcome this issue by presenting the first hybrid ISD al-
gorithms that allow to tailor the required qubits to any available amount
while still providing quantum speedups of the form T δ, 0.5 < δ < 1,
where T is the running time of the purely classical procedure. Interest-
ingly, when constraining the width of the circuit instead of its depth we
are able to overcome previous optimality results on constraint quantum
search.
Further we give an implementation of the fully-fledged quantum ISD
procedure and the classical co-processor using the quantum simulation
library Qibo and SageMath.

Keywords: decoding, width reduction, hybrid algorithms, code-based cryptog-
raphy

1 Introduction

The growing threat to modern widespread cryptography posed by the advancing
development of quantum computers has led to a focus on other hardness as-
sumptions. One of the leading and most promising proposals for post quantum
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cryptography is code-based cryptography. It has a long history of withstand-
ing classical as well as quantum attacks and is considered to rely on one of the
most well understood hardness assumptions. The list of the four KEM finalists
of the ongoing NIST standardization process for post quantum cryptography [1]
includes one code-based proposal (McEliece [10]) and two more can be found on
the alternate candidate list (BIKE [2] and HQC [24]) .

At the heart of all these code-based constructions lies the binary decoding or
syndrome decoding problem. This problem asks to find a low Hamming weight

solution e ∈ Fn
2 to the equation He = s, where H ∈ F(n−k)×n

2 is a random binary
matrix and s ∈ Fn−k

2 a binary vector.

The best known strategy to solve this problem is based on Information Set
Decoding (ISD) [27], a technique introduced by Prange in 1962. Since then, there
has been a series of works improving on his original algorithm [4,8,11,22,23,28],
mostly by leveraging additional memory. In the quantum setting Bernstein
showed how to speed up Prange’s algorithm by an amplitude amplification rou-
tine [5], which results in an asymptotic square root gain over the classical running
time. The translation of advanced ISD algorithm to the quantum setting [19,20]
yields only small asymptotic improvements. So far these improvements can not
compensate for the introduced overhead in terms of width and quantum RAM if
looking towards implementations. This is not surprising, since already Prange’s
algorithm with an only polynomial demand for qubits, is limited by its width
requirements. This is because all code-based constructions usually involve parity-
check matrices consisting of millions of bits.

To overcome this issue we develop hybrid classical-quantum ISD algorithms
that enable us to reduce the required amount of qubits to any available amount
while still providing quantum speedups. The idea of such classical co-processors
has mostly been used to parallelize quantum circuits or instantiate circuits under
depth constraints, e.g. when analyzing the quantum security of schemes under
the MAXDEPTH constraint specified by NIST [2, 6, 7, 14, 18]. Under depth con-
straints, Zalka [30] showed that the optimal way to perform a quantum search is
by partitioning the search space in small enough sets such that the resulting cir-
cuit only targeting one set at a time does not exceed the maximum depth. Then
the search has to be applied for every set of the partition. However, this optimal-
ity result only holds under depth constraints, when instead imposing constraints
on the width of the circuit, our trade-offs yield more efficient strategies.

A first attempt to formulate hybrid ISD algorithms were made by Perriello
et al. in [26]. However, their construction splits into a classical ISD part and a
quantum exhaustive search part allowing to speed up the classical procedure with
exponential time T only by a polynomial factor. In comparison our trade-offs
achieve speedups of order T δ for 0.5 < δ < 1.

Our Contribution. As a first contribution we design the full circuit performing
the quantum version of Prange’s algorithm and provide a functional implemen-



tation using the quantum simulation library Qibo [12,13].5 Further we describe
an optimized circuit that only requires (n− k)k bits to store and operate on the

input matrix H ∈ F(n−k)×n
2 .

Our major contribution is the design of hybrid quantum-classical trade-offs
that address the practical limitation on the amount of qubits. In particular, these
trade-offs enable quantum speedups for any available amount of qubits. We study
the behavior of our trade-offs for various different choices of code parameters.
Besides the coding-theoretic motivated settings of full and half distance decod-
ing, these include also the parameter choices made by the NIST PQC candidates
McEliece, BIKE and HQC. Our trade-offs perform best on the BIKE and HQC
schemes, which is a result of a combination of a very low error weight and a
comparably low code rate used by these schemes.
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Fig. 1: Comparison of the achieved speedups of our trade-offs t(δ) (y-axis) plotted
as a function of the qubit-reduction factor δ (x-axis).

Our trade-offs allow for a smooth interpolation between purely classical com-
putations at a running time of TC and a purely quantum based computation
taking time

√
TC. We interpolate between both complexities using a qubit re-

duction factor δ, where a fully classical computation corresponds to δ = 0 and
an entirely quantum based execution implies δ = 1. For each trade-off we then
state the running time for a given reduction factor δ as t(δ) ∈ J0.5, 1K, meaning
that a reduction of the amount of qubits by a factor of δ implies a total running

time of (TC)
t(δ)

.

Fig. 1 shows the behavior of our trade-off achieving the best results under
limited width. For instance in the BIKE and HQC setting we can reduce the
amount of qubits to only 1% (δ = 0.01) of an entire quantum based computa-

5 Our implementation (available at https://github.com/qiboteam/qISD) also in-
cludes an implementation of the Lee-Brickel [21] ISD improvement.

https://github.com/qiboteam/qISD


tion and still achieve a speedup of roughly t(δ) = 0.87 compared to a classical
computation.

2 Preliminaries

For two integers a, b ∈ N with a ≤ b let [a, b] := {a, a + 1, . . . , b}. Further
we write conveniently [b] := [1, b]. Let H be an m × n matrix and I ⊆ [n],
we write HI to denote the projection of H onto the columns indexed by I.
We use the same notation for vectors. For a binary vector w ∈ Fn

2 we define
wt(w) := |{i ∈ [n] | wi = 1}| as the Hamming weight of w. For two reals
c, d ∈ R we let Jc, dK := {x ∈ R | c ≤ x ≤ d} be the (including) interval of all
reals between c and d.

We use standard Landau notation for complexity statements, where
Õ-notation suppresses polylogarithmic factors, meaning Õ

(
f(x)

)
=

O
(
f(x) logi f(x)

)
for any constant i. All logarithms are binary if not stated

otherwise. We define H(x) := −x log(x) − (1 − x) log(1− x) to be the binary
entropy function and make use of the well-known approximationÇ

n

k

å
= Θ̃

(
2nH(

k
n )
)
. (1)

Quantum Circuits. Our algorithms are built in the quantum circuit model, where
we assume a certain familiarity of the reader (for an introduction see [25]). Note
that we use the term circuit depth and time complexity interchangeably when
analyzing our quantum circuits.

Decoding and linear codes. A binary linear code C is a k dimensional subspace of
Fn
2 with minimum distance d, which is defined as the minimum Hamming weight

of the elements of C. We call n the code length and R := k
n the code rate of

C. The code C can be defined via the kernel of a matrix H ∈ F(n−k)×n
2 , so that

C := {c ∈ Fn
2 | HcT = 0}, where H is called a parity-check matrix. Note that for

ease of exposition, we treat all vectors as column vectors so that we can omit
vector transpositions.

A given point x = c + e that differs from a codeword by an error e can
be uniquely decoded to c as long as wt(e) ≤

⌊
d−1
2

⌋
. This setting, in which the

error weight is bounded by half of the minimum distance, is also known as half
distance decoding, while the setting bounding it by d is known as full distance
decoding. We study the performance of our algorithms in these settings for
random codes, which are known to meet the Gilbert-Varshamov bound [17,29],
i.e., d ≈ H−1(1−R)n.

The definition of the code via its parity-check matrix allows to treat the
decoding procedure independently of the specific codeword by considering the
syndrome s of a given faulty codeword x, where s := Hx = H(c + e) = He.
Recovering e from given H and s is, hence, equivalent to decoding x to c. This
leads to the definition of the syndrome decoding problem.



Algorithm 1 Prange

Require: parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k

2 , weight ω ∈ [n]
Ensure: error vector e with wt(e) = ω satisfying He = s
1: repeat
2: choose random permutation matrix P ∈ Fn×n

2 and set HI ← (HP )[n−k]

3: solve linear system HIe1 = s for e1

4: until wt(e1) = ω
5: return P (e1, 0

k)

Definition 1 (Syndrome Decoding Problem). Let C be a linear code with

parity-check matrix H ∈ F(n−k)×n
2 and constant rate R := k

n . For s ∈ Fn−k
2 and

ω ∈ [n], the syndrome decoding problem SDn,k,ω asks to find a vector e ∈ Fn
2

of weight wt(e) = ω satisfying He = s. We call any such e a solution while we
refer to (H, s, ω) as an instance of the SDn,k,ω.

Prange’s Information Set Decoding Given an instance (H, s, ω) of the
SDn,k,ω Prange’s algorithm [27] starts by choosing a random set I ⊆ [n] of
size n− k and then solves the corresponding linear system

HIe1 = s (2)

for e1.
6 Note that any solution e1 of weight ω′ := wt(e1) can easily be extended

to a vector ẽ ∈ Fn
2 of same weight satisfying H ẽ = s, by setting the correspond-

ing coordinates to zero. Hence, if ω′ = ω the vector ẽ forms a solution to the
syndrome decoding problem. The algorithm now chooses random subsets I until
ω′ = ω holds.

The algorithm is successful whenever e projected to the coordinates given by
I is a solution to the linear system in Eq. (2), hence if e1 = eI . This happens
whenever eI covers the full weight of e, in which case I or more precisely [n]\I is
called an information set. Transferred to Algorithm 1 this applies whenever for
the permutation chosen in line 2, it holds that P−1e = (e1, 0

k) for e1 ∈ Fn−k
2 .

The probability that the permutation distributes the weight in such a way is

q := Pr
[
P−1e = (e1, 0

k)
]
=

(
n−k
ω

)(
n
ω

) . (3)

Hence, the expected number of tries until we draw a suitable permutation P
becomes q−1 and the expected time complexity is T = q−1 · TG, where TG

describes the cost for solving the linear system and performing the weight check.

Remark 1. Note that in the case of S existent solutions the time complexity to
retrieve a single solution with Prange’s algorithm becomes T

S .

6 Note that in Algorithm 1 we model HI as the first n− k columns of HP , where P
is a random permutation matrix.



3 A quantum ISD circuit design

Let us briefly sketch how we realized the quantum design of Prange’s algorithm,
a detailed description of every part of the circuit can be found in the full version
of this article [16]. Our design is composed of the following three main building
blocks:

1) The creation of the uniform superposition over all size-(n− k) subsets of [n]
(corresponding to the selection of information sets in line 2 of Algorithm 1).

2) The Gaussian elimination step to derive the error related to a given
information set (line 3 of Algorithm 1).

3) A quantum search for an information set yielding an error of the desired
weight (substituting the repeat loop in line 1 of Algorithm 1).

Superposition Circuit We realize the creation of the superposition over all
size-(n− k) subsets in a bit-by-bit fashion, obtaining a depth of (n− k) ·n. This
is possible since the number of sets including element i is independent of all sub-
sequent elements j > i. More recent developments construct this superposition
in depth linear in n [3]. However, since this part of the ISD circuit does not
dominate the overall depth, we refrain from further optimizations.

Gaussian Elimination Our Gaussian elimination circuit mostly resembles its
classical analogue. The integration of the superposition and Gaussian elimina-
tion circuit works by first swapping all selected columns (determined by the
superposition) to the back of the matrix and then implementing the Gaussian
Elimination only on the last n− k columns.

Quantum Search The square root gain over the classical algorithm is achieved
by employing an amplitude amplification procedure. Here the diffusion layer con-
sists of our initial superposition circuit, while the sign flip is performed based
on the Hamming weight of the error obtained by performing the Gaussian elim-
ination circuit.

We find that our circuit has a depth of O
Ä
n3 logn√

q

ä
, where q is the probability

detailed in Eq. (3). This corresponds to only a logarithmic overhead compared
to a classical implementation. The width of the circuit is dominated by the
space required for storing the parity-check matrix, which is (n − k) · n. In the
next section, we detail a procedure to reduce the width to about (n − k) · k =
(1−R)·R·n2, relying on first transforming the parity check matrix into systematic

form H := (In−k | H ′), where H ′ ∈ F(n−k)×k
2 via Gaussian elimination. We then

show that the circuit can be adapted to work only with H ′ as input. However,
the required amount of qubits is still quadratic in the code length n and, hence,
one of the most limiting factors in terms of concrete implementations.



3.1 Reducing the Width for free

In the following we assume the parity-check matrix H to be in systematic form,
as shown in Fig. 2. We now describe how to adapt the quantum circuit to only
require the matrix H ′ as well as the corresponding syndrome as an input, which
saves (n−k)2 qubits. Recall that the goal of the Gaussian elimination procedure
is to obtain the identity matrix on the matrix projected to the columns of the
currently selected subset by elementary row operations. Our previous quantum
circuit achieved this by fist swapping all columns that belong to the selected
subset (determined by the superposition) to the back of the matrix and then
performing the Gaussian elimination always on the last n−k columns. But since
we now only obtain H ′ as input this is not possible anymore.

e

sIn−k H ′H

Fig. 2: Problem shape for input matrix in systematic form.

However, note that if any of the first n− k columns, which are already unit
vectors, belongs to the selected subset a single row swap is sufficient to obtain the
desired unit vector in that column. Hence, we only implement a corresponding
row swap on H ′ and s. Furthermore, the necessary swaps are fully determined by
the index of the respective column and its position in the selected subset. Thus,
we can embed them into the quantum circuit a priori. After the necessary row-
swaps are performed, all columns of H ′ belonging to the corresponding subset
are swapped to the back. Subsequently we perform the Gaussian elimination only
on the last columns of H ′ that belong to the current selection. This procedure is
depicted in Fig. 3, which shows the state of the matrix after all three operations
have been performed for the chosen subset. Note that the first n − k columns
only serve an illustrative purpose and are not part of the input.

4 Classical-time quantum-memory trade-offs

Next we introduce our trade-offs, allowing for an adaptive scaling of the algo-
rithm to the available amount of qubits. Our trade-offs are divided in a classical
and quantum computation part, where a decrease of the amount of qubits comes
at the cost of an increased classical running time. Since the increase in running
time is exponential we neglect polynomial factors by employing Õ-notation. Our
trade-offs allow for a smooth interpolation between purely classical computations
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Fig. 3: Procedure to perform quantum version of Prange without first n − k
columns as input. Colored framed parts indicate columns belonging to the cur-
rent selected subset.

at a running time of

TC := Õ
Ç (

n
ω

)(
n−k
ω

)å , (4)

(compare to Eq. (3)) and a purely quantum based computation taking time
√
TC.

Recall that we interpolate between both complexities using a qubit reduction
factor δ and state the running time for a given reduction factor as t(δ) ∈ J0.5, 1K;
meaning that a reduction of the amount of qubits by a factor of δ implies a total

running time of (TC)
t(δ)

.
We start with a trade-off based on shortening the underlying code, which

already achieves a better than linear dependence between δ and t(δ). After that,
we present a second trade-off based on puncturing the code which asymptotically
outperforms the first one. However, for concrete parameters in medium scale both
trade-offs remain superior to each other for certain values of δ. Finally, we obtain
improvements by combining both methods.

4.1 Shortening the code

Our first trade-off is based on shortening the underlying code before using it as
input to the quantum circuit. In Prange’s original algorithm k zero positions of
e are guessed and then the linear system corresponding to the non-zero positions
is solved in polynomial time. In our hybrid version the classical part consists in
guessing αn ≤ k zero coordinates of e, which allows to shorten the code and,
hence, reduce the problem to a code of length (1 − α)n and dimension k − αn,
while the error weight remains unchanged (compare to Fig. 4). This reduced
instance is then solved with our previously constructed quantum circuit. Should
the quantum computation not result in an actual solution, the initial guess of
zero coordinates was incorrect and we proceed with a new guess. Algorithm 2
gives a pseudocode description of our Shortened-Hybrid.

Theorem 1 (Shortened Hybrid). Let n ∈ N, ω = τn and k = Rn for τ,R ∈
J0, 1K and let TC be as defined in Eq. (4). Then for any qubit reduction factor δ ∈



e

sIn−k H ′

0

H

(1− α)n αn

Fig. 4: Parity-check matrix in sysetmatic form where αn zero positions of e
are guessed. Striped region of e indicates parts containing weight, crosshatched
columns of H ′ do not affect s. Framed parts are used as input to the quantum
algorithm.

Algorithm 2 Shortened-Hybrid

Require: parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k

2 , weight ω ∈ [n],
qubit reduction factor δ ∈ J0, 1K

Ensure: error vector e with wt(e) = ω satisfying He = s
1: α := (1− δ) k

n

2: repeat
3: choose random permutation matrix P ∈ Fn×n

2 and set H̃ ← HP

4: solve instance (H̃[(1−α)n], s, ω) via quantum algorithm returning e1 ∈ F(1−α)n
2

5: e← P (e1, 0
αn)

6: until He = s
7: return e

J0, 1K Algorithm 2 solves the SDn,k,ω problem in time (TC)
t(δ) using δ(1−R)Rn2

qubits for the matrix representation, where

t(δ) = 1−
1
2

Ä
(1− α)H

(
τ

1−α

)
− (1−R)H

(
τ

1−R

)ä
H(τ)− (1−R)H

(
τ

1−R

) ,

for α = (1− δ)R.

Proof. Assume that the permutation P distributes the error such that

P−1e = (e1, 0
αn), (5)

for α as defined in Algorithm 2. Then it follows, that e1 is a solution to syndrome
decoding instance ((HP )[(1−α)n], s, ω). By the correctness of our quantum circuit
the solution e1 is returned in line 4 and finally e = P (e1, 0

αn) is recovered.
Next let us analyze the running time of the algorithm. The probability of a

random permutation distributing the error weight as given in Eq. (5) is

qC := Pr
[
P−1e = (e1, 0

αn)
]
=

(
(1−α)n

ω

)(
n
ω

) .



Hence, we expect that after q−1
C random permutations one of them induces the

desired weight-distribution. The asymptotic time complexity for the execution
of the quantum circuit to solve the corresponding SD(1−α)n,(R−α)n,ω problem is
given as (compare to Section 3).

TQ = Õ

ÑÃ (
(1−α)n

ω

)(
(1−R)n

ω

)
é

.

Since for each classically chosen permutation we need to execute our quantum
circuit the total running time becomes

T = q−1
C · TQ = Õ

Ñ (
n
ω

)»(
(1−α)n

ω

)(
(1−R)n

ω

)
é

.

Now let us determine t(δ) := log T
log TC

. First observe that T = TC

TQ
, which can

be rewritten as

log TC − log TQ = log T

⇔ 1− log TQ

log TC
=

log T

log TC
=: t(δ).

An approximation of TQ and TC via the approximation for binomial coefficients
given in Eq. (1) together with ω := τn and k := Rn then yields

t(δ) = 1−
1
2

Ä
(1− α)H

(
τ

1−α

)
− (1−R)H

(
τ

1−R

)ä
H(τ)− (1−R)H

(
τ

1−R

) ,

as claimed. Note that the input matrix of a code of length (1−α)n and dimension
(R−α)n requires (1−R)(R−α)n2 qubits for the matrix representation (compare
to Section 3). Hence, by setting α = (1− δ)R we obtain a qubit reduction by

(1−R)(R− α)n2

(1−R)Rn2
=

R− (1− δ)R

R
= δ. □

Next we simplify the statement of Theorem 1 for sublinear error-weight,
which is, e.g., the case for McEliece, BIKE and HQC. Note that in the case of a
sublinear error-weight, TC can be expressed as

TC := Õ
Ç (

n
ω

)(
(1−R)n

ω

)å = Õ
(
(1−R)−ω

)
, (6)

see, e.g., [15, Remark A.1].

This allows us to give the following simplified corollary.



Corollary 1 (Shortened Hybrid for sublinear error weight). Let all
parameters be as in Theorem 1. For τ = o(1), we have

t(δ) =
1

2
·
Å
1 +

log(1− (1− δ)R)

log(1−R)

ã
.

Proof. First we approximate TQ similar to TC in Eq. (6) as

TQ = Õ

ÑÃ (
(1−α)n

ω

)(
(1−R)n

ω

)
é

= Õ
ÇÅ

1− α

1−R

ãω
2

å
.

Now we can derive the statement of the corollary as

t(δ) = 1− log TQ

log TC
= 1−

ω
2 (log(1− α)− log(1−R))

−ω log(1−R)

=
1

2
·
Å
1 +

log(1− (1− δ)R)

log(1−R)

ã
. □

Fig. 5 visualizes the relation between the qubit-reduction factor and the speedup
for the full distance decoding setting with rate R = 0.5 and τ = H−1(R) ≈ 0.11
and the parameters of the McEliece scheme, which are R = 0.8 and τ = o(1).
We observed that the trade-off behavior is very insensitive to changes in the
error-rate. Therefore the behavior for the settings of full and half distance as
well as BIKE and HQC are almost identical, such that we only included the full
distance case for the sake of clarity.

However, the trade-off is more sensitive to changes in the code-rate. We
observe better performance the higher the code-rate, which lies in favour to
mounting an attack against codes using McEliece parameters. To give a con-
crete example, our Shortened-Hybrid algorithm allows for a reduction of the
necessary qubits by 80% (corresponding to δ = 0.2), while still achieving a
speedup of t(δ) ≈ 0.82 in the McEliece setting.

4.2 Puncturing the code

While our Shortened-Hybrid decreases the amount of necessary qubits by
shortening the code, our second trade-off instead aims at puncturing the code.
In a nutshell, we consider only (1−β)n−k parity-check equations, rather than all
n−k, i.e., we omit βn rows of the parity-check matrix. The subsequently applied
quantum circuit, hence, needs fewer qubits to represent matrix and syndrome.
The advantage over Shortened-Hybrid partly comes form the fact that each
row saves n instead of only n − k bits. Also the generated classical overhead is
significantly smaller. This variant has similarities with the Canteaut-Chabaud
improvement [9] in the classical setting. Here only a certain amount of columns
(originally only one) of the identity part are exchanged in each iteration rather
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Fig. 5: Time exponent (y-axis) achieved by Theorem 1 for different code param-
eters plotted as a function of the qubit-reduction factor δ (x-axis).

than drawing a completely new permutation. In our case we fix βn columns
of the permutation classically and then search for the remaining n − k − βn
quantumly. In addition we expect weight p on the fixed βn coordinates, where
p has to be optimized.

We again start with a parity-check matrix H in systematic form. Now con-
sider the projection of H onto its first n − k − βn rows, we call the resulting
matrix H̃. Clearly, a solution e to the instance (H, s, ω) is still a solution to the
instance (H̃, s[n−k−βn], ω). Moreover, the matrix H̃ includes βn zero columns,
which can safely be removed (compare to Fig. 6). This results in a matrix

H̃ ′ = (In−k−βn | H ′) ∈ F(n−k−βn)×(1−β)n
2 corresponding to a code of length

(1 − β)n and dimension k. Still, by removing the corresponding coordinates
from e we obtain a solution e′ to the instance (H̃ ′, s[n−k−βn], ω − p), where
p := wt(e[n−k−βn+1,n−k]) is the weight of coordinates removed from e. Even-
tually, once e′ is recovered we can obtain e in polynomial time by solving the
respective linear system.

A crucial observation is that disregarding βn parity-check equations could
lead to the existence of multiple solutions to the reduced instance, i.e. multiple
e′ satisfying H̃ ′e′ = s[n−k−βn] but yielding an e with wt(e) > ω. Not that we can
control this amount of solutions by increasing p. Also, our algorithm compensates
for multiple solutions by recovering all solutions to the reduced instance by
repeated executions of the quantum circuit. A pseudocode description of our
Punctured-Hybrid trade-off is given by Algorithm 3.

In the following theorem we first state the time complexity of our
Punctured-Hybrid in dependence on the qubit reduction factor δ. After this
we derive the speedup t(δ) in a separate corollary.

Theorem 2 (Punctured Hybrid). Let n ∈ N, ω ∈ [n] and k = Rn for
R ∈ J0, 1K. Then for any qubit reduction factor δ ∈ J0, 1K Algorithm 3 solves the



Algorithm 3 Punctured Hybrid

Require: parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k

2 , weight ω ∈ [n],
qubit reduction factor δ ∈ J0, 1K

Ensure: error vector e with wt(e) = ω satisfying He = s
1: choose p accordingly

2: β := (1− δ)(1− k
n
), S :=

((1−β)n
ω−p )

2(1−β)n−k

3: repeat
4: choose random permutation matrix P ∈ Fn×n

2 and set H̃ ← HP

5: transform H̃ to systematic form, H̃ =

Å
In−k−βn 0 H ′

1

0 Iβn H ′
2

ã
with syndrome s̃

6: H̃ ′ ← (In−k−βn | H ′
1), s

′ ← s̃[(1−β)n−k]

7: for i = 1 to poly(n) · S do

8: solve instance (H̃ ′, s′, ω− p) via quantum algorithm returning e′ ∈ F(1−β)n
2

9: e′′ ← H ′
2e

′
[n−k−βn+1,(1−β)n] + s̃[n−k−βn+1,n−k]

10: if wt(e′′) ≤ p then
11: e← P (e′

[n−k−βn], e
′′, e′

[n−k−βn+1,(1−β)n])
12: break
13: until He = s
14: return e

e

s

In−k−βn H ′
H

βn

β
n

0

p

Fig. 6: Parity-check matrix where βn rows are omitted and e contains weight p
on βn coordinates. Framed parts are used as input to the quantum algorithm.

SDn,k,ω problem in expected time TPH using δ(1− R)Rn2 qubits for the matrix
representation, where

TPH = Õ

Ñ (
n
ω

)»(
(1−β)n
ω−p

)(
(1−β−R)n

ω−p

)(
βn
p

) ·max

(
1,

√Ç
(1− β)n

ω − p

å
· 2−(1−β−R)n

)é
with β = (1− δ)(1−R) and p ∈ [min(ω, βn)].

Proof. Assume that the permutation distributes the error weight, such that for

P−1e = (e1, e2, e3) ∈ F(1−β−R)n
2 ×Fβn

2 ×FRn
2 it holds wt(e2) = p. Now consider

the permuted parity-check matrix in systematic form H̃ as given in line 5 of
Algorithm 3 with corresponding syndrome s̃. We obtain

H̃P−1e = (e1 +H ′
1e3, e2 +H ′

2e3) = s̃.



This implies that (e1, e3) is a solution to the syndrome decoding instance
(H̃ ′, s′, ω − p) with H̃ ′ = (I(1−β−R)n | H ′

1) and s′ = s̃[(1−β−R)n]. The solu-
tion is then recovered by the application of our quantum circuit in line 8. Note
that in expectation there exist

S :=

Ç
(1− β)n

ω − p

å
· 2−(1−β−R)n

solutions to our reduced instance. Since we apply our quantum circuit poly(n) ·S
times and in each execution a random solution is returned, a standard coupon
collector argument yields that we recover all S solutions with high probability.
Now, when e′ = (e1, e3) is returned by the quantum circuit, we recover e2 =
s̃[(1−β−R)n+1,(1−R)n] +H ′

2e3 and eventually return e = P (e1, e2, e3).
Next let us consider the time complexity of the algorithm. Observe that the

probability, that wt(e2) = p for a random permutation holds is

qC := Pr [wt(e2) = p] =

(
(1−β)n
ω−p

)(
βn
p

)(
n
ω

) .

Hence, after q−1
C iterations we expect that there is at least one iteration where

wt(e2) = p. In each iteration we apply our quantum circuit Õ (S) times to solve
the reduced instance (H̃ ′, s′, ω − p), corresponding to a code of length (1− β)n
and dimension Rn. Since there exist S solutions the expected time to retrieve
one of them at random is

TQ = Õ

ÑÃ (
(1−β)n
ω−p

)
max(1, S) ·

(
(1−β−R)n

ω−p

)
é

,

according to Remark 1. The maximum follows since we know that there exists
at least one solution. In summary the running time becomes TPH = q−1

C · TQ ·
max(1, S), as stated in the theorem.

The required amount of qubits of the quantum circuit for solving the syn-
drome decoding problem related to the reduced code of length (1 − β)n and
dimension (1− R)n are roughly R(1− β − R)n2 (compare to Section 3). Thus,
for β := (1− δ)(1−R) this corresponds to a qubit reduction of

R(1− β −R)

R(1−R)
=

1−R− (1− δ)(1−R)

1−R
= δ. □

Theorem 2 allows to easily determine the corresponding speedup, whose exact
formula we give in the following corollary.

Corollary 2 (Punctured Hybrid Speedup). Let n ∈ N, ω = τn and k = Rn
, p = ρn for τ,R, ρ ∈ J0, 1K and let TC be as defined in Eq. (4). Then for any
qubit reduction factor δ ∈ J0, 1K Algorithm 3 solves the SDn,k,ω problem in time
(TC)

t(δ) using δ(1−R)Rn2 qubits for the matrix representation, where

t(δ) =
H(τ)− βH

(
ρ
β

)
− 1−β

2 ·H
(
τ−ρ
1−β

)
− (1−β−R)

2 ·H
(

τ−ρ
1−β−R

)
+max(0, σ)

H(τ)− (1−R)H
(

τ
1−R

)



for β = (1− δ)(1−R) and σ = (1− β)H
(
τ−ρ
1−β

)
− (1− β −R).

Proof. Recall that t(δ) = log TPH

log TC
, where TPH is the running time of Algorithm 3,

given in Theorem 2. Now the statement of the corollary follows immediately by
approximating the binomial coefficients in TPH and TC via Stirling’s formula (see
Eq. (1)). ⊓⊔

In Fig. 7a we compare the behavior of our new trade-off to our previously
obtained Shortened-Hybrid. Recall that the performance of Shortened-
Hybrid is not very sensitive to changes in the error-rate. Thus, for settings with
the same code-rate, i.e. full and half distance as well as BIKE / HQC, the solid
lines are almost on top of each other. The dashed lines represent our new trade-
off (Theorem 2) for which we optimized p numerically. It can be observed, that
this trade-off outperforms the Shortened-Hybrid for all parameters. Here,
we observe the best behaviour for low code-rates and small error-rates, which
correspond to the case, where the solution is very unique. In these cases our
Punctured-Hybrid algorithm can disregard parity-check equations without
introducing multiple solutions to the reduced instance. Hence, still a single ex-
ecution of the quantum circuit suffices to recover the solution. The significance
of the amount of solutions can be well observed by comparing the full and half
distance settings. In the full distance setting there exists already one random
solution in expectation, therefore any omitted parity equation leads to the ex-
istence of multiple solution and in turn leads to only a small improvement over
Shortened-Hybrid. Contrary, the half distance setting allows for a significant
improvement, which is due to the exponentially small probability of existing
random solutions. Note that in the McEliece, BIKE and HQC setting the er-
ror weight is only sublinear, which lies in favour of our new trade-off, since the
probability for existing random solutions is again exponentially small. BIKE
and HQC furthermore use a very small error weight of only O(

√
n) and specify

a code-rate of R = 0.5, which results in a very unique solution. Consequently,
in Fig. 7a it can be observed, that asymptotically for these settings the second
trade-off improves drastically on Shortened-Hybrid.

Note that our formulation of the speedup for Punctured-Hybrid in con-
trast to Shortened-Hybrid (see Corollary 1) still depends on the error-rate,
not exactly allowing for ω = o(n). Thus, to obtain the asymptotic plot we com-
pared the result of Corollary 1 to Theorem 2 for McEliece (n = 6688, k =
5024, ω = 128), BIKE (n = 81946, k = 40973, ω = 264) and HQC (n =
115274, k = 57637, ω = 262), which are the suggested parameters for 256-bit
security from the corresponding NIST submission documentations [2, 10,24].

To quantify the result of our new trade-off take e.g. the case of McEliece and
a qubit reduction by 80% (δ = 0.2), as before. Here we improve to a speedup of
t(δ) ≈ 0.74, compared to 0.82 for Shortened-Hybrid.

However, for concrete medium sized parameters this asymptotic behaviour
is not necessarily obtained. In Fig. 7b we show a comparison of both trade-
offs for concrete McEliece parameter sets. Note that for all parameter sets the
performance of Shortened-Hybrid is almost identical, which is why there is
only a single solid line.
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Fig. 7: Comparison of time exponents of Shortened-Hybrid and Punctured-
Hybrid (y-axis) plotted as a function of the qubit-reduction factor δ (x-axis).

For these concrete computations we used the more accurate time complexity
formula involving binomial coefficients rather than its asymptotic approximation
to determine the speedup t(δ). Note that the discontinuity for our new trade-off
is due to the restriction to discrete choices of p. We find that for parameters up
to n ≈ 2500 both trade-offs remain superior to each other for certain reduction
factors δ. For larger values of n the Punctured-Hybrid algorithm becomes
favourable for all δ.

In the BIKE and HQC settings the Punctured-Hybrid algorithm is
favourable already for small parameters corresponding to n ≥ 1000.

4.3 Combined Hybrid

Next let us outline how to combine both previous trade-offs to achieve an im-
proved version. We first reduce the code length and dimension, again by guess-
ing αn zero coordinates of e and removing the corresponding columns form
H, i.e., we shorten the code. The remaining instance is then solved using our
Punctured-Hybrid algorithm, i.e., by first omitting βn parity-check equations
(compare also to Fig. 8) and then using the reduced instance as input to the
quantum circuit.

We give the pseudocode description of the procedure in Algorithm 4. Note
that here we use β and p as input parameters to Punctured-Hybrid, rather
than to the choice made in Algorithm 3 (Punctured-Hybrid). Further, since
for an incorrect guess of αn zero positions the call to Punctured-Hybrid will
not finish,, we introduce an abort after the expected amount of iterations on a
correct guess.



e

s

In−k−βn H ′
H

βn αn

β
n

0

p 0

Fig. 8: Input matrix in systematic form where βn parity-check equations are
omitted and αn zeros of e are known. The vector e is assumed to contain weight
p on βn coordinates. Framed parts are used as input to the quantum algorithm.

Algorithm 4 Combined-Hybrid

Require: parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k

2 , weight ω ∈ [n],
qubit reduction factor δ ∈ J0, 1K

Ensure: error vector e with wt(e) = ω satisfying He = s
1: choose α and p accordingly

2: β := (1− k
n
)
(

δ k
n

k
n
−α

)
, E :=

((1−α)n
ω )

((1−α−β)n
ω−p )(βn

p )
3: repeat
4: choose random permutation matrix P ∈ Fn×n

2 and set H̃ ← HP
5: e′ ← Punctured-Hybrid(H̃[(1−α)n], s, ω, δ,

β
1−α

, p) ▷ abort after E iterations
of the outer loop

6: e← P (e′, 0αn)
7: until He = s
8: return e

Theorem 3 (Combined Hybrid). Let n ∈ N, ω ∈ [n] and k = Rn for
R ∈ J0, 1K. Then for any qubit reduction factor δ ∈ J0, 1K the SDn,k,ω problem
can be solved in expected time TCH using δ(1 − R)Rn2 qubits for the matrix
representation, where

TCH = Õ
( (

n
ω

)»(
(1−α−β)n

ω−p

)(
(1−β−R)n

ω−p

)(
βn
p

) ·max

(
1,

√Ç
(1− α− β)n

ω − p

å
· 2−(1−β−R)n

))

with α ∈ J0, RK, β = (1−R)
Ä
1− δR

R−α

ä
and p ∈ [min(ω, βn)].

Proof. The correctness follows from the correctness of Algorithm 2 and Algo-
rithm 3. Therefore observe that for a correct guess of αn zero positions of e, the
expected amount of permutations needed by Punctured-Hybrid to find the
solution is

E :=

(
(1−α)n

ω

)(
(1−α−β)n

ω−p

)(
βn
p

) .
Also note that Punctured-Hybrid is called on a code of length n′ = (1−α)n.
Hence, setting β′ = β

1−α guarantees that β′n′ = βn parity equations are omitted.



For the time complexity we have again with probability

qC := Pr
[
P−1e = (e1, 0

αn)
]
=

(
(1−α)n

ω

)(
n
ω

) ,

a correct guess for αn zero positions (compare to the proof of Theorem 1).
In each iteration of our combined algorithm we call the Punctured-Hybrid
algorithm. Inside this subroutine E iterations of the outer loop are executed,
each performing

S = Θ̃

(
max

(
1,

(
1−β−α
ω−p

)
2−(1−R−β)n

))

calls to the quantum circuit. This quantum circuit is applied to solve the syn-
drome decoding problem defined on a code of length (1 − α − β)n and dimens
(R− α)n with error-weight ω − p (compare to Fig. 8), which takes time

TQ = Õ

ÑÃ (
(1−α−β)n

ω−p

)
S ·
(
(1−β−R)n

ω−p

)
é

.

Thus, eventually, the time complexity of the whole algorithm summarizes as
TCH = q−1

C · E · TQ · S, as claimed. Finally, note that for given β = (1 −
R)
Ä
1− δR

R−α

ä
we obtain a qubit reduction by

(R− α)(1−R− β)

R(1−R)
=

(R− α)(1−R)
(
1− (1− δR

R−α
)
)

R(1−R)
=

(R− α) · δR
R−α

R
= δ. □

Our combination achieves the improved trade-off behavior depicted as dashed
lines in Fig. 9. Here the values of p and α were optimized numerically. It
shows that the combination of both trade-offs for most parameters improves
on Punctured-Hybrid (solid lines). Especially in the full distance decoding
setting an improvement for nearly all δ is achieved. This is due to the fact, that
the guessing of zero coordinates is an additional possibility to control the amount
of solutions to the reduced instance and therefore to optimize the complexity of
the Punctured-Hybrid subroutine. This is also the reason why we achieve
no (asymptotic) improvement in the BIKE and HQC settings, here the solution
is already so unique that the trade-off can not benefit from the new degree of
freedom.

But also in the McEliece setting we achieve notable improvements. If we again
consider a reduction-factor of δ = 0.2 the combination improves the speedup to
t(δ) ≈ 0.69 from 0.74 achieved by Punctured-Hybrid. Furthermore, when
focusing on near future realizations, i.e., the regime of small reduction factors, it
is for example possible with just one percent of the qubits (δ = 0.01) to achieve
a speedup of t(δ) ≈ 0.92.
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