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Abstract. We define two metrics on vector spaces over a finite field
using the linear complexity of finite sequences. We then develop coding
theory notions for these metrics and study their properties. We give a
Singleton-like bound as well as constructions of subspaces achieving this
bound. We also provide an asymptotic Gilbert-Varshamov-like bound
for random subspaces. We show how to reduce the problem of finding
codewords with given Hamming weight into a problem of finding a vector
of a given linear complexity. This implies that our new metric can be
used for cryptography in a similar way to what is currently done in the
code-based setting.
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1 Introduction

Code-based Cryptography was informally born in 1978, when Robert J. McEliece
proposed a new cryptosystem based on the hardness of decoding linear codes (bi-
nary Goppa codes) in the Hamming metric [20]. The advantage of this approach
is that cryptosystems of this kind are considered safe against adversaries with
access to quantum computers. More precisely, there is no known quantum algo-
rithm that can decode a random linear code in polynomial time. After 40 years
of cryptanalysis, the cryptosystem is still considered to be secure, as a general
framework. However, the protocol requires the use of relatively large public keys,
which may be undesirable in certain applications.

To address the key size issue, it was initially suggested to use different fam-
ilies of linear codes, as well as “structured” linear codes (e.g. [10,19,24]). After
several years and various unsuccessful attempts, the field has stabilized, and
one can say that code-based encryption/key-establishment protocols are going
to be crystallized (also thanks to NIST’s Standardization effort [23]) into one
of two main categories: the original McEliece framework (with only minor im-
provements that do not affect security, e.g. [22]) or protocols based on struc-
tured parity-check codes such as QC-MDPC [21]. The former, although with
its well-known limitations, provides a safe choice relying on 40 years of security
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history [1]. The latter, instead, represents the opposite trend, namely a choice
aimed at a performance advantage, which however fails to fully explore some
security aspects [3].

The situation is different for code-based signature schemes, for which a satis-
factory solution has yet to be found; it is worth noting that the few code-based
signature schemes submitted to NIST’s process were all either broken, or with-
drawn. This has prompted a large body of work in recent years, trying to circum-
vent the traditional issues by either relying on a different coding problem [11,7]
or leveraging innovative frameworks [16,14,15] in the Hamming metric. As we
will show, the notion of weight for vectors is closely related to the notion of linear
complexity for sequences. This motivates us to study the linear complexity of
sequences as a new metric for coding theory, with an eye towards cryptographic
applications.

1.1 Overview

Let Fq be the finite field of size q. We recall some notions from coding theory in
the Hamming metric. Let x = (x1, · · · , xn) ∈ Fn

q . The Hamming weight wH(x)
of x is the number of non-zero entries of x. If x and y are two elements of Fn

q ,
we define the Hamming distance between x and y as dH(x,y) = wH(x− y). A
linear code C of length n over Fq is a subspace of Fn

q paired with the distance
dH . The minimum distance of a linear code C is the smallest value of dH(x,y)
for any two distinct codewords x,y ∈ C.

The most important parameters for a linear code C are the size q of the base
field, the length n, the dimension k and minimum distance d of the code. We
denote such code by [n, k, d] and the field is assumed to be understood. One
has to optimize the choice of these parameters for applications. For example,
one typically wants to construct codes that have simultaneously large dimension
and large minimum distance, while the base field should preferably be as small
as possible (binary field for example). A trade-off between the minimum distance
and the dimension should be considered, as captured by the Singleton bound.

Theorem 1 (Singleton bound). Let C be an [n, k, d] linear code over Fq.
Suppose that d is the minimum distance of C. Then,

d ≤ n− k + 1.

Due to this, we want to have codes which maximize both the dimension and
the minimum distance of the codes. Thus we want to have codes for which the
inequality in the above definition is an equality. Such codes are defined as follows.

Definition 1. An [n, k, d] linear code C which attains the Singleton bound i.e
d = n− k + 1, is called a Maximum Distance Separable (MDS) code.

There exist explicit instances of maximum distance separable codes. One easy
construction is given by the following. Let n = q − 1 and let α = (α1, · · · , αn)
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be a vector having as entries all the distinct non-zero elements of Fq. We define
the evaluation map as

evα : Fq[x] → Fn
q

f(x) 7→ (f(α1), · · · , f(αn))

Let Fq[x]<k be the vector space of all polynomials of degree at most k − 1.
Then the image C = evα (Fq[x]<k) is an MDS code. This comes from the fact
that a polynomial of degree at most k − 1 can have at most k − 1 roots. The
code we just described is called Reed-Solomon code.

It is this relation between the property of the roots of polynomials and the
weights of vectors which is interesting for us. The following theorem is a conse-
quence of the König-Rados Theorem [18, Chap. 6].

Theorem 2. Let F∗
q = {α1, . . . , αq−1} and let f(x) = a0+ a1x+ · · ·+ aq−2x

q−2

be a polynomial over Fq. If f(x) has q − 1− r roots, then (f(α1), · · · , f(αq−1))

has (Hamming) weight r and the periodic sequence (a0, · · · , aq−2) has linear
complexity r i.e. there exist c0, . . . , cr−1 ∈ Fq such that

ai+rmod(q−1) =

r−1∑
j=0

cjai+j mod(q−1), ∀i ∈ N

and r is the smallest for such integer.

Through Theorem 2, we can relate the linear complexity of a periodic se-
quence with the Hamming weight of a vector. However, we have only periodic
sequences with period q− 1. This raises the following question: what happens if
we consider sequences (a0, . . . , an) of any length not necessarily equal to q − 1?
Even more generally, what is the situation with any type of sequences which
are not necessarily assumed to be periodic? We will answer these questions in
the next sections. Our goal is to provide a theory of the linear complexity of
subspaces of sequences. Such a theory can in fact be used as a basis to consider
new code-based cryptosystems based on the linear complexity of sequences.

1.2 Our Contribution

Using rank metric in lieu of the Hamming metric is a popular trend in code-
based cryptography, occasionally leading to interesting results [4,2]. While this
approach is not always completely satisfactory and its security is still not fully
explored [25,5,6], it does hint at the possibility of using other metrics for building
protocols, which provides additional motivation for our work. In this paper,
we strive to show that the metric connected to the linear complexity of finite
sequences is viable to build cryptographic schemes. To do that, we first carefully
develop the necessary coding theory notions, beginning in Section 2 by describing
linear-feedback shift registers and some of their properties. We then present the
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definition of linear complexity for both arbitrary finite sequences and sequences
with a fixed period. Accordingly, in Section 3, we define two new metrics on Fn

q by
considering the linear complexity of finite sequences and periodic sequences with
a fixed period. We give a Singleton-like bound with respect to the new metrics
and we construct optimal subspaces i.e subspaces that achieve the bound. In
the interest of space, these subspaces and their applications are described in
Appendix B. We then move on to studying hard problems in this metric, which
is a fundamental step to apply the metric to cryptography. Thus, in Section
4, we show that, given a subspace of Fn

q , the problem of finding codewords
with a given linear complexity is NP-complete. We do this for both finite and
periodic sequences. The result is achieved by reducing the problem of finding
a codeword with given Hamming weight to a problem of finding vectors with
given linear complexity. In Section 5, we describe further properties of the linear
complexity of sequences. We give an asymptotic Gilbert-Varshamov-like bound,
which shows that most subspaces have large minimum distance with respect to
the linear complexity. Furthermore, we describe techniques for solving the hard
problems introduced earlier, which effectively constitute attack techniques for the
schemes, and analyze their complexity. Finally, in Section 6 we describe a sample
application to the cryptographic setting, by adapting a construction of Feneuil et
al. [15] and explaining why its formulation in terms of linear complexity provides
a computational advantage.

2 Linear-Feedback Shift Registers

We fix a finite field Fq where q is a power of a prime.

Definition 2. A Linear-Feedback Shift Register (LFSR) of order l over Fq is
an infinite sequence (ai) over Fq such that there are fixed cj ∈ Fq, j = 0, . . . , l−1
with,

ai+l =

l−1∑
j=0

cjai+j , ∀i ∈ N.

The feedback polynomial associated to (ai) is f(z) = zl −
∑l−1

j=0 cjz
j .

Definition 3. Let (ai) be an LFSR over Fq. The generating function A(z) as-
sociated to (ai) is the formal power series

A(z) =

∞∑
i=0

aiz
i.

Given an LFSR over Fq with feedback polynomial f(z) and generating func-
tion A(z), one can show [18, Chap. 8] that for some polynomial g(z) of degree
l − 1 at most, we have

A(z) =
g(z)

f∗(z)
,

where f∗ is the reciprocal polynomial given by f∗(z) = zlf
(
1
z

)
.
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Definition 4 (Linear Complexity). Given a non-zero finite sequence (ai) =
(a0, · · · , an−1) ∈ Fn

q , the linear complexity L(ai) of the sequence is the smallest
l such that

ai+l =

l−1∑
j=0

cjai+j , ∀i, 0 ≤ i ≤ n− l − 1,

for some fixed cj ∈ Fq. We set L(0) = 0, where 0 = (0, . . . , 0).

Another family of sequences are periodic sequences.

Definition 5 (n-periodic Linear Complexity). Let n be a positive integer.
An infinite sequence (ai) is called n-periodic if for all i ≥ 0, ai+n = ai. Such
sequences are written as (a0, . . . , an−1). The linear complexity of the sequence is
defined as

Lp(a0, . . . , an−1) = L(a0, . . . , an−1, a0, . . . , an−1).

Remark 1. It is possible that an n-periodic sequence is l-periodic for some l < n.
The context tells us what period we consider for our sequences.

Given a finite sequence, it is possible to compute the shortest LFSR that
produces it. This can be done using the Berlekamp-Massey algorithm in O(n2)
field operations in Fq [18, Chap. 8]. Furthermore, if the linear complexity of the
sequence is n/2, then n successive terms of the sequence are enough to uniquely
find the shortest shift register.
We have the following property for the linear complexity of finite sequences.

Proposition 1. Let (ai) = (a0, · · · , an−1) be a finite sequence over Fq. Then
L(ai) ≤ n. Furthermore the only sequences attaining the bound n are of the form
(0, · · · , 0, a), with a ∈ F∗

q .

Proof. We can just use an LFSR with (ai) as initial state so that the maximum
linear complexity is at most n. It is obvious that (0, · · · , 0, a) has linear com-
plexity n. Finally, if (ai) = (a0, · · · , an−1) is such that aj ̸= 0 for some j with
0 ≤ j ≤ n− 2, then by taking ci = 0 except when i = j, where cj = an−1/aj , we
prove that an−1 =

∑n−2
j=0 cjaj so that the linear complexity is at most n− 1. ⊓⊔

The corresponding property for periodic sequences is given in the following
proposition.

Proposition 2. Let (ai) := (a0, · · · , an−1) be an n-periodic sequence over Fq.
Then Lp(ai) ≤ n.

Proof. It is enough to show that the LFSR defined by the coefficients in Fq,
(c0, . . . , cn−1) = (1, 0, . . . , 0) generates the periodic sequence with initial input
(a0, . . . , an−1). Thus the linear complexity is smaller or equal to n. ⊓⊔

Remark 2. Unlike the case of finite sequences, there can be periodic sequences
other than (0, · · · , 0, a), with a ∈ F∗

q that attain the bound in the proposition. As
an example, we can use Theorem 2. Start with a codeword in Fn

q with Hamming
weight n = q−1: then, the corresponding polynomial will have coefficients which
form an n-periodic sequence of linear complexity n.
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The key property of the linear complexity of sequences which will be used
later is the following.

Theorem 3. Let (ai) and (bi) be two finite sequences of the same length. If
(ci) = (ai) + (bi), then

L(ci) ≤ L(ai) + L(bi).

Proof. With a slight abuse of notation, we denote by (ai) (resp. (bi)) the LFSR
generating the finite sequence (ai) (resp. (bi)). Suppose that these LFSR have
generating functions

ga(z)

f∗
a (z)

and
gb(z)

f∗
b (z)

,

respectively. Then the generating function of the LFSR generating (ci) is

ga(z)f
∗
b (z) + gb(z)f

∗
a (z)

f∗
a (z)f

∗
b (z)

.

Thus, (ci) can be generated by an LFSR with the feedback polynomial fa(z)fb(z).
It follows that the linear complexity of the sequence is at most L(ai)+L(bi). ⊓⊔

Corollary 1. Let (ai) and (bi) be two finite periodic sequences of the same pe-
riod. If (ci) = (ai) + (bi), then

Lp(ci) ≤ Lp(ai) + Lp(bi).

3 Coding Theory using Linear Complexity

Let Fq be a finite field and let n be a positive integer. We will consider vectors
in Fn

q and embed them with two different metrics using the linear complexity of
finite (resp. periodic) sequences.

Definition 6. Let a = (a0, · · · , an−1) ∈ Fn
q and b = (b0, · · · , bn−1) ∈ Fn

q be two
finite sequences of n elements of Fq each. Then we define two distances on Fn

q

as
d1(a,b) = L((ai)− (bi)) and d2(a,b) = Lp((ai)− (bi)).

It is easy to see that both maps define a distance. We only show it for d1,
but the proof for d2 is similar.

(i) By definition d1(a,b) = 0 ⇔ a = b.
(ii) By definition of L, L(ai) ≥ 0.
(iii) The symmetry is obvious, i.e. d1(a,b) = d1(b,a).
(iv) For the triangular inequality,

d1(a,b) = L((ai)− (bi))

= L((ai)− (ci) + (ci)− (bi))

≤ L((ai)− (ci)) + L((ci)− (bi)), by Theorem 3
= d1(a, c) + d1(c,b).
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Thus, d1 indeed defines a distance of Fn
q . In a similar fashion, d2 also defines a

distance.

As in traditional coding theory, we can define a subset of Fn
q and fix a metric

dj , j = 1, 2 on this set. We will derive basic coding results for this context.

Definition 7. Let S be a subset of Fn
q together with a distance d ∈ {d1, d2}. The

minimum distance d of S is the minimum of d(a,b) for distinct a,b ∈ S. We
describe the parameters of S as [n, |S|, d]. In case S is a k-dimensional subspace
of Fn

q , then d is the minimum linear complexity of the non-zero sequences in S
and we say S is an [n, k, d] code with this metric.

Next, we inspect the bounds on a [n, |S|, d]-subset of Fn
q .

Theorem 4 (Singleton Bound). Let Fq be a finite field of size q. Let S ⊂ Fn
q

be a set of elements of Fn
q together with a distance d ∈ {d1, d2}, with minimum

distance d with respect to the metric. Then |S| ≤ qn−d+1.

Proof. It is clear that for any finite sequence (ai), L(ai) ≤ Lp(ai) and therefore,
for any a and b in Fn

q , d1(a,b) ≤ d2(a,b). Thus it is enough to show the thesis
for the distance d2. We define the linear map ϕ as

ϕ : Fn
q → Fn−d+1

q

(a0, · · · , an−1) →
(
1 . . . 1

) a0 . . . an−d an−d+1 . . . an−1

...
. . .

...
...

. . .
...

ad−1 . . . an−1 a0 . . . ad−2


This map is constrained to be injective on S, otherwise (if two sequences a and
b were mapped to the same image) then a−b would be mapped to zero. In this
case, if we write a− b = (c0, . . . , cn−1), then

(
1 · · · 1

) c0 . . . cn−d cn−d+1 . . . cn−1

...
. . .

...
...

. . .
...

cd−1 . . . cn−1 c0 . . . cd−2

 =
(
0 · · · 0

)
.

Thus the last row is a linear combination of the previous rows. But this would
imply that Lp

(
(ai)− (bi)

)
≤ d − 1 i.e. d2(a,b) ≤ d − 1. This contradicts the

minimum distance of S. By injectivity, we must have that |S| ≤ |(Fn−d+1
q )|. ⊓⊔

Note that in this proof, instead of using
(
1 · · · 1

)
, we can use any vector with

1 as last entry. These operations are equivalent to the puncturing operation on
codes. Namely, using

(
0 · · · 0 1

)
is analogue to puncturing at the first d − 1

positions.

Remark 3. In case S is linear of dimension k over Fq, then the Singleton bound
is k ≤ n− d+ 1.

To conclude this section, we mention the existence of structures that achieve
the Singleton bound. We call these Optimal Sets of Sequences, and describe them
briefly in Appendix B.
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4 Linear Complexity Coset Weight Problems

Given that our initial motivation was the possibility of an application to cryp-
tography, in this section we show that the problem of decoding random linear
codes with respect to the linear complexity metrics d1 and d2 is a difficult prob-
lem. Namely, we show that some problems related to the linear complexity are
NP-complete. Recall that a decisional problem P is said to be in NP if, for any
instance of P with a positive answer, there is an algorithm which can verify
the solution in polynomial time. A problem P is called NP-hard if any problem
in NP can be reduced to P in polynomial time. If a problem is both NP and
NP-hard, then it is called NP-complete. NP-complete problems are considered
to be intractable. One example of an NP-complete problem, which is relevant
for us, is the following (where we indicate (I) for Input and (Q) for Question).

Coset Weight Problem (CWP):

(I) A matrix H ∈ Fr×n
q , a vector b ∈ Fr

q and a non negative integer ω.
(Q) Is there a vector a ∈ Fn

q such that wH(a) ≤ ω and aH⊤ = b?

CWP was proven to be NP-complete in [13]. However, the statement in [13]
is proved only for the binary field. A more general statement with arbitrary field
size is proved in [8]. For our theory, we want to show that the following problems
related to the linear complexity are NP-complete.

Linear Complexity Coset Weight Problem (LCCWP):

(I) A matrix H ∈ Fr×n
q , a vector b ∈ Fr

q and a non-negative integer ω.
(Q) Is there a vector a ∈ Fn

q such that L(a) ≤ ω and aH⊤ = b?

Periodic Linear Complexity Coset Weight Problem (PLCCWP):

(I) A matrix H ∈ Fr×n
q , a vector b ∈ Fr

q and a non-negative integer ω.
(Q) Is there a vector a ∈ Fn

q such that Lp(a) ≤ ω and aH⊤ = b?

To show that these decision problems are NP-complete, we first show that
CWP can be reduced to PLCCWP. Then we show that PLCCWP can be reduced
to LCCWP. To begin, we show a reduction from CWP to a more specialized
problem, which we state below. Its difference with CWP is that the size of the
field Fq is not arbitrary but it is fixed to be q = n+ 1.

Fixed-Field Coset Weight Problem (FFCWP):

(I) A matrix H ∈ Fr×(q−1)
q , a vector b ∈ Fr

q and a non negative integer ω.
(Q) Is there a vector a ∈ Fq−1

q such that wH(a) ≤ ω and aH⊤ = b?

The result is proven in the following theorem.

Theorem 5. FFCWP is NP-complete.
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Proof. The fact that FFCWP is NP is easy to see. Next, we transform an instance
of CWP to an instance of FFCWP. Let H ∈ Fr×n

q , b ∈ Fr
q and ω a non-negative

integer from an instance of CWP. Let Q = q⌈logq(n+1)⌉. It is clear that Q ≥ n+1.
If Q > n + 1, then construct the matrix H1 ∈ Fr×(Q−1)

Q by appending columns
of zeros to the matrix H. Finding a ∈ Fn

q such that wH(a) ≤ ω and aH⊤ = b is
reduced to finding (a|0) ∈ FQ−1

q such that wH(a) ≤ ω and (a|0)H⊤
1 = b. Now,

if there was a polynomial-time algorithm which solves FFCWP, we could use
it to find a1 such that a1H

⊤
1 = b. Note that a1 can still be a vector over FQ.

However, we show that we can use this to get a solution over Fq. Due to the form
of H1, we may assume that a1 = (a1, . . . , an, 0, . . . , 0). Now, let TrQ/q be the
trace function corresponding to the finite extension FQ/Fq. We also denote by
TrQ/q(x), for any vector x over FQ, where the trace map is applied individually
on the entries of x. Then, since the matrix H1 and the vector b have entries in
Fq, we have that

(TrQ/q(a1), . . . , T rQ/q(an), 0, . . . , 0)H
⊤
1 = TrQ/q

(
(a|0)H⊤

1

)
= TrQ/q(b) = b.

This gives us (TrQ/q(a1), . . . , T rQ/q(an))H
⊤ = b where the vector given by

(TrQ/q(a1), . . . , T rQ/q(an)) has entries over Fq. Notice that the trace over Fq/Fq

can be computed in polynomial time. Therefore a polynomial-time algorithm
solving FFCWP also solves CWP in polynomial time. Since CWP is NP-complete,
it is NP-hard, from which it follows that FFCWP must also be NP-hard, and
hence NP-complete. ⊓⊔

Remark 4. Switching from the field Fq of size q to the field FQ with Q =

q⌈logq(n)⌉ does not increase the difficulty of the problem exponentially. Indeed,
instead of working over the field Fq, we just work on a field of size Q ∼ n.

We now use the result in Theorem 5 to show that PLCCWP is also NP-
complete. First of all, note that it is easy to see that PLCCWP is in NP. Next,
we will need to translate the notion of Hamming distance into the notion of
linear complexity. For that we recall the results from Section 1.

Let q be a power of a prime. Theorem 2 says that if f(x) = f0 + f1x+ · · ·+
fq−2x

q−2 is a polynomial over a finite field Fq of size q, then the number of roots
of of f(x) in F∗

q is given by q − 1− ω, where Lp(f0, f1, . . . , fq−2) = ω ≤ q − 1.

Another tool that we need is how to convert a vector into a polynomial.
That is done via the interpolation using a Vandermonde matrix. Suppose that
we have a finite field with q elements Fq = {0, b1, . . . , bq−1}. Then the following
Vandermonde matrix is invertible.

V =


1 1 . . . 1
b1 b2 . . . bq−1

b21 b22 . . . b2q−1
...

...
. . .

...

bq−2
1 bq−2

2 . . . bq−2
q−1

 . (1)



10 E. Persichetti, T.H. Randrianarisoa

Thus for any (c1, . . . , cq−1) ∈ Fq−1
q , there is a unique polynomial f0 + f1x +

· · ·+ fq−2x
q−2 such that f(bi) = ci. This can be computed via (f0, . . . , fq−2) =

(c1, . . . , qq−1)V
−1. We denote the map by

ϕ : Fq−1
q → Fq−1

q (2)

(c1, . . . , cq−1) 7→ (f0, . . . , fq−2)

Now, let us see how we can convert a linear code into a subspace of periodic
sequences. Suppose that we have a finite field Fq with q elements. Assume that
C ⊂ Fq−1

q . Let c = (c1, · · · , cq−1) ∈ Fq−1
q . If we assume that {a1, · · · , aq−1} = F∗

q ,
then, via the map in Equation (2), any c can be written as

c = (f(a1), · · · , f(aq−1)),

for some polynomial f(x) of degree q − 2 over Fq. Using Theorem 2 and the
above discussion, we see that the Hamming weight of c is the same as the pe-
riodic linear complexity Lp(f0, f1, . . . , fq−2). Therefore, we have the following
correspondence.

{
Codewords c in Fq−1

q

using the Hamming weight

}
⇔

{
Finite sequences cV −1 in Fq−1

q

using the linear complexity

}
(3)

Now, with FFCWP, we have a parity-check matrix H ∈ Fr×(q−1)
q and a vector

b ∈ Fr
q. We want to find c ∈ Fq−1

q such that cH⊤ = b and wH(c) ≤ ω. Using
the Vandermonde matrix in Equation (1) and the correspondence (3), we can
write c = aV . Thus aVH⊤ = b. So if we set H1 = VH⊤, then the problem
is equivalent to finding a ∈ Fq−1

q such that aH⊤
1 = b and Lp(c) ≤ ω. In other

words, solving FFCWP over Fq−1
q , can be reduced to solving PLCCWP over Fq.

Theorem 6. Solving PLCCWP is at least as hard as solving FFCWP.

Since by Theorem 5, solving a general instance of FFCWP is NP-complete,
we can also conclude that solving PLCCWP is NP-hard. Thus, we have the
following theorem.

Theorem 7. PLCCWP is NP-complete.

Now, because we know that Lp(a1, . . . , an) = L(a1, . . . , an, a1, . . . , an), we
can reduce an instance of PLCCWP to an instance of LCCWP in the following
manner. Suppose we are looking for a such that Lp(a) = ω ≤ n and aH⊤ = b.
This can be interpreted as looking for (a|a) such that L(a|a) = ω ≤ n and
(a|a)H⊤

1 = (b|0), where

H1 =

[
H 0
In −In

]
If there were an algorithm solving LCCWP, then we could use it with the

parity-check matrix H1 and syndrome (b|0) to find a solution (a1|a2). The
identity matrix In in H1 ensures that a1 = a2, so we find a solution of the form
(a|a) and therefore we get a solution to PLCCWP. Thus, we have the following
theorem.
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Theorem 8. LCCWP is NP-complete.

From Theorem 2, we have seen that there is a correspondence between linear
complexity and Hamming weight. As we have seen in this section, the problem
of decoding in the Hamming metric can be translated into a problem of decoding
with linear complexity, where the period of the sequences is fixed. It is therefore
natural to ask if we can do the converse. It is not straightforward to use the
previous results. Namely, when we start with a finite field Fq with the Hamming
metric, we end up with the field FQ with the linear complexity, for Q = ql,
and the period of the finite sequence is fixed to be n = Ql − 1. Thus, for the
converse, if we start with periodic sequences with period n such that n+1 is not
a power of a prime, we cannot use the above correspondence. However, we are
going to show that, with a more general version of Theorem 2, we are still able
to switch from periodic linear complexity to Hamming metric. We begin with
the following.

Proposition 3 ([12]). Let Fq be a finite field and let w be a primitive n-th root
of unity lying in Fqm for some m. The linear complexity of Lp(a0, . . . , an−1)
with ai ∈ Fq is equal to the Hamming weight of (c0, . . . , cn−1), where ci =∑n−1

j=0 w−ijaj.

By the previous proposition, if one starts with a subspace of Fn
q embedded

with the n-periodic linear complexity, then one can transform the problem to
a Hamming-metric version over the field Fqm in a straightforward way. In this
case, the problem can be easily translated to a problem with Hamming metric,
the theoretic results from Hamming metric can be translated into results in
the periodic linear complexity metric. Hence, from here on, we focus on finite
sequences that are not restricted to a fixed period and are measured with the
distance d1.

5 Properties of Linear Complexity

As we have seen, one can compute the linear complexity of a sequence using the
Berlekamp-Massey algorithm. Thus, if a sequence has small linear complexity,
one can easily find an LFSR generating this sequence. Due to this fact, we usually
want to have sequences with large linear complexity. Therefore, one important
question is to know how many finite sequences have large linear complexity.
Another motivation for this section is that knowing the number of sequences
with a given linear complexity is important for the security aspect of a code-
based cryptosystem using linear complexity as metric. In the vast majority of the
traditional code-based cryptosystems, in fact, one has to randomly generate error
vectors with a fixed Hamming weight. We may think of the same by replacing
the Hamming weight by linear complexity. In order to parametrize the security
of such scheme, one again needs to know the number of sequences with a given
linear complexity. When we consider finite sequences, there is already an answer
to this question [17]. As mentioned in the last paragraph of the previous section,



12 E. Persichetti, T.H. Randrianarisoa

we are only interested in finite sequences without fixed periods. Thus, we will
only use the linear complexity L and the distance d = d1.

Theorem 9 ([17]). Let ω ≤ n be positive integers. Then, the number of se-
quences (ai) = (a1, . . . , an) having length n and linear complexity L(ai) = ω
over a finite field Fq of size q is given by

1 if ω = 0,

q2ω−1(q − 1) if ω ≤ ⌊n
2 ⌋,

q2(n−ω)(q − 1) if ω > ⌊n
2 ⌋.

Theorem 10. Given two integers ω ≤ n, the number b(n, ω) of finite sequences
(ai) = (a1, . . . , an) having length n and linear complexity L(ai) at most ω over
a finite field Fq of size q is

1 if ω = 0,
q2ω+1 + 1

q + 1
if ω + 1 ≤ n− ω,

1− q2(n−ω)

1 + q
+ qn if n− ω ≤ ω.

Proof. Direct computation from Theorem 9. ⊓⊔

Since we also know the size of balls with respect to the linear complexity
from Theorem 10, we can give a formula for the sphere packing bound.

Theorem 11 (Sphere Packing Bound). Let S be a set of sequences of length
n and with minimum distance d. Then

|S| ≤


qn(q + 1)

q2⌊
d−1
2 ⌋ + 1

if 2⌊d−1
2 ⌋ ≤ n− 1,

qn(q + 1)

1− q2(n−⌊ d−1
2 ⌋) + (1 + q)qn

if 2⌊d−1
2 ⌋ > n− 1.

Proof. This is a direct consequence of Theorem 10 and uses the fact that the
union of the spheres of radius ⌊d−1

2 ⌋ centered at the sequences in S is a disjoint
union. ⊓⊔

Our next theorem is the analogue to the Gilbert-Varshamov bound.

Theorem 12 (Gilbert-Varshamov Bound for Linear Complexity). Let
d ≤ n be positive integers. Let Aq(n, d) be the size of the largest possible subset
S of Fn

q with minimum distance d with respect to the metric d1. Then
Aq(n, d) = qn if d = 1,

Aq(n, d) ≥
qn(q + 1)

q2d−1 + 1
if d ≤ n− d+ 1,

Aq(n, d) ≥
qn(q + 1)

1 + qn(q + 1)− q2(n−d−1)
if d ≥ n− d+ 2.
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Proof. We follow the proof in the classical Hamming metric. When d = 1, the
result is trivial. Suppose that |C| = Aq(n, d). Because of the maximality of S,
any elements of Fn

q should be contained in a ball B(x, d − 1), with center x
and radius d − 1, for some x ∈ S. Thus Fn

q = ∪x∈SB(x, d − 1). Thus, we have
|Fn

q | ≤ |S|b(n, d− 1). The results follow from Theorem 10. ⊓⊔

The following is a version of the Gilbert-Varshamov bound for linear spaces
of sequences.

Theorem 13 (Gilbert-Varshamov Bound for Linear Spaces). Let d ≤ n
be positive integers. Let Dq(n, d) be the dimension of the largest possible subspace
S of Fn

q with minimum distance d with respect to the metric d1. Then
Dq(n, d) = n if d = 1,

Dq(n, d) ≥ logq

(
qn(q + 1)

q2d−1 + 1

)
if d ≤ n− d+ 1,

Dq(n, d) ≥ logq

(
qn(q + 1)

1 + qn(q + 1)− q2(n−d−1)

)
if d ≥ n− d+ 2.

Proof. Again, the case d = 1 is trivial. For a non-zero vector x ∈ Fn
q , we denote

by ⟨x⟩, the one-dimensional Fq-space generated by x. Now, if S has maximal
dimension, say k, then for any element x ∈ Fn

q \S, the space S +Fq ⟨x⟩ should
contain an elements of linear complexity smaller than d. Thus, there is a ∈ S and
b ∈ F∗

q such that a+bx has linear complexity at most d−1. Thus x ∈ B(a, d−1).
On the other hand, if x ∈ S then x ∈ B(x, d−1). Thus we get to the same proof
of the previous theorem: Fn

q = ∪x∈SB(x, d− 1). The results follow. ⊓⊔

The bounds in Theorems 11, 12 and 13 were given for the reader to compare
to the case of linear codes equipped with the Hamming metric. However, we
have already seen a bound on the maximum size of set of sequences with a
given minimum distance (see Theorem 4) and we have shown that the bound is
attained for any parameters and without restriction on the base field. Now, we
want to give a criteria for the optimal subspaces of sequences. To do this, for any
integer t < n and a vector b = (b1, . . . , bt), we define the matrix Mb ∈ Fn×(n−t)

q

by

Mb =



b1 0 . . . 0
... b1 . . . 0

bt
...

. . .
...

−1 bt
. . . b1

0 −1
. . .

...
...

. . .
. . . bt

0 . . . 0 −1


Theorem 14. Let S be an [n, k] subspace of sequences over Fq and let k ≤
n− d+ 1. Let G be a generator matrix of S. Then the following statements are
equivalent:
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(i) The minimum distance of S is d.
(ii) There exists a vector c = (c1, . . . , cd) ∈ Fd

q such that GMc has rank strictly
smaller than k. Furthermore, GMb has full rank k for any vector b =
(b1, . . . , bd−1) ∈ Fd

q .

Proof. Suppose that the minimum distance is d. Because no element of S has
linear complexity smaller than d, then if a = (a1, . . . , an) ∈ S no coefficients
b = (b1, . . . , bd−1) can generate a with initial state a1, . . . , ad−1. Thus we have
that (m1, . . . ,mk)GMb ̸= 0 for any (m1, . . . ,mk) ∈ Fk

q . Therefore GMb ∈
Fk×(n−d)
q has no left kernel i.e. it has full rank k. In a similar fashion, if there is

a codeword of linear complexity d, then we can find c = (c1, . . . , cd) such that
GMc ∈ Fk×(n−d)

q has non-empty left kernel and thus its rank is smaller than k.
The converse can be proved using the same idea in reverse fashion. ⊓⊔

Corollary 2. Let S be an [n, k, d] subspace of sequences over Fq. Then S is
optimal, i.e. d = n − k + 1, if and only if GMb ∈ Fk×k

q is invertible for any
b = (b1, . . . , bn−k) ∈ Fn−k

q . In particular S has a generator matrix of the form
G = [X|Ik].

Proof. A direct consequence of Theorem 14. ⊓⊔

The previous corollary gives a characterization of optimal subspaces of se-
quences. Our next step is to give a bound on the minimum distance of ran-
dom subspaces. This follows a method analogous to the asymptotic Gilbert-
Varshamov bound in the Hamming metric case (See [9] for example).

Fix a positive integer 1 ≤ d ≤ n. Let G be a matrix in Fk×n
q chosen uniformly at

random. Suppose that SG is the row space of G. Let P be the probability that
the minimum distance d(SG) of SG is strictly smaller than d i.e.

P = Prob (d(SG) < d) = Prob
(
∃x ∈ Fk

q\{0} : L(xG) < d
)

It is clear that
P ≤

∑
x∈Fk

q\{0}

Prob (L(xG) < d) .

Now, because G is a uniformly random variable, so is xG. Thus

Prob (L(xG) < d) =
b(n, d− 1)

qn
.

Thus
P ≤ (qk − 1)

b(n, d− 1)

qn
.

Thus we have the following theorem.

Theorem 15. Let G be a random (k×n) matrix over Fq and let SG be the row
space of G over Fq. Let d < n/2 be the minimum distance of S and let ϵ > 0,
where k = n− 2d− ϵ. Then Prob (d(SG) < d) ≤ 2

q2qϵn .
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Proof. Let P = Prob (d(SG) < d). From the previous paragraph, we have

P ≤ (qk − 1)
b(n, d− 1)

qn
.

Because d/n < 1/2, then by Theorem 10,

P ≤ (qk − 1) q
2d−1+1
(q+1)qn ≤ 2qkq2d−1

qn+1

Thus
P ≤ 2

q2qn−k−2d
,

and the result follows. ⊓⊔

Now, in Theorem 15, q−ϵn decreases exponentially with respect to n. Thus, we
can conclude the following.

Corollary 3. With high probability, a random k × n matrix over Fn
q generates

a space of sequences with minimum distance at least n−k
2 .

6 Cryptographic Applications

In this section, we illustrate one possible application of our theory to cryptogra-
phy. Namely, we show how a recent signature scheme by Feneuil et al. [15], which
uses the popular “MPC-in-the-head” paradigm, can be formulated in terms of lin-
ear complexity, and how this leads to an improvement. Due to space constraints,
we are not able to describe the signature scheme in full; instead, we summarize
the relevant part of the scheme, and present our proposed modification.

Let H be a parity-check matrix of a random [n, k] code and let y ∈ Fn−k
q . For

the purpose of verification, a prover wants to prove that he knows x ∈ Fn
q such

that xHT = y and wH(x) ≤ w. The prover does not want to reveal information
about x. Note that, by taking H = [H′|In−k], we can write (xA|xB)H

T = y for
x = (xA|xB). In this case, xA uniquely determines x from y and H.

Following the notation of [15], let Fpoly be a finite extension of Fq such
that n ≤ |Fpoly| and let {γ1, . . . , γn} be distinct elements of Fpoly. Let S(X) ∈
Fpoly[X] be the polynomial interpolation of the points (γi, xi). It is easily seen
that the condition wH(x) ≤ r is equivalent to S(x) having at least n− w roots
in {γ1, · · · , γn}. In [15], it is shown that this is equivalent to the existence of two
polynomials P,Q ∈ Fpoly[X] such that Q · S − P · F = 0, where degP ≤ w − 1,
degQ = w and F =

∏n
i=1(X − γi). In order to prove his knowledge, the prover

does the following.

(1) Write xA =
∑N

j=1 x
(j)
A . These define x =

∑N
j=1 x

(j) and ensures that the
syndrome relation xHT = y is satisfied. The elements of these sums are
what we call the shares in the MPC protocol.
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(2) Find the interpolation polynomial S(j)(X) using the points (γi, x
(j)
i ), where

i = 1, . . . , n and x(j) = (x
(j)
1 , . . . , x

(j)
n ). By the linearity of the Lagrange

interpolation, S(X) =
∑N

j=1 S
(j)(X).

(3) Write Q(X) =
∑N

j=1 Q
(j)(X).

(4) Write (P · F )(X) =
∑N

j=1(P · F )(j)(X).
(5) To verify that Q(X)S(X) = (P · F )(X). One can verify that Q(rl)S(rl) =

(P · F )(rl) for 1 ≤ l ≤ r and rj elements of an extension Fpoints of Fpoly.
(6) To make this verification without revealing Q(rl) and S(rl), one needs to

use the decompositions Q(rl) =
∑N

j=1 Q
(j)(rl), S(rl) =

∑N
j=1 S

(j)(rl) and
(P · F )(rl) =

∑N
j=1(P · F )(j)(rl) in an MPC protocol.

For full details about the usage of these steps in a zero-knowledge protocol
for syndrome decoding, we refer the reader to [15].

In Step (2), the prover is required to make several of interpolations to find the
polynomials S(j)(X). These computations negatively affect the performance of
the scheme. In the following, we explain how to use a system with periodic linear
complexity as metric, and completely avoid the interpolation steps, thereby con-
siderably speeding up the scheme of [15]. In the remaining part of this section,
we set n = q − 1 and therefore we can also choose Fpoly = Fq.

Let H be a parity check matrix of a random [n, k] code and let y ∈ Fn−k
q .

Now, a prover wants to show that he knows a ∈ Fn
q such that aHT = y and

Lp(a) ≤ w, without revealing information about a. Again, we take H = [H′|In−k]
and we can write (aA|aB)HT = y for a = (aA|aB).

By Theorem 2 and Equation (3), if a = (a0, . . . , an−1) and S(X) =
∑q−2

i=0 aiX
i,

then wH(S(γ0), . . . , S(γq−2)) = Lp(a), where F∗
q = {γ0, . . . , γn−1}. Using the

same method as before, showing that Lp(a) ≤ w is therefore the same as show-
ing the existence of two polynomials P,Q ∈ Fpoly[X] such that Q ·S−P ·F = 0,
where degP ≤ w−1, degQ = w and F =

∏n
i=1(X−γi). The difference with the

scheme in the Hamming metric is that the polynomial S(X) is already defined
by a. Thus, no interpolation is needed, as claimed. In general, these are the steps
the prover needs to follow.

(1’) Write aA =
∑N

j=1 a
(j)
A . This defines a =

∑N
j=1 a

(j) and ensures that the
syndrome relation aHT = y is satisfied. The elements of these sums are the
shares in the MPC protocol.

(2’) The coefficients of a(j) define a polynomial S(j)(X). By linearity, we have
S(X) =

∑N
j=1 S

(j)(X).
(3’) Write Q(X) =

∑N
j=1 Q

(j)(X).
(4’) Write (P · F )(X) =

∑N
j=1(P · F )(j)(X).

(5’) To verify that Q(X)S(X) = (P · F )(X), one can verify that Q(rl)S(rl) =
(P · F )(rl) for 1 ≤ l ≤ r and rj elements of an extension Fpoints of Fpoly.

(6’) To perform this verification without revealing Q(rl) and S(rl), one needs to
use the decompositions Q(rl) =

∑N
j=1 Q

(j)(rl), S(rl) =
∑N

j=1 S
(j)(rl) and

(P · F )(rl) =
∑N

j=1(P · F )(j)(rl) in an MPC protocol.
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As mentioned above, since in this setting we have n = q − 1 and Fpoly = Fq,
Equation (3) shows that syndrome decoding of the form xHT = y and wH(x) ≤
w is equivalent to syndrome decoding of the form aHT

1 = y. In this regard, the
parameter sets for the Hamming metric are exactly the same parameter sets
for the periodic linear complexity metric. In order to find the best parameters
for a security of the scheme with the linear complexity, we can therefore use
parameters from the Hamming metric. We can for example use a similar set of
parameters as in the Variant 3 described in [15], working on a field Fq = Fpoly =
F256, and using a code of length n = q − 1 = 255 and dimension k = 128.
The weight of the secret key a in this case is w = 80. An implementation of
the scheme of [15] in this new metric is planned as future work, as well as a
translation to the (non-periodic) linear complexity setting.
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A The Berlekamp-Massey Algorithm

Algorithm 1 Berlekamp-Massey
1: procedure BM(s0, · · · , sn−1)
2: f(z)← 1, A(z)← 1,
3: L← 0, m = −1, e← 1
4: for i from 0 to n− 1 do
5: d← si +

∑L
j=1 fjsi−j

6: if d ̸= 0 then
7: B(z)← f(z)
8: f(z)← f(z)− (d/e)A(z)zi−m

9: if 2L ≤ i then
10: L← i+ 1− L
11: m← i
12: A(z)← B(z)
13: e← d
14: end if
15: end if
16: end for
17: return L and f(z)
18: end procedure

B Optimal Sets of Sequences

Definition 8 (Optimal Sets of Sequences). We call a set S ⊂ Fn
q an Opti-

mal Set of Sequences (OSS) (resp. Optimal Set of Periodic Sequences (OSPS))
if the minimum distance with respect to the metric d1 (resp. d2) of S reaches the
bound of the previous theorem i.e. if S has elements of length n and minimum
distance d and ♯S = qn−d+1.

Example 1. Let S be the set of sequences of length n over a finite field Fq defined
by

S = {(0, · · · , 0, a1, · · · , ak) : ai ∈ Fq}.
Then, S is both an OSS an OSPS of dimension k. That is because the sequences
cannot be generated by an LFSR of length smaller than n− k + 1 except when
it is the zero sequence.

The nice property of using the set of sequences with the linear complexity
as a metric is that, in opposite to maximum distance separable codes in the
Hamming metric, we can have an optimal set of sequences for any parameters.
The construction works even for the binary field. Furthermore, the decoding of
OSS given in Examples 1 is straightforward. They are similar and we will only
describe it for the OSS in Example 1. First let us look at the unique decoding
property.
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Proposition 4. Suppose that S is an [n,M, d] set of sequences. Suppose that
y ∈ Fq is equal to x + e, where x ∈ S and L(e) < d

2 . Then, the decomposition
x+ e is unique.

Proof. If y = x1 + e1 = y2 + e2, then x1 − x2 = e2 − e1. Therefore d(x1, x2) =
L(e2−e1). By Theorem 3, d(x1, x2) ≤ L(e2)+L(e1) < d. This is in contradiction
with the minimum distance of S.

Let S, of dimension k, be the OSS in Example 1. Suppose that we know
y = x + e with x ∈ S and L(e) < n−k+1

2 . By Proposition 4, we know that e is
unique. Since the n − k first entries of x are equal to zero. Then we know the
first n − k entries of e. Now, since L(e) < n−k+1

2 , we can uniquely recover the
LFSR generating e by using Berlekamp-Massey. on the first n − k entries of e.
We are therefore able to produce the whole e and then we compute x = y − e.
By Proposition 4, the resulting x is the only correct original codeword.

C Application for Decoding Reed-Solomon Codes

We can use linear complexity to get a decoding algorithm for Reed-Solomon
coded (see Section 1). Let F∗

q = {α1, . . . , αn}, where n = q − 1. The Reed
Solomon code C is defined as

C = {(f(α1), . . . , f(αn)) : f(x) ∈ Fq[x], deg f(x) ≤ k − 1}.

Assume that the received codeword is c + e and wH(e) ≤ n−k+1
2 . By Theorem

2, c corresponds to a polynomial fc of degree at most k − 1, and e corresponds
to a polynomial fe of degree at most q − 2. The first step of decoding is to
interpolate c+ e to get fc + fe. Now, since fc has degree at most k− 1, the last
n−k+1 coefficients of fe are the same as the last n−k+1 coefficients of fc+fe.
Since e has Hamming weight smaller or equal to n−k+1

2 , the coefficients of fe
has linear complexity t ≤ n−k+1

2 . In particular the last n− k + 1 coefficients of
fe is generated by an LFSR of length t at most. Now, given that t ≤ n−k+1

2 and
since we know n− k+ 1 coefficients, the Berlekamp-Massey algorithm gives the
shortest LFSR generating these coefficients. The same LFSR also generates the
whole array of coefficients of fe periodically, and so we can recover the whole of
fe using simple linear algebra. Finally, evaluating fe at (α1, . . . , αn) gives us e.
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