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Abstract

Computational security in cryptography has a risk that computational assumptions underlying the security are
broken in the future. One solution is to construct information-theoretically-secure protocols, but many cryptographic
primitives are known to be impossible (or unlikely) to have information-theoretical security even in the quantum world.
A nice compromise (intrinsic to quantum) is certified everlasting security, which roughly means the following. A
receiver with possession of quantum encrypted data can issue a certificate that shows that the receiver has deleted
the encrypted data. If the certificate is valid, the security is guaranteed even if the receiver becomes computationally
unbounded. Although several cryptographic primitives, such as commitments and zero-knowledge, have been made
certified everlasting secure, there are many other important primitives that are not known to be certified everlasting
secure.
In this paper, we introduce certified everlasting FE. In this primitive, the receiver with the ciphertext of a message

m and the functional decryption key of a function f can obtain f(m) and nothing else. The security holds even if the
adversary becomes computationally unbounded after issuing a valid certificate. We, first, construct certified everlasting
FE for P/poly circuits where only a single key query is allowed for the adversary. We, then, extend it to q-bounded one
for NC1 circuits where q-bounded means that q key queries are allowed for the adversary with an a priori bounded
polynomial q. For the construction of certified everlasting FE, we introduce and construct certified everlasting versions
of secret-key encryption, public-key encryption, receiver non-committing encryption, and a garbling scheme, which are
of independent interest.
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1 Introduction
1.1 Background
Computational security in cryptography relies on assumptions that some problems are hard to solve. It, however,
has a risk that the assumptions could be broken in a future when revolutionary novel algorithms are discovered or
computing devices are drastically improved. One solution to the problem is to construct information-theoretically-secure
protocols [Sha79, BB84], but even in the quantum world, many cryptographic primitives are known to be impossible (or
unlikely) to have information-theoretical security [LC97, May97, MW18].
Good compromises (intrinsic to quantum!) have been studied recently [Unr15, BI20, KT20, HMNY21b, HMNY21a,

Por22]. In particular, certified everlasting security, which was introduced in [HMNY21a] based on [Unr15, BI20],
achieves the following security: a receiver with possession of quantum encrypted date issues a certificate which shows
that the receiver has deleted its quantum encrypted data. If the certificate is valid, the security is guaranteed even if the
receiver becomes computationally unbounded later (and even if some secret information like the secret key is leaked).
This security notion is weaker than the information-theoretical security. (For example, a malicious receiver may refuse
to issue a valid certificate.) It is, however, still a useful security notion, because, for example, a sender can penalize
receivers who do not issue valid certificates. Moreover, certified everlasting security is intrinsically quantum property,
because it implies information-theoretical security in the classical world. 1
Certified everlasting security can bypass the impossibility of information-theoretical security. In fact, several

cryptographic primitives have been shown to have certified everlasting security, such as commitments and zero-
knowledge [HMNY21a]. An important open problem in this direction is

Which cryptographic primitives can have certified everlasting security?

Functional encryption (FE) is one of the most advanced cryptographic primitives that achieves large flexibility in
controlling encrypted data [BSW11]. In FE, an owner of a master secret keyMSK can generate a functional decryption
key skf that hardwires a function f . When a ciphertext CT(m) of a messagem is decrypted by skf , we obtain f(m).
No information beyond f(m) is obtained. Information-theoretically-secure FE seems to be unlikely, and in fact all
known constructions are computationally secure ones [GVW12, GGH+13, GGHZ16, AS17, LT17, AJL+19, AJS18,
Agr18, LM18]. Hence we have the following open problem:

Is it possible to construct certified everlasting secure FE?

We remark that certified everlasting FE is particularly useful compared with certified everlasting public key encryption
(PKE) (or more generally “all-or-nothing encryption” [GMM17] such as identity-based encryption (IBE), attribute-based
encryption (ABE), or witness encryption (WE)) because it ensures security even against an honest receiver who holds a
decryption key. That is, we can ensure that a receiver who holds a decryption key skf with respect to a function f
cannot learn more than f(m) even if the receiver can run unbounded-time computation after issuing a valid certificate.
In contrast, certified everlasting PKE does not ensure any security against an honest receiver since the receiver can
simply copy an encrypted message after honestly decrypting a ciphertext and then no security remains.

1.2 Our Results
We partially solve the above questions affirmatively. Our contributions are as follows:

1. We formally define certified everlasting versions of secret-key encryption (SKE) (Section 3.1), public-key
encryption (PKE) (Section 4.1), receiver non-committing encryption (RNCE) (Section 5.1), a garbling scheme
(Section 6.1), and FE (Section 7.1), respectively.

2. We present two constructions of certified everlasting SKE (resp. PKE). An advantage of the first construction is
that the certificate is classical, but a disadvantage is that the security proof relies on the quantum random oracle

1This is because a malicious receiver can copy the encrypted data freely, and thus the encrypted data must be secure against an unbounded
malicious receiver at the point when the receiver obtains the encrypted data. On the other hand, in the quantum world, the same discussion does not
go through, because even a malicious receiver cannot copy the quantum encrypted data due to the quantum no-cloning theorem.
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model (QROM) [BDF+11]. On the other hand, in the second construction, the security holds without relying on
the QROM, but the certificate is quantum.

3. We construct certified everlasting RNCE from certified everlasting PKE in a black-box way (Section 5.2).

4. We construct a certified everlasting garbling scheme for all P/poly circuits from certified everlasting SKE in a
black-box way (Section 6.2).

5. We construct 1-bounded certified everlasting FE with adaptive security for all P/poly circuits. The adaptive
security means that the adversary can call key queries before and after seeing the challenge ciphertext. The
1-bounded means that only a single key query is allowed for the adversary. The construction is done in the
following two steps. First, we construct 1-bounded certified everlasting FE with non-adaptive security for all
P/poly circuits from a certified everlasting garbling scheme and certified everlasting PKE in a black-box way
(Section 7.2). Second, we change it to the adaptively-secure one by using certified everlasting RNCE in a
black-box way (Section 7.3).

6. We construct q-bounded certified everlasting FE with adaptive security for all NC1 circuits, where q-bounded
means that the total number of key queries is bounded by an a priori fixed polynomial q. This is constructed from
the 1-bounded one constructed in Step. 5 by using multi-party computation in a black-box way (Section 7.4).

1.3 Related Works
Unruh [Unr15] introduced the concept of revocable quantum time-released encryption. In this primitive, a receiver with
possession of quantum encrypted data can obtain its plaintext after predetermined time T . The sender can revoke the
quantum encrypted data before time T . If the revocation succeeds, the receiver cannot obtain the information of the
plaintext even if its computing power becomes unbounded.
Broadbent and Islam [BI20] constructed one-time SKE with certified deletion. This is ordinary one-time SKE, but

once the receiver issues a valid classical certificate, the receiver cannot obtain the information of plaintext even if it later
obtains the secret key of the ciphertext. (See also [KT20]).
Hiroka, Morimae, Nishimaki, and Yamakawa [HMNY21b] constructed reusable SKE, PKE, and attribute-based

encryption (ABE) with certified deletion. These reusable SKE, PKE, and ABE with certified deletion are ordinary
reusable SKE, PKE, and ABE, respectively. However, once the receiver issues a valid classical certificate, the receiver
cannot obtain the information of plaintext even if it obtains some secret information (e.g. the master secret key of ABE).
Note that, in these primitives, the security holds against computationally bounded adversaries unlike the present paper.
Hiroka, Morimae, Nishimaki, and Yamakawa [HMNY21a] constructed commitments with statistical binding and

certified everlasting hiding. From it, they also constructed certified everlasting zero-knowledge proof for QMA based on
the zero-knowledge protocol of [BG20].
Poremba [Por22] constructed fully homomorphic encryption (FHE) with certified deletion where the security holds

against only semi-honest adversaries that behaves maliciously only after outputting a certificate.

1.4 Concurrent and Independent Work
There is a concurrent and independent work. Recently, Bartusek and Khurana have uploaded their paper on arXiv [BK22]
where a generic compiler is introduced. The generic compiler can change many cryptographic primitives into ones with
certified deletion, such as PKE, ABE, FHE, witness encryption, and timed-release encryption.
Their constructions via the generic compiler achieve classical certificates without QROM, which is an advantage of

their results. On the other hand, we construct certified everlasting garbling schemes and FE, which is not done in their
work. In fact, it is not clear how to construct certified everlasting garbling schemes and certified everlasting FE via
their generic compiler. For example, a natural construction of FE via their generic compiler would be as follows. The
ciphertext consists of a classical part and a quantum part. The classical part is the ciphertext of ordinary FE whose
plaintext is m ⊕ r, and the quantum part is random BB84 states whose computational basis states encode r. The
decryption key of the function f consists of a functional decryption key skf and the basis of the BB84 states. However,
in this construction, a receiver with the ciphertext and the decryption key cannot obtain f(m). This is because the
receiver can obtain only f(m⊕ r) and r, which cannot recover f(m).
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2 Preliminaries
2.1 Notations
Here we introduce basic notations we will use in this paper. x← X denotes selecting an element x from a finite set X
uniformly at random, and y ← A(x) denotes assigning to y the output of a quantum or probabilistic or deterministic
algorithm A on an input x. When we explicitly show that A uses randomness r, we write y ← A(x; r). When D is a
distribution, x← D denotes sampling an element x from D. y := z denotes that y is set, defined, or substituted by z.
Let [n] := {1, . . . , n}. Let λ be a security parameter. By [N ]p we denote the set of all size-p subsets of {1, 2 · · · , N}.
For classical strings x and y, x||y denotes the concatenation of x and y. For a bit string s ∈ {0, 1}n, si and s[i] denotes
the i-th bit of s. QPT stands for quantum polynomial time. PPT stands for (classical) probabilistic polynomial time.
A function f : N → R is a negligible function if for any constant c, there exists λ0 ∈ N such that for any λ > λ0,
f(λ) < λ−c. We write f(λ) ≤ negl(λ) to denote f(λ) being a negligible function.

2.2 Quantum Computations
We assume familiarity with the basics of quantum computation and use standard notations. LetQ be the state space of a
single qubit. I is the two-dimensional identity operator. X and Z are the Pauli X and Z operators, respectively. For an
operatorA acting on a single qubit and a bit string x ∈ {0, 1}n, we writeAx asAx1⊗Ax2⊗· · ·Axn . The trace distance
between two states ρ and σ is given by 1

2∥ρ− σ∥tr, where ∥A∥tr := tr
√

A†A is the trace norm. If 1
2∥ρ− σ∥tr ≤ ϵ, we

say that ρ and σ are ϵ-close. If ϵ = negl(λ), then we say that ρ and σ are statistically indistinguishable.

Quantum Random Oracle. We use the quantum random oracle model (QROM) [BDF+11] to construct certified
everlasting SKE and certified everlasting PKE in Sections 3.2 and 4.2, respectively. In the QROM, a uniformly random
function with a certain domain and range is chosen at the beginning, and quantum access to this function is given to all
parties including an adversary. Zhandry showed that quantum access to random functions can be efficiently simulatable
by using so-called compressed random oracle technique [Zha19].
We review the one-way to hiding lemma [Unr15, AHU19], which is useful when analyzing schemes in the QROM.

The following form of the lemma is based on [AHU19].

Lemma 2.1 (One-Way to Hiding Lemma [AHU19]). Let S ⊆ X be a random subset of X . Let G, H : X → Y be
random functions satisfying ∀x /∈ S [G(x) = H(x)]. Let z be a random classical bit string. (S, G, H, z may have an
arbitrary joint distribution.) Let A be an oracle-aided quantum algorithm that makes at most q quantum queries. Let B
be an algorithm that on input z chooses i← [q], runs AH(z), measures A’s i-th query, and outputs the measurement
outcome. Then we have

∣∣Pr
[
AG(z) = 1

]
− Pr

[
AH(z) = 1

]∣∣ ≤ 2q
√

Pr[BH(z) ∈ S].

Quantum Teleportation. We use quantum teleportation to prove that our construction of the FE scheme in Section 7.3
satisfies adaptive security.

Lemma 2.2 (Quantum Teleportation). Suppose that we have N Bell pairs between registers A and B, i.e., 1√
2N

∑
s∈{0,1}N

|s⟩A ⊗ |s⟩B , and let ρ be an arbitrary N -qubit quantum state in register C. Suppose that we measure j-th qubits
of C and A in the Bell basis and let (xj , zj) ∈ {0, 1} × {0, 1} be the measurement outcome for all j ∈ [N ]. Let
x := x1||x2|| · · · ||xN and z := z1||z2|| · · · ||zN . Then (x, z) is uniformly distributed over {0, 1}N ×{0, 1}N . Moreover,
conditioned on the measurement outcome (x, z), the resulting state in B is XxZzρZzXx.

CSS code. We explain basics of CSS codes. CSS codes are used only in the constructions of certified everlasting SKE
and PKE (Section 3.3 and Section 4.3), and therefore readers who are not interested in these constructions can skip
this paragraph. A CSS code with parameters q, k1, k2, t consists of two classical linear binary codes. One is a [q, k1]
code C1 2 and the other is a [q, k2] code. Both C1 and C⊥

2 can correct up to t errors, and they satisfy C2 ⊆ C1. We
require that the parity check matrices of C1, C2 are computable in polynomial time, and that error correction can be

2A [q, k] code is a code consisting of 2k codewords, each of length q. That is, a k-dimensional subspace of {0, 1}q = GF(2)q .
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performed in polynomial time. Given two binary codes C ⊆ D, let D/C := {x mod C : x ∈ D}. Here, mod C is a
linear polynomial-time operation on {0, 1}q with the following three properties. First, x mod C = x′ mod C if and only
if x− x′ ∈ C for any x, x′ ∈ {0, 1}q . Second, for any binary code D such that C ⊆ D, x mod C ∈ D for any x ∈ D.
Third, (x mod C) mod C= x mod C for any x ∈ {0, 1}q .

2.3 Cryptographic Tools
In this section, we review the cryptographic tools used in this paper.

Lemma 2.3 (Difference Lemma [Sho04]). Let A, B, F be events defined in some probability distribution, and suppose
Pr

[
A ∧ F

]
= Pr

[
B ∧ F

]
. Then |Pr[A]− Pr[B]| ≤ Pr[F ].

Encryption with Certified Deletion. Broadbent and Islam [BI20] introduced the notion of encryption with certified
deletion.

Definition 2.4 (One-Time SKE with Certified Deletion (Syntax) [BI20, HMNY21b]). Let λ be a security parameter
and let p, q and r be some polynomials. A one-time secret key encryption scheme with certified deletion is a tuple of
algorithms Σ = (KeyGen, Enc, Dec, Del, Vrfy) with plaintext spaceM := {0, 1}n, ciphertext space C := Q⊗p(λ), key
space K := {0, 1}q(λ) and deletion certificate space D := {0, 1}r(λ).

KeyGen(1λ)→ sk: The key generation algorithm takes as input the security parameter 1λ, and outputs a secret key
sk ∈ K.

Enc(sk, m)→ CT: The encryption algorithm takes as input sk and a plaintext m ∈ M, and outputs a ciphertext
CT ∈ C.

Dec(sk, CT)→ m′ or ⊥: The decryption algorithm takes as input sk and CT, and outputs a plaintext m′ ∈M or ⊥.

Del(CT)→ cert: The deletion algorithm takes as input CT, and outputs a certification cert ∈ D.

Vrfy(sk, cert)→ ⊤ or ⊥: The verification algorithm takes sk and cert as input, and outputs ⊤ or ⊥.

We require that a one-time SKE scheme with certified deletion satisfies correctness defined below.

Definition 2.5 (Correctness for One-Time SKE with Certified Deletion). There are three types of correctness, namely,
decryption correctness, verification correctness, and modification correctness.

Decryption Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

m′ ̸= m

∣∣∣∣∣∣
sk← KeyGen(1λ)
CT← Enc(sk, m)
m′ ← Dec(sk, CT)

 ≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

Vrfy(sk, cert) = ⊥

∣∣∣∣∣∣
sk← KeyGen(1λ)
CT← Enc(sk, m)
cert← Del(CT)

 ≤ negl(λ).

Modification Correctness: There exists a negligible function negl and a QPT algorithm Modify such that for any
λ ∈ N and m ∈M,

Pr

Vrfy(sk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣
sk← KeyGen(1λ)
CT← Enc(sk, m)
a, b← {0, 1}p(λ)

cert← Del(ZbXaCTXaZb)
cert∗ ← Modify(a, b, cert)

 ≤ negl(λ).

4



Remark 2.6. The original definition [BI20, HMNY21b] only considers decryption correctness and verification correctness.
In this paper, we additionally require modification correctness. This is because we need modification correctness for the
construction of FE in Section 7.3. In fact, the construction of [BI20] satisfies modification correctness as well.

We require that a one-time SKE with certified deletion satisfies certified deletion security defined below.

Definition 2.7 (Certified Deletion Security for One-Time SKE with Certified Deletion). Let Σ = (KeyGen, Enc, Dec,
Del, Vrfy) be a one-time SKE scheme with certified deletion. We consider the following security experiment
Expotsk-cert-del

Σ,A (λ, b) against an unbounded adversary A.

1. The challenger computes sk← KeyGen(1λ).

2. A sends (m0, m1) ∈M2 to the challenger.

3. The challenger computes CT← Enc(sk, mb) and sends CT to A.

4. A sends cert to the challenger.

5. The challenger computes Vrfy(sk, cert). If the output is ⊥, the challenger sends ⊥ to A. If the output is ⊤, the
challenger sends sk to A.

6. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that Σ is OT-CD secure if, for any unbounded A, it holds that

Advotsk-cert-del
Σ,A (λ) :=

∣∣∣Pr
[
Expotsk-cert-del

Σ,A (λ, 0) = 1
]
− Pr

[
Expotsk-cert-del

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Broadbent and Islam [BI20] showed that a one-time SKE scheme with certified deletion that satisfies the above
correctness and security exists unconditionally.

Secret Key Encryption (SKE).

Definition 2.8 (Secret Key Encryption (Syntax)). Let λ be a security parameter and let p, q, r and s be some
polynomials. A secret key encryption scheme is a tuple of algorithms Σ = (KeyGen, Enc, Dec) with plaintext space
M := {0, 1}n, ciphertext space C := {0, 1}p(λ), and secret key space SK := {0, 1}q(λ).

KeyGen(1λ)→ sk: The key generation algorithm takes the security parameter 1λ as input and outputs a secret key
sk ∈ SK.

Enc(sk, m)→ CT: The encryption algorithm takes sk and a plaintext m ∈ M as input, and outputs a ciphertext
CT ∈ C.

Dec(sk, CT)→ m′ or ⊥: The decryption algorithm takes sk and CT as input, and outputs a plaintext m′ ∈M or ⊥.

We require that a SKE scheme satisfies correctness defined below.

Definition 2.9 (Correctness for SKE). There are two types of correctness, namely, decryption correctness and special
correctness.

Decryption Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr
[
Dec(sk, CT) ̸= m

∣∣∣∣ sk← KeyGen(1λ)
CT← Enc(sk, m)

]
≤ negl(λ).
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Special Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr
[
Dec(sk2, CT) ̸= ⊥

∣∣∣∣ sk2, sk1 ← KeyGen(1λ)
CT← Enc(sk1, m)

]
≤ negl(λ).

Remark 2.10. In the original definition of SKE schemes, only decryption correctness is required. In this paper, however,
we additionally require special correctness. This is because we need special correctness for the construction of FE in
Section 6.2. In fact, special correctness can be easily satisfied as well.

As security of SKE schemes, we consider OW-CPA security or IND-CPA security defined below.

Definition 2.11 (OW-CPA Security for SKE). Let ℓ be a polynomial of the security parameter λ. Let Σ =
(KeyGen, Enc, Dec) be a SKE scheme. We consider the following security experiment Expow-cpa

Σ,A (λ) against a QPT
adversary A.

1. The challenger computes sk← KeyGen(1λ).

2. A sends an encryption query m to the challenger. The challenger computes CT← Enc(sk, m) and returns CT to
A. A can repeat this process polynomially many times.

3. The challenger samples (m1, · · · , mℓ)←Mℓ, computes CTi ← Enc(sk, mi) for all i ∈ [ℓ] and sends {CTi}i∈[ℓ]
to A.

4. A sends an encryption query m to the challenger. The challenger computes CT← Enc(sk, m) and returns CT to
A. A can repeat this process polynomially many times.

5. A outputs m′.

6. The output of the experiment is 1 if m′ = mi for some i ∈ [ℓ]. Otherwise, the output of the experiment is 0.

We say that the Σ is OW-CPA secure if, for any QPT A, it holds that

Advow-cpa
Σ,A (λ) := Pr

[
Expow-cpa

Σ,A (λ) = 1
]
≤ negl(λ).

Note that we assume 1/|M| is negligible.

Definition 2.12 (IND-CPA Security for SKE). Let Σ = (KeyGen, Enc, Dec) be a SKE scheme. We consider the
following security experiment Expind-cpa

Σ,A (λ, b) against a QPT adversary A.

1. The challenger computes sk← KeyGen(1λ).

2. A sends an encryption query m to the challenger. The challenger computes CT← Enc(sk, m) and returns CT to
A. A can repeat this process polynomially many times.

3. A sends (m0, m1) ∈M2 to the challenger.

4. The challenger computes CT← Enc(sk, mb) and sends CT to A.

5. A sends an encryption query m to the challenger. The challenger computes CT← Enc(sk, m) and returns CT to
A. A can repeat this process polynomially many times.

6. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that Σ is IND-CPA secure if, for any QPT A, it holds that

Advind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

It is well-known that IND-CPA security implies OW-CPA security. A SKE scheme exists if there exists a
pseudorandom function.
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Public Key Encryption (PKE).

Definition 2.13 (Public Key Encryption (Syntax)). Let λ be a security parameter and let p, q and r be some polynomials.
A public key encryption scheme is a tuple of algorithms Σ = (KeyGen, Enc, Dec) with plaintext spaceM := {0, 1}n,
ciphertext space C := {0, 1}p(λ), public key space PK := {0, 1}q(λ) and secret key space SK := {0, 1}r(λ).

KeyGen(1λ)→ (pk, sk): The key generation algorithm takes as input the security parameter 1λ and outputs a public
key pk ∈ PK and a secret key sk ∈ SK.

Enc(pk, m)→ CT: The encryption algorithm takes as input pk and a plaintext m ∈ M, and outputs a ciphertext
CT ∈ C.

Dec(sk, CT)→ m′ or ⊥: The decryption algorithm takes as input sk and CT, and outputs a plaintext m′ or ⊥.

We require that a PKE scheme satisfies decryption correctness defined below.

Definition 2.14 (Decryption Correctness for PKE). There exists a negligible function negl such that for any λ ∈ N,
m ∈M,

Pr
[
Dec(sk, CT) ̸= m

∣∣∣∣ (pk, sk)← KeyGen(1λ)
CT← Enc(pk, m)

]
≤ negl(λ).

As security, we consider OW-CPA security or IND-CPA security defined below.

Definition 2.15 (OW-CPA Security for PKE). Let ℓ be a polynomial of the security parameter λ. Let Σ =
(KeyGen, Enc, Dec) be a PKE scheme. We consider the following security experiment Expow-cpa

Σ,A (λ) against a QPT
adversary A.

1. The challenger computes (pk, sk)← KeyGen(1λ).

2. The challenger samples (m1, · · · , mℓ)←Mℓ, computes CTi ← Enc(pk, mi) for all i ∈ [ℓ] and sends {CTi}i∈[ℓ]
to A.

3. A outputs m′.

4. The output of the experiment is 1 if m′ = mi for some i ∈ [ℓ]. Otherwise, the output of the experiment is 0.

We say that Σ is OW-CPA secure if, for any QPT A, it holds that

Advow-cpa
Σ,A (λ) := Pr

[
Expow-cpa

Σ,A (λ) = 1
]
≤ negl(λ).

Note that we assume 1/|M| is negligible.

Definition 2.16 (IND-CPA Security for PKE). Let Σ = (KeyGen, Enc, Dec) be a PKE scheme. We consider the
following security experiment Expind-cpa

Σ,A (λ, b) against a QPT adversary A.

1. The challenger generates (pk, sk)← KeyGen(1λ), and sends pk to A.

2. A sends (m0, m1) ∈M2 to the challenger.

3. The challenger computes CT← Enc(pk, mb), and sends CT to A.

4. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that Σ is IND-CPA secure if, for any QPT A, it holds that

Advind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

It is well known that IND-CPA security implies OW-CPA security. There are many IND-CPA secure PKE
schemes against QPT adversaries under standard cryptographic assumptions. A famous one is Regev PKE scheme,
which is IND-CPA secure if the learning with errors (LWE) assumption holds against QPT adversaries [Reg09]. See
[Reg09, GPV08] for the LWE assumption and constructions of post-quantum PKE.
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3 Certified Everlasting Secret Key Encryption
In Section 3.1, we define certified everlasting SKE. In Section 3.2 and Section 3.3, we construct a certified everlasting
SKE scheme with and without QROM, respectively.

3.1 Definition
Definition 3.1 (Certified Everlasting SKE (Syntax)). Let λ be a security parameter and let p, q, r and s be some
polynomials. A certified everlasting SKE scheme is a tuple of algorithms Σ = (KeyGen, Enc, Dec, Del, Vrfy) with
plaintext spaceM := {0, 1}n, ciphertext space C := Q⊗p(λ), secret key space SK := {0, 1}q(λ), verification key
space VK := {0, 1}r(λ), and deletion certificate space D := Q⊗s(λ).

KeyGen(1λ)→ sk: The key generation algorithm takes the security parameter 1λ as input and outputs a secret key
sk ∈ SK.

Enc(sk, m)→ (vk, CT): The encryption algorithm takes sk and a plaintext m ∈M as input, and outputs a verification
key vk ∈ VK and a ciphertext CT ∈ C.

Dec(sk, CT)→ m′ or ⊥: The decryption algorithm takes sk and CT as input, and outputs a plaintext m′ ∈M or ⊥.

Del(CT)→ cert: The deletion algorithm takes CT as input, and outputs a certification cert ∈ D.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

We require that a certified everlasting SKE scheme satisfies correctness defined below.

Definition 3.2 (Correctness for Certified Everlasting SKE). There are four types of correctness, namely, decryption
correctness, verification correctness, special correctness, and modification correctness.

Decryption Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

m′ ̸= m

∣∣∣∣∣∣
sk← KeyGen(1λ)
(vk, CT)← Enc(sk, m)
m′ ← Dec(sk, CT)

 ≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
sk← KeyGen(1λ)
(vk, CT)← Enc(sk, m)
cert← Del(CT)

 ≤ negl(λ).

Special Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr
[
Dec(sk2, CT) ̸= ⊥

∣∣∣∣ sk2, sk1 ← KeyGen(1λ)
(vk, CT)← Enc(sk1, m)

]
≤ negl(λ).

Modification Correctness: There exists a negligible function negl and a QPT algorithm Modify such that for any
λ ∈ N and m ∈M,

Pr

Vrfy(vk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣
sk← KeyGen(1λ)
(vk, CT)← Enc(sk, m)
a, b← {0, 1}p(λ)

cert← Del(ZbXaCTXaZb)
cert∗ ← Modify(a, b, cert)

 ≤ negl(λ).
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Remark 3.3. Minimum requirements for correctness are decryption correctness and verification correctness. In this
paper, however, we also require special correctness and modification correctness, because we need special correctness
for the construction of the garbling scheme in Section 6.2, and modification correctness for the construction of functional
encryption in Section 7.3.

As security, we consider two definitions, Definition 3.4 and Definition 3.5 given below. The former is just the
ordinal IND-CPA security and the latter is the certified everlasting security that we newly define in this paper. Roughly,
the everlasting security guarantees that any QPT adversary cannot obtain plaintext information even if it becomes
computationally unbounded and obtains the secret key after it issues a valid certificate.

Definition 3.4 (IND-CPA Security for Certified Everlasting SKE). Let Σ = (KeyGen, Enc, Dec, Del, Vrfy) be a
certified everlasting SKE scheme. We consider the following security experiment Expind-cpa

Σ,A (λ, b) against a QPT
adversary A.

1. The challenger computes sk← KeyGen(1λ).

2. A sends an encryption query m to the challenger. The challenger computes (vk, CT)← Enc(sk, m), and returns
(vk, CT) to A. A can repeat this process polynomially many times.

3. A sends (m0, m1) ∈M2 to the challenger.

4. The challenger computes (vk, CT)← Enc(sk, mb), and sends CT to A.

5. A sends an encryption query m to the challenger. The challenger computes (vk, CT)← Enc(sk, m), and returns
(vk, CT) to A. A can repeat this process polynomially many times.

6. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that Σ is IND-CPA secure if, for any QPT A, it holds that

Advind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition 3.5 (Certified Everlasting IND-CPA Security for Certified Everlasting SKE). Let Σ = (KeyGen, Enc, Dec,

Del, Vrfy) be a certified everlasting SKE scheme. We consider the following security experiment Expcert-ever-ind-cpa
Σ,A (λ, b)

against a QPT adversary A1 and an unbounded adversary A2.

1. The challenger computes sk← KeyGen(1λ).

2. A1 sends an encryption query m to the challenger. The challenger computes (vk, CT)← Enc(sk, m), and returns
(vk, CT) to A1. A1 can repeat this process polynomially many times.

3. A1 sends (m0, m1) ∈M2 to the challenger.

4. The challenger computes (vk, CT)← Enc(sk, mb), and sends CT to A1.

5. A1 sends an encryption query m to the challenger. The challenger computes (vk, CT)← Enc(sk, m), and returns
(vk, CT) to A1. A1 can repeat this process polynomially many times.

6. At some point, A1 sends cert to the challenger and sends the internal state to A2.

7. The challenger computes Vrfy(vk, cert). If the output is ⊥, the challenger outputs ⊥, and sends ⊥ to A2.
Otherwise, the challenger outputs ⊤, and sends sk to A2.

8. A2 outputs b′ ∈ {0, 1}.

9. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

We say that Σ is certified everlasting IND-CPA secure if, for any QPT A1 and any unbounded A2, it holds that

Advcert-ever-ind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-ind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-ind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).
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3.2 Construction with QROM
In this section, we construct a certified everlasting SKE scheme with QROM. Our construction is similar to that of the
certified everlasting commitment scheme in [HMNY21a]. The difference is that we use SKE instead of commitment.

Our certified everlasting SKE scheme. We construct a certified everlasting SKE schemeΣcesk = (KeyGen, Enc, Dec,
Del, Vrfy) from the following primitives.

• A one-time SKE with certified deletion scheme (Definition 2.4) Σskcd = CD.(KeyGen, Enc, Dec, Del, Vrfy).

• A SKE scheme (Definition 2.8) Σsk = SKE.(KeyGen, Enc, Dec) with plaintext space {0, 1}λ.

• A hash function H modeled as a quantum random oracle.

KeyGen(1λ):

• Generate ske.sk← SKE.KeyGen(1λ).
• Output sk := ske.sk.

Enc(sk, m):

• Parse sk = ske.sk.
• Generate cd.sk← CD.KeyGen(1λ) and R← {0, 1}λ.
• Compute ske.CT← SKE.Enc(ske.sk, R).
• Compute h := H(R)⊕ cd.sk and cd.CT← CD.Enc(cd.sk, m).
• Output CT := (h, ske.CT, cd.CT) and vk := cd.sk.

Dec(sk, CT):

• Parse sk = ske.sk and CT = (h, ske.CT, cd.CT).
• Compute R′ or ⊥ ← SKE.Dec(ske.sk, ske.CT). If it outputs ⊥, Dec(sk, CT) outputs ⊥.
• Compute cd.sk′ := H(R′)⊕ h.
• Computem′ ← CD.Dec(cd.sk′, cd.CT).
• Outputm′.

Del(CT):

• Parse CT = (h, ske.CT, cd.CT).
• Compute cd.cert← CD.Del(cd.CT).
• Output cert := cd.cert.

Vrfy(vk, cert):

• Parse vk = cd.sk and cert = cd.cert.
• Compute b← SKE.Vrfy(cd.sk, cd.cert).
• Output b.

Correctness: It is easy to see that correctness of Σcesk comes from those of Σsk and Σskcd.
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Security: The following two theorems hold.

Theorem 3.6. If Σsk satisfies the OW-CPA security (Definition 2.11) and Σskcd satisfies the OT-CD security (Definition 2.4),
Σcesk satisfies the IND-CPA security (Definition 3.4).

Its proof is similar to that of Theorem 3.7, and therefore we omit it.

Theorem 3.7. If Σsk satisfies the OW-CPA security (Definition 2.11) and Σskcd satisfies the OT-CD security (Definition 2.4),
Σcesk satisfies the certified everlasting IND-CPA security (Definition 3.5).

Its proof is similar to that of [HMNY21a, Theorem 5.8].

3.3 Construction without QROM
In this section, we construct a certified everlasting SKE scheme without QROM. Note that unlike the construction with
QROM (Section 3.2), in this construction the plaintext space is of constant size. However, the size can be extended
to the polynomial size via the standard hybrid argument. Our construction is similar to that of revocable quantum
timed-release encryption in [Unr15]. The difference is that we use SKE instead of timed-release encryption.

Our certified everlasting SKE scheme without QROM. Let k1 and k2 be constants such that k1 > k2. Let p,
q, r, s and t be polynomials. Let (C1, C2) be a CSS code with parameters q, k1, k2, t. We construct a certified
everlasting SKE scheme Σcesk = (KeyGen, Enc, Dec, Del, Vrfy) with plaintext space M = C1/C2 (isomorphic
to {0, 1}k1−k2), ciphertext space C = Q⊗(p(λ)+q(λ)) × {0, 1}r(λ) × {0, 1}q(λ)/C1 × C1/C2, secret key space
SK = {0, 1}s(λ), verification key space VK = {0, 1}p(λ) × [p(λ) + q(λ)]p(λ) × {0, 1}p(λ) and deletion certificate
space D = Q⊗(p(λ)+q(λ)) from the following primitive.

• A SKE scheme (Definition 2.8) Σsk = SKE.(KeyGen, Enc, Dec) with plaintext spaceM = {0, 1}p(λ) × [p(λ) +
q(λ)]p(λ) × {0, 1}p(λ) × C1/C2, secret key space SK = {0, 1}s(λ) and ciphertext space C = {0, 1}r(λ).

The construction is as follows. (We will omit the security parameter below.)

KeyGen(1λ):

• Generate ske.sk← SKE.KeyGen(1λ).
• Output sk := ske.sk.

Enc(sk, m):

• Parse sk = ske.sk.
• GenerateB ← {0, 1}p,Q← [p + q]p, y ← C1/C2, u← {0, 1}q/C1, r ← {0, 1}p, x← C1/C2, w ← C2.
• Compute ske.CT← SKE.Enc (ske.sk, (B, Q, r, y)).
• LetUQ be the unitary that permutes the qubits inQ into the first half of the system. (I.e.,UQ |x1x2 · · ·xp+q⟩ =∣∣xa1xa2 · · ·xap

xb1xb2 · · ·xbq

〉
with Q := {a1, a2, · · · , ap} and {1, 2, · · · , p + q}\Q := {b1, b2, · · · , bq}.)

• Construct a quantum state |Ψ⟩ := U†
Q(HB ⊗ I⊗q)(|r⟩ ⊗ |x⊕ w ⊕ u⟩).

• Compute h := m⊕ x⊕ y.
• Output CT := (|Ψ⟩ , ske.CT, u, h) and vk := (B, Q, r).

Dec(sk, CT):

• Parse sk = ske.sk, CT = (|Ψ⟩ , ske.CT, u, h).
• Compute (B, Q, r, y)/⊥ ← SKE.Dec(ske.sk, ske.CT). If ⊥ ← SKE.Dec(ske.sk, ske.CT), Dec(sk, CT)
outputs ⊥ and aborts.
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• Apply UQ to |Ψ⟩, measure the last q-qubits in the computational basis and obtain the measurement outcome
γ ∈ {0, 1}q .

• Compute x := γ ⊕ u mod C2.
• Outputm′ := h⊕ x⊕ y.

Del(CT):

• Parse CT = (|Ψ⟩ , ske.CT, u, h).
• Output cert := |Ψ⟩.

Vrfy(vk, cert):

• Parse vk = (B, Q, r) and cert = |Ψ⟩.
• Apply (HB ⊗ I⊗q)UQ to |Ψ⟩, measure the first p-qubits in the computational basis and obtain the
measurement outcome r′ ∈ {0, 1}p.

• Output ⊤ if r = r′ and output ⊥ otherwise.

Correctness. Correctness easily follows from that of Σsk.

Security. The following two theorems hold.

Theorem 3.8. If Σsk is IND-CPA secure (Definition 2.12), then Σcesk is IND-CPA secure (Definition 3.4).

Its proof is straightforward, so we omit it.

Theorem 3.9. If Σsk is IND-CPA secure (Definition 2.12) and tp/(p + q)− 4(k1 − k2)ln2 is superlogarithmic, then
Σcesk is certified everlasting IND-CPA secure (Definition 3.5).

Its proof is similar to that of [Unr15, Theorem 3].
Note that the plaintext space is of constant size in our construction. However, via the standard hybrid argument , we

can extend it to the polynomial size.

4 Certified Everlasting Public Key Encryption
In Section 4.1, we define certified everlasting PKE. In Section 4.2 and Section 4.3, we construct a certified everlasting
PKE scheme with and without QROM, respectively.

4.1 Definition
Definition 4.1 (Certified Everlasting PKE). Let λ be a security parameter and let p, q, r, s and t be polynomials.
A certified everlasting PKE scheme is a tuple of algorithms Σ = (KeyGen, Enc, Dec, Del, Vrfy) with plaintext space
M := {0, 1}n, ciphertext space C := Q⊗p(λ), public key space PK := {0, 1}q(λ), secret key space SK := {0, 1}r(λ),
verification key space VK := {0, 1}s(λ) and deletion certificate space D := Q⊗t(λ).

KeyGen(1λ)→ (pk, sk): The key generation algorithm takes the security parameter 1λ as input and outputs a public
key pk ∈ PK and a secret key sk ∈ SK.

Enc(pk, m)→ (vk, CT): The encryption algorithm takes pk and a plaintext m ∈M as input, and outputs a verification
key vk ∈ VK and a ciphertext CT ∈ C.

Dec(sk, CT)→ m′ or ⊥: The decryption algorithm takes sk and CT as input, and outputs a plaintext m′ ∈M or ⊥.

Del(CT)→ cert: The deletion algorithm takes CT as input and outputs a certification cert ∈ D.
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Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

We require that a certified everlasting PKE scheme satisfies correctness defined below.

Definition 4.2 (Correctness for Certified Everlasting PKE). There are three types of correctness, namely, decryption
correctness, verification correctness, and modification correctness.

Decryption Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

m′ ̸= m

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk, CT)← Enc(pk, m)
m′ ← Dec(sk, CT)

 ≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk, CT)← Enc(pk, m)
cert← Del(CT)

 ≤ negl(λ).

Modification Correctness: There exists a negligible function negl and a QPT algorithm Modify such that for any
λ ∈ N and m ∈M,

Pr

Vrfy(vk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk, CT)← Enc(pk, m)
a, b← {0, 1}p(λ)

cert← Del(ZbXaCTXaZb)
cert∗ ← Modify(a, b, cert)

 ≤ negl(λ).

Remark 4.3. Minimum requirements for correctness are decryption correctness and verification correctness. In this
paper, however, we also require modification correctness, because we need modification correctness for the construction
of functional encryption in Section 7.3.

As security, we consider two definitions, Definition 4.4 and Definition 4.5 given below. The former is just the
ordinal IND-CPA security and the latter is the certified everlasting security that we newly define in this paper. Roughly,
the everlasting security guarantees that any QPT adversary cannot obtain plaintext information even if it becomes
computationally unbounded and obtains the secret key after it issues a valid certificate.

Definition 4.4 (IND-CPA Security for Certified Everlasting PKE). Let Σ = (KeyGen, Enc, Dec, Del, Vrfy) be a
certified everlasting PKE scheme. We consider the following security experiment Expind-cpa

Σ,A (λ, b) against a QPT
adversary A.

1. The challenger generates (pk, sk)← KeyGen(1λ), and sends pk to A.

2. A sends (m0, m1) ∈M2 to the challenger.

3. The challenger computes (vk, CT)← Enc(pk, mb), and sends CT to A.

4. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that the Σ is IND-CPA secure if, for any QPT A, it holds that

Advind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition 4.5 (Certified Everlasting IND-CPA Security for Certified Everlasting PKE). Let Σ = (KeyGen, Enc, Dec,

Del, Vrfy) be a certified everlasting PKE scheme. We consider the following security experiment Expcert-ever-ind-cpa
Σ,A (λ, b)

against a QPT adversary A1 and an unbounded adversary A2.
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1. The challenger computes (pk, sk)← KeyGen(1λ), and sends pk to A1.

2. A1 sends (m0, m1) ∈M2 to the challenger.

3. The challenger computes (vk, CT)← Enc(pk, mb), and sends CT to A1.

4. At some point, A1 sends cert to the challenger, and sends the internal state to A2.

5. The challenger computes Vrfy(vk, cert). If the output is ⊥, the challenger outputs ⊥, and sends ⊥ to A2.
Otherwise, the challenger outputs ⊤, and sends sk to A2.

6. A2 outputs b′ ∈ {0, 1}.

7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

We say that the Σ is certified everlasting IND-CPA secure if for any QPT A1 and any unbounded A2, it holds that

Advcert-ever-ind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-ind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-ind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

4.2 Construction with QROM
In this section, we construct a certified everlasting PKE scheme with QROM. Our construction is similar to that of the
certified everlasting commitment scheme in [HMNY21a]. The difference is that we use PKE instead of commitment.

Our certified everlasting PKE scheme. We construct a certified everlasting PKE schemeΣcepk = (KeyGen, Enc, Dec,
Del, Vrfy) from a one-time SKE with certified deletion scheme Σskcd = SKE.(KeyGen, Enc, Dec, Del, Vrfy) (Defini-
tion 2.4), a PKE scheme Σpk = PKE.(KeyGen, Enc, Dec) with plaintext space {0, 1}λ (Definition 2.13) and a hash
function H modeled as quantum random oracle.

KeyGen(1λ):

• Generate (pke.pk, pke.sk)← KeyGen(1λ).
• Output pk := pke.pk and sk := pke.sk.

Enc(pk, m):

• Parse pk = pke.pk.
• Generate ske.sk← SKE.KeyGen(1λ).
• Randomly generate R← {0, 1}λ.
• Compute pke.CT← PKE.Enc(pke.pk, R).
• Compute h := H(R)⊕ ske.sk and ske.CT← SKE.Enc(ske.sk, m).
• Output CT := (h, ske.CT, pke.CT) and vk := ske.sk.

Dec(sk, CT):

• Parse sk = pke.sk and CT = (h, ske.CT, pke.CT).
• Compute R′ ← PKE.Dec(pke.sk, pke.CT).
• Compute ske.sk′ := h⊕H(R′).
• Computem′ ← SKE.Dec(ske.sk′, ske.CT).
• Outputm′.

Del(CT):
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• Parse CT = (h, ske.CT, pke.CT).
• Compute ske.cert← SKE.Del(ske.CT).
• Output cert := ske.cert.

Vrfy(vk, cert):

• Parse vk = ske.sk and cert = ske.cert.
• Compute b← SKE.Vrfy(ske.sk, ske.cert).
• Output b.

Correctness: Correctness easily follows from those of Σpk and Σskcd.

Security: The following two theorems hold. Their proofs are similar to those of Theorems 3.6 and 3.7, and therefore
we omit them.

Theorem 4.6. If Σpk satisfies the OW-CPA security (Definition 2.15) and Σskcd satisfies the OT-CD security (Definition 2.7),
Σcepk is IND-CPA secure (Definition 4.4).

Theorem 4.7. If Σpk satisfies the OW-CPA security (Definition 2.15) and Σskcd satisfies the OT-CD security (Definition 2.7),
Σcepk is certified everlasting IND-CPA secure (Definition 4.5).

4.3 Construction without QROM
In this section, we construct a certified everlasting PKE scheme without QROM. Our construction is similar to that of
quantum timed-release encryption presented in [Unr15]. The difference is that we use PKE instead of timed-release
encryption.

Our certified everlasting PKE scheme without QROM. Let k1 and k2 be some constant such that k1 > k2. Let p, q,
r, s, t and u be some polynomials. Let (C1, C2) be a CSS code with parameters q, k1, k2, t. We construct a certified
everlasting PKE scheme Σcepk = (KeyGen, Enc, Dec, Del, Vrfy), with plaintext space M = C1/C2 (isomorphic
{0, 1}(k1−k2)), ciphertext space C = Q⊗(p(λ)+q(λ)) × {0, 1}r(λ) × {0, 1}q(λ)/C1 × C1/C2, public key space PK =
{0, 1}u(λ), secret key space SK = {0, 1}s(λ), verification key space VK = {0, 1}p(λ)× [p(λ) + q(λ)]p(λ)×{0, 1}p(λ)

and deletion certificate space D = Q⊗(p(λ)+q(λ)) from the following primitive.

• A PKE scheme (Definition 2.13)Σpk = PKE.(KeyGen, Enc, Dec) with plaintext spaceM = {0, 1}p(λ)× [p(λ) +
q(λ)]p(λ) × {0, 1}p(λ) × C1/C2, public key space PK = {0, 1}u(λ), secret key space SK = {0, 1}s(λ) and
ciphertext space C = {0, 1}r(λ).

The construction is as follows. (We will omit the security parameter below.)

KeyGen(1λ):

• Generate (pke.pk, pke.sk)← PKE.KeyGen(1λ).
• Output pk := pke.pk and sk := pke.sk.

Enc(pk, m):

• Parse pk = pke.pk.
• GenerateB ← {0, 1}p,Q← [p + q]p, y ← C1/C2, u← {0, 1}q/C1, r ← {0, 1}p, x← C1/C2, w ← C2.
• Compute pke.CT← PKE.Enc (pke.pk, (B, Q, r, y)).
• LetUQ be the unitary that permutes the qubits inQ into the first half of the system. (I.e.,UQ |x1x2 · · ·xp+q⟩ =∣∣xa1xa2 · · ·xap

xb1xb2 · · ·xbq

〉
withQ := {a1, a2, · · · , ap} and {1, 2, · · · , p+q}\Q := {b1, b2, · · · , bq}.)
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• Generate a quantum state |Ψ⟩ := U†
Q(HB ⊗ I⊗q)(|r⟩ ⊗ |x⊕ w ⊕ u⟩).

• Compute h := m⊕ x⊕ y.
• Output CT := (|Ψ⟩ , pke.CT, u, h) and vk := (B, Q, r).

Dec(sk, CT):

• Parse sk = pke.sk and CT = (|Ψ⟩ , pke.CT, u, h).
• Compute (B, Q, r, y)← PKE.Dec(pke.sk, pke.CT).
• Apply UQ to |Ψ⟩, measure the last q-qubits in the computational basis and obtain the measurement outcome

γ.
• Compute x := γ ⊕ u mod C2.
• Outputm′ := h⊕ x⊕ y.

Del(CT):

• Parse CT = (|Ψ⟩ , pke.CT, u, h).
• Output cert := |Ψ⟩.

Vrfy(vk, cert):

• Parse vk = (B, Q, r) and cert = |Ψ⟩.
• Apply (HB ⊗ I⊗q)UQ to |Ψ⟩, measure the first p-qubits in the computational basis and obtain the
measurement outcome r′.

• Output ⊤ if r = r′ and output ⊥ otherwise.

Correctness. Correctness easily follows from that of Σpk.

Security. The following two theorems hold.

Theorem 4.8. If Σpk is IND-CPA secure (Definition 2.16), then Σcepk is IND-CPA secure (Definition 4.4).

Its proof is straightforward, and therefore we omit it.

Theorem 4.9. If Σpk is IND-CPA secure (Definition 2.16) and tp/(p + q)− 4(k1 − k2)ln2 is superlogarithmic, then
Σcepk is certified everlasting IND-CPA secure (Definition 4.5).

Its proof is similar to that of [Unr15, Theorem 3].
Note that the plaintext space is of constant size in our construction. However, via the standard hybrid argument, we

can extend it to the polynomial size.

5 Certified Everlasting Receiver Non-Committing Encryption
In this section, we define and construct certified everlasting receiver non-committing encryption. In Section 5.1, we
define certified everlasting RNCE. In Section 5.2, we construct a certified everlasting RNCE scheme from certified
everlasting PKE (Section 4).
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5.1 Definition
Definition 5.1 (Certified Everlasting RNCE (Syntax)). Let λ be the security parameter and let p, q, r, s, t, u, and v be
polynomials. A certified everlasting RNCE scheme is a tuple of algorithms Σ = (Setup, KeyGen, Enc, Dec, Fake, Reveal,
Del, Vrfy) with plaintext spaceM := {0, 1}n, ciphertext space C := Q⊗p(λ), public key space PK := {0, 1}q(λ),
master secret key spaceMSK := {0, 1}r(λ), secret key spaceSK := {0, 1}s(λ), verification key spaceVK := {0, 1}t(λ),
deletion certificate space D := Qu(λ), and auxiliary state space AUX := {0, 1}v(λ).

Setup(1λ)→ (pk, MSK): The setup algorithm takes the security parameter 1λ as input, and outputs a public key
pk ∈ PK and a master secret key MSK ∈MSK.

KeyGen(MSK)→ sk: The key generation algorithm takes the master secret key MSK as input, and outputs a secret
key sk ∈ SK.

Enc(pk, m)→ (vk, CT): The encryption algorithm takes pk and a plaintext m ∈M as input, and outputs a verification
key vk ∈ VK and a ciphertext CT ∈ C.

Dec(sk, CT)→ m′ or ⊥: The decryption algorithm takes sk and CT as input, and outputs a plaintext m′ ∈M or ⊥.

Fake(pk)→ (vk, C̃T, aux): The fake encryption algorithm takes pk as input, and outputs a verification key vk ∈ VK,
a fake ciphertext C̃T ∈ C and an auxiliary state aux ∈ AUX .

Reveal(pk, MSK, aux, m)→ s̃k: The reveal algorithm takes pk, MSK, aux and m as input, and outputs a fake secret
key s̃k ∈ SK.

Del(CT)→ cert: The deletion algorithm takes CT as input and outputs a certification cert ∈ D.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

We require that a certified everlasting RNCE scheme satisfies correctness defined below.

Definition 5.2 (Correctness for Certified Everlasting RNCE). There are two types of correctness, namely, decryption
correctness and verification correctness.

Decryption Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

m′ ̸= m

∣∣∣∣∣∣∣∣
(pk, MSK)← Setup(1λ)
(vk, CT)← Enc(pk, m)
sk← KeyGen(MSK)
m′ ← Dec(sk, CT)

 ≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(pk, MSK)← Setup(1λ)
(vk, CT)← Enc(pk, m)
cert← Del(CT)

 ≤ negl(λ).

As security, we consider two definitions, Definition 5.3 and Definition 5.4 given below. The former is just the ordinal
receiver non-committing security and the latter is the certified everlasting security that we newly define in this paper.
Roughly, the everlasting security guarantees that any QPT adversary cannot distinguish whether the ciphertext and the
secret key are properly generated or not even if it becomes computationally unbounded and obtains the master secret key
after it issues a valid certificate.

Definition 5.3 (Receiver Non-Committing (RNC) Security for Certified Everlasting RNCE). Let Σ = (Setup, KeyGen,
Enc, Dec, Fake, Reveal, Del, Vrfy) be a certified everlasting RNCE scheme. We consider the following security experi-
ment Exprec-nc

Σ,A (λ, b) against a QPT adversary A.
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1. The challenger runs (pk, MSK)← Setup(1λ) and sends pk to A.

2. A sends m ∈M to the challenger.

3. The challenger does the following:

• If b = 0, the challenger generates (vk, CT)← Enc(pk, m) and sk← KeyGen(MSK), and sends (CT, sk)
to A.

• If b = 1, the challenger generates (vk, C̃T, aux) ← Fake(pk) and s̃k ← Reveal(pk, MSK, aux, m), and
sends (C̃T, s̃k) to A.

4. A outputs b′ ∈ {0, 1}.

We say that Σ is RNC secure if, for any QPT A, it holds that

Advrec-nc
Σ,A (λ) :=

∣∣Pr
[
Exprec-nc

Σ,A (λ, 0) = 1
]
− Pr

[
Exprec-nc

Σ,A (λ, 1) = 1
]∣∣ ≤ negl(λ).

Definition 5.4 (Certified Everlasting RNC Security for Certified Everlasting RNCE). Let Σ = (Setup, KeyGen, Enc,
Dec, Fake, Reveal, Del, Vrfy) be a certified everlasting RNCE scheme. We consider the following security experiment
Expcert-ever-rec-nc

Σ,A (λ, b) against a QPT adversary A1 and an unbounded adversary A2.

1. The challenger runs (pk, MSK)← Setup(1λ) and sends pk to A1.

2. A1 sends m ∈M to the challenger.

3. The challenger does the following:

• If b = 0, the challenger generates (vk, CT)← Enc(pk, m) and sk← KeyGen(MSK), and sends (CT, sk)
to A1.

• If b = 1, the challenger generates (vk, C̃T, aux) ← Fake(pk) and s̃k ← Reveal(pk, MSK, aux, m), and
sends (C̃T, s̃k) to A1.

4. At some point, A1 sends cert to the challenger and its internal state to A2.

5. The challenger computes Vrfy(vk, cert). If the output is⊤, the challenger outputs⊤ and sends MSK toA2. If the
output is ⊥, the challenger outputs ⊥ and sends ⊥ to A2.

6. A2 outputs b′ ∈ {0, 1}.

7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

We say that Σ is certified everlasting RNC secure if for any QPT A1 and any unbounded A2, it holds that

Advcert-ever-rec-nc
Σ,A (λ) :=

∣∣Pr
[
Expcert-ever-rec-nc

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-rec-nc

Σ,A (λ, 1) = 1
]∣∣ ≤ negl(λ).

5.2 Construction
In this section, we construct a certified everlasting RNCE scheme from a certified everlasting PKE scheme (Definition 4.1).
Our construction is similar to that of the secret-key RNCE scheme presented in [KNTY19]. The difference is that we
use a certified everlasting PKE scheme instead of an ordinary SKE scheme.
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Our certified everlasting RNCE scheme. Weconstruct a certified everlastingRNCEschemeΣcence = (Setup, KeyGen,
Enc, Dec, Fake, Reveal, Del, Vrfy) froma certified everlasting PKE schemeΣcepk = PKE.(KeyGen, Enc, Dec, Del, Vrfy),
which was introduced in Definition 4.1.

Setup(1λ):

• Generate (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for all i ∈ [n] and α ∈ {0, 1}.
• Output pk := {pke.pki,α}i∈[n],α∈{0,1} andMSK := {pke.ski,α}i∈[n],α∈{0,1}.

KeyGen(MSK):

• ParseMSK = {pke.ski,α}i∈[n],α∈{0,1}.
• Generate x← {0, 1}n.
• Output sk := (x, {pke.ski,x[i]}i∈[n]).

Enc(pk, m):

• Parse pk = {pke.pki,α}i∈[n],α∈{0,1}.
• Compute (pke.vki,α, pke.CTi,α)← PKE.Enc(pke.pki,α, m[i]) for all i ∈ [n] and α ∈ {0, 1}.
• Output vk := {pke.vki,α}i∈[n],α∈{0,1} and CT := {pke.CTi,α}i∈[n],α∈{0,1}.

Dec(sk, CT):

• Parse sk = (x, {pke.ski}i∈[n]) and CT = {pke.CTi,α}i∈[n],α∈{0,1}.
• Computem[i]← PKE.Dec(pke.ski, pke.CTi,x[i]) for all i ∈ [n].
• Outputm := m[1]||m[2]|| · · · ||m[n].

Fake(pk):

• Parse pk = {pke.pki,α}i∈[n],α∈{0,1}.
• Generate x∗ ← {0, 1}n.
• Compute (pke.vki,x∗[i], pke.CTi,x∗[i])← PKE.Enc(pke.pki,x∗[i], 0) and (pke.vki,x∗[i]⊕1, pke.CTi,x∗[i]⊕1)←

PKE.Enc(pke.pki,x∗[i]⊕1, 1) for all i ∈ [n].

• Output vk := {pke.vki,α}i∈[n],α∈{0,1}, C̃T := {pke.CTi,α}i∈[n],α∈{0,1} and aux = x∗.

Reveal(pk, MSK, aux, m):

• Parse pk = {pke.pki,α}i∈[n],α∈{0,1},MSK = {pke.ski,α}i∈[n],α∈{0,1} and aux = x∗.

• Output s̃k :=
(
x∗ ⊕m, {pke.ski,x∗[i]⊕m[i]}i∈[n]

)
.

Del(CT):

• Parse CT = {pke.CTi,α}i∈[n],α∈{0,1}.
• Compute pke.certi,α ← PKE.Del(pke.CTi,α) for all i ∈ [n] and α ∈ {0, 1}.
• Output cert := {pke.certi,α}i∈[n],α∈{0,1}.

Vrfy(vk, cert):

• Parse vk = {pke.vki,α}i∈[n],α∈{0,1} and cert = {pke.certi,α}i∈[n],α∈{0,1}.
• Compute ⊤/⊥ ← PKE.Vrfy(pke.vki,α, pke.certi,α) for all i ∈ [n] and α ∈ {0, 1}. If all results are ⊤,

Vrfy(vk, cert) outputs ⊤. Otherwise, it outputs ⊥.
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Correctness: Correctness easily follows from that of Σcepk.

Security: The following two theorems hold.

Theorem 5.5. If Σcepk is IND-CPA secure (Definition 4.4), Σcence is RNC secure (Definition 5.3).

Its proof is similar to that of Theorem 5.6, and therefore we omit it.

Theorem 5.6. If Σcepk is certified everlasting IND-CPA secure (Definition 4.5), Σcence is certified everlasting RNC
secure (Definition 5.4).

Its proof is given in Appendix A.

6 Certified Everlasting Garbling Scheme
In Section 6.1, we define certified everlasting garbling scheme. In Section 6.2, we construct a certified everlasting
garbling scheme from a certified everlasting SKE scheme.

6.1 Definition
We define certified everlasting garbling schemes below. An important difference from ordinal classical garbling schemes
is that the garbled circuit C̃ (i.e., an output of Grbl) is a quantum state.

Definition 6.1 (Certified Everlasting Garbling Scheme (Syntax)). Let λ be a security parameter and p, q, r and s be
polynomials. Let Cn be a family of circuits that take n-bit inputs. A certified everlasting garbling scheme is a tuple
of algorithms Σ = (Samp, Grbl, Eval, Del, Vrfy) with label space L := {0, 1}p(λ), garbled circuit space C := Q⊗q(λ),
verification key space VK := {0, 1}r(λ) and deletion certificate space D := Q⊗s(λ).

Samp(1λ)→ {Li,α}i∈[n],α∈{0,1}: The sampling algorithm takes a security parameter 1λ as input, and outputs 2n
labels {Li,α}i∈[n],α∈{0,1} with Li,α ∈ L for each i ∈ [n] and α ∈ {0, 1}.

Grbl(1λ, C, {Li,α}i∈[n],α∈{0,1})→ (C̃, vk): The garbling algorithm takes 1λ, a circuit C ∈ Cn and 2n labels
{Li,α}i∈[n],α∈{0,1} as input, and outputs a garbled circuit C̃ ∈ C and a verification key vk ∈ VK.

Eval(C̃, {Li,xi
}i∈[n])→ y: The evaluation algorithm takes C̃ and n labels {Li,xi}i∈[n] where xi ∈ {0, 1} as input,

and outputs y.

Del(C̃)→ cert: The deletion algorithm takes C̃ as input, and outputs a certificate cert ∈ D.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

We require that a certified everlasting garbling scheme satisfies correctness defined below.

Definition 6.2 (Correctness for Certified Everlasting Garbling Scheme). There are three types of correctness, namely,
evaluation correctness, verification correctness, and modification correctness.

Evaluation Correctness: There exists a negligible function negl such that for any λ ∈ N, C ∈ Cn and x ∈ {0, 1}n,

Pr

y ̸= C(x)

∣∣∣∣∣∣
{Li,α}i∈[n],α∈{0,1} ← Samp(1λ)
(C̃, vk)← Grbl(1λ, C, {Li,α}i∈[n],α∈{0,1})
y ← Eval(C̃, {Li,xi

}i∈[n])

 ≤ negl(λ).
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Verification Correctness: There exists a negligible function negl such that for any λ ∈ N,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
{Li,α}i∈[n],α∈{0,1} ← Samp(1λ)
(C̃, vk)← Grbl(1λ, C, {Li,α}i∈[n],α∈{0,1})
cert← Del(C̃)

 ≤ negl(λ).

Modification Correctness: There exists a negligible function negl and a QPT algorithm Modify such that for any
λ ∈ N,

Pr

Vrfy(vk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣

{Li,α}i∈[n],α∈{0,1} ← Samp(1λ)
(C̃, vk)← Grbl(1λ, C, {Li,α}i∈[n],α∈{0,1})
a, b← {0, 1}q(λ)

cert← Del(ZbXaC̃XaZb)
cert∗ ← Modify(a, b, cert)

 ≤ negl(λ).

Remark 6.3. Minimum requirements for correctness are evaluation correctness and verification correctness. In this
paper, however, we also require modification correctness, because we need modification correctness for the construction
of functional encryption in Section 7.3.

As security, we consider two definitions, Definition 6.4 and Definition 6.5 given below. The former is just the ordinal
selective security and the latter is the certified everlasting security that we newly define in this paper. Roughly, the
everlasting security guarantees that any QPT adversary with the garbled circuit C̃ and the labels {Li,x[i]}i∈[n] cannot
obtain any information beyond C(x) even if it becomes computationally unbounded after it issues a valid certificate.

Definition 6.4 (Selective Security for Certified Everlasting Garbling Scheme). Let Σ = (Samp, Grbl, Eval, Del, Vrfy)
be a certified everlasting garbling scheme. We consider the following security experiment Expselct

Σ,A(1λ, b) against a QPT
adversary A. Let Sim be a QPT algorithm.

1. A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n to the challenger.

2. The challenger computes {Li,α}i∈[n],α∈{0,1} ← Samp(1λ).

3. If b = 0, the challenger computes (C̃, vk)← Grbl(1λ, C, {Li,α}i∈[n],α∈{0,1}), and returns (C̃, {Li,xi}i∈[n]) to
A. If b = 1, the challenger computes C̃ ← Sim(1λ, 1|C|, C(x), {Li,xi

}i∈[n]), and returns (C̃, {Li,xi
}i∈[n]) to

A.

4. A outputs b′ ∈ {0, 1}. The experiment outputs b′.

We say that Σ is selective secure if there exists a QPT simulator Sim such that for any QPT adversary A it holds that

Advselct
Σ,A(λ) :=

∣∣∣Pr
[
Expselct

Σ,A(1λ, 0) = 1
]
− Pr

[
Expselct

Σ,A(1λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition 6.5 (Certified Everlasting Selective Security for Certified Everlasting Garbling Scheme). Let Σ =
(Samp, Grbl, Eval, Del, Vrfy) be a certified everlasting garbling scheme. We consider the following security experiment
Expcert-ever-selct

A,Σ (1λ, b) against a QPT adversary A1 and an unbounded adversary A2. Let Sim be a QPT algorithm.

1. A1 sends a circuit C ∈ Cn and an input x ∈ {0, 1}n to the challenger.

2. The challenger computes {Li,α}i∈[n],α∈{0,1} ← Samp(1λ).

3. If b = 0, the challenger computes (C̃, vk)← Grbl(1λ, C, {Li,α}i∈[n],α∈{0,1}), and returns (C̃, {Li,xi
}i∈[n]) to

A1. If b = 1, the challenger computes (C̃, vk)← Sim(1λ, 1|C|, C(x), {Li,xi
}i∈[n]), and returns (C̃, {Li,xi

}i∈[n])
to A1.

4. At some point, A1 sends cert to the challenger, and sends the internal state to A2.
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5. The challenger computes Vrfy(vk, cert). If the output is ⊥, then the challenger outputs ⊥, and sends ⊥ to A2.
Otherwise, the challenger outputs ⊤, and sends ⊤ to A2.

6. A2 outputs b′ ∈ {0, 1}.

7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

We say that Σ is certified everlasting selective secure if there exists a QPT simulator Sim such that for any QPT A1 and
any unbounded A2 it holds that

Advcert-ever-selct
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-selct

A,Σ (1λ, 0) = 1
]
− Pr

[
Expcert-ever-selct

A,Σ (1λ, 1) = 1
]∣∣∣ ≤ negl(λ).

6.2 Construction
In this section, we construct a certified everlasting garbling scheme from a certified everlasting SKE scheme (Defini-
tion 3.1). Our construction is similar to Yao’s construction of an ordinary garbling scheme [Yao86], but there are two
important differences. First, we use a certified everlasting SKE scheme instead of an ordinary SKE scheme. Second, we
use XOR secret sharing, although [Yao86] used double encryption. The reason why we cannot use double encryption is
that our certified everlasting SKE scheme has quantum ciphertext and classical plaintext.
Before introducing our construction, let us quickly review notations for circuits. Let C be a boolean circuit. A

boolean circuit C consists of gates, gate1, gate2, · · · , gateq, where q is the number of gates in the circuit. Here,
gatei := (g, wa, wb, wc), where g : {0, 1}2 → {0, 1} is a function, wa, wb are the incoming wires, and wc is the
outgoing wire. (The number of outgoing wires is not necessarily one. There can be many outgoing wires, but we
use the same label wc for all outgoing wires.) We say C is leveled if each gate has an associated level and any gate
at level ℓ has incoming wires only from gates at level ℓ − 1 and outgoing wires only to gates at level ℓ + 1. Let
out1, out2, · · · , outm be them output wires. For any x ∈ {0, 1}n, C(x) is the output of the circuit C on input x. We
consider that gate1, gate2, · · · , gateq are arranged in the ascending order of the level.

Our certified everlasting garbling scheme. We construct a certified everlasting garbling schemeΣcegc = (Samp, Grbl,
Eval, Del, Vrfy) from a certified everlasting SKE scheme Σcesk = SKE.(KeyGen, Enc, Dec, Del, Vrfy) (Definition 3.1).
Let K be the key space of Σcesk. Let C be a leveled boolean circuit. Let n, m, q, and p be the input size, the output size,
the number of gates, and the total number of wires of C, respectively.

Samp(1λ):

• For each i ∈ [n] and σ ∈ {0, 1}, generate ske.skσ
i ← SKE.KeyGen(1λ).

• Output {Li,σ}i∈[n],σ∈{0,1} := {ske.skσ
i }i∈[n],σ∈{0,1}.

Grbl(1λ, C, {Li,σ}i∈[n],σ∈{0,1}):

• For each i ∈ {n + 1, · · · , p} and σ ∈ {0, 1}, generate ske.skσ
i ← SKE.KeyGen(1λ).

• For each i ∈ [q], compute

(vki, g̃i)← GateGrbl(gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}),

where gatei = (g, wa, wb, wc) and GateGrbl is described in Fig 1.

• For each i ∈ [m], set d̃i := [(ske.sk0
outi

, 0), (ske.sk1
outi

, 1)].

• Output C̃ := ({g̃i}i∈[q], {d̃i}i∈[m]) and vk := {vki}i∈[q].

Eval(C̃, {Li,xi
}i∈[n]):

• Parse C̃ = ({g̃i}i∈[q], {d̃i}i∈[m]) and {Li,xi
}i∈[n] = {ske.sk′

i}i∈[n].
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• For each i ∈ [q], compute ske.sk′
c ← GateEval(g̃i, ske.sk′

a, ske.sk′
b) in the ascending order of the level,

where GateEval is described in Fig 2. If ske.sk′
c = ⊥, output ⊥ and abort.

• For each i ∈ [m], set y[i] = σ if ske.sk′
outi

= ske.skσ
outi
. Otherwise, set y[i] = ⊥, and abort.

• Output y := y[1]||y[2]|| · · · ||y[m].

Del(C̃):

• Parse C̃ = ({g̃i}i∈[q], {d̃i}i∈[m]).
• For each i ∈ [q], compute certi ← GateDel(g̃i), where GateDel is described in Fig 3.
• Output cert := {certi}i∈[q].

Vrfy(vk, cert):

• Parse vk = {vki}i∈[q] and cert = {certi}i∈[q].
• For each i ∈ [q], compute ⊥/⊤ ← GateVrfy(vki, certi), where GateVrfy is described in Fig 4.
• If ⊤ ← GateVrfy(vki, certi) for all i ∈ [q], then output ⊤. Otherwise, output ⊥.

Gate Garbling Circuit GateGrbl
Input: gatei, {ske.skσ

a , ske.skσ
b , ske.skσ

c }σ∈{0,1}.

Output: g̃i and vki.

1. Parse gatei = (g, wa, wb, wc).
2. Sample γi ← S4.a

3. For each σa, σb ∈ {0, 1}, sample p
σa,σb
c ← K.

4. For each σa, σb ∈ {0, 1}, compute (ske.vkσa,σb
a , ske.CTσa,σb

a ) ← SKE.Enc(ske.skσa
a , p

σa,σb
c ) and

(ske.vkσa,σb
b

, ske.CTσa,σb
b

)← SKE.Enc(ske.skσb
b

, p
σa,σb
c ⊕ ske.skg(σa,σb)

c ).

5. Output g̃i := {ske.CTσa,σb
a , ske.CTσa,σb

b
}σa,σb∈{0,1} in the permutated order of γi and vki :=

{ske.vkσa,σb
a , ske.vkσa,σb

b
}σa,σb∈{0,1} in the permutated order of γi.

aS4 is the symmetric group of order 4.

Figure 1: The description of GateGrbl

Gate Evaluating Circuit GateEval
Input: A garbled gate g̃i and (ske.sk′

a, ske.sk′
b).

Output: ske.skc or ⊥.

1. Parse g̃i = {ske.CTσa,σb
a , ske.CTσa,σb

b
}σa,σb∈{0,1}.

2. For each σa, σb ∈ {0, 1}, compute q
σa,σb
a ← SKE.Dec(ske.sk′

a, ske.CTσa,σb
a ) and q

σa,σb
b

←
SKE.Dec(ske.sk′

b, ske.CTσa,σb
b

).

3. If there exists a unique pair (σa, σb) ∈ {0, 1}2 such that q
σa,σb
a ̸= ⊥ and q

σa,σb
b

̸= ⊥, then compute ske.sk
′σa,σb
c :=

q
σa,σb
a ⊕ q

σa,σb
b

and output ske.sk′
c := ske.sk

′σa,σb
c . Otherwise, output ske.sk′

c := ⊥.

Figure 2: The description of GateEval

Correctness: Correctness easily follows from that of Σcesk.
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Gate Deletion Circuit GateDel
Input: A garbled gate g̃i.

Output: certi

1. Parse g̃i = {ske.CTσa,σb
a , ske.CTσa,σb

b
}σa,σb∈{0,1}.

2. For each σa, σb ∈ {0, 1}, compute ske.certσa,σb
a ← SKE.Del(ske.CTσa,σb

a ).
3. For each σa, σb ∈ {0, 1}, compute ske.certσa,σb

b
← SKE.Del(ske.CTσa,σb

b
).

4. Output certi := {ske.certσa,σb
a , ske.certσa,σb

b
}σa,σb∈{0,1}.

Figure 3: The description of GateDel

Gate Verification Circuit GateVrfy
Input: vki and certi.

Output: ⊤ or ⊥.

1. Parse vki = {ske.vkσa,σb
a , ske.vkσa,σb

b
}σa,σb∈{0,1} and certi = {ske.certσa,σb

a , ske.certσa,σb
b

}σa,σb∈{0,1}.

2. For each σa, σb ∈ {0, 1}, compute ⊤/⊥ ← SKE.Vrfy(ske.vkσa,σb
a , ske.certσa,σb

a ).
3. For each σa, σb ∈ {0, 1}, compute ⊤/⊥ ← SKE.Vrfy(ske.vkσa,σb

b
, ske.certσa,σb

b
).

4. If all the outputs are ⊤, then output ⊤. Otherwise, output ⊥.

Figure 4: The description of GateVrfy

Security: The following two theorems hold.

Theorem 6.6. If Σcesk satisfies the IND-CPA security (Definition 3.4), Σcegc satisfies the selective security (Definition 6.4).

Its proof is similar to that of Theorem 6.7, and therefore we omit it.

Theorem 6.7. If Σcesk satisfies the certified everlasting IND-CPA security (Definition 3.5), Σcegc satisfies the certified
everlasting selective security (Definition 6.5).

Its proof is given in Appendix B.

7 Certified Everlasting Functional Encryption
In this section, we define and construct certified everlasting functional encryption (FE). In Section 7.1, we define
certified everlasting FE. In Section 7.2, we construct a 1-bounded certified everlasting FE scheme with non-adaptive
security for all P/poly circuits from a certified everlasting garbling scheme (Definition 6.1) and a certified everlasting
PKE scheme (Definition 4.1). In Section 7.3, we change it to the adaptive one by using a certified everlasting RNCE
scheme (Definition 5.1). In Section 7.4, we further change it to a q-bounded certified everlasting FE for all NC1 circuits
by using a multipary computation scheme.

7.1 Definition
Definition 7.1 (q-Bounded Certified Everlasting FE (Syntax)). Let λ be a security parameter and let p, r, s, t, u
and v be polynomials. Let q be a polynomial of the security parameter λ. A q-bounded certified everlasting FE
scheme for a class F of functions is a tuple of algorithms Σ = (Setup, KeyGen, Enc, Dec, Del, Vrfy) with plaintext
spaceM := {0, 1}n, ciphertext space C := Q⊗p(λ), master public key spaceMPK := {0, 1}r(λ), master secret key
spaceMSK := {0, 1}s(λ), secret key space SK := {0, 1}t(λ), verification key space VK := {0, 1}u(λ) and deletion
certificate space D := Q⊗v(λ).
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Setup(1λ)→ (MPK, MSK): The setup algorithm takes the security parameter 1λ as input, and outputs a master public
key MPK ∈MPK and a master secret key MSK ∈MSK.

KeyGen(MSK, f)→ skf : The keygeneration algorithm takes MSK and f ∈ F as input, and outputs a secret key
skf ∈ SK.

Enc(MPK, m)→ (vk, CT): The encryption algorithm takes MPK and m ∈ M as input, and outputs a verification
key vk ∈ VK and a ciphertext CT ∈ C.

Dec(skf , CT)→ y or ⊥: The decryption algorithm takes skf and CT as input, and outputs y or ⊥.

Del(CT)→ cert: The deletion algorithm takes CT as input, and outputs a certificate cert ∈ D.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

We require that a certified everlasting FE scheme satisfies correctness defined below.

Definition 7.2 (Correctness for Certified Everlasting FE). There are three types of correctness, namely, evaluation
correctness, verification correctness, and modification correctness.

Evaluation Correctness: There exists a negligible function negl such that for any λ ∈ N, m ∈M and f ∈ F ,

Pr

y ̸= f(m)

∣∣∣∣∣∣∣∣
(MPK, MSK)← Setup(1λ)
skf ← KeyGen(MSK, f)
(vk, CT)← Enc(MPK, m)
y ← Dec(skf , CT)

 ≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(MPK, MSK)← Setup(1λ)
(vk, CT)← Enc(MPK, m)
cert← Del(CT)

 ≤ negl(λ).

Modification Correctness: There exists a negligible function negl and a QPT algorithm Modify such that for any
λ ∈ N and m ∈M,

Pr

Vrfy(vk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣∣∣

(MPK, MSK)← Setup(1λ)
skf ← KeyGen(MSK, f)
(vk, CT)← Enc(MPK, m)
a, b← {0, 1}p(λ)

cert← Del(ZbXaCTXaZb)
cert∗ ← Modify(a, b, cert)

 ≤ negl(λ).

Remark 7.3. Minimum requirements for correctness are evaluation correctness and verification correctness. In this
paper, however, we also require modification correctness, because we need modification correctness for the construction
of certified everlasting FE in Section 7.3.

Remark 7.4. In FE, we usually want to run Dec algorithm for many different functions f on the same ciphertext CT.
One might think that the quantum CT is destroyed by Dec algorithm, and therefore it can be used only once. However, it
is easy to see that Dec algorithm can be always modified so that it does not disturb the quantum state CT by using the
gentle measurement lemma [Wil11].

In this paper, we introduce four types of definitions of security, Definitions 7.5 to 7.8. (We note that these securities
are simulation based ones defined in [GVW12].) The first two definitions (Definitions 7.5 and 7.6) are ordinal security
definitions of FE. (Definition 7.5 is non-adaptive one and Definition 7.6 is adaptive one.) The third and fourth definitions
(Definitions 7.7 and 7.8) are security definitions with certified everlasting security that we newly introduce in this paper.
(Definition 7.7 is non-adaptive one and Definition 7.8 is adaptive one.)
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Definition 7.5 (q-Bounded Non-Adaptive Security for Certified Everlasting FE (Simulation Base)[GVW12]).
Let q be a polynomial of λ. Let Σ = (Setup, KeyGen, Enc, Dec, Del, Vrfy) be a q-bounded certified everlasting FE
scheme. We consider the following security experiment Expnon-adapt

Σ,A (λ, b) against a QPT adversary A. Let Sim be a
QPT algorithm.

1. The challenger runs (MPK, MSK)← Setup(1λ) and sends MPK to A.

2. A is allowed to make arbitrary key queries at most q times. For the ℓ-th key query, the challenger receives fℓ ∈ F ,
computes skfℓ

← KeyGen(MSK, fℓ), and sends skfℓ
to A. Let q∗ be the number of times that A makes key

queries. Let V := {yi := fi(m), fi, skfi}i∈[q∗].

3. A chooses m ∈M and sends m to the challenger.

4. The experiment works as follows:

• If b = 0, the challenger computes (vk, CT)← Enc(MPK, m), and sends CT to A.
• If b = 1, the challenger computes CT← Sim(MPK,V, 1|m|), and sends CT to A.

5. A outputs b′ ∈ {0, 1}. The output of the experiment is b′.

We say that Σ is q-bounded non-adaptive secure if there exists a QPT simulator Sim such that for any QPT adversary
A it holds that

Advnon-adapt
Σ,A (λ) :=

∣∣∣Pr
[
Expnon-adapt

Σ,A (λ, 0) = 1
]
− Pr

[
Expnon-adapt

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition 7.6 (q-Bounded Adaptive Security for Certified Everlasting FE (Simulation Base)[GVW12]). Let q be a
polynomial of λ. Let Σ = (Setup, KeyGen, Enc, Dec, Del, Vrfy) be a q-bounded certified everlasting FE scheme. We
consider the following security experiment Expadapt

Σ,A (λ, b) against a QPT adversary A. Let Sim1 and Sim2 be a QPT
algorithm.

1. The challenger runs (MPK, MSK)← Setup(1λ) and sends MPK to A.

2. A is allowed to make arbitrary key queries at most q times. For the ℓ-th key query, the challenger receives fℓ ∈ F ,
computes skfℓ

← KeyGen(MSK, fℓ), and sends skfℓ
to A. Let q∗ be the number of times that A makes key

queries. Let V := {yi := fi(m), fi, skfi
}i∈[q∗].

3. A chooses m ∈M and sends m to the challenger.

4. The experiment works as follows:

• If b = 0, the challenger computes (vk, CT)← Enc(MPK, m), and sends CT to A.
• If b = 1, the challenger computes (CT, stq∗)← Sim1(MPK,V, 1|m|), and sends CT to A, where stq∗ is a

quantum state.

5. A is allowed to make arbitrary key queries at most q − q∗ times. For the ℓ-th key query, the challenger works as
follows:

• If b = 0, the challenger receives fℓ ∈ F , computes skfℓ
← KeyGen(MSK, fℓ), and sends skfℓ

to A.
• If b = 1, the challenger receives fℓ ∈ F , computes (skfℓ

, stℓ)← Sim2(MSK, fℓ, fℓ(m), stℓ−1), and sends
skfℓ

to A.

6. A outputs b′ ∈ {0, 1}. The output of the experiment is b′.

We say that Σ is q-bounded adaptive secure if there exists a QPT simulator Sim = (Sim1, Sim2) such that for any
QPT adversary A it holds that

Advadapt
Σ,A (λ) :=

∣∣∣Pr
[
Expadapt

Σ,A (λ, 0) = 1
]
− Pr

[
Expadapt

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).
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Definition 7.7 (q-Bounded Certified Everlasting Non-Adaptive Security for Certified Everlasting FE (Simulation
Base)). Let q be a polynomial of λ. Let Σ = (Setup, KeyGen, Enc, Dec, Del, Vrfy) be a q-bounded certified everlasting
FE scheme. We consider the following security experiment Expcert-ever-non-adapt

Σ,A (λ, b) against a QPT adversary A1 and
an unbounded adversary A2. Let Sim be a QPT algorithm.

1. The challenger runs (MPK, MSK)← Setup(1λ) and sends MPK to A1.

2. A1 is allowed to make arbitrary key queries at most q times. For the ℓ-th key query, the challenger receives
fℓ ∈ F , computes skfℓ

← KeyGen(MSK, fℓ) and sends skfℓ
toA1. Let q∗ be the number of times thatA1 makes

key queries. Let V := {yi := fi(m), fi, skfi}i∈[q∗].

3. A1 chooses m ∈M and sends m to the challenger.

4. The experiment works as follows:

• If b = 0, the challenger computes (vk, CT)← Enc(MPK, m), and sends CT to A1.
• If b = 1, the challenger computes (vk, CT)← Sim(MPK,V, 1|m|), and sends CT to A1.

5. At some point, A1 sends cert to the challenger and its internal state to A2.

6. The challenger computes Vrfy(vk, cert). If the output is ⊤, then the challenger outputs ⊤, and sends MSK to A2.
Otherwise, the challenger outputs ⊥, and sends ⊥ to A2.

7. A2 outputs b′ ∈ {0, 1}. If the challenger outputs ⊤, the output of the experiment is b′. Otherwise, the output of
the experiment is ⊥.

We say that Σ is q-bounded certified everlasting non-adaptive secure if there exists a QPT simulator Sim such that for
any QPT adversary A1 and any unbounded adversary A2 it holds that

Advcert-ever-non-adapt
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-non-adapt

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-non-adapt

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition 7.8 (q-Bounded Certified Everlasting Adaptive Security for Certified Everlasting FE (Simulation
Base)). Let q be a polynomial of λ. Let Σ = (Setup, KeyGen, Enc, Dec, Del, Vrfy) be a q-bounded certified everlasting
FE scheme. We consider the following security experiment Expcert-ever-adapt

Σ,A (λ, b) against a QPT adversary A1 and an
unbounded adversary A2. Let Sim1, Sim2, and Sim3 be a QPT algorithm.

1. The challenger runs (MPK, MSK)← Setup(1λ) and sends MPK to A1.

2. A1 is allowed to make arbitrary key queries at most q times. For the ℓ-th key query, the challenger receives
fℓ ∈ F , computes skfℓ

← KeyGen(MSK, fℓ) and sends skfℓ
toA1. Let q∗ be the number of times thatA1 makes

key queries. Let V := {yi := fi(m), fi, skfi
}i∈[q∗].

3. A1 chooses m ∈M and sends m to the challenger.

4. The experiment works as follows:

• If b = 0, the challenger computes (vk, CT)← Enc(MPK, m), and sends CT to A1.
• If b = 1, the challenger computes (CT, stq∗)← Sim1(MPK,V, 1|m|), and sends CT to A1, where stq∗ is a

quantum state.

5. A1 is allowed to make arbitrary key queries at most q − q∗ times. For the ℓ-th key query, the challenger works as
follows.

• If b = 0, the challenger receives fℓ ∈ F , computes skfℓ
← KeyGen(MSK, fℓ), and sends skfℓ

to A1.
• If b = 1, the challenger receives fℓ ∈ F , computes (skfℓ

, stℓ)← Sim2(MSK, fℓ, fℓ(m), stℓ−1), and sends
skfℓ

to A1, where stℓ is a quantum state.
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6. If b = 1, the challenger runs vk← Sim3(stq′). Here, q′ is the number of times that A1 makes key queries in total.

7. At some point, A1 sends cert to the challenger and its internal state to A2.

8. The challenger computes Vrfy(vk, cert). If the output is ⊤, then the challenger outputs ⊤, and sends MSK to A2.
Otherwise, the challenger outputs ⊥, and sends ⊥ to A2.

9. A2 outputs b′ ∈ {0, 1}. If the challenger outputs ⊤, the output of the experiment is b′. Otherwise, the output of
the experiment is ⊥.

We say that Σ is q-bounded certified everlasting adaptive secure if there exists a QPT simulator Sim = (Sim1, Sim2, Sim3)
such that for any QPT adversary A1 and any unbounded adversary A2 it holds that

Advcert-ever-adapt
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-adapt

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-adapt

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

7.2 Construction of 1-Bounded Certified Everlasting Functional Encryption with Non-
Adaptive Security

In this section, we construct a 1-bounded certified everlasting FE scheme with non-adaptive security from a certified
everlasting garbling scheme (Definition 6.1) and a certified everlasting PKE scheme (Definition 4.1).

Our 1-bounded certified everlasting FE scheme with non-adaptive security. We use a universal circuit U(·, x) in
which a plaintext x is hard-wired. The universal circuit takes a function f as input and outputs f(x). Let s := |f |. We con-
struct a 1-bounded certified everlasting FE schemewith non-adaptive securityΣcefe = (Setup, KeyGen, Enc, Dec, Del, Vrfy)
from a certified everlasting garbling scheme Σcegc = GC.(Samp, Grbl, Eval, Del, Vrfy) (Definition 6.1) and a certified
everlasting PKE scheme Σcepk = PKE.(KeyGen, Enc, Dec, Del, Vrfy) (Definition 4.1).

Setup(1λ):

• Generate (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for every i ∈ [s] and α ∈ {0, 1}.
• OutputMPK := {pke.pki,α}i∈[s],α∈{0,1} andMSK := {pke.ski,α}i∈[s],α∈{0,1}.

KeyGen(MSK, f):

• ParseMSK = {pke.ski,α}i∈[s],α∈{0,1} and f = (f1, · · · , fs).
• Output skf := (f, {pke.ski,f [i]}i∈[s]).

Enc(MPK, m):

• ParseMPK = {pke.pki,α}i∈[s],α∈{0,1}.

• Compute {Li,α}i∈[s],α∈{0,1} ← GC.Samp(1λ).

• Compute (Ũ , gc.vk)← GC.Grbl(1λ, U(·, m), {Li,α}i∈[s],α∈{0,1}).
• For every i ∈ [s] and α ∈ {0, 1}, compute (pke.vki,α, pke.CTi,α)← PKE.Enc(pke.pki,α, Li,α).

• Output vk := (gc.vk, {pke.vki,α}i∈[s],α∈{0,1}) and CT := (Ũ , {pke.CTi,α}i∈[s],α∈{0,1}).

Dec(skf , CT):

• Parse skf = (f, {pke.ski}i∈[s]) and CT = (Ũ , {pke.CTi,α}i∈[s],α∈{0,1}).
• For every i ∈ [s], compute Li,← PKE.Dec(pke.ski, pke.CTi,f [i]).

• Compute y ← GC.Eval(Ũ , {Li}i∈[s]).
• Output y.
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Del(CT):

• Parse CT = (Ũ , {pke.CTi,α}i∈[s],α∈{0,1}).

• Compute gc.cert← GC.Del(Ũ).
• For every i ∈ [s] and α ∈ {0, 1}, compute pke.certi,α ← PKE.Del(pke.CTi,α).
• Output cert := (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}).

Vrfy(vk, cert):

• Parse vk = (gc.vk, {pke.vki,α}i∈[s],α∈{0,1}) and cert = (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}).
• Output⊤ if⊤ ← GC.Vrfy(gc.vk, gc.cert) and⊤ ← PKE.Vrfy(pke.vki,α, pke.certi,α) for every i ∈ [s] and

α ∈ {0, 1}. Otherwise, output ⊥.

Correctness: Correctness easily follows from that of Σcegc and Σcepk.

Security: The following two theorems hold.

Theorem 7.9. If Σcegc satisfies the selective security (Definition 6.4) and Σcepk satisfies the IND-CPA security (Defini-
tion 4.4), Σcefe satisfies the 1-bounded non-adaptive security (Definition 7.5).

Its proof is similar to that of Theorem 7.10, and therefore we omit it.

Theorem 7.10. If Σcegc satisfies the certified everlasting selective security (Definition 6.5) and Σcepk satisfies the
certified everlasting IND-CPA security (Definition 4.5), Σcefe satisfies the 1-bounded certified everlasting non-adaptive
security (Definition 7.7).

Its proof is given in Appendix C.

7.3 Construction of 1-Bounded Certified Everlasting Functional Encryption with Adaptive
Security

In this section, we change the non-adaptive scheme constructed in the previous subsection to the adaptive one by using a
certified everlasting RNC scheme (Definition 5.1).

Our 1-bounded certified everlasting FE scheme with adaptive security. We construct a 1-bounded certified
everlasting FE scheme with adaptive security Σcefe = (Setup, KeyGen, Enc, Dec, Del, Vrfy) from a 1-bounded certified
everlasting FE scheme with non-adaptive security Σnad = NAD.(Setup, KeyGen, Enc, Dec, Del, Vrfy), where the
ciphertext space is C := Q⊗n, and a certified everlasting RNCE scheme

Σcence = NCE.(Setup, KeyGen, Enc, Dec, Fake, Reveal, Del, Vrfy)

(Definition 5.1). Let NAD.Modify be a QPT algorithm such that

Pr

NAD.Vrfy(nad.vk, nad.cert∗) ̸= ⊤

∣∣∣∣∣∣∣∣∣∣
(nad.MPK, nad.MSK)← NAD.Setup(1λ)
(nad.vk, nad.CT)← NAD.Enc(nad.MPK, m)
a, c← {0, 1}n

nad.cert← NAD.Del(ZcXanad.CTXaZc)
nad.cert∗ ← NAD.Modify(a, c, nad.cert)

 ≤ negl(λ).

for anym.
Our construction is as follows.

Setup(1λ):

29



• Run (nad.MPK, nad.MSK)← NAD.Setup(1λ).
• Run (nce.pk, nce.MSK)← NCE.Setup(1λ).
• OutputMPK := (nad.MPK, nce.pk) andMSK := (nad.MSK, nce.MSK).

KeyGen(MSK, f):

• ParseMSK = (nad.MSK, nce.MSK).
• Compute nad.skf ← NAD.KeyGen(nad.MSK, f).
• Compute nce.sk← NCE.KeyGen(nce.MSK).
• Output skf := (nad.skf , nce.sk).

Enc(MPK, m):

• ParseMPK = (nad.MPK, nce.pk).
• Compute (nad.vk, nad.CT)← NAD.Enc(nad.MPK, m).
• Generate a, c← {0, 1}n. Let Ψ := ZcXanad.CTXaZc.
• Compute (nce.vk, nce.CT)← NCE.Enc(nce.pk, (a, c)).
• Output vk := (nad.vk, nce.vk, a, c) and CT := (Ψ, nce.CT).

Dec(skf , CT):

• Parse skf = (nad.skf , nce.sk) and CT = (Ψ, nce.CT).
• Compute (a′, c′)← NCE.Dec(nce.sk, nce.CT).
• Compute nad.CT′ := Xa′

Zc′ΨZc′
Xa′ .

• Compute y ← NAD.Dec(nad.skf , nad.CT′).
• Output y.

Del(CT):

• Parse CT = (Ψ, nce.CT).
• Compute nad.cert← NAD.Del(Ψ).
• Compute nce.cert← NCE.Del(nce.CT).
• Output cert := (nad.cert, nce.cert).

Vrfy(vk, cert):

• Parse vk = (nad.vk, nce.vk, a, c) and cert = (nad.cert, nce.cert).
• Compute nad.cert∗ ← NAD.Modify(a, c, nad.cert).
• Output ⊤ if ⊤ ← NCE.Vrfy(nce.vk, nce.cert) and ⊤ ← NAD.Vrfy(nad.vk, nad.cert∗). Otherwise, output
⊥.

Correctness: Correctness easily follows from that of Σnad and Σcence.

Security: The following two theorems hold.

Theorem 7.11. If Σnad satisfies the 1-bounded non-adaptive security (Definition 7.5) and Σcence satisfies the RNC
security (Definition 5.3), Σcefe satisfies the 1-bounded adaptive security (Definition 7.6).

Its proof is similar to that of Theorem 7.12, and therefore we omit it.

Theorem 7.12. If Σnad satisfies the 1-bounded certified everlasting non-adaptive security( Definition 7.7) and Σcence
satisfies the certified everlasting RNC security (Definition 5.4), Σcefe satisfies the 1-bounded certified everlasting adaptive
security (Definition 7.8).

Its proof is given in Appendix D.
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7.4 Construction of q-Bounded Certified Everlasting Functional Encryption for NC1 circuits
In this section, we construct a q-bounded certified everlasting FE for allNC1 circuits from 1-bounded certified everlasting
FE constructed in the previous subsection and Shamir’s secret sharing ([Sha79]). Our construction is similar to that of
ordinary FE for all NC1 circuits in [GVW12] except that we use a 1-bounded certified everlasting FE instead of an
ordinary 1-bounded FE.

Our q-bounded certified everlasting FE scheme for NC1 circuits. We consider the polynomial representation of
circuits C in NC1. The input message space isM := Fℓ, and for each NC1 circuit C, C(·) is an ℓ-variate polynomial
over F of total degree at most D. Let q = q(λ) be a polynomial of λ. Our scheme is associated with additional
parameters S = S(λ), N = N(λ), t = t(λ) and v = v(λ) that satisfy

t(λ) = Θ(q2λ), N(λ) = Θ(D2q2t), v(λ) = Θ(λ), S(λ) = Θ(vq2).

Let us define a family G := {GC,∆}C∈NC1,∆⊆[S], where

GC,∆(x, Z1, Z2, · · · , ZS) := C(x) +
∑
i∈∆

Zi

is a function and Z1, · · · , ZS ∈ F.
We construct a q-bounded certified everlasting FE scheme for allNC1 circuitsΣcefe = (Setup, KeyGen, Enc, Dec, Del,

Vrfy) from a 1-bounded certified everlasting FE scheme Σone = ONE.(Setup, KeyGen, Enc, Dec, Del, Vrfy).

Setup(1λ):

• For i ∈ [N ], generate (one.MPKi, one.MSKi)← ONE.Setup(1λ).
• OutputMPK := {one.MPKi}i∈[N ] andMSK := {one.MSKi}i∈[N ].

KeyGen(MSK, C):

• ParseMSK = {one.MSKi}i∈[N ].
• Chooses a uniformly random set Γ ⊆ [N ] of size tD + 1.
• Chooses a uniformly random set∆ ⊆ [S] of size v.
• For i ∈ Γ, compute one.skC,∆,i ← ONE.KeyGen(one.MSKi, GC,∆).
• Output skC := (Γ, ∆, {one.skC,∆,i}i∈Γ).

Enc(MPK, x):

• ParseMPK = {one.MPKi}i∈[N ].
• For i ∈ [ℓ], pick a random degree t polynomial µi(·) whose constant term is x[i].
• For i ∈ [S], pick a random degree Dt polynomial ξi(·) whose constant term is 0.
• For i ∈ [N ], compute (one.vki, one.CTi)← ONE.Enc(one.MPKi, (µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))).
• Output vk = {one.vki}i∈[N ] and CT := {one.CTi}i∈[N ].

Dec(skC , CT):

• Parse skC = (Γ, ∆, {one.skC,∆,i}i∈Γ) and CT = {one.CTi}i∈[N ].
• For i ∈ Γ, compute η(i)← ONE.Dec(one.skC,∆,i, one.CTi).
• Output η(0).

Del(CT):

• Parse CT = {one.CTi}i∈[N ].
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• For i ∈ [N ], compute one.certi ← ONE.Del(one.CTi).
• Output cert := {one.certi}i∈[N ].

Vrfy(vk, cert):

• Parse vk = {one.vki}i∈[N ] and cert = {one.certi}i∈[N ].
• For i ∈ [N ], compute ⊤/⊥ ← ONE.Vrfy(one.vki, one.certi). If all results are ⊤, output ⊤. Otherwise,
output ⊥.

Correctness: Verification correctness easily follows from verification correctness of Σone. Let us show evaluation
correctness. By decryption correctness of Σone, for all i ∈ Γ we have

η(i) = GC,∆(µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))
= C(µ1(i), · · · , µℓ(i)) + Σa∈∆ξa(i).

Since |Γ| ≥ Dt + 1, this means that η is equal to the degree Dt polynomial

η(·) = C(µ1(·), · · · , µℓ(·)) + Σa∈∆ξa(·)

Hence η(0) = C(x1, · · · , xℓ) = C(x), which means that our construction satisfies evaluation correctness.

Security: The following two theorems hold.

Theorem 7.13. If Σone satisfies the 1-bounded adaptive security, Σcefe satisfies the q-bounded adaptive security.

Its proof is similar to that of Theorem 7.14, and therefore we omit it.

Theorem 7.14. If Σone satisfies the 1-bounded certified everlasting adaptive security, Σcefe the q-bounded certified
everlasting adaptive security.

Its proof is given in Appendix E.
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A Proof of Theorem 5.6
Proof of Theorem 5.6. To prove the theorem, let us introduce the sequence of hybrids.

Hyb0: This is identical to Expcert-ever-rec-nc
Σcence,A (λ, 0). For clarity, we describe the experiment against any adversary

A = (A1,A2), where A1 is any QPT adversary and A2 is any unbounded adversary.

1. The challenger generates (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for all i ∈ [n] and α ∈ {0, 1}.
2. The challenger sends {pke.pki,α}i∈[n],α∈{0,1} to A1.
3. A1 sendsm ∈M to the challenger.
4. The challenger generates x← {0, 1}n, computes (pke.vki,α, pke.CTi,α)← PKE.Enc(pke.pki,α, m[i]) for
all i ∈ [n] and α ∈ {0, 1}, and sends ({pke.CTi,α}i∈[n],α∈{0,1}, (x, {pke.ski,x[i]}i∈[n])) to A1.

5. A1 sends {pke.certi,α}i∈[n],α∈{0,1} to the challenger and its internal state to A2.
6. The challenger computes PKE.Vrfy(pke.vki,α, pke.certi,α) for all i ∈ [n] and α ∈ {0, 1}. If all results are
⊤, the challenger outputs ⊤ and sends {pke.ski,α}i∈[n],α∈{0,1} to A2. Otherwise, the challenger outputs ⊥
and sends ⊥ to A2.

7. A2 outputs b′ ∈ {0, 1}.
8. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment
is ⊥.

Hyb1: This is identical toHyb0 except that the challenger generates (pke.vki,x[i]⊕1, pke.CTi,x[i]⊕1)← PKE.Enc(pke.pki,x[i]⊕1,
m[i]⊕ 1) for all i ∈ [n] instead of computing (pke.vki,x[i]⊕1, pke.CTi,x[i]⊕1)← PKE.Enc(pke.pki,x[i]⊕1, m[i])
for all i ∈ [n].

Hyb2: This is identical to Hyb1 except for the following three points.

1. The challenger generates x∗ ← {0, 1}n instead of generating x← {0, 1}n.
2. For all i ∈ [n], the challenger generates (pke.vki,x∗[i], pke.CTi,x∗[i]) ← PKE.Enc(pke.pki,x∗[i], 0) and

(pke.vki,x∗[i]⊕1, pke.CTi,x∗[i]⊕1)← PKE.Enc(pke.pki,x∗[i]⊕1, 1) instead of computing (pke.vki,x[i], pke.CTi,x[i])
← PKE.Enc(pke.pki,x[i], m[i]) and (pke.vki,x[i]⊕1, pke.CTi,x[i]⊕1)← PKE.Enc(pke.pki,x[i]⊕1, m[i]⊕1).

3. The challenger sends ({pke.CTi,α}i∈[n],α∈{0,1}, (x∗ ⊕ m, {pke.ski,x∗[i]⊕m[i]}i∈[n])) to A1 instead of
sending ({pke.CTi,α}i∈[n],α∈{0,1}, (x, {pke.ski,x[i]}i∈[n])) to A1.

It is clear that Hyb0 is identical to Expcert-ever-rec-nc
Σ,A (λ, 0) and Hyb2 is identical to Expcert-ever-rec-nc

Σ,A (λ, 1). Hence,
Theorem 5.6 easily follows from the following Propositions A.1 and A.2 (whose proof is given later.).

Proposition A.1. If Σcepk is certified everlasting IND-CPA secure, it holds that |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤
negl(λ).

Proposition A.2. |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proof of Proposition A.1. For the proof, we use Lemma A.3. We assume that |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is non-
negligible, and construct an adversaryB that breaks the security experiment Expmulti-cert-ever

Σcepk,B (λ, b) defined in Lemma A.3.
This contradicts the certified everlasting IND-CPA security of Σcepk from Lemma A.3. Let us describe how B works
below.

1. B receives {pke.pki,α}i∈[n],α∈{0,1} from the challenger of Expmulti-cert-ever
Σcepk,B (λ, b).

2. B sends {pke.pki,α}i∈[n],α∈{0,1} to A1.

3. A1 choosesm ∈M and sendsm to B.

4. B generates x ← {0, 1}n and sends (x, m[1], · · · , m[n], m[1] ⊕ 1, · · · , m[n] ⊕ 1) to the challenger of
Expmulti-cert-ever

Σcepk,B (λ, b).

35



5. B receives ({pke.ski,x[i]}i∈[n], {pke.CTi,x[i]⊕1}i∈[n]) from the challenger of Expmulti-cert-ever
Σcepk,B (λ, b).

6. B computes ({pke.vki,x[i]}i∈[n], {pke.CTi,x[i]}i∈[n])← PKE.Enc(pke.pki,x[i], m[i]) for i ∈ [n].

7. B sends ({pke.CTi,α}i∈[n],α∈{0,1}, (x, {pke.ski,x[i]}i∈[n])) to A1.

8. A1 sends {pke.certi,α}i∈[n],α∈{0,1} to B and the internal state to A2.

9. B sends {pke.certi,x[i]⊕1}i∈[n] to the challenger, and receives {pke.ski,x[i]⊕1}i∈[n] or ⊥. If B receives ⊥, it
outputs ⊥ and aborts.

10. B sends {pke.ski,α}i∈[n],α∈{0,1} to A2.

11. A2 outputs b′.

12. B computes PKE.Vrfy(pke.vki,x[i], pke.certi,x[i]) for all i ∈ [n]. If all results are ⊤, B outputs b′. Otherwise, B
outputs ⊥.

It is clear that Pr[1← B|b = 0] = Pr[Hyb0 = 1] and Pr[1← B|b = 1] = Pr[Hyb1 = 1]. By assumption,
|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is non-negligible. Therefore, |Pr[1← B|b = 0]− Pr[1← B|b = 1]| is also non-
negligible, which contradicts the certified everlasting IND-CPA security of Σcepk from Lemma A.3.

Proof of Proposition A.2. It is obvious that the joint probability distribution thatA1 receives ({pke, CTi,α}i∈[n],α∈{0,1},
(x, {pke.ski,x[i]}i∈[n])) inHyb1 is identical to the joint probability distribution thatA1 receives ({pke, CTi,α}i∈[n],α∈{0,1},
(x∗ ⊕m, {pke.ski,x∗[i]⊕m[i]}i∈[n])) in Hyb2. Hence, Proposition A.2 follows.

We use the following lemma for the proof of Theorem 5.6 and Theorem 6.7. The proof is shown with the standard
hybrid argument. It is also easy to see that a similar lemma holds for IND-CPA security.

Lemma A.3. Let s be some polynomial of the security parameter λ. Let Σ := (KeyGen, Enc, Dec, Del, Vrfy) be a
certified everlasting PKE scheme. Let us consider the following security experiment Expmulti-cert-ever

Σ,A (λ, b) against A
consisting of any QPT adversary A1 and any unbounded adversary A2.

1. The challenge generates (pki,α, ski,α)← KeyGen(1λ) for all i ∈ [s] and α ∈ {0, 1}, and sends{pki,α}i∈[s],α∈{0,1}
to A1.

2. A1 chooses f ∈ {0, 1}s and (m0[1], m0[2], · · · , m0[s], m1[1], m1[2], · · · , m1[s]) ∈M2s, and sends (f, m0[1], m0[2],
· · · , m0[s], m1[1], m1[2], · · · , m1[s]) to the challenger.

3. The challenger computes (vki,f [i]⊕1, CTi,f [i]⊕1)← Enc(pki,f [i]⊕1, mb[i]) for all i ∈ [s], and sends ({ski,f [i]}i∈[s],
{CTi,f [i]⊕1}i∈[s]) to A1.

4. At some point, A1 sends {certi,f [i]⊕1}i∈[s] to the challenger, and sends its internal state to A2.

5. The challenger computes Vrfy(vki,f [i]⊕1, certi,f [i]⊕1) for every i ∈ [s]. If all results are⊤, the challenger outputs
⊤, and sends {ski,f [i]⊕1}i∈[s] to A2. Otherwise, the challenger outputs ⊥, and sends ⊥ to A2.

6. A2 outputs b′.

7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

If the Σ satisfies the certified everlasting IND-CPA security,

Advmulti-cert-ever
Σ,A (λ) :=

∣∣∣Pr
[
Expmulti-cert-ever

Σ,A (λ, 0) = 1
]
− Pr

[
Expmulti-cert-ever

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ)

for any QPT adversary A1 and any unbounded adversary A2.

Proof of Lemma A.3. Let us consider the following hybrids for j ∈ {0, 1, · · · , s}.
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Hybj:

1. The challenger generates (pki,α, ski,α) ← KeyGen(1λ) for every i ∈ [s] and α ∈ {0, 1}, and sends
{pki,α}i∈[s],α∈{0,1} to A1.

2. A1 chooses f ∈ {0, 1}s and (m0[1], m0[2], · · · , m0[s], m1[1], m1[2], · · · , m1[s]) ∈ M2s, and sends
(f, m0[1], m0[2], · · · , m0[s], m1[1], m1[2], · · · , m1[s]) to the challenger.

3. The challenger computes

(vki,f [i]⊕1, CTi,f [i]⊕1)← Enc(pki,f [i]⊕1, m1[i])

for i ∈ [j] and

(vki,f [i]⊕1, CTi,f [i]⊕1)← Enc(pki,f [i]⊕1, m0[i])

for i ∈ {j + 1, j + 2, · · · , s}, and sends ({ski,f [i]}i∈[s], {CTi,f [i]⊕1}i∈[s]) to A1.
4. At some point, A1 sends {certi,f [i]⊕1}i∈[s] to the challenger, and sends its internal state to A2.
5. The challenger computes Vrfy(vki,f [i]⊕1, certi,f [i]⊕1) for every i ∈ [s]. If all results are ⊤, the challenger
outputs ⊤, and sends {ski,f [i]⊕1}i∈[s] to A2. Otherwise, the challenger outputs ⊥, and sends ⊥ to A2.

6. A2 outputs b′.
7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment
is ⊥.

It is clear that Pr[Hyb0 = 1] = Pr
[
Expmulti-cert-ever

Σ,A (λ, 0) = 1
]
and Pr[Hybs = 1] = Pr

[
Expmulti-cert-ever

Σ,A (λ, 1) = 1
]
.

Furthermore, we can show ∣∣Pr
[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]∣∣ ≤ negl(λ)

for each j ∈ {0, 1, · · · , s− 1}. (Its proof is given below.) From these facts, we obtain Lemma A.3.
Let us show the remaining one. To show it, let us assume that

∣∣Pr
[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]∣∣ is non-negligible.
Then, we can construct an adversary B that can break the certified everlasting IND-CPA security of Σ as follows.

1. B receives pk from the challenger of Expcert-ever-ind-cpa
Σ,B (λ, b).

2. B generates β ← {0, 1} and sets pkj+1,β := pk.

3. B generates (pki,α, ski,α)← KeyGen(1λ) for i ∈ {1, · · · , j, j+2, · · · , s} andα ∈ {0, 1}, and (pkj+1,β⊕1, skj+1,β⊕1)←
KeyGen(1λ).

4. B sends {pki,α}i∈[s],α∈{0,1} to A1.

5. A1 chooses f ∈ {0, 1}s and (m0[1], m0[2], · · · , m0[s], m1[1], m1[2], · · · , m1[s]) ∈M2s, and sends (f, m0[1], m0[2],
· · · , m0[s], m1[1], m1[2], · · · , m1[s]) to the challenger.

6. If f [j + 1] = β, B aborts the experiment, and outputs ⊥.

7. B computes

(vki,f [i]⊕1, CTi,f [i]⊕1)← Enc(pki,f [i]⊕1, m1[i])

for i ∈ [j] and

(vki,f [i]⊕1, CTi,f [i]⊕1)← Enc(pki,f [i]⊕1, m0[i])

for i ∈ {j + 2, · · · , s}.

37



8. B sends (m0[j + 1], m1[j + 1]) to the challenger of Expcert-ever-ind-cpa
Σ,B (λ, b). The challenger computes

(vkj+1,f [j+1]⊕1, CTj+1,f [j+1]⊕1)← Enc(pkj+1,f [j+1]⊕1, mb[j + 1]) and sends CTj+1,f [j+1]⊕1 to B.

9. B sends ({ski,f [i]}i∈[s], {CTi,f [i]⊕1}i∈[s]) to A1.

10. A1 sends {certi}i∈[s] to B, and sends its internal state to A2.

11. B sends certj+1 to the challenger, and receives skj+1,f [j+1]⊕1 or ⊥ from the challenger. If B receives ⊥ from the
challenger, it outputs ⊥ and aborts.

12. B sends {ski,f [i]⊕1}i∈[s] to A2.

13. A2 outputs b′.

14. B computes Vrfy for all certi, and outputs b′ if all results are ⊤. Otherwise, B outputs ⊥.

Since pkj+1,β and pkj+1,β⊕1 are identically distributed, it holds that Pr[f [j + 1] = β] = Pr[f [j + 1] = β ⊕ 1] = 1
2 .

If b = 0 and f [j + 1] = β ⊕ 1, B simulates Hybj . Therefore, we have

Pr[1← B|b = 0] = Pr[1← B ∧ f [j + 1] = β ⊕ 1|b = 0]
= Pr[1← B|b = 0, f [j + 1] = β ⊕ 1] · Pr[f [j + 1] = β ⊕ 1]

= 1
2 Pr

[
Hybj = 1

]
.

If b = 1 and f [j + 1] = β⊕ 1, B simulates Hybj+1. Similarly, we have Pr[1← B|b = 1] = 1
2 Pr

[
Hybj+1 = 1

]
. By as-

sumption,
∣∣Pr

[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]∣∣ is non-negligible, and therefore |Pr[1← B|b = 0]− Pr[1← B|b = 1]|
is non-negligible, which contradicts the certified everlasting IND-CPA security of Σ.

B Proof of Theorem 6.7
Let ĝate1, ĝate2, · · · , ĝateq be the topology of the gates gate1, gate2, · · · , gateq which indicates how gates are
connected. In other words, if gatei = (g, wa, wb, wc), then ĝatei = (⊥, wa, wb, wc).

Proof of Theorem 6.7. First, let us define a simulator Sim as follows.

The simulator Sim(1λ, 1|C|, C(x), {Li,xi
}i∈[n]):

1. Parse {Li,xi
}i∈[n] := {ske.skxi

i }i∈[n].

2. For i ∈ [n], generate ske.skxi⊕1
i ← SKE.KeyGen(1λ).

3. For i ∈ {n + 1, n + 2, · · · , p} and σ ∈ {0, 1}, generate ske.skσ
i ← SKE.KeyGen(1λ).

4. For each i ∈ [q], compute (vki, g̃i) ← Sim.GateGrbl(ĝatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}), where

Sim.GateGrbl is described in Fig 5 and ĝatei = (⊥, wa, wb, wc).

5. For each i ∈ [m], generate d̃i :=
[(

ske.sk0
outi

, C(x)i

)
,
(
ske.sk1

outi
, C(x)i ⊕ 1

)]
.

6. Output C̃ := ({g̃i}i∈[q], {d̃i}i∈[m]) and vk := {vki}i∈[q].

For each j ∈ [q], we define a QPT algorithm (a simulator) InputDepSimj as follows.

The simulator InputDepSimj(1λ, C, x, {Li,xi
}i∈[n]):

1. Parse {Li,xi
}i∈[n] = {ske.skxi

i }i∈[n].

2. For i ∈ [n], generate ske.skxi⊕1
i ← SKE.KeyGen(1λ).

3. For i ∈ {n + 1, n + 2, · · · , p} and σ ∈ {0, 1}, generate ske.skσ
i ← SKE.KeyGen(1λ).
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Simulation Gate Garbling Circuit Sim.GateGrbl
Input: (ĝatei, {ske.skσ

a , ske.skσ
b , ske.skσ

c }σ∈{0,1}).

Output: g̃i and vki.

1. For each σa, σb ∈ {0, 1}, sample p
σa,σb
a,b

← K.

2. Sample γi ← S4.

3. For each σa, σb ∈ {0, 1}, compute (ske.vkσa,σb
a , ske.CTσa,σb

a ) ← SKE.Enc(ske.skσa
a , p

σa,σb
c ) and

(ske.vkσa,σb
b

, ske.CTσa,σb
b

)← SKE.Enc(ske.skσb
b

, p
σa,σb
c ⊕ ske.sk0

c).

4. Output g̃i := {ske.CTσa,σb
a , ske.CTσa,σb

b
}σa,σb∈{0,1} in permutated order of γi and vki :=

{ske.vkσa,σb
a , ske.vkσa,σb

b
}σa,σb∈{0,1} in permutated order of γi.

Figure 5: The description of Sim.GateGrbl

4. For i ∈ [j], compute (vki, g̃i) ← InputDep.GateGrbl(gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}), where

InputDep.GateGrbl is described in Fig. 6 and gatei = (g, wa, wb, wc)
5. For each i ∈ {j+1, j+2, · · · , q}, compute (vki, g̃i)← GateGrbl(gatei, {ske.skσ

a , ske.skσ
b , ske.skσ

c }σ∈{0,1}),
where GateGrbl is described in Fig 1 and gatei = (g, wa, wb, wc).

6. For each i ∈ [m], generate d̃i :=
[(

ske.sk0
outi

, 0
)

,
(
ske.sk1

outi
, 1

)]
.

7. Output C̃ := ({g̃i}i∈[q], {d̃i}i∈[m]) and vk := {vki}i∈[q].

Input Dependent Gate Garbling Circuit InputDep.GateGrbl
Input: gatei, {ske.skσ

a , ske.skσ
b , ske.skσ

c }σ∈{0,1}.

Output: g̃i and vki.

1. For each σa, σb ∈ {0, 1}, sample p
σa,σb
c ← K.

2. Sample γi ← S4.

3. For each σa, σb ∈ {0, 1}, compute (ske.vkσa,σb
a , ske.CTσa,σb

a ) ← SKE.Enc(ske.skσa
a , p

σa,σb
c ) and

(ske.vkσa,σb
b

, ske.CTσa,σb
b

) ← SKE.Enc(ske.skσb
b

, p
σa,σb
c ⊕ ske.skv(c)

c ). Here, v(c) is the correct value of the bit go-
ing over the wire c during the computation of C(x).

4. Output g̃i := {ske.CTσa,σb
a , ske.CTσa,σb

b
}σa,σb∈{0,1} in permutated order of γi and vki :=

{ske.vkσa,σb
a , ske.vkσa,σb

b
}σa,σb∈{0,1} in permutated order of γi.

Figure 6: The description of InputDep.GateGrbl

For each j ∈ {0, 1, · · · , q}, let us define a sequence of hybrid games {Hybj}j∈{0,1,··· ,q} against any adversary
A := (A1,A2), where A1 is any QPT adversary and A2 is any unbounded adversary. Note that

InputDepSim0(1λ, C, x, {Li,xi}i∈[n]) = Grbl(1λ, C, {Li,α}i∈[n],α∈{0,1}).

The hybrid game Hybj:

1. A1 sends a circuit C ∈ Cn and an input x ∈ {0, 1}n to the challenger.
2. The challenger computes {Li,α}i∈[n],α∈{0,1} ← Samp(1λ).

3. The challenger computes (C̃, vk)← GC.InputDepSimj(1λ, C, x, {Li,xi}i∈[n]), and sends (C̃, {Li,xi}i∈[n])
to A1.

4. At some point, A1 sends cert to the challenger and the internal state to A2.
5. The challenger computes Vrfy(vk, cert) → ⊤/⊥. If the output is ⊥, then the challenger outputs ⊥ and
sends ⊥ to A2. Else, the challenger outputs ⊤ and sends ⊤ to A2.
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6. A2 outputs b′ ∈ {0, 1}.
7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment
is ⊥.

Note that Hyb0 is identical to Expcert-ever-select
Σcegc,A (1λ, 0) by definition. Therefore, Theorem 6.7 easily follows from the

following Propositions B.1 and B.2 (whose proofs are given later).

Proposition B.1. If Σcesk satisfies the certified everlasting IND-CPA security, it holds that
∣∣Pr

[
Hybj−1 = 1

]
− Pr

[
Hybj = 1

]∣∣ ≤
negl(λ) for all j ∈ [q].

Proposition B.2.
∣∣∣Pr

[
Hybq = 1

]
− Pr

[
Expcert-ever-select

Σcegc,A (1λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Proof of Proposition B.1. For the proof, we use Lemma B.3 whose statement and proof are given in Appendix B.
We construct an adversary B that breaks the security experiment of Expparallel-cert-ever

Σcesk,B (λ, b), which is described in
Lemma B.3, assuming that

∣∣Pr
[
Hybj−1 = 1

]
− Pr

[
Hybj = 1

]∣∣ is non-negligible. This contradicts the certified
everlasting IND-CPA security of Σcesk from Lemma B.3. Let us describe how B works below.

1. B receives C ∈ Cn and x ∈ {0, 1}n from A1. Let gatej = (g, wα, wβ , wγ).

2. The challenger of Expparallel-cert-ever
Σcesk,B (λ, b) generates ske.skv(α)⊕1

α ← SKE.KeyGen(1λ) and ske.skv(β)⊕1
β ←

SKE.KeyGen(1λ)3.

3. For each i ∈ [p] \ {α, β} and σ ∈ {0, 1}, B generates ske.skσ
i ← SKE.KeyGen(1λ). B generates ske.skv(α)

α ←
SKE.KeyGen(1λ) and ske.skv(β)

β ← SKE.KeyGen(1λ). B sets {Li,xi
}i∈[n] := {ske.skxi

i }i∈[n].

4. For each i ∈ [j − 1], B computes (vki, g̃i) ← InputDep.GateGrbl(gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}),

where InputDep.GateGrbl is described in Fig 6 and gatei = (g, wa, wb, wc). B calls the encryption query of
Expparallel-cert-ever

Σcesk,B (λ, b) if it needs to use ske.skv(α)⊕1
α or ske.skv(β)⊕1

β to run (vki, g̃i)← InputDep.GateGrbl(gatei,
{ske.skσ

a , ske.skσ
b , ske.skσ

c }σ∈{0,1}).

5. B samples p
v(α),v(β)
γ ← K. B computes

(ske.vkv(α),v(β)
α , ske.CTv(α),v(β)

α )← SKE.Enc(ske.skv(α)
α , pv(α),v(β)

γ ),

(ske.vkv(α),v(β)
β , ske.CTv(α),v(β)

β )← SKE.Enc(ske.skv(β)
β , pv(α),v(β)

γ ⊕ ske.skv(γ)
γ ).

6. B sets

(x0, y0, z0) := (ske.skg(v(α),v(β)⊕1)
γ , ske.skg(v(α)⊕1,v(β))

γ , ske.skg(v(α)⊕1,v(β)⊕1)
γ ),

(x1, y1, z1) := (ske.skv(γ)
γ , ske.skv(γ)

γ , ske.skv(γ)
γ ),

and sends (ske.skv(α)
α , ske.skv(β)

β , {xσ, yσ, zσ}σ∈{0,1}) to the challenger of Expparallel-cert-ever
Σcesk,B (λ, b).

7. The challenger samples (x, y, z) ← K3 and (ske.skv(α)⊕1
α , ske.skv(β)⊕1

β ) ← KeyGen(1λ). The challenger
computes

(ske.vkv(α),v(β)⊕1
α , ske.CTv(α),v(β)⊕1

α )← Enc(ske.skv(α)
α , x),

(ske.vkv(α),v(β)⊕1
β , ske.CTv(α),v(β)⊕1

β )← Enc(ske.skv(β)⊕1
β , x⊕ xb),

(ske.vkv(α)⊕1,v(β)
α , ske.CTv(α)⊕1,v(β)

α )← Enc(ske.skv(α)⊕1
α , y),

(ske.vkv(α)⊕1,v(β)
β , ske.CTv(α)⊕1,v(β)

β )← Enc(ske.skv(β)
β , y ⊕ yb),

(ske.vkv(α)⊕1,v(β)⊕1
α , ske.CTv(α)⊕1,v(β)⊕1

α )← Enc(ske.skv(α)⊕1
α , z),

(ske.vkv(α)⊕1,v(β)⊕1
β , ske.CTv(α)⊕1,v(β)⊕1

β )← Enc(ske.skv(β)⊕1
β , z ⊕ zb),

3Recall that v(α) is the correct value of the bit going over the wire α during the computation of C(x).

40



and sends

(ske.CTv(α),v(β)⊕1
α , ske.CTv(α),v(β)⊕1

β , ske.CTv(α)⊕1,v(β)
α , ske.CTv(α)⊕1,v(β)

β , ske.CTv(α)⊕1,v(β)⊕1
α , ske.CTv(α)⊕1,v(β)⊕1

β )

to B.

8. B samples γj ← S4. B sets g̃j := {ske.CTσα,σβ
α , ske.CTσα,σβ

β }σα,σβ∈{0,1} in the permutated order of γj .

9. For each i ∈ {j +1, j +2, · · · , q}, B computes (vki, g̃i)← GateGrbl(gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}),

where B calls the encryption query of Expparallel-cert-ever
Σcesk,B (λ, b) if B needs to use ske.skv(α)⊕1

α or ske.skv(β)⊕1
β to

run (vki, g̃i)← GateGrbl(gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}).

10. B computes d̃i := [(ske.sk0
outi

, 0), (ske.sk1
outi

, 1)] for i ∈ [m], sets C̃ := ({g̃i}i∈[q], {d̃i}i∈[m]), and sends
(C̃, {Li,xi}i∈[n]) to A1.

11. At some point, A1 sends cert := {certi}i∈[q] to B and the internal state to A2, respectively.

12. B re-sorts certj = {ske.certσα,σβ
α , ske.certσα,σβ

β }σα,σβ∈{0,1} according to γj . B sends

(ske.certv(α),v(β)⊕1
α , ske.certv(α),v(β)⊕1

β , ske.certv(α)⊕1,v(β)
α , ske.certv(α)⊕1,v(β)

β , ske.certv(α)⊕1,v(β)⊕1
α , ske.certv(α)⊕1,v(β)⊕1

β )

to the challenger ofExpparallel-cert-ever
Σcesk,B (λ, b) and receives⊥ or (ske.sk

′v(α)⊕1
α , ske.sk

′v(β)⊕1
β ) from the challenger. B

computes SKE.Vrfy(ske.vkv(α),v(β)
α , ske.certv(α),v(β)

α ) and SKE.Vrfy(ske.vkv(α),v(β)
β , ske.certv(α),v(β)

β ). B com-
putesGateVrfy(vki, certi) for each i ∈ {1, 2, · · · , j−1, j+1, j+2, · · · , q}, whereGateVrfy is described in Fig4. If
B receives (ske.sk

′v(α)⊕1
α , ske.sk

′v(β)⊕1
β ) from the challenger,⊤ ← SKE.Vrfy(ske.vkv(α),v(β)

α , ske.certv(α),v(β)
α ),

⊤ ← SKE.Vrfy(ske.vkv(α),v(β)
β , ske.certv(α),v(β)

β ), and⊤ ← GateVrfy(certi, vki) for all i ∈ {1, 2, · · · , j−1, j +
1, j + 2, · · · , q}, then B sends ⊤ to A2. Otherwise, B sends ⊥ to A2, and aborts.

13. B outputs the output of A2.

It is clear that Pr[1← B|b = 0] = Pr
[
Hybj−1 = 1

]
and Pr[1← B|b = 1] = Pr

[
Hybj = 1

]
. Therefore, if for an adver-

saryA,
∣∣Pr

[
Hybj−1 = 1

]
− Pr

[
Hybj = 1

]∣∣ is non-negligible, then ∣∣∣Pr
[
Expparallel-cert-ever

Σcesk,B (λ, 0) = 1
]
− Pr

[
Expparallel-cert-ever

Σcesk,B (λ, 1) = 1
]∣∣∣

is non-negligible. From Lemma B.3, it contradicts the certified everlasting IND-CPA security of Σcesk , which completes
the proof.

Proof of Proposition B.2. To show Proposition B.2, it is sufficient to prove that the probability distribution of C̃ in
Expcert-ever-select

Σcegc,A (1λ, 1) is statistically identical to that of C̃ in Hybq .
First, let us remind the difference between Hybq and Expcert-ever-select

Σcegc,A (1λ, 1). In both experiments , C̃ consists of
{g̃i}i∈[q] and {d̃i}i∈[m]. On the other hand the contents of {g̃i}i∈[q] and {d̃i}i∈[m] are different in each experiments. In
Hybq , g̃i consists of (ske.CTσa,σb

a , ske.CTσa,σb

b ) where

(ske.vkσa,σb
a , ske.CTσa,σb

a )← SKE.Enc(ske.skσa
a , pσa,σb

c ),

(ske.vkσa,σb

b , ske.CTσa,σb

b )← SKE.Enc(ske.skσb

b , pσa,σb
c ⊕ ske.skv(c)

c ),

and d̃i is

[(ske.sk0
outi

, 0), (ske.sk1
outi

, 1)].

In Expcert-ever-select
Σcegc,A (1λ, 1), g̃i consists of (ske.CTσa,σb

a , ske.CTσa,σb

b ) where

(ske.vkσa,σb
a , ske.CTσa,σb

a )← SKE.Enc(ske.skσa
a , pσa,σb

c ),
(ske.vkσa,σb

b , ske.CTσa,σb

b )← SKE.Enc(ske.skσb

b , pσa,σb
c ⊕ ske.sk0

c),
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and d̃i is

[(ske.sk0
outi

, C(x)i), (ske.sk1
outi

, C(x)i ⊕ 1)].

The resulting distribution of ({g̃i}i∈[q], {d̃i}i∈[m]) in Hybq is statistically identical to the resulting distribution of
({g̃i}i∈[q], {d̃i}i∈[m]) in Expcert-ever-select

Σcegc,A (1λ, 1). This is because, at any level that is not output, the keys ske.sk0
c , ske.sk1

c

are used completely identically in the subsequent level so there is no difference between always encrypting ske.skv(c)
c

and ske.sk0
c . At the output level, there is no difference between encrypting ske.skv(c)

c and giving the real mapping
ske.skv(c)

c → v(c) or encrypting ske.sk0
c and giving the programming mapping ske.sk0

c → C(x)i, which completes the
proof.

We use the following lemma for the proof of Proposition B.1. The proof is shown with the standard hybrid argument.
It is also easy to see that a similar lemma holds for IND-CPA security.

Lemma B.3. Let Σ := (KeyGen, Enc, Dec, Del, Vrfy) be a certified everlasting SKE scheme. Let us consider the
following security experiment Expparallel-cert-ever

Σ,A (λ, b) againstA consisting of any QPT adversaryA1 and any unbounded
adversary A2.

1. The challenger generates (sk′0, sk′1)← KeyGen(1λ).

2. A1 can call encryption queries. More formally, it can do the followings: A1 chooses β ∈ {0, 1}, sk ∈ SK and
m ∈M. A1 sends (β, sk, m) to the challenger.

• If β = 0, the challenger generates m∗ ←M, computes (vk0
m, CT0

m)← Enc(sk′0, m∗) and (vk1
m, CT1

m)←
Enc(sk, m⊕m∗), and sends {vkσ

m, CTσ
m}σ∈{0,1} to A1.

• If β = 1, the challenger generates m∗ ← M, computes (vk1
m, CT1

m) ← Enc(sk′1, m ⊕ m∗) and
(vk0

m, CT0
m)← Enc(sk, m∗), and sends {vkσ

m, CTσ
m}σ∈{0,1} to A1.

A1 can repeat this process polynomially many times.

3. A1 generates (sk0, sk1)← KeyGen(1λ) and chooses two triples of messages (x0, y0, z0) ∈M3 and (x1, y1, z1) ∈
M3, and sends (sk0, sk1, {xσ, yσ, zσ}σ∈{0,1}) to the challenger.

4. The challenger generates (x, y, z)←M3. The challenger computes

(vk0
x, CT0

x)← Enc(sk0, x), (vk1
x, CT1

x)← Enc(sk′1, x⊕ xb)
(vk0

y, CT0
y)← Enc(sk′0, y), (vk1

y, CT1
y)← Enc(sk1, y ⊕ yb)

(vk0
z, CT0

z)← Enc(sk′0, z), (vk1
z, CT1

z)← Enc(sk′1, z ⊕ zb)

and sends {CTσ
x , CTσ

y , CTσ
z }σ∈{0,1} to A1.

5. A1 can call encryption queries. More formally, it can do the followings: A1 chooses β ∈ {0, 1}, sk ∈ SK and
m ∈M. A1 sends (β, sk, m) to the challenger.

• If β = 0, the challenger generates m∗ ←M, computes (vk0
m, CT0

m)← Enc(sk′0, m∗) and (vk1
m, CT1

m)←
Enc(sk, m⊕m∗), and sends {vkσ

m, CTσ
m}σ∈{0,1} to A1.

• If β = 1, the challenger generates m∗ ← M, computes (vk1
m, CT1

m) ← Enc(sk′1, m ⊕ m∗) and
(vk0

m, CT0
m)← Enc(sk, m∗), and sends {vkσ

m, CTσ
m}σ∈{0,1} to A1.

A1 can repeat this process polynomially many times.

6. A1 sends {certσ
x , certσ

y , certσ
z }σ∈{0,1} to the challenger, and sends the internal state to A2.
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7. The challenger computes Vrfy(vkσ
x , certσ

x), Vrfy(vkσ
y , certσ

y ) and Vrfy(vkσ
z , certσ

z ) for each σ ∈ {0, 1}. If all
results are ⊤, then the challenger outputs ⊤, and sends {sk′σ}σ∈{0,1} to A2. Otherwise, the challenger outputs
⊥, and sends ⊥ to A2.

8. A2 outputs b′ ∈ {0, 1}.

9. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

If the Σ satisfies the certified everlasting IND-CPA security,

Advparallel-cert-ever
Σ,A (λ) :=

∣∣∣Pr
[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
− Pr

[
Expparallel-cert-ever

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ)

for any QPT adversary A1 and any unbounded adversary A2.

Proof of Lemma B.3. We define the following hybrid experiment.

Hyb1: This is identical to Expparallel-cert-ever
Σ,A (λ, 0) except that the challenger encrypts (x0, y0, z1) instead of encrypting

(x0, y0, z0).

Hyb2: This is identical to Hyb1 except that the challenger encrypts (x0, y1, z1) instead of encrypting (x0, y0, z1).

Lemma B.3 easily follows from the following Propositions B.4 to B.6 (whose proof is given later.).

Proposition B.4. If Σ is certified everlasting IND-CPA secure, it holds that
∣∣∣Pr

[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
− Pr[Hyb1 = 1]

∣∣∣ ≤
negl(λ).

Proposition B.5. If Σ is certified everlasting IND-CPA secure, it holds that |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proposition B.6. If Σ is certified everlasting IND-CPA secure, it holds that
∣∣∣Pr[Hyb2 = 1]− Pr

[
Expparallel-cert-ever

Σ,A (λ, 1) = 1
]∣∣∣ ≤

negl(λ).

Proof of Proposition B.4. We assume that
∣∣∣Pr

[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
− Pr[Hyb1(1) = 1]

∣∣∣ is non-negligible,
and construct an adversary B that breaks the security experiment of Expcert-ever-ind-cpa

Σ,B (λ, b). This contradicts the
certified everlasting IND-CPA security of Σ. Let us describe how B works.

1. The challenger of Expcert-ever-ind-cpa
Σ,B (λ, b) generates sk′0 ← KeyGen(1λ), and B generates sk′1 ← KeyGen(1λ).

2. A1 chooses β ∈ {0, 1}, sk ∈ K andm ∈M. A1 sends (β, sk, m) to B.

• If β = 0, B generates m∗ ←M, sends m∗ to the challenger, receives (vk0
m, CT0

m) from the challenger,
computes (vk1

m, CT1
m)← Enc(sk, m⊕m∗), and sends {vkσ

m, CTσ
m}σ∈{0,1} to A1.

• If β = 1, B generates m∗ ← M, computes (vk1
m, CT1

m) ← Enc(sk′1, m ⊕ m∗) and (vk0
m, CT0

m) ←
Enc(sk, m∗) and sends {vkσ

m, CTσ
m}σ∈{0,1} to A1.

B repeats this process when (β, sk, m) is sent from A1.

3. B receives (sk0, sk1, {xσ, yσ, zσ}σ∈{0,1}) from A1.

4. B generates (x, y, z)←M3. B computes

(vk0
x, CT0

x)← Enc(sk0, x), (vk1
x, CT1

x)← Enc(sk′1, x⊕ x0),
(vk1

y, CT1
y)← Enc(sk1, y ⊕ y0),

(vk1
z, CT1

z)← Enc(sk′1, z ⊕ z0).

5. B setsm0 := z andm1 := z ⊕ z0 ⊕ z1. B sends (m0, m1) to the challenger.
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6. The challenger computes (vk0
z, CT0

z)← Enc(sk′0, mb), and sends CT0
z to B.

7. B sends an encryption query y to the challenger, and receives (vk0
y, CT0

y).

8. B sends {CTσ
x , CTσ

y , CTσ
z }σ∈{0,1} to A1.

9. A1 chooses β ∈ {0, 1}, sk ∈ K andm ∈M. A1 sends (β, sk, m) to B.

• If β = 0, B generates m∗ ←M, sends m∗ to the challenger, receives (vk0
m, CT0

m) from the challenger,
computes (vk1

m, CT1
m)← Enc(sk, m⊕m∗), and sends {vkσ

m, CTσ
m}σ∈{0,1} to A1.

• If β = 1, B generates m∗ ← M, computes (vk1
m, CT1

m) ← Enc(sk′1, m ⊕ m∗) and (vk0
m, CT0

m) ←
Enc(sk, m∗) and sends {vkσ

m, CTσ
m}σ∈{0,1} to A1.

B repeats this process when (β, sk, m) is sent from A1.

10. A1 sends {certσ
x , certσ

y , certσ
z }σ∈{0,1} to B, and sends the internal state to A2.

11. B sends cert0
z to the challenger, and receives sk′0 or ⊥ from the challenger. If B receives ⊥, it outputs ⊥ and

aborts.

12. B sends {sk′σ}σ∈{0,1} to A2.

13. A2 outputs b′.

14. B computes Vrfy(vkσ
x , certσ

x) and Vrfy(vkσ
y , certσ

y ) for each σ ∈ {0, 1}, and Vrfy(vk1
z, cert1

z). If all results are ⊤,
B outputs b′. Otherwise, B outputs ⊥.

It is clear that Pr[1← B|b = 0] = Pr
[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
. Since z is uniformly distributed, (z, z ⊕ z1) and

(z⊕z0⊕z1, z⊕z0) are identically distributed. Therefore, it holds thatPr[1← B|b = 1] = Pr[Hyb1 = 1]. By assumption,∣∣∣Pr
[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
− Pr[Hyb1 = 1]

∣∣∣ is non-negligible, and therefore |Pr[1← B|b = 0]− Pr[1← B|b = 1]|
is non-negligible, which contradicts the certified everlasting IND-CPA security of Σcesk.

Proof of Proposition B.5. The proof is very similar to that of Proposition B.4. Therefore we skip the proof.

Proof of Proposition B.6. The proof is very similar to that of Proposition B.4. Therefore, we skip the proof.

C Proof of Theorem 7.10
Proof of Theorem 7.10. Let us describe how the simulator Sim works.

Sim(MPK,V, 1|m|):

1. ParseMPK = {pke.pki,α}i∈[s],α∈{0,1} and V = {f(m), f, (f, {pke.ski,f [i]}i∈[s])} or ∅.
2. If V = ∅, generate f ← {0, 1}s.
3. Generate {Li,α}i∈[s],α∈{0,1} ← GC.Samp(1λ) and L∗

i,f [i]⊕1 ← L for every i ∈ [s].

4. Compute (Ũ , gc.vk)← GC.Sim(1λ, 1|f |, U(f, m), {Li,f [i]}i∈[s]).
5. Compute (pke.vki,f [i], pke.CTi,f [i])← PKE.Enc(pke.pki,f [i], Li,f [i]) and (pke.vki,f [i]⊕1, pke.CTi,f [i]⊕1)←

PKE.Enc(pke.pki,f [i]⊕1, L∗
i,f [i]⊕1) for every i ∈ [s].

6. Output vk := (gc.vk, {pke.vki,α}i∈[s],α∈{0,1}) and CT := (Ũ , {pke.CTi,α}i∈[s],α∈{0,1}).

Let us define the sequence of hybrids as follows.

Hyb0: This is identical to Expcert-ever-non-adapt
Σcefe,A (λ, 0).
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1. The challenger generates (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for every i ∈ [s] and α ∈ {0, 1}, and
sends {pke.pki,α}i∈[s],α∈{0,1} to A1.

2. A1 is allowed to call a key query at most one time. If a key query is called, the challenger receives an
function f from A1, and sends (f, {pke.ski,f [i]}i∈[s]) to A1.

3. A1 choosesm ∈M, and sendsm to the challenger.
4. The challenger computes {Li,α}i∈[s],α∈{0,1} ← GC.Samp(1λ), (Ũ , gc.vk)← GC.Grbl(1λ, U(·, m), {Li,α}i∈[s],α∈{0,1}),
and (pke.vki,α, pke.CTi,α) ← PKE.Enc(pke.pki,α, Li,α) for every i ∈ [s] and α ∈ {0, 1}, and sends
(Ũ , {pke.CTi,α}i∈[s],α∈{0,1}) to A1.

5. A1 sends (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}) to the challenger, and sends its internal state to A2.
6. If ⊤ ← GC.Vrfy(gc.vk, gc.cert), and ⊤ ← PKE.Vrfy(pke.vki,α, pke.certi,α) for every i ∈ [s] and

α ∈ {0, 1}, the challenger outputs ⊤, and sends {pke.ski,α}i∈[s],α∈{0,1} to A2. Otherwise, the challenger
outputs ⊥, and sends ⊥ to A2.

7. A2 outputs b′. If the challenger outputs ⊤, the output of the experiment is b′. Otherwise, the output of the
experiment is ⊥.

Hyb1: This is identical to Hyb0 except for the following four points. First, the challenger generates f ∈ {0, 1}s if a
key query is not called in step 2. Second, the challenger randomly generates L∗

i,f [i]⊕1 ← L for every i ∈ [s]
and {Li,α}i∈[s],α∈{0,1} ← GC.Samp(1λ) in step 2 regardless of whether a key query is called or not. Third, the
challenger does not compute {Li,α}i∈[s],α∈{0,1} ← GC.Samp(1λ) in step 4. Fourth, the challenger computes
(pke.vki,f [i]⊕1, pke.CTi,f [i]⊕1) ← PKE.Enc(pke.pki,f [i]⊕1, L∗

i,f [i]⊕1) for every i ∈ [s] instead of computing
(pke.vki,f [i]⊕1, pke.CTi,f [i]⊕1)← PKE.Enc(pke.pki,f [i]⊕1, Li,f [i]⊕1) for every i ∈ [s].

Hyb2: This is identical toHyb1 except for the following point. The challenger computes (Ũ , gc.vk)← GC.Sim(1λ, 1|f |,

U(f, m), {Li,f [i]}i∈[s]) instead of computing (Ũ , gc.vk)← GC.Grbl(1λ, U(·, m), {Li,α}i∈[s],α∈{0,1}).

From the definition ofExpcert-ever-non-adapt
Σcefe,A (λ, b) andSim, it is clear thatPr[Hyb0 = 1] = Pr

[
Expcert-ever-non-adapt

Σcefe,A (λ, 0) = 1
]

and Pr[Hyb2 = 1] = Pr
[
Expcert-ever-non-adapt

Σcefe,A (λ, 1) = 1
]
. Therefore, Theorem 7.10 easily follows from the following

Propositions C.1 and C.2. (whose proof is given later.)

Proposition C.1. If Σcepk satisfies the certified everlasting IND-CPA security,

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).

Proposition C.2. If Σcegc satisfies the certified everlasting selective security,

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proof of Proposition C.1. For the proof, we use Lemma A.3 whose statement and proof is given in Appendix A. We
assume that |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is non-negligible, and construct an adversary B that breaks the security
experiment of Expmulti-cert-ever

Σcepk,B (λ, b) defined in Lemma A.3. This contradicts the certified everlasting IND-CPA of Σcepk
from Lemma A.3. Let us describe how B works below.

1. B receives {pke.pki,α}i∈[s],α∈{0,1} from the challenger ofExpmulti-cert-ever
Σcepk,B (λ, b), and sends{pke.pki,α}i∈[s],α∈{0,1}

to A1.

2. A1 is allowed to call a key query at most one time. If a key query is called, B receives an function f from A1,
generates L∗

i,f [i]⊕1 ← L for every i ∈ [s] and {Li,α}i∈[s],α∈{0,1} ← GC.Samp(1λ). If a key query is not called,
B generates f ← {0, 1}s, L∗

i,f [i]⊕1 ← L for every i ∈ [s] and {Li,α}i∈[s],α∈{0,1} ← GC.Samp(1λ).

3. B sends (f, L1,f [1]⊕1, L2,f [2]⊕1, · · · , Ls,f [s]⊕1, L∗
1,f [1]⊕1, L∗

2,f [2]⊕1, · · · , L∗
s,f [s]⊕1) to the challenger ofExpmulti-cert-ever

Σcepk,B (λ, b).
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4. B receives ({pke.ski,f [i]}i∈[s], {pke.CTi,f [i]⊕1}i∈[s]) from the challenger. If a key query is called, B sends
(f, {pke.ski,f [i]}i∈[s]) to A1.

5. A1 choosesm ∈M, and sendsm to B.

6. B computes (Ũ , gc.vk)← GC.Grbl(1λ, U(·, m), {Li,α}i∈[s],α∈{0,1}) and (pke.vki,f [i], pke.CTi,f [i])← PKE.Enc(
pke.pki,f [i], Li,f [i]) for every i ∈ [s], and sends (Ũ , {pke.CTi,α}i∈[s],α∈{0,1}) to A1.

7. A1 sends (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}) to B, and sends its internal state to A2.

8. B sends {pke.certi,f [i]⊕1}i∈[s] to the challenger, and receives {pke.ski,f [i]⊕1}i∈[s] or ⊥ from the challenger. If B
receives ⊥ from the challenger, it outputs ⊥ and aborts.

9. B sends {pke.ski,α}i∈[s],α∈{0,1} to A2.

10. A2 outputs b′.

11. B computes GC.Vrfy for gc.cert and PKE.Vrfy for all {pke.certi,f [i]}i∈[s], and outputs b′ if all results are ⊤.
Otherwise, B outputs ⊥.

It is clear thatPr[1← B|b = 0] = Pr[Hyb0 = 1] andPr[1← B|b = 1] = Pr[Hyb1 = 1]. By assumption, |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]|
is non-negligible, and therefore |Pr[1← B|b = 0]− Pr[1← B|b = 1]| is non-negligible, which contradicts the certified
everlasting IND-CPA security of Σcepk from Lemma A.3.

Proof of Proposition C.2. Weassume that |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| is non-negligible, and construct an adversary
B that breaks the certified everlasting selective security of Σcegc. Let us describe how B works below.

1. B generates (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for every i ∈ [s] andα ∈ {0, 1}, and sends{pke.pki,α}i∈[s],α∈{0,1}
to A1.

2. A1 is allowed to call a key query at most one time. If a key query is called, B receives an function f from A1,
generates L∗

i,f [i]⊕1 ← L for every i ∈ [s], and sends (f, {pke.ski,f [i]}i∈[s]) to A1. If a key query is not called, B
generates f ← {0, 1}s and L∗

i,f [i]⊕1 ← L for every i ∈ [s].

3. A1 choosesm ∈M, and sendsm to B.

4. B sends a circuit U(·, m) and an input f ∈ {0, 1}s to the challenger of Expcert-ever-selct
B,Σcegc

(1λ, b).

5. The challenger computes {Li,α}i∈[s],α∈{0,1} ← GC.Samp(1λ) and does the following:

• If b = 0, the challenger computes (Ũ , gc.vk) ← GC.Grbl(1λ, U(·, m), {Li,α}i∈[s],α∈{0,1}), and sends
(Ũ , {Li,f [i]}i∈[s]) to B.

• If b = 1, the challenger computes (Ũ , gc.vk) ← GC.Sim(1λ, 1|f |, U(f, m), {Li,f [i]}i∈[s]), and sends
(Ũ , {Li,f [i]}i∈[s]) to B.

6. B computes (pke.vki,f [i], pke.CTi,f [i])← PKE.Enc(pke.pki,f [i], Li,f [i]) and (pke.vki,f [i]⊕1, pke.CTi,f [i]⊕1)←
PKE.Enc(pke.pki,f [i]⊕1, L∗

i,f [i]⊕1) for every i ∈ [s].

7. B sends (Ũ , {pke.CTi,α}i∈[s],α∈{0,1}) to A1.

8. A1 sends (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}) to the challenger, and sends its internal state to A2.

9. B sends gc.cert to the challenger, and receives ⊤ or ⊥ from the challenger. If B receives ⊥ from the challenger, it
outputs ⊥ and aborts.

10. B sends {pke.ski,α}i∈[s],α∈{0,1} to A2.
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11. A2 outputs b′.

12. B computes PKE.Vrfy for all pke.certi,α, and outputs b′ if all results are ⊤. Otherwise, B outputs ⊥.

It is clear thatPr[1← B|b = 0] = Pr[Hyb1 = 1] andPr[1← B|b = 1] = Pr[Hyb2 = 1]. By assumption, |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]|
is non-negligible, and therefore |Pr[1← B|b = 0]− Pr[1← B|b = 1]| is non-negligible, which contradicts the certified
everlasting selective security of Σcegc.

D Proof of Theorem 7.12
Proof of Theorem 7.12. For a given 2n-qubit, let A be the n-qubit of the first half of the 2n-qubit, and let B be the
n-qubit of the second half of the 2n-qubit. Let NAD.Sim be the simulating algorithm of the ciphertext nad.CT . Let us
describe how the simulator Sim = (Sim1, Sim2, Sim3) works below.

Sim1(MPK,V, 1|m|):

1. ParseMPK = (nad.MPK, nce.pk) and V = (f, f(m), (nad.skf , nce.sk)) or ∅. 4
2. Sim1 does the following:

• If V = ∅, generate
∣∣∣0̃n0n

〉
and (nce.vk, ñce.CT, nce.aux) ← NCE.Fake(nce.pk). Let ΨA :=

TrB(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣) and ΨB := TrA(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣). Output CT := (ΨA, ñce.CT) and st :=
(nce.aux, nce.pk, nad.MPK, ΨB , 1|m|, nce.vk, 0).

• IfV = (f, f(m), (nad.skf , nce.sk)), generatea, c← {0, 1}n, (nce.vk, nce.CT)← NCE.Enc(nce.pk, (a, c)),
(nad.vk, nad.CT) ← NAD.Sim(nad.MPK, (f, f(m), nad.skf ), 1|m|) and Ψ := ZcXanad.CTXaZc.
Output CT := (Ψ, nce.CT) and st := (nad.vk, nce.vk, a, c, 1).

Sim2(MSK, f, f(m), st):

1. ParseMSK := (nad.MSK, nce.MSK) and st = (nce.aux, nce.pk, nad.MPK, ΨB , 1|m|, nce.vk, 0).
2. Compute nad.skf ← NAD.KeyGen(nad.MSK, f).
3. Compute (nad.vk, nad.CT)← NAD.Sim(nad.MPK, (f, f(m), nad.skf ), 1|m|). Measure the i-th qubit of

nad.CT and ΨB in the Bell basis and let (xi, zi) be the measurement outcome for all i ∈ [N ].

4. Compute ñce.sk← NCE.Reveal(nce.pk, nce.MSK, nce.aux, (x, z)).

5. Output skf := (nad.skf , ñce.sk) and st′ := (nad.vk, nce.vk, x, z, 1).

Sim3(st∗):

1. Parse st∗ = (nad.vk, nce.vk, x∗, z∗, 1) or st∗ = (nce.aux, nce.pk, nad.MPK, ΨB , 1|m|, nce.vk, 0).
2. Sim3 does the following:

• If the final bit of st∗ is 0, compute (nad.vk, nad.CT)← NAD.Sim(nad.MPK, ∅, 1|m|). Measure the
i-th qubit of nad.CT and ΨB in the Bell basis and let (xi, zi) be the measurement outcome for all
i ∈ [N ]. Output vk := (nad.vk, nce.vk, x, z).

• If the final bit of st∗ is 1, output vk := (nad.vk, nce.vk, x∗, z∗).

Let us define the sequence of hybrids as follows.

Hyb0: This is identical to Expcert-ever-adapt
Σcefe,A

(0).

4If an adversary calls a key query before the adversary receives a challenge ciphertext, then V = (f, f(m), (nad.skf , nce.sk)). Otherwise,
V = ∅.
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1. The challenger generates (nad.MPK, nad.MSK)← NAD.Setup(1λ) and (nce.pk, nce.MSK)← NCE.Setup(1λ),
and sends (nad.MPK, nce.pk) to A1.

2. A1 is allowed to make an arbitrary key query at most one time. For a key query, the challenger receives
f ∈ F , computes nad.skf ← NAD.KeyGen(nad.MSK, f) and nce.sk ← NCE.KeyGen(nce.MSK), and
sends (nad.skf , nce.sk) to A1.

3. A1 choosesm ∈M, and sendsm to the challenger.
4. The challenger generates a, c← {0, 1}n, computes (nad.vk, nad.CT)← NAD.Enc(nad.MPK, m), Ψ :=

ZcXanad.CTXaZc and (nce.vk, nce.CT)← NCE.Enc(nce.pk, (a, c)), and sends (Ψ, nce.CT) to A1.
5. If a key query is not called in step 2, A1 is allowed to make an arbitrary key query at most one time.
For a key query, the challenger receives f ∈ F , computes nad.skf ← NAD.KeyGen(nad.MSK, f) and
nce.sk← NCE.KeyGen(nce.MSK), and sends (nad.skf , nce.sk) to A1.

6. A1 sends (nad.cert, nce.cert) to the challenger and its internal state to A2.
7. The challenger computes nad.cert∗ ← NAD.Modify(a, c, nad.cert). The challenger computes NCE.Vrfy(

nce.vk, nce.cert) and NAD.Vrfy(nad.vk, nad.cert∗). If the results are ⊤, the challenger outputs ⊤ and
sends (nad.MSK, nce.MSK) to A2. Otherwise, the challenger outputs ⊥ and sends ⊥ to A2.

8. A2 outputs b′. The output of the experiment is b′ if the challenger outputs ⊤. Otherwise, the output of the
experiment is ⊥.

Hyb1: This is different from Hyb0 in the following second points. First, when a key query is not called in step 2, the
challenger computes (nce.vk, ñce.CT, nce.aux)← NCE.Fake(nce.pk) and sends (Ψ, ñce.CT) to A1 instead of
computing (nce.vk, nce.CT)← NCE.Enc(nce.pk, (a, c)) and sending (Ψ, nce.CT) to A1. Second, in step 5, the
challenger computes ñce.sk ← NCE.Reveal(nce.pk, nce.MSK, nce.aux, (a, c)) and sends (nad.skf , nce.sk) to
A1 instead of computing nce.sk← NCE.KeyGen(nce.MSK) and sending (nad.skf , nce.sk) to A1.

Hyb2: This is different from Hyb1 in the following three points. First, when a key query is not called in step
2, the challenger generates

∣∣∣0̃n0n
〉
instead of generating a, c ← {0, 1}n and Ψ = ZcXanad.CTXaZc. Let

ΨA := TrB(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣) and ΨB := TrA(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣). Second, when a key query is not called in step
2, the challenger sends (ΨA, ñce.CT) to A1 instead of sending (Ψ, ñce.CT) to A1 and then that measures the
i-th qubit of nad.CT and ΨB in the Bell basis for all i ∈ [n]. Let (xi, zi) be the measurement outcome for
all i ∈ [n]. Third, the challenger computes ñce.sk ← NCE.Reveal(nce.pk, nce.MSK, nce.aux, (x, z)) instead
of computing ñce.sk ← NCE.Reveal(nce.pk, nce.MSK, nce.aux, (a, c)) in step 5 and computes nad.cert∗ ←
NAD.Modify(x, z, nad.cert) instead of computing nad.cert∗ ← NAD.Modify(a, c, nad.cert) in step 7.

Hyb3: This is different from Hyb2 in the following three points. First, when a key query is not called in step 2,
the challenger does not generate (nad.vk, nad.CT) ← NAD.Enc(nad.MPK, m) and measure the i-th qubit of
nad.CT and ΨB in the Bell basis in step 4. Second, if a key query is called in step 5, the challenger computes
(nad.vk, nad.CT)← NAD.Enc(nad.MPK, m) and measures the i-th qubit of nad.CT and ΨB in the Bell basis
for all i ∈ [n] after it computes nad.skf ← NAD.KeyGen(nad.MSK, f). Third, if a key query is not called
throughout the experiment, the challenger computes (nad.vk, nad.CT)← NAD.Enc(nad.MPK, m), measures
the i-th qubit of nad.CT and ΨB in the Bell basis after step 5.

Hyb4: This is identical toHyb3 except that the challenger computes (nad.vk, nad.CT)← NAD.Sim(nad.MPK,V, 1|m|)
instead of computing (nad.vk, nad.CT) ← NAD.Enc(nad.MPK, m), where V = (f, f(m), nad.skf ) if a key
query is called and V = ∅ if a key query is not called.

From the definition of Expcert-ever-adapt
Σcefe,A (λ, b) and Sim = (Sim1, Sim2, Sim3), it is clear that Pr[Hyb0 = 1] =

Pr
[
Expcert-ever-adapt

Σcefe,A (λ, 0) = 1
]
and Pr[Hyb4 = 1] = Pr

[
Expcert-ever-adapt

Σcefe,A (λ, 1) = 1
]
. Therefore, Theorem 7.12 easily

follows from Propositions D.1 to D.4. (Whose proof is given later.)
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Proposition D.1. If Σcence is certified everlasting RNC secure, it holds that

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).

Proposition D.2.

Pr[Hyb1 = 1] = Pr[Hyb2 = 1].

Proposition D.3.

Pr[Hyb2 = 1] = Pr[Hyb3 = 1].

Proposition D.4. If Σcegc is certified everlasting selective secure, it holds that

|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ negl(λ).

Proof of Proposition D.1. When an adversarymakes key queries in step 2, it is clear thatPr[Hyb0 = 1] = Pr[Hyb1 = 1].
Hence, we consider the case where the adversary does not make a key query in step 2 below.
We assume that |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is non-negligible, and construct an adversary B that breaks the

certified everlasting RNC security of Σcence. Let us describe how B works below.

1. B receivesnce.pk from the challenger ofExpcert-ever-rec-nc
Σcence,B (λ, b), generates (nad.MPK, nad.MSK)← NAD.KeyGen(1λ),

and sends (nad.MPK, nce.pk) to A1.

2. B receives a message m ∈ M, computes (nad.vk, nad.CT) ← NAD.Enc(nad.MPK, m), generates a, c ←
{0, 1}n, computes Ψ := ZcXanad.CTXaZc, sends (a, c) to the challenger, receives (nce.CT∗, nce.sk∗) from
the challenger, and sends (Ψ, nce.CT∗) to A1.

3. A1 is allowed to send a key query at most one time. For a key query, B receives an function f , generates
nad.skf ← NAD.KeyGen(nad.MSK, f), and sends (nad.skf , nce.sk∗) to A1.

4. A1 sends (nad.cert, nce.cert) to B and its internal state to A2.

5. B sends nce.cert to the challenger, and receives nce.MSK or ⊥ from the challenger. B computes nad.cert∗ ←
NAD.Modify(a, c, nad.cert) and NAD.Vrfy(nad.vk, nad.cert∗). If the result is ⊤ and B receives nce.MSK from
the challenger, B sends (nad.MSK, nce.MSK) to A2. Otherwise, B outputs ⊥, sends ⊥ to A2, and aborts.

6. A2 outputs b′.

7. B outputs b′.

It is clear thatPr[1← B|b = 0] = Pr[Hyb0 = 1] andPr[1← B|b = 1] = Pr[Hyb1 = 1]. By assumption, |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]|
is non-negligible, and therefore |Pr[1← B|b = 0]− Pr[1← B|b = 1]| is non-negligible, which contradicts the certified
everlasting RNC security of Σcence.

Proof of Proposition D.2. We clarify the difference between Hyb1 and Hyb2. First, in Hyb2, the challenger uses
(x, z) instead of using (a, c) as in Hyb1. Second, in Hyb2, the challenger sends ΨA to A1 instead of sending
ZcXanad.CTXaZc to A1 as in Hyb1. Hence, it is sufficient to prove that x and z are uniformly randomly distributed
and ΨA is identical to ZzXxnad.CTXxZz . These two things are obvious from Lemma 2.2.

Proof of Proposition D.3. The difference betweenHyb2 andHyb3 is only the order of operating the algorithmNAD.Enc
and the Bell measurement on nad.CT and ΨB . Therefore, it is clear that the probability distribution of the ciphertext
and the decryption key given to the adversary in Hyb2 is identical to that the ciphertext and the decryption key given to
the adversary in Hyb3.

Proof of Proposition D.4. We assume that |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| is non-negligible, and construct an adver-
sary B that breaks the 1-bounded certified everlasting non-adaptive security of Σnad. Let us describe how B works
below.
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1. B receives nad.MPK from the challenger of Expcert-ever-non-adapt
Σnad,B (λ, b), generates (nce.pk, nce.MSK) ←

NCE.Setup(1λ), and sends (nad.MPK, nce.pk) to A1.

2. A1 is allowed to call a key query at most one time. For a key query, B receives f from A1, sends f to the
challenger as a key query, receives nad.skf from the challenger, computes nce.sk← NCE.KeyGen(nce.MSK),
and sends (nad.skf , nce.sk) to A1.

3. A1 choosesm ∈M and sendsm to B.

4. B does the following.

• If a key query is called in step 2, B sends a challenge query m to the challenger, receives nad.CT
from the challenger, generates a, c ← {0, 1}n, Ψ := ZcXanad.CTXaZc and (nce.vk, nce.CT) ←
NCE.Enc(nce.pk, (a, c)), and sends (Ψ, nce.CT) to A1.

• If a key query is not called in step 2, B generates
∣∣∣0̃n0n

〉
. Let ΨA := TrB(

∣∣∣0̃n0n
〉 〈

0̃n0n
∣∣∣) and

ΨB := TrA(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣). B computes (nce.vk, ñce.CT, nce.aux) ← NCE.Fake(nce.pk) and sends

(ΨA, ñce.CT) to A1.

5. If a key query is not called in step 2, A1 is allowed to make a key query at most one time. If B receives an
function f as key query, B sends f to the challenger as key query, and receives nad.skf from the challenger.
B sends a challenge query m to the challenger, receives nad.CT, measures the i-th qubit of nad.CT and
ΨB in the Bell basis, and let (xi, zi) be the measurement outcome for all i ∈ [n]. B computes ñce.sk ←
NCE.Reveal(nce.pk, nce.MSK, nce.aux, (x, z)) and sends (nad.skf , ñce.sk) to A1.

6. If B does not receive a key query throughout the experiment, B sends a challenge query m to the challenger,
receives nad.CT, and measures the i-th qubit of nad.CT and ΨB in the Bell basis and let (xi, zi) be the
measurement outcome for all i ∈ [n].

7. A1 sends (nad.cert, nce.cert) to B and its internal state to A2.

8. B computes nad.cert∗ ← NAD.Modify(x∗, z∗, nad.cert), where (x∗, z∗) = (a, c) if a key query is called in
step 2 and (x∗, z∗) = (x, z) if a key query is not called in step 2. B sends nad.cert to the challenger, and receives
nad.MSK or ⊥ from the challenger. B computes NCE.Vrfy(nce.vk, nce.cert). If the result is ⊤ and B receives
nad.MSK from the challenger, B sends (nad.MSK, nce.MSK) to A2. Otherwise, B outputs ⊥, sends ⊥ to A2,
and aborts.

9. A2 outputs b′.

10. B outputs b′.

It is clear that Pr[1← B|b = 0] = Pr[Hyb3 = 1] and Pr[1← B|b = 1] = Pr[Hyb4 = 1]. By assumption,
|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| is non-negligible, and therefore |Pr[1← B|b = 0]− Pr[1← B|b = 1]| is non-negligible,
which contradicts the 1-bounded certified everlasting non-adaptive security of Σnad.

E Proof of Theorem 7.14
Proof of Theorem 7.14. Let us denote the simulating algorithm of Σone as ONE.Sim = ONE.(Sim1, Sim2, Sim3). Let
us describe how the simulator Sim = (Sim1, Sim2, Sim3) works below.

Sim1(MPK,V, 1|x|): Let q∗ be the number of times that A1 has made key queries before it sends a challenge query.

1. ParseMPK := {one.MPKi}i∈[N ] and V := {Cj , Cj(x), (Γj , ∆j , {one.skCj ,∆j ,i}i∈[Γj ])}j∈[q∗].

50



2. Generate a uniformly random set Γi ⊆ [N ] of size Dt + 1 and a uniformly random set∆i ⊆ [S] of size v
for all i ∈ {q∗ + 1, · · · , q}. Let ∆0 := ∅. Let L :=

⋃
i̸=i′(Γi ∩ Γi′). Sim1 aborts if |L| > t or there exists

some i ∈ [q] such that∆i \ (
⋃

j ̸=i ∆j) = ∅.
3. Sim1 uniformly and independently samples ℓ random degree t polynomials µ1, · · · , µℓ whose constant
terms are all 0.

4. Sim1 samples the polynomials ξ1, · · · , ξS as follows for j ∈ [q]:
• fix a∗ ∈ ∆j \ (∆0 ∪ · · · ∪∆j−1);
• for all a ∈ (∆j \ (∆0 ∪ · · · ∪∆j−1)) \ {a∗}, set ξa to be a uniformly random degree Dt polynomial
whose constant term is 0;

• if j ≤ q∗, pick a random degree Dt polynomial ηj(·) whose constant term is Cj(x); if j > q∗, pick
random values for ηj(i) for all i ∈ L;

• the evaluation of ξa∗ on the points in L is defined by the relation:

ηj(·) = Cj(µ1(·), · · · , µℓ(·)) +
∑

a∈∆j

ξa(·).

• Finally, for all a /∈ (∆1 ∪ · · · ∪∆q), set ξa to be a uniformly random degree Dt polynomial whose
constant term is 0.

5. For each i ∈ L, Sim1 computes

(one.vki, one.CTi)← ONE.Enc(one.MPKi, (µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))).

6. For each i /∈ L, Sim1 does the following:
• If i ∈ Γj for some j ∈ [q∗] 5, computes

(one.CTi, one.sti)← ONE.Sim1(one.MPKi, (GCj ,∆j ,i, ηj(i), one.skCj ,∆j ,i), 1|m|).

• If i /∈ Γj for all j ∈ [q∗], computes

(one.CTi, one.sti)← ONE.Sim1(one.MPKi, ∅, 1|m|).

7. OutputCT := {one.CTi}i∈[N ] and st := ({Γi}i∈[q], {∆i}i∈[q], {ηj(i)}j∈{q∗+1,··· ,q},i∈L, {one.sti}i∈[N ]\L,
{one.vki}i∈L).

Sim2(MSK, Cj , Cj(x), st): The simulator simulates the j-th key query for j > q∗.

1. ParseMSK := {one.MSKi}i∈[N ] and stj−1 := ({Γi}i∈[q], {∆i}i∈[q], {ηs(i)}s∈{q∗+1,··· ,q},i∈L, {one.sti}i∈[N ]\L,
{one.vki}i∈L).

2. For each i ∈ Γj ∩ L, generate one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j
).

3. For each i ∈ Γj \ L, generate a random degree Dt polynomial ηj(·) whose constant term is Cj(x) and
subject to the constraints on the values in L chosen earlier, and generate

(one.skCj ,∆j ,i, one.st∗
i )← ONE.Sim2(one.MSKi, ηj(i), GCj ,∆j

, one.sti).

For simplicity, let us denote one.st∗
i as one.sti for i ∈ Γj \ L.

4. Output skCj
:= (Γj , ∆j , {one.skCj ,∆j ,i}i∈Γj

) and stj := ({Γi}i∈[q], {∆i}i∈[q], {ηj(i)}j∈{q∗+1,··· ,q},i∈L,
{one.sti}i∈[N ]\L, {one.vki}i∈L).

Sim3(st∗): The simulator simulates a verification key.

5Note that j is uniquely determined since i /∈ L .
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1. Parse st∗ := ({Γi}i∈[q], {∆i}i∈[q], {ηj(i)}j∈{q∗+1,··· ,q},i∈L, {one.sti}i∈[N ]\L, {one.vki}i∈L).
2. For each i ∈ [N ] \ L, compute one.vki ← ONE.Sim3(one.sti).
3. Output vk := {one.vki}i∈[N ].

Let us define the sequence of hybrids as follows.

Hyb0: This is identical to Expcert-ever-adapt
Σcefe,A (λ, 0).

1. The challenger generates (one.MPKi, one.MSKi)← ONE.Setup(1λ) for i ∈ [N ].
2. A1 is allowed to call key queries at most q times. For the j-th key query, the challenger receives an
function Cj from A1, generates a uniformly random set Γj ∈ [N ] of size Dt + 1 and ∆j ∈ [S] of size
v. For i ∈ Γj , the challenger generates one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j

), and sends
(Γj , ∆j , {one.skCj ,∆j ,i}i∈Γj

) to A1. Let q∗ be the number of times that A1 has called key queries in this
step.

3. A1 chooses x ∈M and sends x to the challenger.
4. The challenger generates a random degree t polynomial µi(·) whose constant term is x[i] for i ∈ [ℓ]
and a random degree Dt polynomial ξi(·) whose constant term is 0. For i ∈ [N ], the challenger
computes (one.vki, one.CTi) ← ONE.Enc(one.MPKi, (µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))), and sends
{one.CTi}i∈[N ] to A1.

5. A1 is allowed to call a key query at most q − q∗ times. For the j-th key query, the challenger receives an
function Cj from A1, generates a uniformly random set Γj ∈ [N ] of size Dt + 1 and ∆j ∈ [S] of size
v. For i ∈ Γj , the challenger generates one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j

), and sends
(Γj , ∆j , {one.skCj ,∆j ,i}i∈Γj ) to A1.

6. A1 sends {one.certi}i∈[N ] to the challenger and its internal state to A2.
7. If⊤ ← ONE.Vrfy(one.vki, one.certi) for all i ∈ [N ], the challenger outputs⊤ and sends {one.MSKi}i∈[N ]
to A2. Otherwise, the challenger outputs ⊥ and sends ⊥ to A2.

8. A2 outputs b.
9. The experiment outputs b if the challenger outputs ⊤. Otherwise, the experiment outputs ⊥.

Hyb1: This is identical to Hyb0 except for the following three points. First, the challenger generates uniformly random
set Γi ∈ [N ] of size Dt + 1 and ∆i ∈ [S] of size v for i ∈ {q∗ + 1, · · · , q} in step 4 instead of generating them
when a key query is called. Second, if |L| > t, the challenger aborts and the experiment outputs ⊥. Third, if
there exists some i ∈ [q] such that∆i \ (

⋃
j ̸=i ∆j) = ∅, the challenger aborts and the experiment outputs ⊥.

Hyb2: This is identical to Hyb1 except that the challenger samples ξ1, · · · , ξS , η1, · · · , ηq as in the simulator Sim1
described above.

Hyb3: This is identical to Hyb2 except that the challenger generates {one.CTi}i∈[N ]\{L}, {one.skCj ,∆j ,i}i∈Γj
for

j ∈ {q∗ + 1, · · · , q′}, and vk := {one.vki}i∈[N ]\{L} as in the simulator Sim = (Sim1, Sim2, Sim3) described
above, where q′ is the number of key queries that the adversary makes in total.

Hyb4: This is identical to Hyb3 except that the challenger generates µ1, · · · , µℓ as in the simulator Sim1 described
above.

From the definition of Expcert-ever-adapt
Σcefe,A (λ, b) and Sim = (Sim1, Sim2, Sim3), it is clear that Pr[Hyb0 = 1] =

Pr
[
Expcert-ever-adapt

Σcefe,A (λ, 0) = 1
]
and Pr[Hyb4 = 1] = Pr

[
Expcert-ever-adapt

Σcefe,A (λ, 1) = 1
]
. Therefore, Theorem 7.14 easily

follows from Propositions E.1 to E.4 (whose proofs are given later).

Proposition E.1.

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).
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Proposition E.2.

Pr[Hyb1 = 1] = Pr[Hyb2 = 1].

Proposition E.3. If Σone is 1-bounded certified everlasting adaptive secure,

|Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ).

Proposition E.4.

Pr[Hyb3 = 1] = Pr[Hyb4 = 1].

Proof of Proposition E.1. Let Hyb
′

0 be the experiment identical to Hyb0 except that the challenger generates a set
Γi ∈ [N ] and ∆i ∈ [S] for i ∈ {q∗ + 1, · · · , q} in step 4. It is clear that Pr[Hyb0 = 1] = Pr

[
Hyb

′

0 = 1
]
.

LetHyb∗
0 be the experiment identical toHyb

′

0 except that it outputs⊥ if |L| > t. It is clear thatPr
[
Hyb

′

0 = 1 ∧ (|L| ≤ t)
]

=
Pr[Hyb∗

0 = 1 ∧ (|L| ≤ t)]. Hence, it holds that∣∣∣Pr
[
Hyb

′

0 = 1
]
− Pr[Hyb∗

0 = 1]
∣∣∣ ≤ Pr[|L| > t]

from Lemma 2.3.
Let Collide be the event that there exists some i ∈ [q] such that ∆i \ (

⋃
j ̸=i ∆j) = ∅. Hyb∗

0 is identical to Hyb1
when Collide does not occur. Hence, it is clear that Pr

[
Hyb∗

0 = 1 ∧ Collide
]

= Pr
[
Hyb1 = 1 ∧ Collide

]
. Therefore, it

holds that

|Pr[Hyb∗
0 = 1]− Pr[Hyb1 = 1]| ≤ Pr[Collide]

from Lemma 2.3.
From the discussion above, we have

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ Pr[|L| > t] + Pr[Collide].

The following Lemmata E.5 and E.6 shows that Pr[|L| > t] ≤ 2−Ω(λ) and Pr[Collide] ≤ q2−Ω(λ), which completes
the proof.

Lemma E.5 ([GVW12]). Let Γ1, · · · , Γq ⊆ [N ] be randomly chosen subsets of size tD + 1. Let t = Θ(q2λ) and
N = Θ(D2q2t). Then,

Pr

∣∣∣∣∣∣
⋃
i ̸=i′

(Γi ∩ Γi)

∣∣∣∣∣∣ > t

 ≤ 2−Ω(λ)

where the probability is over the random choice of the subsets Γ1, · · · , Γq .

Lemma E.6 ([GVW12]). Let ∆1, · · · , ∆q ⊆ [S] be randomly chosen subsets of size v. Let v(λ) = Θ(λ) and
S(λ) = Θ(vq2). Let Collide be the event that there exists some i ∈ [q] such that ∆i\(

⋃
j ̸=i ∆j) = ∅. Then, we have

Pr [Collide] ≤ q2−Ω(λ)

where the probability is over the random choice of subsets ∆1, · · · , ∆q .

Proof of Proposition E.2. In the encryption in Hyb1, ξa∗ is chosen at random and ηj(·) is defined by the relation. Sim
essentially chooses ηj(·) at random which defines ξa∗ . It is easy to see that reversing the order of how the polynomials
are chosen produces the same distribution.
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Proof of Proposition E.3. To prove the proposition, let us define a hybrid experiment Hybs
2 for each s ∈ [N ] as follows.

Hybs
2: This is identical to Hyb2 except for the following three points. First, the challenger generates {one.CTi}i∈[s]\L
as in the simulator Sim1. Second, the challenger generates {one.skCj ,∆j ,i}i∈Γj∩[s] for j ∈ {q∗ + 1, · · · , q′} as in
the simulator Sim2, where q′ is the number of key queries that the adversary makes in total. Third, the challenger
generates {one.vki}i∈[s]\L as in the simulator Sim3.

Let us denote Hyb2 as Hyb0
2. It is clear that Pr

[
HybN

2 = 1
]

= Pr[Hyb3 = 1]. Furthermore, we can show that∣∣Pr
[
Hybs−1

2 = 1
]
− Pr[Hybs

2 = 1]
∣∣ ≤ negl(λ)

for s ∈ [N ]. (Its proof is given later.) From these facts, we obtain Proposition E.3.
Let us show the remaining one. In the case s ∈ L, it is clear that Hybs−1

2 is identical to Hybs
2. Hence, we consider

the case s /∈ L. To show the inequality above, let us assume that
∣∣Pr

[
Hybs−1

2 = 1
]
− Pr[Hybs

2 = 1]
∣∣ is non-negligible.

Then, we can construct an adversary B that can break the 1-bounded certified everlasting adaptive security of Σone as
follows.

1. B receives one.MPK from the challenger of Expcert-ever-adapt
Σone,A (λ, b). B sets one.MPKs := one.MPK.

2. B generates (one.MPKi, one.MSKi)← ONE.Setup(1λ) for all i ∈ [N ] \ s, and sends {one.MPKi}i∈[N ] to A1.

3. A1 is allowed to call key queries at most q times. For the j-th key query, B receives an function Cj from A1,
generates a uniformly random set Γj ∈ [N ] of size Dt + 1 and∆j ∈ [S] of size v. For i ∈ Γj \ s, B generates
one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j

). If s ∈ Γj , B sends GCj ,∆j
to the challenger, receives

one.skCj ,∆j ,s from the challenger, and sends (Γj , ∆j , {one.skCj ,∆j ,i}i∈Γj
) toA1. Let q∗ be the number of times

that A1 has called key queries in this step.

4. A1 chooses x ∈M, and sends x to B.

5. B generates uniformly random set Γi ∈ [N ] of size Dt + 1 and ∆i ∈ [S] of size v for i ∈ {q∗ + 1, · · · , q}. B
generates a random degree t polynomial µi(·) whose constant term is x[i] for i ∈ [ℓ], and ξ1, · · · , ξS , η1, · · · , ηq

as in the simulator Sim1. For i ∈ [s − 1] \ L, B generates one.CTi as in the simulator Sim1. For i ∈ {s +
1, · · ·N} ∪ L, B generates (one.vki, one.CTi) ← ONE.Enc(one.MPKi, (µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))).
B sends µ1(s), · · · , µℓ(s), ξ1(s), · · · , ξS(s) to the challenger, and receives one.CTs from the challenger. B sends
{one.CTi}i∈[N ] to A1.

6. A1 is allowed to call key queries at most q − q∗ times. For the j-th key query, B receives an function Cj from
A1. For i ∈ Γj \ [s], B generates one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j

). For i ∈ Γj ∧ [s − 1],
B generates one.skCj ,∆j ,i as in the simulator Sim2. If s ∈ Γj , B sends GCj ,∆j

to the challenger, and receives
one.skCj ,∆j ,s from the challenger. B sends (Γj , ∆j , {one.skCj ,∆j ,i}i∈Γj

) to A1.

7. For i ∈ [s− 1] \ L, B generates one.vki as in the simulator Sim3 6.

8. A1 sends {one.certi}i∈[N ] to B and its internal state to A2.

9. B sends one.certs to the challenger, and receives one.MSKs or⊥ from the challenger. B computesONE.Vrfy(one.vki,
one.certi) for all i ∈ [N ] \ s. If the results are ⊤ and B receives one.MSKs from the challenger, B sends
{one.MSKi}i∈[N ] to A2. Otherwise, B aborts.

10. A2 outputs b′.

11. B outputs b′.

6For i ∈ {s + 1, · · ·N} ∪ L, B generated one.vki in step 5.
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It is clear that Pr[1← B|b = 0] = Pr
[
Hybs−1

2 = 1
]
and Pr[1← B|b = 1] = Pr[Hybs

2 = 1]. By assumption,∣∣Pr
[
Hybs−1

2 = 1
]
− Pr[Hybs

2 = 1]
∣∣ is non-negligible, and therefore |Pr[1← B|b = 0]− Pr[1← B|b = 1]| is non-

negligible, which contradicts the 1-bounded certified everlasting adaptive security of Σone.

Proof of Proposition E.4. In Hyb3, the polynomials µ1, · · · , µℓ are chosen with constant terms x1, · · · , xℓ, respectively.
In Hyb4, these polynomials are now chosen with 0 constant terms. This only affects the distribution of µ1, · · · , µℓ

themselves and polynomials ξ1, · · · , ξS . Moreover, only the evaluations of these polynomials on the points in L affect
the outputs of the experiments. Now observe that:

• The distribution of the values {µ1(i), · · · , µℓ(i)}i∈L are identical to both Hyb3 and Hyb4. This is because in
both experiments, we choose these polynomials to be random degree t polynomials (with different constraints in
the constant term), so their evaluation on the points in L are identically distributed, since |L| ≤ t.

• The values {ξ1(i), · · · , ξS(i)}i∈L depend only on the values {µ1(i), · · · , µℓ(i)}i∈L.

Proposition E.4 follows from these observations.
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