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Abstract. Passwords are the most prevalent authentication mechanism,
and proliferate on nearly every new web service. As users are over-
loaded with the tasks of managing dozens even hundreds of passwords,
accordingly password-based single-sign-on (SSO) schemes have been pro-
posed. In password-based SSO schemes, the authentication server needs
to maintain a sensitive password file, which is an attractive target for
compromise and poses a single point of failure. Hence, the notion of
password-based threshold authentication (PTA) system has been pro-
posed. However, a static PTA system is threatened by perpetual leakage
(e.g., the adversary perpetually compromises servers). In addition, most
of the existing PTA schemes are built on the intractability of conven-
tional hard problems, and become insecure in the quantum era.
In this work, we first propose a threshold oblivious pseudorandom func-

tion (TOPRF) to harden the password so that PTA schemes can resist
offline password guessing attacks. Then, we employ the threshold homo-
morphic aggregate signature (THAS) over lattices to construct the first
quantum-resistant password-based threshold single-sign-on authentica-
tion scheme with the updatable server private key. Our scheme resolves
various issues arising from user corruption and server compromise, and
it is formally proved secure against quantum adversaries. Comparison
results show that our scheme is superior to its counterparts.

Keywords: Password; Single-Sign-On; Threshold Authentication; Obliv-
ious Pseudorandom Function; Lattice.

1 Introduction

Password-based authentication is the most prevalent mechanism for validating
users. Passwords have various advantages of being memorable, convenient, and
regeneration, and it is unlikely to be replaced in the near future [1,2]. However,
recent research reveals that each user has 80∼100 password accounts on average
[3,4]. The management of such an amount of usernames and passwords for di-
verse applications is challenging, and would lead to insecure behaviors like reuse



and writing down [5,6]. Single-sign-on (SSO) reduces this burden [7]. Specifically,
password-based SSO verifies the username and password through a trusted iden-
tity server and generates an access token for the authenticated user [8]. The user
can access various application servers within a specified period of time through
the access token without showing them the password [9].

An inherent limitation of password-based SSO is that the server may become a
single point of failure. When the server is compromised, an overwhelming fraction
of users’ passwords will be exposed, even if passwords are properly stored in
salted-hash or memory-hard functions [10,11]. On the other hand, the adversary
can obtain the master secret key and forge arbitrary tokens that enable access
to arbitrary resources and information in the system [12].

A viable solution to this single point of failure is to employ threshold cryptog-
raphy where a distributed protocol executes on N servers. This is a widely
applied idea in threshold password-authenticated key exchange [13,14] and
threshold password-authenticated secret sharing [15,16]. Agrawal et al. [12] pro-
posed a framework of password-based threshold authentication (PTA) scheme,
called PASTA, which employs the threshold oblivious pseudorandom function
(TOPRF) [17] to ensure password security. However, its inability to actively
update the server’s private key makes it vulnerable to perpetual leakage. Cate-
gorically, the adversary will continuously try to compromise servers and collect
more than threshold shares over a long period of time. Thus the adversary will
forge authentication tokens or even take control of the entire system.

There are various dynamic PTA schemes to solve the perpetual leakage
[18,19,20]. More concretely, Zhang et al. [18] use a key technique to require
all identity servers to share 0 in a distributed way. Each server can renew the
master secret share by adding the additional share of 0. Baum et al. [19] add a
backup key to derive a new master private key based on using 0 sharing. Rawat
et al. [20] extend the function of PASTA and add the function of password up-
date. As we know, most of the existing PTA schemes are built on RSA-based or
pairing-based cryptosystems. Unfortunately, with quantum computers’ continu-
ous development and progress [21,22], all those PTA schemes, which are based
on traditionally intractable problems (e.g., large integer factorization problem
and discrete logarithm problem), are vulnerable to quantum attacks.

In the study of the quantum-resistant schemes, lattice-based schemes are re-
garded as the most promising general-purpose algorithms for public-key encryp-
tion by NIST [23,24]. Many quantum-resistant password-only [25,26] and authen-
ticated key exchange schemes [27,28] have been proposed over lattices. Inspired
by these lattice-based schemes, we believe that the lattice-based scheme is a
promising choice for PTA. However, to the best of our knowledge, there is a lack
of mature components for constructing PTA schemes over lattices, including the
TOPRF for resisting offline password guessing attacks and the threshold homo-
morphism aggregation signature (THAS) for building threshold token generation
(TGG). Thus, the main goal of our solution is to answer the following questions:

Is it possible to design a quantum-resistant dynamic password-based threshold
SSO authentication scheme with TOPRF and THAS over lattices?
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Our answer to the above question is affirmative. Next, we overview the con-
crete results and necessary contributions, showing the high-level ideas and com-
ponents used throughout quantum-resistance PTA schemes.

1.1 Motivation

The large-scale quantum computers can execute Shor’s [29] and Grover’s [30]
algorithms, which will greatly threaten the traditional cryptography system.
Group-based and pair-based cryptographic schemes will no longer be secure.
The standards organizations (e.g., IEEE, IETF, and NIST) have begun to pre-
pare for the collection of quantum-resistant algorithms. According to the plan
of NIST [23,24], the standard of post-quantum cryptography will be available in
2022-2024. In the status report on the third round of the NIST post-quantum
cryptography standardization process [31], the lattice-based algorithm is the
most popular quantum-resistant algorithm (five of the seven algorithms offi-
cially selected for the third round belong to lattice cryptography). The advan-
tages of lattice-based cryptography include: i) The worst-case to average-case
reductions; ii) Both public key encryption and digital signatures are taken into
consideration; iii) The ability to construct complex cryptographic primitives
(e.g., fully homomorphic encryption). With these advantages, we believe that
a quantum-resistant dynamic password-based threshold single-sign-on authenti-
cation scheme can be constructed on the lattice.

In addition, PASTA [12] as the round-optimal PTA scheme reduces the in-
teraction to two flows on the network. If the user enters the correct user-
name4/password, the user can recover the authentication token locally after
the interaction. However, servers do not know the login result of the user, and
the scheme is vulnerable to online dictionary attacks. (Although online password
guessing attacks can be prevented by limiting the login times of a single user, it
is unrealistic to restrict the login times of all users at the same time). A feasible
scheme is to give up the round optimization and calculate the token information
on servers to improve the security, such as the scheme of Zhang et al. [18].

Furthermore, to deal with potential threats in SSO, the PTA scheme needs to
use a series of essential components, including distributed key generation, TTG,
TOPRF, and proactive secret renewal. These components have been widely stud-
ied under the conventional hard problems and can be handily applied to PTA
[12,18,19,20]. However, the lattice-based homomorphic group encryption pro-
vides no support for password re-randomization. In addition, threshold aggre-
gation magnifies noise over lattices that may cause users to derive different au-
thentication information based on a password. These mature research results are
challenging to construct quantum-resistant PTA schemes directly. It is necessary
to use or design lattice-based components.

1.2 Contributions

The above motivations prompt us to design a two-round password-based thresh-
old single-sign-on authentication over lattices, consisting of registration, login

4 For convenience, we write username as ID
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and authentication, server private key renewal, and password update. To sum-
marize, we make the following key contributions.

- We design a threshold homomorphism aggregation signature to construct a
threshold token generation (TTG) protocol.To address the fact that no ma-
ture tool like the BLS [32] over lattices can directly construct TTG schemes,
we use the universal thresholdizer [33] to add a threshold to a lattice-based
aggregate signature, and propose an unforgeable TTG scheme over lattices.

- We improve the oblivious pseudorandom function (OPRF) of Albrecht et al.
[34], and design a new threshold OPRF (TOPRF) over lattices for the first
time. We show the threshold constraints for TOPRF to maintain correctness
over lattices. Furthermore, we prove that unpredictability and obliviousness
are satisfied between the password and the derived authentication informa-
tion. It means that the adversary can neither obtain the corresponding pass-
word through the authentication information, nor predict the authentication
information derived from any password.

- We propose the first password-based threshold single-sign-on authentication
scheme over lattices, based on our TTG and TOPRF constructed above.
Our scheme supports the feature that users update passwords and servers
update private keys. No user assistance is required when the server updates
the private key, and the generated authentication token is not invalidated
after the private key is updated. We evaluate the security of our scheme
under two parameter settings, and make a rigorous security proof based on
the Bellare-Pointcheval-Rogaway (BPR)-like model [35] by the sequences of
games. In addition, we show the computational overhead of each part in
our scheme under different security levels. Comparison results show that our
scheme is superior to its counterparts [9,12,18,19,20].

2 Preliminaries

Notions. For any integer q, there is a polynomial Rq := Zq[X]/ ⟨Xn + 1⟩ in
the power-of-two cyclotomic ring. Let upper-case letter A and lower-case bold
letter x denote matrices and vectors, respectively. ⌊·] indicates that a rational

number is rounded to the nearest natural number. We use x
$← D to denote

the sampling of x according to distribution D. We write x
R← S to indicate

sampling uniformly at random from a finite set S. The notation ≈c to denote
computationally indistinguishable. Finally, κ denote the security parameter.

2.1 Lattices, SIS, and DRLWE

For an m-dimensional lattice Λ = {As|s ∈ Zn} with A ∈ Zm×n for m ≥ n⌈log2q⌉
and the Gaussian distribution as exp(−π (x−c)2

σ2 ), where c is a centre parameter,

we call a distribution χ is (B, δ)-bounded if Pr[x
$← χ||x| ≥ B] ≤ δ.

Definition 1 (SISq,m,n,σ). Let q,m, n, σ > 0 depend on κ. The SISq,m,n,σ prob-
lem is to find a nonzero vector v ∈ Rq of norm ∥v∥ ≤ δ such that Av = 0 ∈ Rq.
More formally, for any probabilistic polynomial-time (PPT) adversary A, we
define the advantage AdvSISA (κ) = |Pr[A(v ≤ δ : Av = 0 ∈ Rq)]| ≤ ε(κ).
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Definition 2 (DRLWEq,m,n,σ, [36]). Let q,m, n, σ > 0 depend on κ. The
DRLWEq,m,n,σ problem is to distinguish between (A,A · s+ ei)i∈[m] ∈ (Rq)

2 and

(A, ri)i∈[m] ∈ (Rq)
2 for A, ri

R← Rq; s, ei
R← R(χσ). For any PPT A, we define

that AdvDRLWE
A (κ) = |Pr[A(q,m, n, σ,A, s)]− Pr[A(q,m, n, σ,A, ri)]| ≤ ε(κ).

2.2 Distributed Key Generation Protocol over Lattices

Since lattice is an infinite additive group, it can not be directly combined with
Shamir secret sharing scheme [37]. Fortunately, we can share elements of a fi-
nite abelian quotient group G with identity element 0 by (t,N)-threshold secret
sharing [38]. Let e(G) denote exponent of G and s ∈ G. We have that:

Definition 3. There is the smallest m ∈ Z+ such that ms = s+ s+ ...+ s = 0,
i.e. s is a module over the ring R = Ze(s). The value s can be share by a formal
polynomial f(X) =

∑t
j=0 fjX

j ∈ S[X] of the maximum degree at t − 1, where
f(0) = s and the f(i) ∈ G for i ∈ [1, N ] are uniformly random and independent.
At least t participants can reconstruct the secret s, there exists an efficiently
computable Lagrange coefficients λi,j ∈ Zq such that s =

∑t
i=1 λi,j · f(i).

To use the above secret sharing over lattices, we also need to set relevant
parameters. Let k ≥ logp(n + 1), where p is the smallest prime divisor of e(G),

we can share s ∈ G among n servers using shares in Gk. By [38], we can use

R = Ze(G)[X]/F (X) for any monic degree-k polynomial F (X) =
∑k

i=0 FiX
i ∈

Ze(G) that is irreducible modulo every prime dividing e(G) that is irreducible
modulo every prime dividing e(G). We write [s]i to denote i-th server’s share
and the tuple of all shares by [s]. By employing integer sampling and MPC, a
distributed server key generation without the trusted center is as follows:

Definition 4. The distributed key generation FKG must contain the following
two polynomial algorithms:

- [si] ← Genshare(Ze(G),Zq) is a probabilistic algorithm that sample a series

of polynomials Fi
$← Ze(G) and generates a series of shares [si]

R← Zq.
- skj ← Genkey(i, j, [si]

j) is a deterministic algorithm that generates secret key

skj =
∑N

i=1[si]
j by receiving n tuple of (i, j, [si]

j). After receiving n numbers

of [si]
j, Sj computes skj =

∑N
i=1[si]

j.

An unknown master secret key msk =
∑t

j=1[s]
0
j that cannot be recovered unless

at least t malicious servers collude.

2.3 Threshold Homomorphic Aggregate Signatures over Lattices

In a PTA scheme, servers generate an authentication token for the user (also
called the client) by executing threshold token generation (TTG). A thresh-
old aggregate signature protocol can construct a Threshold Token Generation
(TTG) scheme. Lattice-based Homomorphic Aggregate Signature (HAS) is a
variant of linear homomorphic signature [?]. Compared with the signature un-
der the traditional cryptography system, its definition is different in detail, so it is
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necessary to define new properties and addition operations. Formally, the defini-
tion of HAS is a tuple of polynomial-timeHAS(Setup, Signski , Combine, V erifycpk)
[39]. But the signature algorithm is not threshold. Dan et al. [33] introduce a
new concept, called a Universal Thresholdizer, from which many threshold sys-
tems are possible. We can transform a non-threshold cryptography scheme into
a threshold cryptography scheme with the Universal Thresholdizer (UT).

A UT scheme is a tuple of algorithms (UT.Setup, UT.Eval, UT.Combine,
UT.V erify) and needs to satisfy the compactness, correctness, and security
properties. Moreover, the verification algorithm of UT needs to satisfy the cor-
rectness and robustness. First, we introduce the Universal Thresholdizer of Dan
et al. [33].

Definition 5 (Universal Thresholdizer). Let P = {P1, ..., PN} be a set of
parties. A universal thresholdizer scheme for S and M is a tuple of PPT algo-
rithms UT = (UT.Setup,UT.Eval,UT.Combine) with the following:

- UT.Setup
(
1κ, 1d,A, x

)
→ (pp, s1, . . . , sN ): On input the security parame-

ter κ, a depth bound d, an access structure A, and a message x ∈ {0, 1}k,
the setup algorithm outputs the public parameters pp, and a set of shares
s1, ..., sN .

- UT.Eval (pp, si, C) → yi : On input the public parameters pp, a share
si, and a circuit C : {0, 1}k → {0, 1} of depth at most d, the evaluation
algorithm outputs a partial evaluation yi.

- UT.Verify (pp, yi, C) → {0, 1} : On input the public parameters pp, a
partial evaluation yi, and a circuit C : {0, 1}k → {0, 1}, the verification
algorithm accepts or rejects.

- UT.Combine (pp, B) → y : On input the public parameters pp, a set of
partial evaluations B = {yi}i ∈ S, the combining algorithm outputs the final
evaluation y.

The UT scheme needs to satisfy the compactness, correctness, and security prop-
erties. Moreover, the UT.Verify need satisfy the correctness and robustness.
Specific attribute definitions and proofs can be found in [33] section 7. We next
review the lattice-based Homomorphic Aggregate Signature (HAS) scheme [39].

Definition 6. The HAS protocol contains the following four algorithms.

– Setup. Input public parameter pp = {κ,N, q,m, n, σ,H, h}, where H :
{0, 1}∗ → ZNm

q be a collision-resistant homomorphic hash function and h is
a lattice-based homomorphic hash function. N servers execute the key gen-
eration algorithm FKG to generate public-private key pairs (pki, ski), where
pki, ski ∈ Zn×m

q . Let PK = {pk1, ...,p kN} ∈ Zn×Nm
q .

– Sign. N servers produce signatures of the message Mi as follows:

- The i-th server calculates Si = ExtendBasis(ski, PK),
- The i-th server calculates hi = h(Mi) mod q ∈ Zn

q ,

- The i-th server output Signi = SamplePre(PK,Si, σ.hi) ∈ ZNm
q .
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– Combine. The aggregate signature Sign =
∑t

i=1 ai · Signi is the combined

message M =
∑t

i=1 ai ·Mi, where ci ∈ {0, 1}.
– Verify. The verifier check PK · h(Sign) = h(M) mod q and ∥Sign∥ ≤

Nσ
√
tm. If both conditions hold, output accept. otherwise, output reject.

In the correctness and security of the aggregate signature scheme, a set of
unique properties need to be considered on the basis of a general linear homo-
morphic signature. i) It is assumed that each verifier is honest. If the signature is
valid, the verifier must accept. ii) For a series of valid signatures, the aggregate
signature can be combined without accessing the server’s private key. The HAS
scheme needs to satisfy the unforgeable and privacy properties in [39] section 4.

By employing the UT technology and HAS protocol, we can realize a threshold
HAS (THAS) protocol as follows:

Definition 7 (THAS). A THAS protocol contains four algorithms:

- (ski, pki)← Setup(1κ, N). Input the security parameter 1κ and the maximum
number of servers N . FKG output a private key ski for each server Si,
i ∈ [1, N ]. Then, Si generates and publish the public key pki.

- Signi ← PartSign(id,mi, ski). For the j-th server, input a message mi of
subspace id and skj. The j-th server outputs the signature Signi on mi.

- Sign ← Combine(id, PK, {λi,mi, Signi}ti=1). For t (t ≤ N) pairs of mes-
sage sharing the same id and the corresponding signature Signi, output the
aggregate signature Sign =

∑t
i=1 λiSigni on message m =

∑t
i=1 λimi .

- (1, 0) ← Verify(id, PK,m, Sign). Given the id, public key PK = {pk1 ∥
... ∥ pkt}, the aggregate message m, and the aggregate signature Sign. If
PK · Sign = h(m) and ∥Sign∥ ≤ nσ

√
tm, the client output 1 or 0.

Remark 1. Notably, the Lagrange coefficients λi ∈ R in the Combine. We can
use “clear out their denominators” [33,40] to limit the Lagrange coefficients to
integer. For N servers, give t (t ≤ N) numbers I1, ..., It ∈ [1, N ]. Define the
Lagrange coefficients λi =

∏t
i ̸=j

−Ii
(Ij−Ii)

. Let the secret space is Zp for a series

of prime p with (N !)3 ≤ p. Then, for every 1 ≤ j ≤ t, the integer Lagrange
coefficients λj = (N !)2 ·

∏t
i ̸=j

−Ii
(Ij−Ii)

is bounded λj ≤ (N !)3.

Correctness. For any message mi, Verify(id, PK,m, Sign) outputs 1 with
overwhelming probability, if Si strictly implement (ski, pki) ← Setup(1κ, N),
Signi ← PartSign(id,mi, ski), and Sign← Combine(id, PK, {λi,mi, Signi}ti=1).

Security. A THAS is secure if the advantage of any PPT A without knowing
more than t secret keys ski to forge a signature Sign∗ is that AdvSISA (κ) ≤ ε(κ).
According to Dan et al. [33],A cannot get Sign by only executing Combine(id, PK,
{λi,mi, Signi}ti=1). For the aggregate signature Sign on M , A can outputs a list
of query messages M = {m1, ...,mQ}, then query Signi ← PartSign(id,mi, ski)
to obtain at least a Signi. By [39,41], the HAS meets unforgeability and binding.
It means that A cannot get the Signi of Si for mi unless A knows ski.
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For a security parameter κ and public parameter pp, the functionality FTOPRF interacts with a set of servers S = {S1, ..., Sn},
an arbitrary client C, and an adversary A. We define Fk(x) as a fix PRF function.Initialize counters ψ to 0.
Key Generation

On receiving FKG from Si:

Evaluation

− If FKG was received from all Si, give output key share ki to all Si.

On receiving (Blind, IDc, valuec) from any client C

− Record (eval, IDc, C, pp, valuec,⊥), and send output (Setup, IDc, pp) to every Si.

On receiving (Derive, IDc) from Si

− Retrieve record (eval, IDc, C, pp, valuesi ).
− If (Derive, IDc) has been received from all Si, set ψ to ψ + 1.

On receiving (Query, IDc) from A

− Retrieve record (eval, IDc, C, pp, valuesi ), only proceed if ψ > 0, set ψ to ψ − 1.

− If valuec is undefined, then pick ρ
R
← {0, 1}κ, and set valuec to ρ.

− Output (Query, IDc, pp, valuec) to C.

Fig. 1: The Ideal Functionality FTOPRF.

2.4 Oblivious Pseudorandom Function over Lattices

Let ℓ = ⌈log2 q⌉. Define G : Rℓ×ℓ
q → R1×ℓ

q to be the linear operation correspond-

ing to left multiplication by (1, 2, ..., 2ℓ−1) and the inverts G−1 : R1×ℓ
q → Rℓ×ℓ

q .

Fix an array of a0,a1
R← R1×ℓ

q . G−1(a) can be regarded as the bit decomposi-

tion operation of a into binary polynomials. For any x = (x1, ..., xL) ∈ {0, 1}L
subject to ax := ax1 ·G−1

(
ax2 ·G−1

(
. . .

(
axL−1 ·G−1 (axL)

)))
∈ R1×ℓ

q .

Lemma 1 (PRF, [42]). Sample k
$← Zq, the function Fk(x) = ⌊pq · ax · k⌉ is a

PRF over the DRLWEq,n,σ if q ≫ p · σ · n · ℓ ·
√
L.

Lemma 2 (Bound on errors, [34]). Let x ∈ {0, 1}L, ℓ = ⌊log2 q⌉ and n =
poly(κ). Sample from the probability distribution space of error εσ have infinity
norm at most L · ℓ · σ · n3/2 with all but negligible probability.

PTA schemes are used to hide the password by TOPRF. Multi-servers assist
the client in computing the PRF value on the input, but learning nothing about
the client’s input to prevent offline password guessing attacks. The main goal
of our work in this section is to build a TOPRF, and declare a provably secure
structure in the MPC model. We define an ideal functionality FTOPRF in Fig. 1.

Each server executes FKG (Definition 4) to obtain a secret ski, and assist the
client entering x to generate Fk(x). It is challenging to construct a programmable
random oracle in the QROM, known to be difficult[43], so we employ the MPC
model [34] instead of the UC model [17] to define the security of TOPRF.
Definition 8 ([34]). Let K denote the key distribution. The set of servers S
and clients C are two parties of TOPRF protocol Π. For k

$← K, there is
realΠ,A,C (x,K, 1κ) to denote the joint output distribution of A(x) and S(k). Sim
is a PPT simulator. A protocol Π is a TOPRF if the following holds:
- Correctness : For every inputs (x, ki), Pr [ Π (x, k) ̸= Fk(x)] ≤ ε(κ).
- Malicious client security(obliviousness) : For any PPT A corrupting
t′ ≤ t server, there exists a PPT simulator Sim such that for every pair of
inputs (x, k): idealFTOPRF,Sim,A,S (x, k, 1

κ) ≈c realΠ,A,S (x, k, 1
κ) .

- Average case malicious server security(unpredictability) : For any
PPT A corrupting a client, there exists a PPT simulator Sim such that
for all clients input x, idealFTOPRF,Sim,A,C (x,K, 1κ) ≈c realΠ,A,C (x,K, 1κ)
And if A correctly outputs Fk(x) with all but negligible probability over the
choice k ← K when interacting directly with S(k) using Π, then A also
outputs Fk(x) with all but negligible probability when interacting via Sim.
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Oblivious Computation of PRF Fk(x) between client C and server S

1. On input x, C chooses s
R
← Zn×1

q and e
R
← Xm×1; sends x

∗ = A · s+ e+ a
F (x) to each Si.

2. Si chooses e′
i

R
← Xm×1 responds with x

∗

ki
= x

∗ · ki + e′
i
.

3. C computes PK =
∑t

i=1
λi,j · pki, and output

Fmsk(x) = ⌊
p

q
(
∑t

i=1
λi,j · x

∗

ski
− PK · s)⌉ ≈ ⌊ p

q
· aF (x) ·msk⌉.

Fig. 2: The TOPRF Algorithm ΠTOPRF .

For a particular function aF : {0, 1}L → R1×L
q , we employ a bottom PRF is

essentially the a particular instantiation of the PRF [42] Fk(x) =
⌊
p
q · a

F (x) · k
⌉
.

All servers execute FKG, which is introduced in the definition 4, to generate the
secret key ki for Si and these secret key ki correspond to a master private key
msk. For a public matrix A ∈ Rm×n

q , each server Si publishes their public key

pki := A · ki + ei, where ei
R← Xm×1. For e, ei, e

′
i ≤ σ

√
n and e′′ = msk · e +∑n

i=1 λi,je
′
i −

∑n
i=1 ei ≤ L · ℓ · σ · n3/2, a details of ΠTOPRF is in Fig. 2.

Lemma 3. Let q,m, n, σ > 0 depend on κ and ℓ = ⌈log2 q⌉. For any noise
e ≤ σ

√
n, the x entered by the client is converted into binary and write as

x = (x1, ..., xL) ∈ {0, 1}L. Our TOPRF can obtain indistinguishable outputs for

the same input with a reasonable choice of parameters, if N ≤ 1
4 log2

L·ℓ·n−σ
√
n

σ
√
n−1

.

Proof. C chooses s
R← Zn×1

q and e
R← Xm×1. Each Si chooses ei, e

′
i

R← Xm×1.
Both sides of the interaction execute ΠTOPRF and C output Fmsk(x). Let e

′′ =
msk · e+

∑t
i=1 λie

′
i −

∑t
i=1 ei, Let λi denote the Lagrange coefficient such that

msk =
∑t

i=1 λiki, we have: Fmsk(x) = ⌊pq (
∑t

i=1 λi ·x∗
ki
−PK ·s)⌉ = ⌊pq (((A ·s+

e+aF (x))·
∑t

i=1 λiki+
∑t

i=1 λie
′
i)−

∑t
i=1(A·ki+ei)·s)⌉ = ⌊pq (a

F (x)·msk+e′′)⌉.
By Lemma 1, we know that the function ⌊pq · ax · k⌉ is a PRF over the

DRLWEq,n,σ when q ≫ p · σ · n · ℓ ·
√
L. That means ⌊pq · ax · k⌉ ≈c ⌊pqu⌉, where

u is uniform in R1×ℓ
q . From Lemma 2, let e′′ ≤ L · ℓ ·σ ·n3/2, we have Fmsk(x) ≈

⌊pqa
F (x) ·msk⌉ ≈c ⌊pqu⌉. Next, we analyze e′′. We take the maximum value of

each term in e′′ and |e′′| = |σ2 ·n+N(N !)3 ·σ
√
n−N(N !)3 ·σ2 ·n| ≤ L ·ℓ ·σ ·n3/2.

The fact that (N !)3 ≤ (N)3N ≤ 24N , thus |e′′| ≤ |σ2 ·n+24N+1(σ
√
n−σ2 ·n)| ≤

L · ℓ · σ ·n3/2. We have N ≤ 1
4 log2

L·ℓ·n−σ
√
n

σ
√
−1

. To sum up, let q ≫ p · σ ·n · ℓ ·
√
L

and N ≤ 1
4 log2

L·ℓ·n−σ
√
n

σ
√
−1

, the PRF Fmsk(x) = ⌊pqa
F (x) ·msk⌉. ⊓⊔

Security. Our TOPRF inherits the security properties of the definition 8 and
satisfies quantum security, unpredictability, and obliviousness. Quantum security
ensures that no adversary with any quantum capability can access the hidden
secrets by cracking the encryption algorithm. Unpredictability and obliviousness
mean that the value of the PRF is independent of the input secret (unpredictabil-
ity and obliviousness correspond to average case malicious server security and
malicious client security in definition 8, respectively), which makes TOPRF resis-
tant to offline password guessing attacks. We prove the stored secret information
sdi only depends on server-side secrets ski by introducing unpredictability and
obliviousness.
Unpredictability. Fmsk(x) is unpredictability, which means that the adversary
A uses x to interacte with a set of servers and cannot predict the value of
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Fmsk(x), even if the adversary A can corrupt t′ < t servers. Unpredictability
corresponds to average-case malicious client security in definition 8. We describe
a simulation Sim that communicates with malicious client C∗ and FTOPRF .
Specifically, Sim carries out the following steps:
– In the initialization phase, A and uniform pkA

R← R1×ℓ
q are generated. Send

public parameters pp and pki to A. Initialise an empty list Q.
– During the query stage, for each message pki, do: A extracts xA, eA, and

sends the queries x to the functionality FTOPRF . If FTOPRF returns Fmsk(x) ∈
R1×ℓ

p and Fmsk(x) /∈ Q, sample F q
$← R1×ℓ

q ∩
(

q
py +R1×ℓ

≤ q
2p

)
and add

(x,F q) into Q. Return F q to A. If FTOPRF returns Fmsk(x) ∈ R1×ℓ
p and

Fmsk(x) ∈ Q, set F q = Fmsk(x) ∈ R1×ℓ
p . Choose e∗i

R← χσ′ and send
x∗
ki

= pk · ki + e∗i + F q to A. Each round of queries uses different errors

sampled from R(χ1×ℓ
σ′ ). In a real protocol, if the adversary A can calculate

the correct F q, it can perform the same operation on the message received
from the simulator. F q is sampled by Sim and the corresponding value x∗

ki
.

Let e⌊⌉ := yq − (q/p) · y ∈ R1×ℓ
≤ q

2p
, we have ⌊pq (

∑N
i=1 λi · x∗

ki
− PK · s)⌉ =

⌊pq (a
F (x) ·msk+ e⌊⌉+ e′′)⌉, where e′′ ≤ L · ℓ ·σ ·n3/2. Let T = L · ℓ ·σ ·n3/2,

there is ∥e⌊⌉∥ < q/(2p)− T . Thus, ∥msk · e+
∑N

i=1 λie
′
i −

∑N
i=1 ei∥ ≤

1
2 .

Obliviousness. Fmsk(x) is obliviousness, which means that even if A gets the
value of Fmsk(x), it also cannot learn anything about the input x, even if A
knows ki. Obliviousness corresponds to average-case malicious server security in
definition 8. We describe a simulation Sim that communicates with A and the
functionality FTOPRF . In the initialization phase, A plays malicious server S∗.
S∗ computes pk∗ from k∗ and publishes it, where ki ≤ σ ·

√
n. In the query

phase, Sim randomly selected r
R← R1×ℓ

q and send to S∗ . Waiting for a response
of x∗

ki
from S∗. Finally, the honest client C send Fmsk(x) to adversary A.

In real protocol, x∗ generated by the honest client C. The secret value x is
hidden by the encryption algorithm based on DRLWE. Thus, A cannot distin-

guish a real x∗ from r. Let x
R← R(χσ) and e

R← R(χσ)
1×ℓ are sampled by C.

For C interacting with FTOPRF , and computes Fmsk(x) = ⌊pq (
∑N

i=1 λi · x∗
ki
−

PK · s)⌉ = ⌊pq (a
F (x) ·msk+ e′′)⌉, where e′′ = msk · e+

∑N
i=1 λie

′
i −

∑N
i=1 ei. If

N ≤ 1
4 log2

L·ℓ·n−σ
√
n

σ
√
n−1

, the coefficient of p
q · a

F (x) ·msk is further than e′′ away

from Z+ 1
2 . According to AdvDRLWE

A (κ) ≤ ε(κ), A can learn nothing about x.

3 Basic Scheme Architecture and Security Model

3.1 Password-based Threshold SSO Authentication
We propose a password-based threshold SSO authentication architecture, as
shown in Fig. 3, including the following two entities.
– Client. The client (denoted by C) registers with identity servers using the

IDc and a human-memorable password pswc. When the client enters the
correct password pswc login corresponding to the IDc, an authentication
token can be obtained from identity servers.
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Fig. 3: The Basic Scheme Architecture.

– Identity servers. There is a set of identity servers (denoted by IS =
{IS1, ..., ISN}) that provide authentication tokens to the client. Each server
stores a portion of the registration information independent of the client’s
password and generates an authentication token for the authenticated client.

Our scheme mainly focuses on the interaction between the client and a series
of identity servers, including the interaction in the registration phase and login
authentication phase. In addition, we add two dynamic update functions: pass-
word and server private key update, which further improves the security of the
scheme. The formal definition of the scheme’s functionality is as follows.

Definition 9. The quantum-resistant password-based threshold SSO authenti-
cation scheme over lattices includes the following five polynomial algorithms:

– pp ← Setup(1κ). The algorithm generates the set of system parameters pp
by input a security parameter κ, including hash algorithm, common matrix,
discrete Gaussian sampling parameters, etc., for C and IS. ISi(i ∈ [1, n])
calculates the public-private key pair (ski, pki) and publishes pki. (The ski
is generated by FKG in Definition 4).

– Register is a registration protocol executed between the client C and a set of
servers IS according to the following specification:
{0, 1} ← RegC(pp, IDc, pswc, ISi). C interacts with multiple servers to reg-
ister by pswc and IDc. If the registration aborts, the algorithm outputs 0.
Otherwise it output 1.
{0, 1} ← RegS(pp, IDc, ski). ISi(i ∈ [1, N ]) helps C to get a server-derived
key sdi and hold it. If the registration fails, the algorithm outputs 0. Other-
wise it outputs 1 and stores the user’s identity information.

– Login is a login and authentication protocol executed between the client C
and a set of servers IS according to the following specification:
AutToken ← LoginC(pp, IDc, pswc, ISi). C logins with pswc and IDc from
the registration phase. Then, C verifies Auti from ISi and aggregates t valid
Auti to generate an authentication token AutToken.
Auti ← LoginS(pp, IDc, ski). ISi assists C to generate sd′i and compare it
with sdi stored in the registration phase. If sd′i ̸= sdi, login aborts. Otherwise,
ISi generates Auti = THAS.PartSgin(IDc, H(Token), ski) for C, where
Token represents the client’s message with client attributes, service validity
time, access control policy, and other auxiliary information.

– PswUpdate is a password update protocol executed between the client C and
a set of servers IS according to the following specification:
{0, 1} ← PswUpdate(pp, IDc, psw

old
c , pswcnew, ISi). C interacts with multi-

ple servers to modify the password. C generates sdoldi and sdnewi for pswold
c
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and pswnew
c , respectively, by interacting with ISi and sending them to ISi.

If password update fails, the algorithm outputs 0. Otherwise it output 1.
{0, 1} ← PswUpdate(pp, IDc, ski). ISi assists C to generate sdoldi and sdnewi .
ISi compares sdoldi with sdi stored in the registration phase. If sdoldi ̸= sdi,
login aborts and output 0. Otherwise, ISi stores sdnewi and return 1.

– (0, 1) ← SkUpdate(ski, Q). Each ISi periodically updates ski to resist per-
manent corruption attacks. IS can update the private key by the update poly-
nomial Q without client participation. The generated authentication tokens
are not invalidated after the complete update.

Correctness. The correctness of the scheme above means that C can obtain
vaild authentication token Token if C inputs the pswc consistent with the reg-
istration phase in the login phase. Formally, for any honest C, the probability
Pr[AutToken← LoginC(pp, IDc, pswc, ISi)] = 1 iff {0, 1} ← RegC(pp, IDc, pswc,
ISi), {0, 1} ← RegS(pp, IDc, ski), Auti ← LoginS(pp, IDc, ski).

3.2 Security Model

We consider an adversary with quantum computing power and controlling t′ ≤ t
servers in an epoch5. The adversary executes both online and offline guessing
attacks to capture the authentication information of the honest client. We assume
that the adversary needs to be profitable to launch an attack, as in [12,18,20].

Concretely, our single sign-on system assumes that the adversary’s goal is to
obtain an authentication token. There are two attack ways for the adversary,
i.e., i) guessing the user’s password and obtaining the authentication token by
the login; ii) obtaining a sufficient number (greater than the threshold t) of
server-side keys and thus forging the authentication token. This implies that a
malicious server will not intentionally execute the protocol incorrectly to cause
the user to generate the wrong authentication token, since this is not profitable
for the adversary. But it is more desirable if the computational legitimacy of
the scheme can be verified. Zero-knowledge proofs may be a available idea, but
they are too expensive for single sign-on. We leave this as our future work. We
employ the Bellare-Pointcheval-Rogaway (BPR)-like model [35] to analyze the
security of our password-based scheme. Let L denote a maintained list by the
experiments. sidi denote i-th session. We define the following experiment:

Experiment ExpAuth
PTA,A(κ) :

sdi ← ∅; sidj ← 0; pp← Setup(1κ);
(sidi∗ , ID

∗, psw∗)← Aoracle(·)(pp);

else rutrun 0

Auti ← LoginS(sidi∗ , ID
∗, psw∗);

(sidi∗ , ID
∗, psw∗) /∈ L ∧ (psw∗ ∈ |D|) return 1

where the experiment uses the following oracles:

- Challenge(c, sidi, IDc): The oracle aborts if (sidi∗ ≥ 0) ∨ (sidi ≥ sidj) ∨
((sidi, IDc) ∈ L). Otherwise, it set sidi∗ ← sidi and access oracle LoginC.

5 To cope with perpetual leakage [44], each server renews its secret key in a fixed time
interval, called an epoch.
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- Registration(i) The experiment randomly picks psw satisfy (sidi, psw, i) /∈ L.
At this point, A interacts with the honest client and server (oracle) as the
corrupted server. After access, the experiment records L[sidi]← (i, psw, sdi),
delivers j to A and set j ← j + 1.

- RegistrationS(sidi): The oracle aborts if sidi ≥ sidj . Otherwise, it gets
(i, psw, sdi) ← L[sidi]. A interacts with the honest server (oracle) as the
corrupted server.

- LoginC(sidi, ID, psw): The oracle aborts if sidi ≥ sidj . Otherwise, it gets
(i, psw, sdi)← L[sidi]. A interacts with the honest client and server (oracle)
as the corrupted server. In authentication experiment, the oracle additionally
computes L← L ∪ (sidi, ID, psw).

- LoginS(sidi): The oracle aborts if sidi ≥ sidj . Else, it gets (i, psw, sdi)←
L[sidi]. A interacts with the honest server (oracle) as the corrupted server.

The password update can be considered as combining a login algorithm with-
out issuing a token and a registration algorithm. Consequently, we mainly focus
on the registration and login phase. Notably, it has been shown that passwords
follow the CDF-Zipf distribution [45]. We recommend using the accurate Zipf-
based formulation for our password-based scheme.

Definition 10. Assuming that a PPT A executes at most qsend online attacks,
the advantage of A denoted C ′ · qs′send(κ) + ε(κ) where C ′ and s′ are the Zipf
parameters for all dictionary sizes |D| in the Zipf-law [45]. Following the exper-
iment ExpAuth

PTA,A(κ), the advantage of our scheme holds that AdvAuth
PTA,A(κ) =

Pr[1← ExpAuth
PTA,A(κ)] ≤ C ′ · qs′send(κ) + ε(κ).

Definition 11. To the best of our knowledge, the Grover algorithm, which is
currently the most efficient for symmetric cryptosystems under the quantum
computing model, only reduces the effective length of the key to half of the orig-
inal one. Hence AES-256 still has 128-bit security in quantum attacks. For any
PPT A, we define the advantage AdvAESA (κ) ≤ ε(κ).

4 Quantum-Resistant Password-Based Threshold
Single-Sign-On Authentication with Secret Update

The quantum-resistant password-based threshold SSO authentication scheme fo-
cus on the interaction between a client C, and a set of servers IS = {IS1, ..., ISN}.
The details of the interaction part in our protocol are shown in Fig. 4. We high-
light how clients can register, login, and password update by interacting with
the server based on the TOPRF and THAS over lattices. In the Setup, with
the security parameter κ, the system generates public parameters A ∈ R1×ℓ

q ,

σ > 0, and c ∈ Rq. Set m > cκlog2(q) and q ≥ poly(κ)(
√
log2κ). H is a family

of collision resistant hash functions that preserve homomorphism property for
verification [46]. Let µ be an upper limit that a client fails to pass ISi authen-
tication, and an upper limit ν is the number of authentication token requests
issued by a client in an epoch. E is a secure symmetric key encryption algorithm
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Fig. 4: The registration, login, and update phases of our scheme.

(eg., AES-256), and D denote corresponding decryption algorithm. We write N
as the total number of servers, and t is the threshold number.

Notice that in the threshold oblivious pseudorandom function, if the final
calculation of the client is a PRF value, it is necessary to limit the size of the
coefficient of noise e. The only variable in the noise factor is the number of
thresholds (more details of the derivation of the conclusions and the limits of
the noise in Lemma 3). Hence, the noise can be effectively reduced by grouping
users and using a server-side master key for each group of users. In addition,
grouping users and limiting the number of logins within a group in an epoch
(without grouping, it is unrealistic to restrict the number of logins for all users
[12]) can effectively weaken the impact of online dictionary attacks and reduce
the computational cost of the client, and the storage cost of the server [18].

Concretely, in the registration phase, after receiving the IDc, the server deter-
mines whether the ID is a duplicate. If not, it stores the ID and assigns it a group.
If no group can receive the client, a new group is generated for it. And settle
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the new server private key through the FKG. In Login, if THAS.Verify output 1,
C uses AutToken = {Aut, Token, I} as an authentication token, where I is the
set of signature servers’ identifiers. The service provider can check the validity
of AutToken by executing (1, 0)← Verify(id, PK, Token,Aut) in Definition 7.

To cope with perpetual leakage [44], each ISi should update ski at the end of
an epoch. We describe SkUpdate at the end of the ω-th epoch as follows.

- US1. Let q = e(S), ISj randomly chooses a polynomial [U ] =
∑t−1

k=1 αkX
k

over R = Zq[X]/F (X), where [U ]0 = 0.
- US2. At least t servers ISj computes {Hj(αk)}k∈[1,t−1] and U i

j = [U ]ij mod q,
where i ∈ [1, N ], j ∈ [1, t].

- US3. ISj broadcast the message U
(ω)
v = {j, ω, {Hj(αk)}k∈[1,t−1], E(i, U i

j)}
and the signature Signj ← PartSign(id, U

(ω)
v , skj).

- US4. ISi decrypts the shares intended {U i
j}j∈[1,t] for ISi and verifies the cor-

rectness of the share by checking the equivalent H(U i
j) =

∑t−1
k=1 H(αk)

ik and

executing Verify(id, pki, [U ]ij , Signj) (It can be seen as Combine phase signa-
ture and message aggregation with 0). If Verify output 1 and the equation
holds, each ISi computes a new sk′i = ski +

∑t
j=1 λi,j [U ]ij mod q.

- US5. ISi recalculates pk
′ = A · sk′i + ei, where A ∈ R1×ℓ

q is a public matrix

and ei ∈ R1×ℓ
q , and resets µc, νc to begin (ω + 1)-th epoch.

To cope with perpetual leakage [44], each ISi should update ski at the end
of an epoch. We describe SkUpdate at the end of the ω-th epoch in Fig. 4.
Notably, PartSign is actually a linearly homomorphic signature [41] in US3. Fur-

thermore, the correctness of the equation H(U i
j) =

∑t−1
k=1 H(αk)

ik can be found

in Lemma 3 of [46] in US4. Finally, the Verify(id, pki, [U ]ij , Signj) in US4 can be
seen as Combine phase signature and message aggregation with 0. Correctness.

According to Lemma 3, when N ≤ 1
4 log2

L·ℓ·n−σ
√
n

σ
√
n−1

, the client C can recover au-

thentication message sdi in the login phase using the same password pswc as
in the registration phase and thus acquire an authentication token AutToken.
Next, we show that the server-side key updates without changing the master
private key after an epoch conversion. Accordingly, sdi and AutToken will not
adjust. Notably, sdi and AutToken is related to msk. We show that even if ski
changes after the epoch conversion, it does not change msk and therefore does
not change sdi and AutToken, which are generated by the same password.

Lemma 4. At the end of the era, each server ISi executes SkUpdate. ISi can
renews its private key ski without changing the master secret key msk.

Proof. According to subsection 2.2, we know thatmsk =
∑n

i=1[S]
0
i =

∑n
i=1 fi(0).

Suppose that msk′ =
∑n

i=1 f
′
i(0). Since f ′

i(x) = fi(x) + Ui(x), we have msk′ =∑n
i=1 f

′
i(0) =

∑n
i=1 fi(0) + Ui(0) =

∑n
i=1[s]

0
i + [U ]0i =

∑n
i=1[s]

0
i + 0 = msk. ⊓⊔

Application. Our single sign-on scheme is general, i.e., it applies to all exist-
ing SSO scenarios. Notably, lattice passwords, despite their high computational
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efficiency (no power and bilinear pairing operations are required), however, re-
quire more storage overhead (because of the use of high-dimensional matrices).
Therefore, our scheme is more suitable for devices with good storage resources.

5 Security Analysis

The registration algorithm can be regarded as a login algorithm sub-algorithm
in our scheme. The password update can be considered as combining a login
algorithm without issuing a token and a registration algorithm. Consequently,
we mainly focus on the login phase. Furthermore, we are concerned about the
security of the server-side secret key update algorithm. We analyze the security
of our scheme from the following three theorems.

Theorem 1 (Quantum security). The password-based threshold SSO authen-
tication scheme in Fig. 4 is quantum security under appropriate parameter set-
tings. For any PPT A, the advantage holds that AdvQuantum

PTA,A (κ) ≤ ε(κ).

Proof. The most influential quantum attack algorithms are Shor’s and Grover’s.
Quantum computers can efficiently solve large integer factorization and discrete
logarithm problems with Shor’s algorithm. Grover algorithm allows quantum
computers to speed up the search for unstructured databases and hash collisions.
To avoid the effects caused by both algorithms above, we construct the PTA
scheme over lattices. The security of lattice-based hardness problem is reduced
to the hardness of finding a relatively short vector in the lattice. A can execute
the block-korkin-zolotarev (BKZ) algorithm [29] to find the short vectors in the
n-dimensional lattice. Alkim et al. [50] proved that DRLWE can effectively resist
quantum attacks (primal attack and dual attack) based on the BKZ algorithm.

The security of our TOPRF protocol is based on the DRLWE hardness as-
sumption. From Fig. 2, the messages sent in the first step and the second part
are encrypted by RLWE. If A can recover the random number through the first
step or the server private key through the second part, they can solve the RLWE
problem. From the proof of Lemma 3, it can be seen thatA can solve the DRLWE
problem if they can compute the server master private key or recover the user
password by the message in the third step. Applying the “estimator” [51] with
the quantum-security model [19] and κ = 128, n = 768, log q = 23, our TOPRF

protocol can provide 138-bit security with N ≤ 1
4 log2

L·ℓ·n−σ
√
n

σ
√
n−1

. According to

definition 2, for any PPT A, the advantage holds that: AdvDRLWE
A (κ) ≤ ε(κ).

According to the unforgeability analysis in [39,41], if A can forge a signature,
they can solve the SIS problem. Thus, the advantage of any PPT A holds that:
AdvSISA (κ) ≤ ε(κ). According to the definition 11, the advantage of A to obtain
sdi by brutally cracking the symmetric encryption E(zi, sdi) is AdvAESA (κ) ≤
ε(κ). In summary, our scheme can provide 128-bit security, and the advantage
of any PPT A holds that:

AdvQuantum
PTA,A (κ) = AdvDRLWE

A (κ) +AdvSISA (κ) +AdvAESA (κ) ≤ ε(κ).

⊓⊔
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Theorem 2 (Resist corrupt attacks). Assuming that A cannot corrupt more
than t servers in an epoch, A cannot obtain the master private key msk of IS.

Proof. If A can calculate the corresponding msk through the obtained more
than t private key in an epoch, A can forge the signature. Suppose A cor-
rupted t servers and obtained t private keys in two consecutive epoch, denoted

by sk1, ..., skt′ , sk
∗
t′+1, ..., sk

∗
t , (a < t′ < t < N). A calculates

∑t′

i=1 λijski +∑t
i=t′+1 λijsk

∗
i =

∑t′

i=1 λij

∑N
j=1[S]

i
j +

∑t
i=t′+1 λij(

∑N
j=1[S]

i
j +

∑N
j=1[U ]ij) =∑t

i=1 λij

∑N
j=1[S]

i
j+

∑t
i=t′+1 λij

∑N
j=1[U ]ij = msk+

∑t
i=t′+1 λij

∑N
j=1[U ]ij . Since

the update key generated by 0-sharing satisfied the threshold security require-
ments, the adversary can obtain at most t′ < t update keys. In other words,
there are t− t′ update keys that the adversary cannot get. Therefore, A cannot

compute msk =
∑t′

i=1 λijski +
∑t

i=t′+1 λijsk
∗
i −

∑t
i=t′+1 λij

∑N
j=1[U ]ij . ⊓⊔

Theorem 3 (Authentication). In our scheme, let A can get pp and access
client-side oracle and server-side oracle qu times and qs times, respectively. For
any PPT A, the advantage of disrupting authentication that AdvAuthPTA,A(κ) ≤
2C ′ · qs′s (κ) + (qs + 2)AdvDLWE

A (κ) +AdvSISA (κ) +AdvAESA (κ) + ε(κ).

Proof. Below, we provide the detailed analysis for the Theorem 3.
Experiment ExpAuth

0 . The simulator initializes sdi, sidj , L, and pp as defined
in the real security experiment ExpAuth

PTA,A(κ). A access oracle which is defined

in subsection 3.2. that AdvAuthPTA,A(κ) = Pr[succAuth
0 ].

Experiment ExpAuth
1 . This experiment is similar to ExpAuth

0 except that the
random value s is ensure to be fresh in every session executed by the simulator
through the oracles. We have Pr[succAuth

1 ]− Pr[succAuth
0 ] = 0.

Experiment ExpAuth
2 . This experiment is similar to ExpAuth

1 except that the
simulator aborts if a value for x∗ repeats in two different sessions of the proto-
col executed by the simulator through oracles. The password is hidden by ran-
dom algorithms and noise, and the adversary cannot obtain password-related
information unless the adversary can crack the LWE problem. Since the deci-
sion Diffie-Hellman-like problem is hardness, A cannot distinguish x∗ or random
value r. Pr[succAuth

2 ]− Pr[succAuth
1 ] = AdvDLWE

A (κ).
Experiment ExpAuth

3 . This experiment is similar to ExpAuth
2 except that server

oracles receives the hidden value generated by the password chosen by the ad-
versary x′. Since the decision Diffie-Hellman-like problem is hardness, A cannot
distinguish Fmsk(x

′) and Fmsk(x). The password space follows the zipf law, the
Pr[succAuth

3 ]− Pr[succAuth
2 ] = C ′ · qs′s (κ) + ε(κ).

Experiment ExpAuth
4 . This experiment is similar to ExpAuth

3 except that A
chooses (IDA, pswA, eA) to queries x∗

ki
. Since the decision Diffie-Hellman-like

problem is hardness, A cannot distinguish x∗
ki

or F q ← R1×ℓ
q ∩

(
q
py +R1×ℓ

≤ q
2p

)
.

In addition, each returned x∗
ki

is generated by a different ei. The probability

of A gets client-specific key by query: Pr[succAuth
4 ] − Pr[succAuth

3 ] ≤ (qs +
1)AdvDLWE

A (κ) + C ′ · qs′s (κ) + ε(κ).
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Table 1: Security level of our scheme

κ m σ q Hermit factor Security level

PARMS I 95 512 22.93 4205569 1.004693 111-bits
PARMS II 128 768 9.73 8404993 1.003850 138-bits

Table 2: The computation overhead of each phase in our scheme

PARMS I PARMS II

Client side Server side Client side Server side

Registration 0.627ms 0.043ms 1.582ms 0.109ms
Login 0.805ms 0.069ms 2.003ms 0.179ms
PswUpdate 0.585ms 0.089ms 1.455ms 0.223ms
SkUpdate 0 0.773ms 0 1.969ms

Experiment ExpAuth
5 . This experiment is similar to ExpAuth

4 except that A
query x∗

ki
and computes Fmsk(pswA). A cannot obtain sdi and zi unless A can

crack AES-256. Pr[succAuth
5 ]− Pr[succAuth

4 ] = AdvAESA (κ).
Experiment ExpAuth

6 . This experiment is similar to ExpAuth
5 except that A

corrupt t′ ≤ tservers and obtain their private keys. According to theorem 2, A
cannot obtain an authentication token unless A can solve the SIS hardness prob-
lem and forge aggregate signature. Pr[succAuth

6 ]− Pr[succAuth
5 ] = AdvSISA (κ).

In summary, for any probabilistic polynomial-time adversary A, the advantage
of disrupting authentication holds that:

AdvAuthPTA,A(κ) ≤ 2C ′ · qs
′

s (κ) + (qs + 2)AdvDLWE
A (κ) +AdvSISA (κ)

+AdvAESA (κ) + ε(κ).

⊓⊔

6 Efficiency Analysis and Protocol Comparison

Our scheme is a single sign-on scheme constructed based on the lattice hardness
problem. To meet the requirements of scheme quantum security, we employ the
“lwe-estimator” scripts6 to analyze the security level of our scheme under two
different parameter settings. As shown in Table 1, our scheme can achieve 111-bit
and 138-bit security, respectively.

Next, we estimate the computational cost through basic cryptographic opera-
tions. We write a multiplication operation as TM , and an addition operation as
TA. TH denotes once the hash operation, and TS denote once Gaussian sampling.
We use TE to denote the encryption or decryption operation.

In the registration phase, the computation overhead of the client-side is (2t+
6)TM + (2t + 1)TA + NTH , and a server’s computation overhead is TM + TA.

6 The “lwe-estimator” scripts are available at https://bitbucket.org/malb/lwe-
estimator/src/master.
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Table 3: Comparison the main OPRF protocol [17,48] with our work.

For L=64 Jarecki et al.[17] Everspaugh et al. [48] Our TOPRF

Client 1.431ms 5.227ms 0.641ms
Server 0.572ms 1.211ms 0.049ms

Fig. 5: Comparison the total time of current state-of-the-art (t,N) PTA-SSO
schemes [12,20] with our work. Set N = 10, and the round-trip latency of WAN
is 80ms. The Plain setting is the direct connection without the threshold setting.

In the login phase, the client and single server operations for (3t + 7)TM +
3tTA + (t+1)TH +2tTE and TM + TA + TS +2TE respectively. In the password
update phase, the operation of the client is (4t−2)TM +4tTA+2NTH +2NTM ,
and a server’s operation is 2TM + 2TA + 2TE . The private key update phase
requires no client participation and the computational overhead per server is
(Nt−N+2t+1)TM+(Nt−2N+2t−1)TA+(N+t−1)TH+(2N−2)TE+(N−1)TS .

Based on the above analysis, our C language reference implementation7 is
predicated on the q-TESLA 2.9 [47], and the measurement is obtained on a
laptop with an AMD Ryzen 7-5800H running at 3.20 GHz. By Lemma 3, we set
L = 64, ℓ = 256, N = 4 and t = 3. The computational overhead of each phase in
our scheme is shown in Table 2 for PARMS I and PARMS II. The time shown
is calculated as the average of 1000 operations.

We compare the widely used PRF protocol [17,48] with our work (at Section
??) in Table 3. Jarecki et al [17] first constructed the 2HashDH-based TOPRF in
ACNS17, which is widely used in various PTA schemes [12,19,20]. The 2HashDH-
based TOPRF requires more computational overhead since group-based cryp-
tographic primitives need exponential power operations. Everspaugh et al. [48]
proposed the Pythia PRF in USENIX15, which is employed in the PTA scheme
of Zhang et al. [18]. The additional computational overhead of Pythia PRF arises
from the power exponential and bilinear pair operations.

Form Table 4, we compare the standard Json Web Token [9], Agrawal et
al. [12], Baum et al. [19], Zhang et al. [18], and Rawat et al. [20] with our
scheme. Through comparative analysis, except for the standard Json Web Token,
other schemes use multiple identity servers to authenticate the client and issue
authentication tokens to prevent a single point of server failure. In addition, these
protocols employ various PRF constructs to resist offline dictionary attacks.

7 https://anonfiles.com/xaueI4kayb/QSSO zip
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Table 4: Comparison between Json Web Token [9], Agrawal et al. [12], Baum et
al. [19], Zhang et al. [18], and Rawat et al. [20] and our work.

Jones
et al. [9]

Agrawal
et al. [12]

Baum
et al [19]

Zhang
et al [18]

Rawat
et al [20]

Our
Work

Threshold (1,1) (t,N ) (N,N ) (t,N ) (t,N ) (t,N )
Server Corruption − static adaptive adaptive static adaptive
Server sk O(1) O(C) O(n) O(G) O(C) O(G)
Password Update × × × × X X
Security Proactive × × X X × X
Offline Att. Resist. × X X X X X
Online Att. Resist. X X X X X X
Quantum Secure × × × × × X
Rounds 1 1 2 2 1 2
Efficiency Server 1exe 2exe 4exe+1p 0 2exe 0
Efficiency Client 0 2exe 5exe 4p 2exe 0

† Att. Resist.=Attack resistance; Server sk =Secret keys per server.
‡ C denotes the number of clients. G means the number of groups in the server.
∗ For efficiency we count the most expensive operations, i.e., exponentiations (de-
note by exe) and pairings (denot by p).

Baum et al. [19], Zhang et al. [18], and our scheme meets active security, which
can resist perpetual leakage by updating the server-side key adaptively.

In terms of the number of protocol rounds in the login phase, compared with a
round of the interaction of JSON Web Token [9], Agrawal et al. [12], and Rawat
et al. [20], our protocol needs two rounds of interaction, but the increased interac-
tion is meaningful. It can prevent malicious clients from obtaining authentication
tokens that do not belong to them through impersonation attacks. In addition,
only partial multiplication and addition are added to the increased number of
rounds, and the protocol can still run efficiently. Finally, by comparing the expo-
nential operation, and bilinear pair operation performed by the client and server
in the login phase, we can get the conclusion consistent, that is, exponential and
bilinear pair operation is not used in our scheme, which can make up for the
computational overhead of symmetric encryption partly.

7 Conclusion and Future Work

In this paper, we propose a secure and effective password-based threshold single-
sign-on authentication scheme over lattices. The proposal adopts multiple iden-
tity servers to authenticate the client, and issues authentication tokens to prevent
a single point of server failure. It also supports servers to update the private key
against perpetual leakage. Moreover, our scheme allows the client to update the
password. Considering password guessing attacks in the identity authentication
scheme, we propose a threshold oblivious pseudorandom function over lattices
to resist offline password guessing attacks. We use a grouping structure to miti-
gate the harm caused by online password guessing attacks. We also employ UT
[33] to construct a threshold homomorphism aggregation signature protocol to
distribute authentication tokens. In addition, the design of the component in
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our scheme is based on lattice-based intractable problems against quantum at-
tacks. Finally, we provide security proof to show that our scheme is secure and
robust under various attacks and can deal with the adversary of quantum com-
puting power. Our scheme is efficient and has comprehensive functions through
efficiency analysis and comparison with five authentication schemes.

For future work, we will investigate how to reduce further the impact of noise
accumulation to increase the allowable range of thresholds so that the threshold
authentication system is scalable. In addition, it is meaningful to verify the
validity of the computation during the interaction. However, zero-knowledge
proofs are too heavy for authentication systems, and verification schemes similar
to BLS [32] face the exact impact of noise accumulation during aggregation. We
note that a series of prior art [49] uses the smooth projective hash function
to generate strong session keys without further validation in authenticated key
exchange schemes. Accordingly, a smooth projective hash function to construct
a password-based threshold authentication scheme may be feasible.

References

1. J. Bonneau, C. Herley, P. Oorschot, and F. Stajano. The quest to replace pass-
words: A framework for comparative evaluation of web authentication schemes. In
Proc. IEEE S&P 2012, pages 553–567.

2. J. Bonneau, C. Herley, P. van Oorschot, and F. Stajano. Passwords and the evo-
lution of imperfect authentication. Commun. ACM 2015, 58(7):78–87.

3. A. Hanamsagar, S. Woo, C. Kanich and J. Mirkovic. Leveraging semantic trans-
formation to investigate password habits and their causes. In Proc. CHI 2018.

4. A. Spadafora. Struggling with password overload? You’re not alone.
https://www.techradar.com/news/most-people-have-25-more-passwords-than-
at-the-start-of-the-pandemic. Oct. 21, 2020.

5. D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang. Targeted online password
guessing: An underestimated threat. In Proc. ACM CCS 2016, pages 1242–1254.

6. B. Pal, T. Daniel, R. Chatterjee and T. Ristenpart. Beyond credential stuffing:
Password similarity models using neural networks. In Proc. IEEE S&P 2019.

7. A. Armando, R. Carbone, L. Compagna, J. Cuellar and L. Tobarra. Formal analysis
of SAML 2.0 web browser single sign-on: breaking the SAML-based single sign-on
for google apps. In Proc. FMSE 2008, pages 1–10.

8. B. Neuman and T. Ts’o. Kerberos: An authentication service for computer net-
works. IEEE Commun. Mag. 1994, 32(9):33–38.

9. M. Jones, J. Bradley and N. Sakimura. JSON Web Tokens. https://jwt.io/. Ac-
cessed on Dec. 15, 2021.

10. D. Wang and P. Wang. Offline dictionary attack on password authentication
schemes using smart cards. In Proc. ISC 2013, pages 221–237.

11. J. Alwen, B. Chen, K. Pietrzak, L. Reyzin and S. Tessaro. Scrypt is maximally
memory-hard. In Proc. Eurocrypt 2017, pages 33–62.

12. S. Agrawal, P. Miao, P. Mohassel and P. Mukherjee. PASTA: password-based
threshold authentication. In Proc. ACM CCS 2018, pages 2042–2059.

13. P. MacKenzie, T. Shrimpton and M. Jakobsson. Threshold password-authenticated
key exchange. In Proc. CRYPTO 2002, pages 385–400.

21



14. T. Rabin. A simplified approach to threshold and proactive RSA. In Proc.
CRYPTO 1998, pages 89–104.

15. A. Bagherzandi, S. Jarecki, N. Saxena and Y. Lu. Password-protected secret shar-
ing. In Proc. ACM CCS 2011, pages 433–444.

16. S. Jarecki, A. Kiayias and H. Krawczyk. Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In Proc. ASIACRYPT 2014.

17. S. Jarecki, A. Kiayias, H. Krawczyk and J. Xu. TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In Proc. ACNS 2017.

18. Y. Zhang, C. Xu, H. Li, K. Yang, N. Cheng and X. Shen. PROTECT: efficient
password-based threshold single-sign-on authentication for mobile users against
perpetual leakage. IEEE Trans. Mob. Comput. 2020, 20(6): 2297–2312.

19. C. Baum, T. Frederiksen, J. Hesse, A. Lehmann and A. Yanai. PESTO: proac-
tively secure distributed single sign-on, or how to trust a hacked server. In Proc.
EuroS&P 2020, pages 587–606.

20. R. Rawat and M. Jhanwar. PAS-TA-U: PASsword-Based Threshold Authentication
with Password Update. In Proc. SPACE 2020, pages 25–45.

21. T. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J. OBrien. Quan-
tum computers. Nature 2010, 464(7285): 45-53.

22. V. Mavroeidis, K. Vishi, M. Zych and A. Jøsang. The impact of quantum comput-
ing on present cryptography. Int. J. Adv. Comput. Sci. Appl. 2018, 9(3): 405-414.
IEEE Trans. Mob. Comput. 2020, 20(6): 2297–2312.

23. G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y. Liu,
C. Miller, D. Moody, R. Peralta and others. Status report on the
first round of the NIST post-quantum cryptography standardization process.
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf. 2019.

24. G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y. Liu, C.
Miller, D. Moody, R. Peralta and others. Status report on the second round of the
NIST post-quantum cryptography standardization process. Status report on the
second round of the NIST post-quantum cryptography standardization process.
NIST,Tech. Rep., July 2020.

25. J. Ding, S. Alsayigh, J. Lancrenon, R. Saraswathy and M. Snook. Provably secure
password authenticated key exchange based on RLWE for the post-quantum world.
In Proc. CT-RSA 2017, pages 183–204.

26. Z. Li and D. Wang. Two-round PAKE protocol over lattices without NIZK. In
Proc. INSCRYPT 2018, pages 138–159.

27. J. W. Bos, C. Costello, M. Naehrig and D. Stebila. Post-quantum key exchange
for the TLS protocol from the ring learning with errors problem. In Proc. IEEE
S&P 2015, pages 553–570.

28. J. Zhang, Z. Zhang, J. Ding, M. Snook and O. Dagdelen. Authenticated key
exchange from ideal lattices. In Proc. EUROCRYPT 2015, pages 719–751.

29. C. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program. 1994, 66(1): 181–199.

30. L. Grover. A fast quantum mechanical algorithm for database search. In Proc.
STOC 1996, pages 212–219.

31. G. Alagic, D. Apon, D. Cooper, Q. Dang, and others. Status Report on the
Third Round of the NIST Post-Quantum Cryptography Standardization Process.
Gaithersburg, MD: National Institute of Standards and Technology, 2022.

32. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Proc. ASIACRYPT 2001, pages 514–532.

22



33. D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. Rasmussen and A. Sahai.
Threshold cryptosystems from threshold fully homomorphic encryption. In Proc.
CRYPTO 2018, pages 565–596.

34. M. Albrecht, A. Davidson, A. Deo and N. Smart. Round-optimal verifiable oblivi-
ous pseudorandom functions from ideal lattices. In Proc. PKC 2021, pages 261–289.

35. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Proc. EUROCRYPT 2000, pages 139–155.

36. V. Lyubashevsky, C. Peikert and O. Regev. On ideal lattices and learning with
errors over rings. J. ACM 2013, 60(6):1–35.

37. A. Shamir. How to share a secret. ACM Commun. 1979, 22(11): 612–613.
38. R. Bendlin, S. Krehbiel and C. Peikert. How to share a lattice trapdoor: threshold

protocols for signatures and (H) IBE. In Proc. ACNS 2013, pages 218–236.
39. Z. Jing. An efficient homomorphic aggregate signature scheme based on lattice.

Math. Probl. Eng. 2014, 2014(1): 1–9.
40. S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris and W. Hoeteck. Func-

tional encryption for threshold functions (or fuzzy IBE) from lattices. In Proc.
PKC 2012, pages 280–297.

41. F. Wang, Y. Hu and B. Wang. Lattice-based linearly homomorphic signature
scheme over binary field. Sci. China Inf. Sci. 2013, 56(11):1–9.

42. A. Banerjee and C. Peikert. New and improved key-homomorphic pseudorandom
functions. In Proc. CRYPTO 2014, pages 353–370.
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