
Post-Quantum Security of Key Encapsulation
Mechanism against CCA Attacks with a Single

Decapsulation Query

Haodong Jiang1, Zhi Ma1, and Zhenfeng Zhang2

1 State Key Laboratory of Mathematical Engineering and Advanced Computing
2 TCA Laboratory, Institute of Software, Chinese Academy of Sciences

hdjiang13@gmail.com, ma zhi@163.com, zhenfeng@iscas.ac.cn

Abstract. Recently, in post-quantum cryptography migration, it has
been shown that an IND-1-CCA-secure key encapsulation mechanisms
(KEM) is required for replacing an ephemeral Diffie-Hellman (DH) in
widely-used protocols, e.g., TLS, Signal, and Noise. IND-1-CCA securi-
ty is a notion similar to the traditional IND-CCA security except that
the adversary is restricted to one single decapsulation query. At EU-
ROCRYPT 2022, based on CPA-secure public-key encryption (PKE),
Huguenin-Dumittan and Vaudenay presented two IND-1-CCA KEM con-
structions called TCH and TH , which are much more efficient than the
widely-used IND-CCA-secure Fujisaki-Okamoto (FO) KEMs. The secu-
rity of TCH was proved in both random oracle model (ROM) and quan-
tum random oracle model (QROM). However, the QROM proof of TCH

requires that the ciphertext size of the resulting KEM is twice as large
as the one of the underlying PKE. While, the security of TH was only
proved in the ROM, and the QROM proof is left open.
In this paper, we present an IND-1-CCA KEM construction TRH , which
can be seen as an implicit variant TH , and is as efficient as TH . We
prove the security of TRH in both ROM and QROM with much tighter
reductions than Huguenin-Dumittan and Vaudenay’s work. In particular,
our proof will not lead to ciphertext expansion. Moreover, for TRH , TH

and TCH , we also show that a O(1/q) (O(1/q2), resp.) reduction loss
is unavoidable in the ROM (QROM, resp.), and thus claim that our
ROM proof is optimal in tightness. Finally, we make a comprehensive
comparison among the relative strengths of IND-1-CCA and IND-CCA
in the ROM and QROM.

Keywords: quantum random oracle model · key encapsulation mecha-
nism · 1CCA security · tightness · KEM-TLS

1 Introduction

With the gradual advancement of NIST post-quantum cryptography (PQC) s-
tandardization, research on migration from the existing protocols to post-quantum
protocols with new standardized algorithms has been a hot topic. For ephemer-
al key establishment, one has to move the current Diffie-Hellman (DH) key-
exchange to post-quantum key encapsulation mechanisms (KEMs).

The security goal required for such a substitutive KEM has been thoroughly
analyzed for TLS 1.3 [15, 20], KEM-TLS [36, 37], Signal [9] and Noise [2]. In gen-
eral, the security of these DH-based protocols is proved based on the PRF-ODH
assumption [10]. But, when one uses KEM to replace DH, IND-1-CCA security
is required instead, see post-quantum TLS [15, 20, 36, 37], post-quantum Sig-
nal [9] and post-quantum Noise [2]. In addition, Huguenin-Dumittan and Vau-
denay [20] pointed out that IND-1-CCA KEMs are also used in Ratcheting [4,
24, 31]. Roughly speaking, IND-1-CCA security says that the adversary is re-
quired to distinguish an honestly generated key from a randomly generated key
by making at most a single decapsulation query.

IND-1-CCA security is obviously implied by IND-CCA security that has been
widely studied in [16, 17, 34, 21–23, 6, 25, 19, 14]. In general, IND-CCA-secure
KEMs are obtained by applying Fujisaki-Okamoto-like (FO-like) transform to a
OW/IND-CPA-secure public-key encryption (PKE). In particular, all the KEM
candidates to be standardized and Round-4 KEM submissions [29] adopted
FO-like construction. The current implementations of KEM-TLS [36, 37], post-
quantum TLS 1.3 [30] and post-quantum Noise framework [2] directly take
IND-CCA-secure KEMs as IND-1-CCA-secure KEMs. However, FO-like IND-
CCA-secure KEMs require re-encryption of the decrypted plaintext in decapsu-
lation, making it an expensive operation. For instance, as shown in [20], when
re-encryption is removed, there will be a 2.17X and 6.11X speedup over decap-
sulation in CRYSTALS-Kyber [8] and FrodoKEM [27] respectively. Moreover,
the re-encryption makes the KEM more vulnerable to side-channel attacks and
almost all the NIST-PQC Round-3 KEMs are affected, see [39, 3]. Meanwhile,
the side-channel leakage of re-encryption will significantly increase deployment
costs and thus complicate the integration of NIST-PQC KEMs [26]. Therefore,
designing a dedicated IND-1-CCA-secure KEM without re-encryption was taken
as an open problem raised by Schwabe, Stebila and Wiggers [36].

This problem was recently studied by Huguenin-Dumittan and Vaudenay [20].
They found that simple modification of the current FO-like KEMs can achieve
an IND-1-CCA-secure KEM without re-encryption. In detail, they presented two
constructions. One construction (called TCH) is that an additional confirmation
hash value of message and ciphertext is appended to the original ciphertext. The
security of TCH was proved in the random oracle model (ROM) with tightness
εR ≈ O(1/q)εA, and in the quantum random oracle model (QROM) with tight-
ness εR ≈ O(1/q3)ε2A, where εR (εA, resp.) is the advantage of the reduction R (
adversary A, resp.) breaking the security of the underlying PKE (the resulting
KEM, resp.), and q is the number of A’s queries to the random oracle (RO).
Different from ROM, QROM allows the adversary to make quantum queries
to the RO. As argued by Boneh, Dagdelen, Fischlin, Lehmann, Schaffner and
Zhandry in [7], to prove the post-quantum security of cryptosystem, one has to
prove in the QROM. Unfortunately, the QROM proof of TCH in [20] requires the
additional confirmation hash to be length-preserving3. That is, compared with

3 This is implicitly required by the QROM proof in [20], although it is not explicitly
pointed out. In the QROM proof of TCH , the technique in [17, 38] is used to simu-

2

FO-KEMs, the TCH KEM will increase the size of the ciphertext by |ct| + |m|,
where |ct| is the original ciphertext size and |m| is the message size. Thus, for
PKEs with large ciphertext size, e.g., CRYSTALS–Kyber [8] to be standard-
ized by NIST PQC project, the TCH KEM will lead to a significant ciphertext
expansion, although the re-encryption is removed.

The second construction of IND-1-CCA-sucre KEM given in [20] is TH , where
ciphertext c is obtained by encrypting a randomly message m, the key is derived
by H(m, c). For decapsulation, if m′ = Dec(sk, c) = ⊥, ⊥ is returned, otherwise
H(m′, c) is returned, where Dec is the decryption algorithm of PKE, and sk is
the secret key. In fact, TH is the same as U⊥ in [17]. Note that both TCH and
TH do not require re-encryption. But, compared with TCH , TH will not lead
to ciphertext expansion. However, Huguenin-Dumittan and Vaudenay [20] only
gave the ROM proof of TH with tightness εR ≈ O(1/q3)εA. The QROM proof is
left open due to the challenge that a lot of RO programming property is used4.

Thus, a natural question is that can we give an IND-1-CCA-secure KEM
construction with a tighter QROM/ROM proof, and meanwhile without re-
encryption and ciphertext expansion.

1.1 Our Contributions

In this paper, we give an affirmative answer for the aforementioned question.
Our detailed contributions are as follows.

1. First, we present a ROM/QROM provably IND-1-CCA-secure KEM con-
struction called TRH without re-encryption and ciphertext expansion. TRH
is the same as the TH except that in decapsulation a pseudorandom val-
ue H(0, c) is returned instead of an explicit ⊥ for an invalid ciphertex-
t c such that Dec(sk, c) = ⊥. In the ROM, our reduction has tightness
εR ≈ O(1/q)εA, which is much tighter than εR ≈ O(1/q3)εA given by [20]
for TH . In the QROM, our reduction achieves tightness εR ≈ O(1/q2)ε2A, is
tighter than εR ≈ O(1/q3)ε2A given by Huguenin-Dumittan and Vaudenay
in [20] for TCH (with ciphertext expansion).

2. Then, we show that if the underlying PKE has malleability property, a
O(1/q) (O(1/q2), resp.) loss is unavoidable in the ROM (QROM, resp.).
That is, our ROM reduction is optimal in general. Roughly speaking, the
malleability property says that an adversary can efficiently transform a ci-
phertext into another ciphertext which decrypts to a related plaintext. In
particular, such a malleability property is met by real-world public-key en-
cryption schemes, e.g., ElGamal, CRYSTALS–Kyber.PKE [8], etc.

late the additional confirmation hash with a k-wise independent function, which is
required to be length-preserving such that the simulator can implement decryption
by inverting this function.

4 At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [20] conjectured that
the popular compressed oracle technique proposed by Zhandry [42] might be of use
in the QROM proof. Surprisingly, in our QROM proof, only the other well-known
techniques called one-way to hiding (O2H) [1, 6] and measure-and-reprogram [12]
are used.

3

3. Finally, we compare the relative strengths of IND-1-CCA and IND-CCA in
the ROM and QROM, see Fig 1. For each pair of notions A, B ∈{IND-1-
CCA ROM, IND-CCA ROM, IND-1-CCA QROM, IND-CCA QROM}, we
show either an implication or a separation, so that no relation remains open.

Table 1: Reduction tightness in the ROM/QROM.

Transformation
Reduction
tightness

Ciphertext
expansion

Re-encryption
ROM or
QROM

FO [17] εR ≈ εA N Y ROM
TCH [20] εR ≈ O(1/q)εA Y N ROM
TH [20] εR ≈ O(1/q3)εA N N ROM

Our TRH εR ≈ O(1/q)εA N N ROM

FO [23, 6] εR ≈ O(1/q)ε2A N Y QROM
TCH [20] εR ≈ O(1/q3)ε2A Y N QROM
Our TRH εR ≈ O(1/q2)ε2A N N QROM

IND-1-CCA ROM

IND-CCA ROM

IND-1-CCA QROM

IND-CCA QROM

5.1

5.1

5.1

5.2

5.2
5.2

Fig. 1: The relations among notions of security for KEM. An arrow is an implication,
and there is a path from A to B if and and only A⇒ B. The hatched arrows represent
separations actually we prove. The number on an hatched arrow refers to the theorem
in this paper which establishes this relationship.

Remark 1. Our construction TRH is essentially the construction U�⊥ in [17], ex-
cept that the secret seed s in decapsulation is replaced by a public value 0 (0
can be any fixed message). In fact, our proof can work for both secret seed and
public value thanks to the newly introduced decapsulation simulation technique,
while the current IND-CCA proofs for implicit FO-KEMs (e.g., see [17, 21]) can
only work for secret seed. We choose to replace secret seed by public value s-
ince it reduces the secret key size and makes the construction more concise.
Morerover, from a high-assurance implementation (i.e., side-channel protected)
point of view, public value 0 is also preferable to secure seed s. As commented
by Schneider at NIST pqc-forum [35], if s is taken as one part of secret key, the
protection of s against physical attacks will result in significant costs in storage,
and the consequent DPA-protected calculation of H(s, c) is also expensive.

4

1.2 Technique Overview

Construction and reduction. Re-encryption is the core feature of FO-like
IND-CCA-secure KEMs, which guarantees that only specific valid ciphertext
can be correctly decapsulated, and thus makes the decapsulation simulation in
the ROM/QROM proof easy (see [16, 17, 34, 21–23, 6, 19, 14, 18]). However, on
the other hand, as mentioned earlier, removing the re-encryption will bring a
significant speed boost in decapsulation [36, 20] and reduce the risk of side-
channel attacks [39, 3].

Removing re-encryption leads to that the current decapsulation simulation
used for FO-like IND-CCA-secure KEMs cannot work for the KEM constructions
in this paper and [20]. So the key in the proof is the decapsulation simulation.
We note that for a valid ciphertext c̄ such that (Dec(sk, c̄) = m̄ 6= ⊥), the decap-
sulation returns H(m̄, c̄). Thus, if we reprogram H(m̄, c̄) to a random k̄, we can
simulate the decapsulation of c̄ using k̄ without knowledge of sk. To guarantee
the consistency between the outputs of H and the simulated decapsulation, one
needs to correctly guess when the adversary makes a query (m̄, c̄) to H, and
perform a reprogram at that time. In the ROM, a randomly guess is correct
with probability 1/q.

In the QROM, due to adversary’s superposition RO-query, it is hard to define
when the adversary makes a query (m̄, c̄). Therefore, in the QROM, we argue in a
different way. We find that the consistency between H and the simulated decap-
sulation can be guaranteed if the predicate Decap(sk, c̄) = H(m̄, c̄) is satisfied.
Don, Fehr, Majenz, and Schaffner [13, 12] showed that a random measure-and-
reprogram can keep the predicate satisfied with a high probability. However, the
measure-and-reprogram in [13, 12] cannot be directly applied to our case. This
is due to the fact that the random measure in [13, 12] is performed for all the H-
queries while in our case there is an implicit (classical) H-query used in the real
decapsulation that will be removed in the simulated decapsulation and thus can
not be measured. In this paper, extending the proof of measure-and-reprogram
technique in [13, 12], we derive an adapted variant of measure-and-reprogram
(see Lemma 2.4), which is suitable for our case. With this adapted measure-
and-reprogram, the QROM adversary can accept the simulation of both H and
the decapsulation oracle with probability at least O(1/q2). In TRH , H(0, c) is
returned for an invalid ciphertext c (Dec(sk, c) = ⊥). Thus, we can integrate
the invalid case into the valid argument, which in total introduces only O(1/q)
loss in the ROM and O(1/q2) loss in the QROM. On the contrary, when ⊥ is
returned for invalid ciphertxts as in TH , one needs to distinguish invalid case
and invalid case additionally. In [20], reprogramming is performed twice so that
their decapsulation simulation introduces a O(1/q2) loss in the ROM.

When embedding the instance of the underlying security experiment into
the IND-1-CCA instance, we successfully embed an IND-CPA instance without
reduction loss in the ROM. While in [20] a OW-CPA instance is embedded with
a O(1/q) loss in the ROM. In the QROM, the instance embedding is very tricky.
We extend the double-sided O2H technique (see Lemma 2.3) to argue the QROM
instance embedding, more details please refer to the proof of Theorem 3.2.

5

We also remark that one can easily extend the results in this paper to the
IND-q-CCA KEM case for any arbitrary constant q. But, as aforementioned, in
practical protocols, e.g., TLS 1.3, KEM-TLS, IND-1-CCA KEM is sufficient.

Attack and tightness. Re-encryption in the FO-like KEMs will guarantee that
only the ciphertexts generated by derandomization are identified as valid. That
is, any ciphertext obtained by transforming one valid ciphertext are identi-
fied as invalid by re-encryption check. However, for the IND-1-CCA KEMs in
this paper and [20], the re-encryption check is removed. Thus, given a chal-
lenge ciphertext c∗ ← Enc(pk,m∗) to distinguish K0 = H(m∗, c∗) from a ran-
dom K1, an adversary B can efficiently transform c∗ into another ciphertext
c′ such that Dec(sk, c′) = f(m∗) for some specific function f (this property is
defined as malleability), then B can derive a hash value tag = H(f(m∗), c∗)
such that H(f(m∗), c∗) = Decap(sk, c′). Thus, B can search for m∗ such that
tag = H(f(m∗), c∗) from the messageM by querying the random oracle H, and
finally use H(m∗, c∗) to distinguish K0 from K1. By detailed analysis, we can
show B can achieve advantage at least O(q/2λ) in the ROM (O(q2/2λ) in the
QROM). For a λ-bit secure PKE, any PPT adversary breaks the security of PKE
with advantage at most O(1/2λ). Thus, we can claim that a O(1/q) (O(1/q2),
resp.) loss is unavoidable in the ROM (QROM, resp.) for the IND-1-CCA KEMs
in this paper and [20].

Implication and separation. By introducing a proof of quantum access to
random oracle given in [40], we construct a KEM that is provably IND-CCA-
secure (hence also IND-1-CCA secrue) in the ROM, but cannot achieve IND-
1-CCA security (hence also IND-CCA seucrity) in the QROM. In addition, we
show that applying our HRU to lattice-based PKE, e.g., FrodoPKE [27], can
derive an IND-1-CCA ROM (and also QROM) secure KEM. However, such a
KEM cannot achieve IND-CCA security in the ROM (hence QROM). The other
implication relations can be trivially obtained.

1.3 Related Work

The tranformations in [20] and our paper are similar to U-transformation which
is originally proposed in [11] and converts a OW-PCA-secure/deterministic P-
KE into an IND-CCA-secure KEM. The U-transformation has various vari-
ants, including U⊥m, U�⊥m, HU⊥m, HU⊥,QU⊥m, QU�⊥m, U⊥, U�⊥5. For QU⊥m and

QU�⊥m, Hofheinz, Hövelmanns and Kiltz [17] showed that the IND-CCA securi-
ty of KEM can be reduced to the OW-PCA security6 of PKE with tightness
εR ≈ O(1/q2)ε2A. For implicit transformations U�⊥m and U�⊥, Jiang, Zhang, Chen,

5 The symbol ⊥ (�⊥) means explicit (implicit) rejection, m (without m) means
K = H(m) (K = H(m, c)), H (Q) means an additional (length-preserving) hash

value is appended into the ciphertext. In this paper, U⊥m and U�⊥m are referred to
transformations with re-encryption in decapsulation.

6 OW-PCA security is the same as the OW-CPA security except that the adversary
can additionally access a plaintext-checking oracle that judges whether decryption
of a given ciphertext is equal to a given plaintext.

6

Wang and Ma [21] showed that the IND-CCA security of KEM can be reduced
to the quantum variant of OW-PCA security of PKE or OW-CPA security of
deterministic PKE (DPKE) with tightness εR ≈ O(1/q2)ε2A, which is further
improved to εR ≈ O(1/q)ε2A by Jiang, Zhang and Ma [23], improved to εR ≈ ε2A
by Bindel, Hamburg, Hövelmanns, Hülsing and Persichetti [6], and improved to
εR ≈ O(1/q)εA by Kuchta, Sakzad, Stehlé, Steinfeld and Sun [25]. In particular,

Saito, Xagawa, and Yamakawa [34] gave a tight reduction for U�⊥m from a newly
introduced security (called disjoint simulatability) of DPKE to the IND-CCA
security of KEM. This tight result was subsequently extended for the explicit
HU⊥m by Jiang, Zhang and Ma [22]. For HU⊥m and HU⊥, Bindel, Hamburg,
Hövelmanns, Hülsing and Persichetti [6] showed that the same QROM result-
s can be achieved as the implicit variants. Recently, Don, Fehr, Majenz and
Schaffner [14] first proved the QROM security of U⊥m and U⊥7. Note that al-
l the U-transformations require re-encryption in decapsulation except U⊥ and
U�⊥ (see [17, 21]). However, the proofs for U⊥ and U�⊥ in [17, 21] require the
underlying PKE satisfies OW-PCA security, which is usually obtained by using
de-randomization and re-encryption.

1.4 Open Problem

In this paper, we prove a O(1/q) (O(1/q2), resp.) loss is unavoidable in the ROM
(QROM, resp.) for the IND-1-CCA KEMs in this paper and [20]. Meanwhile,
our ROM proof essentially matches this loss. However, our QROM tightness does
not match O(1/q2). Thus, a natural question is that can our QROM reduction
tightness be further improved, or can one find a new attack that matches the
QROM proof in this paper.

2 Preliminaries

Symbol description. A security parameter is denoted by λ. The set {0, · · · , q}
is denoted by [q]. The abbreviation PPT stands for probabilistic polynomial time.
K, M, C and R are denoted as key space, message space, ciphertext space and
randomness space, respectively. Given a finite set X, we denote the sampling
of a uniformly random element x by x←$X. Denote the sampling from some
distribution D by x←D. x =?y is denoted as an integer that is 1 if x = y,
and otherwise 0. Pr[P : G] is the probability that the predicate P holds true
where free variables in P are assigned according to the program in G. Denote
deterministic (probabilistic, resp.) computation of an algorithm A on input x by
y = A(x) (y ← A(x), resp.). Let |X| be the cardinality of set X. AH (A|H〉, resp.)
means that the algorithm A gets classical (quantum, resp.) access to the oracle
H.

7 Strictly speaking, they proved the security of FO⊥m in the QROM. But, their proof
can be translated into a proof for U⊥m and U⊥.

7

2.1 Quantum Random Oracle Model

We refer the reader to [28] for basic of quantum computation. Random ora-
cle model (ROM) [5] is an idealized model, where a hash function is modeled
as a publicly accessible random oracle. In quantum setting, an adversary with
quantum computer can off-line evaluate the hash function on an arbitrary super-
position of inputs. As a result, quantum adversary should be allowed to query the
random orale with quantum state. We call this quantum random oracle model
(QROM) [7].

Lemma 2.1 (One-way to hiding (O2H)[1, Theorem 3]). Let S ⊆ X be
random. Let G, H be oracles such that ∀x /∈ S. G(x) = H(x). Let z be a random
bitstring. (S,G,H, z may have arbitrary joint distribution.) Let A be quantum
oracle algorithm that makes at most q queries (not necessarily unitary). Let B|H〉

be an oracle algorithm that on input z does the following: pick i ∈ [q − 1], run
A|H〉(z) until (just before) the (i+ 1)-th query, measure all query input registers
in the computational basis, output the set T of measurement outcomes. Then∣∣∣Pr[1← A|H〉(Z)]− Pr[1← A|G〉(Z)]

∣∣∣ ≤ 2q
√

Pr[S ∩ T 6= Ø : T ← B|H〉(z)].

Lemma 2.2 ((Adapted) Double-sided O2H [6, Lemma 5]). Let G, H :
X → Y be oracles such that ∀x 6= x∗. G(x) = H(x). Let z be a random bitstring.
(x∗, G,H, z may have arbitrary joint distribution.) Let A be quantum oracle al-
gorithm that makes at most q queries (not necessarily unitary). Then, there is
an another double-sided oracle algorithm B|G〉,|H〉(z) such that B runs in about
the same amount of time as A, and∣∣∣Pr[1← A|H〉(z)]− Pr[1← A|G〉(z)]

∣∣∣ ≤ 2
√

Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)].

In particular, the double-sided oracle algorithm B|G〉,|H〉(z) runs A|H〉(z) and
A|G〉(z) in superposition, and the probability Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] is

exactly ‖|ψqH〉 − |ψ
q
G〉‖

2
/4, where |ψqH〉 (|ψqG〉, resp.) be the final state of A|H〉(z)

(A|G〉(z), resp.).

Next, we give the following two lemmas that will be used in the proof of our
main theorem. Lemma 2.3 shows how to bound the advantage of searching a
reprogramming point in double-sided oracle. Lemma 2.4 gives a variant of the
measure-and-reprogram in [12], which is suitable for our case.

Lemma 2.3 (Search in Double-sided Oracle). Let G, H : X → Y be o-
racles such that ∀x 6= x∗ G(x) = H(x). Let z be a random bitstring. Let A
be quantum oracle algorithm that makes at most q queries (not necessarily uni-
tary). Let B|G〉,|H〉(z) be a double-sided oracle algorithm such that Pr[x∗ = x′ :

x′ ← B|G〉,|H〉(z)] = ‖|ψqH〉 − |ψ
q
G〉‖

2
/4, where |ψqH〉 (|ψqG〉, resp.) be the final

state of A|H〉(z) (A|G〉(z), resp.). Let C |H〉(z) be an oracle algorithm that picks
i←$ {1, 2, . . . , q}, runs A|H〉(z) until (just before) the i-th query, measures the

8

query input registers in the computational basis, and outputs the measurement
outcome. Thus, we have

Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤ q2 Pr[x∗ = x′ : x′ ← C |H〉(z)].

In particular, if X = X1 × X2, x∗ = (x∗1, x
∗
2), x∗1 is uniform and independent of

x∗2 and z, then we further have Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤ q2/ |X1| .

Proof. Let |ψ0〉 be an initial state that depends on z (but not on G, H or x∗),
OH : |x, y〉 → |x, y⊕H(x)〉, and Ui is A’s state transition operation after the i-th
query. (And analogously for A|G〉.) We define |ψiH〉 as UiOH · · ·U1OH |ψ0〉, and
similarly |ψiG〉. Thus, |ψqH〉 (|ψqG〉, resp.) be the final states of A|H〉(z) (A|G〉(z),
resp.). Let Px∗ = |x∗〉〈x∗|, Di =

∥∥|ψiH〉 − |ψiG〉∥∥. Then, for i ≥ 1, we have

Di =
∥∥UiOH |ψi−1

H 〉 − UiOG|ψi−1
G 〉

∥∥
=
∥∥OH |ψi−1

H 〉 −OG|ψi−1
H 〉+OG|ψi−1

H 〉 −OG|ψi−1
G 〉

∥∥
∗
≤
∥∥(OH −OG)|ψi−1

H 〉
∥∥+

∥∥OG(|ψi−1
H 〉 − ψi−1

G 〉)
∥∥

∗∗
= Di−1 +

∥∥(OH −OG)Px∗ |ψi−1
H 〉

∥∥
∗∗∗
= Di−1 + 2

∥∥Px∗ |ψi−1
H 〉

∥∥ (1)

Here, the inequation (∗) uses the triangle inequality. The equation (∗∗) uses that
(OH − OG)Px∗ = OH − OG since G(x) = H(x) for ∀x 6= x∗. The inequation
(∗ ∗ ∗) uses the fact that (OH − OG) has operator norm ≤ 2. Note that D0 =
‖|ψ0〉 − |ψ0〉‖ = 0. From (1), we get Di ≤ Di−1 + 2

∥∥Px∗ |ψi−1
H 〉

∥∥. This implies

Dq ≤ 2
∑q
i=1

∥∥Px∗ |ψiH〉∥∥ .
Using Jensen’s inequality, we get

∑q
i=1

∥∥Px∗ |ψiH〉∥∥ ≤ q√∑q
i=1 1/q

∥∥Px∗ |ψiH〉∥∥2
.

Note that Pr[x∗ = x′ : x′ ← C |H〉(z)] is
∑q
i=1 1/q

∥∥Px∗ |ψiH〉∥∥2
. Thus, we have

Dq ≤ 2q
√

Pr[x∗ = x′ : x′ ← C |H〉(z)].

Since Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] is exactly ‖|ψqH〉 − |ψ
q
G〉‖

2
/4 = D2

q/4,

we have Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤ q2 Pr[x∗ = x′ : x′ ← C |H〉(z)].
In particular, if X = X1 × X2, x∗ = (x∗1, x

∗
2), x∗1 is uniform and independent

of x∗2 and z, then Pr[x∗ = x′ : x′ ← C |H〉(z)] ≤ 1/ |X1| . Thus, we have Pr[x∗ =
x′ : x′ ← B|G〉,|H〉(z)] ≤ q2/ |X1| . ut

Lemma 2.4 ((Adapted) Measure-and-reprogram). Let A|H〉 be an arbi-
trary oracle quantum algorithm that makes q queries to a uniformly random
H : X → Y and that outputs some classical x ∈ X and a (possibly quantum)
output z. In particular, A’s i∗-th query input state is exactly |x〉 (a classical
state).

Let SA(Θ) be an oracle algorithm that randomly picks a pair (i, b0) ∈ ([q −
1] \ {i∗ − 1}× {0, 1})∪ {(q, 0)}, runs A|H

i∗
i 〉 to output z, where Hi∗

i is an oracle
that returns Θ for A’s i∗-th H-query, measures A’s (i+ 1)-th H-query input to
obtain x, returns A’s l-th H-query using H for l < (i+ 1 + b0) and l 6= i∗, and

9

returns A’s l-th H-query using HxΘ (HxΘ(x) = Θ and HxΘ(x′) = H(x′) for all
x′ 6= x) for l ≥ (i+ 1 + b0) and l 6= i∗.

Let SA1 (Θ) be an oracle algorithm that randomly picks a pair (j, b1) ∈ ({i∗, · · · ,
q− 1}× {0, 1})∪{(q, 0)} ∪{(i∗ − 1, 1)}, runs A|Hj〉 to output z, where Hj is an
oracle that measures A’s (j + 1)-th H-query input to obtain x, returns A’s l-th
H-query using H for l < (i + 1 + b0), and returns A’s l-th H-query using HxΘ

for l ≥ (i+ 1 + b0).
Thus, for any x0 ∈ X, i∗ ∈ {1, · · · , q} and any predicate V :

Pr
H

[x = x0 ∧ V (x,H(x), z) = 1 : (x, z)← A|H〉] ≤ 2(2q − 1)2 Pr
H,Θ

[x = x0 ∧ V (x,

Θ, z) = 1 : (x, z)← SA] + 8q2 Pr
H,Θ

[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SA1],

where the subscript {H,Θ} in PrH and PrH,Θ denotes that the probability is
averaged over a random choice of H and Θ. Moreover, if V = V1 ∧ V2 such
that V1(x, y, z) = 1 iff y is returned for A’s i∗-th query, then PrH,Θ[x = x0 ∧
V (x,Θ, z) = 1 : (x, z)← SA1] ≤ 1

|Y| .

Proof. Let |φ0〉 be an initial state that is independent of H and Θ8. OH : |x, y〉 →
|x, y ⊕ H(x)〉. Let Ai be A’s state transition operation after the i-th H-query
(i ∈ {1, · · · , q}). We set AHi→j = AjOH · · ·Ai+1OH for 0 ≤ i < j ≤ q and

AHi→j = I for i ≥ j. Let |φHi 〉 = AH0→i|φ0〉 be the state of A right before the

(i+ 1)-th query. The final state |φHq 〉 is considered to be a state over registers X,
Z and E. Let quantum predicate V be a family of projections {Πx,Θ}x,Θ with
x ∈ X and Θ ∈ Y. Set GΘx = |x〉〈x| ⊗Πx,Θ, where X = |x〉〈x| acts on register
X, and Πx,Θ acts on register Z. Then, we have Pr[x = x0 ∧ V (x,H(x), z) = 1 :

(x, z)← A|H〉] =
∥∥∥GH(x0)

x0 |φHq 〉
∥∥∥2

.

Since HxΘ(x′) = H(x′) for all x′ 6= x, we have (AHxΘi+1→q)(A
H
i→i+1)(I −

X)|φHi 〉 = (AHxΘi→q)(I−X)|φHi 〉. Thus, (AHxΘi+1→q)|φHi+1〉

= (AHxΘi+1→q)(A
H
i→i+1)(I−X)|φHi 〉+ (AHxΘi+1→q)(A

H
i→i+1)X|φHi 〉

= (AHxΘi→q)(I−X)|φHi 〉+ (AHxΘi+1→q)(A
H
i→i+1)X|φHi 〉

= (AHxΘi→q)|φHi 〉 − (AHxΘi→q)X|φHi 〉+ (AHxΘi+1→q)(A
H
i→i+1)X|φHi 〉.

Applying GΘx and using the triangle equality, we have
∥∥∥GΘx (AHxΘi→q)|φHi 〉

∥∥∥ ≤∥∥∥GΘx (AHxΘi+1→q)|φ
H
i+1〉

∥∥∥+
∥∥∥GΘx (AHxΘi→q)X|φHi 〉

∥∥∥+
∥∥∥GΘx (AHxΘi+1→q)(A

H
i→i+1)X|φHi 〉

∥∥∥ .
Summing up the above inequality over i = 0, · · · , q − 1, we get∥∥GΘx |φHxΘq 〉

∥∥ ≤ ∥∥GΘx |φHq 〉∥∥+
∑

0≤i<q,b∈{0,1}

∥∥∥GΘx (AHxΘi+b→q)(A
H
i→i+b)X|φHi 〉

∥∥∥ (2)

8 This initial state can be seen as an additional input to A. In [12, Theorem 2], it is
also implicitly required that the initial state is independent of H and Θ.

10

Note that A’s i∗-th query is classical and the query input is |x〉. Then,
X|φH(i∗−1)〉 = |φH(i∗−1)〉. Thus, there is a specific term∥∥∥GΘx (AHxΘ(i∗−1)→q)X|φ

H
(i∗−1)〉

∥∥∥ =
∥∥∥GΘx (AHxΘ(i∗−1)→q)|φ

H
(i∗−1)〉

∥∥∥ (3)

on the right hand side of inequality (2).
Set BHj→k = Ai∗+kOH · · ·Ai∗+j+1OH for k ≥ (j + 1) (BHj→k = I for k ≤ j.),

|ψ0〉 = (AHxΘ(i∗−1)→i∗) |φ
H
(i∗−1)〉, and |ψHj 〉 = BH0→j |ψ0〉. Then,

∥∥∥GΘx (AHxΘ(i∗−1)→q)|φ
H
(i∗−1)〉

∥∥∥ =∥∥∥GΘx |ψHxΘq−i∗〉
∥∥∥ =

∥∥∥GΘxBHxΘ0→(q−i∗)|ψ0〉
∥∥∥.

Since HxΘ(x′) = H(x′) for all x′ 6= x, we have (BHj→(j+1))(I − X)|ψHj 〉 =

(BHxΘj→(j+1))(I−X)|ψHj 〉. Thus, we can write (BHxΘj+1→(q−i∗))|ψ
H
j+1〉

= (BHxΘj+1→(q−i∗))(B
H
j→j+1)(I−X)|ψHj 〉+ (BHxΘj+1→(q−i∗))(B

H
j→j+1)X|ψHj 〉

= (BHxΘj→(q−i∗))(I−X)|ψHj 〉+ (BHxΘj+1→(q−i∗))(B
H
j→j+1)X|ψHj 〉

= (BHxΘj→(q−i∗))|ψ
H
j 〉 − (BHxΘj→(q−i∗))X|ψ

H
j 〉+ (BHxΘj+1→(q−i∗))(B

H
j→j+1)X|ψHj 〉.

Rearranging terms, applying GΘx and using the triangle equality, we have∥∥∥GΘx (BHxΘj→(q−i∗))|ψ
H
j 〉
∥∥∥ ≤ ∥∥∥GΘx (BHxΘj+1→(q−i∗))|ψ

H
j+1〉

∥∥∥+∥∥∥GΘx (BHxΘj→(q−i∗))X|ψ
H
j 〉
∥∥∥+

∥∥∥GΘx (BHxΘj+1→(q−i∗))(B
H
j→j+1)X|ψHj 〉

∥∥∥ .
Summing up the inequality over j = 0, · · · , q − i∗ − 1, we get∥∥∥GΘx (AHxΘ(i∗−1)→q)|φ

H
(i∗−1)〉

∥∥∥ =
∥∥∥GΘxBHxΘ0→(q−i∗)|ψ0〉

∥∥∥ ≤ ∥∥GΘx |ψHq−i∗∥∥+∑
0≤j<(q−i∗),b∈{0,1}

∥∥∥GΘx (BHxΘj+b→(q−i∗))(B
H
j→j+b)X|ψHj 〉

∥∥∥ (4)

According to equalities (2), (3) and (4), we get∥∥GΘx |φHxΘq 〉
∥∥ ≤ Term1 + Term2, (5)

Term0 =
∑

0≤i<(i∗−1)
b0∈{0,1}

∥∥∥GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉

∥∥∥+
∥∥∥GΘx (AHxΘ(i∗−1)→q)X|φ

H
(i∗−1)〉

∥∥∥
=

∑
0≤i<(i∗−1),b0∈{0,1}

∥∥∥GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉

∥∥∥
+
∥∥GΘx |ψHq−i∗∥∥+

∑
0≤j<(q−i∗),b0∈{0,1}

∥∥∥GΘx (BHxΘj+b0→(q−i∗))(B
H
j→j+b0)X|ψHj 〉

∥∥∥
=

∑
0≤i<(i∗−1),b0∈{0,1}

∥∥∥GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉

∥∥∥
+
∥∥∥GΘx (AHi∗→q)(A

HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉

∥∥∥
11

+
∑

i∗≤i<q
b0∈{0,1}

∥∥∥GΘx (AHxΘ(i+b0)→q)(A
H
i→(i+b0))X(AHi∗→i)(A

HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉

∥∥∥
Term1 =

∥∥GΘx |φHq 〉∥∥+
∑

i∗≤i<q
b1∈{0,1}

∥∥∥GΘx (AHxΘi+b1→q)(A
H
i→i+b1)X|φHi 〉

∥∥∥
+
∥∥∥GΘx (AHxΘi∗→q)(A

H
(i∗−1)→i∗)X|φ

H
(i∗−1)〉

∥∥∥ .
According to inequality (5), we have

∥∥GΘx |φHxΘq 〉
∥∥2 ≤ 2Term02 + 2Term12.

Since GΘx = GΘxX, we get GΘx (AHi∗→q)(A
HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉 = GΘx (AHxΘ(i+b0)→q)

(AHi→(i+b0))X(AHi∗→i)(A
HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉 with i = q and b0 = 0 and GΘx |φHq 〉 =

GΘxX|φHq 〉 = GΘx (AHxΘi+b1→q)(A
H
i→i+b1)X|φHi 〉 with i = q and b1 = 0. Then, using

Jensen’s inequality, we have

Term02 ≤ (2q − 1)(
∑

0≤i<(i∗−1),b0∈{0,1}

∥∥∥GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉

∥∥∥2

+
∥∥∥GΘx (AHi∗→q)(A

HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉

∥∥∥2

+
∑

i∗≤i<q
b0∈{0,1}

∥∥∥GΘx (AHxΘ(i+b0)→q)(A
H
i→(i+b0))X(AHi∗→i)(A

HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉

∥∥∥2

)

= (2q − 1)2 Ei,b0
[∥∥δi<(i∗−1)T0

∥∥2
+ ‖δi≥i∗T1‖2

]
,

where T0 = (GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉), T1 = GΘx (AHxΘ(i+b0)→q)(A

H
i→(i+b0))

X(AHi∗→i)(A
HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉, δi<(i∗−1) = 1 if i < (i∗ − 1) otherwise 0, δi≥i∗ =

1 if i ≥ i∗ otherwise 0, the expectation in Term02 is over uniform (i, b0) ∈
([q−1]\{i∗ − 1}×{0, 1})∪{(q, 0)}. Then, the probability of S outputting (x, z)

such that V (x,Θ, z) = 1 is exactly Ei,b0
[∥∥δi<(i∗−1)T0

∥∥2
+ ‖δi≥i∗T1‖2

]
.

Term12 ≤ (2q − 2i∗ + 2)(
∥∥GΘx |φHq 〉∥∥2

+
∑

i∗≤i<q
b1∈{0,1}

∥∥∥GΘx (AHxΘi+b1→q)(A
H
i→i+b1)X|φHi 〉

∥∥∥2

+
∥∥∥GΘx (AHxΘi∗→q)(A

H
(i∗−1)→i∗)X|φ

H
(i∗−1)〉

∥∥∥2

)

= (2q − 2i∗ + 2)2 Ej,b1
[∥∥∥GΘx (AHxΘj+b1→q)(A

H
j→j+b1)X|φHj 〉

∥∥∥2
]

where the expectation in Term12 is over uniform (j, b1) ∈ ({i∗, · · · , q − 1} ×
{0, 1}) ∪ {(q, 0)} ∪ {(i∗ − 1, 1)}. Then, the probability of S1 outputting (x, z)

such that V (x,Θ, z) = 1 is exactly Ej,b1
[∥∥∥GΘx (AHxΘj+b1→q)(A

H
j→j+b1)X|φHj 〉

∥∥∥2
]
.

12

Since the initial state is independent ofH andΘ, we have PrH,Θ[
∥∥GΘx |φHxΘq 〉

∥∥2
]

= PrH,Θ[
∥∥∥GH(x)

x |φHq 〉
∥∥∥2

]. Thus, for any x0 ∈ X and predicate V , we have

PrH [x = x0 ∧ V (x,Θ, z) = 1 : (x, z) ← A|H〉] ≤ 2(2q − 1)2 PrH,Θ[x = x0 ∧
V (x,Θ, z) = 1 : (x, z)← SA] + 8q2 PrH,Θ[x = x0∧V (x,Θ, z) = 1 : (x, z)← SA1],
as desired. Set V1(x, y, z) = 1 iff y is returned for A’s i∗-th query. When V = V1∧
V2, we get PrH,Θ[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SA1] ≤ Pr[H(x) = Θ] = 1

|Y| .

2.2 Cryptographic Primitives

Definition 2.1 (Public-key encryption). A public-key encryption (PKE)
scheme PKE consists of a triple of polynomial time (in the security parame-
ter λ) algorithms and a finite message space M. (1) Gen(1λ) → (pk, sk): the
key generation algorithm, is a probabilistic algorithm which on input 1λ outputs
a public/secret key-pair (pk, sk). Usually, for brevity, we will omit the input of
Gen. (2) Enc(pk,m) → c: the encryption algorithm Enc, on input pk and a
message m ∈M, outputs a ciphertext c← Enc(pk,m). (3) Dec(sk, c)→ m: the
decryption algorithm Dec, is a deterministic algorithm which on input sk and a
ciphertext c outputs a message m := Dec(sk, c) or a rejection symbol ⊥/∈M.

Definition 2.2 (Correctness [17]). A PKE is δ-correct if E[max
m∈M

Pr[Dec(sk, c)

6= m : c← Enc(pk,m)]] ≤ δ, where the expectation is taken over (pk, sk)← Gen.
We say a PKE is perfectly correct if δ = 0.

Note that this definition works for a deterministic or randomized PKE, but for
a deterministic PKE9 the term max

m∈M
Pr[Dec(sk, c) 6= m : c = Enc(pk,m)] is

either 0 or 1 for each keypair (pk, sk).

Definition 2.3 (Injectivity of DPKE [6]). A deterministic PKE (DPKE) is
ε-injective if Pr[Enc(pk, ∗) is not injective : (pk, sk)← Gen] ≤ ε.

Remark 2. we observe that if DPKE is δ-correct, then DPKE is injective with
probability ≥ 1− δ. That is, for DPKE, δ-correctness implies δ-injectivity.

Definition 2.4 (OW-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define OW − CPA game
of PKE as in Fig. 2. Define the OW − CPA advantage function of an adversary
A against PKE as AdvOW-CPA

PKE (A) := Pr[OW-CPAAPKE = 1].

Game OW-CPA

1 : (pk, sk)← Gen,m∗
$←M

2 : c∗ ← Enc(pk,m∗),m′ ← A(pk, c∗)

3 : return m′ =?m∗

Game IND-CPA

1 : (pk, sk)← Gen, b←$ {0, 1}
2 : (m0,m1)←A(pk)

3 : c∗ ← Enc(pk,mb), b
′ ← A(pk, c∗)

4 : return b′ =?b

Fig. 2: Game OW-CPA and game IND-CPA for PKE.

9 A PKE is determinstic if Enc is deterministic

13

Definition 2.5 (IND-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
PKE scheme. Define IND− CPA game of PKE as in Fig. 2, where m0 and m1

have the same length. Define the IND− CPA advantage function of an adversary
A against PKE as AdvIND-CPA

PKE (A) := |Pr[IND-CPAAPKE = 1]− 1/2|.

Malleability. In this paper, we say a PKE = (Gen,Enc,Dec) has a malleability
property if for any (pk, sk) generated by Gen, any m ∈M, and c← Enc(pk,m),
there exists an algorithm B that on input (pk, c) outputs (f, c′) such that (1)
f(m) = Dec(sk, c′) (Dec(sk, c′) 6= ⊥) (2) f(m̃) 6= Dec(sk, c′) for any m̃ ∈ M
and m̃ 6= m.

Definition 2.6 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms. (1) Gen(1λ) → (pk, sk): the key generation algo-
rithm Gen outputs a key pair (pk, sk). Usually, for brevity, we will omit the
input of Gen. (2) Encaps(pk) → (K, c): the encapsulation algorithm Encaps,
on input pk, outputs a tuple (K, c), where K ∈ K and ciphertext c is said to be
an encapsulation of the key K. (3) Decaps(sk, c)→ K: the deterministic decap-
sulation algorithm Decaps, on input sk and an encapsulation c, outputs either
a key K := Decaps(sk, c) ∈ K or a rejection symbol ⊥/∈ K.

Definition 2.7 (IND-CCA-secure KEM). We define the IND− CCA game
as in Fig. 3 and the advantage function of an adversary A against KEM as
AdvIND-CCA

KEM (A) :=
∣∣Pr[IND-CCAAKEM = 1]− 1/2

∣∣ .
Game IND-CCA

1 : (pk, sk)← Gen, b
$← {0, 1}

2 : (K∗0 , c
∗)← Encaps(pk),K∗1

$← K

3 : b′ ← ADecaps(pk, c∗,K∗b)

4 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗return ⊥
2 : else return

3 : K := Decaps(sk, c)

Fig. 3: IND-CCA game for KEM.

2.3 Learning with Error (LWE)

Definition 2.8. Let n,m, q be positive integers, and let χ be a distribution
over Z. The (decision) LWE problem is to distinguish between the distributions
(A,As + e(modq)) and (A,u), where A←$Zn×mq , s←$Znq , e← χm, u←$Zmq .

In this paper, we refer the LWE assumption to that no quantum polynomial-time
algorithm can solve the LWE problem with more than a negligible advantage.

2.4 Proof of Quantum access to Random Oracle (PoQRO)

Definition 2.9 ([40]). A (non-interactive) proof of quantum access to a ran-
dom oracle (PoQRO) consists of the following three algorithms. (1) Setup(1λ):

14

This is a classical algorithm that takes the security parameter 1λ as input and
outputs a public key pk and a secret key sk. (2) Prove|H〉(pk): This is a quantum
algorithm that takes a public key pk as input and given quantum access to a ran-
dom oracle H, and outputs a proof π10. (3) V erifyH(sk, π): This is a classical
algorithm that takes a secret key sk and a proof π as input and given classical
access to a random oracle H, and outputs 1 indicating acceptance or 0 indicating
rejection. PoQRO is required to satisfy the following properties.
Correctness. We have Pr[V erifyH(sk, π) = 0 : (pk, sk) ← Setep(1λ), π ←
Prove|H〉(pk)] ≤ negl(λ) .
Soundness. For any quantum polynomial-time adversary A that is given a
classical oracle access to H, we have Pr[V erifyH(sk, π) = 1 : Setep(1λ), π ←
AH(pk)] ≤ negl(λ) .

Lemma 2.5 ([40, Theorem 3.3]). If the LWE assumption holds, then there
exists a PoQRO.

3 IND-1-CCA-secure KEM without re-encryption and
ciphertext expansion

To a public-key encryption PKE′=(Gen′, Enc′, Dec′) and a random oracle H
(H : M× C → K), we associate KEM = TRH [PKE′, H]. 0 can be any fixed
message in M. The algorithms of KEM=(Gen,Encaps,Decaps) are defined as
in Fig. 4.

Theorem 3.1 (ROM security). If PKE′ is δ-correct, for any adversary B
against the IND-1-CCA security of KEM in Fig. 4, issuing at most a single
(classical) query to the decapsulation oracle Decaps and at most qH queries to
the random oracle H, there exists a OW-CPA adversary A and an IND-CPA
adversary D against PKE′ which run in about the same time as B such that

AdvIND-1-CCA
KEM (B) ≤ qH(qH + 1)AdvOW−CPA

PKE′ (A) (6)

AdvIND-1-CCA
KEM (B) ≤ 2(qH + 1)AdvIND−CPA

PKE′ (D) + 2qH(qH + 1)/ |M| .

If the PKE is deterministic, the bound (6) can be improved as

AdvIND-1-CCA
KEM (B) ≤ (qH + 1)AdvOW−CPA

PKE′ (A) + (qH + 1)δ.

Gen

1 : (pk, sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m←$M
2 : c← Enc′(pk,m)

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk, c)

1 : m′ := Dec′(sk, c)

2 : if m′ =⊥ return K := H(0, c)

3 : else return K := H(m′, c)

Fig. 4: IND-1-CCA-secure KEM = TRH [PKE′, H]

10 Here, π is a classical value, and note a quantum state

15

GAMES G0 −G2

1 : (pk, sk)← Gen′, j = 0, i←$ [qH]

2 : Query = false , H1 ←$ΩH

3 : k̄, k∗1 ←$K, b←$ {0, 1}
4 : m∗ ←$M, c∗ ← Enc(pk,m∗)

5 : k∗0 = H(m∗, c∗) //G0

6 : k∗0 ←$K //G1 −G2

7 : b′ ← BH,Decaps(pk, c∗, k∗b)

8 : return b′ =?b

Hi
1(m, c)

1 : if (m, c) = (mi+1, ci+1)

2 : return k̄

3 : else return H1(m, c)

H(m, c)

1 : if (m, c) = (m∗, c∗) //G1 −G2

2 : Query = true //G1 −G2

3 : if j ≥ i return Hi
1(m, c) //G2

4 : j = j + 1 //G2

5 : return H1(m, c)

Decaps (sk, c̄ 6= c∗) //G0 −G2

1 : if more than 1 query return ⊥
2 : return K := k̄ //G2

3 : m′ := Dec′(sk, c̄)

4 : if m′ =⊥ do m̄ = 0

5 : else do m̄ = m′

6 : return K := H(m̄, c̄) //G0 −G1

Fig. 5: Games G0-G2 for the proof of Theorem 3.1

Proof. Let B be an adversary against the IND-CCA security of KEM, issuing
(exactly) one classical query to Decaps (by introducing a dummy query if neces-
sary), and at most qH queries (excluding the queries implicitly made in Decaps)
to H. Let ΩH be the sets of all functions H :M×C → K. Consider the games
in Fig. 5.

Game G0. Since gameG0 is exactly the IND-1-CCA game,
∣∣Pr[GB0 ⇒ 1]− 1/2

∣∣ =
AdvIND-1-CCA

KEM (B).

Game G1. In game G1, k∗0 := H(m∗, c∗) is replaced by k∗0 ←$K. Thus, in G1,
the bit b is independent of B’s view, thus Pr[GB1 ⇒ 1] = 1/2. Define Query as
the event that (m∗, c∗) is queried to H. Then, G1 is identical with G0 in B’s
view unless the event Query happens. Thus, we have

AdvIND-1-CCA
KEM (B) =

∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]
∣∣ ≤ Pr[Query : G1].

Game G2. In game G2, we make two changes. First, we modify the Decaps
oracle, and replace K := H(m̄, c̄) by K := k̄. Second, we reprogram the random
oracle H conditional a uniform i over [qH]. In particular, reprogram H to Hi

1

(given by Fig. 5) when B makes the (i+ 1)-th H-query (0 ≤ i ≤ (qH − 1)), and
then answer B with Hi

1 for B’s j-th query (j ≥ (i+ 1)). Hi
1(m, c) returns k̄ when

(m, c) = (mi+1, ci+1) and H1(m, c) otherwise. Let (i∗ + 1) be the number of B’s
first query to H with (m̄, c̄), where i∗ ∈ [qH − 1]. We also denote i∗ = qH as
the event that B makes no query to H with (m̄, c̄). Note that G3 has the same
distribution as G2 in B’s view when i∗ = i. Thus, we have

Pr[Query : G1] ≤ (qH + 1) Pr[Query : G2].

16

Let (pk, sk) ← Gen′, m∗←$M, c∗ ← Enc(pk,m∗). Then, we construct an
adversary A′(pk, c∗) that simulates B’s view as in game G2 and returns B’s
H-query list H-List, see Fig. 6. Note that a qH -wise independent function is
statistically indistinguishable from a true random function for any distinguisher
that makes at most qH queries [41]. Thus, the probability of the H-List returned
by A′ contains (m∗, c∗) is exactly Pr[Query : G2].

Now, we construct an adversary A against the OW-CPA security of under-
lying PKE. If the underlying PKE is probabilistic, A runs A′, and randomly
selects one message in the H-List as a return. Then, we have AdvOW−CPA

PKE′ (A) =
1/qH Pr[Query : G2]. If the underlying PKE is deterministic, A runs A′, selects
a (m′, c′) from H-List such that c′ = c∗ and Enc(pk,m′) = c∗, and returns m′.
If the challenge ciphertext c∗ will not yield a decryption failure (this happens
with probability 1− δ), the probability of that A returns m∗ is Pr[Query : G2].
Thus, we have AdvOW−CPA

PKE′ (A) ≥ Pr[Query : G2] − δ. Therefore, putting the
inequalities together will yield the following result. For probabilistic PKE, we
have

AdvIND-1-CCA
KEM (B) ≤ qH(qH + 1)AdvOW−CPA

PKE′ (A).

For deterministic PKE, we have

AdvIND-1-CCA
KEM (B) ≤ (qH + 1)AdvOW−CPA

PKE′ (A) + (qH + 1)δ.

A′(pk, c∗)

1 : k∗, k̄←$K, j = 0, i←$ [qH]

2 : Pick a qH -wise functions H1

3 : b′ ← BH,Decaps(pk, c∗, k∗)

4 : return H-List

Hi
1(m, c)

1 : if (m, c) = (mi+1, ci+1) return k̄

2 : else return H1(m, c)

H(m, c)

1 : if i = qH return H1(m, c)

2 : if j ≥ i return Hi
1(m, c)

3 : j = j + 1

4 : return H1(m, c)

Decaps (c̄ 6= c∗)

1 : return k̄

Fig. 6: Adversary A′ for the proof of Theorem 3.1

When the underlying PKE satisfies IND-CPA security, we can construct an
IND-CPA adversary D, and derive a tighter bound. In particular, D(pk) samples
two uniform messages m∗0 and m∗1 from M, i.e., m∗0,m

∗
1←$M. The IND-CPA

challenger chooses a bit b, generates the challenge ciphertext c∗ ← Enc(pk,m∗b)
and sends c∗ to D. Then, D runs A′(pk, c∗), get B’s H-List. If (m∗b′ , ∗) is in H-List
and (m∗1−b′ , ∗) is not in H-List, D returns b′. For other cases, D return a uniform
b′, i.e., b′←$ {0, 1}.

Let BAD be the event that B queries (m∗1−b, ∗) (that is, (m∗1−b, ∗) is in
H-List). Note that m∗1−b is uniformly distributed and independent from B’s view.

17

Thus, the events BAD and Query are independent, and Pr[BAD] ≤ qH/ |M|.
Note that if BAD does not happen, then D makes a correct guess of b with
probability 1 when Query happens, and with probability 1/2 when Query
does not happen. Thus, we have AdvIND−CPA

PKE′ (D) = |Pr[b′ = b]− 1/2|

= |Pr[b′ = b ∧BAD] + Pr[b′ = b ∧ ¬BAD]− 1/2(Pr[BAD] + Pr[¬BAD])|
≥ |Pr[b′ = b ∧ ¬BAD]− 1/2 Pr[¬BAD]| − Pr[BAD] |Pr[b′ = b|BAD]− 1/2|
≥ |Pr[b′ = b ∧ ¬BAD]− 1/2 Pr[¬BAD]| − 1/2 Pr[BAD]

= |Pr[b′ = b ∧ ¬BAD ∧Query]− 1/2 Pr[¬BAD ∧Query]| − 1/2 Pr[BAD]

= 1/2 Pr[¬BAD ∧Query]− 1/2 Pr[BAD]

≥ 1/2 Pr[Query]− Pr[BAD]

≥ 1/2 Pr[Query]− qH/ |M| = 1/2 Pr[Query : G2]− qH/ |M| .

Putting the bounds together, we have

AdvIND-1-CCA
KEM (B) ≤ 2(qH + 1)AdvIND−CPA

PKE′ (D) + 2qH(qH + 1)/ |M| .

ut

Theorem 3.2 (QROM security). If PKE′ is δ-correct, for any adversary
B against the IND-1-CCA security of KEM in Fig. 4, issuing at most single
(classical) query to the decapsulation oracle Decaps and at most qH queries
to the quantum random oracle H, there exists a OW-CPA adversary A and an
IND-CPA adversary D against PKE′ such that the running time of A and D is
about that of B,

AdvIND-1-CCA
KEM (B) ≤ 6(qH + 1)2

√
AdvOW−CPA

PKE′ (A) + 1/ |K|.

AdvIND-1-CCA
KEM (B) ≤ 6(qH + 1)

√
4AdvIND−CPA

PKE′ (D) + 2(qH + 1)2/ |M|+ 1/ |K|.

If the PKE is deterministic, the bound can be improved as

AdvIND-1-CCA
KEM (B) ≤ 6(qH + 1)

√
AdvOW-CPA

PKE′ (A) + 1/ |K|+ δ.

Proof sketch: Our proof mainly consists of two steps. One is the underlying
security game embedding via replacing the real key H(m∗, c∗) with a random
key (i.e., reprogramming H). We argue the impact of such a reprogramming
by different O2H variants. When the underlying PKE is OW-CPA-secure, we
follow previous proofs for U�⊥ in [21, 6], and use general O2H (Lemma 2.1) for
probabilistic PKE and double-sided O2H (Lemma 2.2) for deterministic PKE.
When the underlying PKE is IND-CPA-secure, we also adopt double-sided O2H
(Lemma 2.2) to argue the reprogramming impact. Since the embedded IND-CPA
game is decisional, an additional game that searches a reprogramming point in
double-sided oracle is introduced and we use Lemma 2.3 to argue this advantage.
The other is simulation of the Decaps oracle. As discussed in Sec. 1.2, we adopt a

18

new Decaps simulation that directly replaces the output H(m̄, c̄) with a random
key k̄. Intuitionally, this simulation is perfect if H(m̄, c̄) is reprogrammed to
be k̄ when the adversary first makes a query (m̄, c̄). However, in the QROM,
it is hard to define the first time to query (m̄, c̄). Thus, in the QROM, we
argue this in a different way. We find the simulation is perfect if the predicate
Decaps(sk, c̄) = H(m̄, c̄) is satisfied. Since in the simulation of Decaps, an
implicit (classical) H-query (m̄, c̄) made in the real implementation is removed
and thus this specific query can not be measured. Therefore, we use a refined
measure-and-reprogram technique in Lemma 2.4 to argue the simulation impact.

Proof. Let ΩH be the sets of all functions H : M× C → K. Let B be an IND-
CCA adversary against KEM, issuing a single classical query to Decaps (if
none, introduce a dummy one), and at most qH quantum queries (excluding the
queries implicitly made in Decaps) to H. Consider the games in Fig. 7.

Game G0. Since gameG0 is exactly the IND-1-CCA game,
∣∣Pr[GB0 ⇒ 1]− 1/2

∣∣ =
AdvIND-1-CCA

KEM (B).

Game G1. In game G1, the random oracle H accessed by B is replaced by an
oracle H ′ given by Fig. 7. It is easy to see that G1 can be rewritten as game G2.

GAMES G0 −G2

1 : (pk, sk)← Gen′, H ←$ΩH

2 : k, k∗1 ←$K, b←$ {0, 1}
3 : m∗ ←$M, c∗ ← Enc(pk,m∗)

4 : k∗0 = H(m∗, c∗) //G0 −G1

5 : k∗0 ←$K //G2

6 : b′ ← B|H〉,Decaps(pk, c∗, k∗b) //G0, G2

7 : b′ ← B|H
′〉,Decaps(pk, c∗, k∗b) //G1

8 : return b′ =?b

Decaps (sk, c̄ 6= c∗) //G0 −G2

1 : m′ := Dec′(sk, c̄)

2 : if more than 1 query return ⊥
3 : if m′ =⊥ do m̄ = 0

4 : else do m̄ = m′

5 : return K := H(m̄, c̄)

H ′(m, c)

1 : if (m, c) = (m∗, c∗) return k

2 : return H(m, c)

Fig. 7: Games G0-G2 for the proof of Theorem 3.2

Game G2. The game G2 is the same as game G0 except that k∗0 := H(m∗, c∗)
is replaced by k∗0 ←$K. Thus, in G2, the bit b is independent of B’s view, thus
Pr[GB2 ⇒ 1] = 1/2. Note that games G1 and G2 have the same distribution.
Thus, Pr[GB1 ⇒ 1] = Pr[GB2 ⇒ 1] = 1/2. Therefore, we have

AdvIND-1-CCA
KEM (B) =

∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]
∣∣ . (7)

Lemma 3.1. There exists a OW-CPA adversary A against probabilistic PKE′

such that the running time of A is about that of B and AdvIND-1-CCA
KEM (B) ≤

6(qH + 1)2
√
AdvOW−CPA

PKE′ (A) + 1/ |K|.

19

GAMES G3A −G4A

1 : (pk, sk)← Gen′, H ←$ΩH , k
∗, k̄←$K,m∗ ←$M, c∗ ← Enc(pk,m∗)

2 : l = 0, j ←$ [qH − 1], (i, b)←$ ([qH − 1]× {0, 1}) ∪ {(qH , 0)}
3 : Run B|H〉,Decaps(pk, c∗, k∗) until the (j+1)-th query |ψ〉 //G3A

4 : Run B|H
i
1〉,Decaps(pk, c∗, k∗) until the (j+1)-th query state|ψ〉 //G4A

5 : (m′, c′)←M |ψ〉
// Make a standard measure M on B’s (j + 1)-th query input register

6 : return m∗ =?m′

Decaps (sk, c̄ 6= c∗) //G3A −G4A

1 : if more than 1 query return ⊥
2 : return k̄ //G4A

3 : m′ := Dec′(sk, c̄)

4 : if m′ =⊥ do m̄ = 0

5 : else do m̄ = m′

6 : return K := H(m̄, c̄)

Hi
1(m, c)

1 : if l ≥ (i+ b) ∧ (m, c) = (mi+1, ci+1)

// (mi+1, ci+1) is the measurement outcome

// on B’s (i+ 1)-th query input register

2 : return k̄

3 : else return H(m, c)

4 : l = l + 1

Fig. 8: Games G3A-G4A for the proof of Lemma 3.1

The proof of Lemma 3.1. Define games G3A and G4A as in Fig. 8.

Let z1 = (pk, sk, c∗, k∗b , b). Let AO (O ∈ H,H ′) be an oracle algorithm
that runs B|O〉,Decaps(pk, c∗, k∗b) to obtain b′, and returns b′ =?b. Thus, we have

Pr[GB0 ⇒ 1] = Pr[1 ← A|H〉(z1)] and Pr[GB1 ⇒ 1] = Pr[1 ← A|H
′〉(z1)]. Let

B(z1) be an algorithm that randomly samples j ∈ [qH − 1], runs A|H
′〉 un-

til (just before) the (j + 1)-th query11, measures the query input registers in
the computational basis, and outputs measurement outcomes. Thus, we have
Pr[GB3A ⇒ 1] = Pr[(m∗, ∗) ← B|H〉(z1)] ≥ Pr[(m∗, c∗) ← B|H〉(z1)]. Therefore,
according to Lemma 2.1, we have

∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]
∣∣ ≤ 2(qH + 1)

√
Pr[GB3A ⇒ 1].

Let C |H〉 be an oracle algorithm that samples pk, sk, k∗, j,m∗, c∗, and runs
B|H〉,Decaps as in game G3A. Let c̄ be B’s query to the Decaps oracle. Let m̄ = 0
if m′ = ⊥, and m̄ = m′ if m′ 6= ⊥, where m′ = Dec′(sk, c̄). Let x = (m̄, c̄),
y = H(x), and z = (z1, z2, z3) = (Decaps(sk, c̄),m∗,m′). C outputs (x, z). Let
V1(x, y, z) = (y =?z1) and V2 = (z2 =?z3) Instantiating the predicate V in
Lemma 2.4 by V = V1 ∧ V2. Note that in G3A the return of Decaps oracle is
exactly H(x). That is, V1 = 1 is always satisfied. Thus, we have Pr[GB3A ⇒ 1] =∑
x0PrH [x = x0 ∧ V (x,H(x), z) = 1 : (x, z)← C |H〉].

11 In game G3A, H ′ is rewritten to be H.

20

Note that C needs to implicitly query H(m̄, c̄) to simulate the Decaps or-
acle. That is, C makes qH + 1 H-queries in total. In the following, unless oth-
erwise specified, the H-queries we mentioned does not include this implicit H-
query. Let SC(Θ) be an oracle algorithm that always returns Θ for C’s implicit
classical H-query H(m̄, c̄). S samples a uniform (i, b)←$ ([qH − 1] × {0, 1}) ∪
{(qH , 0)}, and runs C |H〉 until the C’s (i + 1)-th query (excluding the implic-
it H-query), measures the query input registers to obtain x, continues to run
C |H〉 until the (i + b + 1)-th H-query, reprogram H to HxΘ (HxΘ(x) = Θ and
HxΘ(x′) = H(x′) for all x′ 6= x), and runs A|HxΘ〉 until the end to output z. Let
x = (m̄, c̄), y = Θ, and z = (z1, z2, z3) = (Decaps(sk, c̄),m∗,m′). SC outputs
(x, z). Note that V1(x, y, z) = (y =?z1) = 1 for SC . Sample Θ = k̄←$K and
H ←$ΩH . Then, SC(Θ) perfectly simulates game G4A and we have Pr[GB4A ⇒
1] =

∑
x0PrH,Θ[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SC].

According to Lemma 2.4, PrH [x = x0 ∧ V (x,H(x), z) = 1 : (x, z)← C |H〉] ≤
2(2qH + 1)2 PrH,Θ[x = x0 ∧ V (x,Θ, z) = 1 : (x, z) ← SC] + 8(qH + 1)2|K|.
Therefore, we get

Pr[GB3A ⇒ 1] ≤ 8(qH + 1)2(Pr[GB4A ⇒ 1] + 1/|K|).

Now, we can construct a OW-CPA adversary A(pk, c∗) against PKE′, where
(pk, sk)← Gen′,m∗←$M, c∗ ← Enc(pk,m∗). A samples k∗, k̄, j, i, b as in game
G4A, picks a 2qH -wise independent function H (undistinguishable from a ran-
dom function for a q-query adversary according to [41, Theorem 6.1]), runs

B|Hi1〉,Decaps(pk, c∗, k∗) (the simulations of Hi
1,Decaps are the same as the ones

in game G4A) until the (j +1)-th query, measures B’s query input register to
obtain (m′, c′), finally outputs m′ as a return. It is obvious that the advantage
of A against the OW-CPA security of PKE′ is exactly Pr[GB4A ⇒ 1]. Putting
everything together, we have

AdvIND-1-CCA
KEM (B) ≤ 6(qH + 1)2

√
AdvOW−CPA

PKE′ (A) + 1/ |K|.

Lemma 3.2. There exists a OW-CPA adversary A against deterministic PKE′

such that the running time of A is about that of B and AdvIND-1-CCA
KEM (B) ≤

6(qH + 1)
√
AdvOW-CPA

PKE′ (A) + 1/ |K|+ δ.

The proof of Lemma 3.2. Define games G3B , G4B and G5B as in Fig. 9.
Let z1 = (pk, sk, c∗, k∗0), where (pk, sk) ← Gen′, k∗0 ←$K, m∗←$M, and c∗ ←
Enc(pk,m∗). Sample G←$ΩH . Let G′ be an oracle such that G′(m∗, c∗) = k∗0 ,
and G′(x) = G(x) for x 6= (m∗, c∗). Let A|O〉(z1) (O ∈ G,G′) be an oracle
algorithm that first samples k∗1 ←$K, b←$ {0, 1}, then runs B|O〉,Decaps(pk, c∗, k∗b)
to obtain b′ (simulating Decaps as in games G0 and G1), finally returns b′ =?b.
Thus, we have Pr[GB0 ⇒ 1] = Pr[1 ← A|G

′〉(z1)] and Pr[GB1 ⇒ 1] = Pr[1 ←
A|G〉(z1)].

Lemma 2.2 states that there exists an oracle algorithm B̄|G〉,|G
′〉(z1) such

that |Pr[1 ← A|G〉(z1)] − Pr[1 ← A|G
′〉(z1)| ≤ 2

√
Pr[(m∗, c∗)← B̄|G〉,|G′〉(z1)].

Define game G3B as in Fig. 9, where B̂ is the same as B̄ except that B̂ simulates

21

B’s Decaps query using a given Decaps oracle (simulated as in G0 and G1).

Thus, it is obvious that Pr[(m∗, c∗) ← B̄|G〉,|G
′〉(z1)] ≤ Pr[GB̂3B ⇒ 1]. Thus, we

have

AdvIND-1-CCA
KEM (B) ≤ 2

√
Pr[GB̂3B ⇒ 1].

G3B −G5B

1 : (pk, sk)← Gen′, G←$ΩH , k
∗
0 , k̄←$K,m∗ ←$M, c∗ ← Enc(pk,m∗)

2 : l = 0, (i, b)←$ ([qH − 1]× {0, 1}) ∪ {(qH , 0)}

3 : (m′, c′)← B̂|G〉,|G
′〉,Decaps(pk, c∗, k∗0) //G3B , G4B

4 : (m′, c′)← B̂|G
i
1〉,|G

′〉,Decaps(pk, c∗, k∗0) //G5B

5 : return m∗ =?m′

Decaps (sk, c̄ 6= c∗)

1 : if more than 1 query return ⊥
2 : return k̄ //G5B

3 : m′ := Dec′(sk, c̄)

4 : if m′ =⊥ do m̄ = 0

5 : else do m̄ = m′

6 : return K := G(m̄, c̄)

Gi
1(m, c)

1 : if l ≥ (i+ b) ∧ (m, c) = (mi+1, ci+1)

// (mi+1, ci+1) is the measurement outcome

// on B̂’s (i+ 1)-th query input register

2 : return k̄

3 : else return G(m, c)

4 : l = l + 1

G′(m, c)

1 : if (m, c) = (m∗, c∗) //G3B

2 : if c = c∗ ∧ Enc′(pk,m) = c∗ //G4B −G5B

3 : return k∗0//G3B −G5B

4 : return G(m, c)//G3B −G4B

5 : return Gi
1(m, c)//G5B

Fig. 9: Games G0-G2 for the proof of Lemma 3.2

GameG4B is identical to gameG3B except the simulation ofG′. In gameG4B ,
the judgement condition (m, c) = (m∗, c∗) is replaced by c = c∗ ∧Enc′(pk,m) =
c∗ without knowledge of m∗. Define event COLL that there is m 6= m∗ such that
Enc′(pk,m) = c∗ = Enc′(pk,m∗). Note that if COLL does not happen (implied
by the injectivity of DPKE), then G4B and G3B have the same distribution.
Thus, we have ∣∣∣Pr[GB̂3B ⇒ 1]− Pr[GB̂4B ⇒ 1]

∣∣∣ ≤ δ.
In game G5B , Decaps is modified to output a random Θ = k̄ for the single

query c̄, and the random oracle G is correspondingly reprogrammed conditioned
on (i, b), where (i, b)←$ ([qH − 1]× {0, 1}) ∪ {(qH , 0)}. Using Lemma 2.4 in the
same way as in Lemma 3.1, we have

Pr[GB̂4B ⇒ 1] ≤ 8(qH + 1)2(Pr[GB̂5B ⇒ 1] + 1/ |K|).

22

Now, we can construct a OW-CPA adversary A(pk, c∗) against deterministic
PKE′, where (pk, sk)← Gen′,m∗←$M, c∗ ← Enc(pk,m∗). A samples k∗0 , k̄, i, b

as in game G5B , picks a 2qH -wise function G, runs B̂|G
i
1〉,|G

′〉,Decaps(pk, c∗, k∗)
(the simulations of Gi1, G

′,Decaps are the same as in game G5B) to obtain
(m′, c′), finally outputs m′ as a return. It is obvious that the advantage of A
against the OW-CPA security of deterministic PKE′ is exactly Pr[GB̂5B ⇒ 1].
Thus, we have

AdvIND-1-CCA
KEM (B) ≤ 2

√
8(qH + 1)2(AdvOW-CPA

PKE′ (A) + 1/ |K|) + δ

≤ 6(qH + 1)
√
AdvOW-CPA

PKE′ (A) + 1/ |K|+ δ.

Lemma 3.3. There exists an IND-CPA adversary D against probabilistic PKE′

such that the running time of D is about that of B and AdvIND-1-CCA
KEM (B) ≤

6(qH + 1)
√

4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M|+ 1/ |K|.

The proof of Lemma 3.3. Define games G3C −G6C as in Fig. 10.
Let z1 = (pk, sk, c∗, k∗0), where (pk, sk) ← Gen′, k∗0 ←$K, m∗0,m

∗
1←$M,

b̄←$ {0, 1} and c∗ ← Enc(pk,m∗
b̄
). Sample G←$ΩH . Let G′ be an oracle such

that G′(m∗
b̄
, c∗) = k∗0 , and G′(x) = G(x) for x 6= (m∗

b̄
, c∗). Let A|O〉(z1) (O ∈

G,G′) be an oracle algorithm that first samples k∗1 ←$K, b̃←$ {0, 1}, then runs
B|O〉,Decaps(pk, c∗, k∗

b̃
) to obtain b̃′ (simulating Decaps as in games G0 and G1),

finally returns b̃′ =?b̃. Thus, we have Pr[GB0 ⇒ 1] = Pr[1 ← A|G
′〉(z1)] and

Pr[GB1 ⇒ 1] = Pr[1← A|G〉(z1)].
Lemma 2.1 states that there exists an oracle algorithm B̄|G〉,|G

′〉(z1) such

that |Pr[1 ← A|G〉(z1)] − Pr[1 ← A|G
′〉(z1)| ≤ 2

√
Pr[(m∗

b̄
, c∗)← B̄|G〉,|G′〉(z1)].

Define game G3C as in Fig. 10, where B̂ is the same as B̄ except that B̂ simulates
B’s Decaps query using a given Decaps oracle (simulated as in G0 and G1).

Thus, it is obvious that Pr[(m∗
b̄
, c∗) ← B̄|G〉,|G

′〉(z1)] ≤ Pr[GB̂3C ⇒ 1]. Thus, we
have

AdvIND-1-CCA
KEM (B) ≤ 2

√
Pr[GB̂3C ⇒ 1].

In game G4C , Decaps is modified to output a random Θ = k̄ for the single
query c̄, and the random oracle H is correspondingly reprogrammed conditioned
on (i, b), where (i, b)←$ ([qH − 1] × {0, 1}) ∪ {(qH , 0)}. Then, using Lemma 2.4
in the same way as in Lemma 3.1, we have

Pr[GB̂3C ⇒ 1] ≤ 8(qH + 1)2(Pr[GB̂4C ⇒ 1] + 1/ |K|).

Game G5C is identical to game G4C except that G′(mb̄, c
∗) = k∗0 is replaced

by G′(m1−b̄, c
∗) = k∗0 , and correspondingly (m∗

1−b̄, c
∗) =?(m′, c′) is returned

instead of (m∗
b̄
, c∗) =?(m′, c′).

Note that game G4C conditioned on b̄ = 1 has the same output distribution

as game G4C conditioned on b̄ = 0. Thus, we have Pr[GB̂4C ⇒ 1 : b̄ = 0] =

23

Pr[GB̂4C ⇒ 1 : b̄ = 1] = Pr[GB̂4C ⇒ 1]/2. Analogously, we have Pr[GB̂5C ⇒ 1 :

b̄ = 1] = Pr[GB̂5C ⇒ 1]/2. Note that m∗
1−b̄ is independent of pk, c∗ and k∗. Thus,

according to Lemma 2.3, we have

Pr[GB̂5C ⇒ 1 : b̄ = 1] ≤ (qH + 1)2/ |M| .

GAMES G3C −G6C

1 : (pk, sk)← Gen′, G←$ΩH , l = 0, (i, b)←$ ([qH − 1]× {0, 1}) ∪ {(qH , 0)}
2 : k∗0 , k̄←$K, b̄←$ {0, 1},m∗0,m∗1 ←$M, c∗ ← Enc(pk,m∗b̄)

3 : (m′, c′)← B̂|G〉,|G
′〉,Decaps(pk, c∗, k∗0) //G3C

4 : (m′, c′)← B̂|G
i
1〉,|G

′〉,Decaps(pk, c∗, k∗0) //G4C −G6C

5 : return (m∗b̄ , c
∗) =?(m′, c′)//G3C −G4C

6 : return (m∗1−b̄, c
∗) =?(m′, c′)//G5C

7 : if (m∗0, c
∗) = (m′, c′) then b̃′ = 0 else then b̃′ = 1//G6C

8 : return b̃′ =?b̄//G6C

Decaps (sk, c̄ 6= c∗) //G3C −G6C

1 : if more than 1 query return ⊥
2 : return k̄ //G4C −G6C

3 : m′ := Dec′(sk, c̄)

4 : if m′ =⊥ do m̄ = 0

5 : else do m̄ = m′

6 : return K := G(m̄, c̄)

Gi
1(m, c)

1 : if l ≥ (i+ b) ∧ (m, c) = (mi+1, ci+1)

// (mi+1, ci+1) is the measurement outcome

// on B’s (i+ 1)-th query input register

2 : return k̄

3 : else return G(m, c)

4 : l = l + 1

G′(m, c)

1 : if (m, c) = (m∗b̄ , c
∗) //G3C −G4C

2 : if (m, c) = (m∗1−b̄, c
∗) //G5C

3 : if (m, c) = (m∗0, c
∗) //G6C

4 : return k∗0//G3C −G6C

5 : return G(m, c)//G3C

6 : return Gi
1(m, c)//G4C −G6C

Fig. 10: Games G3C-G6C for the proof of Lemma 3.3

Define game G6C as in Fig. 10. Thus, Pr[GB̂6C ⇒ 1]

= 1/2 Pr[(m∗0, c
∗) = (m′, C ′) : b̄ = 0] + 1/2 Pr[(m∗0, c

∗) 6= (m′, C ′) : b̄ = 1]

= 1/2 Pr[(m∗0, c
∗) = (m′, C ′) : b̄ = 0] + 1/2− 1/2 Pr[(m∗0, c

∗) = (m′, C ′) : b̄ = 1]

= 1/2 + 1/2 Pr[GB̂4C ⇒ 1 : b̄ = 0]− 1/2 Pr[GB̂5C ⇒ 1 : b̄ = 1]

= 1/2 + 1/4(Pr[GB̂4C ⇒ 1]− Pr[GB̂5C ⇒ 1])

24

Now, we can construct an IND-CPA adversary D(pk) against PKE′, where
(pk, sk) ← Gen′. D samples m∗0,m

∗
1←$M, receives challenge ciphertext c∗ ←

Enc(pk,m∗
b̃
) (b̃←$ {0, 1}), samples k∗0 , k̄, i, b as in game G6C , picks a 2qH -wise

independent function H, runs B̂|H
i
1〉,|H

′〉,Decaps(pk, c∗, k∗0) (the simulations of
Hi

1, H
′,Decaps is the same as in game G6C) to obtain (m′, c′), finally outputs

0 if (m∗0, c
∗) = (m′, c′), and returns 1 otherwise. Thus, apparently,∣∣∣Pr[GB̂6C ⇒ 1]− 1/2

∣∣∣ = AdvIND−CPA
PKE′ (D)

Putting everything together, we have

AdvIND-1-CCA
KEM (B) ≤ 2

√
8(qH + 1)2(4AdvIND−CPA

PKE′ (D) + 2(qH + 1)2/ |M|+ 1/ |K|)

≤ 6(qH + 1)
√

4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M|+ 1/ |K|.

ut

4 Tightness of the reductions

In this section, we will show that for KEM = TRH [PKE′, H], a O(q)-ROM-loss
(and q2-loss) is unavoidable in general.

Theorem 4.1. Let PKE′ = (Gen′, Enc′, Dec′) be a PKE with malleability prop-
erty. Let M = {0, 1}n be the message space of PKE′. Then, there exists a
ROM (QROM, resp.) adversary B against the IND-1-CCA security of KEM =
TRH [PKE′, H] such that the advantage AdvIND-1-CCA

KEM (B) is about (1/e) q
|M| ((q+

1)2/|M|, resp.), where q is the number of queries to H such that 1/
√
|M| ≤

sin(π
6q+3) and q ≤ |K| (K is the key space).

Proof. Let (pk, sk) ← Gen′, m∗←$M, c∗ ← Enc(pk,m∗), k∗0 = H(m∗, c∗),
k∗1 ←$K, and b←$ {0, 1}. Since PKE′ satisfies the malleability property, there
exists an algorithm B̄ that on input (pk, c∗) outputs (f, c′) such that (1) f(m∗) =
Dec(sk, c′) 6= ⊥; (2)f(m̃) 6= Dec(sk, c′) for any m̃ ∈M and m̃ 6= m.

Define the function gHc,k :M→ {0, 1} as

gHc,k(m) =

{
1 H(f(m), c) = k
0 Otherwise

First, we consider the ROM case. Let BH,Decaps(pk, c∗, k∗b) be a ROM adver-
sary as follows.

1. Run B̄ to obtain (f, c′);
2. Query the Decaps oracle with c′ and obtain k′;
3. Randomly pick m1, . . . ,mq from M, and compute gHc′,k′(mi) for each i ∈
{1, . . . , q} by querying H;

25

4. If there exists an mi such that gHc′,k′(mi) = 1, return 1− (H(mi, c
∗) =?k∗b),

else return ⊥.

Note that gHc′,k′(m
∗) = 1 with probability 1, and gHc′,k′(m̃) = 1 with negligible

probability 1/ |K| for m̃ 6= m∗. We also note that Pr[m∗ ∈ {m1, . . . ,mq}] = q
M .

Thus, the ROM advantage of B is at least q
M (1 − 1/ |K|)q−1 ' (1/e) q

M since
q ≤ |K|.

Next, we consider the QROM case. Let B|H〉,Decaps(pk, c∗, k∗b) be a QROM
adversary as follows.

1. Run B̄ to obtain (f, c′);
2. Query the Decaps oracle with c′ and obtain k′;
3. Use Grover’s algorithm for q steps to try to find m∗. In details, apply

Grover iteration q time on initial state HGate⊗n|0n〉 and make a stan-
dard measurement to derive m̄, where Grover iteration is composed of o-

racle query Og that turns |m〉 into (−1)g
H
c′,k′ (m)|m〉, and diffusion operator

U = HGate⊗n(2|0n〉〈0n| − In)HGate⊗n;
4. Return 1−(H(m̄, c∗) =?k∗b), where m̄ is the outcome obtained using Grover’s

algorithm in step 3.

Note that gHc′,k′(m
∗) = 1 with probability 1, and gHc′,k′(m̃) = 1 with negligible

probability 1/ |K| for m̃ 6= m∗. Let p0 = Pr[gHc′,k′(m) = 1 : m ∈ M] ≥ 1/ |M|.
By q Grover iterations (requiring q quantum queries to H), the probability p1

of finding m∗ is sin2((2q + 1)θ), where sin2(θ) = p0.
When 1/

√
|M| ≤ sin(π

6q+3), we have (2q + 1)θ ≤ π/3. Thus, we have

sin((2q + 1)θ) ≥ sin(θ) +
2q · θ

2
≥ (q + 1) sin(θ).

Therefore, we have p1 = sin2((2q + 1)θ) ≥ (q+1)2

|M| . Note that when m∗ is

obtained, one can derive b∗ with probability 1 by querying H(m̄, c∗). Thus, the

QROM advantage of B is at least (q+1)2

|M| . ut

Remark 3. Most IND-CPA-secure PKEs has malleability property, e.g., ElGa-
mal, Kyber.PKE [8], etc. Moreover, malleability property is inherent for a homo-
morphic PKE. Let PKE = (Gen,Enc,Dec) be homomorphic in addition. That
is, Enc(pk,m1 + m2) = Enc(pk,m1) + Enc(pk,m2). Then, we can construct
algorithm B̄(pk, c∗) (c∗ ← Enc(pk,m∗)) that randomly picks m ∈M, computes
c′ = c∗ +Enc(pk,m), and defines f(x) = x+m. Note that f(m∗) = Dec(sk, c′)
and f(m̃) 6= Dec(sk, c′) for m̃ 6= m12. Thus, the homomorphic property of a
PKE implies the malleability property in this paper.

Remark 4. For a λ-bit IND-CPA-secure malleable public-key encryption PKE′

with message space M = 2λ we require that any PPT adversary breaks the
security of PKE′ with advantage at most 1

2λ
. For example, such a PKE′ can be

12 Here, we assume the PKE has perfect correctness for simplicity.

26

constructed based on the LWE assumption by a suitable parameter selection [33].
Theorem 4.1 shows that a ROM (QROM, resp.) adversary against the IND-1-
CCA security of KEM = TRH [PKE′, H] can achieve advantage at least (1/e) q

2λ

((q+1)2

2λ
, resp.), where q is the number of adversary’s queries to H. That is, a

O(1/q) (O(1/q2), resp.) loss is unavoidable in the ROM (QROM, resp.) for TRH .

Remark 5. We remark that the output of decapsulation for an invalid ciphertext
c is irrelevant to the attack given in Theorem 4.1. Thus, the aforementioned
tightness results can also be applied to TH . We also remark that such a tightness
result can also be extended to the IND-1-CCA KEM construction TCH given
in [20], where there is tag tag = H ′(m∗, c∗0) in the ciphertext (c∗0 ← Enc(pk,m∗)),
and the key is computed by K = H(m∗). The idea is that the adversary against
KEM can first search m∗ such that tag = H ′(m∗, c∗0) by querying H ′, and then
query H with m∗, thus break the key indistinguishability. Following the same
analysis in Theorem 4.1, one can easily derive the same tightness result for TCH .

5 Relations among notions of CCA security for KEM

In this section, we will compare the relative strengths of notions of IND-1-CCA
security and IND-CCA security in ROM and QROM. In detail, we works out
the relations among four notions. For each pair of notions A,B ∈ { IND-1-CCA
ROM, IND-1-CCA QROM, IND-CCA ROM, IND-CCA QROM }, we show one
of the following:

– A ⇒ B: A proof that if a KEM meets the notion of security A then it also
meets the notion of security B.

– A ; B: There is a KEM construction that provably meets the notion of
security A but does not meet the notion of security B.

First, according to the security definitions, one can trivially derive the re-
lations IND-CCA QROM ⇒ IND-1-CCA QROM ⇒ IND-1-CCA ROM, and
IND-CCA QROM ⇒ IND-CCA ROM ⇒ IND-1-CCA ROM. Next, we show the
other nontrivial relations.

Theorem 5.1. If the LWE assumption holds, then we have IND-1-CCA ROM;
IND-1-CCA QROM, IND-CCA ROM;IND-1-CCA QROM and IND-CCA ROM
;IND-CCA QROM.

Proof. First, if the LWE assumption holds, we can have a KEM=(Gen,Encaps,
Decaps) that satisfies the IND-CCA ROM security. For example, FrodoKEM [27]
is such a KEM whose IND-CCA ROM security can be reduced to the LWE
assumption.

Let PoQRO=(Setup, Prove, V erify) be a proof of quantum access to random
oracleH, whose existence is based on the LWE assumption, see Lemma 2.5. Here,
H is independent of the KEM.

27

Gen′

1 : (pk1, sk1)← Gen

2 : (pk2, sk2)← Setup

3 : pk = (pk1, pk2)

4 : sk = (sk1, sk2)

5 : return (pk, sk)

Encaps′(pk)

1 : parse pk = (pk1, pk2)

2 : (K, c1)←$Encaps(pk1)

3 : c = (c1,⊥)

4 : return (K, c)

Decaps′(sk, c)

1 : parse sk = (sk1, sk2)

2 : parse c = (c1, c2)

3 : if V erifyH(sk2, c2) = 1

4 : return sk1

5 : return Decaps(sk1, c1)

Fig. 11: Separation instance KEM′ for Theorem 5.1.

Construct a new KEM′=(Gen′, Encaps′, Decaps′) as in Fig. 11. Note that
any efficient ROM adversary cannot find a c2 such that V erifyH(sk2, c2) = 1
(otherwise the soundness of the PoQRO is broken). Thus, for an efficient ROM
adversary, querying oracle Decaps′ is equivalent to querying oracle Decaps.
Thus, KEM′ also meets the IND-CCA ROM security.

Meanwhile, a QROM adversary can find a c2 such that V erifyH(sk2, c2) = 1.
Thus, by querying oracleDecaps′ (only one time), a QROM adversary can obtain
sk1, hence break the IND-CCA security of KEM′. Therefore, KEM′ does not
meet the IND-1-CCA QROM security (and also IND-CCA QROM security).
Since KEM meets the IND-CCA ROM security, KEM is also IND-1-CCA-secure
in the ROM. Hence, we have IND-1-CCA ROM;IND-1-CCA QROM, IND-
CCA ROM;IND-1-CCA QROM and IND-CCA ROM;IND-CCA QROM. ut

Theorem 5.2. If the LWE assumption holds, then we have IND-1-CCA ROM
;IND-CCA ROM, IND-1-CCA QROM;IND-CCA QROM, and IND-1-CCA
QROM;IND-CCA ROM.

Proof. Let (Gen,Enc,Dec) be the key-generation, encryption and decryption al-
gorithms of FrodoPKE [27], whose IND-CPA security can be reduced to the LWE
assumption. Then, according to Theorems 3.1 and 3.2, KEM=TRH [FrodoPKE, H]
is IND-1-CCA secure in both ROM and QROM.

Note that such a KEM is essentially a FO-KEM without re-encryption. Qin
et al. [32] had shown such a KEM is vulnerable to key-mismatch attacks that
can recover the secret key with only polynomial queries to the decapsulation
oracle. That is, KEM=TRH [FrodoPKE, H] is not IND-CCA-secure in ROM (and
QROM).

Hence, we have IND-1-CCA ROM;IND-CCA ROM, IND-1-CCA QROM;
IND-CCA QROM, and IND-1-CCA QROM ;IND-CCA ROM. ut

Acknowledgements. We thank anonymous reviewers for their insightful com-
ments and suggestions.

References

1. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryp-

28

tology - CRYPTO 2019. Lecture Notes in Computer Science, vol. 11693, pp.
269–295. Springer (2019). https://doi.org/10.1007/978-3-030-26951-7 10, https:

//doi.org/10.1007/978-3-030-26951-7_10

2. Angel, Y., Dowling, B., Hülsing, A., Schwabe, P., Weber, F.: Post quantum noise.
In: ACM CCS 2022 (to appear) (2022), https://eprint.iacr.org/2022/539

3. Azouaoui, M., Bronchain, O., Hoffmann, C., Kuzovkova, Y., Schneider,
T., Standaert, F.: Systematic study of decryption and re-encryption leak-
age: The case of kyber. In: Balasch, J., O’Flynn, C. (eds.) Constructive
Side-Channel Analysis and Secure Design - 13th International Workshop,
COSADE 2022. Lecture Notes in Computer Science, vol. 13211, pp. 236–
256. Springer (2022). https://doi.org/10.1007/978-3-030-99766-3 11, https://

doi.org/10.1007/978-3-030-99766-3_11

4. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for opti-
mally secure ratcheting. In: Moriai, S., Wang, H. (eds.) Advances in Cryptol-
ogy - ASIACRYPT 2020. Lecture Notes in Computer Science, vol. 12493, pp.
621–650. Springer (2020). https://doi.org/10.1007/978-3-030-64840-4 21, https:

//doi.org/10.1007/978-3-030-64840-4_21

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) Proceedings of the 1st ACM Conference on Computer and Communica-
tions Security – CCS 1993. pp. 62–73. ACM (1993)

6. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) Theory of Cryptography - 17th International Conference, TC-
C 2019. Lecture Notes in Computer Science, vol. 11892, pp. 61–90. Springer
(2019). https://doi.org/10.1007/978-3-030-36033-7 3, https://doi.org/10.1007/
978-3-030-36033-7_3

7. Boneh, D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology – ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer (2011)

8. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - kyber: A cca-
secure module-lattice-based KEM. In: 2018 IEEE European Symposium
on Security and Privacy, EuroS&P 2018. pp. 353–367. IEEE (2018).
https://doi.org/10.1109/EuroSP.2018.00032, https://doi.org/10.1109/EuroSP.

2018.00032

9. Brendel, J., Fiedler, R., Günther, F., Janson, C., Stebila, D.: Post-quantum
asynchronous deniable key exchange and the signal handshake. In: Hanao-
ka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC
2022. Lecture Notes in Computer Science, vol. 13178, pp. 3–34. Springer
(2022). https://doi.org/10.1007/978-3-030-97131-1 1, https://doi.org/10.1007/
978-3-030-97131-1_1

10. Brendel, J., Fischlin, M., Günther, F., Janson, C.: PRF-ODH: relations, instan-
tiations, and impossibility results. In: Katz, J., Shacham, H. (eds.) Advances in
Cryptology - CRYPTO 2017. Lecture Notes in Computer Science, vol. 10403, pp.
651–681. Springer (2017). https://doi.org/10.1007/978-3-319-63697-9 22, https:

//doi.org/10.1007/978-3-319-63697-9_22

11. Dent, A.W.: A designer’s guide to kems. In: Paterson, K.G. (ed.) Cryptography and
Coding, 9th IMA International Conference. Lecture Notes in Computer Science,

29

vol. 2898, pp. 133–151. Springer (2003). https://doi.org/10.1007/978-3-540-40974-
8 12, https://doi.org/10.1007/978-3-540-40974-8_12

12. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: Multi-
round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) Advances in
Cryptology - CRYPTO 2020. Lecture Notes in Computer Science, vol. 12172, pp.
602–631. Springer (2020). https://doi.org/10.1007/978-3-030-56877-1 21, https:

//doi.org/10.1007/978-3-030-56877-1_21

13. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir trans-
formation in the quantum random-oracle model. In: Boldyreva, A., Micciancio,
D. (eds.) Advances in Cryptology - CRYPTO 2019. Lecture Notes in Computer
Science, vol. 11693, pp. 356–383. Springer (2019). https://doi.org/10.1007/978-3-
030-26951-7 13, https://doi.org/10.1007/978-3-030-26951-7_13

14. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quan-
tum random-oracle model. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology - EUROCRYPT 2022. Lecture Notes in Computer Science, vol.
13277, pp. 677–706. Springer (2022). https://doi.org/10.1007/978-3-031-07082-
2 24, https://doi.org/10.1007/978-3-031-07082-2_24

15. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptograph-
ic analysis of the TLS 1.3 handshake protocol. J. Cryptol. 34(4), 37
(2021). https://doi.org/10.1007/s00145-021-09384-1, https://doi.org/10.1007/

s00145-021-09384-1

16. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Wiener, M.J. (ed.) Advances in Cryptology – CRYPTO 1999.
LNCS, vol. 99, pp. 537–554. Springer (1999)

17. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptogra-
phy - 15th International Conference – TCC 2017. LNCS, vol. 10677, pp. 341–371.
Springer (2017)

18. Hövelmanns, K., Hülsing, A., Majenz, C.: Failing gracefully: Decryption failures
and the fujisaki-okamoto transform. In: Advances in Cryptology - ASIACRYPT
2022. Springer-Verlag (2022)

19. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticat-
ed key exchange in the quantum random oracle model. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography - P-
KC 2020. Lecture Notes in Computer Science, vol. 12111, pp. 389–422.
Springer (2020). https://doi.org/10.1007/978-3-030-45388-6 14, https://doi.

org/10.1007/978-3-030-45388-6_14

20. Huguenin-Dumittan, L., Vaudenay, S.: On IND-qCCA security in the ROM
and its applications - CPA security is sufficient for TLS 1.3. In: Dunkel-
man, O., Dziembowski, S. (eds.) Advances in Cryptology - EUROCRYP-
T 2022. Lecture Notes in Computer Science, vol. 13277, pp. 613–642.
Springer (2022). https://doi.org/10.1007/978-3-031-07082-2 22, https://doi.

org/10.1007/978-3-031-07082-2_22

21. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsula-
tion mechanism in the quantum random oracle model, revisited. In: Shacham, H.,
Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. LNCS, vol. 10993,
pp. 96–125 (2018)

22. Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection
in the quantum random oracle model. In: Lin, D., Sako, K. (eds.) Public-Key
Cryptography - PKC 2019. Lecture Notes in Computer Science, vol. 11443, pp.

30

618–645. Springer (2019). https://doi.org/10.1007/978-3-030-17259-6 21, https:

//doi.org/10.1007/978-3-030-17259-6_21
23. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key en-

capsulation mechanism in the quantum random oracle model. In: Ding, J.,
Steinwandt, R. (eds.) Post-Quantum Cryptography - 10th International Con-
ference, PQCrypto 2019. Lecture Notes in Computer Science, vol. 11505, pp.
227–248. Springer (2019). https://doi.org/10.1007/978-3-030-25510-7 13, https:

//doi.org/10.1007/978-3-030-25510-7_13
24. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guar-

antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryp-
tology - EUROCRYPT 2019. Lecture Notes in Computer Science, vol. 11476, p-
p. 159–188. Springer (2019). https://doi.org/10.1007/978-3-030-17653-2 6, https:
//doi.org/10.1007/978-3-030-17653-2_6

25. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.: Measure-rewind-
measure: Tighter quantum random oracle model proofs for one-way to hiding
and CCA security. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptolo-
gy - EUROCRYPT 2020. Lecture Notes in Computer Science, vol. 12107, pp.
703–728. Springer (2020). https://doi.org/10.1007/978-3-030-45727-3 24, https:

//doi.org/10.1007/978-3-030-45727-3_24
26. Melissa Azouaoui, Joppe W. Bos, B.F.M.G.Y.K.J.R.T.S.C.v.V.O.B.C.H.F.X.S.:

Surviving the fo-calypse: Securing pqc implementations in practice. RWC
2022 (2022), https://iacr.org/submit/files/slides/2022/rwc/rwc2022/48/

slides.pdf
27. Naehrig, M. and Alkim, E. and Bos, J. and Ducas, L. and Easterbrook, K. and

LaMacchia, B. and Longa, P. and Mironov, I. and Nikolaenko, V. and Peikert, C.
and Raghunathan, A. and Stebila, D.: FrodoKEM Learning With Errors Key En-
capsulatio. https://frodokem.org/files/FrodoKEM-specification-20210604.

pdf
28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.

No. 2, Cambridge University Press (2000)
29. NIST: National institute for standards and technology. Post quan-

tum crypto project (2017), https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions
30. OQS: Open-quantum-safe OpenSSL (2021), https://github.com/

open-quantum-safe/openssl
31. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange.

In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO
2018. Lecture Notes in Computer Science, vol. 10991, pp. 3–32. Springer
(2018). https://doi.org/10.1007/978-3-319-96884-1 1, https://doi.org/10.1007/
978-3-319-96884-1_1

32. Qin, Y., Cheng, C., Zhang, X., Pan, Y., Hu, L., Ding, J.: A systematic ap-
proach and analysis of key mismatch attacks on lattice-based NIST candidate
kems. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology - ASIACRYP-
T 2021. Lecture Notes in Computer Science, vol. 13093, pp. 92–121. Springer
(2021). https://doi.org/10.1007/978-3-030-92068-5 4, https://doi.org/10.1007/
978-3-030-92068-5_4

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th An-
nual ACM Symposium on Theory of Computing. pp. 84–93. ACM (2005).
https://doi.org/10.1145/1060590.1060603, https://doi.org/10.1145/1060590.

1060603

31

34. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) Advances
in Cryptology – EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551 (2018)

35. Schneider, T.: Implicit rejection in kyber. NIST pqc-forum (2022),
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/

3e210b6f-08d3-48f3-9689-1d048f9b3c58n\%40list.nist.gov

36. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake
signatures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS ’20: 2020
ACM SIGSAC Conference on Computer and Communications Security. pp. 1461–
1480. ACM (2020). https://doi.org/10.1145/3372297.3423350, https://doi.org/
10.1145/3372297.3423350

37. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS
with pre-distributed public keys. In: Bertino, E., Shulman, H., Waidner, M. (ed-
s.) Computer Security - ESORICS 2021. Lecture Notes in Computer Science,
vol. 12972, pp. 3–22. Springer (2021). https://doi.org/10.1007/978-3-030-88418-
5 1, https://doi.org/10.1007/978-3-030-88418-5_1

38. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A.D. (eds.) Theory of Cryptography Con-
ference – TCC 2016-B. LNCS, vol. 9986, pp. 192–216. Springer (2016)

39. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse
of re-encryption: A generic power/em analysis on post-quantum kems. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2022(1),
296C322 (Nov 2021). https://doi.org/10.46586/tches.v2022.i1.296-322, https:

//tches.iacr.org/index.php/TCHES/article/view/9298, artifact available at
https://artifacts.iacr.org/tches/2022/a7,

40. Yamakawa, T., Zhandry, M.: Classical vs quantum random oracles. In: Can-
teaut, A., Standaert, F. (eds.) Advances in Cryptology - EUROCRYP-
T 2021. Lecture Notes in Computer Science, vol. 12697, pp. 568–597.
Springer (2021). https://doi.org/10.1007/978-3-030-77886-6 20, https://doi.

org/10.1007/978-3-030-77886-6_20

41. Zhandry, M.: Secure identity-based encryption in the quantum random oracle mod-
el. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology - CRYPTO 2012.
LNCS

42. Zhandry, M.: How to record quantum queries, and applications to quantum in-
differentiability. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology
- CRYPTO 2019. Lecture Notes in Computer Science, vol. 11693, pp. 239–268.
Springer (2019). https://doi.org/10.1007/978-3-030-26951-7 9, https://doi.org/
10.1007/978-3-030-26951-7_9

32

