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Abstract. Private matching for compute (PMC) establishes a match between two databases owned by
mutually distrusted parties (C and P ) and allows the parties to input more data for the matched records
for arbitrary downstream secure computation without rerunning the private matching component. The
state-of-the-art PMC protocols only support two parties and assume that both parties can participate
in computationally intensive secure computation. We observe that such operational overhead limits the
adoption of these protocols to solely powerful entities as small data owners or devices with minimal
computing power will not be able to participate.
We introduce two protocols to delegate PMC from party P to untrusted cloud servers, called delegates,
allowing multiple smaller P parties to provide inputs containing identifiers and associated values.
Our Delegated Private Matching for Compute protocols, called DPMC and DSPMC, establish a join
between the databases of party C and multiple delegators P based on multiple identifiers and compute
secret shares of associated values for the identifiers that the parties have in common. We introduce
a novel rerandomizable encrypted oblivious pseudorandom function (OPRF) construction, called EO,
which allows two parties to encrypt, mask, and shuffle their data and is secure against semi-honest
adversaries. Note that EO may be of independent interest. Our DSPMC protocol limits the leakages of
DPMC by combining our novel EO scheme and secure three-party shuffling. Finally, our implementation
demonstrates the efficiency of our constructions by outperforming related works by approximately 10×
for the total protocol execution and by at least 20× for the computation on the delegators.

Keywords: Oblivious pseudorandom function · private identity matching · private record linkage · secure
multiparty computation

1 Introduction

Cloud computing has become a prominent solution for storage and analytics since it enables clients to outsource
their data and not have to worry about scalability, data availability, and most importantly maintaining
their own infrastructure. Gathering data from multiple input providers and computing statistics over all of
their data enables a plethora of useful applications such as gathering real-time location data and notifying
users of possible exposure to highly infectious diseases [21,44]. In certain applications, linking client data
to proprietary information owned by multiple larger entities may unlock unique insights that are otherwise
not possible. Users should not have to trust that the cloud servers will not store their sensitive personal
data to use for other than its intended purposes. The problem of computing meaningful analytics across
multiple input parties while preserving user privacy from cloud server providers becomes significantly more
challenging.

Secure multi-party computation (MPC) offers prominent cryptographic solutions for jointly comput-
ing on private data from multiple input providers [46,32,23]. Although general-purpose MPC frameworks
[5,45,18,25,28] enable running arbitrary computations over private data (e.g., analytics over medical data
[22]), they generally incur significant performance overheads compared to solutions that are tailored to one
application (for instance machine learning [29] and crowd-sourcing [13,35,6]). Similarly, specialized private set
intersection (PSI) protocols [40,30,12,38,20,11,42] introduce significantly more efficient solutions than generic
MPC but focus solely on private matching and disregard associated metadata.

A few recent protocols that are based on the hardness of Decisional Diffie–Hellman (DDH) and are inspired
by [33] have attempted to solve a similar problem. More specifically, private matching for compute (PMC)
[9,7,36] from Meta, private set intersection (PSI) [4] from Apple, and private join and compute (PJC) [27,31]
from Google enable computing intersections and unions between two parties while protecting the privacy
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Party P

User A
Email: alice@email.com

Name: Alice A.x

Party P

User B
Email: bob@email.com
Phone: 9876543210

Party C

User A
Email: alice@email.com

Phone: 9876543210

Email
matched

Phone
matched

Fig. 1. Many to many connections example. Party P has listed User A and User B as two separate users, whereas
Party C has listed them as one user.

of the underlying users. Unfortunately, prior works solely focus on two parties and require both of them to
actively participate in the private matching protocol, which restricts the adoption of these protocols to solely
powerful entities as non-crypto-savvy data owners or devices with minimal computing power will not be able
to engage in secure computation protocols.

1.1 Previous Works

Private Matching for Compute (PMC) introduced DDH-based constructions for private matching protocols
that compute a union of two databases held by mutually distrusting parties C and P without revealing which
items belong to the intersection or not [7]. After the matching phase, both parties can input associated data
for each row in the union and engage in a downstream secure computation. The core idea of PMC is to have
each party first hash their records and then exponentiate them to random secret scalars. After exchanging
the hashed and exponentiated records, each party exponentiates the other party’s records to their secret
scalar and they both arrive at the same random identifiers.

PMC assumes that each database record may have multiple identifiers as shown in Fig. 1, in which User A
may be indexed by both an email address and a phone number in party C, whereas in another data owner the
combination of identifiers may differ (e.g., name, email). [7] leverages a ranked deterministic join logic that
collapses many-to-many connections and achieves a one-to-one mapping. The key idea is that each identifier
has a predefined weight (i.e., a matching priority) and the matching is first performed on all the records
based on the first identifier (as the single-key PMC) before continuing to the other identifiers. PMC leaks the
intersection size to the two parties and in case of multiple keys per row, they learn the full bipartite graph of
matches up to an isomorphism. Additionally, PMC supports matching between two databases and requires
both parties to actively participate in both the matching and the downstream secure computation, which
significantly limits the adoption in real-world applications. Contrary to PMC, our work allows matching
between any number of parties and shifts the cost away from the parties by delegating the computation to a
powerful server.

Private secret-shared set intersection (PS3I) [9] is a natural extension of PMC that allows the two parties
to input associated data to the matching protocol. Instead of learning a mapping to original inputs, the two
parties only learn additive secret shares of those records which they can feed into any general-purpose MPC
framework. PS3I is realized using Paillier additive homomorphic encryption scheme [37] and incurs significant
performance overheads. Additionally, PS3I only works between two parties and requires both parties to be
online for the whole protocol execution.

Private Join and Compute (PJC) [27,31] computes the intersection between two databases and aggregates
the associated data for all the rows in the intersection using additive homomorphic encryption. Contrary to
our work that computes secret shares for all the associated data, PJC only allows computing aggregated
statistics for the data in the intersection. Additionally, as with all the previous related works, PJC only
supports two parties whereas our protocols scale to multiple parties.

Mohassel et al. [34] utilize cuckoo hash tables and perform SQL-like queries over two secret shared
databases in the honest majority three-party setting. Both the input and output tables are generically secret
shared between the computing parties. Because the cuckoo hash tables do not support duplicates, [34] has
leakages in the presence of non-unique identifiers. Additionally, the join protocols focus on two parties and in
order to compute joins between multiple parties the protocol has to be iterated multiple times. Each party’s

2



database has to be joined with the output of the previous join or they can be combined in a binary-tree-like
structure. Contrary, our delegated protocols are designed to support multiple delegators and do not have to
be repeated for each input party.

Circuit-PSI and VOLE-PSI rely on oblivious Pseudorandom Functions (OPRF) for private set intersection
(PSI) between two parties and they can additionally compute a function over the common data [39,41,10].
The two parties learn secret shares of 1 or 0 depending on whether each specific record was in the intersection
and then they can use these shares to input associated data as both parties are actively participating in the
protocol. On the other hand, Catalic [21] uses OPRFs between two parties but allows one party to delegate its
computation to a powerful server. All the aforementioned works allow matching based solely on a single key,
while our work supports matching based on databases of multiple parties and each database can have multiple
keys (e.g., name, email, etc.). Finally, our protocols enable multiple parties to delegate their computation and
then go offline.

1.2 Our Contributions

In this work, we propose a new family of Delegated Private Matching for Compute protocols, called DPMC
and DSPMC, that build upon PMC [9,7] and lift the burden of engaging in secure computation from parties
with less computational power. Our protocols rely on a powerful server (which we call party C) and on a
delegate node (which we refer to as party D) to perform private record linkage between the records of party
C and input parties, which we call delegators or parties P . Contrary to previous works that focus on linking
data only between two parties, our work enables linkage between C and multiple delegators (P1 to PT ) and
aims to make the computation in the delegators as lightweight as possible. Parties C and D engage in a
two-party computation (2PC) to compute a private left join of party’s C and all the delegators’ data.4 C’s
input is a multi-key database where each row contains multiple identifiers (i.e., keys) that can be matched.
The delegators’ inputs are multi-key databases with associated data, which comprise both identifiers and
associated metadata that can be in any form (e.g., numbers, strings, etc.). Party C learns a mapping from its
users to the left join but does not learn which of its users have been matched. For each row in the left join,
both C and D receive secret shares. The secret shares correspond to the delegators’ associated data if that
row maps to one of the delegators’ identifiers or a secret share of NULL (i.e., zero), otherwise.

Our motivation for performing left join compared to a union or an intersection is that party C learns a
mapping from all their users into the join, which allows them to input additional associated data without
re-executing the matching protocol and without learning which users matched or not. These data can either
be labels (in the clear) that could be used to filter the secret shared values (e.g., in a GROUP BY fashion), or
they can be additional secret shares for the downstream MPC computation. After the matching process and
the XOR secret shares have been established, parties C and D only need to know the relative order of their
shares, which can then be used for any downstream secure computation such as privacy-preserving analytics
and machine learning. Our goal in this work is to create efficient protocols that can be realized in real-world
applications for private left join and allow the delegators to outsource the computation to delegates.

We assume that party C is semi-honest, meaning that it that will follow the protocol specification but
it will try to exfiltrate information about the delegators’ data. Similarly, we assume that the delegate D is
semi-honest and will try to exfiltrate information about party’s C and all parties’ P data. Finally, we assume
that it is in the delegators’ best interest to learn the correct result, and thus they will not provide malformed
inputs.

Our delegated protocols operate over multi-key databases and consider matching between records on more
than one identifier (i.e., key) that inherently generates many-to-many connections. We use a ranking-based
technique to collapse multiple connections into one-to-many (C-to-P ) connections.5 Next, we extend DPMC
to DSPMC, a protocol that uses two delegates (party D and a shuffler S) to perform an honest majority
shuffling protocol and achieve stronger security guarantees in the case of a corruption of Party D and multiple
delegators.

Towards that end, we introduce a novel primitive called rerandomizable encrypted OPRF (EO). This
primitive allows to encrypt identifiers, shuffle multiple ciphertexts using a shuffle protocol, homomorphically

4 Our core protocol computes the left join between party’s C data and all delegators’ data. We show in Appendix E
how to modify it to compute the inner join.

5 Notably, the matching strategy can be easily modified and achieve multiple connections.
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evaluate a PRF on the ciphertexts and decrypt a homomorphically evaluated ciphertext to the PRF output
with the identifier as input. Notice that an EO is a more powerful primitive than an OPRF since it allows to
encrypt inputs for the PRF and send the ciphertexts to a third party (i.e., delegate the evaluation) whereas an
OPRF asks that the input provider directly interacts with the PRF evaluator. Further, an EO allows to shuffle
encrypted inputs such that the third party cannot correlate PRF outputs and the initially received ciphertexts.
This allows us to significantly reduce the leakage to the third party, in our case Party D.Furthermore, the
PRF evaluation can be distributed between Party C, who owns the key and homomorphically evaluates the
PRF, and Party P , who is able to decrypt the homomorphically evaluated ciphertext and thus obtain the
PRF output.

We construct an EO that could be seen as a combination of the hashed DDH based OPRF, i.e., H(x)k

for key k and input x, combined with a variant of ElGamal that encrypts hashed identifiers, i.e. H(x). The
construction is secure against semi-honest adversaries under the DDH assumption. The bottleneck that
prevents malicious security is the OPRF H(x)k. This OPRF only provides semi-honest security since a
malicious delegator might send an arbitrary group element X instead of H(x). In that case, it does not result
in a OPRF since it satisfies linear relations, e.g., Xk · Y k = (X · Y )k. Note that the EO construction might
be of independent interest and can facilitate other protocols as well.

We envision multiple applications that may leverage the aforementioned setup of merging multiple private
databases across distrusting parties and securely computing analytics. A few example scenarios include:

– A healthcare provider holding patient records may gain critical insights such as calculating the risk of a
health condition by merging with data stored on individual smart devices, without needing to access
identifiable user data.

– An ad publisher holding user-provided information may be able to measure advertising efficacy and offer
personalized ads by merging with data held by millions of businesses while still preserving user privacy.

Our contributions are summarized as follows:

– Design of a novel DPMC protocol for securely computing left join between multiple distrusting parties.
– We introduce a novel rerandomizable encrypted OPRF (EO) primitive that enables encrypting inputs,

shuffling of ciphertexts, homomorphically evaluating a PRF on encrypted inputs and decrypting ciphertexts
to PRF outputs. EO is of independent interest and we provide a construction that is secure against
semi-honest adversaries.

– We combine our EO construction and a secure three-party shuffling protocol to extend DPMC to DSPMC,
a protocol that reduces DPMC’s leakage and achieves stronger security guarantees.

– We finally detail potential real-world applications of DPMC and DSPMC such as privacy-preserving
analytics and machine learning in online advertising.

2 Preliminaries

2.1 Notation

We denote the computational and statistical security parameters by κ and µ, respectively. We use [m] to
refer to the set {1, . . . ,m}. We denote the concatenation and exclusive OR (XOR) of two bit strings x and y

by x ∥ y and x⊕ y, respectively. We use r
$←− R to refer to a randomly chosen element r from set R. We use

ppt to denote probabilistic polynomial time. We use {} for unordered and () for ordered sets.

2.2 Definitions

Definition 1 (Multi-Key Databases). A multi-key database DB is a set of key sets ci, i.e. DB := {ci}i∈[m].
Each set ci contains mi keys, i.e. ci := {ci,j}j∈[mi]. When the key set is ordered, we denote it with ci :=
(ci,j)j∈[mi]. Further, DB might contain m values vi (for i ∈ [m]), one associated with each key set. In this case,
we denote the key sets with pi (for i ∈ [m]) and DB := {pi, vi}i∈[m] = {{pi,j}j∈[mi], vi}i∈[m]. Furthermore, for
a database DB, each key ci,j is unique, i.e. there does not exist an (i′, j′) ̸= (i, j) s.t. ci′,j′ = ci,j.
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Definition 2 (Multi-Key Left Join With Associated Data Between Two Databases). Let DBC :=
{ci}i∈[mC ] be a multi-key database of party C that contains ordered key sets, i.e., ci := (ci,j)j∈[mC,i]. Also, let
DBP := {pi, vi}i∈[mP ] be a multi-key database of party P that contains both key sets, i.e. pi := {pi,j}j∈[mP,i]

and associated values vi. The left join between DBC and DBP is defined by

DBC ▷◁ DBP := (v̂i)i∈[mC ],

where v̂i := vi′ s.t. ji is the smallest element in [mC,i] for which there exists an i′ ∈ [mP ] and ji′ ∈ [mP,i′ ]
with ci,ji = pi′,ji′ . If there does not exist such an ji, i

′ and ji′ , we define v̂i := 0.

When considering multiple delegators as in case of DPMC, we extend Definition 2 as follows.

Definition 3 (Multi-Key Left Join With Associated Data Between T + 1 Databases). Let for
all t ∈ [T ], DBt := {pt,i, vt,i}i∈[mt] be a multi-key database of party Pt that contains both key sets, i.e.
pt,i := {pt,i,j}j∈[mt,i], and values, i.e. vt,i. Also, let DBC := {ci}i∈[mC ] be a multi-key database of party C that
contains only ordered key sets, i.e. ci := {ci,j}j∈[mC,i]. The left join between DBC and {DBt}t∈[T ] is defined
as:

DBC ▷◁ {DB1, . . . ,DBT } := (πi(v̂i,1, . . . , v̂i,T ))i∈[mC ],

where for each t ∈ [T ] and i ∈ [mC ], v̂i,t is defined as follows. Let for each j ∈ [mC,i], Si,j,t := {i′ ∈ [mt] |
∃j′ ∈ [mt,i′ ] s.t. ci,j = pt,i′,j′}. If

⋃
j Si,j,t ̸= ∅, we define ji,t := min(j ∈ [mC,i] s.t. Si,j,t ̸= ∅), i′ is defined as

the unique i′ ∈ Si,ji,t,t and v̂i,t := vt,i′ . If
⋃

j Si,j,t = ∅, we define v̂t,i := 0. Finally, the values v̂i,1, . . . , v̂i,T are
permuted by a random permutation πi for each row i ∈ [mC ].

This definition ensures that value v̂i,t is associated to delegator t such that each row in the join corresponds
to T values, one for each delegator. There might be multiple possible matching rows for each delegator with
one of the identifiers in ci. In that case, we include the row that matches with ci,j with the smallest j in the
join. Since each identifier is unique in each database, there is only one identifier that matches with ci,j .

We adjust this definition for the DSPMC protocol in which values cannot be assigned to specific delegators
anymore. Therefore a row might contain multiple values of the same delegator while other delegators might
not be represented with a value. Changing the definition of the join allows us to reduce the overall leakage.
We adjust Definition 3 as follows.

Definition 4 (Multi-Key Left Join With Associated Data and Minimal Leakage Between T + 1
Databases). Let for all t ∈ [T ], DBt := {pt,i, vt,i}i∈[mt] be a multi-key database of party Pt that contains both
key sets, i.e. pt,i := {pt,i,j}j∈[mt,i], and values, i.e. vt,i. Also, let DBC := {ci}i∈[mC ] be a multi-key database of
party C that contains only ordered key sets, i.e. ci := {ci,j}j∈[mC,i]. The left join between DBC and {DBt}t∈[T ]

is defined as:

DBC ▷◁ {DB1, . . . ,DBT } := (πi(v̂i,1, . . . , v̂i,T ))i∈[mC ],

where for each i ∈ [mC ], v̂i,t is defined as follows. Let for each j ∈ [mC,i], Si,j := {(t′, i′) ∈ ([T ], [mt′ ]) |
∃j′ ∈ [mt′,i′ ] s.t. ci,j = pt′,i′,j′}. Further, we define the set of indices that have not been included in the
join yet as Si,j,<t := Si,j \ {(t′, i′) ∈ ([T ], [mt′ ]) | ∃t′′ < t s.t. v̂i,t′′ = vt′,i′}. If

⋃
j Si,j,<t ̸= ∅, we define

ji,t := min(j ∈ [mC,i] s.t. Si,j,<t ̸= ∅), (t′, i′) is defined as a random (t′, i′)
$←− Si,ji,t,<t and v̂i,t := vt′,i′ . If⋃

j Si,j,<t = ∅, we define v̂t,i := 0. Finally, the values v̂i,1, . . . , v̂i,T are permuted by a random permutation πi

for each row i ∈ [mC ].

Definition 4 defines the join as follows. It defines value v̂i,t by matching ci,j for the smallest j with a match
that has not yet been included in the join and takes the value of a random row i′ of a random delegator t′

that matches with ci,j . If there is no such a match left, v̂i,t is defined as 0.

Definition 5 (Key Encapsulation Mechanism (KEM)). A key encapsulation with security parameter κ
is a triplet of algorithms (KEM.KG,KEM.Enc,KEM.Dec) with the following syntax.

KEM.KG(1κ): On input 1κ output a key pair (KEM.pk,KEM.sk).
KEM.Enc(KEM.pk): On input KEM.pk, PKE.Enc outputs an encapsulation KEM.cp and key KEM.k.
KEM.Dec(KEM.sk,KEM.cp): On input (KEM.sk,KEM.cp), PKE.Dec outputs a key KEM.k.
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Ideal FJOIN

J := DBC ▷◁ {DB1, . . . ,DBT } =

= (πi(v̂i,1, . . . , v̂i,T ))i∈[mC ]

Sample SHC , SHD s.t. SHC ⊕ SHD = J
Lx,y for x, y ∈

{
DBC , {DBt}t∈[T ]

}

Ideal FCMP

J := SHC ⊕ SHD

y := f (J )

C

P1

PT

D

.

.

.DBC := {ci}i∈[mC ]

SHC

DB1 := {p1,i, v1,i}i∈[m1]

DBT := {pT,i, vT,i}i∈[mT ]

⊥
Lx,y , SHD

SHC
SHD

y

Fig. 2. Ideal functionality FDPMC of private join for compute is composed by FJOIN and FCMP. Party C and Parties
P1, . . . , PT are the input parties. FJOIN computes a left join with associated data J := DBC ▷◁ {DB1, . . . ,DBT } as
described in Definition 3 (or alternatively Definition 4). Later on, Parties C and D can query the ideal functionality
FCMP with their secret shares (SHC and SHD) and FCMP will reconstruct J := SHC ⊕SHD and compute y := f(J ) and
send it to party C. Party D gets leakage Lx,y, where x and y are the databases of any party in {DBC ,DB1, . . . ,DBT }.

For correctness, we ask that

Pr[KEM.Dec(KEM.sk,KEM.cp) = KEM.k] ≥ 1− negl,

where the probability is taken over (KEM.pk,KEM.sk)← KEM.KG(1κ) and (KEM.cp,KEM.k)← KEM.Enc(KEM.pk).

In this work, we are only interested in KEMs that are simulatable which is the case for any com-
monly used KEM. A KEM is simulatable if there exists a ppt algorithm KEM.Sim with KEM.cp ←
KEM.Sim(KEM.sk,KEM.k), where KEM.cp has the same distribution as KEM.cp′ ← KEM.Enc(KEM.pk) under
the constraint that KEM.k = KEM.Dec(KEM.sk,KEM.cp′).

Definition 6 (Key Indistinguishability). We call a key encapsulation scheme key indistinguishable if for
any ppt algorithm A,∣∣Pr[A(KEM.pk,KEM.cp,KEM.k) = 1]− Pr[A(KEM.pk,KEM.cp, u) = 1]

∣∣ ≤ negl,

where (KEM.pk,KEM.sk)← KEM.KG(1κ), (KEM.cp,KEM.k)← KEM.Enc(KEM.pk) and u← {0, 1}∗.

Definition 7 (Secret Sharing). We call two values sh1, sh2 ∈ {0, 1}∗ a two-out-of-two XOR secret sharing
of a secret value a if sh1 ⊕ sh2 = a and for i ∈ {0, 1} shi is uniform and independent of a.

Secret sharing schemes allow a dealer to distribute shares of her data to multiple parties in a way that
each share does not reveal anything about the original data [2]. Secret sharing allows any sufficient subset of
parties to reconstruct the secret by combining their shares and at the same time, any smaller subset of parties
cannot reveal any partial information about the secret. In multi-party computation, each input party creates
secret shares of their data and shares them with the other parties. Then, each party computes a function of
the shares and finally combines them to reconstruct the final output. Multi-party computation utilizes secret
sharing to compute arbitrary arithmetic functions as arithmetic circuits [43,17,2,28]. In this work, we utilize
binary (XOR) secret sharing as in Definition 7. To compute arbitrary functions as arithmetic circuits, XOR
secret shares can be converted to arithmetic shares as in [14,29].

We include additional definitions such as the DDH assumption, pseudorandom generator, random oracle,
symmetric and public key encryption, and IND-CPA security in Appendix A.

6



2.3 Ideal Functionality for Delegated PMC

We present the ideal functionality FDPMC for Delegated PMC in Fig. 2. In the ideal world, our functionality
FDPMC is composed of a functionality for join FJOIN and a functionality for compute FCMP. FJOIN gets input
from party C a multi-key database DBC and from parties P1 to PT multi-key databases DB1, . . . ,DBT which
also contain associated values (i.e., v1, . . . , vT ) and computes a left join J as described in Definition 3 (or
alternatively Definition 4). For each record ci and for each party t ∈ [T ], J holds v̂i,t which represents either the
associated metadata (if there was a match) or a zero (if no match was found for ci) as (πi(v̂i,1, . . . , v̂i,T ))i∈[mC ].
Next, FJOIN samples secret shares SHC and SHD such that J = SHC ⊕ SHD and sends SHC to party C and
SHD to D.

Later on, parties C and D can query FCMP with their secret shares and FCMP will first reconstruct
J := SHC⊕SHD and then compute y := f(J ). Our ideal functionality for delegated PMC FDPMC is composed
by the functionality of join FJOIN and compute FCMP.

Parties P1 to PT do not get any output from either FJOIN or FCMP, whereas parties C and D learn
secret shares of the associated data of matched values from FJOIN. Finally, from FCMP only C learns the
output y which depends on function f . Even in the ideal world, if f returns all the associated values without
performing any computation (e.g., aggregation), party C does not learn which value corresponds to which
user, or even which of the users in dataset DBC have been matched. Finally, party D learns a leakage function
Lx, y between databases x and y, where x and y each represent any of DBC or DB1, . . . ,DBT . We extend our
FDPMC functionality to FDSPMC that limits the aforementioned leakage between databases DBC and DBP ,
where DBP := {DB1, . . . ,DBT }. We provide a formal definition of the leakage function when introducing the
different protocols. In case of a single identifier per row, the leakage corresponds to the cardinality of the
intersection.

32ee02 jaredmason@example.com $120 1111101011011010

397e27 dennis.jones@example.net $10 10101010

3e5100williamfulmore@example.net $0 1011011010110110

4168b3 annelopez82@example.netannelopez82@example.net $250 1010101001010000

bba1c1 cindymeiners@example.comcindymeiners@example.com $20 0001001100000111

f003blanastasiades@example.com $0 0001001100010011

fb8eb1 carljohnson44@example.comcarljohnson44@example.com $225 0110101110001010

JoinParty C Party D AD XOR AD ShareXOR AD Share

.

.

.

Fig. 3. Left-Join DPMC overview. Parties C and D compute a left-join of their databases based on multiple
identifiers (for simplicity we show join based on email addresses here). The goal of the DPMC protocol is to compute
a left join and the XOR secret shares of the associated data (AD) of parties Pt. Notably, in this figure we assume that
party D has already gathered data from multiple parties Pt.

3 Left Join Delegated PMC Protocols

3.1 Overview

This work focuses on solving the problem of joining records that represent the same entities across databases
that are held by different parties without revealing any information about the individual records apart
from the final result. We focus on performing a left join between the databases of two or more parties and
computing secret shares of the associated data of the matching records so they can be fed into any downstream
general-purpose MPC for any arbitrary computation.
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We realize our ideal functionality FDPMC for delegated private matching for compute (DPMC) with two
novel protocols that compute left join with associated data. We introduce a delegate party (party D) that
enables multiple delegators (parties P1 to PT ) to securely delegate their data and go offline, similarly to
FJOIN in Fig. 2. Parties C and D engage in our proposed delegated protocols to privately link C’s and all the
delegators’ records and compute secret shares of the associated data for the matched records. Both parties
C and D learn T XOR secret shares for each row in the left join that correspond to either the delegators’
associated data (i.e., vt) if that row maps to a record in DBt or a secret share of zero (if that row is only
present in DBC). Party C also receives a mapping from its users into the join but does not learn which of its
users have been matched.

By having the XOR secret shares as the protocol output allows parties C and D to realize FCMP and jointly
compute a function f on the secret shared associated data. An overview of the output of the protocol is
shown in Fig. 3, in which we assume that the delegate party D has already gathered records from multiple
delegator parties P . For simplicity, Fig. 3 only shows the matching based on e-mail addresses, but our DPMC
protocols consider matching on multi-key databases as described in Definition 3.

3.2 Delegated PMC (DPMC)

Our first variant for left join DPMC protocol is shown in Fig. 4 and consists of three stages: “key generation”,
“identify match”, and “recover shares”. DPMC performs a left join between T + 1 multi-key databases: DBC

and DBt for t ∈ [T ]. Both parties C and D learn a left join size (mC) set of XOR secret shares (JC and JD,
respectively) for each row in the join that corresponds to the delegators’ associated data if that row maps
one of parties’ P1 to PT records or a secret share of zero (if that row is only present in DBC). Additionally, C
receives a mapping from its users into JC but does not learn which of its users are in the intersection. The
two parties can now use the secret shares JC and JD for any general-purpose MPC computation.

Intuitively, the protocol works as follows. The parties P1 to PT hash all their identifiers pt,i,j using HG

and mask it with a random at
$←− Zq. The values vt,i are secret shared where the share for Party C, i.e.,

shC,t,i is the key of a key encapsulation mechanism. Each party encrypts the shares for Party D, the mask at
together with the key encapsulation towards party D using pkD and sends it to party C. It also sends the
masked hashes of the identifiers, i.e., HG(pt,i,j)

at , to C. Note that this does not leak any information to C
since HG(pt,i,j)

at could be seen as a PRF evaluation and is therefore pseudorandom based on DDH.

Party C permutes the messages and uses a random aC
$←− Zq to compute hcat,i,j := HG(pt,i,j)

at·aC . aC can
be seen as a PRF key. It forwards the permuted messages including hcat,i,j . It also sends the PRF evaluation
of its own identifiers, i.e., hci,j := HG(ci,j)

aC to Party D.

Party D decrypts all the ciphertexts and unmasks HG(pt,i,j)
at·aC to HG(pt,i,j)

aC using at. It then matches
the results with the hci,j ’s sent by Party C. If there is a match, it just forwards the key encapsulation and
uses the decrypted share shD,t,i as its own share. Otherwise, it generates a new key encapsulation and uses
the key as its own share. In this step, we do not leak Party C’s share and therefore value vt,i to Party D, due
to the key indistinguishability of the key encapsulation.

In the final step, Party C uses the secret key of the key encapsulation to recover its own shares. It cannot
distinguish shares of vt,i from shares of 0 since the encapsulations generated by parties P1 to PT have the
same distribution as the encapsulations generated by Party D.

In Fig. 4, we provide the formal protocol description. Below, we give a formal security theorem and
definition of the leakage. We prove the theorem in Appendix D.1.

Definition 8 (DPMC Leakage). Given DBC and DB1, . . . ,DBT , the leakage Lx,y of the ideal functionality
in Fig. 2 for the DPMC protocol in Fig. 4 is defined as follows. Define DBu,C by replacing ci,j ∈ DBC with

ui,j
$←− {0, 1}κ. Define DBu,t by replacing pt,i,j ∈ DBt with ui′,j′ if there exist t′, i′, j′ with pt,i,j = ci′,j′

or an already replaced pt′,i′,j′ with pt,i,j = pt′,i′,j′ , otherwise replace it with u′t,i,j
$←− {0, 1}κ. Lx,y :=

{(C,DBu,C), (t,DBu,t)t∈[T ]}.

Theorem 1. Let the secret key encryption and the PKE scheme be IND-CPA secure, the KEM simulatable
and key indistinguishable, and the DDH assumption hold.
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Setup: All parties agree on a g be a generator of a cyclic group G with order q where DDH is hard and hash functions
HG(·) : {0, 1}∗ → G, H(·) : {0, 1}∗ → {0, 1}|vt,i|. All parties Pt have access to the public key pkD of party D, party D
has secret key skD.

1 Key-Generation (Party C)
1: (KEM.pk,KEM.sk)← KEM.KG(1κ)
Send to Pt and D: KEM.pk

2 Identity Match (Party Pt)
Input: DBt = {(pt,i, vt,i)}i∈[mt] for data set size mt.
Messages: KEM.pk

1: at
$←− Zq, skt ← SKE.KG(1κ)

2: ctat := PKE.Enc(pkD, skt), ctbt := SKE.Enc(skt, at)
3: For i ∈ [mt]:
4: (KEM.cpt,i,KEM.kt,i)← KEM.Enc(KEM.pk)
5: For j ∈ [mt,i]:
6: hat,i,j := HG(pt,i,j)

at

7: shC,t,i := KEM.kt,i ▷ Share of vt,i for party C
8: shD,t,i := vt,i ⊕ shC,t,i ▷ Share of vt,i for party D
9: ctct,i := SKE.Enc(skt, (KEM.cpt,i, shD,t,i))
Send to C: ctat, ctbt and {{hat,i,j}j∈[mt,i], ctct,i}i∈[mt]

3 Identity Match (Party C)
Input: DBC = {ci}i∈[mC ] for data set size mC .
Messages: {ctat, ctbt, {{hat,i,j}j∈[mt,i], ctct,i}i∈[mt]}t∈[T ]

1: aC
$←− Zq

2: For t ∈ [T ], i ∈ [mt], j ∈ [mt,i]:
3: hcat,i,j := (hat,i,j)

aC

4: Pick random permutation π, t̂ := π(t).
5: For i ∈ [mC ]:
6: For j ∈ [mC,i]:
7: hcC,i,j := HG(ci,j)

aC

8: Use ci := (ci,j)j∈[mC,i] to order (hC,i,j)j∈[mC,i].
Send to D: {(hC,i,j)j∈[mC,i]}i∈[mC ] and
{ctat̂, ctbt̂, {{hcat̂,i,j}j∈[mt̂,i]

, ctct̂,i}i∈[mt̂]
}t̂∈[T ]

4 Identity Match and Recover Shares (Party D)
Messages: KEM.pk, {(hC,i,j)j∈[mC,i]}i∈[mC ] and
{ctat̂, ctbt̂, {{hcat̂,i,j}j∈[mt̂,i]

, ctct̂,i}i∈[mt̂]
}t̂∈[T ]

1: For t̂ ∈ [T ]:
2: skt̂ := PKE.Dec(skD, ctat̂)
3: at̂ := SKE.Dec(skt̂, ctbt̂)
4: For i ∈ [mt̂]:
5: (KEM.cpt̂,i, shD,t̂,i) := SKE.Dec(skt̂, ctct̂,i)
6: For j ∈ [mt̂,i]:

7: hct̂,i,j := hca
1/at̂

t̂,i,j

8: For i ∈ [mC ], t̂ ∈ [T ]:
9: For j ∈ [mC,i]:
10: Si,j,t̂ := {i′ ∈ [mt̂] | ∃j′ ∈ [mt̂,i′ ] s.t. hct̂,i′,j′ =

hC,i,j}
11: If

⋃
j Si,j,t̂ ̸= ∅:

12: ji,t̂ := min(j ∈ [mC,i] s.t. Si,j,t̂ ̸= ∅)
13: Pick i′ ∈ Si,ji,t̂,t̂

▷ i′ is unique for each i

14: K̂EM.cpi,t̂ := KEM.cpt̂,i′

15: ŝhD,i,t̂ := shD,t̂,i′

16: Else: ▷ no match found
17: (K̂EM.cpi,t̂,KEM.ki,t̂)← KEM.Enc(KEM.pk)

18: ŝhD,i,t̂ := KEM.ki,t̂ ▷ use share of 0
19: Pick mC random permutations {πi}i∈[mC ].

20: JD := (πi({ŝhD,i,t̂}t̂∈[T ]))i∈[mC ]

Send to C: {πi({K̂EM.cpi,t̂}t̂∈[T ])}i∈[mC ]

5 Recover Shares (Party C)
Input: KEM.sk

Messages: {K̂EM.cpi,t̂}i∈[mC ],t̂∈[T ]

1: For i ∈ [mC ], t̂ ∈ [T ]:

2: ŝhC,i,t̂ := KEM.Dec(KEM.sk, K̂EM.cpi,t̂)

3: JC := (ŝhC,i,t̂)i∈[mC ],t̂∈[T ] ▷ Aligned with (ci)i∈[mC ]

Fig. 4. DPMC. Party C and the delegators P1 to PT compute the left-join of their records with the help of D. Parties
C and D receive JC and JD, respectively. These sets contain XOR secret shares for each row in the join. For each
delegator Pt, if a row is in the intersection, the parties hold XOR shares of the delegator’s associated data, otherwise
XOR shares zero. Party C additionally learns a mapping from its users into the join a but does not learn which of its
users have been matched.

Then, the protocol in Fig. 4 securely realizes ideal functionality in Fig. 2 for the join defined in Definition 3
for semi-honest corruption of one of the two parties C, D and any amount of parties P1 to PT . In case of a
corruption of D, the leakage graph of Definition 8 is leaked.

3.3 Rerandomizable Encrypted OPRF (EO)

We introduce a new primitive called rerandomizable encrypted OPRF (EO) that allows two parties to encrypt
their identifiers, shuffle ciphertexts (using rerandomization), homomorphically evaluate a PRF on encrypted
identifiers and decrypt the PRF evaluations. Our EO primitive consists of a collection of seven algorithms,
shown in Definition 9.
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Definition 9 (Rerandomizable Encrypted OPRF). A rerandomizable encrypted OPRF (EO) param-
eterized with security parameter κ is a collection of algorithms (EO.KG,EO.EKG,EO.Eval,EO.Enc, EO.Rnd,
EO.OEval,EO.Dec) with the following syntax.

EO.KG(1κ): On input 1κ output a public key, secret key pair (EO.pk,EO.sk).
EO.EKG(1κ): On input 1κ output a public function key, evaluation key pair (EO.pf,EO.ek).
EO.Eval(EO.ek, x): On input (EO.ek, x), EO.Eval outputs y = PRF(EO.ek, x).
EO.Enc(EO.pk,EO.pf, x): On input (EO.pk,EO.pf, x), EO.Enc outputs a ciphertext EO.ct.
EO.Rnd(EO.pk,EO.pf,EO.ct): On input (EO.pk,EO.pf,EO.ct), EO.Rnd outputs a ciphertext EO.ct.
EO.OEval(EO.ek,EO.ct): On input (EO.ek, ct), EO.OEval outputs an evaluated ciphertext EO.ect.
EO.Dec(EO.sk,EO.ect): On input (EO.sk,EO.ect), EO.Dec outputs y.

For correctness, we ask that for any x ∈ {0, 1}∗,

Pr[EO.Dec(EO.sk,EO.OEval(EO.ek,EO.Rnd(EO.pk,EO.pf,EO.Enc(EO.pk,EO.pf, x))) = EO.Eval(EO.ek, x)]

≥ 1− negl,

where (EO.pk,EO.sk)← EO.KG(1κ) and (EO.pf,EO.ek)← EO.EKG(1κ).

We use our EO in the following way. We use EO.Enc to encrypt identifiers. Afterwards, we shuffle the
ciphertexts using the EO.Rnd. We remark that for security, we require that neither possession of EO.sk nor
EO.ek is sufficient to distinguish encryptions of two different messages. After the shuffle, we use EO.OEval to
homomorphically evaluate a PRF on the encrypted identifier. Finally, we use EO.Dec to decrypt the PRF
evaluation. We also require that the PRF can be evaluated on plaintext identifiers without knowledge of
EO.sk by using EO.Eval and knowledge of EO.ek. In order to have a PRF, we require that EO.Eval’s outputs
are pseudorandom given EO.pk, EO.sk and EO.pf.

In Appendix B, we define several security notions and show how to construct this primitive from DDH. In
Appendix C, we show that our EO primitive is compatible with an MPC shuffle protocol introduced by [34]
by relying on the rerandomization procedure of EO.

3.4 DPMC with Secure Shuffling (DSPMC)

In the DPMC protocol, D performs the left join on the blinded (i.e., hashed and exponentiated) data between
C and multiple delegators Pt. Thus, D learns the full bipartite graph of matches up to an isomorphism due to
these common identifiers. We propose DSPMC as an extension of DPMC to limit these leakages by utilizing
two delegates and our novel rerandomizable encrypted OPRF (EO) scheme. DSPMC relies on our EO scheme
to perform a secure three-party shuffling protocol that combines, rerandomizes, and shuffles the data from all
delegator parties P1 to PT . We formally present our DSPMC protocol in Fig. 5.

This protocol has two benefits compared to DPMC: For one, the leakage to party D is only between C’s
data and the combined data of parties P1 to PT , contrary to the pairwise leakages in the DPMC protocol.
Since party C combines the inputs of all delegators, party D (who performs the join) only sees two encrypted
databases (i.e., encrypted DBC and encrypted DBP ). For another, in the case that an adversary has corrupted
all but one parties P1 to PT and one of C, D, or S, the DSPMC protocol guarantees that the data of the
honest parties are protected. As we envision large-scale deployments for our delegated protocols, we need to
protect the data of honest parties even if all but one delegators are corrupted.

The high-level idea is that our secure shuffling protocol breaks any link between the data that the
delegators provide and the data that are used for the join and the secret sharing. Thus, in a potential
corruption of the delegators and one of C,D, S, the corrupted parties cannot infer any information as the
data have been permuted and re-randomized. Our shuffling scheme is secure in the honest-majority setting,
which is the case with multiple applications from both academia [1,13,34] and industry. For instance, Mozilla
recently deployed a service that relies on the Prio protocol to collect telemetry data about Firefox [26], while
Crypten [29] and TF Encrypted [15] build privacy-preserving machine learning frameworks for PyTorch and
TensorFlow, respectively. We delve into the details of the security of DSPMC in Appendix D.2.

DSPMC follows a similar approach as DPMC, with the difference that it leverages our EO primitive.
DSPMC works intuitively as follows. Parties P1 to PT use the EO scheme to encrypt their identifiers, they
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Setup: All parties Pt have access to the public key pkD of party D, party D has secret key skD. M :=
∑T

t=1 mt.

1 Key-Generation (Party C)
1: (KEM.pk,KEM.sk)← KEM.KG(1κ)
2: (EO.pf,EO.ek)← EO.EKG(1κ)
Send to Pt, S, D: KEM.pk,EO.pf

2 Key-Generation (Party D)
1: (EO.pk,EO.sk)← EO.KG(1κ)
Send to Pt: EO.pk

3 Identity Match (Party Pt)
Input: DBt = {{pt,i,j}j∈[mt,i]vt,i}i∈[mt] for data set size

mt.
Messages: EO.pk,EO.pf

1: seedt
$←− {0, 1}κ

2: (shD,t,1, . . . shD,t,mt)
$←− PRG(seedt) ▷ shares for D

3: ctat := PKE.Enc(pkD, seedt)
4: For i ∈ [mt]:
5: For j ∈ [mt,i]:
6: EO.ctt,i,j ← EO.Enc(EO.pk,EO.pf, pt,i,j)
7: shC,t,i := vt,i ⊕ shD,t,i ▷ shares for C
Send to C: ctat, {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt]

4 Forward Shares to D (Party C)
Messages: {{{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],

ctat, }t∈[T ]

Send to D: {ctat}t∈[T ]

5 Reconstruct Shares (Party D)
Messages: {ctat} for all T parties P
1: For t ∈ [T ]:
2: seedt := PKE.Dec(skD, ctat)
3: shD,t,1, . . . , shD,t,mt := PRG(seedt)

6 Shuffling – Appendix C (Parties C, S,D)
C Input: {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ]

S Input: −
D Input: {shD,t,i}i∈[mt],t∈[T ]

C receives output: {ẼO.cti,j}î∈[M ],j∈[m
î
]

S receives output: {s̃hC,̂i}î∈[M ]

D receives output: {s̃hD,̂i}î∈[M ]

7 Mask Shares (Party S)

Input: {s̃hC,̂i}î∈[M ]

Messages: KEM.pk
1: For i in [M ]:
2: (KEM.cpi,KEM.ki)← KEM.Enc(KEM.pk)

3: shD,i := s̃hC,i ⊕ KEM.ki
Send to D: {KEM.cpî, shD,̂i}î∈[M ]

8 Prepare Match Keys (Party C)
Input: DBC = {(ci,j)j∈[mC,i]}i∈[mC ] for data set size mC ,

EO.ek and {ẼO.cti,j}î∈[M ],j∈[m
î
].

1: For i ∈ [M ], j ∈ [mi]:

2: EO.ecti,j := EO.OEval(EO.ek, ẼO.cti,j)
3: For i ∈ [mC ], j ∈ [mC,i]:
4: hC,i,j := EO.Eval(EO.ek, ci,j)
5: Use ci := (ci,j)j∈[mC,i] to order (hC,i,j)j∈[mC,i].
Send to D: (hC,i,j)i∈[mC ],j∈[mC,i],
{EO.ectî,j}î∈[M ],j∈[m

î
]

9 Identity Match and Recover Shares (Party D)

Input: EO.sk and {s̃hD,̂i}î∈[M ]

Messages: {KEM.cpî, shD,̂i}î∈[M ],
{hC,i,j}i∈[mC ],j∈[mC,i], {EO.ectî,j}î∈[M ],j∈[m

î
],

KEM.pk
1: For i ∈ [M ], j ∈ [mi]:
2: hi,j := EO.Dec(EO.sk,EO.ecti,j)
3: For i ∈ [mC ] :
4: For j ∈ [mC,i]:
5: Si,j := {i′ ∈ [M ] | ∃j′ ∈ [mi′ ] s.t. hi′,j′ = hC,i,j}
6: ti := 1
7: ST := ∅
8: For j ∈ [mC,i]:
9: If

⋃
j∈[mC,i]

Si,j \ ST ̸= ∅ and ti < T :

10: i′
$←− Si,j \ ST

11: ST := ST ∪ {i′}
12: K̂EM.cpi := KEM.cpi′

13: ŝhD,i,ti := s̃hD,i′ ⊕ shD,i′

14: ti := ti + 1
15: For t ∈ {ti, . . . , T} :
16: (K̂EM.cpi,KEM.ki)← KEM.Enc(KEM.pk)

17: ŝhD,i,t := KEM.ki ▷ use share of 0
18: Pick mC random permutations {πi}i∈[mC ].

19: JD := (πi({ŝhD,i,t}t∈[T ]))i∈[mC ]

Send to C: {πi({K̂EM.cpi,t}t∈[T ])}i∈[mC ]

10 Recover Shares (Party C)
Input: KEM.sk

Messages: {K̂EM.cpi,t}i∈[mC ],t∈[T ]

1: For i ∈ [mC ], t ∈ [T ]

2: ŝhC,i,t := KEM.Dec(KEM.sk, K̂EM.cpi,t) ▷ KEM.ki,t

3: JC := (ŝhC,i,t)i∈[mC ],t∈[T ] ▷ Aligned with (ci)i∈[mC ]

Fig. 5. DSPMC. This protocol uses two delegate parties (party S and party D) and is based on a permutation network
approach as well as the ideas from DPMC presented in Fig. 4.
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encrypt the shares for party D towards Party D using pkD. They send the shares for Party C in the clear to
Party C together with all of the ciphertexts.

Party C then forwards the encrypted shares for Party D to Party D who decrypts them. Then Party C,
Party D and Party S run a shuffle protocol in which Party S obtains the shares for Party C.

Party S uses a key encapsulation and replaces Party C’s random shares with an encapsulated key. It
sends an ”update” shD,i to Party D that allows Party D to adjust their shares to be consistent with the new
shares of Party C. It also sends the encapsulations to Party D.

Party C homomorphically evaluates the PRF on the EO ciphertexts as well as evaluates the PRF on its
own identifiers ci,j in the clear and sends the outcomes to Party D. As previously, Party D computes the
matches after decrypting the evaluated EO ciphertexts. Party D uses the matching logic of Definition 4 since
it does not know which decrypted PRF identifier belongs to which delegator. Similar to DPMC, it replaces
the encapsulation with a fresh encapsulation when no match is found. It then forwards the encapsulations to
Party C. Party C finalizes the protocol by recovering the encapsulated keys from the encapsulations.

We describe our protocol’s leakage in Definition 10 and its security in Theorem 2. We prove the theorem
in Appendix D.2. Note that we actually do not need ciphertext indistinguishability for the secret key owner
(i.e., Lemma 4) since Party D does not handle any EO ciphertexts, only evaluated ciphertext. This might
change when a different shuffle protocol is used.

Definition 10 (DSPMC Leakage). Given DBC and DB1, . . . ,DBT , the leakage Lx,y of the ideal functionality
in Fig. 2 for the DSPMC protocol in Fig. 5 is defined as follows. Merge DB1, . . . ,DBT to DBP :=

⋃
t∈[T ] DBt.

Define DBu,C by replacing ci,j ∈ DBC with ui,j
$←− {0, 1}κ. Define DBu,P by replacing pi,j ∈ DBP with ui′,j′

if there exists an i′, j′ pair with pi,j = ci′,j′ or an already replaced pi′,j′ with pi,j = pi′,j′ , otherwise replace it

with u′i,j
$←− {0, 1}κ. Lx,y := {(C,DBu,C), (D,DBu,P )}.

Theorem 2. Let PKE be an IND-CPA secure and correct PKE scheme, KEM a correct and key-indistinguishable
key encapsulation mechanism, PRG as secure pseudorandom generator, and EO be a correct and satisfy sta-
tistical rerandomized ciphertext indistinguishability, the (semi-honest) ciphertext indistinguishability for the
evaluation key and secret key owner and ciphertext well-formedness.

Then, the protocol in Fig. 5 securely realizes ideal functionality in Fig. 2 for the join defined in Definition 4
for semi-honest corruption of one of the three parties C, D, S, and any amount of parties P1 to PT . In case
of a corruption of D, the leakage graph of Definition 10 is leaked.

4 Matching Strategy

Recall from Fig. 1 that the view of each party for a specific record may be different and a single record may
have multiple identifiers (e.g., email address, phone number, etc.). Additionally, when combining databases
from multiple input parties P , the uniqueness of the identifiers cannot be guaranteed as the same record
might appear in more than one dataset. Thus, potential matches for each row can occur based on different
identifiers across different parties P . For instance, a match on the jth identifier of record ci may occur for
identifiers in different positions between different parties (e.g., with pt,i′,j′ with i ≠ i′ and j ̸= j′). Parties C
and D in our protocols (Figs. 4 and 5) compute the left join as described in Definition 3 and acquire JC
and JD, respectively. To capture all the aforementioned matches, for T input parties P , JC and JD have T
permuted columns of secret shares which either correspond to shares of the associated metadata of one of the
input parties (if a match was found) or to shares of NULL (in case no match was found).

As the number of input parties P1 to PT grows, it is natural for our resulting JC and JD tables to contain
multiple secret shares of NULL. This becomes more evident if each individual database DBt is relatively small
compared to DBC ; even if all the records of DBt match with records in DBC , there would still be multiple
unmatched records in DBC which will get secret shares of NULL. To optimize both our matching and our
downstream computation, we now delve into a matching strategy to generate one-to-many connections that
do not depend on the number of input parties T and minimize the number of NULL secret shares.

First, party C and the delegate agree on a maximum number of connections K to capture. The delegate
performs a ranked left join by starting from the identifier with the highest priority in DBC and checking
whether it appears in each DBt before moving to the next record in DBC . After searching by the first identifier
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of each record in DBC , the delegate continues with the next identifier, and so on. If a record from party Pt

is matched, we mark that record as done and continue to the next record in order to avoid counting the
same associated values more than once. For each record ci, if K or more matches are found, the delegate
creates secret shares of the associated data of the first K records, otherwise (if less than K matches are
found), the delegate pads the remaining columns (up to K) with secret shares of NULL. We note that this is
an implementation-specific detail that can be trivially extended to different matching strategies. Each of the
resulting tables JC and JD has K columns and captures a one-to-K matches for each record in the left join.

5 Real-World Applications

Recall that our ideal functionality FDPMC from Fig. 2 (and FDSPMC) consists of FJOIN and FCMP. Our delegated
protocols realize FJOIN and output secret shares to parties C and D for the left join of parties C and P1, . . . , PT .
Next, FCMP can be realized by running any general-purpose MPC between C and D. We foresee multiple
real-world applications for FCMP that may leverage our DPMC client-server architecture merging multiple
private databases across distrusting parties with a centralized entity (party C) to securely compute analytics.
For example, DPMC enables calculating the risk of a health condition by merging information held by a
larger healthcare provider with data stored on millions of individual smart devices. In another example,
an ad publisher holding user-provided information may be able to measure advertising efficacy and offer
personalization by merging with data held by multiple advertisers while still preserving user privacy. In this
section, we focus on the latter and outline how client-server style DPMC enables privacy-preserving analytics
(e.g., ad measurement) and delivery of personalized advertising leveraging privacy-preserving machine learning.
The former provides advertisers useful insights about how their ad campaigns are performing, while the latter
enables delivering personalized ads while preserving user privacy.

5.1 Privacy-Preserving Ad Attribution

Inputs. To formalize our constructions, we assume the following input data held by an ad publisher, denoted
by C and T advertisers, denoted by P1, . . . , PT .

– Party C is a powerful server that holds a dataset of ad actions (i.e., clicks) performed by individuals on
product-related advertisements. These ads were shown to users after they expressed an intent via an
online search engine. Users may be shown advertisements related to multiple products owned by hundreds
of advertisers.

– Advertisers, parties P1 to PT , hold conversion information for their customers, such as purchase amount
and time of the purchase.

– All parties also hold annotated sets of common identifiers (e.g., email addresses) to be able to perform
matching between ad actions and conversions.

FJOIN phase. Executing the DPMC protocol for FJOIN with the above input data from C and multiple P
parties, the following output is available at the ad publisher C and the delegate servers.

– Party C holds a mapping of secret shares of conversion data to dataset of ad actions. This mapping does
not reveal any new information to Party C apart from random-looking secret shares. In the case of no
matches, party C receives secret shares of zero.

– Party D receives a set of secret shares of the conversion data or a dummy value (e.g., zero) that is also
aligned to party’s C records (i.e., left join).

– Parties P1 to PT , receive nothing.

FCMP phase. Parties C and D now hold secret shares of conversion metadata such as conversion time and
values. Party C can then further input metadata of ad actions, such as click timestamp, as secret shares using
the link to the original records that were established by the DPMC protocol. Now, parties C and D engage
in multi-party computation to compute the attribution function that flags when a conversion (product was
bought) occurred within a pre-specified time window from the ad action. Note that the MPC computation is
embarrassingly parallel given the row-wise output structure of DPMC. The output of the privacy-preserving
ad attribution remains at the ad action level, hence remains secret shared between parties C and D and is
used as an input into further downstream computations such as private measurement or personalization,
described next.
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5.2 Privacy-Preserving Analytics

Privacy-preserving analytics for measuring the efficacy of advertising requires first computing aggregated
conversion outcomes such as the total number of attributed conversions per campaign. Note that DPMC
maintains the left join of the ad actions without revealing any user-level information to party C at any
stage. Party C may attach campaign-level identifiers with limited entropy ensuring sufficient K-anonymity
guarantees. At this point, parties C and D engage in another round of MPC (i.e., a new FCMP phase) to
compute aggregated conversion outcomes per campaign. Finally, differentially private noise can be added to
the aggregated outcomes within MPC before revealing the results to party C, so that C only learns noisy
aggregates for each ad campaign.

5.3 Privacy-Preserving Machine Learning

privacy-preserving personalization typically entails training a machine learning model to be able to estimate
the relevance of potential advertisements for users. Note that privacy-preserving ad attribution during the
data pre-processing phase (Section 5.1) generates secret shares of ad attribution outcomes for both parties C
and D. Leveraging the mapping produced by DPMC from secret shares to original ad actions, party C may
attach any private features to the private attribution outcomes without revealing any individually identifiable
information. At this stage, parties C and D can run a new FCMP in multi-party computation for model
training with privately input features (from party C) and secret shared labels (from both parties C and D).
For example, CrypTen [29], a multi-party computation framework for machine learning, may be leveraged
between the parties C and D downstream to the DPMC protocol. Similarly to the aforementioned analytics
example, privacy-preserving machine learning would also include differential privacy guarantees and we point
avid readers to one such implementation [47].

6 Evaluations

In Table 1 we present the asymptotic costs (communication and number of exponentiations) of each protocol
for each party. Parties C and D incur similar communication overhead which scales with both the size of
party’s C database and with the size of the delegators’ databases. The communication cost for each delegator
Pt is only linear to their database. In DSPMC, party S incurs a communication overhead linear to the size of
all the delegators’ databases. Finally, we observe that the number of exponentiations of DSPMC for each
party is close to these of DPMC.

6.1 Implementation

We implemented all our protocols in Rust (version 1.62.1) and open-sourced it at the Private-ID GitHub
repository [8]. We use the Dalek library for Elliptic Curve Cryptography which utilizes the Ristretto technique
for Curve25519 [16,24]. This enables the use of a fast curve while avoiding high-cofactor curve vulnerabilities.
For the symmetric encryption scheme, we use the Fernet library with AES-128 in CBC mode of operation,
while for public key encryption we used El Gamal with elliptic curves. Finally, for the key encapsulation
mechanism, we use El Gamal KEM. The performance measurements were carried out on AWS m5.12xlarge

Party C D S Pt

D
P
M
C Communication O(mC +M) O(mC +M) - O(mt)
Num. of Exp. 2mC +M M +mC − I - 2mt + 1

D
S

P
M
C Communication O(mC +M) O(mC +M) O(M) O(mt)

Num. of Exp. 2mC + 3M M +mC − I 4M 2mt

Table 1. Communication cost & number of exponentiations. T is the number of parties P ; mC and mt are the set
sizes of party C and each delegator Pt, respectively, and M :=

∑T
t=1 mt. I is the intersection size between DBC and

the union of DBt for all t ∈ [T ].
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Fig. 6. Measured execution time for DPMC, DSPMC, PJC, Private-ID (PID), PJC, and PS3I with an increasing
number of database sizes mC and mP , where mC = mP and an intersection size of 50%mC . For fair comparisons, we
evaluate DPMC, DSPMC with a single delegator. We use PID as a baseline as it only performs the matching and does
not consider associated values.

(Intel Xeon Scalable Processors with an all-core CPU frequency of 3.1GHz, 48 vCPU, 192GB RAM) EC2
instances. To simulate C, D and multiple P parties we leverage three separate AWS EC2 instances in the
same region and availability zone, where C and D are hosted by two separate instances, and the third instance
hosts all parties P1 to PT . All parties communicate via RPC over TLSv1.3 using Protocol Buffers.

6.2 Comparisons with Related Work

In this section, we compare the concrete costs of our protocols with those of related works. More specifically,
we use the PS3I [9] and PJC [27] protocol implementations from [8], which both use Paillier with 2048-bit
public key as the additive homomorphic encryption scheme. Similarly to our protocols, both these protocols
assume that party P has associated metadata: PS3I generates additive secret shares, whereas PJC aggregates
the associated values of the items in the intersection. Additionally, we compare with multi-key Private-ID
[7,8] as a baseline, which only focuses on establishing a private matching and does not consider associated
metadata.

As all these works only assume two parties (C and P ), in these comparisons we run our protocols with
a single party P (i.e., T = 1). Finally, all three prior works assume that both C and P are online for the
whole protocol execution and do not consider any delegation to shift the computation cost away from party
P . Although the comparisons with these works are not perfect for the aforementioned reasons, we believe
they are still very informative.
Total protocol time. We create artificial databases where each record has one 128-bit identifier and two
64-bit unsigned integers for the associated values. Both parties C and P have the same number of records

Size C D S Pt

D
P
M
C

103 0.3/0.3 0.3/0.1 - 0.1/0.3
104 3.7/3.7 3.4/2.8 - 0.1/2.8
105 33/33 33/4.8 - 0.1/28
106 312/312 320/44 - 0.1/279

D
S
P
M
C 103 0.2/0.2 0.1/0.1 0.1/0.1 0.1/0.1

104 2.3/2.5 1.5/0.4 1/1 0.1/0.8
105 22/24 14/4.3 9.5/9.5 0.1/8.5
106 220/241 145/42 94/94 0.1/84.7

Table 2. For each party C,P,D, S we show In/Out in MB with mC = mP and intersection size I = 50% of mC .

15



103 104 105 106
Input Size for P

0.1 s

1 s

30 s
3 m

30 m

W
all

 C
loc

k R
un

tim
e(s

)
DPMC
DSPMC

PJC
PS3I

Fig. 7. Measured execution time of delegator (party P ) for DPMC, DSPMC, PJC, and PS3I with mC = 106 and
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Fig. 8. Wall clock time for DPMC and DSPMC. DPMC network traffic for each party C, D, and Pt with an increasing
number of keys per row for mC = mt = 105 and an intersection size of 50% of mC .

and the intersection size is fixed to 50%. We vary the size of the input sets of each party from 103 to 106.
Fig. 6 shows how our delegated protocols significantly outperform both PS3I and PJC by more than a factor
of 10x. On the other hand, our delegated protocols are only ≈ 1.8x slower than Private-ID although the
latter does not include associated values and is only between two parties. This means that our protocols
process approximately twice the amount of data that Private-ID processes since each row of P ’s database
DPMC and DSPMC also create secret shares of the associated data. As expected, we see a linear increase in
the wall clock time as we increase the number of records for all protocols.

Table 2 shows the incoming and outgoing traffic for each party in MBs. Similarly to the wall clock time
performance, we see a linear increase in the communication for each party as we increase the input sizes.
Interestingly, we observe that although DSPMC performs more rounds than DPMC, the communication for
each party is lower than DPMC. This happens because each P (t) encrypts their XOR shares in order to prevent
C from accessing them during the fourth step of the protocol (Fig. 4).

Protocol time for delegator P . Next, we fixed the input of party C to 1 million records with a single
identifier per record and varied the size of the database of the delegator. In Fig. 7 we show the execution times
for party P for DPMC, DSPMC, PJC, and PS3I. The blue and the orange trends show the execution time of
a single delegator running the DPMC and the DSPMC protocols, respectively, which are approximately the
same. We observe that the execution time for both are approximately 10× faster than party P in PJC and
multiple orders of magnitude faster than party P in PS3I. Party P in PJC scales linearly with P ’s database
size, however, this is not the case with PS3I as the execution time for P is also affected by C’s database. This
experiment demonstrates the benefits of our delegated protocols for the input parties P compared to the
two-party protocols.
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Fig. 9. Measured execution time of delegator (party P ) for DPMC and DSPMC with mC = 106 and and increasing DBt

with intersection sizes of 50% of DBt. The orange and the red trends show the execution time for a single delegator. In
the blue and the green trends, we used ten delegators, where each party has 1/10 of the input size shown in the x axis.

6.3 Experiments with Varying Input Sets

Varying intersection size. In our next experiment, we fixed the input size at 1 million records for both
parties and the number of identifiers at 2 per record and varied the intersection size (1%, 25%, 50%, and
100%). We observed negligible performance variations (i.e., less than a second) for the different intersection
sizes since our protocol always outputs the left join and depends on the size of C’s database.
Varying number of identifiers. In this experiment, we show how the number of keys affects the performance
of our protocols. Again, we fix the input size to 100 thousand records for both parties and the intersection
size to 50%. Fig. 8 shows the wall clock execution time for DPMC (light green trend) and DSPMC (light
blue trend) as well as the input and output traffic for each party for DPMC. Notably, the communication of
DSPMC shows a similar trend for an increasing number of identifiers as the matching strategy is the same for
the two protocols.
Varying number of delegators. In Fig. 9, we fix the size of C’s database to 1 million and vary both the
number of delegators and their database sizes. More specifically, in the orange and the red trends, we used a
single delegator for DPMC and DSPMC with database sizes indicated by the x axis. In the blue and the green
trends, we split the database into ten delegators, where each party has 1/10 of the input size shown in the x
axis. Although the combined size of the database of the ten parties is the same, the local computation for
each delegator is significantly less. In this case, the performance time for each delegator is about ten times
faster than having a single P (1) party with a bigger database.

7 Conclusions

We have presented two delegated private matching for compute (DPMC) protocols that establish relations
between datasets that are hold by multiple distrusting parties and enable them to run any arbitrary secure
computation. Our protocols allow the input parties to submit their identifiers (i.e., records to be matched)
along with vectors of associated values and they generate secret shares of the associated values for the matched
records and secret shares of predefined values (e.g., zero) otherwise.

A novelty of our DPMC protocols is that the input parties outsource the expensive computation to delegate
parties which perform both the matching and any arbitrary downstream secure computation based on the
generated secret shares while preserving the privacy of the datasets. In contrast with prior works that only
support two parties, our work is designed to gracefully scale to multiple parties. Additionally, DPMC allows
one of the input parties (i.e., party C) to input more data after the matching has been established which
can be used for the downstream secure computation without requiring to rerun the private matching. While
prior works mostly focus on intersection and union, we have focused on a novel left join matching and we
demonstrate its benefits with two privacy preserving applications (analytics and machine learning). Our
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implementation demonstrates the efficiency of our constructions by outperforming related works by at least
10× on the total execution time and by at least two orders of magnitude on the computation of the delegators
(i.e., party P ).
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A Additional Definitions

Definition 11 (DDH Assumption). [19] Let G(κ) be a group parameterized by security parameter κ and
g be a generator. We say that the Decisional Diffie–Hellman (DDH) assumption holds in group G(κ) if for
every ppt adversary A: ∣∣Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]

∣∣ ≤ negl,

where the probability is taken over a
$←− Zq, b

$←− Zq, c
$←− Zq and the random coins of A.

Definition 12 (Pseudorandom Generator). We call a deterministic polynomial time algorithm PRG a
pseudorandom generator if for any ppt adversary A,∣∣Pr[A(x) = 1]− Pr[A(u) = 1]

∣∣ ≤ negl,

where ℓ > κ, u
$←− {0, 1}ℓ, seed $←− {0, 1}κ and x = PRG(seed).

Definition 13 (Random Oracle). [3] A random oracle RO is a family of functions that maps an input
from {0, 1}∗ to an ℓ-bit image {0, 1}ℓ s.t. each output is selected uniformly and independently.

Definition 14 (Symmetric Key Encryption). A symmetric encryption scheme parameterized with security
parameter κ is a triplet of algorithms (SKE.KG,SKE.Enc,SKE.Dec) with the following syntax.

SKE.KG(1κ): On input 1κ output secret key sk.
SKE.Enc(sk, x): On input (sk, x), SKE.Enc outputs a ciphertext ct.
SKE.Dec(sk, ct): On input (sk, ct), SKE.Dec outputs a message x.

For correctness, we ask that for any message x ∈ {0, 1}∗,

Pr
sk←SKE.KG(1κ)

[SKE.Dec(sk,SKE.Enc(sk, x)) = x] ≥ 1− negl.

Definition 15 (Public Key Encryption). A public encryption scheme parameterized with security param-
eter κ is a triplet of algorithms (PKE.KG,PKE.Enc,PKE.Dec) with the following syntax.

PKE.KG(1κ): On input 1κ output a key pair (pk, sk).
PKE.Enc(pk, x): On input (pk, x), PKE.Enc outputs a ciphertext ct.
PKE.Dec(sk, ct): On input (sk, ct), PKE.Dec outputs a message x.

For correctness, we ask that for any message x ∈ {0, 1}∗,

Pr
(pk,sk)←PKE.KG(1κ)

[PKE.Dec(sk,PKE.Enc(pk, x)) = x] ≥ 1− negl.

Definition 16 (IND-CPA Security). We call an encryption scheme indistinguishable under chosen
plaintext attacks (IND-CPA secure) if for any ppt algorithm A,∣∣Pr[A(pk, ct0) = 1]− Pr[A(pk, ct1) = 1]

∣∣ ≤ negl,

where (pk, sk) ← PKE.KG(1κ), (x0, x1)A(pk), ∀i ∈ {0, 1} : cti ← PKE.Enc(pk, xi). In case of a symmetric
key encryption, we replace A’s access to pk with access to an encryption oracle for key sk. We also replace
(PKE.KG,PKE.Enc,PKE.Dec) with (SKE.KG,SKE.Enc,SKE.Dec).
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B Rerandomizable Encrypted OPRF (EO)

B.1 EO Definition

In Definition 9, we introduce a new construction called rerandomizable encrypted OPRF (EO) that allows
two parties to encrypt, mask, and shuffle their data.

Definition 17 (Pseudorandomness of the Evaluation). We say that the evaluation is pseudorandom if
for any ppt adversary A with query access to OEO.Eval(EO.sk,·) (Ou(·)),∣∣Pr[AOEO.Eval(EO.sk,·)(EO.pk,EO.pf) = 1]− Pr[AOu(·)(EO.pk,EO.pf) = 1]

∣∣ ≤ negl,

where (EO.pk,EO.sk) ← EO.KG(1κ), (EO.pf,EO.ek) ← EO.EKG(1κ), and for x ∈ {0, 1}κ, Ou outputs a
uniform y whereas OEO.Eval(EO.sk,·) outputs y = EO.Eval(EO.sk, x).

A stronger definition of pseudorandomness of the evaluation is malicious pseudorandomness of the
oblivious evaluation. We add the definition for completeness even though our construction only satisfies the
pseudorandomness of the evaluation.

Definition 18 (Malicious Pseudorandomness of the Oblivious Evaluation). We say that the oblivious
evaluation is pseudorandom if for any ppt adversary A with query access to OEO.Dec(EO.sk,EO.OEval(EO.ek,·))
(Ou(·)), ∣∣Pr[AOEO.Dec(EO.sk,EO.OEval(EO.ek,·))(EO.pk,EO.pf) = 1]− Pr[AOu(·)(EO.pk,EO.pf) = 1]

∣∣ ≤ negl,

where (EO.pk,EO.sk)← EO.KG(1κ), (EO.pf,EO.ek)← EO.EKG(1κ), and for EO.ct← AO(EO.pk,EO.pf) with
EO.Dec(EO.sk,EO.OEval(EO.ek,EO.ct)) ̸= ⊥, Ou outputs a uniform y whereas OEO.Dec(EO.sk,EO.OEval(EO.ek,·))
outputs y = EO.Dec(EO.sk,EO.OEval(EO.ek,EO.ct)).

Definition 19 (Ciphertext Indistinguishability for Evaluation Key (EO.ek) Owner). We call EO
ciphertext indistinguishable for the evaluation key owner if for any ppt algorithm A,∣∣Pr[A(EO.pk,EO.ct0) = 1]− Pr[A(EO.pk,EO.ct1) = 1]

∣∣ ≤ negl,

where (EO.pk,EO.sk)← EO.KG(1κ). In the adaptive malicious setting (m0,m1,EO.pf)← A(EO.pk) whereas
in the semi-honest setting (EO.pf,EO.ek) ← EO.EKG(1κ) and (m0,m1) ← A(EO.pk,EO.pf,EO.ek). ∀i ∈
{0, 1} : EO.cti ← EO.Enc(EO.pk,EO.pf, xi).

Definition 20 (Ciphertext Indistinguishability for Secret Key Owner). We call EO ciphertext
indistinguishable for the secret key owner if for any ppt algorithm A,∣∣Pr[A(EO.pk,EO.ct0) = 1]− Pr[A(EO.pk,EO.ct1) = 1]

∣∣ ≤ negl,

where (EO.pf,EO.ek)← EO.KG(1κ). In the adaptive malicious setting (m0,m1,EO.pk)← A(EO.pf) whereas
in the semi-honest setting (EO.pk,EO.sk)← EO.KG(1κ) and (m0,m1)← A(EO.pk,EO.pf,EO.sk). ∀i ∈ {0, 1} :
EO.cti ← EO.Enc(EO.pk, EO.pf,mi).

Definition 21 (Rerandomized Ciphertext Indistinguishability). We call EO rerandomized ciphertext
indistinguishable if for any ppt algorithm A,∣∣Pr[A(EO.pk,EO.ct0) = 1]− Pr[A(EO.pk,EO.ct1) = 1]

∣∣ ≤ negl,

(x,EO.pk,EO.pf)← A(1κ), EO.ct0 ← EO.Rnd(EO.pk,EO.pf,EO.Enc(EO.pk,EO.pf, x)) and EO.ct1 ← EO.Enc(
EO.pk,EO.pf, x).

Definition 22 (Ciphertext Well-Formedness). We call an EO scheme ciphertext well formed if for any
x0, x1 with EO.Eval(EO.ek, x0) = EO.Eval(EO.ek, x1)

∆s(EO.ct0,EO.ct1) ≤ negl,

where (EO.pk,EO.sk)← EO.KG(1κ), (EO.pf,EO.ek)← EO.EKG(1κ) and ∆s is the statistical distance.
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Definition 23 (Evaluated Ciphertext Simulatability). We call an EO scheme evaluated ciphertext
simulatable if there exists an ppt algorithm EO.Sim such that for any x,

∆s(EO.ect0,EO.ect1) ≤ negl,

where (EO.pk,EO.sk)← EO.KG(1κ), (EO.pf,EO.ek)← EO.EKG(1κ), EO.ect0 ← EO.OEval(EO.ek,EO.Enc(
EO.pk,EO.pf, x)), EO.ect1 ← EO.Sim(EO.pk,EO.pf,EO.sk,EO.Eval(EO.ek, x)) and ∆s is the statistical dis-
tance.

B.2 EO Construction and Security Analysis

In this section, we instantiate our EO construction in cyclic groups and prove its security against both
semi-honest and malicious adversaries.

Definition 24 (EO Construction in Cyclic Groups). Let g be a generator of a cyclic group G with order
q and HG(·) : {0, 1}∗ → G a hash function. Then the EO collection of algorithms are constructed as follows.

EO.KG(1κ): Sample a
$←− Zq and output (EO.pk := ga,EO.sk := a).

EO.EKG(1κ): Sample b
$←− Zq and output (EO.pf := gb,EO.ek := b).

EO.Eval(EO.ek, x): Output y = HG(x)
EO.ek.

EO.Enc(EO.pk,EO.pf, x): Sample r
$←− Zq and define EO.ct1 := EO.pfr, EO.ct2 := EO.pkr ·HG(x). If EO.pk ̸=

EO.pf output ciphertext EO.ct := (EO.ct1,EO.ct2) otherwise output ⊥.
EO.Rnd(EO.pk,EO.pf,EO.ct): Let EO.ct = (EO.ct1,EO.ct2). Sample r

$←− Zq and define EO.ct′1 := EO.ct1 ·
EO.pfr, EO.ct′2 := EO.ct2 · EO.pkr and output ciphertext EO.ct′ := (EO.ct′1,EO.ct

′
2).

EO.OEval(EO.ek,EO.ct): Let EO.ct = (EO.ct1,EO.ct2). Define EO.ect2 := EO.ctEO.ek
2 and output EO.ect :=

(EO.ct1,EO.ect2).
EO.Dec(EO.sk,EO.ect): Let EO.ect = (EO.ect1,EO.ect2). Output y := EO.ect2/EO.ect

EO.sk
1 .

For correctness, we ask that for any x ∈ {0, 1}∗,

Pr[EO.Dec(EO.sk,EO.OEval(EO.ek,EO.Rnd(EO.pk,EO.pf,EO.Enc(EO.pk,EO.pf, x))) = EO.Eval(EO.ek, x)]

≥ 1− negl,

where (EO.pk,EO.sk)← EO.KG(1κ) and (EO.pf,EO.ek)← EO.EKG(1κ).

Lemma 1. Definition 24 defines a correct EO scheme.

Proof. Let (ga, a) ← EO.KG(1κ) and (gb, b) ← EO.EKG(1κ). The correctness of the EO construction is
satisfied as shown below:

EO.Dec(a,EO.OEval(b,EO.Rnd(ga, gb,EO.Enc(ga, gb, x)))) = EO.Eval(b, x)⇔

EO.Dec(a,EO.OEval(b,EO.Rnd(ga, gb, (gbr, gar ·HG(x))))) = HG(x)
b ⇔

EO.Dec(a,EO.OEval(b, (gbr · gbr
′
, gar · gar

′
·HG(x)))) = HG(x)

b ⇔

EO.Dec(a,EO.OEval(b, (gb(r+r′), ga(r+r′) ·HG(x)))) = HG(x)
b ⇔

EO.Dec(a, (gb(r+r′), (ga(r+r′) ·HG(x))
b)) = HG(x)

b ⇔

EO.Dec(a, (gb(r+r′), gab(r+r′) ·HG(x)
b)) = HG(x)

b ⇔

gab(r+r′) ·HG(x)
b/(gb(r+r′))a = HG(x)

b.

Lemma 2. Definition 24 satisfies pseudorandomness of the evaluation under the DDH assumption in the
Random Oracle Model.
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Proof. We use a sequence of hybrids in which we replace step by step (based on the order of random
oracle queries) EO.Eval(EO.ek, x) with a uniform group element. If there is a distinguisher against the
pseudorandomness of EO.Eval with probability ϵ then there is a distinguisher against at least two consecutive
intermediate hybrids with probability ϵ/Q, where Q is the maximum between the amount of random oracle
and EO.Eval oracle queries. Given such a distinguisher, we build a distinguisher against DDH as follows. The
DDH distinguisher receives challenge A,B,C and sets EO.pf := A. Once the random oracle query is made
that differentiates the two hybrids (let that be the i∗th query), it programs HG(x) := B. For all following

queries i > i∗ program HG(x) := gri , where ri
$←− Zq. When a query for x to the EO.Eval oracle is made,

query x to the random oracle if it has not been made yet. If x matches the query i∗, respond with C. If x
corresponds to a query i < i∗, respond with a uniform group element. Otherwise respond with Bri .

If A = ga, B = gb, C = gc then the DDH distinguisher simulates the first of the two hybrids. In case
of uniform A,B,C it simulates the second of the two hybrids where the output of the EO.Eval oracle that
corresponds to the i∗th message is uniform.

Since Q is polynomial and the distinguishing probability against DDH is negligible, the probability to
break the pseudorandomness of EO.Eval is also negligible. ⊓⊔

Lemma 3. Definition 24 is ciphertext indistinguishable for the evaluation key owner in the semi-honest
setting under the DDH assumption.

Proof. We use three hybrids, the first hybrid uses x0 for the challenge ciphertext. In the second hybrid, the
ciphertext is independent of the message. The third hybrid uses x1 for the challenge ciphertext. We show now
that these three hybrids cannot be distinguished based on the DDH assumption.

We build a DDH distinguisher for hybrid one and two (two and three) as follows. It receives DDH challenge
A,B,C and samples (EO.pf,EO.ek)← EO.EKG(1κ). It defines EO.pk := A and sends (EO.pk,EO.ek,EO.pf) to
the distinguisher against the ciphertext indistinguishability. It receives x0 and x1. Return challenge ciphertext
EO.ct1 := BEO.ek, EO.ct2 := C · x0 (EO.ct2 := C · x1). Output the output of the ciphertext indistinguishability
distinguisher.

If A = ga, B = gb, C = gc then the challenge ciphertext follows the output distribution of EO.Enc for x0

as in the first hybrid (and m1 in the third hybrid). Otherwise, the challenge ciphertext is independent of the
message as in the second hybrid. ⊓⊔

Lemma 4. Definition 24 is ciphertext indistinguishable for the secret key owner in the semi-honest setting
under the DDH assumption for prime groups (every element is a generator).

Proof. We use three hybrids, the first hybrid uses x0 for the challenge ciphertext. In the second hybrid, the
ciphertext is independent of the message. The third hybrid uses x1 for the challenge ciphertext. We show now
that these three hybrids cannot be distinguished based on the DDH assumption.

We build a DDH distinguisher for hybrid one and two (two and three) as follows. It receives DDH challenge
A,B,C and samples (EO.pk,EO.sk) ← EO.KG(1κ). It defines EO.pf := A and sends (EO.pk,EO.sk,EO.pf)
to the distinguisher against the ciphertext indistinguishability. It receives x0 and x1. Return challenge
ciphertext EO.ct1 := C, EO.ct2 := BEO.sk · x0 (EO.ct2 := BEO.sk · x1). Output the output of the ciphertext
indistinguishability distinguisher.

If A = ga, B = gb, C = gc then the challenge ciphertext follows the output distribution of EO.Enc for x0

(x1) as in the first hybrid (third hybrid). Otherwise, the challenge ciphertext is independent of the message as
in the second hybrid as long as B is a generator of the group and thus BEO.sk is uniform for a uniform B. ⊓⊔

Lemma 5. Definition 24 is statistically randomized ciphertext indistinguishable.

Proof. Let EO.ct := (gbr, gar ·HG(x)) be an encryption of x for some random r ∈ Zq. Then the randomized

ciphertext EO.Rnd(ga, gb,EO.ct) is defined as (gbr · gbr′ , gar · gar′ ·HG(x)) = (gb(r+r′), ga(r+r′) ·HG(x)) for
random r′ ∈ Zq. Since both r and r′ are random elements in Zq, r + r′ is also a random element in Zq and
the ciphertext is statistically randomized ciphertext indistinguishable. ⊓⊔

Lemma 6. Let EO.sk and q be coprime. Then Definition 24 is ciphertext well formed.
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Ideal FShuffle

{EO.cti,j}i∈[M],j∈[mi]
:= {EO.ctt,i,j}t∈[T ],i∈[mt],j∈[mt,i]

{shC,i}i∈[M] := {shC,t,i}t∈[T ],i∈[mt]

{shD,i}i∈[M] := {shD,t,i}t∈[T ],i∈[mt]

•Recover inputs:

Brute force {EO.cti,j}j∈[mi],i∈[M] to {pi,j}j∈[mi],j∈[M] s.t.

EO.Eval(EO.ek, pi,j) = EO.Dec(EO.sk, EO.OEval(EO.ek, EO.cti,j))

Recover {vi}i∈[M] s.t. vi = shC,i ⊕ shD,i

•Generate new shares:

∀i ∈ [M ] : sample sh′C,i, sh
′
D,i

$←− {0, 1}∗ s.t. sh′C,i ⊕ sh′D,i = vi

∀i ∈ [M ], j ∈ [mi] : EO.ct′i,j := EO.Enc(EO.pk, EO.pf, pi,j)

•Permute:

π
$←− Perm(M)

ẼO.CT := π({EO.ct′1,j}j∈[m1], . . . , {EO.ct′M,j}j∈[mM ])

S̃HC := π(sh′C,1, . . . , sh
′
C,M )

S̃HD := π(sh′D,1, . . . , sh
′
D,M ).

C

P1

PT

S D

.

.

.

{{EO.ctt,i,j}j∈[mt,i]
,

shC,t,i}i∈[mt],t∈[T ]

ẼO.CT

⊥

S̃HC

⊥

⊥

⊥

⊥

{shD,t,i}i∈[mt],t∈[T ]

S̃HD

Fig. 10. The figure shows the ideal FShuffle functionality. We define M :=
∑T

t=1 mt. We treat EO.pk and EO.pf as
publicly known to all parties. Party C has access to EO.ek and Party D to EO.sk. Further, any amount of Parties P1

to PT can be corrupted who have access to {EO.ctt,i,j}j∈[mt,i], {shC,t,i}i∈[mt],t∈[T ] and {shD,t,i}i∈[mt],t∈[T ].

Proof. Ciphertext well-formedness demands that messages that result in the same PRF evaluation have
an identical ciphertext distribution. In the construction of Definition 24 the ciphertext only depends on
HG(x) and the output of EO.Eval is HG(x)

EO.ek. Now, let there be x0 and x1 with HG(x0)
EO.ek = HG(x1)

EO.ek

and let for b ∈ {0, 1}, HG(xb) = grb . Then (r − r′) · EO.ek = 0 mod q and therefore (r − r′) = 0 such that
HG(x0) = HG(x1) and the ciphertexts have the same distribution or EO.ek would divide the group order q
and therefore not be coprime. ⊓⊔

Lemma 7. Definition 24 is evaluated ciphertext simulatable.

Proof. EO.Sim takes as input EO.pk = ga, EO.pf = gb, EO.sk = a and y = HG(x)
b. It outputs EO.ect =

(EO.ect0,EO.ect1) where EO.ect0 = EO.pfr, EO.ect1 = EO.pfar · y. This identically distributed as EO.ect =
EO.OEval(EO.ek,EO.Enc(EO.pk,EO.pf, x)) = (gr

′b, gr
′ab ·HG(x)). ⊓⊔

Theorem 3. Definition 24 is a secure and correct EO scheme. More precisely, it is correct, satisfies pseudo-
randomness of the evaluation and ciphertext well-formedness, evaluated ciphertext simulatability, is randomized
ciphertext indistinguishable as well as ciphertext indistinguishable for the evaluation and secret key owner.
The latter two are semi-honest secure under the DDH assumption.

Proof. Follows from Lemma 1, 2, 3, 4, 5, 6, and 7. ⊓⊔

C Three-Party Secure Shuffling for DSPMC

C.1 Ideal Shuffle Functionality

The ideal shuffle functionality from Fig. 10 gets inputs from parties C and D secret shares and generates fresh
shuffled shares and sends them back to parties S and D. Additionally, FShuffle gets multiple EO ciphertexts
from C, generates fresh shuffled ciphertexts, and sends them back to C. Parties P1 to PT do not participate
in the protocol but do have information about the encrypted and secret shared information and might be
corrupted.
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We define M :=
∑T

t=1 mt.

1 First Shuffling (Party C)
Input: {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ]

1: VCD, VCS
$←− {0, 1}M·|v|

2: πCD, πCS
$←− Perm(M)

3: For t ∈ [T ], i ∈ [mt], j ∈ [mt,i]: ▷ Randomize
4: EO.ct′t,i,j := EO.Rnd(EO.pk,EO.pf,EO.ctt,i,j)
5: SHC := (shC,1,1, . . . , shC,mT ,T )
6: EO.CT := ({EO.ct′1,1,j}j , . . . , {EO.ct′T,mT ,j}j)
7: SHC := πCS(πCD(SHC)⊕ VCD)⊕ VCS ▷ Perm. &

Rand.
8: EO.CT := πCS(πCD(EO.CT)) ▷ Permute
Send to S: πCS , VCS ,EO.CT
Send to D: πCD, VCD

Output of first shuffle: SHC

2 First Shuffling (Party D)
Input: {shD,t,i}i∈[mt],t∈[T ]

Messages: VCD, πCD

1: SHD := (shD,1,1, . . . , shD,T,mT )
2: SHD := πCD(SHD)⊕ VCD ▷ Permute and Randomize
Send to S: SHD

Output of first shuffle: –

3 First Shuffling (Party S)
Input: –
Messages: πCS , VCS ,SHD,EO.CT
1: SHS := πCS(SHD)⊕ VCS ▷ Permute and Randomize
Output of first shuffle: SHS ,EO.CT

4 Second Shuffling (Party S)
Input: SHS ,EO.CT
1: ({EO.ct1,j}j , . . . , {EO.ctM,j}j) := EO.CT

2: VSC , VSD
$←− {0, 1}M·|v|

3: πSC , πSD
$←− Perm(M)

4: For i ∈ [M ], j ∈ [mi]: ▷ Randomize

5: EO.ct
′
i,j := EO.Rnd(EO.pk,EO.pf,EO.cti,j)

6: EO.CT
′
:= ({EO.ct1,j}j , . . . , {EO.ctM,j}j)

7: S̃HC = πSD(πSC(SHS)⊕ VSC)⊕ VSD ▷ Perm. &
Rand.

8: ẼO.CT := πSD(πSC(EO.CT)) ▷ Permute

Send to C: πSC , VSC , ẼO.CT
Send to D: πSD, VSD

Output: S̃HC

5 Second Shuffling (Party C)
Input: SHC

Messages: πSC , VSC , ẼO.CT
1: ŜHC := πSC(SHC)⊕ VSC ▷ Permute and Randomize.

Send to D: ŜHC

Output: ẼO.CT

6 Second Shuffling (Party D)
Input: –
Messages: πSD, VSD, ŜHC

1: S̃HD := πSD(ŜHC)⊕ VSD ▷ Permute and Randomize

Output: S̃HD

Fig. 11. Three-Party Shuffling. Parties C and D get secret shares shC and shD of a vector v as inputs such that
v = shC ⊕ shD. Party C additionally inputs a Rerandomizable Encrypted OPRF ciphertext vector EO.ct of same
length as shC and shD. The protocol reshares (shC , shD) to (S̃HC , S̃HD) and carries along EO.ct and reshares it to

ẼO.CT.

C.2 Shuffle Protocol

We define a permutation of size mC as an injective function π : [N ]→ [N ]. We denote as πAB a permutation
generated from party A and sent to B. Fig. 11 demonstrates the honest majority shuffling protocol utilized by
DSPMC. Our shuffling protocol performs two iterations of a permutation network and reshares C’s and D’s
inputs (shC and shD, respectively). Parties C and D have T shC and shD vectors (indicated as shC,t, shD,t

for t ∈ [T ]), each of which has mt elements. Additionally, the shuffling protocol reshares EO.ct to prevent
leakage of honest parties’ data in the presence of an adversary that has corrupted D and multiple parties P .

The first iteration of the permutation network is demonstrated in steps 1-3 in Fig. 11 and reshares shC , shD
to SHC ,SHS and EO.ct to EO.CT. Party C generates two permutations (πCS and πCD) as well as two vectors
of scalars (VCS and VCD) to rerandomize shC and shD. C locally applies the two permutations and XORs with
the vectors of scalars. C then sends one permutation and one vector of scalars to each of D and S. D first
permutes and XORs shD with VCD and sends the result to S who, in turn, permutes it with πCS and XORs it
with VCS to compute SHS .

In the second iteration, party S generates two more permutations (πSC and πSD) as well as two vectors of
scalars (VSC and VSD) to rerandomize the outputs of the first iteration (i.e., SHC and SHS). Next, S applies
both permutations on SHS and XORs it with both vectors VSC and VSD, while parties C and D communicate

to apply the same operations on SHC . At the end of the protocol, S gets S̃HC and D gets S̃HD such that

S̃HC ⊕ S̃HD = shC ⊕ shD. Finally, party C gets ẼO.CT, which is the blinded and rerandomized EO.ct.
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Observe that the communication in the aforementioned protocol is only linear to the size of EO.CT. We
can further optimize the communication by having each two parties (C with D, C with S, and S with D)
pre-share some randomness and use that randomness as a PRF key. These PRF keys can then be used to
generate both the random permutations and the random vectors of scalars which will be consistent between
the parties they use the same pseudorandom function.

C.3 Security Analysis of Secure Shuffling

Theorem 4. Let EO be a correct Rerandomizable Encrypted OPRF scheme that satisfies statistical reran-
domized ciphertext indistinguishability, ciphertext indistinguishability (for evaluation key or secret key owner)
and ciphertext well-formedness. Then, the shuffling protocol in Fig. 11 realizes the ideal shuffling functionality
in Fig. 10 when at most one of the parties C, D and S and any amount of the parties P1 to Pt are corrupted
and semi-honest.

Proof. We prove the theorem by showing that for each of the parties there exists a simulator that produces a
view that is indistinguishable from the views of the corrupted party in the real shuffle protocol.

Claim. Let EO be correct, satisfy statistical randomized ciphertext indistinguishability and ciphertext well-
formedness. Then, there is a simulator that produces a view of Party C that is indistinguishable from the
real view of Party C for any amount of corrupted parties P1 to PT . We emphasize that the distinguisher also
receives the in and outputs to and from the ideal functionality (which is identical to the real output) of the
honest parties.

Proof. We first show the simulator in case none of the parties P1 to PT is corrupted. The view of Party

C can be generated from its input {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ], output ẼO.CT and the message

πSC , VSC , ẼO.CT from Party S. Our simulator emulates these messages and otherwise follows the description
of the computation of Party C.

Our simulator receives input {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ], ẼO.CT and generates Party S’s mes-

sage as follows. It uses ẼO.CT that was part of the input and samples πSC
$←− Perm(M) and VSC

$←− {0, 1}M ·|v|.
We now show that this simulator emulates the correct distribution. Let

ẼO.CT = π({{EO.ctt,i,j}j∈[mt,i]}i∈[mt],t∈[T ]) = π′SD(π′SC(π
′
CS(π

′
CD({{EO.ctt,i,j}j∈[mt,i]}i∈[mt],t∈[T ])))),

where π′SD, π′SC , π
′
CS , π

′
CD are defined as in the original protocol and π′SC , π

′
CS , π

′
CD are part of party Cs

view. Sampling π′SD, π′SC , π
′
CS , π

′
CD

$←− Perm(M) and defining π as their composition results in the same

distribution as when sampling π, π′SC , π
′
CS , π

′
CD

$←− Perm(M) and defining π′SD such that it is consistent with
the protocol specification. The former is the distribution during a real protocol execution while the later is
the distribution during the simulated run where the ideal functionality samples π and the simulator samples
π′SC , π

′
CS , π

′
CD. π and π′SD remain hidden from the view of Party C.

We follow this argument for the distribution of VSC . There exists a unique V ∈ {0, 1}M ·|v| such that
SHD = SH′D ⊕ V , where SHD denotes the original shares sent by Party D to the ideal functionality and SH′D
are the shares generated and output by the ideal functionality. The same holds for SHC and SH′C . Further,
as specified by the protocol V can also be defined as V := VSD ⊕ VSC ⊕ VCS ⊕ VCD. Here we ignore the
fact that V is actually impacted by the permutations πSD, πSC , πCS , πCD since it can simply be accounted
for by permuting VSD, VSC , VCS , VCD. Both definitions of V are consistent since any two two out of two
secret shares result in the same shares up to an offset vector in {0, 1}M ·|v|. As previously sampling first
VSD, VSC , VCS , VCD results in the same distribution as sampling first V, VSC , VCS , VCD.

The last part to show is that the output ẼO.CT of the ideal functionality is identically distributed as the
Party C’s output in the real execution. From the statistical randomized ciphertext indistinguishability of EO
follows that any rerandomized ciphertext for input pi,j is indistinguishable from a fresh encryption of pi,j
even when given EO.ek (and EO.sk). Using a hybrid argument over all N =

∑M
i=1(mi) (i.e., M total rows and

each row i has mi identifiers) distinguishing the real from the simulated view with advantage ϵ results in a ϵ/N
distinguishing advantage in the randomized ciphertext indistinguishability game. Now, we show that brute
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forcing a p′i,j from a ciphertext and encrypting it is except negligible probability identically distributed as a
ciphertext of pi,j . By the correctness property it follows that except negligible probability, both ciphertexts
evaluate to the same OPRF evaluation, i.e., EO.Eval(EO.ek, pi,j) = EO.Eval(EO.ek, p′i,j). Now, we can invoke

the ciphertext well-formedness which ensures that the rerandomized ẼO.CT is with overwhelming probability

identically distributed as the fresh ẼO.CT generated by the ideal functionality.
In case some of the parties P1 to PT are corrupted we actually do not need to adapt our simulator. The

difference is that when adding the views of the corrupted parties among P1 to PT to the view of C, Party C
has access to some of the shares {SHD,t,i}i∈[mt],t∈[T ]. However, knowing these shares do not have impact on
the distribution of the view generated by our simulator and can therefore simply added to the view. ⊓⊔

Claim. There exists a simulator that produces a view of Party D that is indistinguishable from the real view
of Party D for any amount of corrupted parties P1 to PT .

Proof. We start with the case where there is no corruption among parties P1 to PT . Party D’s view can be

generated from its input {shD,t,i}i∈[mt]t∈[T ], output S̃HD and the messages (πCD, VCD), ŜHC from Party C
and πSD, VSD from Party S. Therefore it suffices for our simulator to emulate these messages and generate
the view from these messages according to the protocol description.

Our simulator on input {shD,t,i}i∈[mt]t∈[T ], S̃HD samples πCD, πSD
$←− Perm(M), VCD, VSD,

$←− {0, 1}M ·|v|.
ŜHC is picked such that S̃HD = πSD(ŜHC) ⊕ VSD. We define π as in the previous claim. As previously,
sampling first πSD, πSC , πCS , πCD and defining π as their composition as done in the real protocol execution
results in the same distribution as when sampling π, πSD, πCD first and then defining and sampling πSC , πCS

(not part of the view) such that they are consistent with the real protocol distribution. Using the same
approach, we can show that VCD, VSD are also correctly distributed.

Similar to the previous claim, corrupting any amount of parties P1 to PT and adding them to the view of
Party D does not impact the distribution of the view generated by the simulator. Again, we can simply add
{{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ] of the corrupted parties to the view generated by our simulator. ⊓⊔

Claim. Let EO satisfy statistical rerandomized ciphertext indistinguishability and ciphertext indistinguisha-
bility (for evaluation key or secret key owner). Then, there is a simulator that produces a view of Party S
that is indistinguishable from the real view of Party S for any amount of corrupted parties P1 to PT .

Proof. Let {{EO.ct′t,i,j}j∈[mt,i], sh
′
C,t,i, sh

′
D,t,i}i∈[mt],t∈C⊆[T ] be the views of the corrupted parties among

P1 to PT . The view of Party S and the corrupted parties among P1 and PT can be generated from

{{EO.ct′t,i,j}j∈[mt,i], sh
′
C,t,i, sh

′
D,t,i}i∈[mt],t∈C⊆[T ], S’s output S̃HC , the messages πCS , VCS ,EO.CT from Party

D and SHD from Party D.

Our simulator has inputs {{EO.ct′t,i,j}j∈[mt,i], sh
′
C,t,i, sh

′
D,t,i}i∈[mt],t∈C⊆[T ] and S̃HC . It samples πCS

$←−
Perm(M), VCS

$←− {0, 1}M ·|v| and generates EO.CT as encryptions of 0.
We now show that the simulator generates the correct distribution. We define π as in the previous claims.

πSD, πSC , πCS , πCD are part of the simulated view except π and πCD. By using the same sampling argument
as before, πCS and VCS follow the correct distribution.

It remains to show that EO.CT are distributed correctly. We use a hybrid argument to show this.

Hybrid0: The first hybrid defines EO.CT according to the real execution. In the real execution, Party C uses
the EO.Rnd procedure to rerandomize {EO.ct′t,i,j}j∈[mt,i],i∈[mt],t∈[T ] and applies the permutations πCD

and πCS the outcome is EO.CT.
Hybrid1 This hybrid generates EO.CT as a fresh encryption of pt,i,j using EO.Enc(EO.pk,EO.pf, pt,i,j).
Hybrid2: The last hybrid generates EO.CT as an encryption of 0 using EO.Enc(EO.pk,EO.pf, 0).

Based on the statistical ciphertext indistinguishability of EO, Hybrid0 and Hybrid1 generate up to negligible
probability the same distribution. We can use a standard hybrid argument to show this. Let ϵ be the
distinguishing probability between Hybrid0 and Hybrid1 and let N =

∑M
i=1 mi be the amount of ciphertexts,

then the statistical ciphertext indistinguishability can be broken with probability ϵ
N .

We show now that Hybrid1 and Hybrid2 are computationally indistinguishable based on the ciphertext
indistinguishability (for secret key or evaluation key owner). The two notions give the adversary access to
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either EO.sk or EO.ek. Since the corrupted parties among P1 to PT as well as Party S do not have access to
either of the keys, a weaker notion suffices in which no access to EO.sk, EO.ek is given. This weaker notion is
implied by both of the ciphertext indistinguishability notions of an EO scheme.

We use a standard hybrid in which we replace step by step one of the N ciphertexts with an encryption
with 0. The last hybrid matches Hybrid2 and the first hybrid Hybrid1. For each step we use a reduction to the
ciphertext indistinguishability game in which given EO.pk, EO.pf, we need to construct a distinguisher D′ that
distinguishes between an encryption of x0 = pt,i,j and x1 = 0. We construct this distinguisher by invoking
the distinguisher D between two intermediate hybrids. D′ forwards EO.pk and EO.pf, it generates the view of
the corrupted parties as specified by the hybrids with the exception of the one ciphertext that is different in
the hybrids. D′ uses the challenge ciphertext for this ciphertext. Finally D′ outputs the output of D.

If D successfully distinguishes two intermediate hybrids, D′ breaks the ciphertext indistinguishability for
the secret key and evaluation key owner of the EO scheme. Let ϵ be an upper bound on the distinguishing
probability in the ciphertext indistinguishability game. Then the distinguishing probability between Hybrid1
and Hybrid2 is upper bounded by ϵ/N.

The indistinguishability between Hybrid0, Hybrid1, and Hybrid2 concludes our claim. ⊓⊔
⊓⊔

D Security Analysis

D.1 Security Analysis of DPMC

Proof. We prove Theorem 1 by proving the following two claims.

Claim. Let the secret key encryption and the PKE scheme be IND-CPA secure, the KEM simulatable and
the DDH assumption hold.

Then there exists a simulator that generates the joint view of Party C and any subset of parties P1 to PT

that is computationally indistinguishable from the real view.

Proof. The joint view of Party C and the subset of corrupted parties among P1 to PT , identified by C ⊆ [T ] can
be generated from their inputs DBC , DBtt∈C, the outputs SHC , and the messages {ctat, ctbt, {{hat,i,j}j∈[mt,i],

ctct,i}i∈[mt]}t∈[T ], {K̂EM.cpi,t}i∈[mC ],t∈[T ].
The simulator on input DBC , {DBt}t∈C, and SHC simulates the messages as follows. It samples (KEM.pk,

KEM.sk)← KEM.KG(1κ) and uses KEM.Sim on input KEM.sk, SHC to compute message {K̂EM.cpi,t}i∈[mC ],t∈[T ].
For all t ̸∈ C, it samples skt ← SKE.KG(1κ), ctat ← PKE.Enc(pkD, 0), ctbt ← SKE.Enc(skt, 0), ctct,i ←
SKE.Enc(skt, 0), rt,i,j

$←− Zq and defines hat,i,j := grt,i,j .
We use the following sequence of hybrids to show that the joint view during the real execution is

indistinguishable from the view generated by the simulator.

Hybrid1: Identical to the view during the real protocol execution.
Hybrid2: Computes (KEM.pk,KEM.sk)← KEM.KG(1κ) as output of KEM.Sim on input KEM.sk, SHC .
Hybrid3: For all t ∈ C, compute ctat as ctat ← PKE.Enc(pkD, 0).
Hybrid4: For all t ∈ C, compute ctbt, ctct,i as ctbt ← SKE.Enc(skt, 0), ctct,i ← SKE.Enc(skt, 0).

Hybrid5: For all t ∈ C, compute hat,i,j as hat,i,j := grt,i,j where rt,i,j
$←− Zq.

Hybrid1 and Hybrid2 are indistinguishable except with negligible probability based on the simulatability of
the key encapsulation scheme.

Hybrid2 and Hybrid3 are indistinguishable based on the IND-CPA security of the PKE scheme. Notice
that only party D has access to skD. The reduction works as follows. Let there be a distinguisher against
Hybrid2 and Hybrid3 with probability ϵ. Then, we define a sequence of T + 1 hybrids in which we step by
step replace ctat with encryptions of 0. The distinguisher can distinguish at least one of the hybrids with at
least probability ϵ/T . We can use it to construct a distinguisher against the IND-CPA game as follows. The
distinguisher receives pk from the IND-CPA game and defines pkD := pk. It sets x0 := skt and x1 := 0 and
receives back a challenge ciphertext ct. It defines ctat := ct. It outputs whatever the distinguisher between
Hybrid2 and Hybrid3 outputs. This distinguisher breaks the IND-CPA security with probability ϵ/T . By the
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security of the PKE scheme, this must be negligible and therefore Hybrid2 and Hybrid3 can be distinguished
with at most negligible probability as well.

Since cta is independent of the symmetric key, we can now use the IND-CPA security of the symmetric
key encryption to replace ctb and ctc with encryptions of 0. Again, we define a sequence of hybrids in which
we replace step by step the ciphertexts by encryptions of 0. The distinguisher against Hybrid3 and Hybrid4
can distinguish at least two consecutive intermediate hybrids with at least probability ϵ/(T +

∑
t∈C mt). The

distinguisher against the IND-CPA game can use x0 := at (x0 := shD,t,i) and x1 in the IND-CPA game for
the challenge ciphertext. Then, the distinguisher can use the challenge ciphertext to either simulate the first
or second consecutive intermediate hybrid and output whatever the distinguisher against the hybrids outputs.
Therefore, Hybrid3 and Hybrid4 can be distinguished at most with negligible probability.

Notice that the ciphertexts are now independent of scalar at. We can use the DDH assumption (Defini-
tion 11) to argue that Hybrid4 and Hybrid5 are indistinguishable. Again, we use a sequence of hybrids in which

we replace step by step hat,i,j with a uniform group element, i.e., hat,i,j := grt,i,j where rt,i,j
$←− Zq. There are∑

t∈C,i∈[mt]
mt,i hybrids. Let there be a distinguisher between Hybrid4 and Hybrid5 with probability ϵ. Then,

there are two consecutive intermediate hybrids that this distinguisher distinguishes with at least probability
ϵ/(

∑
t∈C,i∈[mt]

mt,i). The reduction to DDH works as follows. The DDH distinguisher receives challenge A,B,C.
Before invoking the hybrid distinguisher, it programs HG(pt,i,j) := B and defines ht,i,j := C. For all other ht,i,j

that are not uniform yet, it programs HG(pt,i,j) := gxt,i,j , where xt,i,j
$←− Zq and defines ht,i,j := Axt,i,j . The

DDH distinguisher outputs the output of the hybrid distinguisher. When A = ga, B = gb, C = gab, all ht,i,j
are correctly defined as in the first consecutive hybrid. When A,B,C are uniform group elements, ht,i,j = C
is uniform while all other ht,i,j are distributed according to the second (and first) of the consecutive hybrids.
Therefore, Hybrid4 and Hybrid5 can be distinguished with at most negligible probability which concludes the
proof of our claim. ⊓⊔

Claim. Let the KEM scheme be key indistinguishable and the DDH assumption hold.
Then there exists a simulator with access to the leakage defined in Definition 8 that generates the joint

view of Party C and any subset of parties P1 to PT that is computationally indistinguishable from the real
view.

Proof. The joint view of Party D and the subset of corrupted parties among P1 to PT , i.e., defined by C ⊆ [T ]
can be generated by the inputs skD, {DBt}t∈C, output SHD and messages KEM.pk, {(hC,i,j)j∈[mC,i]}i∈[mC ]

and {ctat, ctbt, {{hcat,i,j}j∈[mt,i], ctct,i}i∈[mt]}t∈[T ].
Given the leakage defined in Definition 8 and inputs skD, {DBt}t∈C, SHD, the simulator works as follows.

The simulator uses the leakage to define {(hC,i,j)j∈[mC,i]}i∈[mC ] and {hct,i,j}j∈[mt,i],i∈[mt],t∈[T ]. For all t ̸∈ C,
it samples at

$←− Zq (for all other t, at is already defined when generating the view for Pt). hcat,i,j := hcat
t,i,j .

For all t ̸∈ C, sample skt ← SKE.KG(1κ) and use skt and pkD to define cta, ctb and ctc according to the
protocol description, where shD,t,i is defined s.t. it is consistent with SHD and (KEM.cpt,i,KEM.kt,i) ←
KEM.Enc(KEM.pk).

We prove that the view generated by the simulator is indistinguishable from the real view using the
following hybrids.

Hybrid1: Is identical to the view during the protocol.
Hybrid2: For all t ̸∈ C, generate (KEM.cpt,i,KEM.kt,i)← KEM.Enc(KEM.pk). (Now KEM.kt,i is independent

of shC).
Hybrid3: Use the leakage to define {(hC,i,j)j∈[mC,i]}i∈[mC ] and {hct,i,j}j∈[mt,i],i∈[mt],t∈[T ].

Hybrid1 and Hybrid2 are indistinguishable based on the key indistinguishability of the key encapsulation.
To show this, we use a sequence of hybrids in which we replace KEM.cpt,i generated by Pt for t ̸∈ C and related

to shC,t,i with (KEM.cp′t,i,KEM.k′t,i)← KEM.Enc(KEM.pk). We use the triangular inequality which implies
that if KEM.cp,KEM.k cannot be distinguished with more than probability ϵ from KEM.cp, u for a uniform u,
KEM.cp,KEM.k cannot be distinguished from KEM.cp′,KEM.k with more than probability 2ϵ. Let there be a
distinguisher that distinguishes Hybrid1 and Hybrid2 with probability ϵ. Then it distinguishes at least two
consecutive intermediate hybrids with probability ϵ/(

∑
t∈C mt). Given this distinguisher, we build a distinguisher

against the key indistinguishability which receives challenge KEM.cp,KEM.k and sets shC,t,i := KEM.k. The
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distinguisher outputs the output of the hybrid distinguisher. When KEM.k is consistent with KEM.cp, the
distinguisher simulates Hybrid1 and otherwise Hybrid2. This distinguisher breaks the key indistinguishability
with probability ϵ/(2

∑
t∈C mt). Since this is negligible, Hybrid1 and Hybrid2 cannot be distinguished except

negligible probability.
Hybrid2 and Hybrid3 are indistinguishable based on the DDH assumption. We show this by using a sequence

of intermediate hybrids in which we replace {(hC,i,j)j∈[mC,i]}i∈[mC ] and {hct,i,j}j∈[mt,i],i∈[mt],t∈[T ] with uniform
group elements. If there is a distinguisher that distinguishes Hybrid2 and Hybrid3 with probability ϵ, then it
distinguishes at least two consecutive intermediate hybrids with probability ϵ/(

∑
i∈[mC ] mC,i +

∑
t∈[T ],i∈[mt]

mt,i).

The distinguisher against DDH receives A,B,C and defines hca
1/at

t,i,j := C (hC,i,j := C), programs HG(pt,i,j) :=
B (HG(ci,j) := B). For all hcat,i,j , hC,i,j that are not uniform yet, programHG(pt,i,j) := gxt,i,j ,HG(ci,j) := gxi,j

and define hca
1/at

t,i,j := Axt,i,j , hC,i,j := Axi,j . When A = ga, B = gb, C = gab, the DDH distinguisher simulates

the first of the intermediate hybrids otherwise the second one. Notice that in the latter case, hct,i,j := hca
1/at

t,i,j

(hC,i,j) is uniform. This concludes the proof of our claim. ⊓⊔
⊓⊔

D.2 Security Analysis of DSPMC

Proof. We prove Theorem 2 by constructing a simulator that can generate a view of the corrupted parties
from their inputs and outputs that is indistinguishable from their view during a real execution. We emphasize
that the distinguisher has access to the inputs and outputs of the honest parties specified by the ideal
functionality in Fig. 2, which matches the outputs of the real protocol. We show this in the following three
claims.

Claim. Let PKE be an IND-CPA secure and correct PKE scheme, PRG a secure pseudorandom generator
and EO be a correct and satisfy statistical rerandomized ciphertext indistinguishability, the (semi-honest)
ciphertext indistinguishability for the evaluation key owner and ciphertext well-formedness.

Then, there exists a simulator that generates the joint view of Party C and any subset of parties P1 to
PT that is indistinguishable from the joint view during the protocol execution.

Proof. The joint view can be generated from the input and messages received by party C and the subset of
parties P1 to PT . Let this subset be C ⊆ [T ]. Notice that the parties do not have any outputs as specified in
the ideal functionality in Fig. 2.

The inputs are DBC and {DBt}t∈C and the output is SHC . The parties P1 to PT receive messages
EO.pk,EO.pf and have access to pkD, where EO.pf is generated by Party C. Party C receives the messages

{{{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt], ctat}t∈[T ] and {K̂EM.cpi,t}i∈[mc],t∈[T ].
The simulator receives input DBC , {DBt}t∈C, SHC and emulates the view as follows. It samples (KEM.pk,

KEM.sk) ← KEM.KG(1κ), (EO.pk,EO.sk) ← EO.KG(1κ) and (pkD, skD) ← PKE.KG(1κ). It samples ctat ←
PKE.Enc(pk, 0) for all t ̸∈ [T ]. It samples shC,t,i

$←− {0, 1}|v| for all t ̸∈ C. It defines ŝhC,i,t consistently

with SHC for all t ∈ [T ] and defines K̂EM.cpi,t ← KEM.Sim(KEM.sk, ŝhC,i,t). Further, it defines EO.ctt,i,j ←
EO.Enc(EO.pk,EO.pf, 0) for all t ̸∈ C. For t ∈ C, EO.ctt,i,j ← EO.Enc(EO.pk,EO.pf, pt,i,j), where pt,i,j ∈ DBt.

We use the following sequence of hybrids to show that the simulated view is indistinguishable from the
view during the real protocol execution.

Hybrid0: Identical to the view during the real protocol execution.

Hybrid1: Samples ctat
PKE.Enc←−−−−− (pk, 0) for all t ̸∈ C.

Hybrid2: Samples shD,t,i
$←− {0, 1}|v| for all t ̸∈ C (instead of using PRG).

Hybrid3: Invoke the simulator of the shuffling protocol to simulate the view during the shuffling. The

input {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt], {ẼO.cti,j}i∈[M ],j∈[mi] of the simulator is distributed as in Hybrid2.
Notice that the simulator also receives EO.pk, EO.pf and EO.ek.

Hybrid4: Replaces {EO.ctt,i,j}j∈[mt,i] for all t ̸∈ C and all {ẼO.cti,j}i∈[M ],j∈[mi] with independent encryptions

of 0. More precisely, EO.ctt,i,j ← EO.Enc(EO.pk,EO.pf, 0) and ẼO.cti,j ← EO.Enc(EO.pk,EO.pf, 0).
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Hybrid5: Samples shC,t,i
$←− {0, 1}|v| for all t ̸∈ C. Further, defines ŝhC,i,t consistently with SHC and samples

K̂EM.cpi,t ← KEM.Sim(KEM.sk, ŝhC,i,t).

Notice that the view in Hybrid5 is identically distributed as the view generated by the simulator.
We now show that the hybrids are indistinguishable. Let Hybrid0 and Hybrid1 be distinguishable with prob-

ability ϵ. We define a sequence of intermediate hybrids that replaces the ciphertexts ctat ← PKE.Enc(pk, seedt)

with ctat
PKE.Enc←−−−−− (pk, 0). Then there is a distinguisher that distinguishes one of the intermediate hybrids with

at least probability ϵ/T . Such a distinguisher would directly distinguish challenge ciphertexts for x0 := seedt
from x1 := 0 in the IND-CPA game of the PKE scheme. Therefore the distinguishing probability between
Hybrid0 and Hybrid1 is upper bounded by the IND-CPA security of PKE.

Let Hybrid1 and Hybrid2 be distinguishable with probability ϵ. We define a sequence of intermediate hybrids
in which we step by step replace (shD,t,1, . . . , shD,t,mt

) = PRG(seedt) with (shD,t,1, . . . , shD,t,mt
)← {0, 1}mt·|v|.

Then, there would be a distinguisher that distinguishes two consecutive intermediate hybrids with at least
probability ϵ/T . This would imply a distinguisher that breaks the security of the PRG with the same probability.
Since the PRG is indistinguishable except negligible probability, Hybrid0 and Hybrid1 cannot be distinguished
except negligible probability.

Let Hybrid2 and Hybrid3 be distinguishable with probability ϵ. Then, this would allow to distinguish
the simulated view during the shuffle protocol from the real view. However, as shown in Theorem 4 this
probability is upper bounded the correctness, the statistical rerandomized ciphertext indistinguishability,
the (semi-honest) ciphertext indistinguishability (for evaluation key or secret key owner) and ciphertext
well-formedness of the EO scheme. Therefore Hybrid2 and Hybrid3 cannot be distinguished beyond the bound
given in the proof of Theorem 4.

We use the (semi-honest) ciphertext indistinguishability for the evaluation key owner to argue that
Hybrid3 and Hybrid4 are indistinguishable. Notice that in the ideal shuffle functionality (see Fig. 10), the

ciphertext sets {EO.ctt,i,j}j∈[mt,i] and {ẼO.cti,j}i∈[M ],j∈[mi] are independent encryptions. Therefore, we can
replace them independently with encryptions of 0. We need to use the ciphertext indistinguishability for
the evaluation key owner since the simulator need access to EO.ek which is also used by the simulator of
the shuffling protocol. The indistinguishability between Hybrid3 and Hybrid4 follows from a straightforward
reduction to the ciphertext indistinguishability using a hybrid argument in which we replace step by step each
ciphertext with an encryption of 0 until all ciphertexts are encryptions of 0. If there exists a distinguisher
between Hybrid3 and Hybrid4 that distinguishes them with probability ϵ, then there is a distinguisher that
distinguishes one of the intermediate hybrids with at least probability ϵ/2N, where N is the size of {DBt}t∈[T ].
The distinguisher for the intermediate hybrids would then lead to a distinguisher against the ciphertext
indistinguishability for the evaluation key owner of the EO scheme.

We finalize the claim by showing the indistinguishability of Hybrid4 and Hybrid5. Similar as in case of the

ciphertexts, the ideal shuffle functionality samples the shares shC,t,i and ŝhC,i,t independently. Therefore, we
can also sample them independently. Hybrid5 generates statistically the same view as Hybrid4 for the following

reason. Sampling shC
$←− {0, 1}|v| and shD

$←− {0, 1}|v| under the constraint that shC ⊕ shD = v (Hybrid4)

results in the same distribution as when sampling shC
$←− {0, 1}|v| and defining shD := v ⊕ shC (Hybrid5),

where shD and v are not known to the simulator. Thus, shC can be sampled independently of shD and v by

sampling shC
$←− {0, 1}|v|. Further, by the property of KEM.Sim, K̂EM.cpi,t has the same distribution when

being an output of KEM.Enc and KEM.Sim. This concludes our claim.

Claim. Let PKE be a correct PKE scheme, KEM a secure and correct key encapsulation scheme and EO
secure, correct and evaluated ciphertext simulatable.

Then, there exists a simulator with access to the leakage graph of Definition 10 that generates the joint
view of Party D and any subset of parties P1 to PT that is indistinguishable from the joint view during the
protocol execution.

Proof. The joint view of PartyD and the subset of parties P1 to PT (defined by C ⊆ [T ]) can be generated from
inputs (pkD, skD), {DBt}t∈C, output SHD and messages KEM.pk, EO.pf, {ctat}t̸∈C and {KEM.cpi, shD,i}i∈[M ],
{hC,i,j}i∈[mC ],j∈[mC,i], {EO.ecti,j}i∈[M ],j∈[mi]. Further, the view depends on the leakage graph defined in
Definition 10.
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The simulator emulates the joint views as follows. It samples (KEM.pk,KEM.sk) ← KEM.KG(1κ) and
(EO.pf,EO.ek)← EO.EKG. The simulator defines {hC,i,j}i∈[mC ],j∈[mC,i] and {hi,j}i∈[M ],j∈[mi] such that they
are consistent with the leakage graph. It then defines EO.ecti,j ← EO.Sim(EO.pk,EO.sk, hi,j). It samples

shD,i
$←− {0, 1}|v| and (KEM.cpi,KEM.ki) ← KEM.Enc(KEM.pk). Define s̃hD,i s.t. that it is consistent with

SHD and shD,i. For all s̃hD,i that are not defined yet, sample s̃hD,i
$←− {0, 1}|v|. For t ̸∈ C, it samples

seedt
$←− {0, 1}κ and ctat ← PKE.Enc(pk, seedt), which is identical to the protocol description.

We prove the claim by using the following sequence of hybrids.

Hybrid0: Is identical to the views during the real execution of the protocol.
Hybrid1: Simulates the view during the shuffling by using the simulator of the shuffle protocol.
Hybrid2: Sample EO.ecti,j ← EO.Sim(EO.pk,EO.sk, hi,j), where hi,j := EO.Eval(EO.ek, pi,j) and pi,j is the

reshuffled pt,i,j , which can be computed from the shuffle permutation π and {DBt}t∈[T ].
Hybrid3: It defines {hC,i,j}i∈[mC ],j∈[mC,i] and {hi,j}i∈[M ],j∈[mi] such that they are consistent with the leakage

graph.
Hybrid4: Samples (KEM.cpi,KEM.ki)← KEM.Enc(KEM.pk) s.t. it is independent of shD,i, s̃hD,i and SHD.

Hybrid5: Samples shD,i
$←− {0, 1}|v| and defines s̃hD,i s.t. that it is consistent with SHJ ,D and shD,i. For all

s̃hD,i that are not defined yet, sample s̃hD,i
$←− {0, 1}|v|.

If Hybrid0 and Hybrid1 can be distinguished with probability ϵ, then there is a distinguisher against the
simulator of the shuffle protocol with probability ϵ. Since such a distinguishing probability is negligible (based
on the security of EO, see Theorem 4), distinguishing Hybrid0 from Hybrid1 is also negligible.

If Hybrid1 and Hybrid2 can be distinguished with probability ϵ, we can define a sequence of hybrids that
step by step replaces EO.ecti,j with outputs of EO.Sim. Now, there are at least two consecutive intermediate
hybrids that can be distinguished with probability ϵ/(

∑M
i=1 mi). Since this probability is negligible due to the

evaluated ciphertext simulatability of EO, Hybrid1 and Hybrid2 can also only be distinguished with negligible
probability.

In Hybrid2 hi,j and hC,i,j are the outputs of EO.Eval whereas in Hybrid3 they are uniform in {0, 1}κ. We
prove that Hybrid2 and Hybrid3 are indistinguishable except negligible probability by a reduction to the
pseudorandomness of EO.Eval. Let there be a distinguisher distinguishing Hybrid2 and Hybrid3 with probability
ϵ, then we can build a distinguisher against the pseudorandomness of EO.Eval with probability ϵ. The latter
requests all hi,j and hC,i,j from the EO.Eval oracle, uses them to simulate Hybrid2, Hybrid3 and outputs the
output of the former distinguisher. When they are actual EO.Eval outputs, it simulates Hybrid2 and when
they are uniform, it simulates Hybrid3.

If Hybrid3 and Hybrid4 can be distinguished with probability ϵ, we can define a sequence of hybrids that
step by step replaces (KEM.cpi,KEM.ki) with (KEM.cpi,KEM.k′i) where (KEM.cpi,KEM.ki)← KEM.Enc(pk).
Now there exist two consecutive intermediate hybrids that can be distinguished which implies a distinguisher
for (KEM.cp,KEM.k) and KEM.cp,KEM.k′ with probability ϵ/M. By the triangular inequality, we can then

build a distinguisher for (KEM.cp,KEM.k) and (KEM.cp, u) with probability ϵ/2, where u
$←− {0, 1}|v|. Such a

distinguisher breaks the key indistinguishability for the KEM. Since this is negligible, Hybrid3 and Hybrid4
cannot be distinguished except negligible probability.

Hybrid4 and Hybrid5 produce identically distributed views. Notice that s̃hD,i, s̃hD,i and SHJ ,D are
independent of (KEM.cpi,KEM.ki). Further, due to the simulator of the shuffling, they are independent of
shC,t,i and shD,t,i. Therefore, they can be sampled independently which concludes the proof of our claim. ⊓⊔

Claim. Let EO be a secure and correct randomizable encrypted OPRF scheme. Then, there exists a simulator
that generates the joint view of Party S and any subset of parties P1 to PT that is indistinguishable from the
joint view during the protocol execution.

Proof. The joint view of Party S and the corrupted subset of parties P1 to PT (defined by set C ⊆ [T ]) can

be generated from their input {DBt}t∈C and the received messages {s̃hC,i}i∈[M ] and KEM.pk.

The simulator samples s̃hC,i
$←− {0, 1} and uses the simulator of the shuffle protocol to simulate the view

during the shuffling.
The view generated by the simulator is indistinguishable from the view during the real protocols by the

indistinguishability of the simulated view of shuffling from the real view of the shuffling. Notice that in case
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of using the simulated view of the shuffling, {s̃hC,i}i∈[M ] are independent of {shC,t,i}i∈[mt],t∈[T ]. Therefore,

s̃hC,i can be sampled independently when using the simulated view during the shuffling. ⊓⊔
⊓⊔

E Extending Left Join to Inner Join

DPMC and DSPMC can be extended to support other types of joins such as an inner join instead of a left join.
In both protocols, party D performs the join based on the encrypted databases of C and all delegators (i.e.,
in DPMC in step 4 and in DSPMC in step 9 ). Performing the left join in party D hides from party C which
of its rows have been matched with one of the delegators’ rows and which have not. It is straightforward to
extend our delegated protocols to compute the inner join (i.e., intersection) between DBC and DBP and secret
share the associated metadata for these rows. This can be performed very efficiently using hash join over

the encrypted identifiers and sending the K̂EM.cp value to C only for the records present in both databases.
Notably, computing the inner join leaks the intersection size to party C but also renders the downstream
MPC computation more efficient since it does not have to process secret shares of NULL.
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