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Abstract. Micciancio and Sorrel (ICALP 2018) proposed a bootstrapping algorithm that can refresh
many messages at once with sublinearly many homomorphic operations per message. However, despite
the attractive asymptotic cost, it is unclear if their algorithm can be practical, which reduces the impact
of their results. In this work, we follow their general framework, but propose an amortized bootstrap-
ping that is conceptually simpler and asymptotically cheaper. We reduce the number homomorphic
operations per refreshed message from O(3ρ · n1/ρ · logn) to O(ρ · n1/ρ), and the noise overhead from
Õ(n2+3·ρ) to Õ(n1.5+ρ). To obtain a concrete instantiation of our bootstrapping algorithm, we propose
a double-CRT (aka RNS) version of the GSW scheme, including a new operation, called shrinking,
used to speed-up homomorphic operations by reducing the dimension and ciphertext modulus of the
ciphertexts. We provide a C++ implementation of our algorithm, thus showing that the amortized
bootstrapping is not only theoretical, but practical. Moreover, it is up to 2.7 times faster than an
equivalent non-amortized version for the smallest parameter set we consider, and gains are expected to
increase as the parameters increase.

1 Introduction

Since the introduction of the first Fully Homomorphic Encryption (FHE) scheme, by Gen-
try [Gen09], there has been a quest to improve the efficiency and the security of FHE. The main
efficiency bottleneck of any FHE scheme is the bootstrapping, which is an operation that refreshes
the ciphertexts after they have been involved in a few homomorphic operations, allowing us thus
to perform further operations on them. Hence, most works aiming to make FHE more efficient
directed the efforts towards designing faster bootstrapping algorithms. For this goal, there are two
main strategies: Heavy packed bootstrapping and fast single-message bootstrapping.

In the first strategy, one tries to pack several messages into a “large” ciphertext, then the
bootstrapping becomes complex and very costly, but refreshes several messages at once, thus, the
amortized cost per message is expected to be not very high. This type of bootstrapping was proposed
for many schemes [BGV12,FV12,BGH13,GHS12], obtaining good amortized costs, however also
offering the counter-point that these schemes generally were not very efficient regarding the noise
management, thus, their bootstrapping algorithms often incur in quasi-polynomial noise growth,
which implies that their security is based on worst-case lattice problems with superpolynomial
approximation factors. Ideally, we would like to have FHE with assumptions as weak as the ones used
for general lattice-based public-key encryption, namely, worst-case lattice problems with polynomial
approximation factors only.

On the other front, one encrypts a single message into a “small” ciphertext, thus, hugely sim-
plifying the bootstrapping, making it possible to execute it much faster, in many cases, in a few
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Scheme Total cost Messages Amortized cost Noise overhead

[DM15] Õ(n) 1 Õ(n) Õ(n1.5)

[CGGI16] O(n) 1 O(n) Õ(n1)

[MS18] Õ(3ρ · n1+1/ρ) O(n) Õ(3ρ · n1/ρ) Õ(n2+3·ρ)

This work O(ρ · n1+1/ρ) O(n) O(ρ · n1/ρ) Õ(n1.5+ρ)

Table 1: Comparison of number of homomorphic operations and noise growth of bootstrapping
algorithms of different schemes based on worst-case lattice problems with polynomial approximation
factor. The notation Õ hides polylogarithmic factors in n.

milliseconds on a common commercial computer [DM15,CGGI16,Per21,BIP+22]. The downside
now is the need of one bootstrapping per gate of the circuit being evaluated homomorphically and,
since each bootstrapping refreshes a single message, the amortized cost is still somehow high. One
advantage of this bootstrapping strategy is that it introduces only a polynomial noise overhead,
allowing thus to reduce the security of those schemes to worst-case lattice problems with polynomial
approximation factors.

Then, in [MS18], Micciancio and Sorrell try to obtain the advantages of these two approaches,
by proposing a bootstrapping algorithm that follows the blueprint of [DM15], but packs several
messages into a single ciphertext to amortize the cost of the bootstrapping. Therewith, they ob-
tain the first FHE scheme whose security is based on the hardness of worst-case lattice problems
with polynomial approximation factors that at the same time is bootstrappable with amortized
sublinearly many homomorphic operations. Their main idea is to describe the bootstrapping as a
polynomial multiplication, then to evaluate it homomorphically using some fast polynomial multi-
plication algorithm. For technical reasons, due to the limitations of the functions we can evaluate
homomorphically, they cannot simple evaluate a Fast Fourier Transform, thus, they adapt the
Nussbaumer Transform [Nus80] to work over power-of-three cyclotomic rings, then use it in their
algorithm to bootstrap O(n) messages in time Õ(3ρ · n1+1/ρ), where ρ is a free parameter, and the
notation Õ hides polylogarithmic factors on n. Therefore, their amortized cost is only Õ(3ρ · n1/ρ)
homomorphic operations per message.

Following the blueprint of [MS18], we propose a simpler and more efficient amortized bootstrap-
ping. Our first contribution is to remove the Nussbaumer Transform, replacing it by a standard
(homomorphic) Number Theoretic Transform (NTT). By doing so, we not only make the the whole
bootstrapping algorithm more straightforward, but we also gain important asymptotic factors, de-
creasing the number of homomorphic operations per message from O(3ρ ·n1/ρ · log n) to O(ρ ·n1/ρ),
and the noise introduced by the bootstrapping from Õ(n2+3ρ) to Õ(n1.5+ρ). In Table 1, we present
a comparison of our work with previous ones.

Although [MS18] obtains a significant asymptotic improvement over previous works, it is unclear
how (in)efficient it would be in practice, since the hidden constants are hard to estimate. Thus,
as a second contribution, we present a concrete instantiation of our method. For this, we propose
a double-CRT (RNS) variant of the GSW scheme [GSW13], including a new operation, called
shrinking, that allows to efficiently reduce the ciphertext size, and thus, the cost of the homomorphic
operations, as the noise grows. We stress that this contribution is also of independent interest, as
many primitives or protocol that use the GSW scheme can benefit from an RNS version of it. This
also allows us to present a concrete cost analysis, in terms of polynomial multiplications (or NTTs),
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which gives us a much better idea of the practical cost of the amortized bootstrapping and makes
it easier to compare with other works, since the number times that the NTT is executed is already
used to estimate the cost of several previous schemes, such as [DM15,CGGI16,BIP+22].

Finally, we also implemented our bootstrapping in C++ and made it publicly available. Thus, as
a third contribution, we present baseline running times and memory usage for this type of amortized
bootstrapping and we show that it is actually doable in practice, with running times comparable
to some existing schemes.

Now we show more technical details about the amortized bootstrapping, our techniques, and
our results.

1.1 Overview of the amortized bootstrapping from [MS18]

The bootstrapping strategy of [AP14], improved and made practical in [DM15], works as follows:
the whole FHE scheme is organized in two layers, each one composed by one homomorphic scheme.
We have an LWE-based scheme that can perform very limited number of homomorphic operations,
then has to be bootstrapped. We call it the base scheme. Then we have a second scheme, called
the accumulator, that is used to evaluate the decryption of the base scheme homomorphically, i.e.,
to bootstrap it. For the accumulator, one uses the GSW scheme [GSW13] instantiated with the
RLWE problem, so that it can encrypt polynomials. Because of the slow noise growth of GSW, the
noise overhead of the bootstrapping just a polynomial. Essentially, to decrypt an LWE ciphertext
c, one has to multiply it by the secret key s. Thus, starting with GSW encryptions of powers of X
with the secret key in the exponent, i.e., Xsi , the GSW homomorphic multiplications are used to
compute

∏n
i=0X

ci·si = Xc·s. Finally, there is an extraction procedure that maps this power of X
to the message encrypted by c. Notice that the bootstrapping costs Õ(n) homomorphic operations,
more specifically, GSW multiplications.

The main idea of [MS18] is to combine O(n) LWE ciphertexts into one single RLWE ciphertext
c ∈ R2 encrypting O(n) messages. Then, because in the RLWE problem the secret is a polynomial
s instead of a vector, decrypting c now boils down to performing a polynomial multiplication
on R, which can be done in time O(n · log n) via standard techniques, such as the Fast Fourier
Transform (FFT). Thus, if we could use the accumulator to evaluate an FFT, the amortized cost
of such bootstrapping would be only O(log n) homomorphic operations per message. However, due
to limitations in the noise growth of this bootstrapping strategy, it is not possible to evaluate all
the O(log n) recursive levels of the FFT. Thus, [MS18] sets the recursion level as a parameter ρ.

Moreover, since the GSW scheme is instantiated over the ring R := Z[X]/〈XN + 1〉 and we
only work with powers of X, whose order is 2N in R, there is a limited set linear operations over
Z2N available as homomorphic operations. So, for example, we cannot take an encryption of (X to
the power of) m and produce an encryption of −m or of m−1. Therefore, [MS18] cannot evaluate
an FFT. To overcome this limitation, they pack the LWE ciphertexts into an RLWE ciphertext
defined over a power-of-three cyclotomic ring, i.e., defined modulo Φ3k(X) = 2 · 3k−1 + 3k−1 + 1,
and adapt the Nussbaumer transform to replace the FFT and perform polynomial multiplications
modulo Φ3k(X). The radix r Nussbaumer transform works as the FFT, by dividing the input by r
in each recursive level. However, in their adapted algorithm, there is an expansion by 3, i.e., instead
of obtaining r inputs of length (n/r), they obtain 3r inputs. Since this expansion happens in all
recursive levels, at the end, their bootstrapping costs Õ(3ρ · n1+1/ρ) homomorphic operations and
the noise introduced by the bootstrapping is Õ(n2+3·ρ).
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1.2 Overview of our contributions and techniques

Simpler and more efficient amortized bootstrapping: Micciancio and Sorrell accepted that
the accumulator constructed with GSW just provides a limited set of operations over Z2N , where
N is a power of two, and tried to adapt the fast polynomial multiplication algorithms to work with
that instruction set. We diverge from this by trying to adapt the accumulator to the algorithm we
want to evaluate, instead of trying to adapt the algorithm to the accumulator. That is, we know
that the Number Theoretic Transform (NTT) is the algorithm choice to perform multiplications
modulo XN+1, the typically used in the RLWE problem, thus, our goal is to obtain an accumulator
that can evaluate NTTs.

To obtain that, we use the results from [BDF18] to instantiate the GSW scheme modulo Xp−1,
where p is a prime number, but with security based on the RLWE problem. This gives us essentially
the same instruction set of [MS18], but over Zp. Then, we set p ≡ 1 (mod 2N), so that we have
a 2N -root of unity in Zp and the NTT of dimension N is well-defined. Then, we extend recent
results about using automorphisms on bootstrapping algorithms [BDF18,LMK+22] to the GSW
scheme, which expands the instruction set of our accumulator. Putting it all together, we obtain an
GSW-based accumulator that allows us to homomorphically evaluate a standard NTT. The only
limitation we have then is that the noise overhead of the bootstrapping is still exponential in the
number of recursive levels of the NTT, thus, as in [MS18], we only have ρ recursive levels, so that
the noise overhead is still polynomial in N .

With a more powerful accumulator, the bootstrapping algorithm becomes much simpler, as its
main step is essentially the same as a well-known NTT. Moreover, there is no longer the expansion
by 3 within the recursions, which allows us to save a factor of 3ρ in the time complexity and to
reduce the noise overhead from Õ(n2+3·ρ) to Õ(n2+ρ).

Additionally, our accumulator also allows us to replace the algorithm used in [MS18] to perform
the entry-wise vector multiplication in the FFT domain, called SlowMult, by a cheaper and simpler
procedure, which yields an additional gain of a log n factor. Therefore, we reduce the number of
homomorphic operations from O(3ρ · n1+1/ρ · log n) in [MS18] to O(ρ · n1+1/ρ).

Double-CRT version of GSW: FHE schemes implementing single-message bootstrapping, such
as [DM15,CGGI16,BIP+22], can use very small parameters when compared to other FHE schemes,
thanks to the almost linear noise overhead of the bootstrapping. In particular, the ciphertext
modulus, Q, is typically an integer smaller than 232. Since all homomorphic operations are defined
modulo Q, these schemes can be implemented using 32-bit integers, which are native types of most
CPUs.

For other schemes, the ciphertext modulus, Q, is much larger, normally with more than one
thousand bits. Thus, implementing the operations modulo Q requires more care: one represents Q
as a product of small primes qi’s, typically with less than 32 bits, then uses the Chinese Remainder
Theorem (CRT) to express operations moduloQ as independent operations modulo each qi, allowing
thus to use again the native integer types. Moreover, all the polynomials composing the ciphertexts
are also stored in the FFT domain. Since the FFT can be seen as a type of CRT, this representation
is often called double-CRT [HS15]. An alternative name for this is the RNS representation [HPS19a].

Since the amortized bootstrapping has at least quadratic noise overhead, it also typically requires
Q with more bits than native types of CPUs. Therefore, to obtain a practical implementation, we
propose a double-CRT version of the accumulator, i.e., the GSW scheme. This includes all common
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operations already existing for GSW, such as homomorphic multiplication and external product,
and also new operations, like Galois automorphisms and key switchings.

One optimization that is commonly used for GSW, is to ignore least significant bits of the
ciphertexts during the multiplications, as they correspond to the noise of the RLWE samples. For
example, in the TFHE scheme [CGGI16], this is called approximate decomposition and it is used
to speed up the bootstrapping. However, on the double-CRT representation, there is no notion of
least significant bits, and this technique no longer applies. Thus, we propose a ciphertext shrinking,
which introduces the implementation of approximate gadget decompositions over the double-CRT
representation. It takes a GSW ciphertext, which is a 2d×2 matrix where each entry is a polynomial
modulo Q, and outputs another GSW ciphertext as a 2d′× 2 matrix and defined modulo Q′, where
d′ < d and Q′ < Q, with basically the same (relative) noise. Reducing simultaneously d and Q
enables a cubic performance improvement in all core homomorphic operations.

The shrinking operation has the side effect of multiplying the message by some integer scaling
factor. Thus, we have to generalize the definition of the GSW ciphertexts to keep track of these
scaling factors, which can be removed during the homomorphic evaluation without any impact in
the noise or on the efficiency of the scheme.

We notice that any protocol or scheme that uses GSW can benefit from our double-CRT
representation. Thus, this contribution is of independent interest. For example, both versions
of [LMK+22] could exploit RNS representation to obtain bootstrapping for large messages.

Thanks to this lower-level description of the GSW scheme, we can also estimate the cost of our
amortized bootstrapping in a more concrete way, namely, in terms of NTTs and integer (modular)
multiplications. This simplifies the comparison with other bootstrapping strategies and also clarifies
the practicability of the amortized bootstrapping.

Further optimizations and proof-of-concept implementation in C++: We provide the first
implementation of a bootstrapping algorithm for FHE based on the worst-case hardness of lattice
problems with polynomial approximation factors with amortized sublinearly many homomorphic
operations. We show that our construction is practical, being up to 2.7 times faster than the non-
packed approach in the smallest parameter set we tested. Our implementation also shows that
the shrinking technique enables up to 1.7 times speedup in the homomorphic INTT evaluation for
slightly larger parameters.

For the implementation, we propose several further optimization techniques to our general
description of the amortized bootstrapping. For example, as the LWE-to-RLWE packing becomes
a fundamental part of the bootstrapping procedure, we introduce a new strategy for minimizing its
noise overhead. Essentially, we evaluate the dimension reduction key switching, which commonly
precedes all bootstrapping methods, in two parts, with the packing key switching between them.
In this way, we can produce the input RLWE sample with noise almost as low as we would have
for a non-packed bootstrap.

Our source code is publicly available, since we believe that this can help the academic community
to understand our techniques and also simplify comparisons in future works. We stress that the
description of [MS18] is very high level and also that any implementation of their bootstrapping,
even using our double-CRT GSW scheme, must be far from practical, due to all the hidden constants
in the asymptotic costs. As an example, it is not clear how much memory they would need, since
it is hard to estimate practical parameters for their scheme. Thus, one could reasonably wonder if
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the amortized bootstrapping would ever be practically feasible, and our algorithms together with
our implementation provides a positive answer.

2 Preliminaries

For a1, ..., ak,m1, ...,mk ∈ Z, such that all the mi’s are coprime, let M =
∏k
i=1mi and define

CRTm1,...,mk(a1, ..., ak) as the unique a ∈ ZM such that ai = a mod mi. Also, for any a ∈ ZM ,
define CRT−1

m1,...,mk
(a) = (a mod m1, ..., a mod mk). For an element a(X) of any polynomial ring of

the form Z[X]/〈f(X)〉, we extend CRT and CRT−1 by applying it coefficient wise.
For any vector u, we denote the infinity norm by ‖u‖ and the Euclidean norm by ‖u‖2. For any

polynomial a =
∑d

i=0 ai, we define the norm of a as the norm of the coefficient vector (a0, ..., ad).
If a is an element of a polynomial ring like Z[X]/〈f(X)〉, we consider a′ ∈ Z[X] as the unique
canonical representation of a, and thus the norm of a is simply the norm of a′.

2.1 Rings

We use power-of-two cyclotomic rings of the form Z[X]/〈XN + 1〉, where N = 2k for some k ∈ N,
which we denote by R̂, and circulant rings of the form Z[X]/〈Xp − 1〉, for some prime number p,
which we denote by R̃. For any positive integer Q, we define R̂Q := R̂/(QR̂) and R̃Q := R̃/(QR̃),
i.e., the same rings as before, but with coefficients of the elements reduced modulo Q.

2.2 Plain, ring and circulant LWE

In the well-known learning with errors problem (LWE) [Reg05] with parameters n, q, and σ, an
attacker has to find a secret vector s ∈ Zn given many samples of the form (ai, bi), where ai
is uniformly sampled from Znq and bi := ai · s + ei mod q, with ei following a discrete Gaussian
distribution with parameter σ.

The ring version of LWE, known as RLWE [LPR10], is used to obtain more efficient crypto-
graphic schemes, since it typically allows us to encrypt larger messages when compared to similar
schemes instantiated with LWE. In the RLWE, we fix the ring R = Z[X]/〈Φm(X)〉, where Φm(X)
is the m-th cyclotomic ring, and we are given samples of the form (ai, bi), where ai is uniformly
sampled from Rq and bi := ai · s + ei mod q, where the ei is a small noise term, and we have to
find the secret polynomial s. Most schemes are constructed on top of the RLWE problem with a
power-of-two cyclotomic polynomial, Φ2N (X) = XN + 1, where N = 2k for some k ∈ N∗.

In this work, we also use a variant of the LWE called circulant-LWE (CLWE), which was
introduced in [BDF18] and was proved to be as hard as the RLWE on prime-order cyclotomic
polynomials. Hence, we restrict ourselves to prime p. Instead of using the ring R = Z[X]/〈Φp(X)〉,
we use the “circulant ring” R̃ = Z[X]/〈Xp − 1〉. Then, CLWE samples are obtained essentially by
projecting RLWE samples from R to R̃. This is done by fixing some integer Q prime with p and
by defining the map LQ : RQ → R̃Q as

LQ :

p−1∑
i=0

ai ·Xi 7→
p−1∑
i=0

ai ·Xi − p−1 ·

(
p−1∑
i=0

ai

)
·
p−1∑
i=0

Xi mod Q

Finally, given an RLWE sample (a′, b′ = a′ · s′ + e′) ∈ R2
Q, we define the corresponding CLWE

sample as (a, b) := (LQ(a′), LQ((1−X) · b′)) ∈ R̃2
Q. Thanks to the homomorphic properties of LQ,
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we have b = a ·s+e mod Q, where e = LQ((1−X) ·e′) is a small noise term and s = LQ((1−X) ·s′)
is the CLWE secret.

Then, using the CLWE problem, the GSW instantiated over the circulant ring R̃ is CPA-
secure if we restrict the message space to powers of X, that is, if one just encrypts Xk ∈ R̃ for
k ∈ Z [BDF18].

In Section 3.5, we extend the results [BDF18] so that we can also encrypt non-powers of X,
as this is needed in our bootstrapping algorithm, specially, to use Galois automorphisms on GSW
ciphertexts.

2.3 Subgaussian distributions

A random variable X is subgaussian with parameter σ > 0, in short, X is σ-subgaussian, if for
all t ∈ R it holds that E[exp(2πtX)] ≤ exp(πσ2t2). The name subgaussian comes from the fact
that the “tails” of X are bounded by a Gaussian function of standard deviation σ, that is, X
is σ-subgaussian =⇒ ∀t ∈ R, Pr[|X| ≥ t] ≤ 2 exp(−πt2/σ2). This allows one to bound the
absolute value of X with overwhelming probability. Namely, by setting t = σ

√
λ/π, we see that

Pr[|X| ≥ σ
√
λ/π] ≤ 2 exp(−π(s

√
λ/π)2/s2) = 2 exp(−λ) < 2−λ. In other words, the Gaussian

tails tell us that |X| is smaller than σ
√
λ/π with probability at least 1 − 2−λ, which is expo-

nentially close to 1. If X is a B-bounded centered distribution, then X is (σ ·
√

2π)-subgaussian.
Linear combinations of independently distributed subgaussians are again subgaussians, i.e., given
independent σi-subgaussian distributions Xi’s, then for any c = (c1, ..., cn) ∈ Rn, it holds that

Y :=
∑n

i=1 ciXi is
(√∑n

i=1 c
2
iσ

2
i

)
-subgaussian. In particular, if all σi are equal to some σ, then, Y

is (σ · ‖c‖2)-subgaussian. Also, since ‖c‖2 ≤
√
n · ‖c‖∞, we have Y is (σ ·

√
n · ‖c‖∞)-subgaussian.

We say that a polynomial a is σ-subgaussian if its coefficients are independent σi-subgaussian, with
σi ≤ σ. For any n ∈ N∗, given f equal to Xn ± 1 and two polynomials a and b of degree less than
n following subgaussians with parameters σa and σb, we can see that for c = a · b mod f , we have
ci is (

√
n · σa · σb)-subgaussian. However, the coefficients ci’s are not necessarily independent, thus,

to say that c is (
√
n · σa · σb)-subgaussian, we use the independence heuristic.

2.4 Independence heuristic

To derive average bounds for the noise growth of the ciphertexts, we will use the well-known and
commonly used independence heuristic: All the coefficients of the noise terms of the LWE and
RLWE samples appearing in the linear combinations we consider are assumed to be independent
and concentrated. In more detail, they follow σ-subgaussian, where σ2 is their variance.

2.5 RNS (double-CRT) representation for polynomial arithmetic

Homomorphic operations of commonly used FHE schemes are are composed by some operations
over polynomial rings RQ = ZQ[X]/〈f(X)〉, where f(X) is a degree-N polynomial over ZQ[X].
Here, we suppose that f(X) = XN + 1 or f(X) = XN − 1. These operations essentially boil down
to adding and multiplying polynomials of degree less than N , then reducing them modulo f(X),
and finally reducing each coefficient modulo Q.

Because Q generally has much more than 64 bits, working with elements of RQ requires libraries
that implement arbitrary precision integers, which is inefficient. To overcome this, the residual
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number system (RNS), aka double-CRT, is typically used. It exploits the decomposition of Q to
work with several polynomials modulo each qi, which them fit in the 32- or 64-bit native integer
types of current processors.

In more detail, because Q =
∏`
i=1 qi, by using the Chinese remainder theorem coefficient-wise,

we have

RQ = ZQ[X]/〈f(X)〉 =
∏̀
i=1

Zqi [X]/〈f(X)〉

Thus, additions and multiplications over RQ can be implemented with ` independent operations
over Rqi . Moreover, since multiplying polynomials modulo f(X) requires fast Fourier transforms or
number-theoretic transforms (NTT), it is common to go one step forward and represent elements
of RQ in the “NTT form”, i.e., given a(X) ∈ RQ, instead of simply storing its list of coefficients,
we define ai(X) := a(X) mod qi and precompute ai = NTTqi(a(X)), for every qi. Notice that we
need to choose qi such that a suitable primitive root of unity ωi ∈ Zqi exists. Then, we have the
following is an isomorphism:

NTTqi(a(X)) = (a(ω0
i ), a(ω1

i ), ..., a(ωN−1
i )) ∈ ZNqi

So, given a(X) ∈ RQ, we store the matrix

Mat(a) :=

NTTqi(a mod qi)
...

NTTq`(a mod q`)

 =

a1,0 . . . a1,N−1
...

. . .
...

a`,0 . . . a`,N−1

 ∈ Z`×N

With this representation, each addition and multiplication over RQ is implemented with point-
wise operations of the corresponding matrices. For example, a · b ∈ RQ is

Mat(a)� Mat(b) =

a1,0 · b1,0 . . . a1,N−1 · b1,N−1
...

. . .
...

a`,0 · b`,0 . . . a`,N−1 · b`,N−1

 ∈ Z`×N

where the operations in the i-th row are performed modulo qi.

Finally, sometimes we also want to switch the modulus Q to a smaller modulus Q′. We assume
that Q′ divides Q, so we can write Q′ =

∏k
i=1 qji for some k. Then, we want to map an element

a ∈ RQ to some a′ ∈ RQ′ , which is done by considering a as an element of R, then reducing it
modulo Q′. In the double-CRT representation, this is acomplished by simply ignoring the rows of
Mat(a) corresponding to the prime factors of Q/Q′. So, if Q′ has k prime factors, we remove `− k
rows of Mat(a) and obtain Mat(a′) ∈ Zk×N .

Cost of operations in double-CRT representation We estimate the cost of our algorithms
by the number of NTTs and multiplications performed modulo the small primes qi’s. We assume
that all those primes have about the same bit length, thus, operations modulo any of them cost
essentially the same. Moreover, we assume that a forward and a backward NTT modulo qi have
the same cost, thus, we do not distinguish them in our cost estimations.
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2.6 Gadget matrix

Consider three positive integers Q, B, and d such that d ∈ O(logQ). Let g be a d-dimensional
column vector and I2 be the 2×2 identity matrix. We say that G = I2⊗g ∈ Z2d×2 is a gadget matrix
for the base g with quality B if there is an efficient decomposition algorithm G−1 : Z2

Q → Z2×2d

such that, if A := G−1(a, b), then ‖A‖∞ ≤ B and A ·G = (a, b) mod Q. We naturally extend G−1

to a polynomial ring of the form RQ = ZQ[X]/〈f(X)〉 by applying G−1 coefficientwise. That is,

given (a, b) ∈ R2
Q, we define G−1(a, b) =

∑deg f−1
i=0 G−1(ai, bi) ·Xi. We also extend G−1 to matrices

C ∈ R2d×2
Q by applying it to each row. Thus, for C ∈ R2d×2

Q , we have G−1(C) ∈ R2d×2d.
The main example of gadget matrix is the one defined by some base B ∈ Z, which corresponds

to d = dlogB(Q)e, g = (B0, B1, ..., Bd−1)T , quality B and

G =



1 0
B 0
... 0

Bd−1 0
0 1
0 B

0
...

0 Bd−1


.

In this case, the decomposition G−1 corresponds to the integer decomposition in base B. For
instance, if B = 2, then G−1(a, b) = (a0, ..., ad−1, b0, ..., bd−1), where ai’s and bi’s are the bits of a
and b, respectively.

Another example, which will be of central importance in our double-CRT GSW scheme pre-
sented in Section 3, is the gadget matrix with respect to a CRT base.

Let q1, ..., q` be prime numbers and let Q :=
∏`
i=1 qi. Let d ∈ N be the “number of digits”. For

simplicity, assume that d|` and let k := `/d ∈ Z. Then, for 1 ≤ i ≤ d, define the i-th “CRT digit”
as Di :=

∏i·k
j=(i−1)·k+1 qi, that is, a product of k consecutive primes. Finally, define Qi := Q/Di and

Q̂i := (Q/Di)
−1 mod Di. The gadget matrix is now defined as

G =



Q1 · Q̂1 0
... 0

Qd · Q̂d 0

0 Q1 · Q̂1
...

...

0 Qd · Q̂d


∈ Z2d×2.

Then, we define G−1(a, b) := (CRT−1
D1,...,Dd

(a),CRT−1
D1,...,Dd

(b)). It is easy to verify that G−1(a, b)·
G = (a, b) mod Q. Moreover, since each entry of G−1(a, b) is of the form a mod Di or b mod Di,
we see that the quality of this gadget matrix is D := max (D1, ..., Dd)

Because of the ciphertext shirinking that we present in Section 3, we need a more general
definition of gadget matrices, which includes an integer scaling factor. Namely, we say that Gα

is a scaled gadget matrix with factor α if G−1(α−1 · a, α−1 · b) ·Gα = (a, b), in other words, we
have to multiply the input (a, b) by the inverse of α before decomposing it. In the case of the CRT
decomposition, instead of simply using Qi·Q̂i, the entries of Gα use Qi·Q̂i·αi where αi := α mod Di.
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Algorithm 1: FastBaseExtension

Input: D =
∏w
i=1 di, P =

∏v
i=1 pi, a ∈ RD in double-CRT form.

Output: a′ = a+ u ·D ∈ RPD in double-CRT form, where ‖u‖ ≤ 1/2.
Complexity: v + w NTTs and O(v · w ·N) modular multiplications
// Assume that D̂j := (D/dj)

−1 mod dj are precomputed

1 for 1 ≤ j ≤ w do

2 Let a(j) := rowj(Mat(a)) ∈ ZN

3 a(j) := NTT−1
dj

(a(j)) ∈ Rdj
4 for 1 ≤ i ≤ v do

5 a(w+i) := 0 ∈ Rpi
6 for 1 ≤ j ≤ w do

7 tmp := a(j) · D̂j mod dj
8 tmp := tmp · (D/dj) mod pi

9 a(w+i) = (a(w+i) + tmp) mod pi

10 for 1 ≤ i ≤ v do

11 a(w+i) := NTTpi(a
(w+i)) ∈ ZNpi

12 Return (a(1), ...,a(w+v)) ∈ Z(w+v)×N .

2.7 Base extension

In some situations, we may want to add or multiply polynomials defined modulo different values Q
and D. But because all the operations are performed entrywise when we use RNS representation,
we first need to represent both operands on a common modulus. This is done with an operation
called base extension.

For simplicity, let’s assume that D =
∏w
i=1 di divides Q so that we have Q = P · D for some

P =
∏v
i=1 pi. Then, given a ∈ RQ and b ∈ RD, both in double-CRT form, we want to lift b to RQ.

This is done by reconstructing each coefficient of b modulo D, then reducing them modulo each pi.
However, to avoid arbitrary precision integers, we try to reconstruct bi ∈ ZD already performing
all the operations modulo the pi’s. This means that the conversion is not exact and we obtain
[bi]D + ui ·D in base P with |ui| ≤ 1/2 instead of exactly [bi]D. So overall we have the residues of
[b(X)]D + u(X) ·D in the basis P ·D, with ‖u(X)‖∞ ≤ 1/2 [KPZ21].

We show this operation in detail in Algorithm 1, but it is essentially defined as follows:

FastBaseExtension(b,D, P ) :=

 w∑
j=1

[
b · (D/dj)−1

]
dj
· (D/dj) mod pi

v

i=1

2.8 Basic encryption schemes based on LWE, RLWE, and CLWE

We define the set of LWE encryptions of a message m ∈ Zt, where t ≥ 2, under a secret key s ∈ Zn,
with E-subgaussian noise and scaling factor ∆ ∈ Z as

LWEQs (∆ ·m,E) := {(a, b) ∈ Zn+1
Q : b = [a · s + e+∆ ·m]Q for some E-subgaussian e ∈ R̃}.

For a power-of-two cyclotomic polynomial R̂, the set of RLWE ciphertexts encrypting a message
m ∈ R̂, with scaling factor ∆ ∈ N, under a secret key s, and with E-subgaussian noise is

R̂QLWEs(∆ ·m,E) := {(a, b) ∈ R̂2
Q : b = [a · s+ e+∆ ·m]Q for some E-subgaussian e ∈ R̂}.
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Basically the same definition applies to CLWE ciphertexts:

R̃QLWEs(∆ ·m,E) := {(a, b) ∈ R̃2
Q : b = [a · s+ e+∆ ·m]Q for some E-subgaussian e ∈ R̃}.

In any of the three types of ciphertexts, the decryption is done by multiplying the term a (or a)
by the secret key and subtracting it from b modulo Q, which gives us e′ = e+∆ ·m mod Q, then
we output be′/∆e mod t. If ‖e−∆ ·m‖ < Q/2, then the decryption correctly outputs m mod t.

Modulus switching Here, we just consider the case where we want to switch the ciphertext
modulus Q =

∏`−1
i=0 qi to a smaller Q′ by removing some primes, say, q0, ..., qk−1. Thus, Q′ =

∏`−1
i=k qi.

It is possible to switch to a larger modulus Q′ by adding new primes to the moduli chain, but since
we do not use this in our work, we do not discuss it here.

Let q := Q/Q′ = q0 · ... ·qk−1. Given c := (a, b := a ·s+e+∆m) ∈ RLWEs,Q(m) where ∆ = bQ/te
for some t, the modulus switching from Q to Q′ consists in computing

c′ :=
[⌊

c ·Q′/Q
⌉]
Q′

= ([ba/qe]Q′ , [bb/qe]Q′).

Generally, c′ is an RLWE encryption of the same message m, but with ciphertext modulus Q′

and noise close to e/q.

Algorithm 2: ModSwitch Algorithm

Input: c = (a, b) ∈ RLWEs,Q(m), Q′ such that Q′|Q
Output: c′ ∈ RLWEs,Q′(m)
Complexity: 2l NTT, O(klN) multiplications on Zqi
Noise growth: E → O(E/q +

√
N · S)

1 δa = FastBaseExtensionQ′,q(a) mod q
2 δb = FastBaseExtensionQ′,q(b) mod q
3 ĉ = (a− δa, b− δb)
4 c′ = [ĉ/q]Q′ =

(
(a− δa) · q−1, (b− δb) · q−1

)
mod Q′

Because rounding is not compatible with double-CRT representation, we avoid it by first
subtracting [c]q from c, so that the result is a multiple of q, then we can divide by q and no
rounding is needed. In more detail, we define δa := a mod q and δb := b mod q, then com-
pute ĉ = (a − δa, b − δb). Notice that all the coefficients of ĉ belong to qZ. Finally, we output
c′ := [ĉ/q]Q′ = ((a− δa) · q−1, (b− δb) · q−1) mod Q′.

To subtract δa from a, we first need to use FastBaseExtension from q to Q′ to obtain δa in
base Q. The same is needed for b. Each FastBaseExtension costs ` NTTs and O(k`N) modular
multiplications, where N is the degree of the modulus polynomial. Multiplying by q−1 modulo Q′

means that we have to multiply each residue of c′ modulo qi, for k ≤ i ≤ `− 1 by the inverse of q
modulo qi. This step just costs O(`− k) integer modular multiplications. Thus, the overall number
of operations 2` NTTs and O(k`N) multiplications on Zqi .

After modulus switching, there is a ε such that ‖ε‖∞ ≤ 1 and the noise changes from e to

e′ = (e+ δa · s− δb)/q +m · ε.

Because both a and b are (indistinguishable from) uniform modulo Q, both δa and δb are
uniform modulo q, thus, they are (q ·

√
2π)-subgaussians. Therefore, if e is (E)-subgaussian and
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s is (S)-subgaussian, we have e′ is (E/q +
√
N · S ·

√
2π + 2

√
2π)-subgaussian, where N is the

degree of the modulus polynomial. Symplifying, the modulus switching changes the noise from an
E-subgaussian to a O(E/q +

√
N · S)-subgaussian.

Key switching The key-switching procedure can be divided in two steps, where the first uses
the secret key to generate a public key-switching key, and the second step consists in using the
key-switching key to actually performing the key switching.

We denote by R̃QKSds(z, E) the set of key-switching keys from a key z to a key s, having E-
subgaussian noise. Given s and z, we generate K ∈ R̃QKSds(z, E) as K = [ak | bk := ak · s+ ek +

z · g] ∈ Rd×2
q , where g = (Q1 · Q̂1, . . . , Qd · Q̂d) is the CRT gadget vector, that is, for 1 ≤ i ≤ d,

rowi(K) ∈ R̃QLWEs(∆i · z, E), where ∆i := Qi · Q̂i.
To key switch a ciphertext c = (a, b) ∈ R̃QLWEz(∆ ·m), we basically have to compute the CRT

decomposition of a and multiply it by both columns of K. This is shown in detail in Algorithm 3.

Algorithm 3: Key switching

Input: c = (a, b) ∈ R̃QLWEz(∆ ·m,E) and K ∈ R̃QKSds(z, Ek), both in double-CRT form.
Output: c′ ∈ R̃QLWEs(∆ ·m,E′)
Complexity: d · ` NTTs and O(`2 · p) products on Zqi
Noise growth: E′ = O(E +

√
dp ·D · Ek), where D = max(D1, ..., Dd)

. Consider that Q =
∏`
i=1 qi and Di is a product of k primes, with ` = k · d

1 for 1 ≤ i ≤ d do
2 āi := a mod Di

. Each base extension costs ` NTTs and O(k · ` · p) multiplications on Zqi
3 ãi = FastBaseExtension(āi, Di, Q/Di) ∈ R̃Q
. The following lines cost zero NTTs and O(2 · d · p) modular products

4 a := (ã1, ..., ãd) ∈ R̃dQ
5 â = a · col1(K)

6 b̂ = a · col2(K) . Noise: O(
√
dp ·D · Ek)-subgaussian

7 c′ = (−â, b− b̂) ∈ R̃2
Q

8 return c′

2.9 Automorphism

Given a ciphertext c = (a, b) ∈ R̂QLWEs(∆ · m) and an integer u ∈ Z∗p, we apply the Galois
automorphism X 7→ Xu to both a and b. This operation maps c to another RLWE ciphertext
encrypting m(Xu) mod Xp− 1. It also has the side effect of changing the key to s(Xu), thus, a key
switching is needed to go back to the original key s(X). Applying the automorphism itself is done
by simply rotations of coefficients, which is essentially for free, thus, the cost and the noise growth
are only due to the key-switching step. We show it in detail in Algorithm 4. We are most interested
in the particular case where we encrypt an integer v as Xv, since the automorphism allows us to
obtain an encryption of u · v mod p as Xu·v.
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Algorithm 4: Automorphism

Input: c = (a, b) ∈ R̃QLWEs(∆ ·m,E), u ∈ Zp, and K ∈ R̃QKSds(s(Xu), Ek). Both c and K in
double-CRT form.

Output: c′ ∈ R̃QLWEs(∆ ·m(Xu), E′)
Complexity: d · ` NTTs and O(`2 · p) products on Zqi
Noise growth: E′ = O(E +

√
dp ·D · Ek), where D = max(D1, ..., Dd)

1 Let η be the mapping X 7→ Xu mod p

2 (â, b̂) = (η(a), η(b)) ∈ R̃QLWEs(Xu)(∆ ·m(Xu), E)

3 c′ = KeySwt(â, b̂,K) ∈ R̃QLWEs(∆ ·m(Xu), E′)
4 return c′

2.10 Ring Packing

In [MS18], Micciancio and Sorrell present a ring packing method to transform a set of N LWE
samples (ai, bi := ai ·s+ei+∆µi) ∈ Zn+1

Q into a single RLWE ciphertext encrypting µ =
∑N−1

i=0 µi ·
Xi. To do so, they define a “packing key” composed by n · L RLWE ciphertexts as

K := (a,b := a · z + e + G · s) ∈ R̂n·L×2
Q

where L := dlogB(Q)e and G = In ⊗ (B0, ..., B`−1)T ∈ Zn·L×n is a gadget matrix such that
g−1(u)G = u for any u ∈ ZnQ. We recall this packing procedure in Algorithm 5. Note that it

requires O(n · L) multiplications on R̂Q.

Algorithm 5: PackLWE Algorithm from [MS18]

Input: [(a(i), b(i))]i<N ∈ LWEQs (∆ ·mi, E), packing key K := (a,b) ∈ R̂n`×2
Q with ER-subgaussian error.

Output: (a, b) ∈ R̂QLWEz(∆ ·m)
Complexity: O(n ·N log(Q) log(N)) multiplications over ZQ
Noise growth: (E,ER) 7→ O(

√
N · E +

√
n ·N · log(Q) ·B · ER)

1 for 0 ≤ i < n do

2 āi :=
∑N−1
j=0 a

(j)
i ·X

j

3 ā = (ā0, . . . , ān−1) ∈ R̂nQ
4 b̄ =

∑N−1
i=0 b(i) ·Xi

5 u = g−1(ā) ∈ R̂n·LQ
6 (a, b) = (−u · a, b̄− u · b) ∈ R̂2

Q

3 Double-CRT GSW encryption scheme

In this section, we propose an RNS-version of the GSW scheme supporting all the standard oper-
ations, like external product and homomorphic multiplication. We also present two key switching
algorithms for GSW, making it possible to evaluate autormorphisms on GSW ciphertexts. More-
over, we also include a new operation, which we call shrinking.

We present our scheme over the circulant ring R̃ := Z[X]/〈Xp− 1〉, where p is prime, and base
its security on the circulant-RLWE problem, which is as secure as the standard RLWE problem over
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the prime-order cyclotomic polynomial Φp(X) = Xp−1 +Xp−2 + ...+ 1. Moreover, since our main
goal is to use the GSW scheme to run the amortized bootstrapping, we just define the encryption
function to powers of X and do not present the decryption. We stress that is trivial to adapt our
scheme to the usual RLWE problem using power-of-two cyclotomic rings and encrypting other types
of messages.

We define the GSW ciphertexts in a more general way, by including a correction factor α ∈
Z, which is introduced by the shrinking operation and has to be removed during decryption. In
more detail, the set of GSW encryptions of a message m with a scaling factor α is denoted by
R̃QGSWd

s(α ·m). Any element of this set has the form

C = [a | a · s+ e] +m ·Gα ∈ R̃2d×2
Q ,

where s ∈ R̃ is the secret key, e ∈ R̃2d is the noise term, and Gα is the scaled gadget matrix, as
described in Section 2.6. We can write R̃QGSWd

s(α ·m,E) to specify that e is E-subgaussian.

When we say that C is in double-CRT form, we mean that each entry ci,j is stored as Mat(ci,j),
as described in Section 2.5.

– GSW.ParamGen(1λ): Choose a prime number p, standard deviations σerr, σsk ∈ R, and an integer
Q :=

∏`
i=1 qi, where q1, ..., q` are small primes (say, with 32 bits), such that the (p,Q, σerr, σsk)-

RLWE problem offers us λ bits of security. Moreover, p and Q must be coprime.

Let d ∈ N be the “number of CRT digits”. For simplicity, assume that d|` and let u := `/d ∈ Z.
Then, for 1 ≤ i ≤ d, define each “CRT digit” as Di :=

∏i·u
j=(i−1)·u+1 qi, that is, a product of u

consecutive primes.

Output params = (p,Q, σerr, σsk, d, {qi}`i=1, {Di}di=1).

– GSW.KeyGen(params): Sample s0, ..., sp−1 following a discrete Gaussian over Z with parameter

σsk. Let s̄ =
∑p−1

i=0 si ·Xi then project s̄ as s := L((1−X)s̄) ∈ R̃. Output sk := (s, s̄).

– GSW.Enc(µ, sk): To encrypt µ ∈ Zp, generate a matrix V ∈ R̃2d×2
Q where each row is a sample

from the Circulant-LWE distribution with secret s and noise terms following a discrete Gaussian
with parameter σerr. Output V +Xµ ·G ∈ R̃QGSWd

s(1 ·Xµ).

Lemma 1 (Security of GSW). If the decisional (p,Q, σerr, σsk)-RLWE problem is hard, then the
GSW scheme over the circulant ring R̃ is CPA-secure for messages of the form Xk.

Proof. Lemma 4 of [BDF18].

We now present the homomorphic operations that can be performed with GSW. Apart from
the usual external product and GSW multiplication, we also define a new operation, which we
can shrinking and whose main purpose is to reduce the size of the ciphertexts so that the next
homomorphic operations become cheaper.

3.1 Shrinking gadget matrices

As explained in Section 2.6, let q1, ..., q` be prime numbers, Q :=
∏`
i=1 qi, and D1, ..., Dd be the

digits of the CRT basis. Define Qi := Q/Di ∈ Z and Q̂i := (Q/Di)
−1 mod Di. Also, let α ∈ ZQ
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and αi := α mod Di. Then, the scaled gadget matrix is

Gα =



Q1 · Q̂1 · α1 0
... 0

Qd · Q̂d · αd 0

0 Q1 · Q̂1 · α1
...

...

0 Qd · Q̂d · αd


∈ Z2d×2.

Notice that each CRT digit Di defines two rows of Gα. Ideally, we would choose k digits, say,
D1, ..., Dk, remove the two 2k rows corresponding to them, and obtain a new gadget matrix with
respect to the digits Dk+1, ..., Dd. However, by doing so, we obtain a scaled gadget matrix Gβ with
respect to a new scaling factor β.

For this shrinking operation, we define the projection πk : R2d×2
Q → R(2d−k)×2

Q as the function
that takes a matrix C and outputs C′ such that for 1 ≤ i ≤ d− k, rowi(C

′) := rowi+k(C)
and rowd−k+i(C

′) := rowi+d+k(C). Essentially, we just have to apply πk, divide the result by
D(k) := D1 · ... · Dk, and compute the new scaling factor β. This procedure is shown in detail in
Algorithm 6. In Lemma 2, we prove its correctness.

Algorithm 6: Shrink matrix

Input: C ∈ R2d×2
Q , CRT digits D1, ..., Dd, a scaling factor α, and k ∈ Z such that 1 ≤ k < d.

Output: C′ ∈ R2(d−k)×2

Q′ and α′ ∈ Z.

1 D(k) := D1 · ... ·Dk
2 Q′ := Q/D(k)

3 C̄ := πk(C)

4 C′ := C̄/D(k) mod Q′

5 α′ := α · CRTDk+1,...,Dd(D(k), ..., D(k))−1 mod Q′.
6 return C′, α′

Lemma 2. Let Q :=
∏d
i=1Di for coprime Di’s and k be an integer such that 1 ≤ k < d. Define

Q′ := Q/(D1 · ... · Dk). Then, given a scaled gadget matrix Gα with respect to the CRT basis
D1, ..., Dd, Algorithm 6 outputs G′ ∈ Z2(d−k)×2 and α′ ∈ Z such that CRT−1(a, b) ·G′ = α′ · (a, b)
mod Q′, for any (a, b) ∈ R2

Q′, where CRT−1 is the decomposition with respect to Dk+1, ..., Dd.

Proof. Let Q′i := Q′/Di ∈ Z and Q̂′i := (Q′/Di)
−1 mod Di, for k + 1 ≤ i ≤ d. We want to write G′

in terms of Q′i and Q̂′i to show that it is indeed a scaled gadget matrix with respect to the CRT
digits Dk+1, ..., Dd and the modulus Q′.
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First, notice that

Ḡ := πk(G) =



Qk+1 · Q̂k+1 · αk+1 0
... 0

Qd · Q̂d · αd 0

0 Qk+1 · Q̂k+1 · αk+1
...

...

0 Qd · Q̂d · αd


∈ Z2(d−k)×2.

But we see that for k + 1 ≤ i ≤ d,

Qi = Q/Di = (Q′/Di) ·D(k) = Q′i ·D(k)

and

Q̂i = [(Q/Di)
−1]Di = [(Q′/Di)

−1 · (D(k))−1]Di = Q̂′i · (D(k))−1 mod Di.

Therefore, by defining α′i := αi · (D(k))−1 mod Di, we have

G′ :=
πk(G)

D(k)
=



Q′k+1 · Q̂′k+1 · α′k+1 0
... 0

Q′d · Q̂′d · α′d 0

0 Q′k+1 · Q̂k+1 · α′k+1
...

...

0 Q′d · Q̂d · α′d


∈ Z2(d−k)×2.

Now, let y := CRT−1(a, b). To show that y ·G′ = α′ · (a, b) mod Q′, notice that the product
by the first column of G′, modulo Q′, gives us

y · col1(G′) =
d∑

i=k+1

(Q′i · Q̂′i) · α′i · [a]Di

= CRT([α′ · a]Dk+1
, ..., [α′ · a]Dd)

= CRT([(D(k))−1 · α]Dk+1
, ..., [(D(k))−1 · α]Dd) · CRT([a]Dk+1

, ..., [a]Dd)

= α′ · a

The same argument shows that y · col2(G′) = α′ · b mod Q′.

3.2 Shrinking a ciphertext

Let C = [a | a · s + e] + m ·Gα ∈ R̃2d×2 be an encryption of m with scaling factor α. We define
the operation GSW.Shrink(C, k) essentially by applying Algorithm 6 to C, except that dividing

C̄ ∈ R̃2(d−k)×2
Q by D(k) is done by applying the modulus switching to every row of C̄. This is

necessary because we are assuming that C is stored in double-CRT form. We show this procedure
in detail in Algorithm 7 and prove its correctness in Lemma 3.
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Algorithm 7: Shrink ciphertext

Input: C ∈ R̃2d×2
Q in double-CRT form, scaling factor α, CRT digits D1, ..., Dd, and k ∈ Z such that

1 ≤ k < d.
Output: C′ ∈ R̃2(d−k)×2

Q′ and new correction factor α′ ∈ Z.

Complexity: 4 · (d− k) · ` NTTs and O(k · `2 · p) multiplications on Zqi .
Noise growth: E 7→ O(E/D(k) +

√
p · S)

1 D(k) := D1 · ... ·Dk
2 Q′ := Q/D(k)

3 C̄ := πk(C) ∈ R̃2(d−k)×2

Q′

4 for 1 ≤ i ≤ 2 · (d− k) do
5 ci := ModSwtQ→Q′(rowi(C̄))

6 Define C′ such that rowi(C
′) = ci.

7 β := CRTDk+1,...,Dd(D(k), ..., D(k))−1 mod Q′.
8 α′ := α · β mod Q′

9 return C′, α′

Lemma 3 (Correctness and cost of ciphertext shrinking). Let C ∈ R̃QGSWd
s(α · m,E),

k ∈ N∗ such that k < d, and C′, α′ be the output of Algorithm 7. Assume that s is S-subgaussian
for some S. Then, C′ ∈ R̃QGSWd

s(α
′ ·m,E′) with E′ = O(E/D(k) +

√
p · S).

Moreover, assuming that each CRT digit Di is a product of `/d primes, the cost of Algorithm 7
is 4 · (d− k) · ` NTTs and O(k · `2 · p) multiplications on Zqi.

Proof. Firstly notice that C̄ = πk(C) = πk([a | a ·s+e])+m ·πk(Gα) = [ā | ā ·s+ ē]+m ·D(k) ·Gα′ ,
where ā = πk(a) and ē = πk(e). Thus, each row of C̄ can be seen as an RLWE sample encrypting
∆ · µ, where µ ∈ {m,−s} and ∆ = D(k) · Q′i · Q̂′i · α′i for some i. Thus, ModSwtQ→Q′(rowi(C̄))

outputs an RLWE sample encrypting ∆ ·µ/D(k) = Q′i · Q̂′i ·α′i ·µ. Grouping these rows to define C′

gives us C′ = [a′ | a′ · s+ e′] +m ·Gα′ .

To analyze the error growth, first notice that πk does not increase the noise, thus, ē is
E-subgaussian. Then, the final noise e′ is just provenient from the modulus switching over RLWE
samples with E-subgaussian noise, thus, we have E′ = O(E/D(k) +

√
p · S).

Over the ring R̃Q, one modulus switching to remove u primes out of ` costs 2` NTTs andO(u·`·p)
products modulo qi. Since we are removing D(k), which is a product of k`/d primes, and we execute
modulus switching 2(d− k) times, in total we need 4(d− k)` NTTs and O(2(d− k) · k · `2 · p/d) =
O(k · `2 · p) multiplications on Zqi .

3.3 External product in RNS representation

The external product is a homomorphic multiplication between an RLWE ciphertext and a GSW
ciphertext. While this is a fairly well known operation, the introduction of the RNS representation
and of the scaling factor bring a few considerations to light that we must address. We present this
operation in detail in Algorithm 8 and prove its correctness in Lemma 4.

Lemma 4 (Correctness and cost of external product). On input c ∈ R̃QLWEs(∆ ·m0, E0)
and C ∈ R̃QGSWd

s(α · m1, E1), Algorithm 8 outputs c′ ∈ R̃QLWEs(∆ · m0 · m1, E
′) where E′ =

O(
√
dp ·D ·E1 +E0) if m1 is a power of X and E′ = O(

√
dp ·D · E1 +

√
p · E0 · ‖m1‖) otherwise.

Moreover, it requires 2 · d · ` NTTs and O(`2 · p) products on Zqi.
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Algorithm 8: RNS-friendly External product

Input: c ∈ R̃QLWEs(∆ ·m0, E0) and C ∈ R̃QGSWd
s(α ·m1, E1) both in double-CRT form.

Output: c′ ∈ R̃QLWEs(∆ ·m0 ·m1, E
′)

Complexity: 2 · d · ` NTTs and O(`2 · p) products on Zqi .
Noise growth: E′ ∈ O(

√
dp ·D · E1 + E0) if m1 = Xu for some u and

E′ ∈ O(
√
dp ·D · E1 +

√
p · E0 · ‖m1‖) otherwise

1 Denote c = (a, b)
. Almost for free in double-CRT form. Just group entries corresponding to prime factors of

each Di and multiply them by α−1

2 for 1 ≤ i ≤ d do
3 Let ui := α−1 · a mod Di
4 Let ui+d := α−1 · b mod Di

5 for 1 ≤ i ≤ d do

6 Let vi := FastBaseExtension(ui, Di, Q/Di) ∈ R̃Q
7 Let vi+d := FastBaseExtension(ui+d, Di, Q/Di) ∈ R̃Q
8 Let v := (v1, ..., v2d) ∈ R̃2d

Q . it is already in double-CRT format

9 c′ = v ·C ∈ R̃2
Q

10 return c′

Proof. Remember that we can write C = [a | a · s+ e] +m ·Gα ∈ R̃2d×2
Q for some a ∈ R̃2d

Q and e
is E-subgaussian. Let u = (u1, ..., u2d) be the vector defined by the first loop. It is easy to see that
u = G−1(α−1 · c). Therefore, it holds that u ·Gα = c mod Q.

Applying the fast base extension to ui outputs vi = ui + wi where ‖wi‖ ≤ Di/2. Thus, by
defining D := max(D1, ..., Dd), we have v = u + w where ‖w‖ ≤ D/2.

Firstly, we claim that w · Gα = (0, 0) mod Q. Indeed, remember that Qi := Q/Di, Q̂i :=
Q−1
i mod Di, g = (Q1 · Q̂1 · [α]D1 , ..., Qd · Q̂d · [α]Dd) and Gα = ( (g 0)T (0 g)T ) ∈ Z2d×2, thus,

by writing w = (w1,w2) we can see that (w1,w2) ·Gα = (w1 · g,w2 · g). But for both i = 1, 2, we
have

wi · g =

d∑
j=1

(w′i,j ·Dj) · (Qj · Q̂j · [α]Di) =

d∑
j=1

w′i,j ·Q · Q̂j · [α]Di = 0 mod Q.

Therefore, modulo Q, it holds that

c′ := v ·C
= v · ([a, a · s+ e] + Gα ·m1)

= [v · a, v · a · s+ v · e] + v ·Gα ·m1

= [v · a, v · a · s+ v · e] + u ·Gα ·m1

= [v · a, v · a · s+ v · e] + [a, a · s+ e+∆ ·m0] ·m1

= [v · a + a ·m1︸ ︷︷ ︸
a′

, a′ · s+ v · e + e ·m1︸ ︷︷ ︸
e′

+∆ ·m0 ·m1].

Hence, c is indeed an RLWE encryption of m0 ·m1.
Moreover, since ‖v‖ ≤ D, we have that v ·e is (

√
dp ·D · E1)-subgaussian. If m1 = Xz for some

z, the product e·m1 mod Xp−1 just rotates the coefficients of e, but do not change the distribution,
thus, e′ is (

√
dp ·D · E1 + E0)-subgaussian. In general, e ·m1 is (

√
p · E0 · ‖m1‖)-subgaussian, and

e′ is (
√
dp ·D · E1 +

√
p · E0 · ‖m1‖)-subgaussian.
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It remains to analyze the cost of the algorithm. The first loop costs only 2` modular multi-
plications. Since each CRT digit Di has `/d prime factors, each base extension costs ` NTTs and
O((`/d) · (` − `/d) · p) modular multiplications. Thus, the second loop costs 2 · d · ` NTTs and
O(`2 · (1 − 1/d) · p) = O(`2 · p) modular multiplications. Since the output of FastBaseExtension
is already in double-CRT format, the product v · C does not require any NTT and is performed
via pointwise multiplication, thus, it costs 4d`p modular multiplications. Therefore, the total cost
is 2 · d · ` NTTs and O(`2 · p) products on Zqi .

3.4 Homomorphic multiplication

This operation3 takes GSW encryptions of two messages and output a GSW encryptiong of their
product. This is done by performing one external product for each row of one of the ciphertexts,
therefore, the cost is exactly 2 ·d times the cost of one external product. Since each row is multiplied
independently, the noise growth is the same as in the external product. We show it in detail in
Algorithm 9. The only caveat is the scaling factor of the output. Both input ciphertexts have scaling
factors, say α0 and α1, so one could expect that the output would be scaled by α0 · α1. However,
since external products output RLWE encryptions that do not depend on the scaling factor of the
GSW ciphertext, the output of the GSW multiplication is scaled only by, say, α0.

Algorithm 9: RNS-friendly GSW homomorphic multiplication

Input: C0 ∈ R̃QGSWd
s(α0 ·m0, E0) and C1 ∈ R̃QGSWd

s(α1 ·m1, E1) both in double-CRT form.
Output: C ∈ R̃QGSWd

s((α0) ·m0 ·m1, E)
Complexity: 4 · d2 · ` NTTs and O(d · `2 · p) products on Zqi .
Noise growth: E ∈ O(

√
dp ·D ·E1 +E0) if m1 = Xu for some u and E′ ∈ O(

√
dp ·D ·E1 +

√
p ·E0 · ‖m1‖)

otherwise
. Consider ∆i := Qi · Q̂i · α0 mod Di

1 for 1 ≤ i ≤ d do

2 Let ci := rowi(C0) ∈ R̃QLWEs(∆i ·m0, E0)

3 c′i = ci �C1 ∈ R̃QLWEs(∆i ·m0 ·m1, E)

4 for d+ 1 ≤ i ≤ 2 · d do

5 Let ci := rowi(C0) ∈ R̃QLWEs(−∆i ·m0 · s, E0)

6 c′i = ci �C1 ∈ R̃QLWEs(−∆i ·m0 ·m1 · s, E)

7 Let C′ ∈ R̃2d×2
Q such that rowi(C

′) = c′i
8 return C′

3.5 Key switching for GSW

In this section we present two methods to switch the key of GSW ciphertexts. They represent a
memory-noise tradeoff, as the first method requires less key material, but introduces more noise
than the second one. These key-switching algorithms allow us to use Galois automorphisms on GSW
ciphertexts and give us a simple and efficient algorithm to perform the pointwise multiplication
needed in the beginning of the bootstrapping.

3 In [CGGI20], a homomorphic multiplication between two GSW ciphertexts is called internal product.
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Encrypting non-powers of X under the CLWE problem: If one instantiates our double-
CRT GSW scheme over the usual power-of-two cyclotomic ring, i.e., modulo XN + 1, then there is
no security issue and one can freely chooses the keys that will be switched. However, because we
are using the circulant ring, defined modulo Xp − 1, we have to be more careful.

In [BDF18], it was proved that the GSW scheme over circulant rings is secure if one just encrypts
powers of X. But to key switch from a secret key s ∈ R̃ to another secret key z ∈ R̃, we have to
encrypt z, which is not a power of X. Thus, we extend the results of [BDF18] to show that it is
also safe to encrypt z.

The main idea is the following: using a circular ring introduces a security issue because an
attacker can interpret an element a ∈ R̃ as a polynomial a′ ∈ Z[X]. In this case, it holds that
a′ = a+ u · (Xp − 1) for some u ∈ Z[X]. Then, evaluating a′ at one yields a′(1) = a(1) ∈ Z. Thus,
taking a ciphertext (a, b := a · s+ e) defined modulo Xp−1 and evaluating it at one would produce
the pair (a(1), b(1) = a(1) · s(1) + e(1)) ∈ Z2, which could leak information about s.

Bonnoron, Ducas, and Fillinger [BDF18] prove that the Circulant LWE (CLWE) is as hard
the RLWE by applying to the RLWE samples a function that fixes the values of the polynomials
when they are evaluated at one, such that (a(1), b(1)) is always equal to zero, thus, independent
of the secret key. Then, adding messages of the form m(X) = Xk to the CLWE samples produces
ciphertexts of the form (a, b + ∆ · m) ∈ R̃2 that also have a fixed value when evaluated at one,
namely, (0, ∆). Therefore, they leak no information about the message. The crucial property here is
that m(1) = 1 for any k. But we notice that one can use a more general property, namely, if there is
a constant c such that for each message m, it holds that m(1) = c, then evaluating the ciphertexts
at one produces (0, ∆ · c), which is still independent of the messages. Thus, we can generalize the
results of [BDF18] to argue that the GSW over circulant rings is CPA-secure for any messages m,
as long as m(1) is already known.

In the case of the key-switching keys, we are only encrypting the secret polynomials of the
CLWE problem, but they always result in zero when they are evaluated at one, because they are
always of the form s = L((1−X) · s′), as explained in Section 2.2. Therefore, it is secure to encrypt
them under the CLWE problem. We prove this result formally in Appendix A.

GSW key switching via two-layer reconstruction Given C ∈ R̃QGSWd
z(α · m), remember

that for 1 ≤ i ≤ d, rowi(C) ∈ R̃QLWEz(∆i ·m), where ∆i := Qi · Q̂i · αi. Also, for d+ 1 ≤ i ≤ 2 · d,
rowi(C) ∈ R̃QLWEz(−∆i ·m · z). Thus, to switch C to a key s, we just need to use the first d rows.
Namely, we use the RLWE key switching to obtain RLWE encryptions of ∆i ·m under s, then we
multiply these ciphertexts by −s to construct the last d rows. This procedure is shown in detail in
Algorithm 10.

From the costs of the external product and of the key switching, algorithms 8 and 3, we see that
we need 3 · d2 · ` NTTs and O(d · `2 · p) products on Zqi . From the noise growth presented in these
algorithms, we see that after key switching, the noise is Ê-subgaussian, where Ê ∈ O(E+

√
dp·D·Ek)

and D = max(D1, ..., Dd). Thus, after the external products, we have an E′-subgaussian, where
E′ ∈ O(

√
dp ·D · Es +

√
p · Ê · ‖s‖) = O(

√
dp ·D · Es +

√
p · ‖s‖ · E + p ·

√
d ·D · Ek · ‖s‖)

Noise-reduced GSW key switching via parallel reconstruction When we key switching the
first d rows from z to s, we generate RLWE samples with larger noise. Then, when we use these
samples to reconstruct the other d rows, we accumulate more noise over them, generating thus
samples with even larger noise, proportional to p.
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Algorithm 10: GSW key switching

Input: C ∈ R̃QGSWd
z(α ·m,E), K ∈ R̃QKSds(z, Ek), Ks ∈ R̃QGSWd

s(1 · (−s), Es), all in double-CRT form.
Output: C′ ∈ R̃QGSWd

s(α ·m,E′),
Complexity: 3 · d2 · ` NTTs and O(d · `2 · p) products on Zqi .
Noise growth: E′ ∈ O(

√
dp ·D · Es +

√
p · ‖s‖ · E + p ·

√
d ·D · Ek · ‖s‖)

1 for 1 ≤ i ≤ d do

2 ci = KeySwt(rowi(C),K) ∈ R̃QLWEs(∆i ·m)

3 cd+i = ci �Ks ∈ R̃QLWEs(−∆i ·m · s)

4 Let C′ ∈ R̃2d×2
Q such that rowi(C

′) = ci

5 return C′

The key switching that we present in this section avoids that “double accumulation” by pro-
ducing independent RLWE samples that can be subtracted to reconstruct the remaining rows.
Because subtraction increases the noise linearly, we accumulate less noise in the last d rows of the
GSW ciphertext. At the end, we save a factor

√
p in the final noise. For this, we need an extra key

encrypting the s · z and we replace the GSW encryption of s by a key-switching key from s to s
itself. We present this procedure in detail in Algorithm 11

Algorithm 11: NoiseReducedGSWKeySwt

Input: C ∈ R̃QGSWd
z(α ·m,E), Kz ∈ R̃QKSds(z, Ez), Ks ∈ R̃QKSds(s, Es), and Ksz ∈ R̃QKSds(s · z, Esz),

all in double-CRT form.
Output: C′ ∈ R̃QGSWd

s(α ·m,E′),
Complexity: 3 · d2 · ` NTTs and O(d · `2 · p)) products on Zqi .
Noise growth: E′ ∈ O(

√
dp ·D · Esz +

√
dp ·D · Es +

√
p · ‖s‖ · E)

. Construct the first d rows of the GSW ciphertext

1 for 1 ≤ i ≤ d do

2 ci = KeySwt(rowi(C),Kz) ∈ R̃QLWEs(∆i ·m)

. Now construct the last d rows

3 for 1 ≤ i ≤ d do

4 Let (a, b) = rowi(C) ∈ R̃QLWEz(∆i ·m)
5 for 1 ≤ i ≤ d do

. Each base extension costs ` NTTs and O(p · `2/d) multiplications on Zqi
6 hi = FastBaseExtension(a mod Di, Di, Q/Di) ∈ R̃Q
7 yi = FastBaseExtension(b mod Di, Di, Q/Di) ∈ R̃Q
8 h := (h1, ..., hd)
9 y := (y1, ..., yd)

10 a′ := h · col1(Ksz)− y · col1(Ks)
11 b′ := h · col2(Ksz)− y · col2(Ks)

12 cd+i := (a′, b′) ∈ R̃QLWEs(−∆i ·m · s)

13 Let C′ ∈ R̃2d×2
Q such that rowi(C

′) = ci

14 return C′

Lemma 5 (Correctness and cost of GSW key switching with parallel reconstruction).
On input C ∈ R̃QGSWd

z(α·m,E), Kz ∈ R̃QKSds(z, Ek), Ks ∈ R̃QKSds(s, Ez), and Ksz ∈ R̃QKSds(s·
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z, Es), Algorithm 8 outputs C′ ∈ R̃QGSWd
s(α ·m,E′) where

E′ = O
(√

p · (
√
d ·D · Esz +

√
d ·D · Es + ‖s‖ · E)

)
.

Moreover, it requires 3 · d2 · ` NTTs and O(d · `2 · p) products on Zqi.

Proof. The correctness of the first d rows of the output C′ follows from the correctness of the
RLWE key switching. For the last d rows, consider the following.

Write Ks := [as | bs := as ·s+es+s ·g] ∈ R̃d×2
Q and K := [ak | bk := ak ·s+ek+s ·z ·g] ∈ R̃d×2

Q ,

where g ∈ Zd is the CRT gadget vector. Also, write (a, b) = rowi(C) with b = a · z + e+∆i ·m.

Then y ·col2(Ks) = y ·as ·s+y ·es+s(az+e+∆i ·m) = y ·as ·s+y ·es+a ·s ·z+e ·s+∆i ·m ·s
and h · col2(Ksz) = h · ak · s+ hek + a · s · z. Hence,

b′ := h · col2(Ksz)− y · col2(Ks) = (h · ak − yas)︸ ︷︷ ︸
a′

·s+ h · ek − y · es − e · s︸ ︷︷ ︸
e′

−∆i ·m · s.

By defining D = max(D1, ..., Dd), we have that e′ is E′-subgaussian, where

E′ ∈ O(
√
dp ·D · Esz +

√
dp ·D · Es +

√
p · ‖s‖ · E).

Thus, (a′, b′) ∈ R̃QLWEs(−∆i ·m · s, E′).
Now, it remains to analyze the cost. The d RLWE key switchings executed in line 2 cost, in

total, d2 · ` NTTs and O(d · `2 ·p) products on Zqi . All the fast base exttensions cost in total 2 ·d2 · `
NTTs and O(d · `2 · p) modular products. The remaining operations just cost 4 · d · p modular
products. Therefore, the algorithm requires 3 · d2 · ` NTTs and O(d · `2 · p) products on Zqi .

3.6 GSW autormorphism

Given C ∈ R̃QGSWd
s(α ·m,E) and η : X 7→ Xu, for some u ∈ Z, we just have to apply η to each

row of C, then apply one of the GSW key switching algorithms described in Section 3.5.

Notice that the first d rows of C are regular RLWE encryptions, thus, the autormorphisms
works as usual producing new RLWE encryptions under the key η(s). The other d rows can be seen
as RLWE encryptions of the −∆i ·m · s, therefore, the automorphism generates RLWE encryptions
of −∆i · η(m) · η(s), which correspond to the last d rows of a GSW encryption of ∆i · η(m) under
the key η(s). Moreover, η does not change the distribution of the noise. In summary, η(C) ∈
R̃QGSWd

η(s)(α · η(m), E).

Then, applying GSW key switching on η(C) gives us C′ ∈ R̃QGSWd
s(α · η(m), E′). Hence, the

noise growth and the cost are same as the ones of the chosen key switching.

3.7 GSW evaluation of scalar products on the exponent

In this section we consider the problem of evaluating a scalar product between two vectors u,v ∈ Zkp,
when u is known in clear and each entry of v is encrypted as Xvi into a GSW sample. The output
is a GSW encryption of Xu·v mod p. This is a general operation and can possibly be used in several
scenarios, but we are particularly interested in using it during the homomorphic evaluation of the
inverse NTT in our bootstrapping algorithm.
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The straightforward way of implementing this scalar product is the following: apply the autor-
morphism X 7→ Xui to obtain GSW encryptions of Xui·vi mod p, then use the GSW multiplication k
times to obtain a GSW encryption of

∏k
i=1X

ui·vi = Xu·v mod p. However, each GSW multiplication
costs 2d external products, so this näıve implementation needs 2kd external products. We want to
reduce that to around k · d, thus, halving the cost.

Moreover, instead of using k automorphisms on GSW ciphertexts, which cost essentially 2 ·d ·k
RLWE key switchings, we want to use automorphisms on the RLWE samples so that the cost of k
automorphisms also drops to k · d, that is, halving the cost compared to GSW automorphisms.

Hence, given Ci ∈ R̃QGSWd
s(α · Xvi), we define a trivial and noiseless ciphertext C′0 ∈

R̃QGSWd
s(1 ·Xvi), and we want to compute for 1 ≤ i ≤ k

C′i = Auth(Ci, ui) ·C′i−1

The main idea is to extract the d rows of C′i that correspond to the RLWE samples encrypting
Xm for some message m and ignore the other d rows. So, let cj ∈ R̃QLWEs(∆j ·Xm) be the j-th row
of C′i. Instead of applying the automorphism ui to C′i, we can use a technique from [BDF18] and ap-
ply u−1

i mod p to cj , then multiply it with C′i−1 via external product, and apply the automorphism
ui in the end. This gives us

1. c′j = Auth(ci, u
−1
i ) (encrypts Xu−1

i ·m)

2. c′′j = c′j ·Ci (encrypts Xu−1
i ·m+vi)

3. c′′′j = Auth(c′′i , ui) (encrypts Xm+ui·vi)

Repeating this k times, at the end, we have c′′′j ∈ R̃QLWEs(∆j ·X
∑
uivi), as desired. Notice that

for each i, the first and the third step are automorphisms, so can compose them and run a single
key switching instead of two. Finally, repeating this d times, we obtain all the d first rows of the
GSW ciphertext encrypting the Xu·v, and it remains to construct the other d rows essentially by
multiplying by −s, as it was done in the GSW key switching in Algorithm 10.

Since the whole algorithm uses k ·d external products and d ·k RLWE automorphisms, the total
cost is 3 · k · d2 · ` NTTs. Notice that k GSW multiplications plus k GSW automorphisms would
cost 7 · k · d2 · ` NTTs, so we are gaining a factor of around 2.33.

4 Bootstrapping

In this section, we show how we can use our circulant GSW scheme to evaluate a bootstrapping
algorithm with polynomial noise overhead and sublinear number of homomorphic operations per
refreshed message.

4.1 Homomorphic Number Theoretic Transform

With a more expressive accumulator in hand, namely, our circulant GSW scheme equipped of Galois
automorphisms and being able to work over Zp, we can finally replace the homomorphic Nussbaumer
transform and the SlowMult algorithm used in [MS18] by the Number Theoretic Transform (NTT)
and a simpler point-wise multiplication.

It is well known that over “cyclic polynomial rings” of the form Rq := Zq[X]/〈XN − 1〉, where
N is a power of two, we can multiply two elements a, z ∈ Rp in time O(N logN) by using the
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Algorithm 12: EvalScalarProd: Evaluate scalar product in the exponent of X

Input: Ks ∈ R̃QGSWd
s(1 · (−s), Es), Kv ∈ R̃QKSds(s(Xv), Ek) for all v ∈ Zp, and for 1 ≤ i ≤ k,

Ci ∈ R̃QGSWd
s(α ·Xmi , Ei) and ui ∈ Zp. All Kv and Ci in double-CRT form.

Output: C′ ∈ R̃QGSWd
s(α ·Xy, E′) where y =

∑k
i=1 ui ·mi mod p.

Complexity: 3 · k · d2 · ` NTTs and O(k · d · `2 · p) products on Zqi .
Noise growth: E 7→ O

(∑k
i=1

(√
dDp · ‖s‖ · Ei

)
+
√
dp ·D · Es +

√
p · ‖s‖ · E1 +

√
p · ‖s‖ ·

√
k + 1 · EKS

)
,

where EKS ∈ O(
√
dp ·D · Ek)

. Consider that ∆i := Qi · Q̂i · αi, where αi = α mod Di
1 Define uk+1 = 1
2 for 1 ≤ i ≤ d do

3 Let ci := rowi(C1) ∈ R̃QLWEs(∆i ·Xm1 , E1)

4 ci = Auth(ci, u1 · u−1
2 mod p) ∈ R̃QLWEs(∆i ·Xm1·u1·u−1

2 , E1 + EKS)

. Let S(j) := u−1
j+1 ·

∑j
i=1 mi · ui mod p

5 for 2 ≤ j ≤ k do

6 ci = ci �Cj ∈ R̃QLWEs(∆i ·XS(j−1)+mj ,
∑j
i=2

(√
dp ·D · Ei

)
+ (E1 + EKS))

7 ci = Auth(ci, uj · u−1
j+1 mod p) ∈ R̃QLWEs(∆i ·XS(j)

,
∑j
i=1

(√
dp ·D · Ei

)
+ E1 +

√
j + 1 · EKS)

. Now, construct the other d rows of the GSW sample

8 for 1 ≤ i ≤ d do

9 Let cd+i := ci �Ks ∈ R̃QLWEs(−∆i ·XS(k)

· s, E)

10 Define C′ ∈ R̃QGSWd
s(α ·XS(k)

, E) such that rowi(C
′) = ci

11 return C′

NTT. For this, assume that p ≡ 1 (mod N), then there exists a primitive N -root of unity ω ∈ Zp.
The NTT is an algorithm that takes a ∈ Rp, interprets it as a polynomial in Zp[X], and, in time
O(N logN), outputs the vector (a(ω0), a(ω1), ..., a(ωN−1)) ∈ ZNp . Now let � : ZN → ZN be the
entyrywise multiplication. Then it holds that

NTT−1 (NTT(a)� NTT(z)) ≡ N · a · z mod 〈XN − 1, q〉.

However, over “negacyclic polynomial rings” of the form R̂p := Zp[X]/〈XN + 1〉, to perform
this multiplication, we first have to multiply the coefficients of a and z by powers of some primitive
2N -root of unity ψ ∈ Zp, then apply the NTT and inverse NTT as usual, and finally multiply by
powers of ψ−1. In more detail, let ψ := (ψ0, ψ, ..., ψN−1) and ψ−1 := (ψ0, ψ−1, ..., ψ−(N−1)), where
ψ is a 2N ’th root of unity as defined above, then

ψ−1 � NTT−1(NTT(ψ � a)� NTT(ψ � z)) ≡ N · a · z mod 〈XN + 1, q〉

Because we now need a 2N -root of unity modulo p, we need p ≡ 1 (mod 2N). Notice that the
NTT is of dimension N , not 2N . In particular, given ψ, the N -th root of unity used by the NTT
can be defined as ω = ψ2 mod p.

This radix-m version of the NTT algorithm recursively splits the N -dimensional input into m
vectors of dimension N

m . Then, after ρ recursive levels, we reach the base case of the recursion
and we apply a quadratic algorithm to compute the NTT of inputs of size N

mρ . Typically, one sets
ρ = logm(N), such that the quadratic step is executed over inputs of size one and are actually void,
obtaining then complexity O(N · logN). However, because the noise overhead of the homomorphic
NTT is proportional to Nρ, we restrict outselves to instantiating the algorithm with small values
of ρ only.
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Algorithm 13: NTT−1
m - Inverse NTT in time O

(
ρ ·N1+ 1

ρ

)
Input: (f0, . . . , fN−1) ∈ ZNp , ρ ∈ Z+, ρ̃ ∈ Z+, where ρ̃ starts at 1, m ∈ Z+ s.t. m | N
Output: NTT−1(f)

1 if ρ = 1 then
2 u = ψ−1N−1 mod p

3 else
4 u = (1, 1, ..., 1) ∈ ZN

5 if ρ̃ = ρ then
. Trivial quadratic algorithm, time O

(
N2
)

6 for 0 ≤ j < N do

7 aj =
∑n−1
i=0 fi · uj · w

−i·j
N mod p

8 else
. General case with recursive calls

9 for 0 ≤ i < m do
10 g =

(
fi, fm+i, ..., fm(N/m−1)+i

)
11 h(i) = NTT−1

m (g, ρ+ 1)

12 for 0 ≤ k1 <
N
m

do
13 for 0 ≤ k2 < m do
14 j = k1 + N

m
· k2

15 aj =
∑m−1
i=0 h

(i)
k1
· uj · w−i·k1

N · w−i·k2
m mod p

16 return (a0, ..., aN−1)

We show radix-m inverse NTT in detail in Algorithm 13, where the multiplication by ψ−1 and
also by the inverse of N modulo p is already included in the last step, so that the output already
corresponds to the product of the two polynomials. We denote an k-th root of unity in Zp by wk.
In the beggining of the algorithm, we start with wN , then all the others roots of unity that appears
in all the recursive calls are just powers of wN .

Number of operations of homomorphic inverse NTT: The time complexity of a radix-
m NTT is standard: the number of operations of lines 7 and 15 can be represented by T (N) =
m · T (N/m) + m ·N . Iterating it ρ times gives us T (N) = mρ · T (N/mρ) + ρ ·m ·N . Finally, we
reach the end of the recursion and the quadratic algorithm is used, thus, replacing T (N/mρ) by
(N/mρ)2, we have T (N) = N2/mρ + ρ · m · N . By choosing m = N1/ρ, we obtain the optimal
complexity:

O

(
ρ ·N ·m+

N2

mρ

)
= O

(
ρ ·N1+ 1

ρ

)
(1)

With this, it is now easy to prove the complexity and noise overhead of the homomorphic
evaluations of this algorithm.

Lemma 6 (Time complexity in terms of homomorphic operations). The homomorphic

evaluation of the inverse NTT, Algorithm 13, of dimension N , can be executed with O
(
N

1+ 1
ρ · ρ

)
homomorphic operations (GSW multiplications and automorphisms).

Proof. The input of the algorithm is a vector of (circulant) GSW ciphertexts encrypting Xfi . To
add each term of the sums shown in lines 7, we just have to apply an automorphism, obtaining
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an encryption of Xfi·uj ·w−i·jn mod p, and one homomorphic multiplication, to accumulate the term in
the partial sum.

For the sum of line 15, we proceed in the same way, by applying the automorphism X 7→ Xw,
where w = uj · w−i·k1

n · w−i·k2
m , then one multiplication.

Thus, in total, we have O
(
N

1+ 1
ρ · ρ

)
homomorphic operations.

Since each GSW multiplication and automorphisms can be implemented with O(d2 · `) NTTs
and O(d · `2 ·p) products on Zqi using our double-CRT instantiation of GSW, we have the following
result.

Corollary 1 (Time complexity in terms of NTTs and modular multiplications). Let
Q =

∏`
i=1 qi be the ciphertext modulus. Let d be the number of CRT digits used in the GSW

ciphertexts. Then the homomorphic evaluation of the inverse NTT, Algorithm 13, of dimension N ,

can be executed with O
(
N

1+ 1
ρ · ρ · d2 · `

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · `2 · p

)
multiplications modulo

qi.

Finally, by assuming that each sum in lines 7 and 15 is implemented with Algorithm 12, we can
have a concrete instead of asymptotic estimation of the number of NTTs.

Lemma 7 (Number of NTTs used the homomorphic inverse NTT). Let Q =
∏`
i=1 qi be

the ciphertext modulus. Let d be the number of CRT digits used in the GSW ciphertexts. Consider
the Algorithm 13 with recursive level ρ, dimension N , and with lines 7 and 15 implemented with the
EvalDotProduct, Algorithm 12. If no ciphertext shrinking is used, then the total number of NTTs
is

3 ·N · d2 · ` ·
(
N

mρ
+ ρ ·m

)
. (2)

If we use shrinking at the end of each recursive call, then the total number of NTTs is

3 ·N2 · d2
ρ · `ρ

mρ
+ 3 ·N ·m ·

(
ρ−1∑
i=0

d2
i · `i

)
+ 4 ·N ·

(
ρ−1∑
i=0

di · `i+1

)
(3)

where dρ and `ρ define the dimension of the input ciphertexts (thus, d = dρ > dρ−1 > ... > d0 and
` = `ρ > `ρ−1 > ... > `0).

Proof. The proof follows trivially by defining a recursive formula for the amount of NTTs per
recursive call, then applying the number of NTTs already given in Algorithm 12. We provide a
detailed proof in Appendix B.

Error growth of the homomorphic inverse NTT: Assuming again that the sums in Algo-
rithm 13 are implemented with the EvalScalarProd (Algorithm 12), we have the following result.

Lemma 8. Consider the homomorphic evaluation of Algorithm 13 on input Ci ∈ R̃QGSWd
s(α ·

Xfi , E), where 0 ≤ i < n. Let Ks ∈ R̃QGSWd
s(1 · (−s), Es) and Kv ∈ R̃QKSds(s(Xv), Ek) be the

keys to compute the sums with Algorithm 12. Moreover, assume that Es is constant. Then, the
noise of the output ciphertexts is bounded by

O
(

(
√
d ·D · p · ‖s‖)ρ ·

√
N · (E + Ek)

)
where ρ is the chosen recursive depth.
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Proof. Algorithm 13 can be divided into three distinct steps:

– The splitting step, where the vectors g passed to the recursive calls are defined. This does not
introduce any additional error.

– The base case of the recursion, where the the NTT is computed with a quadratic algorithm.

– The recombination step, lines 12 to 15.

First consider the base case, where the quadratic step is applied to vectors of dimensionN/mρ. In
this step, each ak is defined as the output of Algorithm 12 on ciphertexts Ci ∈ R̃QGSWd

s(α·Xfi , E).
Thus, by the noise analysis done in Algorithm 12, at the end of the base case, we have GSW
ciphertexts with E(ρ)-subgaussian noise, where

E(ρ) = O

((√
N

mρ
·
√
d · p ·D · ‖s‖

)
· E +

√
dp ·D · Es +

√
N

mρ
· √p · ‖s‖ · EKS

)

where EKS = O(
√
dp ·D · Ek).

Now, for 2 ≤ i ≤ ρ, let E(i) be the subgaussian parameter of the noise of the ciphertexts
used in the recombination step of the i-th recursive level. At this stage, each aj is computed as
an inner product with m coefficients, hence the noise in the output of the i-th recursive level is
E(i−1)-subgaussian, where E(i−1) is obtained by applying the noise growth formula of Algorithm 12
with input noise E(i) and vector dimension equal to m, that is,

E(i−1) = O
(
α · E(i) + β

)
,

where α =
√
m · d ·D · p · ‖s‖ and β :=

√
dp ·D ·Es +

√
p · ‖s‖ ·E1 +

√
p · ‖s‖ ·

√
m ·EKS . Iterating

this formula gives us

E(1) = O(α · E(2) + β) = · · · = O

(
αρ−1 · E(ρ) + β

ρ−2∑
i=0

αi

)
.

By the definition of E(ρ), we have

E(1) = O

(
√
N · (

√
d ·D · p · ‖s‖)ρ · E + αρ−1

(√
dp ·D · Es +

√
N

mρ
· √p · ‖s‖ · EKS

)
+ β

ρ−2∑
i=0

αi

)
.

Finally, by absorbing the lowest terms in the big-Oh notation, assuming that Es is constant, and
recalling that EKS = O(

√
dp ·D · Ek), we obtain

E(1) = O

(
√
N · (

√
d ·D · p · ‖s‖)ρ · E + αρ−1

(√
N

mρ
·
√
d ·D · p · ‖s‖ · Ek

))
= O

(√
N · (

√
d ·D · p · ‖s‖)ρ · (E + Ek)

)
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4.2 Partial decryption using NTT−1
m

Remember that to decrypt (a, b) ∈ R̂QLWEz(m,E), we have to compute b? := b − a · z mod p,
then it holds that b? = e + ∆ · m. Then we can recover each coefficient mi by taking the log p
most significant bits. This step is cheap and easy to perform homomorphically. We call it message
extraction and present it in Section 4.3. In this section, we present an algorithm that evaluates the
main part of the decryption, that is, it uses the homomorphic inverse NTT to compute b?.

The first part of the algorithm computes the forward NTT of a and of b, already scaled by the
vector ψ of powers of a 2N -root of unity, as described in Section 4.1. Then, given ā := NTT(ψ�a)
and the bootstrapping key encrypting z̄ := NTT(−ψ�z), we use GSW automorphisms to compute
the entrywise product ā � z̄ = (ā0 · z̄0, ..., āN−1 · z̄N−1). At this point, we also add NTT(ψ � b).
Finally, we apply the inverse NTT homomorphically to obtain GSW ciphertexts encrypting b?.

Algorithm 14: NTTDec, the homomorphic partial decryption

Input: Encryption c ∈ R̂pLWEz(m,E
(in)). Bootstrapping keys Ki ∈ R̃QGSWd

s(1 ·X−z̄i , E), where
(z̄0, . . . , z̄N−1) := NTT(ψ � z) ∈ ZNp , and key-switching keys for all the Galois autmorphims
ηa : X 7→ Xa. Vectors with powers of 2N -th root of unity ψ in Zp, i.e., ψ = (ψ0, . . . , ψN−1) and
ψ−1 = (ψ0, . . . , ψ−(N−1))

Output: C̄i ∈ R̃QGSWd
s(α ·Xei+∆·mi , E′′) for 0 ≤ i < N

Complexity: O
(
N

1+ 1
ρ · ρ · d2 · `

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · `2 · p

)
products over Zqi

Noise growth: (E,Ek) 7→ E′′ = O
(

(
√
d ·D · p · ‖s‖)ρ · √n · p · (E · ‖s‖+ Ek ·

√
d ·D)

)
1 Parse c as (a, b) ∈ R̂2

p where R̂p = Zp[X]/〈XN + 1〉
2 (a0, ..., aN−1)← ψ � NTT(a) ; . NTT(a) ∈ ZNp
3 (b0, ..., bN−1)← ψ � NTT(b) ; . NTT(b) ∈ ZNp
4 for i ∈ {1, . . . , n} do
5 K̄i = ηāi(Ki) ; . K̄i ∈ R̃QGSWd

ηāi (s)
(1 ·X−āi·z̄i , E)

6 KSηāi (s)→s(K̄i) ; . K̄i ∈ R̃QGSWd
s(1 ·X−āi·z̄i , E′)

7 K̃i = X b̄i · K̄i ; . K̃i ∈ R̃QGSWd
s(1 ·X b̄i−āi·z̄i , E′)

8 (C̄0, ..., C̄N−1) = NTT−1(K̃0, . . . , K̃N−1) ; . C̄i ∈ R̃QGSWd
s(1 ·Xei+∆·mi , E′′)

. E′′ = O
(

(
√
d ·D · p · ‖s‖)ρ ·

√
N · (E′ + Ek)

)

Lemma 9 (Correctness, cost, and noise overhead of NTTDec). Given a ciphertext
c = (a, b) ∈ R̂pLWEz(∆ · m,E(in)), the bootstrapping keys Ki ∈ R̃QGSWd

s(1 · X z̄i , E),
where (z̄1, . . . , z̄N−1) = NTTp(ψ � −z), and the keys used by Algorithm 12, namely Kv ∈
R̃QKSds(s(Xv), Ek) for all v ∈ Z∗p and Ks ∈ R̃QGSWd

s(1 · (−s), Es), where Es is a constant, then

Algorithm 14 outputs GSW encryptions of Xei+∆·mi with E′′-subgaussian noise, where

E′′ = O
(

(
√
d ·D · p · ‖s‖)ρ ·

√
N · p · (E · ‖s‖+ Ek ·

√
d ·D)

)
.

Moreover, Algorithm 14 costs O
(
N

1+ 1
ρ · ρ · d2 · `

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · `2 · p

)
multipli-

cation in Zqi.

Proof. Let c = (a, b) ∈ R̂pLWEz(m,E
(in)), then āi and b̄i are computed with a single NTT each,

thus O(N logN) operations over Zp, in clear. As these operations are not done homomorphically
they do not contribute to the complexity, since the homomorphic operations dominate these.
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In lines 5 and 6, we compute K̄i via GSW automorphism. Since this is done for each i, contributes
a total of 3 ·N · d2 · ` NTTs and O(N · d · `2 · p) modular multiplications.

Then, we perform N plaintext-ciphertext multiplications to add b̄i to the exponent. This costs
zero NTTs and O(N · p · d · `) modular multiplications, thus, it is already dominated by the cost of
the automorphisms.

Finally, we apply the homomorphic inverse NTT, which, by Lemma 6, costs O
(
N

1+ 1
ρ · ρ · d2 · `

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · `2 · p

)
multiplications modulo qi. Thus, it is clear that this step domi-

nates the total cost.

As for the noise overhead, assuming that the ciphertexts defined in line 6 are obtained by
applying the GSW Galois automorphisms defined in Algorithm 11, we have

E′ = O(
√
dp ·D · Es +

√
p · ‖s‖ · E +

√
dp ·D · Ek).

Then, multiplying by X b̄i modulo Xp − 1 only rotates the coefficients of the noise terms, but does
not increase them. Thus, the ciphertexts K̃i also have E′-subgaussian noise.

Finally, by Lemma 8, the homomorphic inverse NTT increases the noise from E′ to

O
(

(
√
d ·D · p · ‖s‖)ρ ·

√
N · (E′ + Ek)

)
. Therefore, using the definition of E′ and simplifying the

expression by ignoring lower terms, we obtain

E′′ = O
(

(
√
d ·D · p · ‖s‖)ρ ·

√
N · p · (E · ‖s‖+ Ek ·

√
d ·D)

)
.

4.3 Message Extraction

After executing Algorithm 14, we obtain ciphertexts of the form C̃ ∈ R̃QGSWd
s(α ·X∆·m+e), and

we want to extract the message m from the exponent, moving it to the coefficient and deleting the
noise term e, i.e., we want to map X∆·m+e to m. This message extraction procedure was introduced
in [DM15] and adapted to different settings in subsequent works [CGGI16,Per21,BIP+22]. Usually,
they assume we are working with negacyclic rings, i.e., modulo XN + 1, and with binary messages,
i.e., m ∈ {0, 1}. Thus, in Algorithm 15, we provide a version of the message extraction algorithm
adapted to the cyclic ring, assuming non binary messages, and also taking care of the scaling factor
α in the gadget matrix.

Lemma 10 (Correctness of MsgExtract). Let the input ciphertext be C̃ ∈ R̃QGSWd
s(α ·

X∆·m+e, E), with ‖e‖ < ∆/2. Let the plaintext space be Zt for some t ≥ 2. Let s ∈ ZN be the
coefficient vector of s. For any function f : Zt → Zt, define the “test polynomial” t(X) ∈ R̃ as

t(X) = X∆/2 ·

∆−1∑
i=0

f(0) ·Xp−i +

2∆−1∑
i=∆

f(1) ·Xp−i + ...+

t∆−1∑
i=(t−1)·∆

f(t− 1) ·Xp−i

 .

Then, Algorithm 15, MsgExtract, outputs an LWE ciphertext LWEps(bQ/te · f(m), E′) ∈ Zp+1
Q ,

where E′ = O(
√
dp ·D · E).
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Algorithm 15: MsgExtract

Input: C ∈ R̃QGSWd
s(α ·X∆·m+e, E), where ∆ = bp/te and |e| < ∆/2. A function f : Zt → Zt

Output: c̄ ∈ LWEQs (bQ/te · f(m), E′) ∈ Zp+1
Q

Complexity: d · ` NTTs and O(`2 · p) products on Zqi .
Noise growth: E 7→ O(

√
dp ·D · E)

1 Let t(X) = X∆/2 ·
∑t−1
i=0

∑∆−1
j=0 f(i)Xp−i∆−j mod Xp − 1

2 Let c̄ = (0, bQ/te · t(X)) ∈ R̃2
Q be a trivial and noiseless encryption of t(X)

3 c′ := (a′, b′) = c�C ; . c′ ∈ R̃QLWEs(bQ/te · t(X) ·X∆·m+e, E′)
4 Let A ∈ Zp×p be the circulant matrix of a′

5 Let b ∈ Zp be the coefficient vector of b′

6 Let u := (1, 0, ..., 0) ∈ {0, 1}p

7 return c̄ = [u ·A,u · b] ; . c̄ ∈ LWEQs (bQ/te · f(m), E′)

Proof. The correctness follows from the standard observation the constant term of g(X) := t(X) ·
X∆·m+e is equal to f(m). This is essentially the same argument used in the extraction algorithms
of [CGGI20,BIP+22]. Thus, by the correctness of the external product, c′ encrypts g(X) such that
g0 = f(m).

The rest of the procedure just extracts from c′ an LWE sample corresponding to the first
coefficient, hence, encrypting g0.

The cost and noise growth are simply given by the external product, Algorithm 8, but with the
number of NTTs divided by two, since the first polynomial in the external product is zero.

4.4 The Bootstrapping Algorithm

With all the sub-constructions in place, we can now fully define the bootstrapping algorithm and
analyze both the complexity and the error growth.

The algorithm takes in N LWE samples ci ∈ LWEQs (∆ · mi) ∈ Zp+1, then packs them into
one RLWE ciphertext c ∈ R̂QLWEz(∆ ·m(X)), where m(X) =

∑
miX

i. It proceeds by modulo
switching c from Q to p and running NTTDec, the partial decryption via homomorphic NTT, which
generates GSW encryptions of X∆′mi+ei . Finally, the messages mi are extracted back into LWE
ciphertexts. The bootstrapping is shown in detail in Algorithm 16.

Algorithm 16: Bootstrap — for plaintext space Zt
Input: ci ∈ LWEQs (∆ ·mi, E

(in)) ∈ Zp+1 for 0 ≤ i < N . All the bootstrapping and key-switching keys used
in Algorithm 14. Any function f : Zt → Zt.

Output: c′i ∈ LWEQs (∆ · f(mi)) ∈ Zp+1 for 0 ≤ i < N
Complexity: -
Noise growth: -

1 (a(1), b(1)) = PackLWE (c0, ..., cN−1) ; . (a(1), b(1)) ∈ R̂QLWEz(∆ ·m(X), E(1))

2 (a(2), b(2)) = ModSwitchQ→p(a
(1), b(1)) ; . (a(2), b(2)) ∈ R̂pLWEz(∆

′ ·m(X), E(2))

3 (C0, . . . ,CN−1) = NTTDec(a(2), b(2)) ; . Ci ∈ R̃QGSWd
s(α ·Xe′i+∆

′·mi , Ē)
4 for 0 ≤ i < N do
5 c′i = MsgExtract(Ci) ; . c′i ∈ LWEQs (f(mi), E

′)

6 return c′0, ..., c
′
N−1
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Lemma 11. Given at most N LWE ciphertexts and the keys described in Lemma 9, Algorithm 16
outputs LWE ciphertexts with E′-subgaussian noise, where

E′ = O
(

(p ·
√
d ·D)ρ+1 · ‖s‖ρ ·

√
N · (E · ‖s‖+ Ek ·

√
d ·D)

)
.

Moreover, it costs O
(
N

1+ 1
ρ · ρ · d2 · `

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · `2 · p

)
multiplication in Zqi.

Proof. The cost is asymptotically dominated by the NTTDec, thus, it follows directly from Lemma 9.
Again from Lemma 9, it holds that the noise of the GSW ciphertexts Ci output by NTTDec

satisfy Ē = O
(

(
√
d ·D · p · ‖s‖)ρ ·

√
N · p · (E · ‖s‖+ Ek ·

√
d ·D)

)
, where E and Ek are the pa-

rameters of the noises from the bootstrapping keys and the key-switching keys, respectively. From
Lemma 10, the final noise is then E′ = O(

√
dp ·D · Ē). Hence, it holds that

E′ = O(
√
dp ·D · (

√
d ·D · p · ‖s‖)ρ ·

√
N · p · (E · ‖s‖+ Ek ·

√
d ·D))

= O
(

(p ·
√
d ·D)ρ+1 · ‖s‖ρ ·

√
N · (E · ‖s‖+ Ek ·

√
d ·D)

)

Corollary 2. The bootstrapping algorithm presented in Algorithm 16 has noise overhead of
Õ(λ1.5+ρ), where λ is the security parameter.

Proof. For a security level of λ bits based on the RLWE problem, we can choose p,N ∈ Θ(λ) and
E,Ek, ‖s‖ ∈ O(1). Since d = O(logQ) = O(log λ) and D is constant, we have

E′ = O
(
λρ+1.5 · (log λ)(ρ+2)/2 ·Dρ+2 · ‖s‖ρ+1

)
= Õ(λ1.5+ρ).

Theorem 1 (Correctness of bootstrapping). For a security parameter λ, let Q = Õ(λ2.5+ρ)
and consider that the input ciphertexts ci ∈ LWEQs (∆ ·mi, E

(in)) ∈ Zp+1 satisfy E(in) = O(Q/λ).
Then, with probability 1− 2−λ, the output of Algorithm 16 is correct, that is, it outputs valid LWE
encryptions of f(mi), with E′-subgaussian noise, where Õ(λ1.5+ρ) = Õ(Q/λ), thus, it is composable.

Proof. From the description of the ring packing algorithm presented in Section 2.10, the parameter
E(1) shown in Algorithm 16 satisfy E(1) = E(in) ·

√
N+
√
nN logQ·ER = O(E(in) ·

√
λ) = O(Q/

√
λ),

where we used n,N, logQ ∈ O(λ) and ER = O(1).
Thus, after modulus switching, by using p = O(λ) and ‖s‖ = O(1), it holds that E(2) =

O(E(1)p/Q+
√
N · ‖s‖) = O(p/

√
λ+
√
N · ‖s‖) = O(p/

√
λ). Therefore, from the noise bound of the

subgaussian distributions, as discussed in Section 2.3, the noise of the packed RLWE ciphertext is
O(E(2)

√
λ) = O(p) with probability 1 − 2−λ, which means it is decryptable. In other words, with

overwhelming probability, the correctness condition of MsgExtract is satisfied, i.e., the restriction
‖e‖ < ∆/2 described in Lemma 10, since there ∆ = bp/te = O(p). Hence, the output indeed
encrypts f(mi).

Moreover, by Corollary 2, the final noise is E′-subgaussian with E′ = Õ(λ1.5+ρ), which is
O(Q/λ), therefore, satisfies the same bound as the input, and thus, the bootstrapping is composable.
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5 Practical Results

Amortized bootstrapping algorithms introduce significant asymptotic gains compared to non-
amortized versions. However, they also introduce some performance overhead by requiring sig-
nificantly larger parameters. As parameters grow, the asymptotic gains start to materialize, but,
at the same time, memory requirements increase sharply to a point in which the implementation
might become prohibitive. This is the problem preventing the [MS18] method from being practical,
and, to a lesser extent, is also an issue in our method.

As such, our primary goal when developing a proof-of-concept practical implementation was to
find the smallest parameter set in which our amortized bootstrapping starts to present practical
gains. At first, we do not consider compression techniques in our search, as they generally would
provide similar advantages and costs for all parameter sets. After defining our parameter sets, we
discuss which compression techniques could be applied and present their gains in Section 5.4.

We implemented our scheme mostly from scratch using Intel HEXL Library [BKS+21] as the
arithmetic backend to provide fast polynomial multiplications. We also adapted some basic functions
from OpenFHE [BBB+22a] and MOSFHET [GBA22] libraries. We benchmarked our implementa-
tion in a m5zn.metal instance on AWS, featuring an Intel Xeon Platinum 8252C CPU at 4.5 GHz
with 192 GB of RAM at 2933 MHz. We use Ubuntu 22.04 and G++ 11.3.0. Compiling options and
further details are available in our repository.

5.1 Non-amortized version

We start with the implementation of the accumulator using the double-CRT CLWE variant of the
GSW scheme described in Section 3. This scheme is as versatile as its cyclotomic counterpart,
working with polynomials of any prime degree p. The main particularity is on how we implement
multiplications modulo Xp− 1. Intel HEXL only provides fast polynomial multiplications based on
the NTT for power-of-two cyclotomic rings R̂ = Z[X]/〈XN ′ + 1〉 while we need multiplications in
R̃ = Z[X]/〈Xp − 1〉. The most straightforward way of implementing them is to evaluate multipli-
cations in R̂ for some N ′ > 2p− 2. In this way, the result has a degree at most (2p− 2) and is not
reduced by the modulus XN ′+1. This method presents two downsides. First, we need to execute the
inverse NTT and manually evaluate the modular reduction Xp− 1 after every multiplication. This
is generally a minor issue, as, usually, these multiplications precede gadget decompositions, which
would already require polynomials to be in coefficient representation. The second issue is that the
size of our NTTs and the point-value representations of our polynomials is now N ′, which is more
than two times our RLWE dimension, p. This increases memory usage and slowdowns our basic
operations proportionally. Optimally, we can choose values for p that are close to the next power
of 2, minimizing the costs to still around two times. In Section 5.4, we discuss alternative ways
of handling these issues that could be more efficient depending on parameters and the arithmetic
backend.

As in a typical double-CRT implementation, we are free to choose the number of primes (`) that
compose the modulus and the number of digits (d) we group them. We use 49-bit primes, based on
the performance recommendations provided by HEXL [BKS+21]. Typically, we would use at least
two primes per digit to reduce the execution time of gadget decompositions at the cost of a higher
noise growth. However, the output noise of our amortized method relies heavily on the size of the
digits (D in Lemma 8), thus requiring us to use just one prime per digit for all parameter sets that
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we tested. Considering this, we decided to optimize our implementation for d = `, although we still
provide all basic functions for d < `.

Table 2 shows the parameter sets and the execution times when evaluating the bootstrap-
ping method defined in [LMK+22]. Their method is essentially the non-amortized version of our
bootstrapping but defined for cyclotomic rings and small modulus. We cannot compare our im-
plementation directly with theirs because they are using small parameters for bootstrapping 4-bit
messages. While there is no intrinsic limitation to using double-CRT with small parameters, it is
generally less efficient than working with binary decompositions. Double-CRT is broadly adopted
in FHE for enabling larger precision and, thus, larger parameters. This is well exemplified in other
cryptosystems [CKKS17,HPS19b]. In [LMK+22], if they wanted to bootstrap larger messages, they
would also eventually need a larger modulus, which would also require double-CRT or some other
technique for high-precision arithmetic.

Table 2: Execution time for the non-amortized bootstrapping. These result represent lower bounds,
since they do not include the key switchings. The parameter n is the dimension of the input LWE
ciphertexts.

# n p N ′ ` d Execution time (ms)

1

512

16381 32768

2 2

2,300
2 32749 65536 5,613
3 12289

32768
2,328

4 15361 2,251
5 1024 12289 4,492

On the other hand, we can compare the cyclotomic and circulant versions of this bootstrapping,
which we do in the first two rows of Table 2. Notice that the use of double-CRT is orthogonal to
the choice of rings. We are measuring performance for our scheme bootstrapping in R̃, but we are
still computing in R̂ in our arithmetic backend. Therefore, our results also approximately represent
the performance of [LMK+22] over cyclotomic rings with dimension N ′ (for large parameters that
require double-CRT). To be precise, the only differences between our implementation and a spe-
cialized one for R̂ would be the absence of the modular reduction Xp−1 and the presence of tricks
[LMK+22] to evaluate automorphisms with even generators. Both should be negligibly inexpensive
and should not affect the comparison.

When implemented over the cyclotomic rings, [LMK+22] needs to deal with the negacyclicity,
which reduces their bootstrapping capabilities. Specifically, it requires a padding bit at the begin-
ning of the message unless they are using the bootstrapping to evaluate an anti-symmetric function,
i.e., f(x+N ′) = −f(x). There are many different methods for avoiding negacyclicity and enabling
a full-domain evaluation [KS21,CLOT21,GBA22], but, so far, all of them introduce slowdowns of
at least 2 times and usually increase the output noise or probability of failure. Our scheme, on the
other hand, naturally avoids negacyclicity. In this way, despite working in double the dimension with
the same execution time, the cyclotomic version has essentially the same bootstrapping capabilities
(assuming p ≈ N ′/2) and, hence, the same performance level when considering the bootstrapping
of arbitrary functions. Considering the particular case where the bootstrapping is used to evaluate
anti-symmetric functions, the negacyclic version is indeed twice as fast, as we would need to use
the parameter set 2 to match their negacyclic bootstrapping capabilities of parameter 1.
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Parameter selection, cleartext space, and bootstrapping capabilities Although imple-
menting and optimizing [LMK+22] to work with double-CRT (with and without CLWE) would
be an interesting contribution per se, our goal with this implementation is to provide a compari-
son baseline for our amortized bootstrapping. As such, we choose parameters that enable similar
bootstrapping capabilities as the ones chosen for the amortized version. In general, bootstrapping
capabilities are solely defined by the three parameters: The output dimension p, the input error
σin, and the output error σout. We consider and choose parameters such that σout is at least a few
times smaller than σin, as one would reasonably expect from any bootstrapping procedure. In this
way, the plaintext space can be defined based only on the first two parameters (p, σin). Specifically,

a k-bit message is correctly bootstrapped with probability erf
(
p/2k+1

σin
√

2

)
, where erf is the Gauss

error function and σin is the input error already mod switched to p. For some fixed dimension p,
the plaintext space is then defined by σin, which, in turn, is defined by the input dimension n and,
in a composed circuit (i.e., when we bootstrap the result of a previous bootstrapping), the key
switching errors introduced to change dimensions from p to n. From these, only the dimension n
affects the bootstrapping, but it is mostly defined by how much noise the key switchings introduce
and, thus, cannot be optimized without considering everything else.

Optimizing plaintext space is generally a complex task, requiring extensive parameter search,
application considerations, and testing [BBB+22b]. In this work, instead of trying to find optimal
parameters to maximize plaintext space, we evaluate the bootstrapping for two dimensions: 512
and 1024. The first is the smallest one that enables us to achieve the 128-bit security level with
p ≈ 214 and a small error σerr = 2. This is the worst-case scenario for our amortized bootstrapping,
as it would enable higher gains in larger dimensions. Notice that, fixing all other parameters, the
execution time increases linearly with the dimension in the non-amortized version but sublinearly
in the amortized one (as our practical results show in Section 5.2). The second dimension is a
much larger one, which enables a modulus of up to 225 bits, giving the key switching noise a lot
of space to grow. The optimal solution for the dimension of the non-amortized version is some in
between these two. However, as Section 5.2 also shows, our amortized bootstrapping is faster than
the non-amortized one even when the first is operating in the largest dimension (1024) and the
latter in the smallest (512). In this way, we show that the amortized version is faster regardless of
what the optimal parameter is for the non-amortized one. Nonetheless, we also did measure the
number of bits we were bootstrapping with our suboptimal parameters. For dimensions n = 512
and n = 1024, respectively, we are able to bootstrap around 4 ∼ 5 and 7 ∼ 8 bits, with error rates
smaller than 1% (calculated based on the measured standard deviation). We tested it both for
the regular bootstrapping (evaluation of the rounding function) and arbitrary functions (functional
bootstrapping [BGGJ19,CJP21]).

5.2 Amortized Bootstrapping

Compared to the non-amortize version, our amortized method introduces one additional restriction
to the choice of parameters: There must exist a 2N -th root of unity modulo p, where N is the
dimension of the RLWE sample packing the input. Table 3 shows some of the possible values of p
for N ∈ [[512, 32768]]. The minimum dimension for each value of p is defined by the security level
of the input ring while the maximum is defined by the existence of a 2N -th root of unity modulo
p. We do not present results for N < 512 because it would be necessary to adapt our scheme to
module-RLWE to achieve the 128-bit security level in these small dimensions. For all parameters,
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we use secret keys sampled from a Gaussian distribution with σs = 3.2 and adjust the noise to the
minimum necessary to achieve at least the 128-bit security level. We refer to Appendix ?? for a
summary of the parameters used in the bootstrapping.

Table 3: List of prime moduli and respective possible input dimensions for the amortized bootstrap-
ping.

p log2(Q)
N

min. max

12289 13.59 512 2048

15361 13.91 512 512

40961 15.32 1024 4096

65537 16.00 1024 32768

INTT Performance The homomorphic evaluation of the INTT (Algorithm 13) is the core and
most expensive procedure in our amortized bootstrapping. Table 4 shows its execution time for
` = d = 4 and ρ = 2, with and without shrinking.

Table 4: Execution time, in milliseconds, for the INTT for ` = 4 and ρ = 2.

p N
Without shrinking With shrinking

Shrinking Speedup
Exec. Time Amortized Time Exec. Time Amortized Time

12289 512 1,639,917 3,203 1,079,466 2,108 1.52

12289 1024 5,416,006 5,289 3,182,273 3,108 1.70

Remark 1 (INTT maximum depth). Our INTT (Algorithm 13) runs in time O
(
N

1+ 1
ρ · ρ

)
. Increas-

ing the maximum depth ρ from 1 (quadratic) to 2 results in a 11 times gain for N = 512 and 16
times for N = 1024. From 2 to 3, gains for both dimensions are just around 1.8 ∼ 2.1 times. After
that, they only continue to decrease. On the other hand, every time we increase ρ, we multiply the
output error by at least

√
dpD ‖s‖ (Lemma 8). The greatest factor in this equation is D, which, by

itself, requires us to use `
d more primes (`) every time ρ increases. Performance, in turn, degrades

cubically in `, which starts in 2 (non-amortized version). Increasing ρ from 1 to 2 increases ` from
2 to 3, introducing a slowdown of 3.4 times. This is significantly below the 11 (or 16 for N = 1024)
times speedup this change enables in the INTT. However, increasing ρ from 2 to 3 enables gains
of up to 2.1 times while increasing ` from 3 to 4 slowdowns the implementation 2.4 times. This
estimate does not consider hidden constants, but we verified it experimentally for our parameters
and concluded ρ = 2 is the optimal value in our case.

Bootstrapping Performance As we move to the complete bootstrapping, we introduce the over-
head of calculating several key switchings, but we also can further optimize the INTT evaluation.
As we defined, it outputs GSW ciphertexts, from which we extract an RLWE and continue to the
message extraction phase of the bootstrapping. A more efficient way of implementing it is to run
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the last recombination step (Lines 12 to 15 in Algorithm 13) already using an RLWE as the accu-
mulator for the summations. Further, we can also initialize the accumulator with the test vector
at the beginning of this last recombination (similarly as introduced in [CGGI16]), which simplifies
the message extraction and reduces the output error. This also allows us to use a smaller modulus,
with ` = 3. Table 5 shows the results for complete bootstrapping, including key switchings, with
ρ = 2.

Table 5: Execution time, in milliseconds, for the amortized bootstrapping. Speedup is over the
fastest parameter of the non-amortized bootstrapping.

p N ` = d Total Time Amortized Time Speedup

12289 512 3 435,024 850 2.71

15361 512 3 445,950 871 2.64

12289 512 4 888,887 1,736 1.32

12289 1024 3 1,415,236 1,382 1.66

12289 1024 4 2,939,374 2,870 0.80

Remark 2 (Bootstrapping with GSW output). We note, however, that this is not a general opti-
mization, since having a bootstrapping with GSW output is also useful for some applications. One
example is in the context of the Functional Bootstrapping [BGGJ19,CJP21], a technique that uses
the bootstrapping to evaluate arbitrary functions represented as lookup tables (LUT) encoded in
the test vector. In this context, the GSW output can be used to evaluate private functions (en-
crypted LUTs), evaluate multivariate functions, and perform the multi-digit evaluation of very large
LUTs [GBA21]. In this case, we refer to the execution times we provided in Table 4, but we also
note these techniques may require different types of key switchings, which would also introduce
some additional computation overhead.

The high memory requirements are certainly the main drawback of our construction, but there
already are several ways of mitigating it. Table 6 shows the detailed memory requirements for
our parameters. Compressed (Compr.) values consider different techniques that we can use to
reduce memory requirements, but that might affect performance. Performance Optimal (Perf. Opt.)
values do not consider any compression techniques, focusing solely on improving performance. Our
implementation and, hence, all execution times we present in this section do not consider the
compression techniques. LWE and Packing key switching keys are not included in this comparison.
The table considers the following techniques:

– Temporary buffer. Our algorithm needs a temporary buffer because it does not calculate the
INTT in place. Instead of having a different buffer for each call of trivial − NTT−1, we can
have a single one shared among them. This restricts parallelization and does not allow memory
from shrunk ciphertexts to be freed.

– State buffer. This is the array of accumulators. To save memory, we can evaluate the INTT
directly over the bootstrapping key. This comes at the cost of having to load the bootstrapping
key before each bootstrapping.

– Automorphism key switching keys. We can use decomposed automorphism calculations, as we
further discuss in Section 5.4.
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Table 6: Memory requirements for p = 12289.
N = 512 N = 1024

` = 3 ` = 4 ` = 3 ` = 4
Perf. Opt. Compr. Perf. Opt. Compr. Perf. Opt. Compr. Perf. Opt. Compr.

Bootstrapping Key 4.5 GiB 4.5 GiB 8.0 GiB 8.0 GiB 9.0GiB 9.0 GiB 16.0 GiB 16.0 GiB

Automorphism key 54.0 GiB 63.0 MiB 96.0 GiB 112.0 MiB 54.0GiB 63.0 MiB 96.0 GiB 112.0MiB

Temporary buffer 2.2 GiB 72.0 MiB 4.0 GiB 128.0 MiB 4.5GiB 72.0 MiB 8.0 GiB 128.0MiB

State buffer 4.5 GiB 0 8.0 GiB 0 9.0GiB 0 16.0 GiB 0

Total 65.3 GiB 4.6 GiB 116.0GiB 8.2 GiB 76.5GiB 9.1 GiB 136.0 GiB 16.2 GiB

5.3 Packing Key Switching

Our bootstrapping capabilities are significantly limited by the amount of error in the RLWE sample
packing our input. As such, it is essential to reduce the error added by the Packing Key Switching
procedure as much as we can. Following the original blueprint of [MS18], we would reduce the
dimension of the output LWE samples at the end of our bootstrapping procedure to the dimension of
our input RLWE. Then, we would just pack these samples at the beginning of a new bootstrapping.
In this way, packing occurs directly in the input dimension. This works well for n = 1024, as we
can have a large modulus accommodating the packing error. However, with n = 512, the modulus
is already p, which supports significantly less noise. In this work, we propose a different strategy
for significantly reducing noise growth in the packing procedure.

1. At the end of the amortized bootstrapping, we reduce the dimension of each LWE sample to an
intermediary one. For our practical implementation with n = 512, we choose it to be 2n = 1024.
We also mod switch to an intermediary modulus chosen according to the security level, in our
case p∗ ≈ 225.

2. At the beginning of the bootstrapping, we pack the LWE samples still in the intermediary
dimension to an RLWE of the same dimension. At this point, we have two options, we can pack
it an RLWE of dimension N = 1024, or to module-RLWE sample with k = 2 and N = 512,
where k is the number of polynomials in the vector a of the module-RLWE scheme. For the
practical implementation, we choose the latter.

3. We reduce the dimension of the RLWE sample using an RLWE key switching.

5.4 Further Improvements

Our implementation is a proof of concept to show that efficient amortized bootstrappings are
practical. As such, we present only the optimizations necessary for achieving this goal. However,
since our method is based on several well-studied and broadly used constructions, many other
promising techniques could be applied to further improve performance. In this section, we briefly
discuss a few of them, leaving their actual implementation as future work. We note that, although we
estimate the impact for some of them using experimental data, we do not present these techniques
in our implementation.

Optimal Parameter Selection We choose parameters in Section 5.1 based on a manual search of
parameters. As we discussed there, a formal parameter search method is necessary to optimize the
size of messages we can bootstrap. The same goes for the key switchings described in Section 5.3.
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Particularly, for our current results, the sequences of key switchings that precede the bootstrapping
are the limiting factor for the message size, as we are obtaining similar error rates for ` = 3 and
` = 4.

Decomposed Automorphisms In [LMK+22], they introduce an efficient way of reducing the
number of automorphism keys by representing the automorphism generators as a product of the
powers of the ring multiplicative generator. In their case, automorphism generators are in Z∗2N , and
they need to map them to ZN/2 × Z2 to obtain a multiplicative generator. In ours, automorphism
generators are in Z∗p for some prime p, so we always have a multiplicative generator of order p− 1.
This technique can reduce the number of automorphism key switching from p down to just dlog2(p)e,
which would reduce the total size of the automorphism keys 877 times for our parameters. In terms
of performance, we estimate a slowdown of around 2 to 3 times. In [LMK+22], they also introduce
the concept of window size, which defines the number of automorphism keys they actually use. In
this way, they are able to provide intermediary solutions, which require larger keys but introduce
less performance overhead.

Reducing the size of NTTs When defining the accumulator for the non-amortized version, we
are able to select values for p that are very close to the next power of two. The same cannot be
done when defining p for the amortized method, as we are further limited by the necessity of a
2n-th root of unity modulo p. If the goal is just to reduce memory usage, we can use the Bluestein
NTT [Blu70], which allows evaluating multiplications directly in R̃. However, Bluestein essentially
turns the transform in a convolution of size 2N , thus not improving itself. In fact, it might introduce
additional overheads to the transform computation. It also requires the existence of p-th roots of
unity modulo the primes Qi, which further limits our parameter selection. Nonetheless, it would
reduce our memory requirements by around two times.
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A Generalization of circulant-LWE encryption

In [BDF18], it was proved that we can use the circulant-RLWE problem to encrypt messages of
the form Xk, that is, powers of X. We now show that by slightly modifying their proof, we can

40

https://eprint.iacr.org/2022/515
https://eprint.iacr.org/2021/1135
https://eprint.iacr.org/2021/1135
https://eprint.iacr.org/2022/198
https://eprint.iacr.org/2022/198


prove that a scheme that encrypts polynomials m(X) whose sum of coefficients is equal to 0 is also
CPA-secure under the RLWE assumption.

Lemma 12. If the decisional Ring-LWE problem is hard for the prime-order cyclotomic polynomial
Φp(X), a modulus Q ∈ Z, and standard deviation σ, then the Circulant-LWE scheme is cpa-secure

for messages of the form m(X) =
∑p−1

i=0 mi ·Xi where m(1) = 0.

Proof. Let SQ,p := {
∑p−1

i=0 aiX
i :
∑p−1

i=0 ai = 0 mod Q}. By Lemma 11 of [BDF18], if the Ring-
LWE problem is hard, then the Circulant-LWE distribution is indistinguishable from the uniform
distribution over S2

Q,p. Now, notice that for any ∆ ∈ Z and b ∈ SQ,p, if we define c = b + ∆ ·m,
then we have

p−1∑
i=1

ci =

p−1∑
i=1

bi +∆

p−1∑
i=1

mi = 0 mod Q.

Thus, SQ,p +∆m = SQ,p. Therefore, the circulant-LWE encryption of m is indistinguishable from
a uniformly random sample from SQ,p × (SQ,p +∆m) = S2

Q,p.

Now, notice that the secret key of the Circulant-LWE scheme is obtained by projecting the
secret s̄ from the RLWE to s = L((1 − X)s̄) ∈ SQ,p, therefore, it satisfies s(1) = 0. Moreover,
applying automorphisms to s modulo Xp − 1 only reorder the coefficients, so, if s(k)(X) := s(Xk),
we also have s(k)(1) = 0, therefore, encrypting s(k)(X) for any k is secure and we conclude that it
is safe to publish the key-switching keys from s to s(k). Finally, in Algorithm 11, we also need to
encrypt a product s · z, but both keys are also CLWE secrets, thus, we still have s(1) · z(1) = 0.

B Number of NTTs in homomorphic inverse NTT

Let T (N) be the number of NTTs over Zqi that are executed during the homomorphic evaluation
of the inverse NTT, Algorithm 13. Firstly, let’s consider that no ciphertext shrinking is used, so d
and ` are constant in all the recursive levels. We can see that T (N) = m · T (N/m) +R(N) where
m·T (N/m) accounts for the m recursive calls on vectors of dimension N/m and R(N) is the number
of NTTs of the recombination step. Assuming that the sums are implemented with EvalScalarProd,
Algorithm 12, which cost 3 ·m · d2 · ` NTTs, we have R(N) = N · (3 ·m · d2 · `) = 3 ·N ·m · d2 · `.
Therefore,

T (N) = m · T (N/m) + 3 ·N ·m · d2 · `.

Iterating this up to ρ recursive levels, we have

T (N) = m · T (N/m) + 3 ·N ·m · d2 · `
= m · (m · T (N/m2) + 3 · (N/m) ·m · d2 · `) + 3 ·N ·m · d2 · `
= m2 · T (N/m2) + 3 · 2 ·N ·m · d2 · `

=
...

= mρ · T (N/mρ) + 3 · ρ ·N ·m · d2 · `

Then, we run the homomorphic quadratic inverse NTT on dimension N/mρ. Since on dimension
k, this algorithm executes k times the homomorphic scalar product of dimension k, its cost is
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k · (3 · k · d2 · `). Therefore, using k = N/mρ, the total number of NTTs is

T (N) = mρ · 3 · (N/mρ)2 · d2 · `+ 3 · ρ ·N ·m · d2 · ` = 3 ·N · d2 · ` ·
(
N

mρ
+ ρ ·m

)
.

To generalize this analysis to the case where shrinking is used, let’s assume that we shrink the
ciphertexts at the end of each recursive call. Thus, considering that we have recursive depth ρ, we
have different dimensions and number of primes, di and `i for 0 ≤ i ≤ ρ, where `ρ is the number of
primes that we have in the very beginning (thus, dρ > dρ−1 > ... > d0 and `ρ > `ρ−1 > ... > `0).

Now, the formula for the number of NTTs becomes

T (N, i) = m · T (N/m, i+ 1) + 3 ·N ·m · d2
i · `i + 4 ·N · di · `i+1

where the last term, 4 · N · di · `i+1, accounts for the number of NTTs executed by the shrink-
ing algorithm to switch from dimension (di+1, `i+1) to (di, `i) the n ciphertexts output by the m
recursive calls.

By starting with i = 0 and iterating ρ times again, we have

T (N, 0) = m · T (N/m, 1) + 3 ·N ·m · d2
0 · `0 + 4 ·N · d0 · `1

= m2 · T (N/m2, 2) + 3 ·N ·m · d2
1 · `1 + 4 ·N · d1 · `2 + 3 ·N ·m · d2

0 · `0 + 4 ·N · d0 · `1
= m2 · T (N/m2, 2) + 3 ·N ·m ·

(
d2

1 · `1 + d2
0 · `0

)
+ 4 ·N · (d1 · `2 + d0 · `1)

=
...

= mρ · T (N/mρ, ρ) + 3 ·N ·m ·

(
ρ−1∑
i=0

d2
i · `i

)
+ 4 ·N ·

(
ρ−1∑
i=0

di · `i+1

)
Now, using 3·(N/mρ)2 ·d2

ρ ·`ρ for the number of NTTs of the quadratic step, i.e., T (N/mρ, ρ), the
total number of NTTs used in the homomorphic inverse bootstrapping with one layer of shrinking
after each recursive level is

T (N, 0) =
3 ·N2 · d2

ρ · `ρ
mρ

+ 3 ·N ·m ·

(
ρ−1∑
i=0

d2
i · `i

)
+ 4 ·N ·

(
ρ−1∑
i=0

di · `i+1

)

C Glossary of parameters used in this work

Parameter Description Size
λ Security level –
n Dimension of LWE samples O(λ)
N Degree of RLWE samples (XN + 1). Power of two. O(λ)
p Degree of CLWE samples (Xp − 1). Prime. O(λ)
ρ Recursive depth of the bootstrapping algorithm –
qi Prime factor of ciphertext modulus Q < 250

Q Ciphertext modulus defined as
∏`

1=1 qi Õ(λ1.5+ρ)
` Number of prime factors of Q O(ρ · log λ)
t Plaintext modulus O(1)
d Dimension of GSW ciphertexts. Number of CRT digits O(`)
Di Each CRT digit. Product of approx. `/d primes. O(qi · `/d)
D Upper-bound on the size of the CRT digits max(D1, ..., Dd)
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