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Abstract. The learning with errors (LWE) assumption is a powerful
tool for building encryption schemes with useful properties, such as plau-
sible resistance to quantum computers, or support for homomorphic com-
putations. Despite this, essentially the only method of achieving thresh-
old decryption in schemes based on LWE requires a modulus that is
superpolynomial in the security parameter, leading to a large overhead
in ciphertext sizes and computation time.
In this work, we propose a (fully homomorphic) encryption scheme that
supports a simple t-out-of-n threshold decryption protocol while allowing
for a polynomial modulus. The main idea is to use the Rényi divergence
(as opposed to the statistical distance as in previous works) as a mea-
sure of distribution closeness. This comes with some technical obstacles,
due to the difficulty of using the Rényi divergence in decisional security
notions such as standard semantic security. We overcome this by con-
structing a threshold scheme with a weaker notion of one-way security
and then showing how to transform any one-way threshold scheme into
one guaranteeing semantic security.

1 Introduction

In a public key encryption (PKE) scheme, one needs the secret key sk to decrypt
an encrypted message. Giving one single party control of the whole secret key can
be seen as a single point of failure. The study of PKE with threshold decryption
aims to mitigate this by splitting the secret key into n key shares sk1, . . . , skn,
such that several key shares are needed to be able to decrypt ciphertexts. In
the common t-out-of-n setting, any set of t parties or fewer learns no infor-
mation about encrypted messages, while any set of t + 1 parties can jointly
decrypt ciphertexts. To decrypt, the parties first compute their own partial de-
cryption shares and then combine them together to recover the encrypted mes-
sage. When t = n− 1, we call it full-threshold decryption.

Recently, NIST announced the standardization of the first cryptosystems to
provide security even in the presence of quantum computers.1 Among the final-
ists to be standardized, a majority base their security on the presumed hardness
of (structured) lattice problems, such as Dilithium [Lyu+20] and Kyber [Sch+20]
1 https://csrc.nist.gov/projects/post-quantum-cryptography
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based on the (module) learning with errors problem (Module-LWE) [LS15].
NIST also just begun a project on threshold cryptography,2 which aims to pro-
duce guidelines and recommendations for implementing threshold cryptosystems.

It is thus a very important research question to study the possibility of
thresholdizing lattice-based PKE schemes. This line of research has been ini-
tiated by [BD10], where they proposed a threshold key generation and decryp-
tion starting from Regev’s encryption scheme [Reg05]. To split the secret key
they use replicated secret sharing, which has a complexity that scales with

(
n
t

)
.

Later, it has been shown that we can even build full-threshold decryption for
fully-homomorphic encryption (FHE) schemes [Ash+12]. Their results have then
been extended to t-out-of-n threshold and other access structures [Bon+18].

All works above have in common that they use a technique called noise flood-
ing to guarantee that partial decryption shares don’t leak any information on the
underlying secret key. More precisely, each party first computes a “noiseless” par-
tial decryption of a ciphertext using their secret key share. The noiseless partial
decryptions allow recovering the message, but also reveal a small noise term ect

that depends on the given ciphertext and the secret key. To prevent this leakage,
every party locally adds some fresh noise on their decryption share before they
jointly combine the necessary number of shares to recover the message. After
decryption, the revealed noise term becomes ect +e

′, where e′ ← Dflood is a noise
term that is hidden to the adversary. When proving security, the real partial
decryption shares are replaced by simulated ones which do not depend on the
secret key, and instead reveal noise terms of the form e′ ← Dflood. By arguing
that the statistical distance between both ways of deriving partial decryption
shares is negligible, one can argue security. While this approach has the advan-
tage of being rather simple, it has the drawback of requiring the ratio between
the flooding noise and the size of the ciphertext noise ect to be superpolyno-
mial in the security parameter. This in turn requires the LWE problem to be
secure with a superpolynomial modulus-to-noise ratio, which weakens security
and requires larger LWE parameters to compensate.

Recently, multi-party reusable non-interactive secure computation (MrNISC)
was constructed from LWE with a polynomial modulus [Ben+21; Shi22]. This
leads to a construction of full-threshold (multi-key) FHE with a polynomial
modulus. It seems plausible that their construction can also be extended to build
t-out-of-n threshold FHE with polynomial modulus; however, their techniques
are very complex, due to a non-black-box “round-collapsing” technique based on
garbled circuits, so unlikely to be practical. We thus started our work asking the
following research question:

Is it possible to construct a fully-homomorphic encryption scheme that
supports a simple t-out-of n threshold decryption while allowing for a
polynomial modulus?

2 https://csrc.nist.gov/Projects/threshold-cryptography
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Our Results. We give a positive answer to this question. From a high level
perspective, we show that the simple threshold decryption technique from previ-
ous works [BD10; Bon+18] can be significantly improved by replacing the noise
flooding analysis with respect to the statistical distance by one with respect to
the Rényi divergence.

Doing so comes with the benefit of only requiring a polynomial ratio between
ciphertext and flooding noise, hence allowing for the desired polynomial modu-
lus. However, it does come at the expense of two new obstacles. First, the Rényi
divergence fits well in search-based security notions, such as OW-CPA security3,
but does not work well with decision-based security notions, such as the stan-
dard IND-CPA security. Second, the resulting parameters now depend on the
number of partial decryption queries made by an adversary within the security
game. More precisely, the modulus q scales as O(

√
`), where ` is the number of

queries, and thus a polynomial modulus can only be achieved if we restrict the
number of partial decryption queries to be polynomially-bounded in advance.

To overcome the first technical challenge, we introduce the notion of OW-CPA
security for threshold encryption schemes, and provide two different ways to
transform a OW-CPA threshold scheme into one that guarantees IND-CPA secu-
rity.4 Whereas the first transformation only applies to standard PKE and is in
the random oracle model, it comes with the advantage of guaranteeing a form of
robustness against up to tmalicious parties, with no extra cost. The second trans-
formation is in the standard model and also applies to the fully-homomorphic
setting, but does not give robustness.

Concurrent work. Concurrently to our work, [Cho+22] has used the Rényi diver-
gence to obtain threshold FHE from LWE with a polynomial modulus-to-noise
ratio, similarly to our result. By arguing that the public sampleability property
applies in their setting, they directly used the Rényi divergence to prove IND-CPA
security. Note that their work focuses on a specific construction of TFHE based
on Torus-FHE, whereas our results are phrased generically for all encryption
schemes with nearly linear decryption. Also, they focus on linear integer secret
sharing schemes, whereas we additionally propose pseudorandom secret sharing
and different ways of achieving robustness.

Related Work. The Rényi divergence has seen widespread use in security proofs
in lattice-based cryptography, since [Bai+18]. Replacing statistical noise flooding
by Rényi noise flooding has led to a significant improvement in parameters for
security reductions, for instance when proving the hardness of (structured) LWE
with a binary secret [Bou+20] or more recently, in the context of lattice-based
threshold signatures [ASY22]. The latter work of [ASY22] is quite similar to ours,

3 OW-CPA security for PKE says that given the public key and an encryption of a
random message m, it is hard to guess m.

4 For the case of TFHE, our definition of IND-CPA is slightly weaker than previous
notions, which require partial decryptions to be statistically simulatable. Our game-
based notion still captures the security properties needed in most applications.
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since they also apply Rényi noise flooding to threshold FHE; however, they do
not directly prove security of the threshold FHE scheme, and instead analyze
the resulting threshold signature scheme directly (which is based on a search
problem, so amenable to a Rényi divergence analysis). They additionally show
the optimality of their noise flooding by providing an attack when a smaller
noise flooding ratio is used. As the attack uses that their signature scheme is
deterministic, it does not (directly) apply to our randomized encryption scheme.

In an independent line of work, another noise flooding technique, called gen-
tle noise flooding, has been studied in order to avoid the superpolynomial pa-
rameter blow-up [BD20a]. It was first used in theoretical hardness results on
entropic (structured) LWE [BD20a; BD20b]. Later, a similar technique was used
in [Cas+22] for improving parameters in additively homomorphic encryption
with circuit privacy. The setting of [Cas+22] is quite different to ours, however,
since with circuit privacy, the challenge is to deal with leakage on a plaintext
rather than the secret key. This is handled via gentle noise flooding by applying
a randomized encoding to the plaintext, so that leaking a constant fraction of its
coordinates does not reveal anything about the plaintext. A similar technique
does not seem to work in the threshold setting, with leakage on the secret key.

Another approach to build threshold key generation and decryption protocols
is to use general multi-party computation tools like garbled circuits. This was
done in [Kra+19] for a Ring-LWE based scheme. Their solution does not need
any noise flooding or increased parameters of the underlying scheme, however,
it relies on generic multi-party computation techniques like garbled circuits,
and the partial decryption shares are generated using an expensive, interactive
protocol rather than non-interactively as in our setting.

What about IND-CCA security? We could likely upgrade our construction (for PKE)
to be IND-CCA secure using non-interactive zero-knowledge proofs, similarly
to [Dev+21]. However, note that IND-CCA security is not possible for homomor-
phic encryption, and IND-CPA is still useful for standard PKE; indeed, [HV22]
showed that an IND-CPA secure KEM suffices to prove security of TLS-1.3. Fur-
thermore, when running TLS with ephemeral keys and no key re-use, the adver-
sary only ever sees a single ciphertext under any public key — this is an ideal
use-case for using our construction in a threshold post-quantum TLS setting
(e.g. for hardening security of a TLS server), since we only need to choose the
parameters to be secure against a single decryption query.

1.1 Overview of Techniques

Constructing full-threshold OW-CPA-secure TFHE. To simplify the presentation
in the introduction, we first describe our construction from Section 5 in the full-
threshold setting and then explain how to get t-out-of-n threshold. As a starting
point, we take any encryption scheme whose decryption function is nearly linear,
as is the case for most LWE-based encryption schemes (including FHE). That
is, for a given ciphertext ct on a message m with respect to a key pair (sk, pk),

4



it holds that 〈sk, ct〉 = m + ect, where ect is what we earlier called decryption
noise and depends on the ciphertext and the secret key.5

To achieve threshold decryption, we use standard additive secret sharing
to split the secret key into sk1, . . . , skn in a setup phase. By linearity, we could
simply set the partial decryption shares as d̃i = 〈ct, ski〉, and use these for recon-
struction. However, after summing all shares together, the parties recover ect,
which leaks information on sk. As in previous threshold solutions for lattice-
based schemes, to compute their decryption share di every party now locally
adds to d̃i a noise term ei which is sampled from the noise flooding distribu-
tion Dflood. When summing those partial decryption shares together, the parties
learn m+ ect +

∑n
i=1 ei.

Now, consider an adversary who learns up to n− 1 secret key shares ski, and
then the missing partial decryption for a batch of ciphertexts. For security, we
want to guarantee that the scheme is still secure in the presence of this leakage.
In previous works, when Dflood is superpolynomially larger than the maximum
value of ect, it is argued that the partial decryptions can be simulated in a way
that is statistically indistinguishable. Unfortunately, when Dflood is polynomially
bounded, this no longer holds, since the statistical distance is large.

Using the Rényi divergence instead of statistical distance, the probability
preservation property allows us to reason about the probability of a bad event
happening in two different games. Roughly speaking, this says that if D1, D2 are
distributions such that the Rényi divergence of D1 from D2 is at most δ, then
for any event E, it holds that Pr[D1(E)] ≤ (Pr[D2(E)] · δ)c, for some constant c
close to 1. If the event E occurs with negligible probability in game D2, then we
can get by with a polynomial-sized δ to argue the same holds in D1. However,
this is inherently hard to make use of in distinguishing games like IND-CPA,
where probabilities of winning are close to 1/2.

Instead of IND-CPA security, we can aim for OW-CPA security, which is easier
to manage with the Rényi divergence. When defining OW-CPA in the threshold
setting (see Section 3), the main difference is that the adversary also obtains n−1
shares of the secret key and has access to a bounded number of partial decryption
queries. In the security proof, we will modify the security experiment such that
in a first step, the answers to the partial decryption queries no longer depend
on the underlying secret key sk, and in a second step the secret key shares are
also independent of sk. In this case, OW-CPA security of the threshold scheme is
implied by the OW-CPA security of the underlying standard encryption scheme.
We simulate the partial decryption terms ect +

∑n
i=1 ei by sampling some in-

dependent noise e′ ← Dsim. As long as the Rényi divergence between the two
noise distributions is bounded by a constant, we can appeal to the probabil-
ity preservation property, and the negligible probability of some PPT adversary
guessing the message is preserved in both games. Note that previous works al-
ways chose Dsim = Dflood, but we later exploit in Section 6 that choosing a
different Dsim can lead to better parameters.

5 Actually, it only reveals an encoding of m, which is easy to decode as long as pa-
rameters are set accordingly.
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From full-threshold to t-out-of-n threshold. When moving to the t-out-of-n set-
ting, a natural choice is to use Shamir secret sharing instead of additive sharing.
However, this leads to the problem that reconstruction is no longer addition, and
instead requires multiplying the partial decryptions with Lagrange interpolation
coefficients. These coefficients may be large, which in turn blows up the noise,
breaking correctness. We offer two different solutions to this issue.

First, as in [Bon+18], we can use a special type of linear secret sharing scheme
with binary coefficients, so that reconstruction is always a simple sum. Efficient
threshold schemes with this property exist, for any n, t. We also consider a sec-
ond method based on pseudorandom secret sharing [CDI05], which allows the
parties to generate sharings of bounded, pseudorandom values without interac-
tion. This uses replicated secret sharing, which is more expensive, but on the
other hand, allows the partial decryptions to be converted into Shamir sharings
before reconstruction. This leads to smaller partial decryptions, slightly better
parameters and gives a form of robustness via Shamir error correction.

From OW-CPA to IND-CPA security, Transform 1. Our first transformation (Sec-
tion 4.1) can be seen as the generalization of an existing OW-CPA to IND-CPA
transformation in the random oracle model [HHK17] to the threshold setting.
The main idea is to use the OW-CPA-secure scheme to encrypt random mes-
sages. The vector x composed of those random messages then serves as input to
a random oracle F, whose output hides the message m we are about to encrypt.
By appending the output of a second and independent random oracle G queried
on the same vector x, we make sure that no adversary can provide incorrect de-
cryption shares without getting caught. To this end, we define in Section 3.2 two
new notions of robustness for (passively secure) threshold public key encryption,
which might be of independent interest. The length of the vector x provides
a trade-off between the security loss of the reduction and the compactness of
ciphertexts.

From OW-CPA to IND-CPA security, Transform 2. Whereas the reduction from
above is simple and tight, it has the disadvantage of needing a random or-
acle to mask the message m. When we consider threshold decryption in the
fully-homomorphic setting, we need to make sure that we can homomorphically
evaluate ciphertexts. However, the use of the random oracle makes such an eval-
uation impossible, as there is no efficient circuit description of random oracles.
We thus propose in Section 4.2 a second transformation which now is in the
standard model (but does not give robustness).

The high level idea to encrypt a message m of δ bits, is to sample a random
message x and to encrypt it using the OW-CPA-secure scheme. Then, the message
bits are hidden by δ hard-core bits coming from a concatenation of δ Goldreich-
Levin extractors. We use the notion of unpredictable entropy to give a bound
on how many pseudorandom bits can be extracted from this construction. The
notion of unpredictable entropy has been introduced and studied by Hsiao et
al. [HLR07] in the context of conditional computational entropy. We say that a
message x has unpredictability entropy γ + ε′ for some ε′ > 0 if for any PPT
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adversary A the probability of finding x given Enc(pk, x) is at most 2−γ+ε
′
. We

can then use existing results that show that a concatenation of δ Goldreich-
Levin extractors can be used to extract γ − ε′ − O(polylog(γ)) pseudorandom
bits, where γ is the bit size of the message x. Those pseudorandom bits then
allow us to encrypt a message such that the ciphertexts of two given messages
are computationally indistinguishable.

Sample Parameters and Security Analysis. We conclude our work by discussing
in Section 6 how to choose concrete sample parameters for our threshold PKE
scheme, when instantiating it with the lattice-based scheme Kyber [Sch+20].

As an example, to obtain 1-out-of-2 threshold decryption with a single query
(e.g. for ephemeral key exchange), we can use the same parameters as Kyber1024
with a modulus increased only by a factor of 5, while supporting > 100 bits of
classical hardness from our reduction. In a setting with up to 232 queries, we
need to use a 39-bit modulus and slightly larger module rank; this increases the
ciphertext size by around 5x.

Finally, we show in Section 6.2 that using the Rényi divergence leads to
almost optimal parameters by providing an attack if the adversary gets access
to slightly more partial decryptions.

2 Preliminaries

For any positive integer q, we denote by Zq the integers modulo q and for any
positive integer n, we denote by [n] the set {1, . . . , n}. Vectors are denoted in
bold lowercase and matrices in bold capital letters. The identity matrix of or-
der m is denoted by Im. The concatenation of two matrices A and B with the
same number of rows is denoted by [A|B]. The abbreviation PPT stands for
probabilistic polynomial-time. When we split a PPT adversary A in several sub
algorithms (Ai)i, we implicitly assume that Ai outputs a state that is passed to
the next Ai+1. We call a function negl(·) negligible in λ if negl(λ) = λ−ω(1), i.e.,
it decreases faster towards 0 than the inverse of any polynomial.

Throughout the paper we make use of the random oracle model (ROM), where
we assume the existence of perfectly random functions, realized by oracles. For
a random oracle F : {0, 1}n → {0, 1}m it holds that Pr[F(x) = y] = 2−m and
that Pr[F(x) = F(x′) : x 6= x′] = Pr[F(x) = y] · Pr[F(x′) = y] = 2−2m. Hence,
random oracles are per definition collision resistant. For x, y ∈ {0, 1}n we denote
by x⊕ y the bit-wise XOR operator.

2.1 Probability and Entropy

For a finite set S, we denote its cardinality by |S| and the uniform distribution
over S by U(S). The operation of sampling an element x ∈ S according to a
distribution D over S is denoted by x← D, where the set S is implicit.

For standard deviation σ > 0 and mean c ∈ R, we define the continuous
Gaussian distribution Dσ,c : R → (0, 1] by Dσ,c(x) = 1/(σ

√
2π) · exp(−(x −
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c)2/(2σ2)). We also define the rounded Gaussian distribution over Z, by rounding
the result to the nearest integer, and denote this by bDσ,ce.

A random variable X over R is called τ -subgaussian for some τ > 0 if for
all s it holds E[exp(sX)] ≤ exp(τ2s2/2). A τ -subgaussian random varable sat-
isfies E[X] = 0 and E[X2] ≤ τ2. We associate to X the width σ =

√
E[X2].

The continuous Gaussian distribution Dσ and its rounded version bDσe are σ-
subgaussian. Further, the uniform distribution over [−a, a]∩Z is a-subgaussian.

The statistical distance between two probability distributions X and Y , de-
noted by sdist(X,Y ), is defined as maxT |Pr[T (X) = 1]− Pr[T (Y ) = 1]|, where T
is any test function. The computational distance, denoted by cdist(X,Y ), takes
the maximum only over test functions which can be described by circuits of
size poly(λ), where λ is the security parameter. For any event E, the probability
preservation property of sdist (resp. cdist) states that X(E) ≤ Y (E)+sdist(X,Y )
(resp. X(E) ≤ Y (E) + cdist(X,Y )).

Definition 2.1 (Unpredictable Entropy). For a distribution (X,Z), we say
that X has unpredictable entropy at least k conditioned on Z, if there exists
a collection of distributions YZ (giving rise to a joint distribution (Y,Z)) such
that cdist((X,Z), (Y,Z)) ≤ ε, and for all circuits C of size poly(λ),

Pr[C(Z) = Y ] ≤ 2−k.

We write Hunp
ε (X|Z) ≥ k.

Definition 2.2 (Concatenated Goldreich-Levin Extractor). Fix n, δ ∈ N.
We define the concatenated Goldreich-Levin extractor E : {0, 1}n× ({0, 1}n)δ →
{0, 1}δ × ({0, 1}n)δ as

E(x, s1, . . . , sδ) := (〈x, s1〉 mod 2, . . . , 〈x, sδ〉 mod 2, s1, . . . , sδ).

Lemma 2.3 ([HLR07, Lem. 9 & Sec. 4.2]). Let X be a distribution with
unpredictable entropy Hunp

ε (X|Z) ≥ k and let E be the concatenated Goldreich-
Levin extractor for some n, δ ∈ N. If k = δ + O(log2 1/ε), then E extracts δ
pseudorandom bits, i.e.,

cdist
(
(Z, E(X,U({0, 1}nδ))), (Z,U({0, 1}δ × {0, 1}nδ))

)
≤ 5ε.

For ε = 2−polylog(n), the lemma above yields k = δ +O(polylog(n)).
The Rényi divergence (RD) defines an alternative measure of distribution

closeness. We follow [Bai+18] and use a definition of the RD which is the expo-
nential of the classical definition. We restrict the order a to be in (1,∞).

Definition 2.4 (Rényi Divergence). Let P and Q be two discrete probability
distributions such that Supp(P ) ⊆ Supp(Q). For a ∈ (1,∞) the Rényi divergence
of order a is defined by

RDa(P,Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.
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The definitions are extended in the natural way to continuous distributions.
We recall some useful properties of the RD. The first two were proven in [EH14]
and the last one was proven in [Ros20, Prop. 2].

Lemma 2.5. Let P,Q be two discrete probability distributions with Supp(P ) ⊆
Supp(Q). For a ∈ (1,∞), it yields:

Data Processing Inequality: RDa(g(P )‖g(Q)) ≤ RDa(P‖Q) for any func-
tion g, where g(P ) (resp. g(Q)) denotes the distribution of g(y) induced by
sampling y ← P (resp. y ← Q).

Probability Preservation: Let E ⊂ Supp(Q) be an event, then for a ∈ (1,∞)

Q(E) · RDa(P‖Q) ≥ P (E)
a

a−1 .

Multiplicativity: Let P,Q be two probability distributions of a pair of random
variables (Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal dis-
tribution of Yi under P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1)) denote
the conditional distribution of Y2 given that Y1 = y1. Then for a ∈ (1,∞)

RDa(P‖Q) ≤ RDa(P1‖Q1) · max
y1∈Y1

RDa(P2|1(·|y1)‖Q2|1(·|y1)).

The Rényi divergence of two shifted Gaussians is given below. This also allows
us to bound the RD of rounded Gaussians by the data processing inequality.

Lemma 2.6 ([GAL13]). Let σ be a positive real number and c ∈ Z. Then
for a ∈ (1,∞) it yields

RDa(Dσ,c‖Dσ) = exp

(
ac2

2σ2

)
.

We provide the proof of the following lemma in Appendix A.1.

Lemma 2.7. Let D1, D2 be two probability distributions over Z and e1, . . . , eN
be (possibly dependent) random variables over Z ∩ [−B,B] for some B ∈ Z, for
which there exist a ∈ (1,∞) and ρ ≥ 1 such that for all β with |β| ≤ B, it holds
that Supp(D1 + β) ⊆ Supp(D2), and furthermore, RDa(D1 + β‖D2) ≤ ρ. Then,

RDa((D1 + eN , . . . , D1 + e1)‖DN
2 ) ≤ ρN .

2.2 Linear Secret Sharing

We use linear secret sharing schemes (LSSS) for monotone access structures with
a special {0, 1}-reconstruction property, as follows.

Definition 2.8 (Monotone Access Structure). Let P = {P1, . . . , Pn} be a
set of parties and 2P its power set. A monotone access structure is a collection
of sets A ⊂ 2P , such that for any S ∈ A, if T ⊃ S then T ∈ A. We say that A
is efficient if membership of A can be verified in time poly(λ), where A is viewed
as a function of λ.
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In this work, we only consider efficient access structures. To ease notation,
we identify a party Pi with its index i, viewing each set S ∈ A as a subset of [n].
For any S ⊂ [n] and vector v = (v1, . . . ,vn), we let v|S denote the vector of
shares restricted to vi for indices i ∈ S.

Definition 2.9 (Linear Secret Sharing Scheme). Let q, L, n be positive
integers and A a monotone access structure. A linear secret sharing scheme LSSS
for A is defined by a randomized algorithm Share : Zq → (ZLq )n and a family of
deterministic algorithms RecS : (ZLq )|S| → Zq, for S ⊆ [n], which satisfy:

Privacy: For any set S /∈ A, any x, x′ ∈ Zq and v ∈ ZL|S|q , it holds that Pr[Share(x)|S =
v] = Pr[Share(x′)|S = v].

Reconstruction: For any set S ∈ A, any x ∈ Zq and v = Share(x), the recon-
struction algorithm outputs RecS(v|S) = x.

Linearity: For any α, β ∈ Zq, any set S with |S| > t and any share vectors u,v,
it holds that RecS(αu|S + βv|S) = αRecS(u|S) + βRec(v|S).

When the set of shares is S = [n], we write Rec instead of Rec[n].

We need the following notion of valid and invalid share sets [Bon+18].

Definition 2.10. Let x ∈ Zq, (v1, . . . ,vn) = Share(x), and write vi = (vi,1, . . . ,vi,L).
A set of pairs of indices T ⊆ [n] × [L] is an invalid set of share elements if the
corresponding shares (vi,j)(i,j)∈T reveal no information about x. Otherwise, we
say that T is a valid set of share elements. We additionally say:

– T ⊆ [n] × [L] is a maximal invalid set of share elements if it is invalid,
but for any (i, j) ∈ [n] × [L] \ T , the set T ∪ {(i, j)} is a valid set of share
elements.

– T ⊆ [n]× [L] is a minimal valid set of share elements if it is valid, but for
any T ′ ( T , the set T ′ is an invalid set of share elements.

Note that in any LSSS, a valid set as defined above always allows reconstruc-
tion of the secret x. This is because an LSSS can equivalently be defined by a
matrixM , such that each share element vi,j is computed as the inner product of
some row of M and (x, r1, . . . , rn−1), where r is the randomness used in Share.
Reconstruction is possible for a given set of share elements iff the corresponding
set of rows of M span the target vector (1, 0, . . . , 0). This definition implies that
any set of rows is either invalid — and reveals nothing about x — or valid, and
allows full reconstruction. For further details, see e.g. [Bei96, Chapter 4].

Our main construction requires that the reconstruction function RecS takes
a 0/1 combination of its inputs. In the following, we require this to hold not
only for any set of shares corresponding to a valid set of parties in A, but for
any valid set of share elements. This property is equivalent to the notion of a
derived {0, 1}-LSSS, used in [JRS17].6

6 [Bon+18] only assumed a weaker property for their threshold FHE construc-
tion. However, this is a mistake introduced when merging the two works [JRS17]
and [Bon+17] (and has been confirmed by the authors of [JRS17]).

10



Definition 2.11 (Strong {0, 1}-Reconstruction). We say that a LSSS has
strong {0,1}-reconstruction if for any secret x and (v1, . . . ,vn) = Share(x), for
any valid set of share elements T ⊆ [n]× [L], there exists a subset T ′ ⊆ T such
that

∑
(i,j)∈T ′ vi,j = x, where vi = (vi,1, . . . ,vi,L).

Sharing Values in Rq. In our constructions, we share x ∈ Rrq , where Rq =
Zq[X]/f(X), instead of just in Zq. We do this coefficient-wise, by separately
sharing each coefficient of the r polynomials in x. Each party’s share then lies
in (Rrq)

L, and the parties can perform Rq-linear operations on these shares.

Example Linear Secret Sharing Schemes. In Table 1, we detail a few exam-
ple secret sharing schemes we consider. Their description can be found in Ap-
pendix A.2. The schemes are for t-out-of-n access structures, where any t + 1
parties can reconstruct, and they all have strong {0, 1}-reconstruction. In the
table, we show two quantities τmax, τmin, which are relevant for choosing param-
eters in our constructions of Section 5 and we will refer to later. By τmax we
denote the size of the smallest maximal invalid set of share elements, while τmin

is the size of the largest minimal valid set of share elements.

Table 1. Example t-out-of-n linear secret sharing schemes with strong {0, 1}-
reconstruction. Details for the last row are omitted, due to their complexity.

Scheme Sharing method Pi’s share L τmax τmin

Additive x =

n∑
i=1

xi xi 1 n− 1 n

Replicated x =
∑

A,|A|=t

xA {xA}i/∈A
(
n−1
t

)
(n− t)(

(
n
t

)
− 1)

(
n
t

)
Naive x =

∑
i∈A

xA,i, |A| = t+ 1 {xA,i}i∈A
(
n−1
t

)
t
(
n
t+1

)
t+ 1

Monotone Boolean formula
O(n4.3) O(n5.3) O(n5.3)for threshold fn. [Val84]

2.3 Learning With Errors

In the following, we recall the definitions of the decision LWE problem [Reg05]
and its module variant [LS15]. Both are formulated with a bounded uniform
secret and noise. We define the set Sβ = {a ∈ Z : |a| ≤ β} with β ∈ N.

Definition 2.12 (LWE). Let m, r, β, q ∈ N. The Learning With Errors prob-
lem LWEq,m,r,β is defined as follows. Given A← U(Zm×rq ) and t ∈ Zmq . Decide
whether t← U(Zmq ) or if t = [A|Im] · s, where s← U(Sm+r

β ).
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In the module setting, we replace Zq by the quotient Rq = Zq[X]/f(X) for
some irreducible f(X) of degree d. Further, we define S̃β = {a ∈ R : ‖a‖∞ ≤ β}
with β ∈ N.

Definition 2.13 (M-LWE). Letm, r, β, q ∈ N. The Module LearningWith Er-
rors problem M-LWEq,m,r,β is defined as follows. Given A← U(Rm×rq ) and t ∈
Rmq . Decide whether t← U(Rmq ) or if t = [A|Im] · s, where s← U(S̃m+r

β ).

Lastly, we also define a computational variant of LWE, where no reduction
modulo q is performed [Boo+18], which will be relevant in Section 6.

Definition 2.14 (I-LWE). Let m, r ∈ N and let χw, χe be two probability dis-
tributions over Z. The Integer Learning With Errors problem I-LWEm,r,χw,χe

is defined as follows. Given W ← χm×rw and t = Wz + e, where z ∈ Zr
and e ← χme . Find z. We call (W, t = Wz + e) an instance of the I-LWE
distribution.

Theorem 2.15 ([Boo+18, Thm. 4.5]). Suppose that χw is τw-subgaussian
and χe is τe-subgaussian. Let (W, t = Wz+e) be an instance of the I-LWEm,r,χw,χe

distribution for some z ∈ Zr. There exist constants C1, C2 > 0 such that for
all ν ≥ 1 the least square method recovers z with probability 1− 1

2r − 2−ν if

m ≥ 4
τ4w
σ4
w

(C1r + C2ν) and m ≥ 32
τ2e
σ2
w

log2(2r).

3 Threshold Fully Homomorphic Encryption

In this section, we recall the definitions of threshold fully homomorphic encryp-
tion schemes (TFHE), as well as their properties of compactness and decryption
correctness. Furthermore, we give different notions of robustness for (passively
secure) threshold public key encryption, which model an adversary who may
send incorrect or missing partial decryptions. We don’t define these in the fully
homomorphic case, where our construction assumes a passive adversary. We then
define our notions of OW-CPA and IND-CPA security for TFHE schemes.

3.1 Definitions of Threshold FHE/PKE

We recall the definition of a fully homomorphic threshold public key encryption
scheme. We implicitly assume that after Setup, all algorithms are given the
public parameters as input. We omit the partial verification algorithm used in
previous works (e.g., [BBH06]), which was only used to model stronger notions
of robustness that also capture CCA attacks.

Definition 3.1 (TFHE). A fully homomorphic threshold public key encryption
scheme (TFHE) for a message spaceM and circuits of depth κ is a tuple of PPT
algorithms TFHE = (Setup,Enc,Eval,PartDec,Combine) defined as follows:

12



Setup(1λ, 1κ, n, t)→ (pp, pk, sk1, . . . , skn): On input the security parameter λ,
a bound on the circuit depth κ, the number of parties n and a threshold
value t ∈ {1, . . . , n−1}, the setup algorithm outputs the public parameters pp,
a public key pk and a set of secret key shares sk1, . . . , skn.

Enc(pk,m)→ ct: On input the public key pk and a message m ∈ M, the en-
cryption algorithm outputs a ciphertext ct.

Eval(pk, C, ct1, . . . , ctk)→ ct: On input the public key pk, a circuit C : Mk →
M of depth at most κ and a set of ciphertexts ct1, . . . , ctk, the evaluation
algorithm outputs a ciphertext ct.

PartDec(ski, ct)→ di: On input a key share ski for some i ∈ [n] and a cipher-
text ct, the partial decryption algorithm outputs a partial decryption share di.

Combine({di}i∈S , ct)→ m′: On input a set of decryption shares {di}i∈S and a
ciphertext ct, where S ⊂ [n] is of size at least t+1, the combining algorithm
outputs a message m′ ∈M∪ {⊥}.

The above can be seen as a generalization encompassing non-threshold and
threshold PKE and FHE.

Definition 3.2 (TPKE). A threshold public key encryption scheme (TPKE)
for a message space M is a TFHE scheme, where k = 1 and the only allowed
circuit C :M →M is the identity. In this case, we drop the trivial evaluation
algorithm Eval and the parameter κ in the scheme’s specifications.

Definition 3.3 (FHE). A fully-homomorphic public key encryption scheme (FHE)
for a message space M is a TFHE scheme, where n = 1. In this case, we drop
the parameters n and t in the scheme’s specifications. To simplify notations,
we merge PartDec and Combine into one single algorithm that we denote Dec.
Hence, the algorithm Dec takes sk and ct as input and outputs m′ ∈ {M∪{⊥}}.

We require compactness and correctness, whose definitions we recall in App. B.

3.2 Robustness

We now introduce two definitions of robustness. We call the first one weak chosen-
ciphertext robustness and the second strong chosen-plaintext robustness.

In the first case, it should be hard for an adversary, having access to all secret
key shares, to provide one single ciphertext and two different set of decryption
shares such that they combine to two different messages. Our definition is closely
related to the notion of consistency, as for instance defined by [BBH06], with the
difference that we do not allow the adversary to win by making the decryption
output ⊥. (This is unavoidable in our setting, since we do not have a separate
PartVerify algorithm to verify validity of decryption shares.)

Definition 3.4 (Weak Chosen-Ciphertext Robustness). We call a TPKE
scheme weakly chosen-ciphertext robust if for all λ, n, t and for all PPT adver-
saries A it yields

Advw-cc-robust
TPKE (A) := Pr[Exptw-cc-robust

A,TPKE (1λ, n, t) = 1] = negl(λ),

where Exptw-cc-robust
A,TPKE is the experiment specified in Figure 1.
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Exptw-cc-robust
A,TPKE (1λ, n, t)

1 : (pp, pk, sk1, . . . , skn)← Setup(1λ, n, t)

2 : (ct, S, S′, {di}i∈S , {d′i}i∈S′)← A(pp, pk, {ski}i∈[n])
3 : m← Combine({di}i∈S , ct)
4 : m′ ← Combine({d′i}i∈S′ , ct)
5 : return m′ 6= m ∧ ⊥ /∈ {m,m′}

Fig. 1. Experiment for the weak chosen-ciphertext robustness of TPKE schemes.

In the second case, the adversary is given the secret key shares of the cor-
rupted parties together with an honestly formed ciphertext. In order to win the
experiment, they have to come up with partial decryption shares such that the
combine algorithm, together with honestly generated partial decryption shares,
outputs a different message (including the abort message ⊥).

We note that for t < n/2, it’s possible to transform any weakly chosen-
ciphertext robust TPKE scheme into one that guarantees strong chosen-plaintext
robustness. To do so, one simply lets Combine try all possible subsets of size t+1.
As t < n/2, there exists a set of size t + 1 composed of only honest partial
decryption shares and hence, it successfully combines to a message.

Definition 3.5 (Strong Chosen-Plaintext Robustness). A TPKE scheme
provides strong chosen-plaintext robustness if for all λ, n, t and for all PPT
adversaries A = (A1,A2) it yields

Advs-cp-robust
TPKE (A) := Pr[Expts-cp-robust

A,TPKE (1λ, n, t) = 1] = negl(λ),

where Expts-cp-robust
A,TPKE is the experiment specified in Figure 2.

Expts-cp-robust
A,TPKE (1λ, n, t)

1 : (pp, pk, sk1, . . . , skn)← Setup(1λ, n, t)

2 : (S,m)← A1(pp, pk) : S ⊂ [n] ∧ |S| ≤ t
3 : ct← Enc(pk,m)

4 : dj ← PartDec(skj , ct), ∀j ∈ [n] \ S
5 : {di}i∈S ← A2(pp, pk, {ski}i∈S , {dj}j /∈S , ct)
6 : m′ ← Combine({di}i∈[n], ct)
7 : return m′ 6= m

Fig. 2. Experiment for strong chosen-plaintext robustness of TPKE schemes.
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3.3 One-Wayness

We now present our definition of OW-CPA security for TFHE schemes. It is
essentially the standard experiment of OW-CPA for PKE schemes, with some
modifications to account for the threshold and the fully-homomorphic setting.
Regarding threshold, the adversary additionally has access to the secret key
shares of the corrupted parties, defined by the set S which is of size at most t,
where t is the threshold parameter. Further, they are allowed to make (at most `)
adaptive queries in order to obtain the partial decryption shares of all parties
for some message-ciphertext pairs. To account for the full homomorphic setting,
the message-ciphertext pairs can stem from evaluations of ciphertexts on some
circuit C of bounded depth (at most κ).

Definition 3.6 (`-OW-CPA for TFHE). We call a TFHE scheme `-OW-CPA
secure for the security parameter λ, the circuit depth bound κ, the threshold
parameters n, t and the query bound `, if for all PPT adversaries A = (A1,A2)

Adv`-OW-CPA
TFHE (A) := Pr[Expt`-OW-CPA

A,TFHE (1λ, 1κ, n, t) = 1] = negl(λ),

where Expt`-OW-CPA
A,TFHE is the experiment in Fig. 3 with ctr = 0 at the beginning.

Definition 3.7 (`-OW-CPA for TPKE). We call a TPKE scheme `-OW-CPA
secure for the security parameter λ, the threshold parameters n, t and the query
bound `, if it is `-OW-CPA secure as a TFHE scheme, where k = 1 and the only
allowed circuit C :M →M is the identity. For a PPT adversary A we denote
their advantage as Adv`-OW-CPA

TPKE (A).

Note that the only difference between `-OW-CPA security of TPKE and the
standard notion of OW-CPA security of PKE is that the adversary obtains t
shares of the secret key and has access to ` partial decryption queries. Finally,
note that for any scheme to be OW-CPA secure, the size of the plaintext spaceM
must be superpolynomial in the security parameter, to prevent guessing attacks.

3.4 Indistinguishability

In the following, we present our definition of IND-CPA security for TFHE. It is
obtained by applying the same modifications as in the section before, now to the
standard definition of IND-CPA security for PKE.

Definition 3.8 (`-IND-CPA for TFHE). We call a TFHE scheme `-IND-CPA se-
cure for the security parameter λ, the circuit depth bound κ, the threshold param-
eters n, t and the query bound `, if for all PPT adversaries A = (A1,A2,A3,A4)

Adv`-IND-CPA
TFHE (A) :=

∣∣∣∣Pr[Expt`-IND-CPA
A,TFHE (1λ, 1κ, n, t) = 1]− 1

2

∣∣∣∣ = negl(λ),

where Expt`-IND-CPA
A,TFHE is the experiment in Fig. 3 with ctr = 0 at the beginning.
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Expt`-OW-CPA
A,TFHE (1λ, 1κ, n, t)

1 : (pp, pk, sk1, ..., skn)← Setup(1λ, 1κ, n, t)

2 : S ← A1(pp, pk) : S ⊂ [n] ∧ |S| ≤ t
3 : m← U(M)

4 : ct← Enc(pk,m)

5 : m′ ← AOPartDec
2 (pk, {ski}i∈S , ct)

6 : return m = m′

OPartDec(C,m1, . . . ,mk)

1 : ctr = ctr + 1

2 : if ctr > ` then return ⊥

3 : if (mj)j /∈Mk then return ⊥
4 : if depth(C) > κ then return ⊥
5 : ctj ← Enc(pk,mj), ∀j ∈ [k]

6 : ρ = randomness used for Enc
7 : ct← Eval(pk, C, ct1, . . . , ctk)

8 : di ← PartDec(ski, ct), i ∈ [n]

9 : return ρ, (di)i∈[n]

Expt`-IND-CPA
A,TFHE (1λ, 1κ, n, t)

1 : (pp, pk, sk1, ..., skn)← Setup(1λ, 1κ, n, t)

2 : S ← A1(pp, pk) : S ⊂ [n] ∧ |S| ≤ t

3 : state← AOPartDec
2 (pp, pk, {ski}i∈S)

4 : b← U({0, 1})
5 : (m0,m1)← A3(pp, pk, {ski}i∈S)
6 : ctb ← Enc(pk,mb)

7 : b′ ← AOPartDec
4 (pk, {ski}i∈S , ctb)

8 : return b = b′

Fig. 3. Experiments for `-OW-CPA and `-IND-CPA security of TFHE schemes.
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Definition 3.9 (`-IND-CPA for TPKE). We call a TPKE scheme `-IND-CPA
secure for the security parameter λ, the threshold parameters n, t and the query
bound `, if it is `-IND-CPA secure as a TFHE scheme, where k = 1 and the only
allowed circuit C :M →M is the identity. For a PPT adversary A we denote
their advantage as Adv`-IND-CPA

TPKE (A).

In the TPKE case, this is the same definition as in Boneh et al. [Bon+18,
Def. 8.27], where we specify a concrete bound ` on the number of queries.

4 From One-Wayness to Indistinguishability

4.1 For Weakly Robust Threshold Decryption

Hofheinz et al. [HHK17, Sec. 3.4] provide a tight reduction from OW-CPA se-
curity to IND-CPA security for standard PKE schemes in the random oracle
model (ROM). In the following, we adapt the transformation to the threshold
setting and show how a small modification allows to obtain a weakly chosen-
ciphertext robust threshold scheme as in Definition 3.4.

The construction. The transformation is parameterized by δ ∈ N which allows
for a trade-off between the security loss of the reduction and the compactness of
ciphertexts. Given TPKE = (Setup,Enc,PartDec,Combine) with message space
M being OW-CPA secure, we define TPKE′ = (Setup′,Enc′,PartDec′,Combine′)
with message space an abelian group (M′,+), which fulfills IND-CPA security,
as follows. Let F :Mδ →M′ and G :Mδ → {0, 1}2λ be two random oracles.

Setup′: On input (1λ, n, t), it outputs (pp, pk, sk1, . . . , skn)← Setup(1λ, n, t).
Enc′: On input (pk,m) with m ∈ M′, it samples x := (x1, . . . , xδ) ← U(Mδ)

and sets c0 = m+F(x) and cδ+1 = G(x). Then, it computes cj ← Enc(pk, xj)
for j ∈ [δ] and outputs ct := (c0, . . . , cδ+1).

PartDec′: On input (ski, ct) for some i ∈ [n], it computes dij ← PartDec(ski, cj)
for all j ∈ [δ] and outputs di := (dij)j∈[δ].

Combine′: On input ((di)i∈S , ct) with ct = (cj)0≤j≤δ+1 and di = (dij)j∈[δ], it
computes x′j ← Combine({dij}i∈S , cj) for j ∈ [δ], sets x′ = (x′1, . . . , x

′
δ) and

computes m′ := c0−F(x′). If cδ+1 = G(x′) it outputs m′. Else, it outputs ⊥.

Ciphertext expansion. The ratio between the bit size of the plaintext and the
ciphertext is give by

|ct|
|m|

=
|m|+ δ · |c|+ 2λ

|m|
,

where c is a ciphertext coming from TPKE. We can see that with larger δ the
ciphertext expansion gets worse.

We prove the decryption correctness of the resulting scheme in Appendix C.1.

Lemma 4.1 (Weak Robustness). The scheme TPKE′ is weakly robust. More
precisely, if there is a PPT adversary A such that Advw-cc-robust

TPKE′ (A) ≥ ε for
some ε > 0, then there exists a PPT adversary B breaking collision resistance of
the random oracle G with probability at least ε.
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Proof. Fix λ, n and t. We show that if there exists a PPT adversary A that
has advantage ε in the experiment defined in Figure 1, then there exists a PPT
adversary B that finds a collision for the random oracle G with the same proba-
bility ε. Let B play the role of the challenger in the weak robustness game, run-
ning the Setup′ algorithm on (1λ, n, t) and forwarding (pp, pk, {ski}i∈[n]) to A.
Assume that A wins the weak robustness game by outputting two sets of decryp-
tion shares {di}i∈S and {d′i}i∈S′ such that Combine′({di}i∈S , ct)→ m 6= m′ ←
Combine′({d′i}i∈S′ , ct) for the same ciphertext ct = (ci)0≤i≤δ+1, and neither m
nor m′ equals ⊥. Let x,x′ denote the vectors recovered during the combining
procedure. As c0 = m+F(x) = m′+F(x′),m 6= m′ and F is deterministic, we can
deduce that x 6= x′. This implies that G(x) = cδ+1 = G(x′) for distinct x 6= x′

and hence B has found a collision in G.

Theorem 4.2 (Security). Let δ, ` ∈ N. If TPKE is (`δ)-OW-CPA secure, then
is TPKE′ `-IND-CPA secure in the ROM. More precisely, for any `-IND-CPA
adversary A that does at most qF queries to the random oracle F, there exists
an (`δ)-OW-CPA adversary B with

Adv`-IND-CPA
TPKE′ (A) ≤ q1/δF · Adv(`δ)-OW-CPA

TPKE (B).

Note that the number of queries to G doesn’t impact the tightness of the
reduction as the output G(x) is completely independent of F(x) for any x ∈Mδ.

Proof. The proof closely follows the original proof by Hofheinz et al. [HHK17,
Thm. 3.7]. The main modifications compared to the original proof are that A
can query up to ` partial decryption outputs to some oracle OPartDec during the
game and that we added a second random oracle G to obtain weak robustness.

Let A = (A1,A2,A3,A4) be a PPT adversary against the `-IND-CPA security
of TPKE′. We consider two games G0 and G1 as described in Figure 4, where we
specify the security game, the queries to the random oracles F and G and to the
partial decryption oracle OPartDec. The lists LF and LG are initialized as empty
sets and the counter ctr is set to 0 at the beginning. Both games only differ in
the way how queries to F are handled.

Game G0. Note that Game G0 is exactly the original `-IND-CPA game (as in
Def. 3.9) and hence Adv`-IND-CPA

TPKE′ (A) = |Pr[G0(A) = 1]− 1/2|.

Game G1. The only modification between game G0 and G1 is that we added
line 3− 5 in the specification of F. More precisely, F raises a flag and aborts if it
is queried by the vector x∗ that is used for the challenge ciphertext ct∗. Hence,
|Pr[G0(A) = 1]− Pr[G1(A) = 1]| ≤ Pr[flag]. Now, as F aborts when queried
on x∗, the view of A is independent of the bit b chosen in the game. This
implies that Pr[G1(A) = 1] = 1/2, leading to Adv`-IND-CPA

TPKE′ (A) ≤ Pr[flag]. The
only thing left to do is to bound the latter probability. A direct adaptation of
Lemma 3.8 in [HHK17] bounds this probability above by q1/δF ·Adv

(`δ)-OW-CPA
TPKE (A).

Here, the adversary A is embedded in B’s own (`δ)-OW-CPA security game and
hence B takes care of simulating the random oracles F and G as well as the partial
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Games G0 and G1

1 : (pp, pk, sk1, ..., skn)← Setup(1λ, n, t)

2 : x∗ := (x∗1, . . . , x
∗
δ)← U(Mδ)

3 : S ← A1(pp, pk) : S ⊂ [n] ∧ |S| ≤ t

4 : state← AOPartDec
2 (pp, pk, {ski}i∈S)

5 : b← U({0, 1})
6 : (m0,m1)← A3(pp, pk, {ski}i∈S)
7 : c∗0 = mb + F(x∗)

8 : c∗j = Enc(pk, x∗j ) ∀j ∈ [δ]

9 : c∗δ+1 = G(x∗)

10 : ct∗ = (c∗0, . . . , c
∗
δ+1)

11 : b′ ← AOPartDec
4 (pp, pk, {ski}i∈S , ct

∗)

12 : return b = b′

F(x)

1 : if ∃r : (x, r) ∈ LF

2 : then return r

3 : if x = x∗ �G1

4 : flag = true �G1

5 : then return ⊥ �G1

6 : r ← U({0, 1}λ)
7 : LF := LF ∪ {(x, r)}
8 : return r

OPartDec′(m)

1 : ctr = ctr + 1

2 : if ctr > ` then return ⊥
3 : if m /∈M′ then return ⊥
4 : (cj)0≤j≤δ+1 = ct← Enc′(pk,m)

5 : ρ = used randomness for Enc’
6 : di ← PartDec′(ski, ct) ∀i ∈ [n]

7 : return ρ, (di)i∈[n]

G(x)

1 : if ∃r : (x, r) ∈ LG

2 : then return r

3 : r ← U({0, 1}2λ)
4 : LG := LG ∪ {(x, r)}
5 : return r

Fig. 4. Games G0 and G1 for the proof of Theorem 4.2.
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decryption queries to OPartDec′. The latter is done by querying their own partial
decryption oracle OPartDec. Note that the increase from ` to `δ comes from the
fact that B must do δ queries to OPartDec for every query to OPartDec′ by A.

4.2 For Fully Homomorphic Threshold Decryption

Whereas the reduction from above is simple and tight, it has the disadvantage of
needing the random oracle F to mask the message m. When considering not only
threshold PKE, but more generally threshold FHE, we need to make sure that
we can homomorphically evaluate ciphertexts. The use of the random oracle F
when computing c0 = m + F(x) makes such an evaluation impossible, as there
is no efficient circuit description of the random oracle F. We thus need another
transformation which allows for homomorphic evaluation of ciphertexts. In the
following, we describe a generic way of transforming a OW-CPA secure TFHE
scheme into an IND-CPA secure one in the standard model, via hardcore bits.

The construction. The transformation is parameterized by δ, n ∈ N. Given
TFHE = (Setup,Enc,Eval,PartDec,Combine) with message space M = {0, 1}γ
being OW-CPA secure, we define TFHE′ = (Setup′,Enc′,Eval′,PartDec′,Combine′)
with message spaceM′ = {0, 1}δ, which fulfills IND-CPA security, as follows.

Setup′: On input (1λ, 1κ, n, t), it outputs (pp, pk, sk1, . . . , skn)← Setup(1λ, 1κ, n, t).
Enc′: On input (pk,m) with m = (mj)j∈[δ] ∈ M′, it samples x ← U(M) and

computes c0 ← Enc(pk, x). For j ∈ [δ], it samples sj ← U(M) and com-
putes cj = 〈x, sj〉+mj mod 2. It outputs ct = (c0, s1, . . . , sδ, c1, . . . , cδ).

Eval′: On input I := (pk, C ′, ct1, . . . , ctk), where cti = (ci0, si1, . . . , siδ, ci1, . . . , ciδ)
such that ci0 ← Enc(pk, xi) for i ∈ [k] and C ′ : (M′)k →M′, it first defines
a circuit C : (M)k →M as follows:
– C takes as input (x1, . . . , xk) and has the information I hard-coded
– It computes mij = cij + 〈xi, sij〉 mod 2, for j ∈ [δ] and i ∈ [k]
– It outputs C ′(m1, . . . ,mk), where mi = (mij)j∈[δ]

It then outputs ct′ = Eval(pk, C, c10, . . . , ck0).
PartDec′: On input (ski, ct′), where ct′ is from Eval′, it outputs di = PartDec(ski, ct).
Combine′: On input ({di}i∈S , ct′), it outputs m = Combine({di}i∈S , ct).

Ciphertext expansion. The ratio between the bit size of the plaintext and the
ciphertext is give by

|ct|
|m|

=
|c0|+ δ(n+ 1)

δ
,

where c0 is the OW-CPA ciphertext encrypting γ bits coming from TFHE. We
can see that with larger δ the ciphertext expansion gets better.

We prove compactness and decryption correctness in Appendix C.2.

Remark 4.3. One way to reduce the size of the ciphertext to |c0|+n+δ (and hence
to improve the ciphertext expansion) is to replace the δ random seeds s1, . . . , sδ
by one single seed and a random oracle F. More precisely, one could define sj :=
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F(r, j) for a random seed r ← U(M) and j ∈ [δ]. As a result, the transformation
wouldn’t be in the standard, but in the random oracle model. As the random
oracle is only used to derive the seeds, not when masking the message, this
transformation still applies to the threshold FHE setting.

Remark 4.4. Note that the reduction in the standard model restricted to TPKE,
in contrast to the one from Section 4.1, doesn’t satisfy weak robustness (Def. 3.4).

Theorem 4.5 (Security). Fix `, γ, δ ∈ N and ε, ε′ > 0. Let TFHE be an `-OW-CPA
secure scheme with M = {0, 1}γ , such that any PPT adversary B has advan-
tage Adv`-OW-CPA

TFHE (B) ≤ 2−γ+ε
′
. Then, TFHE′ is `-IND-CPA secure with M′ =

{0, 1}δ, where δ = γ − ε′ −O(log2 1/ε) and for any PPT adversary A it yields

Adv`-IND-CPA
TFHE′ (A) ≤ 5ε.

Parameters δ, γ and ε′. Since TFHE needs to be OW-CPA-secure, we need γ ≥ λ
to achieve λ-bit security and avoid a trivial guessing attack on the γ-bit plaintext.
The parameter ε′ then measures how close TFHE is to achieving the best-possible
one-way security. Smaller values of ε′ lead to a smaller value of δ, which improves
the ciphertext expansion in the scheme. On the other hand, a small ε′ requires
the TFHE parameters to be chosen according to a higher security level. The
hidden constant in the big-O-notation from the theorem’s statement depends
on the Goldreich-Levin theorem. Note that the decryption correctness doesn’t
depend on δ.

Proof. The high level idea of the proof is to modify the experiment for `-IND-CPA
security of TFHE′ in such a way that the challenge ciphertext ctb information-
theoretically hides the selected message mb. Hence, the adversary can only guess
which message was encrypted.

Game G0. We denote by G0 the original `-IND-CPA security game as described
in Figure 3. Recall the definition of the concatenated Goldreich-Levin extractor E
as given in Definition 2.2. It yields E : {0, 1}γ × ({0, 1}γ)δ → {0, 1}δ× ({0, 1}γ)δ,
where E(x, s1, . . . , sδ) = (〈x, s1〉, . . . , 〈x, sδ〉, s1, . . . , sδ). We can thus rewrite the
challenge ciphertext (in line 6 of Figure 3) as

ctb = Enc′(pk,mb) = (Enc(pk, x), E(x, s1, . . . , sδ)⊕ (mb, 0, . . . , 0)),

where x, sj ← U(M) for j ∈ [δ]. For any PPT adversary A we denote their
advantage by Adv`-IND-CPA

TFHE′ (A) = |Pr[G0(A) = 1]− 1/2|.

Game G1. We denote by G1 the game, where we change the ciphertext for the
challenge message mb. It is now computed as c̃tb := (Enc(pk, x), (r, s1, . . . , sδ)⊕
(mb, 0, . . . , 0), where x, sj ← U(M) and r ← U(M′). Now, mb is information-
theoretically hidden and the adversary A can only guess the bit b and hence
their advantage in this game is |Pr[G1(A) = 1]− 1/2| = 0.
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From G0 to G1. We finally show that the success probability of A in G0 doesn’t
differ much from their success probability in G1. By the probability preservation
property, it yields Pr[G0(A) = 1] ≤ Pr[G1(A) = 1] + cdist(G0, G1). We show in
the following by using Lemma 2.3 that cdist(G0, G1) is bounded above by 5ε.
More precisely, we set X = U(M) and Z = Enc(pk, X), the probability distribu-
tion that is defined by the randomized encryption algorithm for uniform random
messages. Furthermore, we set Y = X, such that cdist((X,Z), (Y,Z)) ≤ ε for
all ε > 0. For any PPT algorithm B is yields

Pr[B(Z) = X] = Pr
x←U(M)

[B(Enc(pk, x)) = x] ≤ Adv`-OW-CPA
TFHE (B) ≤ 2−γ+ε

′
.

Thus, Hunp
ε (X|Z) ≥ γ − ε′ for any ε > 0. We now apply Lem. 2.3 which implies

cdist(G0, G1) ≤ cdist(ctb, c̃tb) ≤ 5ε, and thus Adv`-IND-CPA
TFHE (A) ≤ negl(λ)+5ε.

5 Threshold Fully Homomorphic Encryption From LWE
With Polynomial Modulus

We now present our construction of a t-out-of-n TFHE scheme with OW-CPA
security. First, we describe and analyze our main construction based on any LSSS
with strong {0, 1}-reconstruction. Then, in Section 5.5, we give an alternative
construction that combines pseudorandom secret sharing with Shamir sharing
to improve efficiency when

(
n
t

)
is small.

By applying the OW-CPA to IND-CPA transformation for TFHE from Sec-
tion 4.2, we hence obtain an IND-CPA secure scheme. When we restrict our-
selves to standard PKE, our construction gives us a standard TPKE scheme
(cf. Def. 3.2). We can then also apply the transformation from Section 4.1, which
gives as a weakly chosen-ciphertext robust IND-CPA secure scheme.

5.1 Nearly Linear Decryption of FHE

We use the following abstraction of LWE-based encryption schemes, where de-
cryption is viewed as a linear function of the secret key that outputs a “noisy”
version of the correct message. Similar notions were used in [BKS19; Bra+19].

Definition 5.1 (FHE with (β, ε)-linear decryption). Let FHE := (Setup,
Enc,Dec,Eval) be a fully-homomorphic encryption scheme (as in Def 3.3) with
message space M ⊆ Rp and ciphertext space Rrq. Suppose that Setup outputs a
secret key sk ∈ Rrq which has the form (1, s) for some s ∈ Rr−1q .

Let β = β(λ) ∈ N, ε = ε(λ) ∈ [0, 1]. We say that FHE has (β, ε)-linear
decryption if for any λ, κ ∈ N, (pp, pk, sk) ← Setup(1λ, 1κ), depth-κ circuit
C :Mk → M, messages m1, . . . ,mk ∈ Rp, ciphertexts ci ← Enc(pk,mi) ∈ Rrq
and ct← Eval(pk, c1, . . . , ck), it holds that

〈sk, ct〉 = bq/p · C(m1, . . . ,mk)e+ e mod q,

for some e ∈ Rq such that Pr[‖e‖∞ ≤ β] ≥ 1− ε (where the probability is taken
over the randomness of Setup,Enc and Eval).
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In standard (Module)-LWE based constructions, it’s possible to securely set
the parameters such that the ratio β/q can be made arbitrarily small, and as
long as we have β/q = 1/poly(λ), then q is poly(λ).

For security, we require that FHE is IND-CPA secure.7 This can be instan-
tiated under the Module-LWE assumption to obtain (leveled) FHE using, for
instance, the BGV scheme [BGV12] (with superpolynomial q). For p = 2, d = 1
and R = Z, we also get (leveled) FHE under the standard LWE assumption with
a polynomial modulus q [BV14].

5.2 Construction from LSSS with Strong {0, 1}-Reconstruction

Our construction works over the ring R = Z[X]/f(X) for some degree-d irre-
ducible polynomial f , and uses the following main ingredients:

– Dflood: a noise distribution over Zq with magnitude bounded by βflood,
– Dsim: a noise distribution over Zq, where RDa(Dsim‖Dflood + B) ≤ εRDa , for

some a ∈ (1,∞), εRDa
> 1 and for all B with |B| ≤ βfhe,

– LSS: a t-out-of-n linear secret sharing scheme LSS = (Share, (RecS)S⊂[n])
with strong {0, 1}-reconstruction, associated parameters L, τmax, τmin and
shares in ZLq (cf. Def. 2.10),

– FHE: a OW-CPA secure FHE = (Setup′,Enc,Eval,Dec) scheme with message
spaceM⊆ Rp, ciphertext space Rrq , and (βfhe, ε)-linear decryption for some
βfhe < q/(2p)− τminβflood and some negligible ε.

We now define the scheme TFHE := (Setup,Enc,Eval,PartDec,Combine) by
using Enc and Eval from the underlying FHE scheme and setting Setup,PartDec
and Combine as specified in Figure 5. We prove its correctness in Appendix D.

For now, we assume the plaintext spaceM ⊆ Rp is superpolynomial in the
security parameter, so that FHE is OW-CPA secure. In Section 5.3, we show how
to extend this to use FHE with any plaintext space, which allows instantiating
from LWE with polynomial modulus.

We write Dflood,Rr
q
(resp. Dsim,Rr

q
) to refer to the distribution consisting of rd

independent Dflood (resp. Dsim) random variables, used to sample the coefficients
of r elements of Rq.

We show security in the following.

Theorem 5.2 (Security). For any adversary A against the `-OW-CPA prop-
erty of the TFHE scheme in Fig. 5, there exists an adversary B against the OW-CPA
property of FHE, such that

Adv`-OW-CPA
TFHE (A) ≤

(
AdvOW-CPA

FHE (B) · ε`d(nL−τmax)
RDa

)(a−1)/a
+ `ε,

where L and τmax are parameters from the LSS.
7 In our main construction, we assumeM is large and only rely on OW-CPA security
of FHE. When extending to smallerM in Sec. 5.3, we instead need IND-CPA security.
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Setup(1λ, 1κ, n, t)

1 : (pp, pk, sk)← Setup′(1λ, 1κ)

2 : // sk ∈ Rr
q , ski ∈ (Rr

q)
L

3 : (sk1, . . . , skn)← LSS.Share(sk)

4 : return (pp, pk, sk1, . . . , skn)

PartDec(ski, ct)

1 : ei,j ← Dflood,Rq for j ∈ [L]

2 : // ski = (ski,1, . . . , ski,L) ∈ (Rr
q)

L

3 : di,j ← 〈ct, ski,j〉+ ei,j

4 : return di ← (di,1, . . . ,di,L)

Combine({di}i∈S , ct)

1 : y ← RecS((di)i∈S)

2 : return b(p/q) · ye

Fig. 5. Setup, partial decrypt and combine algorithms for OW-CPA secure TFHE. The
Enc and Eval algorithms are the same as for FHE.

Proof. The high-level idea is to modify the `-OW-CPA game such that the t
secret shares and the answers to the ` partial decryption queries provided to the
adversary no longer depend on the underlying secret key sk. In this case, the
game equals the standard OW-CPA game of FHE schemes.

Game G0: This is the real threshold `-OW-CPA experiment as in Figure 3.
The view of A consists of the public parameters pp, the public key pk, chal-
lenge ciphertext ct, secret key shares {ski}i∈S and results of up to ` partial
decryption queries. In each query, A inputs a circuit C and set of messages m =
(m1, . . . ,mk), and receives (ρ, (di)i∈[n]), where ρ is the randomness used to com-
pute the ciphertexts (ctj ← Enc(pk,mj))

k
j=1, and di is the partial decryption of

ct← Eval(pk, C, ct1, . . . , ctk) under ski. It yields, Adv
`-OW-CPA
TFHE (A) = AdvG0

TFHE(A).
Game G1: In this game, we redefine how the partial decryptions are com-

puted. After the adversary chooses the set S ⊂ [n] of corrupt parties, let
SL = {(i, j)}i∈S,j∈[L] be the corresponding set of share elements. Fix T ⊇ SL to
be a maximal invalid set of share elements. Then, compute the partial decryp-
tions di for a ciphertext ct as follows:

1. For (i, j) ∈ T , let d̃i,j = 〈ct, ski,j〉;
2. For (i, j) ∈ ([n] × [L]) \ T , let Ti,j ⊆ T ∪ {(i, j)} be a minimal valid set of

share elements, and compute d̃i,j = 〈ct, sk〉 −
∑

(k,l)∈Ti,j\{(i,j)} d̃k,l;

3. Sample ei ← Dflood,RL
q
and compute di = d̃i + ei, for i ∈ [n].

Note that the view of A in G1 is identical to that in G0, due to the strong
{0, 1}-reconstruction property of LSS. This is because every share belonging to
the maximally invalid set T is computed the same way as in G0, using the
shares ski, while each share outside this set is deterministically fixed to be a
sharing of the correct secret 〈ct, sk〉, plus noise sampled from Dflood, as in G0.
Hence, AdvG0

TFHE(A) = AdvG1

TFHE(A).
Game G2: In this game, before outputting the partial decryptions for a

ciphertext ct, we first check that 〈ct, sk〉 = bq/pe ·C(m1, . . . ,mk) + e for some e
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with ‖e‖∞ ≤ βfhe. If not, the game aborts. Due to the (βfhe, ε)-linear decryption
property of FHE, and applying a union bound over the ` queries, we have that
AdvG1

TFHE(A) ≤ AdvG2

TFHE(A) + `ε.
Game G3: We replace the partial decryptions corresponding to shares out-

side of T with simulated ones. Firstly, in step (2) above, for (i, j) ∈ ([n]× [L])\T ,
we now compute d̃i,j as d̃i,j = bq/p · C(m1, . . . ,mk)e −

∑
(k,l)∈Ti,j\{(i,j)} d̃k,l.

Secondly, in step (3), instead of always sampling ei,j ← Dflood,Rq
, we only

sample ei,j ← Dflood,Rq
if (i, j) ∈ T , and ei,j ← Dsim,Rq

otherwise.
Game G4. In the final game, we change how the secret key shares are sam-

pled: pick (sk′1, . . . , sk
′
n)← LSS.Share(0) and give to A the shares {sk′i}i∈S .

This is perfectly indistinguishable from G3, by the perfect privacy property
of LSS, hence AdvG3

TFHE(A) = AdvG4

TFHE(A). Note also that for any adversary A
against game G4, there exists an adversary B for the OW-CPA property of FHE
with the same success probability as A: AdvG4

TFHE(A) = AdvOW-CPA
FHE (B).

The theorem then follows from the following lemma.

Lemma 5.3. For any adversary A in Games G2 and G3, it holds that

AdvG2

TFHE(A) ≤ (AdvG3

TFHE(A) · ε
`d(nL−τmax)
RDa

)(a−1)/a,

where τmax is the size of the smallest maximal invalid share set in LSS.

Proof. We compute the Rényi divergence between the views of the adversary in
each game. Each view consists of the adversary’s random tape and the values(

pk, {ski}i∈S , {Cη,mη, ρη, (dηi )i∈[n]}η∈[`]
)
,

where Cη,mη = (mη
1 , . . . ,m

η
k) are circuit and messages chosen by A in the η-th

query. Let D2 and D3 denote the distributions of the above values in games G2

and G3, respectively. Since the partial decryption queries are adaptive, note that
the circuit Cη and message mη depend on the previous queries (mη−1, . . . ,m1)
and their corresponding responses (dη−1i , . . . ,d1

i )i∈[n]. However, since each mη

is a deterministic function of the other values in the view (including the random
tape), by the data processing inequality (Lem. 2.5), RDa(D2‖D3) ≤ RDa(D

′
2‖D′3),

where D′2, D′3 are the distributions with the Cη,mη values removed. D′2 are D′3
are now defined identically, except in the way the partial decryption components
dηi,j are computed for indices (i, j) /∈ T . In G2, d

η
i,j is computed using (amongst

other values) 〈ctη, sk〉 + Dflood,Rq
, whereas G3 instead uses bq/p · C(mη)e +

Dsim,Rq
. Since 〈ctη, sk〉 = bq/p · C(mη)e + eη for some eη with ‖eη‖∞ ≤ βfhe,

and the view contains nL − |T | pairs (i, j) /∈ T where the sampling of dηi,j
changes from G2 to G3, to compute RDa(D

′
2‖D′3), it suffices to compute

RDa

(
((e1 +Dflood,Rq

)nL−|T |, . . . , (e` +Dflood,Rq
)nL−|T |)‖D`(nL−|T |)sim,Rq

)
.

Applying Lem. 2.7 with N = d`(nL− |T |), D1 = Dflood, D2 = Dsim, we get

RDa(D
′
2‖D′3) ≤ ε

d`(nL−|T |)
RDa

.
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Applying the probability preservation property of Rényi divergence, we bound
the success probability of the adversary as required. �

5.3 Supporting a Larger Plaintext Space

The above construction works for a plaintext space M ⊆ Rp. Since we only
obtain one-way security, this requires |Rp| to be superpolynomial in λ to give a
meaningful security guarantee. If Rp is small, we can easily modify our threshold
scheme to still be secure by using several ciphertexts to encrypt larger messages
with the underlying FHE scheme. Note that this change is necessary to obtain an
instantiation from LWE with polynomial modulus, since thereM = Rp = Z2.

Concretely, suppose that FHE is IND-CPA secure and has small message space
M. Define FHE′ with message spaceMk, such that

∣∣M−k∣∣ is negligible, by en-
crypting each of the k message components separately under FHE. We then
instantiate our threshold scheme using FHE′ instead of FHE, where during the
partial decrypt and combine steps, we run the algorithms for the previous con-
struction on each component separately. If FHE is IND-CPA secure, then so is
FHE′, and the proof carries over in the same way, except that the ` values in the
statement of Theorem 5.2 will be replaced with k`, to account for the fact that
each of the ` decryption queries involves k decryptions of ciphertexts from FHE.

5.4 Bounding the Rényi Divergence

We now analyze parameters and instantiate the distributions Dflood and Dsim. For
now, we simply choose them both to be rounded Gaussian distributions bDσe
with the same standard deviation σ. In Sec. 6.1, we obtain tighter parameters by
carefully optimizing the choice of distributions. If FHE has a maximum ciphertext
noise bound of βfhe, then using Lem. 2.6 with our choice of distributions, we get
εRDa = RDa(Dflood + βfhe‖Dsim) ≤ exp

(
aβ2

fhe

2σ2

)
. If FHE has λFHE bits of security,

then from Thm. 5.2, the resulting TFHE scheme is λTFHE-bit secure, such that

λTFHE ≥ (λFHE − `d(nL− τmax) log2 εRDa
)
a− 1

a
(1)

Combining the above two equations, we obtain λTFHE ≥ a−1
a λFHE − `d(nL−

τmax)(a−1) β
2
fhe

2σ2 log2 e. Setting for instance a = λTFHE, and choosing σ, q, βfhe such
that σ = O(βfhe

√
`d(nL− τmax)(a− 1)) while decryption is still correct, the loss

in security is only a constant factor. Smaller values of a give different tradeoffs
between the size of σ and the security loss. Note that in any case, if ` and nL
are polynomially bounded then both σ and the modulus q can be also.
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5.5 Alternative Construction Using Pseudorandom Secret Sharing

We also give a different construction based on pseudorandom secret sharing
(PRSS), which improves upon the previous one in some aspects. Instead of having
each party perturb their share by an independent, random noise term, we will
use PRSS [GI99; CDI05]. This allows them to jointly sample replicated secret
sharings of small noise terms, without interaction, after a one-time setup that
distributes PRF keys. We also exploit the fact that replicated secret shares can
be locally converted to any other LSS, and convert the secret shared noise terms
into Shamir sharings before using them for partial decryption. These means that
the partial decryptions are Shamir shares, which are much smaller, consisting
of only 1 element over Rq each. Furthermore, this leads to improved parameters
in the security reduction, and we can additionally take advantage of the error-
correction capability of Shamir to achieve strong robustness (Def. 3.5) when
t < n/3. This offers a way of getting robustness for TFHE instead of only TPKE
with our previous transformations, with the drawback that we require

(
n
t

)
to be

not too large, due to using replicated secret sharing.
The details and security proof of this construction are in Appendix E.

6 Sample Parameters and Security Estimates

In this section, we discuss how to choose concrete parameters for our OW-CPA
secure threshold construction, where we take as a starting point the lattice-based
scheme Kyber [Sch+20]. Hence, we are not in the fully-homomorphic case, but
in the standard PKE case and thus obtain a standard TPKE scheme. We denote
the thresholdized version of Kyber by TKyber.

After deriving sample parameter sets in Section 6.1, we give in Section 6.2 an
attack if the adversary has access to sufficiently many partial decryptions. We
will see that the bound is close to the one obtained in Section 5, showing that
using the Rényi divergence leads to almost optimal results.

We recall the high level description of Kyber in App. F. The relevant pa-
rameters for Kyber are the ring degree d, the rank r, the modulus q and the
two distribution parameter η. Whereas the specifications of Kyber only consider
three parameter sets, called Kyber512,Kyber768,Kyber1024, we additionally con-
sider three more parameter sets, that we subsequently call Kyber1280,Kyber1536
and Kyber1792. As the name suggest, they are obtained in a similar manner as
the previous parameter sets, simply by increasing the rank by +1. All parameter
sets are summarized in Table 4 in Appendix F.

6.1 Security From the Reduction

Let λPKE (resp. λTPKE) denote the security level of the starting PKE (resp. the
resulting TPKE) from Theorem 5.2. Further, we set ∆λ := λPKE − λTPKE, which
describe the security loss in our reduction. Instantiating Equation 1 in the stan-
dard PKE setting yields

λTPKE ≥
a− 1

a
· (λPKE − `d(nL− τmax) log2 εRDa) , (2)
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where ` is the number of partial decryption queries, d the degree of the ring R, L
and τmax parameters of the underlying LSSS and εRDa

an upper bound on the
Rényi divergence RDa(Dsim‖Dflood + βpke) of order a. Here, Dsim (resp. Dflood)
denotes the simulating (resp. flooding) noise distribution and βpke is a bound
on the decryption noise that depends on the concrete parameters of Kyber, in
particular on the ring degree d, the module rank r and the parameters η and η,
as well as the maximal failure probability ε we want to achieve. For concreteness
we set λPKE as the core-SVP classical hardness, i.e., the resulting BKZ block
estimated from the Lattice Estimator [APS15] size multiplied by 0.292.

Table 2 and Table 3 present some sample parameters. We explain in Ap-
pendix F in more details how we concretely derived them. The relevant differ-
ence between the two is that in the first table, we focus on larger numbers of
parties n and samples ` while accepting a modulus of up to 39 bits. For sim-
plicity, we assume that both Dflood and Dsim follow a Gaussian distribution of
width σ. In contrast, in the second table we fine-tuned the flooding and simu-
lation distributions so that we can allow for very small q (only multiplying the
original Kyber modulus by small constants up to 10).

Table 2. Sample parameters and security estimates following the reduction from
Thm. 5.2 using a generic approach.

Set (βpke, ε) n t ` dlog2 σe dlog2 qe λPKE λTPKE ∆λ

TKyber1024 (390, 2−60) 2 1 1 17 23 120 117 3
TKyber1024 (934, 2−300) 2 1 1 18 24 111 108 3
TKyber1024 (390, 2−60) 10 9 1 17 25 105 102 3
TKyber1280 (435, 2−60) 10 5 1 21 29 120 117 3
TKyber1536 (476, 2−60) 20 10 10 27 36 112 109 3
TKyber1792 (513, 2−60) 2 1 232 33 39 123 120 3

Table 3. Sample parameters and security estimates following the reduction from
Thm. 5.2 obtained from a hand-tuned Python program.

Set q n t ` Dflood Dsim λTPKE ∆λ

TKyber1024 5 · 3329 2 1 1 947 1087 100 111
TKyber1024 10 · 3329 2 1 2 1994 2034 104 91
TKyber1024 9 · 3329 3 2 1 1197 1297 106 92

6.2 Statistical Attack

In the following, we describe an attack against our proposed threshold decryption
scheme if the adversary obtains sufficiently many partial decryption queries. Note
that the obtained lower bound on the samples for this attack is only slightly
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higher than the upper bound for security from Section 5. This shows that using
the Rényi divergence leads to quasi optimal parameters.

As in the previous section, we focus on Kyber and denote by TKyber the
thresholdized scheme as in Section 5. For simplicity, we consider the full-threshold
setting for n parties using additive secret sharing. We use as flooding noise dis-
tribution a rounded Gaussian

⌊
Dflood,Rq

⌉
of width σflood.

Lemma 6.1. Let q, d, r, η be the Kyber parameters (as introduced in App. F).
Further, let ` denote the number of partial decryption queries to TKyber an
adversary A has access to. Further, let ν ∈ N. If

`d = Ω((2r + 1)d+ ν) and `d = Ω

(
σ2

flood

η2
log2(2d(2r + 1))

)
,

then A can recover the secret key of TKyber with probability 1−1/2d(2r+1)−2−ν .

Proof. As we use additive secret sharing, every party receives exactly one secret
key share ski, where sk =

∑n
i=1 ski.

Following the description of Kyber from App. F and the threshold function
from Figure 5, a partial decryption of TKyber is of the form d = (di)i∈[n], with

di = v · 1i − uT si + ei,

where 1i is a share of 1 (e.g. 1i = 1 if i = 1 and 0 otherwise) and ei ← Dflood,Rq
.

Without loss of generality, we say that Party 1 is honest and all other parties
are controlled by the adversary A. After receiving all n decryption shares, the
adversary can sum them up to obtain

n∑
i=1

di = rTe− eT1 s+ e2 + bq/2em+
∑
i

ei,

where (r, e1, e2) is the encryption randomness used for this query.
We can re-write

∑
i di = 〈w, z〉+ bq/2em+

∑
i ei, where w = (r, e1, e2)

T ←
CBD(2r+1)d

η and z = (e,−s, 1)T .
After subtracting bq/2em, the adversary obtains d′ = 〈w, z〉+

∑n
i=1 ei. More-

over, the adversary knows the flooding noise of the corrupted parties and can
further subtract it from d′, leading to d′′ = 〈w, z〉+ e1.

Interestingly, we observe that all elements appearing in the equation of d′′
are of small norm, thus no reduction modulo q is necessary. After applying the
coefficient embedding, we can interpret d′′ as d samples of I-LWE as defined
in Section 2.3. Due to the concrete shape of Rq = Zq[X]/(Xd + 1) in Kyber,
the resulting public matrix W of the I-LWE instance is now the concatenation
of nega-cyclic matrices over Zq. Overall, after ` partial decryption queries, the
adversary has seen an instance of the I-LWE distribution of parameters R :=
(2r+1)d andM := `d with underlying secret z ∈ ZR. Recall that in TKyber, the
distribution of w is given by a centered binomial distribution of parameter η,
defining a η-subgaussian distribution with σw =

√
E[χ2

e] ≤
√
η2 = η. The
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noise follows a rounded Gaussian distribution, is thus σflood-subgaussian. Thus,
Theorem 2.15 leads to an attacker with success probability 1 − 1/2R − 2−ν

if M = Ω((2r + 1)d+ ν) and M = Ω
(
σ2

flood

η2 log2(2d(2r + 1))
)
. Here we use that

the least square method performs for W (with the nega-cyclic structure) as
good as for matrices where every entry is independent of all the others. That is
the case, as the nega-cyclic structure preserves the required properties to prove
Theorem 2.15.

In comparison, in Section 5.4 we requireM = `d = O
(
σ2

flood

β2
fhe

)
. Recall that βfhe

is the bound on the ciphertext noise, which depends on the decryption failure
probability one wants to tolerate. Some concrete parameters for TKyber are given
in Table 2. In all cases, βfhe ≥ η/ log2(2d(2r + 1)) and hence our upper bound
from Section 5 is below the lower bound from the attack.

Note that [ASY22] showed that the Rényi divergence in their threshold signa-
ture leads to optimal bounds by providing an attack for larger bounds. As they
use a deterministic signature scheme, their analysis boils down to a straight for-
ward averaging attack. In our case, we argue with the results on Integer LWE,
using the least square method, as our encryption scheme is randomized.
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Appendix A Missing Preliminaries

A.1 Proof of Lemma 2.7

Proof. We apply N times the multiplicativity property of the Rényi divergence
as follows. Let P = (D1 + eN , . . . , D1 + e1) and Q = DN

2 . Our goal is to
bound RDa(P‖Q). We start with setting their marginal distributions as P1 =
(D1 + eN−1, . . . , D1 + e1), Q1 = DN−1

2 , P2 = D1 + eN and Q2 = D2. For j ∈
[N ], let Ej denote the random variable given by the distribution D1 + ej . By
Lemma 2.5, it yields

RDa(P‖Q) ≤ RDa(P1‖Q1) · max
y1∈Y1

RDa(D1 + eN |Y1 = y1‖D2|Y1 = y1)

≤ RDa(P1‖Q1) · max
y1∈Y1

RDa(D1 + β|Y1 = y1‖D2|Y1 = y1)

≤ RDa(P1‖Q1) · RDa(D1 + β‖D2)

≤ ρ · RDa(P1‖Q1),

where β is such that |β| ≤ B and Y1 = (EN−1, . . . , E1). From line 2 to line 3
we used the fact that neither D1 + β nor D2 depend on Y1 anymore. Finally, we
obtain RDa(P‖Q) ≤ ρN by induction.

A.2 Example Linear Secret Sharing Schemes

Here, we give more details on the schemes in Table 1.

Additive Secret Sharing. In the (n−1)-out-of-n case, we use simple additive
secret sharing, where x is split into random shares x1, . . . , xn ∈ Zq such that x =∑n
i=1 xi. Every party receives exactly one share, hence L = 1, τmax = n − 1

and τmin = n.

Replicated Secret Sharing [ISN89]. To share x using replicated secret shar-
ing (also called CNF sharing), first sample a set of additive shares {sA}A, over
all size-t subsets A ⊂ [n], such that

∑
A sA = x. Then, party Pi’s share consists

of every sA where i /∈ A. The share size is L =
(
n−1
t

)
.

A maximal invalid set contains all the copies of sA for A 6= A′, for some A′.
Since n− t parties get A′, this gives τmax = nL− (n− t) = (n− t)(

(
n
t

)
− 1). On

the other hand, a minimal valid set of share elements contains every share sA,
so τmin =

(
n
t

)
.

Naive Threshold Secret Sharing. In the simplest form of threshold secret
sharing, which can be seen as the dual of replicated secret sharing, the dealer
distributes a fresh sharing of x to each set S of size t+ 1. There are

(
n
t+1

)
such

sets, but only
(
n−1
t

)
of these contain party Pi, so L =

(
n−1
t

)
. It’s easy to see

that τmax = t
(
n
t+1

)
and τmin = t+ 1.
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Threshold LSS From Monotone Boolean Formulae. An asymptotically
more efficient approach is the construction of Benaloh and Leichter [BL90], which
builds a linear secret scheme for A using any monotone Boolean formula for veri-
fying membership of A. A monotone Boolean formula is a circuit with AND/OR
gates of fan-in 2 and fan-out 1, where the input wires may have multiple fan-out.
The share size of party Pi equals the fan-out of the i-th input wire in the circuit.

Valiant [Val84] described a randomized construction of a monotone Boolean
formula for threshold functions with size O(n5.3). This leads to an average share
size of O(n4.3). Hoory et al. [HMP06] gave an improved circuit of size O(n1+

√
2),

however, their circuit is not a formula, so cannot be used to build threshold LSS.

Appendix B Missing Definitions of Section 3

We define the properties of compactness and decryption correctness in the fol-
lowing. Note that compactness is only relevant in the fully homomorphic setting.

Definition B.1 (Compactness). We say that a TFHE scheme satisfies com-
pactness if there exists a polynomial poly such that for all λ, κ, n, t, C with C :Mk →
M a circuit of depth at most κ and for all (mj)j∈[k] ∈ Mk the following holds.
For (pp, pk, sk1, . . . , skn) ← Setup(1λ, 1κ, n, t), ctj ← Enc(pk,mj) for j ∈ [k]
and ct← Eval(pk, C, ct1, . . . , ctk), it yields

|ct| ≤ poly(λ, κ, n),

where |ct| denotes the bit size of ct.

Definition B.2 (Decryption Correctness).We say that a TFHE scheme sat-
isfies decryption correctness if there exists a negligible function negl(λ) such that
for all λ, κ, n, t, S, C with S ⊂ [n] of size at least t+1 and C :Mk →M of depth
at most κ, and for all (mj)j∈[k] ∈Mk the following holds. For (pp, pk, sk1, . . . , skn)←
Setup(1λ, 1κ, n, t), ctj ← Enc(pk,mj) for j ∈ [k], ct ← Eval(pk, C, ct1, . . . , ctk)
and decryption shares di ← PartDec(ski, ct) for i ∈ S, it holds

Pr[Combine({di}i∈S , ct) = C(m1, . . . ,mk)] = 1− negl(λ).

Appendix C Missing Proofs of Section 4

C.1 Missing Proofs of Section 4.1

Lemma C.1 (Decryption Correctness). The scheme TPKE′ of Section 4.1
satisfies decryption correctness, if TPKE satisfies decryption correctness and δ =
poly(λ).

Proof. Fix λ, n, t, S with S ⊂ [n] of size at least t + 1 and let m ∈ M′. Com-
pute (pp, pk, sk1, . . . , skn) ← Setup′(1λ, n, t) and ct ← Enc′(pk,m). For i ∈ S
we denote by (dij)j∈[δ] = di ← PartDec′(ski, ct) the decryption shares. The
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inequality Combine′({di}i∈S , ct) 6= m holds if for at least one j ∈ [δ] the inequal-
ity Combine({dij}i∈S , cj) 6= xj is true. By the union bound we have

Pr
[
Combine′({di}i∈S , ct) = m

]
= 1− Pr

[
Combine′({di}i∈S , ct) 6= m

]
= 1− Pr

 ⋃
j∈[δ]

Combine({dij}i∈S , cj) 6= xj


≤ 1− δ · negl(λ) = 1− negl(λ),

when δ = poly(λ).

C.2 Missing Proofs of Section 4.2

Lemma C.2 (Compactness). The scheme TFHE′ of Section 4.2 satisfies com-
pactness if TFHE satisfies compactness and δ = poly(λ, κ, n).

Proof. It yields |ct| = |c0| + (n + 1)δ. From the compactness of TFHE follows
that |c0| ≤ poly(λ, κ, n) and hence the claim follows.

Lemma C.3 (Decryption Correctness). The scheme TFHE′ of Section 4.2
satisfies decryption correctness if TFHE satisfies decryption correctness.

Proof. Fix λ, κ, n, t, S, C ′ with S ⊂ [n] of size at least t+1 and C ′ : (M′)k →M′
of depth at most κ. Further, let (mj)j∈[k] ∈ (M′)k. Compute (pp, pk, sk1, . . . , skn)←
Setup′(1λ, 1κ, n, t), ctj ← Enc′(pk,mj) for j ∈ [k] and ct← Eval(pk, C ′, ct1, . . . , ctk).
Then,

Pr
[
Combine′({di}i∈S , ct) = C ′(m1, . . . ,mk)

]
=Pr [Combine({di}i∈S , c0) = C(x1, . . . , xk)]

=1− negl(λ),

where C is defined as in Eval′.

Appendix D Missing Proofs of Section 5

Theorem D.1. The construction in Fig. 5 satisfies decryption correctness.

Proof. Let S ⊂ [n] be of size > t, and ct be a ciphertext output from Eval on
input a set of honestly generated ciphertexts and a circuit C of depth ≤ κ. Let
di ← PartDec(ski, ct) for i ∈ S, where (sk1, . . . , skn) = Share(sk).

By the strong {0, 1}-reconstruction property of LSS and the validity of S,
there exists a minimal valid set of share elements T ⊆ S × [L] such that

RecS((ski)i∈S) =
∑

(i,j)∈T

ski,j = sk.
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It follows that

Combine({di}i∈S , ct) =

(p/q) · (〈ct, sk〉+ ∑
(i,j)∈T

ei,j)


=

(p/q) ·
b(q/p)me+ ect +

∑
(i,j)∈T

ei,j


=

(p/q) ·
(q/p)m+ ernd + ect +

∑
(i,j)∈T

ei,j


= m+

(p/q)(ernd + ect +
∑

(i,j)∈T

ei,j)

 ,
where ect is the ciphertext error and ernd is a rounding polynomial with coef-
ficients ≤ 1/2. Letting e = ernd + . . . be the sum of the 3 error terms, by the
(βfhe, ε)-linear decryption property of FHE, except with probability ε, we have
‖e‖∞ ≤ 1/2 + βfhe + |T | · βflood. Since βfhe ≤ q/(2p) − τminβflood − 1 and T is a
minimal valid set (so |T | ≤ τmin), we have ‖e‖∞ < q/(2p), so the resulting error
term rounds to zero, giving the correct message m.

Appendix E Details on PRSS-based Construction

E.1 Pseudorandom Secret Sharing

Pseudorandom secret sharing (PRSS) [GI99; CDI05] allows parties to non-interactively
obtain secret-sharings of pseudorandom values, after a one-time setup phase
which distributes PRF keys among the parties. We use a variant of PRSS over
the integers, where the parties do not get shares of uniform values, but instead
values bounded from a small range (similarly to [BD10]).

Using a PRF F : {0, 1}λ × {0, 1}∗ → [−B,B] ∩ Z, the t-out-of-n threshold
case works as follows:

– As setup, for each size-t subset A ⊂ [n], sample kA ← {0, 1}λ. Give kA to
each party Pi, for i ∈ [n] where i /∈ A.

– To sample a pseudorandom share on input a nonce v, party Pi computes the
shares sA = F (kA, v), for each size-t A where i /∈ A.

The resulting set of shares {sA}|A|=t form a replicated secret sharing of s =∑
A sA, and we have |s| ≤ B ·

(
n
t

)
. Furthermore, for any collusion of t parties,

there is always one share sA ∈ [−B,B] that remains unknown.

Converting to Another LSS. A useful property of replicated secret sharing is
that replicated shares can be locally converted into any linear secret sharing
scheme for the same access structure via a simple linear transformation [CDI05].
We write the procedure of converting a share si into a share s′i for a LSSS as:
s′i = Convertrep→LSS(si).
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E.2 Construction

The construction is shown in Fig. 6. It uses a PRF F : {0, 1}λ × Rrq → Z ∩
[−βflood, βflood], where we require that the outputs of F are indistinguishable
from samples from Dflood.8

TFHE.Setup is modified to sample a set of
(
n
t

)
keys kA and distribute these

to the parties in a replicated secret sharing manner. Meanwhile, the secret key of
the PKE scheme is shared using standard Shamir sharing. Then, during partial
decryption, the parties use the PRF to obtain replicated secret shares of a noise
vector. Finally, the parties convert these to Shamir sharings of the same value,
exploiting the generality of replicated secret sharing. The Combine algorithm is
identical to the previous construction, but using Shamir reconstruction.

TFHE.Setup(1λ, n, t)

1 : (pp, pk, sk)← PKE.KGen(1λ)

2 : kA ← {0, 1}λ, for A ⊂ [n], |A| = t

3 : ki ← (kA)i/∈A

4 : (sk1, . . . , skn)← Shamir.Share(sk)

5 : return (pp, pk, (sk1,k1), . . . , (skn,kn))

TFHE.PartDec((ski,ki), ct)

1 : // ki = (kA)i/∈A, for all |A| = t

2 : eA ← F (kA, ct), for i /∈ A
3 : ei ← Convertrep→Shamir((eA)i/∈A)

4 : // ei ∈ Rq

5 : return di ← 〈ct, ski〉+ ei

Fig. 6. Setup and partial decrypt algorithms for the variant of the OW-CPA threshold
PKE/FHE scheme using pseudorandom secret sharing.

Correctness. The proof of correctness follows similarly to the proof of Theo-
rem D.1. Since the PRF outputs are bounded by βflood, the noise term sampled
with pseudorandom secret-sharing is bounded by

(
n
t

)
· βflood. After converting

this to Shamir shares, the parties obtain a sharing of the same noise term, so de-
cryption succeeds under the same conditions as in Theorem D.1, with τmin =

(
n
t

)
.

Security. We show security in the following theorem. Note that we improve the
security loss compared with Theorem 5.2, since there is no longer an nL− τmax

term in the exponent of εRDa
.

Theorem E.1. For any adversary A against the `-OW-CPA property of the
TFHE scheme in Fig. 6, there exists an adversary B against the OW-CPA property
of PKE, such that

Adv`-OW-CPA
TFHE (A) ≤

(
AdvOW-CPA

PKE (B) · ε`dRDa

)(a−1)/a
+ `ε

8 We can use any PRF, and use the resulting pseudorandom bits to sample from Dflood.
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Proof. The proof follows a similar structure to that of Theorem 5.2, so we only
highlight the main differences.

Recall that Game G0 is the construction. In Game G1, we changed the way
the partial decryptions were computed, for all shares outside of a maximally
invalid set of share elements. Since we now only need to simulate partial de-
cryptions of Shamir shares, we instead define a maximally invalid set of parties,
T ⊃ S, where S is the set of corrupted parties and T has size t. We then simulate
the partial decryptions as follows:

1. For i ∈ T , honestly compute eA ← F (kA, ct), for each size-t set A ⊂ [n] with
i /∈ A, and let di = 〈ct, ski〉+ Convertrep→Shamir((ei,A)A)

2. Sample eT ← Dflood,Rq

3. Compute e =
∑
A,|A|=t eA

4. For i /∈ T , let T ′ = T ∪ {i} and compute

di = λ−1T ′,i ·

〈ct, sk〉+ e−
∑
j∈T

λT ′,jdj


where λT ′,j are the reconstruction coefficients for Shamir secret sharing,
defined by the Lagrange basis for polynomial interpolation at points in T ′.

Note that the di shares for i /∈ T are computed such that the partial de-
cryptions form a valid Shamir sharing of 〈ct, sk〉 + e. This is exactly as in the
real protocol, except that here the one share eT that is not part of any shares
in the maximally invalid set T is sampled from Dflood (step 2) instead of with
the PRF. Since the PRF key kT is not given to the adversary, this hybrid is
indistinguishable from the real game G0, by the security of the PRF.

Game G2 then makes the same change as in Theorem 5.2, removing the
possibility of decryption failure. This is indistinguishable from the previous game,
except with probability `ε.

In Game G3, in the noise term e, the share eT sampled in step 2 is sampled
with simulated noise using Dsim,Rq

. At the same time, we remove the ciphertext
noise term in 〈ct, sk〉, so instead of the last step above, we will now compute

di = λ−1T ′,i ·

b(q/p) ·me+ e−
∑
j∈T

λT ′,jdj


Notice that the difference between games G2 and G3 is that G2 uses the real

ciphertext noise and eT ← Dflood,Rq to simulate the missing partial decryptions,
while G3 instead uses zero ciphertext noise and eT ← Dsim,Rq

. Let ect = 〈ct, sk〉−
b(q/p) ·me be the ciphertext noise. Using Lemma 2.7, we have

RDa(Dflood,Rq
+ ect‖Dsim,Rq

) ≤ εdRDa

Similarly to the proof of Theorem 5.2, for ` decryption queries we obtain

AdvG2

TFHE(A) ≤
(
AdvG3

PKE(A) · ε
`d
RDa

)(a−1)/a
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and the result follows.

Achieving Strong Robustness. An advantage of this construction is that if
t < n/3, we can exploit the error-correction properties of Shamir sharing to guar-
antee that Combine outputs the correct message, even in the presence of t mali-
ciously chosen partial decryptions. This is because a properly generated PartDec
output is a valid Shamir share, so the parties can always use Reed-Solomon error
correction to reconstruct the secret and decrypt, given at least n/3 valid shares.
This allows the construction to satisfy the strong chosen-plaintext robustness
property (Def. 3.5). While this is also possible to achieve using the OW-CPA
to IND-CPA transformation from Section 4 (and even with t < n/2), by using
Shamir we avoid the

(
n
t

)
cost of finding the correct subset of partial decryptions,

significantly improving the efficiency of the Combine algorithm. Furthermore,
the Shamir approach is compatible with FHE and not just PKE.

Appendix F More Details on Parameters of Section 6

We recall the high level design of Kyber with messages of the form m ∈ R2
∼=

{0, 1}d, where d denotes the degree of the ring R. The scheme uses the centered
binomial distribution with parameter η ∈ N, denoted by CBDη. We say that
a ring element is sampled from CBDη if all its d coefficients are independently
sampled from CBDη. This generalizes to vectors in Rr, where r is the underlying
module rank. Let Kyber = (Setup,Enc,Dec) be as follows:

Setup(1λ): Sample short vectors s, e ∈ Rrq from CBDη and a uniform matrix A ∈
Rr×rq . Set sk = (s, e) and pk = (A, t), where t = As+ e.

Enc(pk,m): Sample a short vector r ∈ Rrq from CBDη and e1 ∈ Rrq and e2 ∈ Rq
from CBDη. Set u = AT r+e1 and v = rT t+e2+bq/2e·m. Output ct = (u, v).

Dec(sk, ct): Compute c′ = v−uT s = rTe−eT1 s+e2+bq/2e·m. Output bc′ · 2/qe.

For simplicity, we omit the additional rounding usually applied to ciphertexts
to further reduce their size.

Table 4. Parameter sets for Kyber.

Set d r q η

Kyber768 256 3 3329 2
Kyber1024 256 4 3329 2
Kyber1280 256 5 3329 2
Kyber1536 256 6 3329 2
Kyber1792 256 7 3329 2
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Generic Parameters for Large Numbers of Parties. We first describe a
simplified way of deriving parameters, where we assume that Dsim and Dflood

both are uncut rounded Gaussian distributions of the same width σ.
Using Lemma 2.6 with our choice of distributions, Equation 2 simplifies to

λTPKE ≥
a− 1

a
·

(
λPKE − `d(nL− τmax)

aβ2
pke

2σ2
log2 e

)
. (3)

When setting σ = βpke

√
`d(nL− τmax)(a− 1) log2 e, the above simplifies to

λTPKE ≥
a− 1

a
· λPKE − 1, (4)

which promises a rather small security loss at the expense of a larger modu-
lus. Note that we have to set q > 4(βpke + τminβflood) in order to guarantee
correctness (Thm. D.1). Let’s for concreteness set βflood = 10σ and a = 100.
Recall that Kyber is a PKE with (βpke, ε)-linear decryption, where βpke depends
on the maximal failure probability ε we tolerate. If we take as a concrete exam-
ple Kyber1024, it offers (390, 2−60) as well as (934, 2−300)-linear decryption.

When considering full threshold, we use additive secret sharing and when
considering non-full threshold, we assume naive secret sharing, defining the pa-
rameters L, τmax, τmin as in Table 1. After having set σ and q, one can use the
Lattice Estimator [APS15] to derive λPKE. For simplicity we set λPKE as the core-
SVP classical hardness, i.e., the resulting BKZ block size multiplied by 0.292.
The resulting λTPKE and ∆λ then come from Equation 4. We give some sample
parameters for TKyber1024 in Table 2. Note that we mean by TKyber1024 that
we take all the original Kyber1024 parameters, but modify the modulus q.

Hand-Tuned Parameters for Small Number of Parties. We now describe
how we can obtain tighter concrete parameters (in particular a small modulus q)
by allowing for different flooding and simulating Gaussian distributions and op-
timizing their concrete width. Throughout this section, we set Dsim (resp. Dflood)
as the rounded Gaussian distribution of width σsim (resp. σflood), where we ad-
ditionally apply a tail cut after 2 · σsim (resp. 2 · σflood).

By extending the Python program for computing security estimates of Kyber9,
we design a Python program that proceeds in the following three steps:

Step 1: Finding Dflood. The high level idea is to find the largest σflood we can
use in our TPKE such that we still guarantee correctness (Theorem D.1). This
is how we optimally make use of our modulus q. For simplicity, we set p = 2
and hence correctness is fulfilled as long as the infinity norm of the final noise is
at most q/4. This procedure depends on the Kyber parameters (that define the
noise from the decryption algorithm) as well as the maximal decryption failure
probability we want to aim for. We fix this probability to be 2−60. At the end,
the procedure outputs σflood and the bound B.
9 https://github.com/pq-crystals/security-estimates
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Step 2: Finding Dsim. Once we have computed Dflood, we can find Dsim such that
the Rényi divergence RD2(Dflood+B‖Dsim) is smallest. We start by settingDsim =
Dflood and compute the Rényi divergence of order 2. We now (slightly) in-
crease Dsim step by step and expect the Rényi divergence to decrease up to
some optimal sweet spot. Once we observe that the Rényi divergence increases
again, we stop increasing Dsim and take this as the optimal choice. Note that for
fixed Dflood, B and Dsim, it yields RD2(Dflood +B‖Dsim) ≤ RDa(Dflood +B‖Dsim)
for all a > 1. Hence, it is reasonable to compute the sweet spot for the order 2.

Step 3: Finding εRDa . As we now haveDflood,Dsim and B, we can find the optimal
order of the Rényi divergence. Note that, even though εRDa

doesn’t decrease for
increasing a, the factor (a−1)/a in Equation 2 suggests that the optimal a might
not necessarily be a = 2. For concreteness, we search the minimum among the
orders a ∈ [2, . . . , 11]. We then output the optimal choice of a together with
the resulting Rényi divergence εRDa . Finally, we have everything together to
compute the upper bound on λTPKE.

Table 3 summarizes our findings. We use as base security λPKE the core-
SVP classical hardness of the underlying LWE instance, which can be easily
computed using any LWE estimator. For convenience, we used the leaky LWE
estimator [Dac+20]. We give some estimates for the final security λTPKE for dif-
ferent choices of small numbers of parties n, threshold t and number of queries `.
For all computations, we apply a (rather aggressive) Gaussian tail cut after 2
times the Gaussian width and assume a failure probability bound of 2−60.

Here, we consider variants of the Kyber1024 parameter set, where we multiply
the modulus q by some scaling factor. This scaling factor is intended to give an
idea of the order of magnitude of the modulus we need. We remark that multiples
of 3329 might not necessarily be the optimal choice when taking implementation
characteristics into account.

Comparing The Rényi Divergences. We would like to highlight that the
two strategies assume different flooding and simulating noise distributions Dflood

and Dsim. Whereas in the first we assume the same and (quasi) uncut rounded
Gaussian distributions, we computed the parameters in the second case with a
different and tail cut rounded Gaussian distributions. When fixing a maximal
decryption failure probability, one can choose the modulus q much smaller in the
latter case. However, the sharper we cut off the rounded Gaussian distribution,
the more the Rényi divergences from Lemma 2.6 and one computed by our
Python program diverge from each other.
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