
Noname manuscript No.
(will be inserted by the editor)

Autoencoder-enabled Model Portability for Reducing
Hyperparameter Tuning Efforts in Side-channel Analysis

Marina Krček · Guilherme Perin

Received: date / Accepted: date

Abstract Hyperparameter tuning represents one of the

main challenges in deep learning-based profiling side-

channel analysis. For each different side-channel dataset,

the typical procedure to find a profiling model is apply-

ing hyperparameter tuning from scratch. The main rea-

son is that side-channel measurements from various tar-

gets contain different underlying leakage distributions.

Consequently, the same profiling model hyperparame-

ters are usually not equally efficient for other targets.

This paper considers autoencoders for dimensionality

reduction to verify if encoded datasets from different

targets enable the portability of profiling models and ar-

chitectures. Successful portability reduces the hyperpa-

rameter tuning efforts as profiling model tuning is elim-

inated for the new dataset, and tuning autoencoders is

simpler. We first search for the best autoencoder for

each dataset and the best profiling model when the

encoded dataset becomes the training set. Our results

show no significant difference in tuning efforts using

original and encoded traces, meaning that encoded data

reliably represents the original data. Next, we verify

how portable is the best profiling model among different

datasets. Our results show that tuning autoencoders en-

ables and improves portability while reducing the effort

in hyperparameter search for profiling models. Lastly,

we present a transfer learning case where dimensional-

ity reduction might be necessary if the model is tuned

for a dataset with fewer features than the new dataset.

Marina Krček
Delft University of Technology,
Mekelweg 2, Delft, The Netherlands
E-mail: m.krcek@tudelft.nl

Guilherme Perin
Leiden University,
Rapenburg 70, Leiden, The Netherlands
E-mail: g.perin@liacs.leidenuniv.nl

In this case, tuning of the profiling model is eliminated

and training time reduced.

Keywords Side-channel Analysis, Autoencoders,

Preprocessing, Hyperparameter Tuning, Portability,

Transfer Learning

1 Introduction

Hardware and software implementations of cryptographic

algorithms may leak unintended and measurable side-

channel information such as power consumption, elec-

tromagnetic emissions, and execution time. Although

mathematically secure, these cryptographic implemen-

tations may become vulnerable to side-channel attacks

(SCAs). SCA is an implementation attack mainly cat-

egorized into direct and two-stage attacks. Direct at-

tacks, also known as non-profiled SCA, mainly consist

of simple power analysis [11], differential power anal-

ysis [12], and correlation power analysis [4]. These at-

tacks explore the statistical dependency between leaked

side-channel information and secret cryptographic keys.

Recovering the secret depends on running the attack

over all possible key hypotheses through a divide-and-

conquer strategy and selecting an efficient statistical

distinguisher (e.g., Pearson correlation, difference-of-

means, or mutual information). On the other hand, a

two-stage, or profiling SCA [8], can evaluate the secu-

rity of a cryptographic implementation by assuming a

stronger adversary. Profiling SCA assumes that a po-

tential adversary has an open device (identical to the

target one) that provides conditions to learn a profil-

ing model by reprogramming the key and input data to

the cryptographic algorithm. Depending on how much

knowledge is assumed that the adversary possesses (e.g.,

source code and access to the secret randomness of the

2 Marina Krček, Guilherme Perin

implementation), profiling SCA allows the deployment

of worst-case (i.e., white-box) or black-box security as-

sessment.

Countermeasures such as masking and hiding are

often considered to mitigate SCA. For twenty years,

Gaussian template attacks (GTA) [8] have proven to be

theoretically the best option to test the worst-case se-

curity of SCA countermeasures [5]. Deep learning (DL)

has been widely investigated as an alternative profil-

ing SCA solution in the last few years. The results with

real-world datasets have demonstrated that deep neural

networks provide several practical advantages in com-

parison to GTA, such as skipping points-of-interest or

feature selection from raw measurements [14, 19], re-

laxing assumptions about underlying leakage distribu-

tion, and being less sensitive to trace desynchroniza-

tion [7, 25, 29]. However, together with large training

times, the main open challenge for DL-based SCA is

hyperparameter tuning. In [20], the authors suggested

that hyperparameter tuning should be taken as one of

the adversarial assumptions, together with the number

of profiling and attack measurements. However, verify-

ing the correctness and reliability of a DL-based profil-

ing model concerning its hyperparameters is still diffi-

cult. Even considering advanced hyperparameter search

algorithms [22, 26] cannot guarantee that the obtained

best model delivers reliable security assessment.

Hyperparameter tuning is a trade-off between time

effort and neural network performance, as there is no

proven best way to tune the network in a reasonable

time. According to [20], the maximum number of searched

DL models should be considered when inferring the

target’s security. A profiling SCA process that is un-

bounded in the number of hyperparameter tuning mod-
els (or learnability capacity) would be able to deliver re-

liable security assessment1. However, as the number of

searched models is always limited in reality, one would

like to optimize the model search process by reducing

the hyperparameter tuning efforts by ensuring that a

reliable and efficient DL model is always found and

trained within available computation bounds. In other

words, by applying DL-based profiling SCA, the secu-

rity evaluator wants to ensure that a successful secu-

rity assessment (i.e., the one that fails in recovering the

secret) results from an SCA-secure implementation in-

stead of a wrong profiling attack. One way to reduce

1 Note that this conclusion only holds, at the moment,
for first-order masking schemes with hiding countermeasures
(e.g., desynchronization). For high-order masking schemes
with or without shuffling and desynchronization, it is still an
open question whether deep learning models can deliver re-
liable worst-case or non-worst-case security assessments (see,
for instance, the discussion in [15], Section 6, for the non-
worst-case assessments).

hyperparameter search effort across different targets is

to apply preprocessing techniques on raw side-channel

measurements, such as points-of-interest selection or di-

mensionality reduction.

In this paper, we consider only dimensionality re-

duction because points-of-interest selection tends to be

inefficient due to the presence of masking countermea-

sures in the evaluated datasets. We assume a black-box

threat model, i.e., an adversary without access to secret

masks during profiling and attack phases. We consider

autoencoders for dimensionality reduction, which were

already considered for denoising the SCA traces and

improving the profiling SCA performance [27]. Addi-

tionally, they are used in non-profiling SCA for similar

preprocessing tasks [13]. Our primary goal is to verify

whether efforts can be moved from tuning a profiling

deep neural network model to tuning an autoencoder by

reusing profiling modes across different datasets. Our

main contributions are:

1. We experimentally confirm that the standard recon-

struction error metric for autoencoders works well

for SCA settings. Moreover, the data encoded with

autoencoders stays relevant, where we show that

tuning efforts on encoded data are similar to tuning

on original traces.

2. We demonstrate that the portability of profiling model

hyperparameters is possible. We apply the same best

profiling model across different datasets encoded into

the same dimension with the obtained best autoen-

coders. Thus, the same profiling model obtained for

one dataset can be utilized for other datasets, which

reduces the hyperparameter search effort.

3. We show through transfer learning that our best

profiling model can be applied to different datasets,

eliminating hyperparameter tuning of the profiling

model and reducing training time.

The analysis provided in this paper contributes to mak-

ing DL-based SCA more practical for security evalua-

tions of cryptographic implementations when protected

with the first-order Boolean masking schemes.

2 Background

2.1 Deep Learning-based Side-channel Attacks

In deep learning-based side-channel attacks (DL-based

SCA), the main goal is to train deep neural network pa-

rameters θ with training data D by minimizing a loss

function L. Each instance of training data D consists

of a tuple (xi, yi), where xi is a one-dimensional vec-

tor representing the i-th side-channel measurement (or

trace) in a dataset D. The range of i is from 0 to the

Autoencoder-enabled Model Portability in DL-based SCA 3

size of the dataset |D|. The term yi refers to the label

(or class) associated to xi.

Labeling a dataset requires the definition of a leak-

age model and a selection function. In SCA, the main

leakage models are identity (ID), Hamming weight (HW),

Hamming distance (HD), and bit-level models. The iden-

tity model refers to the direct value of an intermediate

being processed by a cryptographic algorithm, while

HW refers to the Hamming weight of such intermedi-

ate. The HD model returns the Hamming weight from

the xor between two intermediate variables. Bit-level

models usually consider the most or least significant bit

from an intermediate variable. The intermediate vari-

able is defined according to a key-dependent selection

function that usually returns an intermediate byte from

the cryptographic algorithm. For the case of AES en-

cryption, this intermediate for the i-th trace xi could

be an S-Box output byte in the first encryption round,

i.e., yi = S-Box(dj ⊕ kj), where dj and kj are the j-th

plaintext and key bytes (j ∈ [0, 15] for a key size of 128

bits), respectively.

From the training set D, we select a subset V to val-

idate the trained model. This model is later tested on a

separate dataset A collected from the attacked device

that we refer to as the attack set. Since the goal is to

obtain the secret key from A (or a single byte of the

key), we use guessing entropy (GE) [23] to assess the

attack performance. The best possible neural network

model is the one that requires minimal attack complex-

ity, which is measured in terms of the minimum num-

ber of attack traces that are necessary to successfully

recover the key [6].

To compute GE, we first predict the validation or

attack set and obtain class probabilities pi,yi
for each

trace i. As labels yi are derived from a key-dependent

selection function, we obtain the log-likelihood lk of a

certain key byte kj ∈ [0, 255]:

lk =

Na−1∑
i=0

log pi,yi
, (1)

where Na is the number of traces in the predicted set.

This process is then repeated for all possible key byte

hypotheses. Each hypothesis will define different labels

yi for each trace. The key rank of the correct key k∗ is

obtained by sorting all lk values and by returning the

position of lk∗ associated with the correct key byte k∗.

The GE of the correct key, ge∗, is given by an empirical

process in which we repeat the key rank process mul-

tiple times (each time with a different and randomly

selected subset from the attack or validation set). We

obtain an average log-likelihood or key guessing vector g

and get the average position of the correct key k∗ inside

g. When ge∗ = 1, we say that the model successfully

recovers the key with Na attack traces. The minimum

number of traces to retrieve the key is referred to as

Nge∗=1.

Although the primary goal of training a deep neural

network in the SCA context is to minimize Nge∗=1, the

models in this paper are still trained with a categorical

cross-entropy loss function. In [16], the authors showed

that minimizing this loss function is aligned with min-

imizing Nge∗=1.

2.2 Autoencoders (AEs)

Autoencoder (AE) is a specific self-supervised neural

network used for data compression, dimensionality re-

duction, generating new data, denoising, etc. The au-

thors in [10] first used autoencoders for dimensionality

reduction. Different autoencoders, such as denoising or

variational autoencoders, are described in [1, 18]. We

use autoencoders for dimensionality reduction to learn,

in an unsupervised manner, an informative smaller rep-

resentation of the data. We consider deep autoencoders

since they are often better than shallow or linear coun-

terparts. While variational autoencoders are very popu-

lar, they are more helpful in generating new data, which

is different from our goal here.

Autoencoders usually have an encoder and decoder

part. The encoder takes the original input and learns

a function that encodes the data into a representation

given by a latent space. In dimensionality reduction, the

input dimension is reduced in latent space. That mid-

dle layer is known as the “bottleneck layer”, as it holds

the data’s compressed representation. Later, we use the

decoder function to reconstruct the original input from

the encoded data. Both encoder and decoder are neu-

ral networks, commonly symmetrical, having the same

type and number of layers with the same layer sizes.

The objective function of the autoencoder is mini-

mizing the difference between input and output by pre-

serving the relevant information. The compressed data

is evaluated by the decoder’s ability to reconstruct the

original input from the compressed data, so the com-

mon metric is Mean Squared Error (MSE). The output

for autoencoders is the input itself, so MSE is calculated

with

MSE =
1

m

m∑
i=1

(xi − x̂i)
2
, (2)

where xi is the original observation and x̂i its recon-

struction, while m is the number of inputs (samples).

In SCA, xi is the side-channel trace with n features, for

which the distance from x̂i is again MSE. Therefore, we

do not use labels as in profiling models and do not need

4 Marina Krček, Guilherme Perin

to use any leakage model. In this work, we search for the

best autoencoders, following the information from [18]

for defining the hyperparameter tuning space.

2.3 Transfer Learning

Transfer learning (TL) in machine learning focuses on

transferring knowledge across domains and aims to lever-

age knowledge from a related domain to improve learn-

ing in a new task (target domain). The success of trans-

fer learning depends on many factors, such as the rele-

vance between the source and target domains and the

learner’s (model’s) capacity to find transferable and

valuable knowledge across the two domains. Transfer

learning can be categorized based on the feature space

between the two domains and the availability of the

labels. More information on categorizations of TL is

found in surveys, e.g., [17, 24,30].

Our case belongs to inductive transfer learning, where

we have labels for both the source and target domains

(different intermediate values belonging to a specific

dataset). We aim to achieve high performance in the

target task. There are many approaches to transfer learn-

ing, and they depend on what we aim to transfer. In our

case, we use parameter-based TL to transfer knowledge

at the model/parameter level. We use models trained

on one dataset and use them for different datasets. Our

main objective is to obtain accurate predictions in the

target domain for the new task. Specifically, we train

the model to learn the correct key k∗ of another dataset.

We do it with parameter sharing so that we have a neu-

ral network for the source task, and we share (freeze)

most of the layers and fine-tune the last few layers to
obtain a network that works for the targeted task. We

keep the first layers since the first layers in deep neural

networks appear not to be specific to particular datasets

or tasks [28].

2.4 Datasets

We describe three datasets that are used in our exper-

iments.

2.4.1 DPAcontest v4.2

DPAcontest v4.2 dataset (here referred as DPAv4.2)2 is

the second implementation available in the DPAcontest

v4 [3]. It is an improved version implemented in soft-

ware on an 8-bit Atmel ATMega-163 smart card and

corrects several leaks identified in its previous gener-

ation. This dataset represents the power consumption

2 https://www.dpacontest.org/v4/42_doc.php

of the first AES encryption round, and the AES imple-

mentation is protected with Rotate Shift countermea-

sure. The dataset contains a total of 80 000 traces, and

each of them contains 1 704 402 sample points. In our

experiments, we trim the dataset to the interval repre-

senting the processing of the 13-th S-box byte, result-

ing in 2 000 samples per trace. The first interval ranges

from sample 305 000 to 315 000 from original measure-

ments. We apply the resampling process with a resam-

pling window of 10 and step of 5, resulting in 2 000 sam-

ples per measurement. We use 70 000 traces for training

(which contains 14 different keys).

2.4.2 ASCAD

ASCAD dataset3 with a fixed key (ASCADf), along with

ASCAD dataset with a random key (ASCADr), consists

of measurements from masked AES on the 8-bit AT-

Mega8515 MCU target without any specific hiding coun-

termeasures activated on the target [2]. For ASCADf

dataset, the key is fixed for all measurements. We have

50 000 training traces with 700 features per trace. ASCADr

dataset corresponds to the second campaign with the

same target and setup as in ASCADf. However, in this

setting, the key is variable for 66% of the measurements.

We use 200 000 training traces with 1 400 features per

trace.

For all datasets, we use 5 000 traces for validation

and another 5 000 traces as the attack set in both pro-

filing attacks and autoencoders. We use 3 000 traces

randomly chosen from that 5 000 in each key rank cal-

culation to calculate GE.

3 Experimental Setup

In this section, we provide details about our experi-

mental setup. The process starts with a hyperparame-

ter search to find the best autoencoders for different

datasets. Before that, we verify that the MSE met-

ric is appropriate as it keeps the side-channel leakage

in the reconstructed traces. Then we verify if search-

ing for profiling neural network models remains similar

when we train the models with the encoded datasets.

We compare the attack performance of profiling mod-

els trained with encoded and original datasets. That is

necessary to validate that encoded data stays relevant

without worsening tuning efforts. Next, we reused pro-

filing models’ hyperparameters across multiple datasets

as it was shown that tuning encoded data is equal to

3 https://github.com/ANSSI-FR/ASCAD/tree/master/

ATMEGA_AES_v1

https://www.dpacontest.org/v4/42_doc.php
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1

Autoencoder-enabled Model Portability in DL-based SCA 5

tuning original datasets. We consider portability from

encoded data to other encoded data and from original

to encoded data. The first case enables universal mod-

els where all datasets are represented in a similar latent

space. The second case is portability when we want to

reuse an architecture from different feature spaces. Fi-

nally, we explore transfer learning advantages utilizing

autoencoders and profiling models. To summarize, we

apply the following steps:

1. Search for the best latent space size for all datasets

based on two datasets.

2. Search for the best autoencoders with the lowest

Mean Squared Error (MSE) by setting the best found

latent space size.

3. Compare the performance of profiling models when

trained with original and encoded traces of the datasets.

4. Investigate the portability of best profiling model

hyperparameters trained with an encoded dataset

to other encoded datasets. All datasets are encoded

into the same latent dimension by using best-found

autoencoders.

5. Investigate the portability of the best profiling model

hyperparameters trained with an original dataset to

other encoded datasets. The concept is used when

a new dataset has more features than the original

dataset. The new dataset is encoded into the same

dimension as the original dataset using best-found

autoencoders.

6. Investigate transfer learning of best profiling model

trained with an original dataset to other encoded

datasets encoded into the same dimension using the

best autoencoders.

The overall structure of our experimental setup and

the corresponding steps are shown in Figure 1. Addi-

tionally, the source code is publicly available4.

3.1 Autoencoder Architectures

We consider the following CNN and MLP autoencoder

structures:

– ae cnn: autoencoders with convolution layers.

– ae mlp: autoencoders given by symmetric encoder

and decoder blocks, in which all layers have the

same number of neurons. Latent size can be smaller,

equal, or larger than the number of neurons in pre-

vious layers.

– ae mlp dcr: autoencoder with decreasing number of

neurons in subsequent layers (with possible repeti-

tion). We do not ensure that the layer before the

4 The code is available at https://github.com/marinakrcek/
AutoEncodersDLSCA.

latent space is strictly larger (or equal) to the la-

tent dimension.

– ae mlp str dcr: autoencoder with decreasing num-

ber of neurons in subsequent layers in the encoder.

Here, str dcr stands for strictly decreasing. The la-

tent size is smaller than the number of neurons in

the previous layer. However, the cases where we still

use the same number of neurons in layers before the

latent layer are possible.

We have several options for MLP autoencoders, while

the usual, most common choice is ae mlp str dcr. A

decreasing number of neurons in the encoder and sym-

metrical decoder are commonly chosen because, intu-

itively, decreasing the number of neurons forces gener-

alization and seems useful for dimensionality reduction.

The real benefit of this structure is possibly lower com-

putation costs compared to alternatives. However, as in

classification, other options can be explored. Thus, we

test the possibilities mentioned above where the num-

ber of neurons is not consistently decreasing, and the

latent size is not strictly following the decreasing pat-

tern.

In described autoencoder types, the encoder and

decoder with MLP structure are always symmetrical,

which means that the number of layers is the same in

both encoder and decoder blocks. Also, the layer sizes

are symmetrically decreasing in the encoder while in-

creasing in the decoder. While common, this is again

not strictly defined and can be explored. Intuition again

says it makes the most sense for the decoder to fol-

low a reverse structure from its encoder counterpart,

but other possibilities can be similarly capable of good

performance. For this setting, we keep the traditional

symmetrical design.

CNN autoencoder uses similar convolutional blocks

to those reported in [18]. Specifically, we use a con-

volutional layer followed by a pooling layer in the en-

coder. While they specified Max pooling, we allow both

Max and Average pooling in hyperparameter selection.

For the decoder, we use upsampling followed by a stan-

dard convolutional layer. Since there are more options,

the convolutional autoencoder (ConvAE) structure is

more complex to define than the MLP autoencoder. We

observe in the literature versions of ConvAE increas-

ing and decreasing the number of filters while kernel

size and pooling size remain the same. In some cases,

kernel sizes were changing. Thus, there is no specific

best way to structure the ConvAE. In our case, we

increase the number of filters in the encoder because

the kernel size and pooling reduce the number of fea-

tures, sometimes to only one. Thus, having more fil-

ters in those deeper layers ensures that after flattening,

we have more than one neuron before the last fully-

https://github.com/marinakrcek/AutoEncodersDLSCA
https://github.com/marinakrcek/AutoEncodersDLSCA

6 Marina Krček, Guilherme Perin

Fig. 1: Experimental setup. The term n refers to the number of features in datasets. We denote h as the set of

architecture hyperparameters and θ as trainable parameters (weights and biases) in portability cases.

connected layer. We increase the number of filters per

layer following the expression nb filters · 2i, where i

is the order of the layer + 1. In the decoder, with

the combination of upsampling and standard convolu-

tional layer, upsampling increases the number of fea-

tures, while kernel size again decreases it. Thus, we keep

the same expression for increasing the number of filters.

Both the encoder and decoder end with a flattened layer

followed by a fully-connected layer with the number of

neurons equal to the latent size in the encoder and in-

put size in the decoder.

In this work, we tested different structures of MLP

autoencoders. At the same time, more analysis should

be done for the CNN autoencoder, as the described

structure is one of many possibilities. We leave this ex-

ploration on CNN structures for future work.

3.2 Autoencoder Metric Analysis

Autoencoders for dimensionality reduction imply find-

ing a reduced representation of input data through a

latent space. To assess the quality of the reduction and

obtained latent representation, the most common error

metric is Mean Squared Error (MSE):

MSE =
1

mn

m∑
i=1

n∑
j=1

(xij − x̂ij)
2
, (3)

Autoencoder-enabled Model Portability in DL-based SCA 7

where xij is the j-th feature value of i-th original side-

channel observation and x̂ij its reconstruction. m is the

number of traces (inputs), and n is the number of fea-

tures in the side-channel trace. Minimizing the MSE

leads to a good reconstruction of the original input. To

verify whether minimizing MSE is meaningful for SCA

traces, we quantify if the leakage is still preserved in the

reconstructed traces by calculating the Signal-to-Noise

Ratio (SNR). SNR is computed as a leakage assess-

ment of side-channel measurements according to a pre-

selected intermediate variable. Since evaluated datasets

in this paper were collected from first-order masking

AES implementations, first-order intermediate values

(such as S-Box(dj ⊕ kj)) show no significant leakages.

Thus, we compute SNR to verify the occurrence of leak-

ages for the masked S-Box output intermediate values5,

i.e., v = S-Box(dj⊕kj)⊕mi, where mi is the mask of the

i-th trace. For that, we compute the mean and variance

side-channel traces for a group of traces represented by

a specific intermediate variable v ∈ [0, 255]:

µv =
1

Nv

nv−1∑
i=0

xvi (4)

σ2
v =

1

Nv − 1

Nv−1∑
i=0

(xvi − µv)
2
, (5)

where Nv is the number of side-channel traces repre-

sented or labeled with intermediate variable v. Next,

we obtain the mean vector from all 256 variance vec-

tors σ2
v :

µσ =
1

256

255∑
v=0

σ2
v (6)

and the variance of mean vectors µv:

σµ =
1

255

255∑
v=0

(µv − µσ)
2
. (7)

Finally, SNR is given by:

SNR =
σµ

µσ
. (8)

The SNR from Eq. (8) results in a vector with the

same length as side-channel traces. We compute this

vector for original and reconstructed traces. Then, we

take the maximum SNR peak obtained with original

traces and subtract it from the value on that exact lo-

cation in the SNR obtained from reconstructed traces.

In the result figures, we refer to this as SNR diff.

5 Although our profiling attacks in later sections are all ex-
ecuted in a black-box manner, here we assume the knowledge
of the masks only to assess if MSE metric is consistent.

4 Experimental Results

4.1 Autoencoders Search

In this section, we deploy a random search to find the

best latent space size for autoencoders based on ex-

periments with two datasets. After defining the best

latent space size, we deploy a random search to find

the best autoencoder architecture for MLP and CNN-

based structures. We also obtain the best autoencoder

types. Datasets are then encoded with these best au-

toencoders. Finally, we deploy another random search

to find the best profiling model trained with the en-

coded datasets. We include the third dataset later for

portability experiments while also evaluating how well

the decisions made on two other datasets for latent size

and autoencoder type apply to new datasets.

4.1.1 Assessing MSE Metric with SNR

We conduct a random search on autoencoders using

MSE as the loss function for achieving good recon-

struction from the latent space. In these experiments,

we consider SNR to verify that minimizing MSE is a

meaningful objective when tuning autoencoder hyper-

parameters. Here, we are not searching for the best la-

tent space size, so we fix the latent dimension to 100

features in all cases to evaluate the MSE metric.

Hyperparameter search space for all autoencoder

types are listed in Tables 19 and 20 in Appendix A. We

randomly search for 20 models with each of the four

autoencoder types and calculate the SNR difference, as

described before, between SNR vectors obtained from

original and reconstructed traces. The analysis is con-

ducted for the Hamming weight and identity leakage

models with v = S-Box(dj ⊕ kj)⊕ mi as the intermedi-

ate variable to compute SNR.

Results are shown in Figure 2 for the DPAv4.2 and

ASCADr datasets. The x-axis in Figures 2a and 2b shows

the maximum peak SNR value difference between the

original and reconstructed traces. The corresponding

MSE value for each autoencoder is on the y-axis. These

figures show that MSE increases as the SNR peak dif-

ference increases regardless of the autoencoder type and

leakage models in SNR calculations. The vertical lines

occur when the reconstructed traces result in insignif-

icant SNR peak values, indicating that side-channel

leakages concerning v = S-Box(dj ⊕ kj) ⊕ mi are not

preserved in the reconstructed traces. Negative SNR

difference values on the x-axis indicate that the recon-

structed trace has a higher SNR value than the origi-

nal trace on the same sample point, which means that

the corresponding autoencoder is preserving and even

8 Marina Krček, Guilherme Perin

amplifying the occurrence of side-channel leakages con-

cerning v. However, MSE is not created to lead the AE

to amplify any such SNR peak, as it gets minimized by

correct reconstruction of the trace without amplifica-

tions.

(a) DPAv4.2 dataset.

(b) ASCADr dataset.

Fig. 2: Relation between MSE and SNR difference.

Next, we consider Pearson correlation coefficient ρ

to test whether there is a positive (linear) correlation

between MSE and SNR differences. Indeed, from the

results in Table 1, we see a high correlation until the

vertical lines (maximum difference in the SNR values).

Specifically, for both datasets, the correlation is stronger

for MSE below 0.5. For the DPAv4.2 dataset, the max-

imum correlation is for MSE values below 0.25, and in

the case of ASCADr, below 0.5. Therefore, we conclude

that minimizing MSE is a meaningful objective error

function to optimize autoencoder models for the given

datasets.

Table 1: Pearson correlation coefficient ρ and p-value for

testing non-correlation. LM stands for leakage model.

Dataset MSE LM ρ p-value

DPAv4.2

> 0 HW 0.12 2.32e-03

ID 0.12 2.67e-03

< 0.5 HW 0.76 8.85e-68

ID 0.76 1.62e-65

< 0.375 HW 0.83 1.03e-80

ID 0.83 4.35e-78

< 0.25 HW 0.93 2.04e-78

ID 0.93 1.32e-80

ASCADr

> 0 HW 0.03 4.84e-01

ID 0.03 5.01e-01

< 0.5 HW 0.87 3.92e-112

ID 0.86 6.58e-106

< 0.375 HW 0.68 1.05e-34

ID 0.70 3.10e-37

< 0.25 HW -0.10 5.16e-01

ID 0.01 9.37e-01

4.1.2 Searching for the Best Latent Space Size

In this section, we use random search to compare differ-

ent latent space sizes. The latent sizes we consider are

20, 40, 50, 100, 200, 250, 400, and 500 for all autoen-

coder types except that for the ae mlp str dcr, we do

not use the latent size 500 as we also limit the search

to 400 neurons per layer (see Table 19). By choosing

these latent sizes, we ensure that the bottleneck layer in

the autoencoder is always smaller than the input layer

(which contains the same number of units as the input

side-channel trace dimension). The datasets evaluated

in this section contain 2 000 features (DPAv4.2) and

1 400 features (ASCADr), which is significantly larger

than chosen latent space sizes given by the bottleneck

layer. Hyperparameter search space (Tables 19 and 20)

is the same as in the metric analysis provided in the

previous section. The hyperparameters for the autoen-

coders are chosen at random, and we train 20 autoen-

coder models per latent size, dataset, and autoencoder

type combination. The total number of autoencoder

combinations in this search is 62.

The main idea here is to verify if a specific latent

space size tends to provide the lowest MSE among the

searched ones regardless of the dataset and autoencoder

(AE) type. Considering our two datasets and four au-

toencoder types, we have eight cases, each testing eight

or seven latent sizes. Autoencoder type ae mlp str dcr

does not use latent size 500, which leads to trying seven

latent sizes instead of eight. We apply the following pro-

cedure to obtain the best latent size:

Autoencoder-enabled Model Portability in DL-based SCA 9

1. For each of these 62 combinations, we extract the

autoencoder (out of 20) with the lowest MSE for

that dataset, autoencoder type, and latent size.

2. For each autoencoder type and dataset combination,

we rank the latent sizes based on the best (lowest)

MSE. The latent size for the model with the lowest

MSE gets the rank 1 being the best one.

3. For each of the latent space sizes, we average these

eight ranks coming from the dataset-autoencoder

(AE) type combination.

Table 2 shows the average ranks of the latent sizes.

The left side of the table is for AE types except for

ae mlp str dcr as that one must have a decreasing

structure, and with the latent size of 500, we cannot

achieve that as we limited our number of neurons to a

maximum of 400. On the right side of Table 2, we order

all latent sizes according to the average rank, except for

500, and include the results from ae mlp str dcr.

Following, we use the Friedman test [9] across all

autoencoder types and the two datasets (ASCADr and

DPAv4.2). This test determines whether there is a sta-

tistically significant difference between the means of

three or more groups in which the same subjects ap-

pear in each group. In our case, groups are based on

latent sizes, and subjects are dataset-AE type combi-

nations. The comparison is based on the lowest MSE

obtained. Friedman test calculates test statistic Q =
12

nk(k+1)

∑k
j=1 R

2
j − 3n(k + 1), where n is the number

of subjects, k is the number of groups, and Rj is the

sum of the ranks for sample j. We determine the critical

value from the Chi-Square distribution table with k−1

degrees of freedom. Q value has to be greater than the

critical value of Q for a selected significance level α to
reject the null hypothesis. Commonly, significance level

α of 0.05 works well [21]. The p-value is the probability

of obtaining test results at least as extreme as a result

observed under the assumption that the null hypoth-

esis is correct. The null hypothesis for the Friedman

test is that the mean of the groups is the same. A very

small p-value means such an extreme observed outcome

would be very unlikely under the null hypothesis. The

null hypothesis can be rejected if the p-value is below

α.

We report the Friedman test results at the bottom

row in Table 2. Since the p-value is below 0.05, we con-

clude that the difference between the mean values of

the groups (latent sizes) is statistically significant. Ad-

ditionally, the test statistic Q on the left part is greater

than the critical value of 14.07 for the degree of freedom

7. On the right side, the test statistic is greater than

the critical value 12.59 for α = 0.05 and degree of free-

dom 6. We perform the Nemenyi post-hoc test to deter-

mine which groups have different means. The results are

shown in Appendix B in Tables 23 and 24 corresponding

to the cases without and with ae mlp str dcr model.

The values in the tables are p-values where if the value

is below 0.05, the two groups (column-row combination)

have statistically significantly different means. The low-

est MSE values for models with latent sizes 400 and 200

differ significantly from models with lower latent sizes

(20, 40, and 50). For latent sizes 100 and 250, the dif-

ference is less significant. However, we still select only

latent sizes 200 and 400 to find the best autoencoders

using a random search.

Table 2: Average ranks for each latent space size.

Latent space size
w/o ae mlp

str dcr
Latent space size

with ae mlp

str dcr

400 1.5 400 1.375

200 1.83 200 2

500 3.67 250 3.375

100 4 100 3.5

250 4.3 50 5.25

50 6.33 40 5.75

40 6.67 20 6.75

20 7.67

Q: 35.17, p-value: 1.04e-5 Q: 40.66, p-value: 3.38e-7

4.1.3 Selecting the Best Autoencoders

After we found the best latent size for the ASCADr and

DPAv4.2 datasets, we randomly search for additional

80 autoencoder models to obtain a total of 100 models

for latent space sizes of 200 and 400. The hyperparam-

eter search space for each autoencoder type stays the

same as in the search for the best latent size. From

these 100 autoencoder models, we select the best au-

toencoder for each dataset. Table 3 shows the MSE of

the best autoencoder for each of the given latent sizes

(200 or 400) and autoencoder types per dataset. We

see that for ASCADr, latent size 400 always results in a

lower MSE. For DPAv4.2, ae mlp and ae mlp dcr had

better results with 200 features in latent space. How-

ever, we can conclude that the best autoencoder types

are ae cnn and ae mlp str dcr, with the lowest MSE

in both datasets using latent size 400.

Since we initially only allow up to 400 neurons per

layer, with a latent space size of 400, the autoencoder

ae mlp str dcr type could not create a bottleneck ar-

chitecture with decreasing number of neurons in con-

secutive layers of the encoder. Thus, we repeated the

10 Marina Krček, Guilherme Perin

Table 3: Best autoencoders. The rows are sorted based

on the MSE, so the latent size order in rows is not fixed.

Dataset AE type Latent size MSE

DPAv4.2

ae mlp 200 0.053842735

400 0.068908036

ae mlp dcr 200 0.053061113

400 0.071744457

ae mlp str dcr 400 0.033211511

200 0.042860519

ae cnn 400 0.026164241

200 0.057221718

ASCADr

ae mlp 400 0.177198691

200 0.198677342

ae mlp dcr 400 0.133906147

200 0.194515368

ae mlp str dcr 400 0.121792312

200 0.196267218

ae cnn 400 0.118710345

200 0.209023259

random search for another 100 models for this autoen-

coder type by allowing layers with 500 and 600 neurons.

Table 4 shows the minimum, mean, median, and max-

imum MSE found in 100 models for the two datasets.

Note that this table shows MSE results when the au-

toencoder contains layers with 400 neurons and MSE

results when layers can include 400, 500, and 600 neu-

rons.

Table 4: Autoencoder ae mlp str dcr with latent space

size of 400. Values are calculated on MSE from a ran-

dom search of 100 different models, and the number of

neurons represents the allowed values from the hyper-

parameter search space.

Dataset Nb. neurons min mean median max

DPAv4.2
400 0.03321 0.5295 0.3889 3.68

400, 500, 600 0.03373 0.8548 0.4529 27.67

ASCADr
400 0.12179 0.6028 0.4701 2.01

400, 500, 600 0.12107 0.7988 0.4832 7.71

For DPAv4.2 dataset, an autoencoder with up to 400

neurons per layer results in a lower MSE than when we

allow 400, 500, and 600 neurons per layer. The hyper-

parameters of the best models for both cases are in Ta-

ble 5. Note that this architecture has one hidden layer

with 400 neurons between the input layer and the layer

with the specified latent size, and the decoder is sym-

metrical. When allowing 500 and 600 neurons in the

random search, the best-found autoencoder has an ar-

chitecture with two hidden layers with 400 neurons in

the encoder and decoder. They also differ in batch size,

activation function, learning rate, and weight initializa-

tion, but the optimizer is the same. The best model in

the second case is not using a larger number of neurons

in the first layers.

The autoencoder for the ASCADr dataset has a lower

minimal MSE when the number of neurons includes

500 and 600 neurons in the random search. However,

the ability to use a larger number of neurons in lay-

ers closer to the input layer was not utilized. In both

cases for ASCADr dataset, the best model has the same

architecture: one hidden layer with 400 neurons for the

encoder and decoder and a bottleneck layer with 400

neurons. They differ in activation function and weight

initialization, while batch size, learning rate, and op-

timizer are the same. As the best autoencoders have

the same architecture (layers and neurons) for both

datasets, the slight difference in the performance comes

from the other hyperparameters.

In general, the results in Table 4 indicate that a ran-

dom search only including the option of 400 neurons per

layer delivers better MSE values than when we allow

more neurons per layer. Mean, median, and maximum

MSE are always lower when only 400 neurons are per-

mitted. These results are confirmed for both datasets.

Table 5: MLP autoencoders for DPAv4.2 and ASCADr

with latent space size of 400 with different allowed num-

bers of neurons in layers.

Nb. neurons Hyperparameters MSE

DPAv4.2

400 ae mlp dpav42 best: architecture:
[400], batch size: 200, activa-
tion: tanh, learning rate: 0.0001,
weight init: he normal, optimizer:
Adam

0.03321

400, 500, 600 architecture: [400, 400], batch size:
100, activation: elu, learning rate:
0.001, weight init: glorot normal, op-
timizer: Adam

0.03373

ASCADr

400 ae mlp ascadr best: architecture:
[400], batch size: 100, activation: elu,
learning rate: 0.0001, weight init:
random uniform, optimizer: RM-
Sprop

0.12179

400, 500, 600 architecture: [400], batch size: 100,
activation: selu, learning rate: 0.0001,
weight init: random normal, opti-
mizer: RMSprop

0.12107

Autoencoder-enabled Model Portability in DL-based SCA 11

Based on these results, the best autoencoder we

use in further experiments is the MLP autoencoder for

the DPAv4.2 dataset with an MSE of 0.03321. For the

ASCADr dataset, we use the MLP autoencoder with an

MSE of 0.12179. The autoencoder with the CNN struc-

ture achieves even better MSE - with 0.026 for DPAv4.2,

and 0.1187 for ASCADr. The hyperparameters for the

best ae cnn autoencoders are in Table 6. We use these

four autoencoders in the further experiments, which are

denoted ae mlp dpav42 best, ae mlp ascadr best,

ae cnn dpav42 best, and ae cnn ascadr best.

Table 6: Best ae cnn autoencoders for DPAv4.2 and

ASCADr with latent space size of 400.

Dataset Hyperparameters MSE

DPAv4.2 ae cnn dpav42 best: batch size: 200,
filters: 16, kernel size: 10, strides: 5,
pool size: 2, pool strides: 2, pooling type:
Avg, conv layers: 1, activation: tanh,
learning rate: 0.0001, weight init: ran-
dom normal, optimizer: Adam

0.02616

ASCADr ae cnn ascadr best: batch size: 200,
filters: 16, kernel size: 20, strides: 5,
pool size: 2, pool strides: 2, pooling type:
Avg, conv layers: 1, activation: tanh,
learning rate: 0.001, weight init: ran-
dom uniform, optimizer: Adam

0.11871

4.2 Are Encoded Datasets as Good as Original

Datasets?

After defining the best ae mlp str dcr and ae cnn au-

toencoder structures for DPAv4.2 and ASCADr datasets,

we investigate if the encoded datasets can keep rele-

vant leakage information when they are considered as

training and attack datasets.

We run a random search to find different MLP and

CNN profiling models, and we compare the search per-

formance using original and encoded traces obtained

from the best autoencoders listed in Tables 5 and 6.

The hyperparameter search space for the profiling mod-

els is shown in Table 21. Training, validation, and at-

tack sets are labeled with S-box(d2 ⊕ k2) (third S-box

output byte in first AES encryption round6) for ASCADr

and S-box(d12 ⊕ k12) (13-th S-box output byte in the

first AES encryption round) for DPAv4.2. We consider

the Hamming weight (HW) and identity (ID) leakage

models. We search for 100 models for each combination

6 Note that we start counting from byte index 0.

of the leakage model and profiling model type (MLP-

ID, MLP-HW, CNN-ID, and CNN-HW). We measure

how many out of the random 100 models reach ge∗ = 1

for a given number of validation traces. With that in-

formation, we compare if we can more easily obtain

a good model using original or encoded traces within

the same hyperparameter search space. If we can get a

similar amount of models out of 100 that reach ge∗ = 1

with original and encoded traces, it means that encoded

traces preserve enough information and can be used

for training profiling models in SCA. Results for both

datasets are shown in Figure 3.

Fig. 3: Results on tuning effort using original and en-

coded traces. We compare the number of models reach-

ing ge∗ = 1 out of 100 trained models with different

hyperparameters selected using random search.

From the results, we see that out of 100 models,

for the ASCADr dataset, only in the case with MLP

and the ID leakage model we obtained the same num-

ber of models with ge∗ = 1. Looking at the num-

ber of traces Nge∗=1, using original traces on average

1 462.8 traces are necessary, while for the dataset en-

coded with ae mlp ascadr best, we need on average

Nge∗=1 = 1205.9 traces. For other attack setups, us-

ing original traces led to more models with ge∗ = 1.

However, using encoded data was not much worse.

12 Marina Krček, Guilherme Perin

On the other hand, for DPAv4.2, in three out of four

attack settings, we obtained more models with ge∗ = 1

when using traces encoded with ae mlp dpav42 best

or ae cnn dpav42 best. Those cases are the MLP pro-

filing model with both leakage models and the CNN

profiling model with the ID leakage model. The result

with the CNN profiling model and HW leakage model

is again close in performance for encoded data with

ae cnn dpav42 best and original traces.

We use the Friedman test on the eight scenarios pre-

sented in Figure 3. We want to see if there is a statisti-

cal difference between training on encoded and original

traces. We obtain a test statistic of 2.7742 and a p-

value of 0.2498. Thus, there is no significantly better

setup based on the number of models reaching ge∗ = 1

out of 100 runs. The initial hypothesis for Friedman is

that there is no statistically significant difference in the

mean of these numbers. Since the p-value, in this case,

is not below 0.05, all the setups lead to similar per-

formance. To conclude, using original traces is not sta-

tistically significantly better than using encoded data,

meaning that encoded data preserves relevant features

that can be used in a profiling attack.

4.3 The Portability of Profiling Models

In this section, we verify the efficiency of the best pro-

filing model (obtained in the previous section) when

found through hyperparameter tuning with one dataset

but concerning different datasets. We include a third

dataset to show portability from one to two other datasets.

This way, we can answer the following question: can we

move effort from profiling model tuning into autoen-

coder tuning to reuse the same profiling model across

multiple encoded side-channel datasets?

4.3.1 Portability of Encoded-Data Trained Profiling

Model to Different Encoded Datasets

We start by verifying the portability of a best-found

profiling model trained with an encoded dataset con-

cerning other encoded datasets. That is possible be-

cause we encode all datasets into the same encoding

dimension, i.e., all encoded datasets contain an equal

number of features. We take the best MLP and CNN

profiling models trained with encoded DPAv4.2 dataset

for both leakage models. Their hyperparameters and at-

tack performance are shown in Tables 7 and 8. We test

the performance of those architectures on the encoded

ASCADr and ASCADf datasets.

For ASCADr, we already have the best autoencoders

with the latent size of 400 (see Tables 5 and 6 for

Table 7: Best MLP and CNN profiling models obtained

for the encoded DPAv4.2 dataset when encoded with

the best-found ae mlp dpav42 best.

Model LM Hyperparameters ge∗ Nge∗=1

MLP

ID layers: 2, neurons: 100, batch size:
200, activation: selu, learning rate:
0.005, weight init: random uniform,
optimizer: Adam

1 3

HW layers: 3, neurons: 40, batch size:
200, activation: selu, learning rate:
0.0025, weight init: glorot uniform,
optimizer: RMSprop

1 29

CNN

ID neurons: 50, batch size: 100, layers:
1, filters: 16, kernel size: 20, strides:
5, conv layers: 4, activation: selu,
learning rate: 0.005, weight init: ran-
dom normal, optimizer: Adam

1 65

HW neurons: 20, batch size: 100, layers:
2, filters: 12, kernel size: 40, strides:
15, conv layers: 5, activation: elu,
learning rate: 0.001, weight init: glo-
rot uniform, optimizer: RMSprop

1 819

Table 8: Best MLP and CNN profiling models obtained

for the encoded DPAv4.2 dataset when encoded with

the best-found ae cnn dpav42 best.

Model LM Hyperparameters ge∗ Nge∗=1

MLP

ID layers: 6, neurons: 200, batch size:
200, activation: selu, learning rate:
0.0005, weight init: random uniform,
optimizer: RMSprop

1 2

HW layers: 6, neurons: 50, batch size: 200,
activation: elu, learning rate: 0.0025,
weight init: glorot normal, optimizer:
RMSprop

1 16

CNN

ID neurons: 200, batch size: 400, layers:
1, filters: 12, kernel size: 30, strides:
5, conv layers: 4, activation: selu,
learning rate: 0.0025, weight init: glo-
rot normal, optimizer: RMSprop

1 3

HW neurons: 200, batch size: 400, layers:
2, filters: 12, kernel size: 40, strides:
15, conv layers: 5, activation: elu,
learning rate: 0.0005, weight init: ran-
dom normal, optimizer: RMSprop

1 18

hyperparameters and MSE). We additionally train au-

toencoders ae mlp str dcr and ae cnn for the ASCADf

dataset to encode it to 400 features per trace as well.

The hyperparameters range to find the best ae cnn

autoencoder with the random search are the same as

considered for the DPAv4.2 and ASCADr datasets (see

Table 20). To find the best ae mlp str dcr autoen-

Autoencoder-enabled Model Portability in DL-based SCA 13

coder for the ASCADf dataset, we again consider the

random search settings shown in Table 19. However,

we allow the number of neurons per layer for a latent

size of 400 to be [400, 500, 600, 700]. The hyperparam-

eters for best autoencoders ae mlp ascadf best and

ae cnn ascadf best for ASCADf with latent size 400 are

reported in Table 9.

Table 9: Best autoencoders for ASCADf with latent space

size of 400.

AE type Hyperparameters MSE

ASCADf

ae mlp
str dcr

ae mlp ascadf best: architecture: [400,
700], batch size: 200, activation: tanh,
learning rate: 0.0001, weight init: ran-
dom normal, optimizer: Adam

0.01245

ae cnn ae cnn ascadf best batch size: 200, filters:
16, kernel size: 20, strides: 10, pool size:
4, pool strides: 2, pooling type: Avg,
conv layers: 1, activation: tanh, learn-
ing rate: 0.0001, weight init: he uniform,
optimizer: Adam

0.01380

Table 10 shows the attack performance of the best

CNN and MLP profiling architectures on DPAv4.2 from

Tables 7 and 8 when trained with the encoded ASCADr

and ASCADf datasets. The results in this table indi-

cate the number of times (out of 100) that the profil-

ing model reaches ge∗ = 1 for each scenario (leakage

model, profiling model type, and autoencoder type).

Before the training, we performed standardization on

the encoded datasets. Standardization is a typical pre-

processing method before training in the SCA and other

domains. However, later we also test without standard-

ization to observe the effects.

The results with encoded ASCADr indicate superior

performance compared to results obtained with the en-

coded ASCADf. Performance with the encoded ASCADr

for MLP with the identity leakage model when this ar-

chitecture was found with ae cnn dpav42 best-encoded

DPAv4.2 dataset is slightly worse with finding 19 and 51

models out of 100 reaching ge∗ = 1. As mentioned, the

results with encoded ASCADf are not good, specifically

for cases with ASCADf encoded with ae mlp ascadf best.

The poor performance might come from the fact that

the features in encoded data do not share compara-

ble features despite the equal latent size. We observe

that the architecture of that autoencoder is different

from the architectures for the other two datasets. To

improve these results for encoded ASCADf, and since for

ASCADf we allowed more than 400 neurons per layer

(which was not the case for other datasets), we again

train 100 ae mlp str dcr autoencoders for ASCADf but

with only 400 neurons per layer and latent size 400.

This way, the autoencoder architecture will be more

similar to autoencoders of other datasets. The result-

ing features also become more comparable, which could

improve the performance. The hyperparameters of the

best autoencoder for this case are in Table 11.

Table 10: Portability results with best MLP and CNN

models obtained with the encoded DPAv4.2 datasets

(from ae mlp dpav42 best and ae cnn dpav42 best).

Datasets ASCADr and ASCADf are encoded with their

respective best autoencoders. In these results, before

training, we use standardization. The training is done

100 times, and the reported number is the number of

times we reach ge∗ = 1.

Model LM

encoded DPAv4.2 with
ae mlp dpav42 best

encoded DPAv4.2 with
ae cnn dpav42 best

ae cnn

* best

ae mlp

* best

ae cnn

* best

ae mlp

* best

encoded ASCADr

MLP
ID 100 100 19 51

HW 97 97 89 73

CNN
ID 79 65 99 100

HW 98 100 100 99

encoded ASCADf

MLP
ID 35 24 17 0

HW 0 0 10 5

CNN
ID 97 5 30 0

HW 16 0 66 1

Table 11: Best ae mlp str dcr autoencoder for ASCADf

with latent space size of 400, allowing only 400 neurons

per layer.

Hyperparameters MSE

ae mlp ascadf best: architecture: [400], batch size:
100, activation: selu, learning rate: 0.0001,
weight init: he normal, optimizer: RMSprop

0.01345

The results using the ae mlp ascadf best-encoded

ASCADf from the described search are in Table 12. Here,

we see an improvement, which indicates our hypothesis

on the similarity of latent representations with DPAv4.2

14 Marina Krček, Guilherme Perin

and ASCADr could be true. Accordingly, this is a crucial

remark to consider if universal models are to be consid-

ered. As the feature space is more similar, the porta-

bility becomes easier. Despite the MSE being slightly

worse than before, the attack performance is better

since the representations are more comparable.

Table 12: Results with using encoded ASCADf from

ae mlp ascadf best with only 400 neurons per layer.

We use standardization of the encoded dataset when

training the profiling model 100 times. The number rep-

resents the number of times we reach ge∗ = 1.

Model LM
Best model for DPAv4.2 encoded with

ae mlp dpav42 best ae cnn dpav42 best

MLP
ID 69 37

HW 0 2

CNN
ID 100 100

HW 51 17

After improving ae mlp ascadf best, we also test

best MLP and CNN profiling architectures from Ta-

bles 7 and 8 without data standardization. The results

are in Table 13 and show that for ASCADr, we have sim-

ilar successful behavior in comparison to results from

Table 10 when data standardization was done. For en-

coded ASCADf, we compare results with Table 12 for

ae mlp ascadf best as that autoencoder was used for

encoding as it was shown to be better. Additionally, we

compare it with Table 10 for ae cnn ascadf best. Re-

sults with and without standardization for ASCADf are

also similar.

Our analysis demonstrates that reusing profiling mod-

els trained on an encoded dataset is possible. That re-

duces hyperparameter tuning efforts when considering

new encoded datasets, where the effort is moved to

tuning the autoencoder. Additionally, universal profil-

ing architecture is then something we can consider on

autoencoder-encoded data. Moreover, tuning autoen-

coders is easier as optimization of MSE is more straight-

forward.

4.3.2 Portability of Original-Data Trained Profiling

Model to Different Original and Encoded Datasets

In this section, we test the portability of a best-found

profiling model architecture (from random search) when

it is trained on an original (i.e., not encoded) dataset.

For that, we consider ASCADf, which contains 700 fea-

tures. We made this choice because ASCADf has fewer

Table 13: Portability results with best MLP and

CNN models obtained with encoded DPAv4.2 datasets

(from ae mlp dpav42 best and ae cnn dpav42 best).

Datasets ASCADr and ASCADf are encoded with their

respective best autoencoders. We use encoded data di-

rectly, without standardization. The training is done

100 times, and the reported number is the number of

times we reach ge∗ = 1.

Model LM

encoded DPAv4.2 with
ae mlp dpav42 best

encoded DPAv4.2 with
ae cnn dpav42 best

ae cnn

* best

ae mlp

* best

ae cnn

* best

ae mlp

* best

encoded ASCADr

MLP
ID 75 100 0 73

HW 98 93 100 87

CNN
ID 87 83 100 100

HW 97 100 100 99

encoded ASCADf

MLP
ID 0 83 100 11

HW 12 3 0 2

CNN
ID 98 100 43 100

HW 29 85 1 86

features than ASCADr and DPAv4.2, which contain 1 400

and 2 000 features, respectively, in their original ver-

sions. In this case, to reuse that architecture, we need

to decrease the number of features of other datasets to
the size of the data used in training. However, since the

input layer is a dedicated first layer in neural networks,

to reuse the architecture, we can also replace that first

layer. In that case, we can keep the original number of

features of the new datasets. Our goal is to verify if

the best-found profiling architecture with ASCADf also

provides good attack performance when trained with

the encoded and original ASCADr and DPAv4.2 datasets.

Therefore, we have three cases per dataset - using orig-

inal and encoded data with two different AE types.

Since this time we have to encode ASCADr and DPAv4.2

into 700 features, we again run a hyperparameter search

to find the best autoencoders, which are reported in Ta-

ble 14 with their corresponding MSE values. The hyper-

parameter search spaces are shown in Tables 20 and 22.

Table 15 shows the best MLP and CNN profiling archi-

tectures found for the original ASCADf dataset. We ran

a random search for 100 models using hyperparameter

search space from Table 21.

Autoencoder-enabled Model Portability in DL-based SCA 15

Table 14: Autoencoders for DPAv4.2 and ASCADr with

latent space size of 700.

AE type Hyperparameters MSE

DPAv4.2

ae mlp
str dcr

ae mlp dpav42 best 700: architecture: [1400],
batch size: 100, activation: tanh, learn-
ing rate: 0.0001, weight init: he normal, op-
timizer: Adam

0.017

ae cnn ae cnn dpav42 best 700: batch size: 200, fil-
ters: 16, kernel size: 10, strides: 5, pool size:
4, pool strides: 2, pooling type: Avg,
conv layers: 1, activation: elu, learning rate:
0.001, weight init: random uniform, opti-
mizer: Adam

0.013

ASCADr

ae mlp
str dcr

ae mlp ascadr best 700: architecture:
[900], batch size: 200, activation: selu,
learning rate: 1e-05, weight init: ran-
dom uniform, optimizer: RMSprop

0.052

ae cnn ae cnn ascadr best 700: batch size: 400, fil-
ters: 8, kernel size: 20, strides: 5, pool size:
2, pool strides: 4, pooling type: Avg,
conv layers: 1, activation: elu, learning rate:
0.001, weight init: he uniform, optimizer:
RMSprop

0.141

Table 15: Best profiling models for ASCADf.

Model LM Hyperparameters ge∗ Nge∗=1

MLP

ID layers: 4, neurons: 40, batch size:
400, activation: relu, learning rate:
0.001, weight init: random uniform,
optimizer: Adam

1 151

HW layers: 4, neurons: 20, batch size:
100, activation: elu, learning rate:
0.001, weight init: random normal,
optimizer: RMSprop

1 1476

CNN

ID neurons: 50, batch size: 200, layers:
2, filters: 4, kernel size: 10, strides:
5, conv layers: 1, activation: relu,
learning rate: 0.0001, weight init: ran-
dom uniform, optimizer: RMSprop

1 265

HW neurons: 200, batch size: 400, layers:
1, filters: 4, kernel size: 40, strides:
5, conv layers: 4, activation: selu,
learning rate: 0.005, weight init: glo-
rot uniform, optimizer: RMSprop

1 1734

Since we reuse only the architecture and not the

trained parameters (weights and biases), we modify the

input layer to use the original ASCADr and DPAv4.2

datasets that have more features than the original ASCADf.

This way, we take the best architectures from Table 15

and train them with the original ASCADr and DPAv4.2

datasets as well as with their encoded versions by us-

ing the best-found autoencoders listed in Table 14. For

each dataset, profiling model architecture, and leakage

model, we run 100 trainings and compare the number

of times the model reaches ge∗ = 1. The analysis is also

done with and without data standardization.

The results in Table 16 show that best-found ar-

chitecture provides good performance even if we use

directly original traces from the DPAv4.2 and ASCADr

datasets. However, with DPAv4.2, the best-found CNN

architectures are less successful. For the encoded DPAv4.2

dataset, results are better than original traces as it leads

to either similar performance or often better. With the

dataset encoded with ae cnn dpav42 best 700, we got

better results without standardization, and for the en-

coded dataset from ae mlp dpav42 best 700, it was

better using standardization.

Using original traces was already very successful

for the ASCADr dataset, so using encoded data is less

valuable, but still shows good performance when the

dataset is encoded with ae cnn ascadr best 700, es-

pecially with standardization. On the other hand, us-

ing ae mlp ascadr best 700 encoded data usually re-

sulted in worse outcomes. Considering the standardiza-

tion of encoded data, we see that it was slightly bene-

ficial to use standardization for data encoded with both

ae mlp ascadr best 700 and ae cnn ascadr best 700

encoded cases. Statistically, however, we cannot claim

that it is always necessary to use standardization. On

the other hand, based on our results, models trained

with encoded data perform similarly or better in most

experiments than those trained with original data. In

Table 16, the cases where the performance is worse

are marked in red color. Thus, we conclude that us-

ing encoded data to reuse the profiling attack archi-

tecture trained with other datasets’ original traces can

be done despite different feature spaces. Moreover, en-

coded data is beneficial when the performance with the

original data is unsuccessful. Hyperparameter tuning

for new datasets can be significantly reduced in that

way. Again, tuning is more straightforward for autoen-

coders by minimizing MSE and does not require the

typical attack phase in classification with GE calcula-

tions.

4.4 Transfer Learning with Profiling Models to

Different Encoded Datasets

We also test the benefit of autoencoders in the context

of transfer learning. Again, we have the same best pro-

filing models for the ASCADf dataset (Table 15), and

we retrain the last layer to obtain the secret key byte

16 Marina Krček, Guilherme Perin

Table 16: Results with DPAv4.2 and ASCADr using at-

tack architecture trained on the ASCADf dataset. The

numbers represent the number of times we reach a GE

of 1 when the training is done 100 times.

Model LM orig.

w/o stand. with stand.

ae cnn

* best

700

ae mlp

* best

700

ae cnn

* best

700

ae mlp

* best

700

DPAv4.2

MLP
ID 48 100 100 100 100

HW 100 100 100 100 100

CNN
ID 0 48 1 0 100

HW 4 96 77 100 95

ASCADr

MLP
ID 25 9 0 75 66

HW 100 100 99 100 100

CNN
ID 95 100 0 100 0

HW 99 100 4 98 0

for the new dataset. In this case, the input must be

the same size since we also use the trained parameters

(weights and biases). Therefore, we encoded the ASCADr

and DPAv4.2 datasets for transfer learning to the pro-

filing model input size. Additionally, we again test with

and without standardization of the encoded data. Since

the training is faster as we train only one layer, we have

a setting where we train one by one epoch, calculating

the GE after each epoch and stopping when we reach a

ge∗ = 1. The maximum number of epochs is 100. An-

other setting is running training for a given number of

epochs, which is 100, as in all our experiments.

In the results shown in Table 17, when datasets

were encoded using the ae cnn * best 700 autoen-

coder, we see that in all cases, we reached ge∗ = 1.

Often the necessary number of epochs is small. How-

ever, when using standardization of encoded data, we

see that with DPAv4.2, we reach ge∗ = 1 in fewer cases.

Standardization for encoded ASCADr did not have much

influence.

Table 18 shows the attack results when datasets are

encoded with ae mlp * best 700. Here, we see that

the performance is a bit worse. However, we can still

reach ge∗ = 1 in some cases without standardization.

For DPAv4.2, profiling models using the identity leakage

model did not reach ge∗ = 1. Using CNN, we see that it

got close to one with ge∗ = 1.65 and ge∗ = 1.15, so we

believe this can be corrected using, e.g., more epochs.

Thus, we increased the number of epochs to 150 and got

Table 17: Results for transfer learning with datasets en-

coded with ae cnn * best 700. The table shares the

number of epochs that the model was trained for as

well as the minimum GE with a corresponding number

of traces (NT).

Model LM
w/o stand. with stand.

epochs min GE NT epochs min GE NT

encoded DPAv4.2

MLP ID
74 1 2878 1 23.9 2998

100 80.8 2809 100 38.1 2998

CNN ID
53 1 2769 82 34 2832

100 1 309 100 57.95 2938

MLP HW
9 1 2738 43 53.65 2743

100 1 71 100 77.6 2724

CNN HW
14 1 2861 37 1 2557

100 1 812 100 1 852

encoded ASCADr

MLP
ID 5 1 1226 24 1 2581

ID 100 1 459 100 25.95 80

CNN
ID 10 1 1702 11 1 2286

ID 100 1 356 100 1 382

MLP
HW 4 1 2641 4 1 2508

HW 100 1 1621 100 1 1643

CNN
HW 12 1 2738 9 1 2157

HW 100 1 1636 100 1 1486

a ge∗ = 1 within Nge∗=1 = 854 traces. Similarly, we se-

lect other specific cases that did not reach ge∗ = 1, and

we experiment with the number of epochs and training

two instead of one last layer in the model to verify if

with those modifications we can obtain better perfor-

mance. Since using the standardization primarily led to

worse results, we only experimented without standard-

ization, changing the number of epochs and the number

of layers we train.

Specifically, for the MLP and HW combination with

DPAv4.2, we reach ge∗ = 1 in 12 epochs when checking

the GE after every epoch. Training for 100 epochs at

once, GE gets worse (3.8). Thus, we tested with only 50

epochs and reached Nge∗=1 = 1993. A combination of

MLP and the ID leakage model is the worst, with min-

imal GE being 67.8 in 41 epochs and 115.75 after 100

epochs. Therefore, we tested multiple modifications. We

tested with training two last layers in the model, again

with a different number of epochs - 100, 150, and 200.

Autoencoder-enabled Model Portability in DL-based SCA 17

Table 18: Results for transfer learning with datasets en-

coded with ae mlp * best 700. The table shares the

number of epochs the model was trained for as well

as the minimum GE with a corresponding number of

traces (NT).

Model LM
w/o stand. with stand.

epochs min GE NT epochs min GE NT

encoded DPAv4.2

MLP ID
41 67.8 2791 53 28.35 2700

100 115.75 2827 100 77.9 17

CNN ID
100 1.65 2935 59 44.2 2931

100 1.15 2635 100 86.4 2915

MLP HW
12 1 2603 1 72.1 249

100 3.8 2501 100 136.7 0

CNN HW
15 1 1990 19 1 2711

100 1 747 100 1 1741

encoded ASCADr

MLP ID
57 18.5 14 56 21.85 1074

100 1.95 2799 100 28.95 2973

CNN ID
96 1.8 2992 101 6.65 2873

100 2.55 2969 100 21.15 2826

MLP HW
11 1 1931 12 46.1 2090

100 7.95 2989 100 48.75 2993

CNN HW
25 1 2430 84 1.2 2925

100 1.55 2976 100 6.3 2894

The lowest GE are in cases with 150 epochs training one

layer where we reach ge∗ = 98.8, and training two last

layers with 200 and 150 epochs reaching ge∗ = 104.7

and ge∗ = 99.55, respectively. Similarly, we do this for

the ASCADr dataset. In the case of MLP and the ID leak-

age model, again, we tested all cases as with DPAv4.2,

and the improvement happens only with training the

two last layers with 200 epochs getting ge∗ = 1.25. In

combination with CNN and ID, the minimal GE we

get is 2.55 after 100 epochs, and when we train epoch

by epoch, the minimum GE is 1.8 in epoch number

96. The results indicate that the model has the ca-

pacity to learn the new dataset. We tried adding more

epochs, 150 and 200, but we did not reach better results

(GE was 2.5 and 4.5, respectively). Also, with only 50

epochs, we get worse results with minimal GE of 35.45.

We reached ge∗ = 1.3 by training the two last layers

with 150 epochs. While not investigated, it seems that

perhaps using early stopping could help in this case.

Early stopping could prevent GE from increasing af-

ter a certain number of epochs. The last combination

we tested is the MLP and HW, where we reach a GE

of 1 when training epoch by epoch. Using 50 epochs

gets us to ge∗ = 1.05, and using 150 epochs results in

ge∗ = 1.2. However, we already showed that we could

get ge∗ = 1 training epoch by epoch. Thus, the model

can learn, and early stopping could help get ge∗ = 1.

In most cases, we could get GE close to 1. In many

cases, we also see capacity in the model to learn the

new dataset where early stopping could be beneficial

as GE seems to deteriorate after some epochs. On the

other hand, training modifications did not help reach

ge∗ = 1 for the MLP and the ID leakage model for the

DPAv4.2 dataset. Possibly, the autoencoder requires im-

provements, but we also see that the results for this case

specifically were better with standardization. Including

standardization with training modifications might help.

Additionally, from the setup with training epoch by

epoch, the minimum GE is around 50 epochs and gets

larger as we train for the entire 100 epochs. Thus, early

stopping might also be beneficial in this case, along with

other training alternatives.

Here, we see that results using data encoded with

ae cnn * best 700 are better than those encoded with

ae mlp * best 700 with and without standardization.

In both cases, standardization made performance worse,

so with transfer learning, we could opt not to use stan-

dardization, at least when the reused model is trained

on the original dataset and now used for encoded data.

However, more exploration of this can be done as the

sample might be small. Additionally, if we use trans-

fer learning from a model trained on encoded data and

then used for new encoded data, this conclusion about

standardization may not be valid. Still, our experiments

show significant benefits of transfer learning where tun-

ing the profiling model for a new dataset was eliminated

and training time reduced. That holds while the data is

also in different feature spaces as the model is trained

on original data, then transferred for encoded data of

other datasets.

5 Conclusions and Future Work

In this work, we proposed autoencoders to decrease

the hyperparameter tuning effort of profiling models

for new datasets. Hyperparameter tuning for profiling

models in SCA is a necessary but time-consuming task,

and additionally, those efforts are needed for each spe-

cific dataset. Thus, we propose reusing profiling mod-

els to reduce the efforts for each new dataset by us-

ing autoencoders. The commonly used metric for au-

toencoders is MSE, which we showed to be positively

18 Marina Krček, Guilherme Perin

correlated with the SNR difference between the orig-

inal and reconstructed trace. Tuning autoencoders is

more effortless as the MSE metric is relevant to the

goal of reconstruction. On the contrary, with the classi-

fication of intermediate values, we need to perform GE

calculations to validate the performance of the profil-

ing model. Since those calculations are computationally

expensive, they are not done during training, contrary

to MSE computation. We perform a random search on

original and encoded data of different datasets. The re-

sults showed that the tuning was not statistically sig-

nificantly better with original traces, which means that

encoded data does keep relevant information for the at-

tacks.

We tested the performance of autoencoders in three

portability cases. First, we considered reusing profiling

architecture trained on one encoded dataset for other

encoded datasets. This approach comes close to finding

a universal profiling model, where all the datasets get

encoded to the same feature size using autoencoders

and then attacked with the same attack architecture.

The results show good performance over encoded datasets.

One important note is that the autoencoders with sim-

ilar architecture (number of layers and neurons) lead

to better attack performances. In that way, the fea-

tures in encoded data are more alike, which boosts the

performance of the same profiling architecture across

different datasets. In the second case, we reused profil-

ing architecture trained on one dataset’s original traces

for attacking new datasets with more features. Here,

we use autoencoders to decrease the number of fea-

tures of the new datasets to the feature size of the

dataset used to train the model. Again, training with

encoded data was better or similar in performance to

original traces. Thus, if actual traces do not lead to

good performance, we can consider using autoencoders

to encode data to fewer features to achieve better per-

formance with lower tuning efforts than finding a new

profiling model. Lastly, we utilize autoencoders to al-

low using transfer learning between different datasets.

Here, dimensionality reduction is necessary as we also

keep the trainable parameters of the model. The re-

sults show great performance with data encoded with

the ae cnn architecture type without standardization.

In other cases, we also reach ge∗ = 1 with a bit longer

training or training more layers. The benefit of transfer

learning enabled by autoencoders is that we eliminate

the tuning of the profiling model and, additionally, sig-

nificantly reduce training time for the new dataset.

In future work, CNN autoencoder types need to be

more thoroughly investigated as they are more power-

ful considering feature extraction than MLPs. On the

other hand, we should study what is represented in

the latent space of autoencoders for SCA traces. We

can compare autoencoders as feature processing tools

with classical approaches, such as principal component

analysis (PCA). Instead of running a DL-based SCA

attack on encoded data, performing classical SCA on

AE-encoded data would be interesting.

A Hyperparameter Search Spaces

We execute a random search over hyperparameter search spaces
for autoencoders and profiling models. This section reports
hyperparameter search spaces for all of our experiments. Hy-
perparameter search space for MLP autoencoders in the ini-
tial experiments with metric analysis and best latent size
search are in Table 19. The differences are in the number
of neurons per layer for the different types of autoencoders
we use. Table 20 shows search space for CNN autoencoders.

Table 19: Hyperparameter search space for autoencoder

ae mlp, ae mlp dcr and ae mlp str dcr in the initial

experiments for metric analysis and latent dimension

search.

Hyperparameter
Values

ae mlp ae mlp (str)dcr

Layers [1, 2, 3, 4, 5, 6]

Neurons [20, 50, 100, 250] [20, 40, 50, 100, 150,
200, 300, 400]

Batch size [100, 200, 400]

Activation [tanh, elu, selu, sigmoid]

Learning rate [0.005, 0.001, 0.0001, 0.00001]

Weight init [random uniform, he uniform,
glorot uniform, random normal,

he normal, glorot normal]

Optimizer [Adam, RMSprop, SGD, Adagrad]

The batch size, activation, learning rate, weight initialization,
and optimizer are the same for all AE types.

For profiling models, the hyperparameter search space for
MLP and CNN is in Table 21.

Lastly, we use autoencoders with latent size 700, so we
report in Table 22 the number of layers and neurons per layer
we allow. Other hyperparameters stay the same as in Table 19
and Table 20.

B Statistical Tests

Using a Friedman test, we identify that there is indeed a sig-
nificant difference in the means of the groups. However, we
need to find out which ones differ specifically. Thus, a post-
hoc test is necessary. One such test is the Nemenyi test, and
using Python packages, we obtain the results for different la-
tent sizes in Tables 23 and 24. Latent dimensions are in rows
and columns. The Nemeyi post-hoc test returns the p-values
for each pairwise comparison of means. Using a significance
level α = 0.05, the pairwise latent sizes with a significant

Autoencoder-enabled Model Portability in DL-based SCA 19

Table 20: Hyperparameter search space for autoencoder

ae cnn.

Hyperparameter Values

Conv. layers [1, 2, 3, 4]

Filters [4, 8, 16]

Kernel size [10, 20]

Strides [5, 10]

Pool size [2, 4]

Pool strides [2, 4]

Pooling type [Avg, Max]

Batch size [100, 200, 400]

Activation [tanh, elu, selu, sigmoid]

Learning rate [0.005, 0.001, 0.0001, 0.00001]

Weight init [random uniform, he uniform, glo-
rot uniform, random normal, he normal,
glorot normal]

Optimizer [Adam, RMSprop, SGD, Adagrad]

Table 21: Hyperparameter search space for profiling

models. For CNN models, the convolutional layer is

followed by BatchNormalization and then the pooling

layer. The number of filters increases by being multi-

plied by the corresponding order of the layer.

Hyperparameter MLP CNN

FC layers [1, 2, 3, 4, 5, 6] [1, 2]

Neurons [20, 40, 50, 100, 150,
200, 300, 400]

[20, 50, 100, 200]

Conv. layers - [1, 2, 3, 4, 5]

Filters - [4, 8, 12, 16]

Kernel size - [10, 20, 30, 40]

Strides - [5, 10, 15, 20]

Pool size - [2]

Pool strides - [2]

Pooling type - [Avg]

Batch size [100, 200, 400]

Activation [elu, selu, relu]

Learning rate [0.005, 0.0025, 0.001, 0.0005, 0.00025,
0.0001, 0.00005, 0.000025, 0.00001]

Weight init [random uniform, he uniform,
glorot uniform, random normal,

he normal, glorot normal]

Optimizer [Adam, RMSprop, SGD, Adagrad]

difference are bolded. Table 23 shows the pairwise compar-
ison for eight latent sizes because we exclude the results for
ae mlp str dcr type as with specified hyperparameter search
it did not work for latent size 500. Table 24 shows results
including that AE type but excluding the latent size 500.

References

1. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders.
arXiv preprint arXiv:2003.05991 (2020)

Table 22: Hyperparameter search space for autoencoder

ae mlp str dcr with latent space size of 700. We ex-

clude the batch size, activation, learning rate, weight

initialization, and optimizer hyperparameters as they

are already shown in Tables 19 and 20.

DPAv4.2 ASCADr

Layers [1, 2, 3, 4, 5, 6]

Neurons [700, 800, 900, 1000, 1200,
1400, 1600, 1800]

[700, 800, 900, 1000, 1100,
1200, 1300]

Table 23: p-values of Nemenyi post-hoc test for without

the ae mlp str dcr model.

Latent
sizes

20 40 50 100 200 250 400 500

20 1.0 0.9 0.9 0.158 0.001 0.263 0.001 0.088

40 0.9 1.0 0.9 0.552 0.015 0.693 0.006 0.403

50 0.9 0.9 1.0 0.693 0.032 0.834 0.015 0.552

100 0.158 0.552 0.693 1.0 0.763 0.9 0.623 0.9

200 0.001 0.015 0.032 0.763 1.0 0.623 0.9 0.9

250 0.263 0.693 0.834 0.9 0.623 1.0 0.481 0.9

400 0.001 0.006 0.015 0.623 0.9 0.481 1.0 0.763

500 0.088 0.403 0.552 0.9 0.9 0.9 0.763 1.0

Table 24: p-values of Nemenyi post-hoc test for with

the ae mlp str dcr model.

Latent
sizes

20 40 50 100 200 250 400

20 1.0 0.0 0.783 0.042 0.001 0.030 0.001

40 0.9 1.0 0.9 0.364 0.009 0.296 0.001

50 0.783 0.9 1.0 0.647 0.042 0.579 0.006

100 0.042 0.364 0.647 1.0 0.783 0.9 0.438

200 0.001 0.009 0.042 0.783 1.0 0.851 0.9

250 0.030 0.296 0.579 0.9 0.851 1.0 0.511

400 0.001 0.001 0.006 0.438 0.9 0.511 1.0

2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas,
C.: Deep learning for side-channel analysis and introduc-
tion to ASCAD database. J. Cryptographic Engineering
10(2), 163–188 (2020). DOI 10.1007/s13389-019-00220-
8. URL https://doi.org/10.1007/s13389-019-00220-8

3. Bhasin, S., Bruneau, N., Danger, J.L., Guilley, S., Najm,
Z.: Analysis and improvements of the dpa contest v4
implementation. In: International Conference on Secu-
rity, Privacy, and Applied Cryptography Engineering, pp.
201–218. Springer (2014)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power anal-
ysis with a leakage model. In: M. Joye, J. Quisquater
(eds.) Cryptographic Hardware and Embedded Systems
- CHES 2004: 6th International Workshop Cambridge,
MA, USA, August 11-13, 2004. Proceedings, Lecture

Notes in Computer Science, vol. 3156, pp. 16–29. Springer
(2004). DOI 10.1007/978-3-540-28632-5\ 2. URL https:

//doi.org/10.1007/978-3-540-28632-5_2

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2

20 Marina Krček, Guilherme Perin

5. Bronchain, O.: Worst-case side-channel security: from
evaluation of countermeasures to new designs. Ph.D.
thesis, Catholic University of Louvain, Louvain-la-Neuve,
Belgium (2022). URL https://hdl.handle.net/2078.1/

258155

6. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky,
A., Standaert, F.: Leakage certification revisited: Bound-
ing model errors in side-channel security evaluations.
IACR Cryptol. ePrint Arch. p. 132 (2019). URL https:

//eprint.iacr.org/2019/132

7. Cagli, E., Dumas, C., Prouff, E.: Convolutional neu-
ral networks with data augmentation against jitter-
based countermeasures - profiling attacks without pre-
processing. In: W. Fischer, N. Homma (eds.) Crypto-
graphic Hardware and Embedded Systems - CHES 2017
- 19th International Conference, Taipei, Taiwan, Septem-
ber 25-28, 2017, Proceedings, Lecture Notes in Computer

Science, vol. 10529, pp. 45–68. Springer (2017). DOI
10.1007/978-3-319-66787-4\ 3. URL https://doi.org/

10.1007/978-3-319-66787-4_3

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In:
B.S.K. Jr., Ç.K. Koç, C. Paar (eds.) Cryptographic Hard-
ware and Embedded Systems - CHES 2002, 4th Interna-
tional Workshop, Redwood Shores, CA, USA, August 13-
15, 2002, Revised Papers, Lecture Notes in Computer Sci-

ence, vol. 2523, pp. 13–28. Springer (2002). DOI 10.1007/
3-540-36400-5\ 3. URL https://doi.org/10.1007/3-540-

36400-5_3

9. Friedman, M.: The use of ranks to avoid the assumption
of normality implicit in the analysis of variance. Journal
of the american statistical association 32(200), 675–701
(1937)

10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimen-
sionality of data with neural networks. science 313(5786),
504–507 (2006)

11. Kocher, P.C.: Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In: An-
nual International Cryptology Conference, pp. 104–113.
Springer (1996)

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential power anal-
ysis. In: M.J. Wiener (ed.) Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, Lecture Notes in Computer Science,
vol. 1666, pp. 388–397. Springer (1999). DOI 10.1007/3-
540-48405-1\ 25. URL https://doi.org/10.1007/3-540-

48405-1_25

13. Kwon, D., Kim, H., Hong, S.: Improving non-profiled
side-channel attacks using autoencoder based preprocess-
ing. Cryptology ePrint Archive (2020)

14. Lu, X., Zhang, C., Cao, P., Gu, D., Lu, H.: Pay attention
to raw traces: A deep learning architecture for end-to-
end profiling attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(3), 235–274 (2021). DOI 10.46586/
tches.v2021.i3.235-274. URL https://doi.org/10.46586/

tches.v2021.i3.235-274

15. Masure, L., Cristiani, V., Lecomte, M., Standaert, F.:
Don’t learn what you already know: Grey-box mod-
eling for profiling side-channel analysis against mask-
ing. IACR Cryptol. ePrint Arch. p. 493 (2022). URL
https://eprint.iacr.org/2022/493

16. Masure, L., Dumas, C., Prouff, E.: A comprehensive
study of deep learning for side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded
Systems 2020(1), 348–375 (2019). DOI 10.13154/tches.
v2020.i1.348-375. URL https://tches.iacr.org/index.

php/TCHES/article/view/8402

17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22(10),
1345–1359 (2009)

18. Pawar, K., Attar, V.Z.: Assessment of autoencoder archi-
tectures for data representation. In: Deep Learning: Con-
cepts and Architectures, pp. 101–132. Springer (2020)

19. Perin, G., Wu, L., Picek, S.: Exploring feature selection
scenarios for deep learning-based side-channel analysis.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(4),
828–861 (2022). DOI 10.46586/tches.v2022.i4.828-861.
URL https://doi.org/10.46586/tches.v2022.i4.828-861

20. Picek, S., Heuser, A., Perin, G., Guilley, S.: Profiled side-
channel analysis in the efficient attacker framework. In:
V. Grosso, T. Pöppelmann (eds.) Smart Card Research
and Advanced Applications - 20th International Confer-
ence, CARDIS 2021, Lübeck, Germany, November 11-12,
2021, Revised Selected Papers, Lecture Notes in Computer

Science, vol. 13173, pp. 44–63. Springer (2021). DOI
10.1007/978-3-030-97348-3\ 3. URL https://doi.org/

10.1007/978-3-030-97348-3_3

21. Quinn, G.P., Keough, M.J.: Experimental design and
data analysis for biologists. Cambridge university press
(2002)

22. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement
learning for hyperparameter tuning in deep learning-
based side-channel analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(3), 677–707 (2021). DOI
10.46586/tches.v2021.i3.677-707. URL https://doi.org/

10.46586/tches.v2021.i3.677-707

23. Standaert, F.X., Malkin, T.G., Yung, M.: A unified
framework for the analysis of side-channel key recovery
attacks. In: A. Joux (ed.) Advances in Cryptology - EU-
ROCRYPT 2009, pp. 443–461. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2009)

24. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of
transfer learning. Journal of Big data 3(1), 1–40 (2016)

25. Won, Y., Hou, X., Jap, D., Breier, J., Bhasin, S.:
Back to the basics: Seamless integration of side-channel
pre-processing in deep neural networks. IEEE Trans.
Inf. Forensics Secur. 16, 3215–3227 (2021). DOI
10.1109/TIFS.2021.3076928. URL https://doi.org/10.

1109/TIFS.2021.3076928

26. Wu, L., Perin, G., Picek, S.: I choose you: Automated hy-
perparameter tuning for deep learning-based side-channel
analysis. IEEE Transactions on Emerging Topics in
Computing pp. 1–12 (2022). DOI 10.1109/TETC.2022.
3218372

27. Wu, L., Picek, S.: Remove some noise: On pre-processing
of side-channel measurements with autoencoders. IACR
Transactions on Cryptographic Hardware and Embedded
Systems 2020(4), 389–415 (2020). DOI 10.13154/tches.
v2020.i4.389-415. URL https://tches.iacr.org/index.

php/TCHES/article/view/8688

28. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How trans-
ferable are features in deep neural networks? Advances
in neural information processing systems 27 (2014)

29. Zhou, Y., Standaert, F.: Deep learning mitigates but does
not annihilate the need of aligned traces and a generalized
resnet model for side-channel attacks. J. Cryptogr. Eng.
10(1), 85–95 (2020). DOI 10.1007/s13389-019-00209-3.
URL https://doi.org/10.1007/s13389-019-00209-3

30. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H.,
Xiong, H., He, Q.: A comprehensive survey on transfer
learning. Proceedings of the IEEE 109(1), 43–76 (2020)

https://hdl.handle.net/2078.1/258155
https://hdl.handle.net/2078.1/258155
https://eprint.iacr.org/2019/132
https://eprint.iacr.org/2019/132
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.46586/tches.v2021.i3.235-274
https://doi.org/10.46586/tches.v2021.i3.235-274
https://eprint.iacr.org/2022/493
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.1007/978-3-030-97348-3_3
https://doi.org/10.1007/978-3-030-97348-3_3
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.1109/TIFS.2021.3076928
https://doi.org/10.1109/TIFS.2021.3076928
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://doi.org/10.1007/s13389-019-00209-3

	Introduction
	Background
	Experimental Setup
	Experimental Results
	Conclusions and Future Work
	Hyperparameter Search Spaces
	Statistical Tests

