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Abstract. The Feistel construction is one of the most studied ways of
building block ciphers. Several generalizations were proposed in the lit-
erature, leading to the Generalized Feistel Network (GFN) construction,
in which the round function operates on each pair of blocks in parallel
until all branches are permuted. At FSE’10, Suzaki and Minematsu stud-
ied the diffusion of such construction, raising the question of how many
rounds are required so that each block of the ciphertext depends on all
blocks of the plaintext. Exhausting all possible permutations up to 16
blocks, they observed that there were always optimal permutations map-
ping even-number input blocks to odd-number output blocks and vice
versa. Recently, both Cauchois et al. and Derbez et al. proposed new
algorithms to build optimal even-odd permutations for up to 36 blocks.
In this paper, we present a new algorithm based on iterative path build-
ing to search for optimal Feistel permutation. This algorithm is much
faster in exhausting optimal non-even-odd permutations than all the
previous approaches. Our first result is a computational proof that no
non-even-odd permutation reaches a better diffusion round than optimal
even-odd permutations up to 32 blocks. Furthermore, it is well known
that permutations with an optimal diffusion round do not always lead to
optimal permutations against differential cryptanalysis. We investigate
several new criteria to build permutations leading to more secure GFN.

Keywords: Block Cipher · Feistel Network · Differential Analysis

1 Introduction

The Feistel Network is a classical design of modern block ciphers, used for many
primitives as DES [6], TWINE [11] and SIMON [2]. The core idea of such a construc-
tion is to split the plaintext into two halves of equal length called blocks. At each
round, the second block is duplicated and one side goes through a function F
and is then xored to the first block. The two resulting blocks are then inverted.

⋆ The work presented in this article was funded by the French National Research
Agency as part of the DeCrypt project (ANR- 18-CE39-0007).



One big advantage of this scheme is that the function F has not to be invertible
since the decryption function is the same as the encryption one in reverse order.
Since its introduction, several improvements have been proposed to the original
design. In particular, at ASIACRYPT’96, Nyberg defined the Generalized Feis-
tel Network (GFN) which splits the message into 2k blocks and uses a round
function of the form:

(x0, x1, . . . , x2k−1) −→ π(x0 ⊕ Fi,0, x1, . . . , x2k−2 ⊕ Fi,k−1, x2k−1)

where each Fi,j is a pseudorandom function, and π is a permutation of the
blocks [7]. This design was for instance used in both the block ciphers TWINE [11]
and PICCOLO [9]. It is a generalization of the more classical Type-2 Feistel con-
struction proposed by Zheng et al. at CRYPTO’89 [12], in which the permuta-
tion π is always the cyclic shift.

Cryptographic properties of GFN highly depend on the permutation used for
blocks. For instance, if the identity function was chosen as the permutation, the
resulting block cipher would be very weak as the parallel application of weak
ciphers. Thus, selecting the optimal permutation is an interesting task for de-
signers. At FSE’10, Suzaki and Minematsu focused on finding the permutations
reaching the lowest diffusion rounds [10]. More precisely, they searched for the
permutations minimizing the number of rounds required to achieve full block
diffusion: each block of the ciphertext depends on all blocks of the plaintext and
vice-versa. This criterion is tied to the resistance of the resulting cipher against
impossible differential attacks, a powerful cryptanalysis technique. Along with
a lower bound on the diffusion round of a GFN of 2k blocks, Suzaki and Mine-
matsu gave optimal permutations (w.r.t. the diffusion round) for 2 ≤ 2k ≤ 16. It
is worthy to note that such an optimal permutation was then used to design block
ciphers such as TWINE [11]. At FSE’19 Cauchois et al. identified new equivalence
classes regarding the diffusion rounds and, together with new algorithms, were
able to give optimal permutations up to 2k = 20 [3]. Furthermore, restricting the
search to even-odd permutations (i.e. permutations sending blocks of even index
to blocks of odd ones and vice-versa), they were able to find the best even-odd
permutations up to 2k = 24. Finally, few months later, Derbez et al. proposed
a new characterization of the problem restricted to even-odd permutations as
well as a clever algorithm to exhaust the search space. As a result they found
the best even-odd permutations up to 2k = 36 [5]. In particular, they solved the
problem opened by Suzaki and Minematsu regarding the case 2k = 32.

It is also possible to optimize GFN for other criteria than the diffusion round.
For instance in [8], Shi et al. searched for the permutations offering the best
resistance against Demirci-Selçuk meet-in-the-middle attacks [4].

Our contribution. Since the original work of Suzaki and Minematsu [10], most
of the new algorithms to find the permutations lowering the diffusion round
were dedicated to the even-odd case. There are two main reasons for that. First,
considering even-odd permutations only does highly reduce the search space,
making it possible to exhaust it. Second, it was shown that up to 2k = 20 at
least one of the optimal permutations is an even-odd permutation.
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In this paper, we focus on non-even-odd permutations and propose a new
algorithm to solve the general case. In previous approaches, the core part of al-
gorithms was somehow dedicated to answering the question: does block i diffuse
into all blocks after R rounds? In our new algorithm, we answer the question:
does block i diffuse to block j after R rounds? This more precise question allows
us to cut the search earlier than previous algorithms while exhausting the per-
mutations. Thus, our first result is a computational proof that, up to 2k = 32,
there is always at least one even-odd permutation which is optimal regarding the
diffusion round. The best known diffusion rounds for even-odd and non-even-odd
permutations are given in Table 1.

In the second part of the paper, we investigate more sophisticated criteria
than the diffusion round and study whether the optimal permutations lead to
optimal GFN regarding differential cryptanalysis.

Table 1. State of the art regarding optimal Diffusion Round. k is the number of Feistel
pairs and the references are : Suzaki et al. [10], Cauchois et al. [3], Derbez et al. [5]

2k
Fibonacci even-odd non-even-odd
bound DR Ref DR Ref

6 5 5

[10]

6

[3],[10]

8 6 6 6
10 6 7 7
12 7 8 8
14 7 8 8
16 7 8 8

18 8 8

[3]

9
[3]

20 8 9 9
22 8 8 9

new

24 8 9 ≥ 9
26 8 9

[5]

≥ 9
28 9 9 ≥ 9
30 9 9 ≥ 9
32 9 9 ≥ 9

2 Preliminaries

We recall in this section some notions and useful results that will be used
throughout this paper.

2.1 Generalized Feistel Networks

Generalized Feistel Networks have been introduced by [7] as a generalization
of Type-2 Feistel construction [12]. Roughly, the cycle shift performed at each
round in [12] is replaced by an arbitrary permutation leading to stronger schemes
with better diffusion if the permutation is chosen wisely.
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Definition 1. A Generalised Feistel Network (GFN) is defined by a number k
of Feistel pairs, a word size n, a number of rounds r, a permutation π over 2k
elements (named blocks), and r · k cryptographic keyed functions F i

j from Fn
2 to

Fn
2 (with 1 ≤ i ≤ r, and 1 ≤ j ≤ k). The ciphertext of a message of size 2k · n

is given by Rr ◦ . . . ◦ R1, where Ri is the round function:

Ri : (X0, . . . , X2k−1) → π(X0 ⊕ F i
1(X1), X1, . . . , X2k−2 ⊕ F i

k(x2k−1), X2k−1)

In this paper, neither the word size n, nor the exact definition of the keyed
functions F j

i are relevant. Hence, we simply use F hereafter, and we denote
GFNk

π a GFN with k Feistel pairs using permutation π.

Xi
0

Xi+1
0

F

Xi
1

Xi+1
1

F F F

Xi
2k−1

Xi+1
2k−1

π

Fig. 1. Round function Ri of a GFN with k Feistel pairs

In the following, we denote by Xi = (Xi
0, X

i
1, . . . , X

i
2k−1) the input data of

the i+1th round for i ≥ 0. We say that Xi
j is an even block when j is even, and

an odd one otherwise. An illustration for round Ri is given in Figure 1.

2.2 Diffusion Round

In [10], it has been observed that the diffusion round of a permutation π (denoted
DR(π)) is closely related to the security of the corresponding GFN against some
of the attacks mentioned above. Intuitively, the diffusion round is the round at
which full diffusion is achieved. In other words, assuming good enough functions
Fi,j , the diffusion round is the round from which every bit of the ciphertext
depends on every bit of the plaintext. We now formally recall the definition of
this notion.

Given r > 0 and i, j ∈ {0, . . . , 2k − 1}, if Xr
i is expressed by a formal ex-

pression containing a non-zero term in X0
j , we say that X0

j diffuses to Xr
i , and

we say that X0
j fully diffuses after r rounds when X0

j diffuses to Xr
i for all

i ∈ {0, . . . , 2k− 1}. For instance, we have that X0
0 diffuses to X1

π(0) whereas X
0
1

diffuses to both X1
π(0) and X1

π(1). In general, an even block Xr
i will only diffuse
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to its successor Xr+1
π(i) , whereas an odd block Xr

i will diffuse to its successor Xr+1
π(i)

and the successor of its even neighbour Xr+1
π(i−1).

Definition 2. Given a permutation π over 2k elements, we denote DRi(π) as
the minimum number of rounds r such that X0

i fully diffuses after r rounds.
Then, the diffusion round of a permutation π is given by
DR(π) = max0≤i<2k{DRi(π)}.

F F F F

X0
0

F F F F

F F F F

F F F F

F F F F

F F F F

Fig. 2. Diffusion of X0
0 after r = 6 successive rounds

Example 1. Let π = (3,0,5,6,1,2,7,4). This is an even-odd permutation. Figure 2
illustrates the diffusion of X0

0 after successive rounds. For instance, we have that
X0

0 diffuses to X2
5 and X2

6 , and full diffusion regarding X0
0 is reached after 6

rounds, thus DR0(π) = 6.

In GFN, decryption is made using π−1 and thus we want full diffusion to be
effective for π and π−1. We denote DR∗(π) = max(DR(π),DR(π−1)).

As recalled in introduction, finding permutations minimizing the diffusion
round has deserved a lot of attention during the past few years. To ease the
problem of finding optimal permutations, the focus has been made on even-odd
permutations as they seem to achieve better diffusion [3,5]. The belief that even-
odd permutations are better has only been formally established by exhausting
all the optimal permutations up to 2k = 20 [3]. In this paper, relying on a novel
algorithm based on iterative path building, we will show that this is true up to
2k = 32.
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3 Path Building Algorithm

In this section, we first explain how to represent a permutation π over 2k elements
as a graph before describing our algorithm. This representation fits well the
understanding of our algorithm since its core idea is to build paths. This graph
will also be of great help to propose a new characterization of the notion of
diffusion round.

3.1 Graph Representation of a Feistel Permutation

Definition 3. Given a permutation π over 2k elements, the Feistel permutation
graph associated to π is the graph Gπ = (V,E) where:

– V = Ve ∪ Vo with Ve = {0, 2, . . . , 2k − 2}, and Vo = {1, 3, . . . , 2k − 1};
– E = Eϵ ∪Eπ with Eϵ = {(1, 0), (3, 2), (5, 4), . . . , (2k − 1, 2k − 2)}, and Eπ =

{(u, v) | u, v ∈ V ∧ π(u) = v}.

The set V is the set of all nodes which is divided into two halves, the set of even
nodes Ve and the set of odd nodes Vo representing respectively the even blocks
and the odd ones. The set Eπ is the set of all the edges of the permutation π,
whereas Eϵ is the set of edges representing the S-Box passages from the odd to
the even nodes (also called epsilon-transitions).

Example 2. Let π = (2, 4, 5, 6, 9, 11, 7, 1, 3, 12, 15, 0, 13, 14, 8, 10). This is a non-
even-odd permutation whose associated Feistel permutation graph is as follows:

Legend :

Vo: odd blocks

Ve: even blocks

Eϵ: epsilon-transitions

(S-Boxes)

Eπ: permutation

transitions

0 2

5

11

1

4

9

12

1314

8

3

6

7

10

15

In the following, we will often refer to the Feistel permutation graph Gπ of a
permutation π. The sets Ve, Vo, Eπ, Eϵ will be used to represent the even blocks,
the odd blocks, the permutation transitions and the ϵ-transitions.
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Definition 4. A path p = (e1, . . . , en) is a finite sequence of edges from E
which joins two nodes from V . Moreover, when en ∈ Eπ, such a path is called a
diffusable path (or d-path for short).

We say that a path p is of length ℓ if there are exactly ℓ edges from Eπ in p.
Note that there can be multiple occurrences of the same edge in a path. We
sometimes need to consider d-paths since a Feistel round is composed of one
edge in Eϵ followed by one edge in Eπ. Based on this graph representation, we
propose a new characterization of DR(π).

Corollary 1. DR(π) is the smallest integer R such that:

∀ u, v ∈ V , there exists a d-path of length R from u to v in Gπ.

In order to compute the diffusion round of a permutation π, we can consider
the d-paths of a certain length between all pairs of nodes in the graph Gπ.
As already noticed in [5], in the specific setting of even-odd permutations, it
is actually sufficient to consider some specific sets of nodes, and only paths of
length R−1 to establish that the diffusion round is equal to R. In the following,
we formally define these specific paths for the general case (Proposition 1) and
the even-odd case (Proposition 2).

Proposition 1. Let π be a permutation, DR(π) is the smallest integer R such
that: ∀a ∈ Ve, ∀b ∈ Vo, there exists a path of length R− 1 from a to b in Gπ.

Proof. Let a ∈ Ve and b ∈ Vo we have that (a+1, a), (b, b−1) ∈ Eϵ with a+1 ∈ Vo

and b − 1 ∈ Ve. Furthermore, we have g, h ∈ V such that (b, g), (b − 1, h) ∈ Eπ

(see the graph below with i = a+ 1 and j = b− 1).

a

i

. . . . . . . . . b

j h

g

1) From Corollary 1, we know that there is a d-path of length R from a to g,
thus there is a path of length R− 1 from a to b.

2) Now, suppose that there is a R′ < DR(π) such that ∀ a ∈ Ve, b ∈ Vo there
is a path of length R′ − 1 from a to b. We then have a d-path of length R′ from
i to g, from i to h and from a to h. Since we have these d-paths for each pair
a ∈ Ve, b ∈ Vo, we have full diffusion with R′ leading to a contradiction. ⊓⊔

For any permutation π, the Proposition 1 reduces the number of paths we have
to consider when studying diffusion. In the case of an even-odd permutation, the
length of these paths can be further reduced.

Proposition 2. Let π be an even-odd permutation, DR(π) is the smallest inte-
ger R such that: ∀c ∈ Vo, ∀d ∈ Ve, there exists a path of length R− 3 from c to d
in Gπ.
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Proof. Let b, c ∈ Vo and a, d ∈ Ve with (a, c), (d, b) ∈ Eπ. We have that (a +
1, a), (b, b − 1) ∈ Eϵ with a + 1 ∈ Vo and b − 1 ∈ Ve. Furthermore, we have
g, h ∈ V such that (b, g), (b− 1, h) ∈ Eπ (see the graph below with i = a+1 and
j = b− 1).

ca

i

. . . d b

j h

g

1) From Proposition 1, we know that there is a path of length R− 1 from a
to b, thus there is a path of length R− 3 from c to d.

2) Now suppose that there is R′ < DR(π) such that ∀ c ∈ Vo, d ∈ Ve there
is a path of length R′ − 3 from c to d. We then have a d-path of length R′ from
i to g, from i to h and from a to h. Since we have these d-paths for all pairs
a ∈ Ve, b ∈ Vo then we have full diffusion with R′ leading to a contradiction. ⊓⊔

3.2 The MakePath Algorithm

We present a new algorithm to search for permutations with optimal diffusion
round. Our algorithm is based on path building to efficiently enumerate permu-
tations with full diffusion or any other path-based property. Thanks to Propo-
sitions 1 and 2, we will only consider paths of length R − 3 from odd to even
nodes in the even-odd case and paths of length R− 1 from even to odd nodes in
the general case. To obtain effective procedures, we enumerate the paths while
building a Feistel permutation graph. With this method, the more paths we add
to the graph, the fewer possibilities remain for the following ones. Thanks to this,
we can also define a strategy to cut the search as soon as possible by trying the
paths with the least possibilities first. Our algorithm is composed of the three
following functions:

– MakePath builds all the possible paths from a node a to a node b and is
described in Algorithm 1. Starting from node a, the function calls itself on
each possible next node for the path until all paths reach b with the length R.
More precisely, on a node x, there is only three possibilities. If x is odd, there
is one call to the even node x− 1. In this call, the length l does not decrease
because ϵ-transitions are not counted in the path length (line 2-3). If π[x]
has already been fixed, we have no choice, and thus we follow it (line 4-5). If
π[x] is free, we have to try all the remaining free nodes (line 7-9). On each
valid path, the function calls NextPath that will choose the next path to
build (line 13).

– HasProperty checks whether the property of interest is satisfied between
two nodes. For example, when considering the full diffusion property, we have
to check whether a path of length R exists between 2 nodes (more details in
Section 4).

– NextPath chooses two nodes a and b that does not have the property de-
scribed in HasProperty. If such a pair of nodes exists, it calls MakePath

8



on it to link them with the next path. It is described in Algorithm 2. For
the choice of a and b, the strategy consists of starting by the paths with
the least possibilities. To do so, we can either count the remaining possible
paths during the search, or we can set a static path priority (more details in
Section 4.1).

Algorithm 1: MakePath(x, π, b, l)

Data: x: current node, π: partial permutation, b: target node, l: remaining
length to reach R

1 if l > 0 then
2 if x is odd then
3 MakePath(x− 1, π, b, l);
4 if π[x] is fixed then
5 MakePath(π[x], π, b, l − 1);
6 else
7 for all y not used in π do
8 π[x]← y;
9 MakePath(y, π, b, l − 1);

10 end
11 free π[x];

12 end

13 else if x = b then NextPath(π) ;

Algorithm 2: NextPath(π)

Data: π: partial permutation
1 for all (a, b) given by Strategy() do
2 if ¬HasProperty(a, π, b, R) then
3 MakePath(a, π, b, R);
4 return;

5 end
6 Add π to solution pool

Our algorithm starts by a call to NextPath with an undefined permutation
and a given global parameter R. It stops when one of the following conditions
holds:

1. There is no possible path from a to b, and thus there is no solution.
2. The permutation is complete, i.e. fully defined: it is a solution if HasProp-

erty is true for each pair of nodes.
3. The algorithm ends without fixing the whole permutation. In this case, any

completion of the permutation lead to a valid solution.

9



Once all the recursive branches of our algorithm have been explored, all the
paths of length R have been exhausted. Thus, at the end of the algorithm, we find
all the permutations achieving full diffusion at round R if any. The algorithm can
build these permutations from scratch, but it will find a lot of similar solutions.
Indeed, starting by a graph like the one given in Example 2, a similar graph can
be obtained by simply relabelling the Feistel pairs. To avoid these redundancies,
we need to break some symmetries before running the search. To do so, we will
rely on the notion of skeleton defined in the following section.

3.3 Skeletons

As explained in [3], in the even-odd case, the permutation can be split in two
parts, the odd to even edges and the even to odd edges. This makes the search
easier (k!)2. Moreover, half of the permutation can be further reduced to all
its possible cycle decompositions to break some symmetries. This reduces the
search to Nkk! where Nk is the number of partitions of k. In the following, we
propose a generalization of the cycle decompositions to consider non-even-odd
permutations as well, and we rely for that on our graph representation.

Definition 5 (ϵ-cycle). An ϵ-cycle is a path c = (e1, . . . , e2l) in which the first
and last nodes are equal and edges alternate between Eπ and Eϵ one by one.

We note a l-ϵ-cycle an ϵ-cycle of size l i.e. with l ϵ-transitions. Moreover, we
will only use one representative of c = (e1, . . . , e2l) and we will not consider all
the equivalent ϵ-cycles like (e2l, e1, . . . , e2l−1) or (e1, . . . , e2l, e1, . . . , e2l). Some
examples are given in Figure 3.

Fig. 3. 1-ϵ-cycle, 2-ϵ-cycle, and 3-ϵ-cycle

Let P be a partition of the integer k. For each i ∈ P , we fix one representative
ϵ-cycle of the corresponding size. For example, there are three possible decom-
positions in ϵ-cycle for k = 3, i.e. {3}, {2, 1}, and {1, 1, 1}. This corresponds to
one 3-ϵ-cycle, or one 2-ϵ-cycle with one 1-ϵ-cycle, or three 1-ϵ-cycles. This holds
only for the even-odd case. To have a similar method in the general case, we rely
on ϵ-chains to handle the non-even-odd parts of the permutation.

Definition 6 (ϵ-chain). An ϵ-chain is a path ch = (e1, . . . , e2l+1) in which the
two first nodes are in Vo and the two last nodes are in Ve. The edges alternate
between Eπ and Eϵ one by one.
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We note an l-ϵ-chain an ϵ-chain of size l, i.e. with l ϵ-transitions. Except for the
first and the last node, all the nodes in an ϵ-chain are pairwise distinct. Indeed,
if a node appears two times in an ϵ-chain, then it is not an ϵ-chain but an ϵ-
cycle. However, the first and last node can be in an other structure, like an other
ϵ-cycle or an other ϵ-chain, or in the same ϵ-chain, making the ϵ-chain loops on
itself. This loop may occur at the beginning of the ϵ-chain, at its end, or on
both sides. Some examples of free and looping chains are given in respectively
Figures 4 and 5.

Fig. 4. A 3-ϵ-chain.

Fig. 5. Two 3-ϵ-chains looping on themselves.

Definition 7. A skeleton of size k is a set of ϵ-cycles and ϵ-chains whose sum
of sizes is k.

Example 3. The skeleton of the graph given in Example 2 is depicted below (see
Figure 6). It is composed of three ϵ-cycles of size 3, 1, and 1, as well as two
ϵ-chains of size 2 and 1.

Fig. 6. Skeleton of Example 2
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The skeleton of Figure 6 is also valid for graphs similar to Example 2 but
with different node numbers. In fact we can permute two pairs of nodes to find a
different permutation having the same skeleton. This is why we will only use one
representative of each skeleton. The number of skeletons is given by the formula∑k

i=0 Ni ×Nk−i with Ni the number of partitions of the integer i. The formula
has two parts, one for the ϵ-cycles with Ni and one for the ϵ-chains with Nk−i.
The formula then sums the skeletons with each possible division into ϵ-cycles and
ϵ-chains. For 2k = 16 there are 22 even-odd skeletons and 163 skeletons with at
least one ϵ-chain. For 2k = 32 there are 231 even-odd skeletons and 5591 non-
even-odd ones. Starting from a skeleton, we can complete it with edges to make a
Feistel permutation graph. These edges are {(a, b) | a ∈ Vo, b ∈ Ve}. Furthermore,
if there is one or more ϵ-chain in the skeleton, we also need to fix the first
and last node of the ϵ-chains. To do this, we use the MakePath algorithm on
each partial solution (skeleton). It is much faster than building the permutation
from scratch because some symmetries are broken. The algorithm can be run on
each skeleton independently to facilitate parallelization. Nevertheless, there are
some symmetries left in our algorithm. Indeed, a l-ϵ-cycle will produce l similar
solutions. Moreover, if there are m times the same ϵ-cycle or ϵ-chain, there will
be m! similar solutions. Breaking these symmetries in our algorithm increases its
running time, and it is left to future work to take them into account effectively.

4 Non-even-odd Case: Search for Optimal Permutations

The search for optimal permutation has been focused on even-odd permutation
because in practice, the non-even-odd ones where never better up to 2k = 20.
In this section, we first use our algorithm to show that this is true for up to 32
blocks. We then give a useful example that we found while looking for a general
proof.

4.1 Up to 2k = 32

To test whether a non-even-odd permutation can have a better diffusion round
than the even-odd ones, we used Algorithm 1 on all the skeletons having at least
one ϵ-chain. We fixed R to be one round less than the diffusion round known
for the best even-odd permutation, and ran our algorithm with the property
HasPath (described in Algorithm 3).

The running time of our algorithm is highly related to the strategy imple-
mented into the NextPath function (Algorithm 2). The best strategy we found
was to first build the paths that start and end on the smallest ϵ-chains. This
is because the paths starting by consecutive even nodes and ending by consec-
utive odd nodes have the least possibilities and therefore are most likely to be
impossible to build. The case 2k = 22 is quite small so we increased R to find
the optimal non-even-odd permutations. They are given in Table 2. These opti-
mal permutations have a diffusion round of 9 which is one round more than the
optimal even-odd permutations.
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Algorithm 3: HasPath(x, π, b, l)

Data: x: current node, π: partial permutation, b: target node, l: remaining
length

1 if l > 0 then
2 return (x is odd ∧ HasPath(x− 1, π, b, l))
3 ∨ (π[x] is fixed ∧ HasPath(π[x], π, b, l − 1));

4 else return x = b ;

Table 2. Optimal Non-even-odd permutations for 2k=22

π =(3, 18, 5, 16, 7, 12, 9, 10, 1, 14, 13, 2, 15, 8, 11, 21, 17, 4, 19, 6, 0, 20)
π =(3, 6, 5, 12, 7, 10, 9, 18, 1, 2, 13, 4, 15, 16, 17, 8, 11, 21, 19, 14, 0, 20)
π =(3, 12, 5, 0, 7, 10, 9, 18, 1, 2, 13, 4, 15, 16, 17, 21, 11, 8, 19, 14, 6, 20)
π =(3, 8, 5, 16, 7, 21, 9, 14, 1, 2, 13, 18, 15, 0, 17, 6, 11, 12, 19, 4, 10, 20)
π =(3, 21, 5, 10, 7, 0, 9, 14, 1, 2, 13, 18, 15, 8, 17, 6, 11, 12, 19, 4, 16, 20)
π =(3, 8, 5, 6, 7, 4, 1, 12, 11, 2, 9, 21, 15, 19, 13, 17, 10, 16, 14, 20, 0, 18)
π =(3, 4, 5, 14, 7, 0, 9, 16, 11, 2, 1, 12, 15, 21, 13, 6, 19, 10, 17, 8, 18, 20)
π =(3, 6, 5, 10, 7, 16, 9, 18, 11, 14, 1, 2, 15, 4, 13, 0, 19, 8, 17, 21, 12, 20)

For 2k = 24 to 2k = 32, our algorithm ended without finding any non-even-
odd permutations with a better diffusion round than the optimal even-odd ones.
As a result, we establish that the non-even-odd permutations do not achieve a
better diffusion round than the even-odd permutations up to 2k = 32. All results
are summarized in Table 1 and have been obtained on a 128 core CPU. The
hardest instance with 32 blocks and R = 8 takes around 8 hours of computing
time. In Cauchois et al [3], it is mentioned that ”246.4 tests of diffusion rounds”
are needed when considering 20 blocks. Actually, our algorithm is faster and
tackles this instance in around 8 seconds on our supercomputer. The source code
is publicly available at https://gitlab.inria.fr/agontier/ANewAlgoForGFN.

4.2 Towards an impossibility result

Intuitively, a non-even-odd permutation should not reach a better diffusion round
than the optimal even-odd one. Indeed, every time there are two consecutive odd
nodes u, v ∈ Vo such that (u, v) ∈ Eπ, there are also somewhere in the graph
Gπ two consecutive even nodes x, y ∈ Ve such that (x, y) ∈ Eπ. We recall that
each odd node has two outgoing edges (one in Eπ and one in Eϵ) whereas each
even node has only one. Therefore, all the paths starting from the node x have
one edge less to achieve full diffusion and any path that passes through (u, v)
will gain one edge. Since the number of even to even edges is the same as the
number of odd to odd edges, one could think that they compensate.

One of our objective during this work was to provide a formal proof that the
diffusion round of the non-even-odd permutations are also bounded by the Fi-
bonacci bound as for even-odd permutations. Thus we made the conjecture that
the total number of paths in a permutation graph and its inverse permutation
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graph could not exceed the sum of the Fibonacci bounds. However, we found
a non-even-odd permutation for which the number of odd nodes reached from
the even nodes was in total, and with redundancy, greater than the even-odd
Fibonacci bound, which suggests that an improvement of the diffusion round is
possible by considering non-even-odd permutations.

Example 4. We consider the permutation π =(3,2,1,5,0,6,7,4) depicted in the
leftmost graph of Figure 7. The rightmost one represents π−1.

0 3

5

67

4

21

0 3

5

67

4

21

Fig. 7. Permutation graph of π and π−1

On these two graphs, we give in Table 3 the number of paths of length R = 5
that ends on an odd node from each even node. There are 22 paths for π, and
21 paths for π−1.

Table 3. Number of paths in π and π−1

start node 0 2 4 6

number of paths 5 8 5 4

start node 0 2 4 6

number of paths 4 5 5 7

When considering only the even-odd permutations, the maximum number
of paths given by the Fibonacci suite is 5 for each node and thus 4 × 5 = 20
in total. This example shows that the diffusion round in the general case (i.e.
considering both even-odd and non-even-odd permutations) cannot be bounded
by the Fibonacci suite if we consider the sum of all paths on π and π−1. However,
we may note that there is one node (e.g. node 6 for π) having less paths than the
Fibonacci suite. We always observe this phenomenon on the permutations we
considered. We think that to establish an impossibility result (a non-even-odd
permutation can not be better than the optimal even-odd one), we should focus
on these nodes.
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5 Even-odd Case: Search for New Properties

As studied in the literature, the diffusion round is a property that can be used
to find good Feistel permutations. This criteria is tied to the resistance of the
resulting ciphertext against e.g. impossible differentials, saturation attacks and
pseudorandomness analysis [10]. However, permutations with optimal diffusion
round can also be weak against other cryptanalysis techniques. For instance,
the designers of WARP [1] selected a permutation achieving full diffusion in 10
rounds while permutations with a diffusion round of 9 actually exist. The main
reason is that all optimal permutations for the diffusion round are much weaker
regarding truncated differential cryptanalysis than the one they selected. These
permutations require at least 32 rounds to reach 64 active S-Boxes, while the
permutation used in WARP (which is non optional w.r.t. the diffusion round) only
requires 19 rounds to reach the same resistance.

Therefore, it would be interesting to look for other properties which might
lead to stronger ciphers. With our algorithm it is quite simple to change the
property we are looking for as we only need to provide a new HasProperty
function. In this section, we thus propose several properties derived from the
diffusion round and study the quality of their solutions against truncated differ-
ential cryptanalysis. We consider two properties, the first one is a generalization
of the diffusion round where we consider not one but X paths between each pair
of blocks. The second one consists of counting the S-Boxes on each path instead
of the paths themselves.

5.1 Number of Paths

The diffusion round property ensures that each solution has at least one d-path of
length R between each pair of blocks. We propose a new property parameterized
by an integer X, namely X-DR, which extends the diffusion round to at least
X d-paths of length R between each pair of blocks.

Definition 8. X-DR(π) is the smallest integer R such that:

∀u, v ∈ V , there are X d-paths of length R from u to v in Gπ.

This new property introduces the parameter X denoting the minimum num-
ber of paths we want between each pair of nodes. When X = 1, this corresponds
to the full diffusion property. To use this new property in our algorithm, the call
to HasProperty line 2 of Algorithm 2 is replaced by a call to NumberOf-
Paths with the slight modification that this number of paths must be greater
or equal to the parameter X. This function counts the number of paths between
two nodes, it is given in Algorithm 4.

Since we want more than one path between two nodes, the functionMakePath
may need to create multiple paths. Due to these multiple paths, we must set an
order between paths to prevent introducing new symmetries. For example, we
should not build a path p after a path q if we already tried to build them in
the other order. Proposition 2, stated and proved for the diffusion round, is still
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Algorithm 4: NumberOfPath(x, π, b, l)

Data: x: current node, π: partial permutation, b: target node, l: remaining
length

1 if l > 0 then
2 if π[x] is fixed then
3 if x is odd then
4 return

NumberOfPath(x− 1, π, b, l) +NumberOfPath(π[x], π, b, l− 1);

5 else return NumberOfPath(π[x], π, b, l − 1) ;

6 else return 0 ;

7 else
8 if x = b then return 1 ;
9 else return 0 ;

valid when considering X-DR. It is stated in Proposition 3, and for sake of
completeness the proof is given in Appendix.

Proposition 3. Let π be an even-odd permutation, X-DR(π) is the smallest
integer R such that: ∀c ∈ Vo, d ∈ Ve, there are X paths of length R − 3 from c
to d in Gπ.

To compare this criterion w.r.t. truncated differential analysis, we computed
the minimal number of active S-Boxes for each possible permutation for k = 6,
k = 7, and k = 8. We give in Table 4 the best number (i.e. the minimum one)
we obtained from round 1 to round 16 :

Table 4. Best minimal number of active S-Boxes for each round

k
Round

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 0 1 2 3 4 6 8 11 14 16 19 22 24 26 28 29

7 0 1 2 3 4 6 8 11 14 19 23 26 28 30 33 35

8 0 1 2 3 4 6 8 11 14 19 22 26 29 31 34 37

Then, we took the 500 first solutions given by our algorithm for the criterion.
We computed the minimal number of active S-Boxes for each of these solutions,
and we counted the number of solutions that reached the optimal value for each
round from 10 to 16. The results are given in Table 5. Note that to get 500
solutions, we sometimes needed to consider the criterion to a higher round than
the optimal one. For example the diffusion round for k = 6 is R = 8. However,
there are only 245 solutions with these parameters. Thus, we had to increase
R until we reached 500 solutions. This is summarized in the range column of
Table 5.

For k = 8, we do not see a trend and we have similar results for k = 7 and
k = 6. In fact, the property seems uncorrelated to the optimal number of active
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Table 5. Number of solutions with an optimal number of active S-Boxes from round
10 to round 16 in the 500 first solutions considering k = 8

X-DR
Round

10 11 12 13 14 15 16 Range

1 path 9 16 0 0 0 0 0 8

2 paths 24 37 0 0 0 0 0 9

3 paths 0 4 0 0 0 0 0 10

4 paths 15 15 0 0 0 0 0 10-11

5 paths 0 1 0 0 0 0 0 11

6 paths 9 9 0 0 0 0 0 11-12

7 paths 0 0 0 0 0 0 0 12

8 paths 0 0 0 0 0 0 0 12

S-Boxes. We can see that increasing the parameter X increases the round R we
need to go to find 500 solutions. Indeed when we search for two paths instead of
one, the property is so strict that there are no solutions for R = 8. We also see
that few to none of the 500 solutions are optimal in general.

5.2 Number of S-Boxes

Having X paths between each pair of blocks does not ensure that these paths
are ”good” from the differential analysis point of view. Instead of constraining
the number of paths, we propose to ensure that a minimum number of S-Boxes
are present in the d-paths between each pair of blocks.

Definition 9. X-SB(π) is the smallest integer R such that: ∀u, v ∈ V , there
are X S-Boxes traversed by d-paths of length R from u to v in Gπ. A S-Box
reached by two paths of the same length will be counted only once.

For example, in the two paths of length 5 from a to d depicted below, the S-Box
corresponding to the red edge (b, b′) will be counted twice (as it occurs at two
different lengths), whereas the S-Box corresponding to the red edges (a′, c) will
be counted only once (even if it occurs on both paths).

a b a b c d

b′ a′ b′ a′

To use this new property in our algorithm, the call to HasProperty line 2 of
Algorithm 2 is replaced by a call to DetectSBoxes with the slight modification
that the sum of detected S-Boxes must be greater or equal to the parameter X.
DetectSBoxes is described in Algorithm 5. Unlike paths, we cannot simply
count the S-Boxes because of the redundancy described in the previous example.
We have to use a Boolean matrix of dimension 2 or an equivalent structure to
remember at which path length l we encounter each S-Box.
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Algorithm 5: DetectSBoxes(x, π, b, l,M)

Data: x: current node, π: partial permutation, b: target node, l: remaining
length, M : Boolean matrix of dimension 2

1 M0← Matrix filled with false values;
2 if l > 0 then
3 if π[x] is fixed then
4 if x is odd then
5 M2← copy(M);
6 M2[x, l]← true;
7 M3← DetectSBoxes(π[x], π, b, l − 1,M);
8 M4← DetectSBoxes(x− 1, π, b, l,M2);
9 return Bit-wise OR(M3,M4);

10 else return DetectSBoxes(π[x], π, b, l − 1,M) ;

11 else return M0 ;

12 else
13 if x = b then return M ;
14 else return M0 ;

Proposition 2, stated and proved for the diffusion round, is also valid when
considering X-SB. It is stated in Proposition 4, and for sake of completeness,
the proof is given in Appendix.

Proposition 4. Let π be an even-odd permutation, X-SB(π) is the smallest
integer R such that: ∀c ∈ Vo, d ∈ Ve, there are X S-Boxes traversed by paths of
length R−3 from c to d in Gπ. A S-Box reached by two paths of the same length
will be counted only once.

As for the X-DR criteria, we looked at the quality of optimal permutations
for the X-SB criteria regarding truncated differential cryptanalysis for k = 6,
k = 7, and k = 8. The results are summarized in Table 6 for k = 8 and are
similar for lower k.

Overall, these two new properties did not bring better solutions for the trun-
cated differential analysis. For each criterion, the number of optimal solution in
the 500 first solutions is very low.

5.3 TWINE

Finally, we studied our criteria on the permutation used in TWINE [11]. The values
of our criteria for TWINE are given in Table 7. To see if these are good values, we
used our algorithm to enumerate permutations with strictly greater values for
our criteria. The algorithm concluded that there is no permutation with a better
X-SB than TWINE up to X = 22. The experimentation was not done beyond due
to its computational cost. However, TWINE is not optimal for 4-DR and 6-DR.
There is only one permutation that is optimal on 4-DR and 6-DR at the same
time. This permutation is π =(3, 4, 5, 8, 1, 12, 9, 10, 11, 2, 7, 14, 13, 6, 15,
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Table 6. Number of solutions with an optimal number of active S-Boxes from round
10 to round 16 in the 500 first solutions considering k = 8

X-SB
Round

10 11 12 13 14 15 16 Range

1 S-Box 25 44 0 0 0 0 0 8

2 S-Boxes 25 44 0 0 0 0 0 8

3 S-Boxes 0 1 0 0 0 0 0 9

4 S-Boxes 18 30 0 0 0 0 0 9

5 S-Boxes 4 12 0 0 0 0 0 9-10

6 S-Boxes 4 9 0 2 2 2 0 9-10

7 S-Boxes 0 6 0 0 0 0 0 10

8 S-Boxes 0 9 0 0 0 0 0 10-11

9 S-Boxes 0 1 0 1 15 1 0 11

10 S-Boxes 0 4 0 0 0 0 0 11

11 S-Boxes 0 6 0 0 0 0 0 11-12

12 S-Boxes 0 0 0 0 0 0 0 11-12

Table 7. X-DR and X-SB values for TWINE

1 to 2-SB 3 to 6-SB 7 to 8-SB 9 to 14-SB 15 to 22-SB

8 9 10 11 12

1-DR 2-DR 3-DR 4 to 5-DR 6 to 9-DR

8 9 10 11 12

0). To compare it with TWINE, we computed the truncated differentials on both
permutations in Table 8.

Table 8. Truncated Differentials for TWINE and π

Round 8 9 10 11 12 13 14 15 16

TWINE 11 14 18 22 24 27 30 32 35

π 11 14 19 22 24 26 28 30 32

This new permutation π is better than TWINE and optimal at round 10.
However, it is worse for rounds 13 to 16. In fact, in all the k = 8 permutations,
none can reach the optimal number of active S-Boxes at every round.

6 Conclusion

In this paper, we proposed a new generic algorithm based on path building
to enumerate permutations regarding a chosen property for Generalized Feistel
Networks. The main advantage of our algorithm is that it is not restricted to the
even-odd permutations nor the diffusion round property. Furthermore, it was
fast enough to prove that no non-even-odd permutation reaches a strictly better
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diffusion round than optimal even-odd permutations up to 32 blocks. Thus we
fully solved the problem opened by Suzaki and Minematsu in [10] and partially
solved by Derbez et al. in [5].

However, in both [5] and [1], it was highlighted that optimal permutations
regarding the diffusion round might still lead to ciphers far from offering an
optimal resistance against differential cryptanalysis. We thus tried two more
complex properties derived from the diffusion round and studied the quality of
the solutions they provide against truncated differential cryptanalysis.

Future work. We believe that providing a formal proof that there is always
at least one even-odd permutation optimal with respect to the diffusion round
would be a great result which should lead to a better understanding of GFN.
We are confident that obtaining such a proof is possible and the particular
example described Section 4.2 seems to be a good starting point. Another in-
teresting problem concerns properties that would ensure some level of resistance
against differential cryptanalysis. Indeed, our work clearly shows that permuta-
tions ensuring fast and strong diffusion are rarely optimal regarding this type of
distinguishers.

Appendix A Proofs of Proposition 3 and 4

Proposition 3 Let π be an even-odd permutation π, X-DR(π) is the smallest
integer R such that: ∀c ∈ Vo, d ∈ Ve, there are X paths of length R − 3 from c
to d in Gπ.

Proof. Let b, c ∈ Vo and a, d ∈ Ve with (a, c), (d, b) ∈ Eπ. We have that (a +
1, a), (b, b − 1) ∈ Eϵ with a + 1 ∈ Vo and b − 1 ∈ Ve. Furthermore, we have
g, h ∈ V such that (b, g), (b− 1, h) ∈ Eπ (see the graph below with i = a+1 and
j = b− 1).

ca

i

. . . d b

j h

g

1) From Definition 8, we know that there is X d-paths of length R from a to
g, thus there is X paths of length R− 3 from c to d.

2) Now suppose that there is R′ < X-DR(π) such that ∀ c ∈ Vo, d ∈ Ve

there is X paths of length R′ − 3 from c to d. We then have X d-paths of length
R′ from i to g, from i to h and from a to h. Since we have these d-paths for all
pairs a ∈ Ve, b ∈ Vo then we have full diffusion with X-DR(π) = R′ and thus
the contradiction X-DR(π) < X-DR(π). ⊓⊔

Proposition 4 Let π be an even-odd permutation π, X-SB(π) is the smallest
integer R such that: ∀c ∈ Vo, d ∈ Ve, there are X S-Boxes traversed by paths of
length R− 3 from c to d in Gπ. A S-Box reached by two paths at the same time
will be counted only once.
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Proof. Let b, c ∈ Vo and a, d ∈ Ve with (a, c), (d, b) ∈ Eπ. We have that (a +
1, a), (b, b − 1) ∈ Eϵ with a + 1 ∈ Vo and b − 1 ∈ Ve. Furthermore, we have
g, h ∈ V such that (b, g), (b− 1, h) ∈ Eπ (see the graph below with i = a+1 and
j = b− 1).

ca

i

. . . d b

j h

g

1) From Definition 9, we know that there is X S-Boxes in all the d-paths of
length R from a to g, thus there is X S-Boxes in all paths of length R− 3 from
c to d.

2) Now suppose that there is R′ < X-SB(π) such that ∀ c ∈ Vo, d ∈ Ve

there is X S-Boxes in all the paths of length R′−3 from c to d. We then have X
S-Boxes in all the d-paths of length R′ from i to g, from i to h and from a to h.
Since we have these d-paths for all pairs a ∈ Ve, b ∈ Vo then we have full diffusion
with X-SB(π) = R′ and thus the contradiction X-SB(π) < X-SB(π). ⊓⊔
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