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Abstract. Functional Encryption (FE) is a modern cryptographic tech-
nique that allows users to learn only a specific function of the encrypted
data and nothing else about its actual content. While the first notions
of security in FE revolved around the privacy of the encrypted data,
more recent approaches also consider the privacy of the computed func-
tion. While in the public key setting, only a limited level of function-
privacy can be achieved, in the private-key setting privacy potential is
significantly larger. However, this potential is still limited by the lack
of rich function families. For this work, we started by identifying the
limitations of the current state-of-the-art approaches which, in its turn,
allowed us to consider a new threat model for FE schemes. To the best of
our knowledge, we here present the first attempt to quantify the leakage
during the execution of an FE scheme. By leveraging the functionality
offered by Trusted Execution Environments, we propose a construction
that given any message-private functional encryption scheme yields a
function-private one. Finally, we argue in favour of our construction’s
applicability on constrained devices by showing that it has low storage
and computation costs.

Keywords: Cloud Security · Forward Privacy · Functional Encryption
· Function-Hiding

1 Introduction

One of the significant leaps in cryptography in the last decade was the switch
from traditional encryption schemes to schemes treating encrypted data as plain-
text. Although its practical application is still lagging behind, in the ensuing
years this technology is expected to scale up to having a global impact.

Functional Encryption (FE) is a cryptographic scheme that allows selective
computations over encrypted data. FE schemes use a key generation algorithm
that outputs decryption keys with remarkable capabilities. More precisely, each
decryption key skf is associated with a function f . In contrast to traditional
cryptographic techniques, using skf on a ciphertext Enc(x) does not recover
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x but a function f(x) – thus keeping the actual value x private. While the
first constructions of FE allowed the computation of a function over a single
ciphertext, more recent works [1,23] introduced a more general notion of multi-
input FE (MIFE). In a MIFE scheme, given ciphertexts Enc(x1), . . . ,Enc(xn), a
user can use skf to recover f(x1, . . . , xn). The function f can allow only highly
processed forms of data to be learned by the functional key holder. Unfortunately,
while MIFE seems to be a perfect fit for many real-life applications – especially
cloud-based ones where multiple users store large volumes of data in remote
and possibly corrupted entities – most of the works in the field revolve around
constructing generic schemes that do not support specific functions. We however
believe, that despite the scientific challenges, in the near future, we will start
seeing more nuance in the functions supported by FE schemes.

Having identified the importance of FE and believing that only a family of
modern encryption schemes could thread the way through this, as yet, uncharted
technological territory, we started looking into new and unexplored problems
that may arise from their use. As the research on FE evolved, we realized that
developing FE schemes themselves is only a part of the challenge – possibly, not
even the hardest part. At first we focused on the important, till now overlooked,
problem of function-privacy (or function-hiding). That is, how to make sure that
the cloud service provider (CSP) who is performing a functional decryption,
will output the correct result, without learning anything about the computed
function. Moving forward, another important challenge, entirely absent from
the literature, came into view. Namely, how to classify ciphertexts with regards
to the functions that can be applied to them. In the standard FE model, the
function is applied to the entirety of the users’ data. However, in many cases this
may be extremely problematic, as the function may not be defined over some of
the data.
Function-Privacy: FE schemes can be either symmetric [7] or asymmetric [9].
The problem of function-privacy needs to be treated differently for each setting.

Public-key vs Private-key: Function-privacy in the public-key setting and in
the private-key setting are two notions that unfortunately differ dramatically.
The difference derives from the fact that in a public-key FE scheme, given a
functional key skf for a function f , a malicious user can use the public-key to
encrypt any message x of her choice and then evaluate f(x). In other words,
it is possible to evaluate the function f on infinitely many points – a process
that reveals non-trivial information about f . However, in the private-key setting
where the private key is hidden, this attack cannot work as the malicious user
lacks the ability to encrypt messages. Hence, it is possible to formulate a level
of security in which nothing else beyond f(x) is leaked.

Function Privacy in Private-key FE: Function Privacy in the private-key set-
ting was formalized in [17], where authors proposed a method to hide the de-
scription of the function from the evaluator. Since then, and due to the lack of a
rich function family, researchers are trying to deploy function-privacy techniques
for the inner-product functionality [3,10,11,24,29] . These works are focusing on
functions of the form f(x, y) = ⟨x, y⟩, where x is provided by the user and y takes
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the role of the functionality. Hence, given an encryption Enc(x) of some x and a
functional key sky for y, the decryption algorithm outputs ⟨x, y⟩. The notion of
function-privacy in these approaches comes from generating sky in such a way
that information about y remains hidden. However sophisticated, the problem
with these approaches is that the evaluator always knows that an inner-product
functionality is being computed – even when both x and y remain private.

1.1 Motivation

The motivation for this work mainly derives from the lack of realistic solutions
to the problem of function-privacy as well as from the identified limitations
of the existing approaches. Since its formalization in [17], the main idea behind
function-privacy is to encrypt the description of a function f using a semantically
secure private key encryption scheme SKE, before issuing a query for f to the
CSP. When the CSP receives a query, it runs the FE decryption algorithm for
a universal function U which first decrypts the description of a function f and
immediately applies f on an input x. While the main idea of the used subterfuge
is valid, a formal definition for the description of the function is totally absent
from both [17] and subsequent works [16,25,26]. This lack of formalization raises
multiple concerns and limitations: (1) From a theoretical point of view, not
formalizing the description of the function f , implies that the user’s query to
the CSP may also be not well-defined (as the description is part of the query).
This is very problematic since in an interactive protocol, the messages exchanged
between the parties tend to leak sensitive information. Hence, not providing
a strict definition of the function description, makes quantifying the leakage
during the scheme’s execution impossible. (2) From a practical point of view,
the problem of the actual execution of the decryption algorithm is not discussed.
What does it mean from the CSP’s point of view to run the function f based
on the description of f and how will it run an executable given on a theoretical
function description?

During the observation of the aforementioned limitations, and while we were
trying to find a way to bypass them, to our surprise we also stumbled upon a
new problem that is relevant to all FE schemes4. The observation that the FE
scheme is defined so that the decryption algorithm runs on the entirety of the
user’s ciphertexts, for a function f , is naturally followed by a relevant question:
“What if the user, updates her collection of data by adding a ciphertext that does
not live in the domain where function f is defined?’ ’. Such a scenario could lead
the entire system to an error.

Contributions While designing new FE schemes that support a wide range of
functions is of paramount importance, we also need to carefully maintain the
balance between offering functionality and satisfying the properties of security.
To this end, we borrow definitions and terminology from special sub-classes of
4 Untargeted driven research is sometimes the best way to glean genuinely new in-

sights.
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FE, such as symmetric searchable encryption (SSE) [8, 20]. This is the main fo-
cus of this paper – a work that we believe will eventually allow us to successfully
venture into the new. The contribution of this work can be summarized as fol-
lows: (1) We define a novel adversarial model applicable to any FE scheme. To
do so, we consider certain information that may leak during the run of an FE
scheme. To the best of our knowledge, this is the first attempt to quantify the
leakage in FE. (2) We show how to turn any message-private multi-input FE
scheme to a function-private one. (3) Through a theoretical evaluation, we show
that our construction can be successfully used by constrained devices due to its
low storage and computational costs. (4) We conducted extensive experiments
to test the practicality of our construction.

2 Related Work

The first notions of Functional Encryption appeared as part of the work pre-
sented in [12], where authors constructed the first Identity-Based Encryption
(IBE) scheme. Later, it was formally defined as a generalization of public-key
encryption in [15]. Since then, numerous studies with general definitions and
generic constructions of FE have been proposed [16,23,27,30], both in the pub-
lic, and private-key settings. However, despite the promising works that have
been published, there is a clear lack of work proposing FE schemes supporting
specific functions – a necessary step towards allowing the FE to transcend its
limitations and provide the foundations for reaching its full potential. To the best
of our knowledge, currently the number of supported functionalities is limited
to inner products [2–4] and quadratic polynomials [28].

Despite the absence of rich function families in FE, researchers have already
set the ground for stronger security guarantees that would prevent the decryp-
tor from learning the computed function. The problem of function-privacy in the
public-key setting, where extra restrictions need to be posed to the adversary
thus resulting in weaker threat models, was first studied in [13,14] and [5]. Cur-
rently, the trend of function-privacy in the public key setting, revolves around
obfuscation [6, 18,22,23,25], which seems to be the only possible way to bypass
the limitations of public-key schemes discussed in Section 1. In the private-key
setting, a first general framework was presented in [5], followed by a strict for-
malization in [17]. In theory, in the private-key setting, it is possible to achieve
a function-privacy scheme by relying solely on the semantic security of a sym-
metric key encryption scheme. However, the lack of rich function families, pre-
vents researchers from digging deeper in the problem of function-privacy. Due
to this, the majority of the literature relies on function-privacy techniques to
partially hide information used in the computation of inner-product functional-
ities [3, 10,11,24,29].
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3 Background

In this section, we introduce our notation and recall the definitions of MIFE in
the private-key setting.

Notation A function negl(·) is called negligible, iff ∀c ∈ N,∃n0 ∈ N : ∀n ≥
n0, negl(n) < n−c. A probabilistic polynomial time (PPT) adversary ADV is a
randomized algorithm for which there exists a polynomial p(z) such that for all
input z, the running time of ADV(z) is bounded by p(|z|).

Definition 1. Let F be a rich family of functions such that every f ∈ F is
defined as f : X1× . . .×Xn → Y. A MIFE scheme for F consists of the following
four algorithms:

– Setup(1λ) takes as input the unary representation of the security parameter
λ and outputs a master secret key msk.

– Enc(msk, xi) takes as input the master secret key msk and a message xi and
outputs a ciphertext ci.

– KeyGen(msk, f) takes as input the master secret key msk and a function f ,
and outputs a decryption key skf for f .

– Dec(skf , c1, . . . , cn) takes as input a decryption key skf for a function f and
n ciphertexts, and outputs a value y ∈ Y.

Correctness For correctness we require that for every f ∈ F and for every
xi ∈ Xi it holds:

Dec(KeyGen(msk, f),Enc(msk, xi), . . . ,Enc(msk, xn)) = y ∈ Y,
with all but a negligible probability over the internal randomness of Setup,Enc,KeyGen
and Dec.

Two desirable properties of FE schemes are those of message-privacy and
function-privacy.

Definition 2 (Message-Privacy). An FE scheme is said to be message-private,
if any two messages x0 and x1 are computationally indistinguishable for any ad-
versary that can adaptively obtain decryption keys for any function such that
f(x0) = f(x1).

Naturally, the above definition is quite restrictive when we deal with a rich
family of functions. To this end, in [17], authors proposed a stronger security
definition for function-privacy.

Definition 3 (Function-Privacy). An FE scheme is said to be function-private
if any adversary that obtains encryptions of x0 and x1, and functional decryp-
tion keys skf0 , skf1 for two functions f0, f1 such that f0(x0) = f1(x1), cannot
distinguish between them.

For a formal presentation of the security games for message and function
privacy, we refer the reader to [17].
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4 Architecture

In this section, we present the topology of our construction. In particular, we
assume the existence of the three following entities:
Data Owner: The data owner (ui) keeps a list of unique identifiers for all
possible functions supported by the underlying MIFE scheme. In addition to
that, ui is responsible for encrypting her data and creating the necessary indexes.
In particular, ui first parses her data locally before outsourcing it to the CSP.
During this process, she generates the following three indexes:

– D – a dictionary containing mappings between function identifiers and ci-
phertexts that can be given as input to each function.

– No.Runs[f ] which contains mappings between the unique identifier of each
function f , and the number of times f has already been executed.

– No.Inputs[f ] which consists of mappings between function identifiers and the
number of inputs for each function f .

No.Runs[f ] and No.Inputs[f ] are kept locally on ui’s side, while D is out-
sourced to the CSP.
Cloud Service Provider (CSP) The CSP storage will consist of the cipher-
texts as well as the dictionary D. Each D entry is encrypted under a different
temporary key tkf . Thus, given tkf and the number of inputs for a function f ,
the CSP can recover all the ciphertexts that will be given as input to the MIFE
decryption algorithm.
Secure Component (SC): SC is a TEE-protected component that resides in
the CSP. We assume that during the deployment phase, SC receives a series of
function descriptions, along with their executables. SC is triggered by the CSP,
upon receiving a query for a function by a user ui. SC is responsible for running
the MIFE decryption algorithm upon receiving a collection of ciphertexts from
the CSP, a functional decryption key skf for a function f and the unique identifier
of f . SC has the following properties:

Attestation We assume that the TEE offers the feature of attestation. In partic-
ular, during attestation, SC generates an attestation report that can be verified
by any party. The report is signed with a private key and hence, anyone holding
the public key will be in position to verify it.

Sealing When data are stored in untrusted memory, they are encrypted with a
key known only to SC. Sealed data can be recovered even if SC is required to
restart.

5 Formal Construction

This section constitutes the core contribution of our paper, as we formally define
our construction. For the needs of our construction, we assume the existence of
the following building blocks:
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1. A key-private MIFE scheme that fulfils the property of message privacy.
2. A first and second pre-image resistant hash function H.
3. A pseudorandom function G : {0, 1}λ × {0, 1}∗ → {0, 1}∗
4. An IND-CCA2 secure public-key cryptosystem PKE such that: PKE = (Gen,Enc,Dec).
5. An EUF-CMA secure signature scheme S = (sign, ver).
6. A synchronized clock between all the parties.

Note here, that we only require the MIFE scheme to be message-private.
Hence, our construction can be applied to any message-private MIFE scheme,
to further enhance it with the property of function-privacy.

5.1 Secure Hardware Formalization

During the execution of the protocol, we assume the existence of a secure hard-
ware (SHW) component SC. In the beginning, SHW.Setup runs to generate a
public/secret key pair. SC is then initialized, by loading a program Q and produc-
ing an identifier SC. This is done by running SHW.Load. After the initialization of
SC, HW.Run is executed with different inputs. Finally, SC runs SHW.Run&Report
to generate a signed attestation repost.

– SHW.Setup(1λ): Takes an input a security parameter λ and produces a pub-
lic/secret key pair (pkrpt, skrpt), used to sign and verify reports.

– SHW.Load(Q): Takes as input a program Q. A private region of memory,
dedicated to execute Q, is allocated. Moreover, an identifier id is created
that will be used to identify this particular region of memory.

– SHW.Run(SC, in): Takes as input an identifier id and some input in. It then
runs the program in the memory region specified by id, with in as input.

– SHW.Run&Report(id, in): Takes as input an identifier id and some input in
and outputs an attestation report rpt signed with skrpt. The report is veri-
fiable by any party (local or remote) holding the corresponding public key
pkrpt.

5.2 Forward and Function Private MIFE

We are now ready to proceed with the formal definition of FFP (Forward and
Function Private). Our construction consists of four polynomial time algorithms
such that FFP = (KeyGen,Setup,Query,Add).

FFP.KeyGen: During the execution of KeyGen, the data owner invokes MIFE.Setup
to generate a master secret key msk for the message-private MIFE scheme. Apart
from that, a key KG for a PRF G is generated.



8 Alexandros Bakas and Antonis Michalas

FFP.Setup: This is a two-party protocol between a data owner ui and the
CSP. The protocol is initiated by ui who wishes to encrypt her data. First, ui

locally creates mappings between a sequence of data (x1, . . . , xn) and function
descriptions. These mappings, simply specify the proper inputs for each function
fi. As a next step, ui computes a temporary key for each function as tkf =
G(KG, f ||No.Runs[f ]). This key will allow ui to start building the dictionary D.
In particular, for each (xi, fi) pair, ui first invokes MIFE.Enc to encrypt xi,
resulting in a ciphertext ci, and then further masks the function description as
mfi = H(tkf ||No.Inputs[f ]). Then, the pair {ci,mfi} is added to the dictionary
D. The data owner ui repeats these steps for all xi ∈ (x1, . . . , xn). Finally, D
is outsourced to the CSP via m1 = ⟨t1,D, σui

(h(t1||D))⟩ to the CSP, where t1
is a timestamp and σui

denotes the signature of ui. Upon reception, the CSP
can verify ui’s signature, the freshness and the integrity of the m1. FFP.Setup is
presented in detail in Algorithm 1.

Algorithm 1 FFP.Setup

Data Owner:
1: for all (xi, fi) pairs do
2: if No.Inputs[fi] = null then
3: No.Inputs[fi] = 0

4: if No.Runs[fi] = null then
5: No.Runs[fi] = 0

6: No.Inputs[fi] + +
7: tkfi = G(KG, fi||No.Inputs[fi]) ▷ temporary key for fi
8: mfi = h(tkfi ||No.Inputs[f)i]) ▷ mask the function
9: ci = MIFE.Enc(msk, xi)

10: Add the (ci,mfi) pair into D
11: Outsource D to the CSP via m1 = ⟨t1,D, σui(h(t1||D))⟩
12: Store No.Inputs[f ] and No.Runs[f ] locally

FFP.Add: This is a two-party protocol between ui and the CSP. The procedure
is identical to that of FFP.Setup but is applied to only one (xi, fi) pair. To add
the pair to the dictionary D, ui generates an add token as τa(xi, fi) = (ci,mfi),
where ci and mfi are generated as discussed in FFP.Setup. Finally, ui sends m2 =
⟨t2, (ci,mfi), σui(h(t2||(ci,mfi)))⟩ to the CSP. We omit a formal description as
it is identical to that of Algorithm 1, without the for loop in line 1.

FFP.Query: This is a three-party protocol between ui, the CSP and SC.
Assume now that ui wishes to run a function f ∈ F , on the encrypted data
(x1, . . . , xn). To do so, ui first needs to generate a query token for the function
f by following a series of steps:

Step 1. Invokes MIFE.KeyGen to generate a decryption key skf .
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Step 2. Retrieves the No.Runs[f ] and No.Inputs[f ] values from her local indexes and
calculates the masked version of the function description as described in
FFP.Setup.

Step 3. Now, ui is required to calculate the updated value of mf . To do so, incre-
ments the No.Runs[f ] values by one, and computes a new temporary key tkf .
Based on this temporary key, ui calculates the new masked version of f ,
mf ′.

After completing these steps, ui can simply calculate the query token τq(f) =
(skf ||mfi||No.Inputs[f ]||mf ′||h(f ||No.Runs[f ]))) which is also forwarded to the
CSP via m3 = ⟨t3,EncpkSC

(skf ), h(f ||No.Inputs[f ]), τq(f), σui
(h′)⟩ where h′ is

the following hash: h(t3||EncpkSC
(skf )||h(f ||No.Inputs[f ])||τq(f)). Upon recep-

tion, the CSP uses τq(f) to locate all ciphertexts (c1, . . . , cn) that can be given
as input to fi and sends them to SC along with skf and h(f ||No.Runs[f ]) via
m4 = ⟨t4, Res,m3, σCSP (h(t4, Res,m3))⟩. Apart from that, the CSP removes
all the current masked versions of f , and replaces them with the ones in L.
SC, knowing the hash of the unique id of the executable corresponding to the
function f , can locate which is the proper executable. As a result, SC invokes
MIFE.Dec and outputs out = f(x1, . . . , xn) which is sent back to ui to the
CSP via m5 = ⟨t5, out, σSC(h(t5||out))⟩. Finally, the CSP forwards m5 to ui.
FFP.Query is formally presented in Algorithm 2.

Algorithm 2 Query
Data Owner:

1: skf ← MIFE.KeyGen(skf, f) ▷ generate the decryption key
2: tkf = G(KG, f ||No.Runs[f ])
3: mf ′ = h(tkfi ||No.Inputs[f ])
4: No.Runs[f ] + +
5: tk′f = G(KG, f ||No.Runs[f ])
6: mf ′

i = h(tk′f ||No.Inputs[f ])
7: τq(f) = (skf ,mf,No.Inputs[f ],mf ′, h(f ||No.Runs[f ]))
8: Send m3 to the CSP

CSP:
9: Res = {}

10: for i = 1 to i = ℓ do ▷ No.Inputs[f ] = ℓ
11: ci = D(mf, :) ▷ find the input ciphertext based on the masked description
12: Res = Res ∪ ci
13: Replace mf with mf ′

14: Send m4 = ⟨t4, Res,m3, σCSP (h(t4, Res,m3))⟩ to SC
SC:

15: Find which executable corresponds to the function description
16: Update the stored function description by incrementing No.runs by one
17: Run MIFE.Dec(skf , c1, . . . , cℓ)
18: Output out = f(x1, . . . , xℓ)
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19: Send m5 = ⟨t5, out, σSC(h(t5||out))⟩ to the CSP
CSP:

20: Forward m5 to the Data Owner

5.3 Leakage Functions

Based on our formal construction, we can now formally quantify the total leakage
by providing a concrete definition of the leakage function L = (Lkeygen,Lsetup,Lquery,Ladd).
This is an essential part of our work as this function will be explicitly used during
the proof of security in the next section.

– Lkeygen = λ. The leakage function associated with FFP.KeyGen is restricted
to the length of the generated keys.

– Lsetup = (N,m), where N is the total number of mappings in D, and m is
the total number of ciphertexts. The leakage function associated with the
FFP.Setup leaks the size of D, and the number of ciphertexts.

– Lquery = (qp[t], ap, |skf |, |hout|, out). The leakage function associated with
FFP.Query leaks the query and access patterns, the size of the functional
key, the outputs of the hash function h and the output out = f(x1, . . . , xn).

– Ladd = (|ci|, |fi|). The leakage function associated with FFP.Add leaks the
sizes of the added ciphertext and the function description.

Moreover, note that even if we use a different temporary key tkf for each
query, the query pattern is still leaked since the CSP can easily guess that newly
re-keyed entries correspond to the input of the queried function. The temporary
keys are not used to hide the query pattern, but to provide forward privacy as
per Definition 5.

5.4 Secure Component Analysis

While in the previous section, we provided a detailed presentation of FFP, our
approach was agnostic to the TEE-enabled component. In this section, we aim
to formalize the behaviour of SC by providing an analysis of the programs that
are executed by SC. This will help us better understand the role of SC and,
subsequently, formalize its security properties. SC is initialized during FFP.Setup
as follows: Initialization: SC is initialized by generating a public/secret and
singing/verification key pairs. To do so, a program Qinit is loaded:

Qinit:

– On input (“initialize”, 1λ):
1. Run (pkSC, skSC)← PKE.KeyGen(1˘).
2. Publish pk.

Run SC← SHW.Load(Qinit).
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Run: SC is required to run during the execution of FFP.Query to produce an
output out. Moreover, SC signs out since it also needs to generate an attestation
report. This is done by a program Qrun as follows:

Qrun:

– On input (“run”,m4):
1. Open m4; Verify the freshness, the integrity of the message and the

signature of the CSP; If the verification fails, output ⊥.
2. Compute skf = Dec(skSC ,EncskSC (skf )).
3. Compute and output m5

Run m5 ← SHW.Run(SC, (“run”,m4)) and then:
rpt← SHW.Run&Report(SC, (“run”,m4))

6 A Novel Adversarial Model

To capture our new notion of security in FE we rely on the real experiment
against ideal experiment formalization. In particular, in the real experiment the
adversary ADV observes the algorithms being executed honestly, while in the
ideal experiment a simulator S simulates the functionalities based on explicit
leakage. The leakage is formalized by a function L such that L = (Lkeygen,Lsetup,Lquery,Ladd)
where each component corresponds to the leakage associated with the key gen-
eration, setup, query and addition algorithms. The idea is the following: ADV
has full control of the client. Thus, she can trigger any operation. ADV issues a
polynomial number of queries, and for each query she records the output. The
scheme is said to be L-adaptively secure if ADV cannot distinguish between the
real and the ideal experiments.

Definition 4. (L-Adaptive Security) Let FFP = (KeyGen,Setup, Query,Add)
be as defined in Section 5. Moreover, let L = (Lkeygen,Lsetup,Lquery,Ladd) be
the leakage function of FFP. We consider the following experiments between an
adversary ADV and a challenger C:
RealADV (λ)

ADV outputs a set of inputs for various functions from a rich function family F . C
generates a key msk, and runs FFP.Setup. ADV then makes a polynomial number of
adaptive queries q = {f, (x1, f1)}. For each q, she receives back either a query token
for f , τq(f), or an add token τa(x1, f1) for the pair (x1, f1) Finally, ADV outputs a
bit b.

IdealADV,S(λ)

ADV outputs a set of inputs for various functions from a rich function family F .
S gets Lsetup to simulate Setup. q = {f, (x1, f1)}. For each q, S is given L =
(Lkeygen,Lsetup,Ladd,Lquery). S then simulates the dictionary, the tokens and, in
the case of addition, a ciphertext. Finally, ADV outputs a bit b.

We say that FFP is secure if ∀ PPT ADV, ∃ S such that:
(1 )|Pr[(RealADV) = 1]− Pr[(IdealADV,S) = 1]|≤ negl(λ)
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Moreover, we further require that from the CSP’s point of view, newly added
(xi, fi) pairs do not leak any information about past queries. This property,
makes adaptive attacks a lot less effective [32]. This requirement, forces us to
define the property of Forward Privacy for FE schemes. Informally, we will say
that a scheme is said to be forward private if for all file insertions that take place
after the successful execution of the Setup algorithm, the leakage is limited to
the sizes of the function’s input and the function’s description. More formally:

Definition 5 (Forward Privacy). An L-adaptively FFP scheme is forward
private iff the leakage function LAdd can be written as:

Ladd(xi, fi) = (|xi|, |fi|) (2)

For the following two definitions, let us assume that the data owner has
already issued t queries Q = {q1, . . . , qt}, up to time t.

Definition 6 (Query Pattern). The query pattern is defined to be a vector QP
that shows which query each function corresponds to. For example, SP[t] = fκ
means that a query for the function fκ was issued at time t.

Definition 7 (Access Pattern). We define the Access Pattern to be the set of
all ciphertexts that can be given as input to a function f at time t. The set is
denoted by APf,t.

7 Security Analysis

We are now ready to prove the security of our construction against the threat
model defined in Section 6. To do so, we need to prove the existence of a simulator
S, that given the leakage function L, simulates a perfect view for an adversary
ADV with all but a negligible probability. Before we proceed with the formal
proof of security, we present a high-level overview:

Proof Sketch: We will rely on a constructive proof in the sense that we will
prove the existence of S, by constructing it. This will be achieved through a
hybrid argument. More precisely, we will design five hybrids H0,H1,H2,H3 and
H4 such that H0 is the real experiment and H4 the ideal one, as they were defined
in Section 6. Each hybrid Hi, will be constructed by replacing a real functionality
with a simulated one given the corresponding leakage function Li. Our goal is
to prove that no PPT adversary ADV will be able to distinguish between two
consecutive hybrids Hi,Hi+1. The hybrids are illustrated in Table 1.
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Table 1: Hybrid Description
Hybrid Description

H0 This is the real experiment
H1 Simulate FFP.KeyGen given Lkeygen

H2 Simulate FFP.Setup given Lsetup

H3 Simulate FFP.Add given Ladd

H4 This is the ideal experiment

It is important to note that simulation-based security definitions for FE al-
ready exist [15,23]. However, in contrast with these works, we address a different
problem, as we are more interested in proving the security of a general framework
and not that of a FE scheme.

Theorem 1. Let MIFE be a message-private multi-input functional encryption
scheme. Moreover, let G be a secure pseudorandom function and h a first and sec-
ond pre-image resistant hash function. Then FFP = (KeyGen,Setup,Query,Add),
with corresponding leakage function L = (Lkeygen,Lsetup,Lquery,Ladd) is L-
adaptively secure as per Definition 4.

Proof. We construct a simulator S that simulates the real functionality in such
a way that no PPT adversary ADV can distinguish between the real and ideal
worlds. Note here that ADV only expects an output from FFP.Query and in
this case, apart from simulating the search token, S also needs to simulate the
process executed by SC. S is given as input L = (Lkeygen,Lsetup,Lquery,Ladd).

In a pre-processing phase, S runs SHW.Setup(1λ) and records (pkrpt, skrpt)
generated during the process.
Hybrid 0 (H0) This is the real world.

Hybrid 1 (H1) Like H0, but instead or FFP.KeyGen, S gets as input Lkeygen

and simulates the real world.

Claim. H0 is computationally indistinguishable from H1.

The proof of Claim 7 is straightforward as ADV does not have access to any
key generated during this phase. Hence, we can safely assume that:

(3)|Pr[(H0) = 1]− Pr[(H1) = 1]|≤ negl(λ)

Hybrid 2 (H2) Like H1, but instead or FFP.Setup, S gets as input Lsetup and
simulates the real world.

Claim. H1 is computationally indistinguishable from H2.

Proof. S is given Lsetup = (N,m) and proceeds as shown in Algorithm 3.
Since Lsetup = (N,m), S knows exactly both the size of the dictionary D, as

well as the number of resulted ciphertexts. Moreover, as we can assume the hash
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Algorithm 3 Setup Simulation
1: procedure S(Lsetup)
2: k ← MIFE.KeyGen(1λ)
3: for i = 1 to i = N do
4: Output a simulated masked function description simfi

5: Simulate the ciphertexts as simci ← MIFE.Enc(k, xj)
6: Store all (simfi , simci) in a dictionary DS

7: Create a dictionary Keys to store the last temporary key for each function query.
8: Create a dictionary O to reply to random oracle queries.
9: Create a dictionary DecKeys to store the functional decryption keys for different

functions.
10: Output DS

function h and the security parameter λ to be publicly known, then S knows
the exact sizes of the real masked functions mfi and ciphertexts ci. Hence it is
straightforward to generate simulations of both the masked functions simfi and
the ciphertexts simci of correct sizes. What remains to be done, is show that
ADV cannot distinguish between an encryption of a plainetext xi and that of a
random xj such that f(xi) = f(xj) and |xi|= |xj |. However, recall that we have
assumed that MIFE is message-private, which means that an adversary cannot
distinguish between the encryptions of two messages xi and xj even is she possess
functional decryption keys. Hence, we conclude that the encryption of a xi and
that of a xj such that f(xi) = f(xj) are computationally indistinguishable and
hence:

(4)|Pr[(H0) = 1]− Pr[(H1) = 1]|≤ negl(λ)

Hybrid 3 (H3) Like H2, but instead of FFP.Add, S gets as input Ladd and
simulates the real world.

Claim. H2 is computationally indistinguishable from H3.

Proof. S is given as input Ladd and proceeds as shown in Algorithm 4:

Algorithm 4 Addition Simulation
1: procedure S(Ladd)
2: L = {}
3: simci ← MIFE.Enc(k, xj) for a random xj such that f(xi) = f(xj)
4: Simulate a (simfi , simci) pair
5: Output τα = (ci,mfi)

Since Ladd = |ci|, |fi|, S can easily generate a simulated ciphertext simci of
the correct size. Similarly, S generates correctly a simulated masked function de-
scription of the correct size. Finally, once again, the message-privacy property of
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the MIFE scheme, ensures us that ADV cannot distinguish between the encryp-
tions of an actual plaintext xi, and that of a random xj such that f(xi) = f(xj).
As a result:

(5)|Pr[(H2) = 1]− Pr[(H3) = 1]|≤ negl(λ)

Moreover, note that since we successfully simulated FFP.Add given only the
leakage function Ladd, we also proved that FFP preserves our newly defined
property of forward privacy in functional encryption.

Hybrid 4 (H4) Like H3, but instead or FFP.Query, S gets as input Lquery and
simulates the real world.

Claim. H2 is computationally indistinguishable from H3.

Proof. Proving Claim 7 is trickier that the previous ones as addition operations
affect query operations. Hence, S needs to be constructed in such a way that
it keeps track of all the additions in order to respond consistently to ADV. To
achieve this, we need to design three more dictionaries:

– Keys[f ], that keeps track of the last temporary key that was used for the
function f .

– O[tkf ][i], i ∈ {0, 1}, which serves as a random oracle responsible to provide
ADV with consistent query tokens. More precisely, O[tkf ][0] stores the sim-
ulated masked function, while O[tkf ] stores the simulated ciphertext that is
required to recover ci.

– DecKeys, that keeps track of the functional decryption key for each function
f .

S is given Lquery and simulates the query tokens as shown in Algorithm 5.
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Algorithm 5 Query Simulation
1: procedure S(Lquery)
2: ℓ: Total number of inputs for the function fi
3: if Keys[fi] = null then
4: tkfi ← {0, 1}

λ

5: tkfi = Keys[fi]
6: if DecKeys[f ] = null then
7: skf ← {0, 1}λ

8: skf = DecKeys[fi]
9: for i = 1 to i = ℓ do

10: if O[tkfi ] = null then
11: if xi is added after Setup then
12: Pick a (xi, (simmfi , simci)) pair
13: else
14: Pick a (simmfi , simci) pair
15: O[tkfi ][0] = simmfi

16: O[tkfi ][1] = simci ⊕ xi

17: else
18: simmfi = O[tkfi ][0]
19: simci = O[tkfi ][1]
20: Delete either (simmfi , simci) or (xi, (simmfi , simci)) from DS .
21: NewMap = {}
22: tkfi

′ ← {0, 1}λ
23: Keys[fi] = tkfi

′

24: for i = 1 to ℓ do
25: Simulate a novel (simmfi , simci) pair and add it into D
26: NewMap = NewMap ∪ ((simmfi , simci))
27: O[tkf ′][0] = simmfi

28: O[tkf ′][1] = simci

29: output τq(f) = (skf ||simmf ||ℓ||NewMap)

From the description of Algorithm 5, it is clear that the simulated query
token has exactly the same size and format with the real one and hence, no PPT
adversary can distinguish between them. What remains to be done is for S to
simulate SC and its response. To do so, S first generates a simulated m′

4 message
by replacing the components of the actual m4 with the simulated ones where
m4 =. Having showed that S can successfully simulate the query token given
Lquery, generating m′

4 is straightforward. As a result, what we need to show is
that:

(6)|Pr[(SHW.Run(SC, (“run”,m4))) = 1]

− Pr[(SHW.Run(SC, (“run”,m′
4))) = 1]|≤ negl(λ)

and then, for the attestation:
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(7)|Pr[(SHW.Run&Report(SC, (“run”,m4))) = 1]

− Pr[(SHW.Run&Report(SC, (“run”,m′
4))) = 1]|≤ negl(λ)

Proving inequalities 6 and 7, requires to prove that given m′
4, S can output

a simulated m′
5 which is computationally indistinguishable from m5. Recall that

m5 = ⟨t5, out, σSC(h(t5||out))⟩. However, since out ∈ Lquery and S already pos-
sess (skrpt), it is straightforward to output a message m′

5 identical to m5, and
in this case, we have that:

(8)|Pr[(SHW.Run(SC, (“run”,m4)))= 1]−Pr[(SHW.Run(SC, (“run”,m′
4)))= 1]|=0

and

(9)|Pr[(SHW.Run&Report(SC, (“run”,m4))) = 1]

− Pr[(SHW.Run&Report(SC, (“run”,m′
4))) = 1]|= 0

Moreover, tampering with the report that is produced as part of SHW.Run&Report,
implies that ADV can forge SC’s signature, which can only happen with negli-
gible probability.

Hence, we conclude that:

(10)|Pr[(H3) = 1]− Pr[(H4) = 1]|≤ negl(λ)

By combining inequalities 3-10, and using the triangle inequality and the fact
that the finite sum of negligible functions is still negligible, we conclude that:

(11)|Pr[(H0) = 1]− Pr[(H4) = 1]|≤ negl(λ)

Note that the description of the function is kept hidden and not used at all
during the entire simulation. This result is quite remarkable as it signifies that
we can simulate a perfect view of the real world, by keeping the description of
the function hidden. Hence, starting with any private key MIFE scheme that is
also message-private, FFP can further enhance it with the properties of forward
and function privacy.

Side-Channel Attacks: Recent works [19,31] have shown that TEEs are vul-
nerable to software attacks. However, according to [21], these attacks can be
prevented if the programs running in the TEE are data-obvious. Thus, leakage
can be avoided if the programs do not have memory access patterns or control
flow branches that depend on the values of sensitive data.

8 Evaluation

8.1 Theoretical Evaluation

Computational Cost Despite having a larger setup time than a generic MIFE
scheme, FFP is still characterized by its efficiency as it solves various complex
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problems by achieving optimal query and addition costs. More precisely, a generic
MIFE scheme would have a setup time of O(n) where n is the total number of
plaintexts to be encrypted, while FFP has a setup time of O(N), where N is the
total number of (xi, fi) pairs. Apart from that, the query cost is O(ℓ), where ℓ is
the number of the resulted ciphertexts. This solution is superior to a naive one in
which the whole dictionary would be scanned and the total complexity would be
O(N). Reducing the running time from O(N), to O(ℓ) is achieved by embedding
the No.Inputs[fi] into the query token. Hence, the CSP is not required to run a
for loop N times (i.e. for the whole dictionary). Apart from that, FFP is also
parallellizable - each query can be reduced to locating ℓ independent hashes in
D. Thus, by distributing the load to p processors, we get a total cost of O(ℓ/p).

Storage Cost Concerning the three indexes, we get that the size of D, which
is also the biggest index, is O(N). The two indices that are stored locally on
the user’s side (i.e. No.Runs[f ] and No.Inputs[f ]) are O(m) each, where m = |F|.
Assuming that F is an extremely rich family of functions such that F = 1000,
and knowing that the average size of an integer is about 4 bytes, and the unique
identifier of each function (i.e. the function description) is approximately 10
bytes, the total size required for the three indexes is: 1×103×(10+4+10+4) =
1× 103 × 28 = 28× 103B = 28KB. Hence, we conclude the user, can easily store
the two indexes even on a smartphone.

8.2 Experimental Results

Our experiments mainly focused on analyzing the FFP’s performance. To do
so, we implemented FFP in Python 3.9.4 using the pandas, hashlib and numpy
libraries. To test the FFP’s overall performance we used function families of
different sizes, where each function had a different number of possible inputs.
Our experiments focused on three main aspects: (1) Indexing, (2) Retrieving
the inputs of a specific function and (3) Updating all the indexes by adding one
new function in the function family. The indexes were implemented as pandas
dataframes that are very common in data analysis. Additionally, as we wanted to
evaluate the performance of FFP under realistic conditions, we decided to run our
experiments on a commodity laptop. All experiments were executed on a Lenovo
T470p with 2.81 GHz Intel Core i7 and 32GB RAM running Windows 10, 64-bit.
The reason for measuring the FFP’s performance on such a machine and not on a
powerful desktop – as is the common practice – was that in a practical scenario,
the most demanding processes (e.g. the creation of the dictionaries) take place
on a user’s machine. Hence, conducting the experiments on a powerful machine
would have resulted in a set of non-realistic measurements. Each experiment was
executed 100 times, and the average time was calculated.
Our Dataset: As already mentioned throughout the paper, FE schemes cur-
rently suffer from the absence of rich function families that could support a
large number of different functions. However, to test the efficiency of our con-
struction under the most demanding cases, we assumed the existence of such
families and took it a step further by including in our experiments hypothetical
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function families supporting up to 10,000 functions. Since FFP can work with
any message-private MIFE scheme, measuring the encryption and decryption
times is not applicable in our case. To this end, in our evaluation, we treat the
function inputs as already encrypted elements of a large finite field.
Indexing: The first part of our experiments consisted of measuring the FFP.Setup
time. During this phase, the data owner creates two local indexes (i.e. No.Inputs
and No.Runs) and a dictionary D that will be outsourced to the CSP. Our
datasets consisted of function families of different sizes, varying from a func-
tion family with 10 functions to function families with up to 10,000 different
functions. All functions had an arbitrary number of inputs between 10 and
15,000. The functions were implemented as {key: value} dictionaries of the
form {function_id: list_of_inputs}.

1. Local Indexes Generating the local indexes was a straightforward pro-
cess executed through exploiting the structure of python dictionaries. Con-
cerning the No.Inputs index, as for each function we had a {function_id:
list_of_inputs} dictionary, we simply had to find the length of each list_of_inputs
value. Moreover, for the No.Runs index, considering this was the setup phase,
we only had to fill it with zeros. Table 2a illustrates the times required to
generate the local indexes, in relation with the size of the function family
(i.e. number of functions).

Table 2: Dataset Sizes and Setup Times
Size of Function Family Time

10 0.0034s
100 0.032s

1,000 0.33s
5,000 1.7993s

10,000 3.66s

(a) Time required for the generation of the
local indexes

Number of Functions Number of Pairs Time
10 49,127 0.02254s

100 499,819 0.1985s
1,000 4,993,007 2.0178
5,000 24,982,443 11.7846

10,000 50,036,227 28.2277

(b) Time required for the generation of the
dictionary D

2. Remote Index (D): Generating D was by far the most demanding process
of as for each {function_id: list_of_inputs} dictionary we had to:
– Retrieve the No.Inputs and No.Runs values corresponding to function_id

and then mask function_id as shown in algorithm 1 to generate mf ,
and

– For each possible input of a function xi create a pair (mf, xi) and add
it into D.

The total number of (mf, xi) pairs, increased dramatically as we increased
the size of the function family. In particular, for a function family consisting
of 10 functions, we ended up with 49,127 pairs and the time to generate D
was measured at 0.02254s. In contrast, for a function family consisting of
10,000 functions, the total number of pairs was 50,036,227 and the required
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time to generate D was 28.227s. Table 2b illustrates the number of pairs and
the required time to generate D for different function families. Additionally,
in figure 1b, we visualize the total time required for the successful completion
of the FFP.Setup.

Query: In this part of the experiments we measured the time needed to com-
plete a query over the dictionary D. In our implementation, the query time was
calculated as the sum of the time required to generate a token, find the corre-
sponding matches at the database and update the indexes. The time required
for the generation of the query token is independent of both the size of the
function family and the size of the dictionary D. On average, the time needed
to generate the query token was measured at 8ms. It needs to be noted that
regarding the retrieval process, the actual process is equivalent to locating rows
in the dataframe. More precisely, finding the inputs for a specific function over a
set of 10 distinct functions and 49,127 rows required 0.0029 sec on average while
retrieving the inputs for a specific function over a set of 10,000 functions and
50,036,227 rows took 2,082s. Figure 1b illustrates our results.
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New Function Addition: In the last part of our experiments we focused on
measuring the time required to add a new function to the function family. This
process required updating both the local indexes and D. As already mentioned,
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all the indexes were implemented as pandas dataframes and all functions were
read as {function_id: list_of_inputs} dictionaries. To this end, to update
all the indexes we had to: (1) Retrieve both the local indexes and D, (2) Build
two dataframes out of the {function_id: list_of_inputs} dictionary, just
like in the Setup phase, and (3) Merge the new dataframes with the existing
ones. To get a better picture of the computational time required for this process,
we ran this experiment for all the different size dictionaries D that we generated
in the Setup phase. Another variable in this experiment was the number of
inputs for the new function. More precisely, we measured the time required
to add a function whose number of inputs varied from 1,000 to 15,000. What
we found was that the total time required to add a new function was almost
independent of the function’s number of inputs, as on average the number of
inputs affected the running time by a total of 0,1ms. Conversely, the running
time was drastically affected by the size of the existing dictionary D, as it varied
from 0.45ms for a dictionary the size of 499,819 to almost 17.5ms for a dictionary
the size of 50,036,227. Figure 1c visualises our results.

9 Limitations and Future Directions

TEE Dependence The first FFP limitation is that currently, we assume the
existence of a fully trusted authority to perform functional decryption. This is
not a novel concept in FE, as similar approaches appear in state-of-the-art litera-
ture [21], where authors rely on Intel SGX for this task. In contrast to [21], where
the TEE decrypts the ciphertexts and then applies the function on the plain-
texts, we feel that our work is more consistent with the traditional definitions
of FE, where the evaluation of the function occurs directly on the ciphertexts.
Nevertheless, we acknowledge that relying on a TEE is not a very elegant so-
lution and to this end, we plan to entirely stop using it in our constructions in
the future. To achieve this, we will explore the following two solutions: (1) The
first solution is rather naive and involves a more active participation of the data
owner. More precisely, after the CSP retrieves all the inputs for the function,
the data owner wishes to run, instead of sending them to SC, it forwards them
back to the data owner. The data owner can then run the decryption algorithm
locally and acquire the wanted results. (2) The second solution is to use a de-
centralized storage network (DSN), such as a blockchain in the place not only of
the TEE but also the CSP. In such a scenario, the ciphertexts will be stored in a
decentralized manner and multiple authorities could work together towards the
retrieval of the inputs and the evaluation of the function, without being aware
of one another.

Number of Users The second FFP limitation revolves around the fact that
even though it works with any MIFE scheme, the main scenario is built around
the single-client setting. Extending it to the multi-client setting, normally re-
quires the existence of a fully trusted central authority responsible for the gen-
eration and distribution of functional decryption keys. However, as we already
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mentioned, our goal is to transform FFP so that the TEE assumption is ulti-
mately eliminated. We believe the way forward is in using a decentralized ap-
proach. This way, the need for a fully trusted entity will be obviated by shifting
the task of generating functional keys to the clients themselves.

10 Conclusion

In this work, we presented a novel threat model for Functional Encryption by
identifying limitations of current state-of-the art approaches. By using this ad-
versarial model, we were able to quantify the leakage during the execution of a
Functional Encryption scheme – a problem that has so far been overlooked in
the current literature. We firmly believe that our results are very important and
pave the way towards designing more secure and robust FE schemes. Moreover,
based on our theoretical formulation, we designed FFP – a framework that yields
a function-private FE scheme, based on any message-private one. We believe our
approach can be seen as a valuable contribution to the the fields of cryptography
and security as we showed how to extend existing techniques, by addressing a
series of limitations and assuming stronger threat models.
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