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Abstract

A distributed point function (DPF) (Gilboa-Ishai, Eurocrypt 2014) is a cryptographic prim-
itive that enables compressed additive secret-sharing of a secret weight-1 vector across two or
more servers. DPFs support a wide range of cryptographic applications, including efficient pri-
vate information retrieval, secure aggregation, and more. Up to now, the study of DPFs was
restricted to the computational security setting, relying on one-way functions. This assumption
is necessary in the case of a dishonest majority.

We present the first statistically private 3-server DPF for domain size N with subpolynomial
key size No(1). We also present a similar perfectly private 4-server DPF. Our constructions offer
benefits over their computationally secure counterparts, beyond the superior security guarantee,
including better computational complexity and better protocols for distributed key generation,
all while having comparable communication complexity for moderate-sized parameters.

1 Introduction

A Distributed Point Function (DPF) [29, 13] enables splitting any secret point function fα,β (i.e.,
for which fα,β(x) = β if x = α, and 0 otherwise) into m succinctly described function shares fi,
that individually hide fα,β, and which support a simple additive per-input reconstruction fα,β(x) =∑

i fi(x) over some fixed Abelian group. More concretely, each function share fi is described by a
key ki such that with an appropriate evaluation algorithm Eval it holds that Eval(ki, x) = fi(x). In
effect, this provides a compressed additive secret-sharing of a secret weight-1 vector across servers.

DPFs have a wide range of cryptographic applications, including Private Information Retrieval
(PIR) [18, 17, 29], anonymous messaging systems [19, 36], secure aggregation and statistical analy-
sis [13, 7], private set intersection [40, 23], secure computation for RAM programs [24, 16] and
programs with mixed-mode operations [14, 8], and recently pseudorandom correlation genera-
tors [9, 10, 11], with applications to secure computation and beyond.

As with many cryptographic notions, the security property of DPFs can be either computational
(based on computational hardness assumptions), or information theoretic. The vast majority of
attention to date has been placed in the two-server regime, where it is known that nontrivial DPFs
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require the existence of one-way functions [29, 12]. In turn, from one-way functions, efficient two-
server DPF constructions have been demonstrated with small key size, which grows logarithmically
with the domain size of fα,β [29, 13].

However, as soon as one steps beyond two servers to an honest majority, the impossibility no
longer holds, and the question of minimizing the key size of information-theoretic DPFs becomes
wide open. Despite its neglect up to now, the regime of information-theoretically secure DPFs offers
potential for application scenarios where information-theoretic security is desired (or required),
as well as appealing potential for simplicity of constructions. Another important motivation for
information-theoretic constructions is the possibility to avoid the limitations of current techniques
for distributed key generation of computationally secure DPF [24].

1.1 Our Contribution

We initiate an investigation of information-theoretically secure DPFs (IT DPFs for short), focusing
on the case of non-colluding servers (i.e., security threshold t = 1). While simple constructions
based on Reed-Muller codes are implicit in the PIR literature [18], these have polynomial key size
of O(N1/(m−1)), where N is the domain size and m is the number of servers. In contrast, the
new generation of PIR schemes [41, 26, 25, 4], which achieve sub-polynomial communication, do
not directly give rise to standard DPFs. Instead, they imply a relaxed form of DPF in which the
output is not shared additively. While this suffices for the PIR application, it does not suffice for
most other applications of DPFs. Even in the PIR context, an additive representation is helpful
for maximizing the download rate [27].

Our primary technical contribution is in bridging this gap. We obtain the first statistically
private 3-server DPF for domain sizeN with subpolynomial key sizeNo(1). We also present a similar
perfectly private 4-server DPF. Our constructions offer benefits over their computationally secure
counterparts, beyond the superior security guarantee, including better computational complexity
and potential for “MPC friendliness” in the sense of efficient distributed key generation, all while
having comparable key size1 for moderate-sized parameters.

We obtain the following main results:

Theorem 1 (4-server perfectly secure IT DPF, informal). Let p ≥ 3 be a prime and s ≥ 1 an
integer. There exists a perfectly secure 4-server DPF, for point functions with output group Zps

and key size O
(
s log(p) · 22p

√
logN log logN

)
.

Theorem 2 (3-server statistically-secure IT DPF, informal). Let p ≥ 2 be a prime. There exists
a 2−λ-statistically secure 3-server DPF, for point functions with output group Zp and key size

O
(
λ log(p) · 2k(p)

√
logN log logN

)
where k(2) = 6, k(3) = 10, and k(p) = 2p if p ≥ 5.

Due to the prime p appearing in the exponent in the key size, Theorem 1 permits only groups of
the form Zps for small prime p (or products of such groups via CRT). The same is true for Theorem 2,
except that there we further have the restriction of s = 1. However, for many applications of DPF

1This assumes that β is taken from a small output group, such as Z2, which suffices for many applications of
DPF. While in this work we focus on asymptotic efficiency and do not attempt to optimize concrete efficiency, our
techniques can be applied to concretely efficient variants of the “matching vector” based PIR schemes on which we
rely (see Table 2 in the full version of [32]). Unlike the Reed-Muller based 3-server PIR, these variants can be practical
even for (sparse, virtual) database of size ≈ 260, which arise in private keyword search applications.
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(including both “reading” and “writing”) an output group of Z2 suffices, in which case Theorem 2
gives an efficient construction. Moreover, in applications of DPF that require a group of a large
characteristic (e.g., for aggregation [7] or weighted private set intersection [23]), Theorem 1 gives
an efficient construction over Z3s for a sufficiently large s.

We further explore advantages of our IT DPF constructions over existing computationally se-
cure constructions, beyond their stronger security guarantees. We explicitly demonstrate one such
benefit: simplicity of distributed key generation. This relates to the procedure of two or more clients
jointly executing the DPF key generation algorithm for an input point function that is secret shared
across servers (i.e., where no client individually knows the secret fα,β). This “Distributed Gen”
procedure is a crucial and costly part of important DPF-based applications. Distributed Gen pro-
tocols in the computational setting currently fall into one of two categories. They use either generic
MPC machinery, which requires non-black box secure computation of cryptographic primitives such
as PRGs, or tailored protocols [24] requiring computation that is proportional to the size of the
input domain and a number of communication rounds that is logarithmic in that size. Moreover,
there is no known approach for distributing the key generation of 2-server DPF in the malicious
security setting that makes black-box use of a PRG, regardless of round complexity.

In contrast, the simpler structure of keys in IT DPFs implies the following:

Theorem 3 (Distributed key generation, informal). There exist protocols for distributed generation
of the keys required in Theorems 1 and 2 that are information-theoretically secure for m ≥ 3
servers with one malicious corruption, or for 2PC in the OT-hybrid model, have computation and
communication cost Õ(h) for required key size h, and O(log h) rounds. Alternatively, settling for
computational security, there are such constant-round protocols that only make a black-box use of
a PRG.

1.2 Overview of Techniques

Our information-theoretic (IT) DPF constructions are based on a related primitive, IT private
information retrieval (PIR) [18]. A PIR scheme allows a client to retrieve a single bit from a
database D of N bits, by communicating with m ≥ 2 servers, such that no server learns the client’s
bit index. Multi-server PIR served as an original driving motivation behind the introduction of
DPFs, as an m-server DPF directly yields an m-server PIR protocol. In this work, however, we
study this connection in the other direction: building DPF from PIR.

Assuming the m-server IT PIR scheme satisfies that each server responds with a single bit to
the client query, and that the client’s reconstruction is additive, then in fact we obtain an IT DPF
for the point function fα,1, by having the client query for index α, and the servers considering the
database Dx which has the value 1 at index x, and 0 at all other indices. As we will see, some
existing classes of IT PIR schemes fit into this framework, and thus yield IT DPF with similar
communication. However, other categories of IT PIR constructions will require more work.

Known IT PIR schemes can be roughly classified into three generations. The first-generation
schemes, originating in the work of [18], are based on Reed-Muller codes, and achieve communication
complexity N1/Θ(m). As it turns out, for m ≥ 3 these schemes imply IT DPF schemes with similar
communication complexity. Hence, these constructions serve as our baseline.

Theorem 4 (Reed-Muller IT DPF - Informal, implicit in [18, 3]). Let p ≥ 2 be a prime and m ≥ 2
an integer. There exists a perfectly secure m-server DPF, for point functions with output group Zp

and key size Om(log(p) ·N1/(m−1)).
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Note that the above theorem is stated for prime sized cyclic groups, as the usual Reed-Muller
code based constructions are based on extension fields. However, using the CNF secret sharing
scheme (as in [3]) over a finite ring, it is possible to extend the above result to any prime power
sized cyclic groups, and hence to any Abelian group, albeit at the cost of exponential dependence
on m. Alternatively, one can avoid the exponential blowup by using techniques from the literature
on secure multiparty computation over rings (see, e.g., [21, 20]).

In the second-generation PIR scheme of [5] the exponent of N vanishes super-linearly with m
(but is still a constant for any fixed m), and corresponding IT DPF constructions can be derived
as well.

Finally, third-generation PIR schemes [41, 26, 25, 4] achieve No(1) communication complexity
with as low as 3 servers, or even 2 servers if we allow the servers to respond with No(1)-bit messages.
These schemes are based on a nontrivial combinatorial object called amatching vectors (MV) family,
based on the work of [31]. In addition to their superior asymptotic communication complexity, as
was discussed in [4, 32], for moderate size parameters, these schemes can achieve superior concrete
complexity as well, by employing an MV family based on the work of Frankl [28].

Unfortunately, unlike the first and second generation PIR schemes, MV-based PIR schemes do
not readily imply a DPF. Indeed, for some specific output ring R, the schemes imply a form of
“quasi-additive” DPF, where β can either be chosen to be zero or some invertible element ζ of R
(which depends on the choice of α and the randomness of the key generation). Note that given such
a quasi-additive DPF form servers, it can be converted to a true DPF with 2m servers by replicating
each quasi-additive DPF share among two servers, as well as secret sharing ζ = ζ1+ζ2 among them.
Indeed, this principle can also be applied to balanced PIR schemes, where the output message of
each server is a vector instead of a single element. By applying this to the 2-server “quasi-additive”
DPF implicit in the 2-server PIR work of Dvir and Gopi [25] we obtain Theorem 1.

The above discussion leaves open the question of obtaining a 3-server IT DPF with commu-
nication complexity No(1). We are able to construct such a DPF with statistical security. One
subtle difficulty is that even though the nonzero payload β generated by the quasi-additive DPF
depends on the randomness of the key generation, this entropy is eliminated when we condition on
the view of a server. Our strategy is to repeat the quasi-additive DPF σ times, for point functions
fα,β1 , . . . , fα,βσ , such that with probability 1/2 we take βi = 0 and take a nonzero βi otherwise.
This ensures that even when fixing α and conditioning on the view of a single server, the payload
β has some entropy. Then, we provide each server with its respective σ keys. In addition, denoting
by B the vector of payloads, such that each coordinate i takes the value βi, we provide the servers
with a random vector r satisfying ⟨r,B⟩ = β for the desired output value β.

By the perfect security of the PIR, the σ keys alone do not reveal any information. However,
since r is correlated with them and with β, some information on the relation between α and β is
revealed. To argue that the amount of information is a negligible function of σ, we first invoke
the leftover hash lemma to argue that for a uniformly random r′, the distribution of (r′, ⟨r′, B⟩) is
statistically close to uniform. We then argue that if we condition this joint distribution on different
values of ⟨r′, B⟩, the distribution of r′ cannot change much. By applying this principle to the PIR
scheme of [4], we obtain Theorem 2.
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2 Preliminaries

Notation. For N ∈ N we let [N ] = {1, . . . , N}. We denote the inner product of two vectors u
and v of the same length by ⟨u, v⟩ =

∑
i uivi.

Probability. For two distributions D1, D2 we denote by d(D1, D2) =
1
2

∑
ω |PrD1 [ω] − PrD2 [ω]|

their total variation distance. We denote by Uℓ uniformly distributed random strings of length ℓ.

Groups. We represent an Abelian group G of the form G = Zq1 × · · · × Zqℓ , for prime powers
q1, . . . , qℓ by Ĝ = (q1, . . . , qℓ) and represent a group element of G by a sequence of ℓ non-negative
integers.

Point functions. Given a domain size N and Abelian group G, a point function fα,β : [N ]→ G
for α ∈ [N ] and β ∈ G evaluates to β on input α and to 0 ∈ G on all other inputs. We denote by
f̂α,β = (N, Ĝ, α, β) the representation of such a point function.

2.1 Distributed Point Functions

We begin with a formal definition of the cryptographic primitive of distributed point functions
(DPFs).

Definition 1 (DPF [29, 13]). A (1-private) m-server distributed point function, or m-DPF for
short, is a tuple of algorithms Π = (Gen,Eval0, . . . ,Evalm−1) with the following syntax:

• Gen(1λ, f̂α,β) → (k0, . . . , km−1): On input security parameter λ ∈ N and point function de-

scription f̂α,β = (N, Ĝ, α, β), the (randomized) key generation algorithm Gen returns an m-
tuple of keys k0, . . . , km−1 ∈ {0, 1}∗. We assume that N and G are determined by each key.

• Evali(ki, x)→ yi: On input key ki ∈ {0, 1}∗ and input x ∈ [N ] the (deterministic) evaluation
algorithm of server i, Evali, returns a group element yi ∈ G.

We require Π to satisfy the following requirements:

• Correctness: For every λ, f̂α,β = (N, Ĝ, α, β) and x ∈ [N ], if (k0, . . . , km−1)← Gen(1λ, f̂α,β),

then Pr
[∑m−1

i=0 Evali(ki, x) = fα,β(x)
]
= 1.

• Security: Consider the following semantic security challenge experiment for a corrupted
server T ∈ {0, . . . ,m− 1}:

1. The adversary gives challenge point function descriptions (f̂1 = (N1, Ĝ1, α1, β1), f̂
2 =

(N2, Ĝ2, α2, β2))← A(1λ) with N1 = N2 and Ĝ1 = Ĝ2.

2. The challenger samples b
$← {0, 1} and (k0, . . . , km−1)← Gen(1λ, f̂ b).

3. The adversary outputs a guess b′ ← A(kT ).

Denote by Adv(1λ,A, T ) := Pr[b = b′] − 1/2 the advantage of A in guessing b in the above
experiment. For circuit size bound S = S(λ) and advantage bound ϵ(λ), we say that Π is (S, ϵ)-
secure if for all T , and all non-uniform adversaries A of size S(λ), we have Adv(1λ,A, T ) ≤
ϵ(λ). We say that Π is:
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– Computationally ϵ-secure if it is (S, ϵ)-secure for all polynomials S.

– Computationally secure if it is (S, 1/S)-secure for all polynomials S.

– Statistically ϵ-secure if it is (S, ϵ)-secure for all S. When ϵ is omitted it is understood to
be negligible in λ.

– Perfectly secure if it is statistically 0-secure.

3 Constructions

In this section we give two main constructions of information-theoretic DPF. The first is perfectly
secure but requires 4 servers. The second requires just 3 servers but only offers statistical security.

3.1 4-server MV-based DPF

Our first result is the following, based on 2-server “quasi-additive” DPF, implicit in [25]. In that
quasi-additive DPF the response of each server is a vector, such that the result is constructed by
taking an inner product of the sum of the servers’ vectors with a reconstruction vector that is a
function of the point α and therefore must not be part of the DPF key. However, the reconstruction
vector can be readily secret-shared between two keys. Using four servers such that each pair of
servers receives one of the original keys of the two-server DPF of [25] and secret shares of the
reconstruction vector, results in a scheme in which each server returns a single element.

Theorem 5. Let p ≥ 3 be a prime and s ≥ 1 an integer. There exists a perfectly secure 4-DPF, for

point functions with output group Zps, domain size N , and key size |ki| = O
(
s log(p) · 22p

√
logN log logN

)
,

i ∈ {0, 1, 2, 3}.

We prove the theorem in several steps. The following theorem is a generalization of the con-
struction implicit in [25] to the case of matching vector families over moduli m = 2ps, for a prime
p ≥ 3 and an integer s. Here, Share is a randomized algorithm that shares an input α ∈ [N ] between
two servers, fi are share conversion algorithms employed by the servers that maps the shares of α
to shares of fα,ζ(x), for some nonzero ζ, and Rec is an algorithm that allows, given α, to recover
fα,ζ(x).

Theorem 6 (Dvir Gopi share conversion [25], generalized). Let p ≥ 3 be a prime, s ≥ 1 an
integer, and denote q = 2ps. For every integer N ≥ 1 there exist a randomized mapping Share :

[N ]→ Zh
q ×Zh

q , h = O
(
log(q) · 22p

√
logN log logN

)
, and deterministic mappings fi : Zh

q × [N ]→ Zh
ps,

i = 0, 1, and Rec : [N ]→ Zh
ps, such that

• For every α, x ∈ [N ],

Pr

[
(c0, c1)← Share(α) :

〈
Rec(α),

1∑
i=0

fi(ci, x)

〉{
∈ {2,−2}, x = α

= 0, x ̸= α

]
= 1.

• For every α, α′ ∈ [N ] and i ∈ {0, 1},

[(c0, c1)← Share(α);Output ci] ≡
[
(c0, c1)← Share(α′);Output ci

]
6



Notation: Let Share, fi,Rec be as in Theorem 6.

Gen(f̂α,β = (N, Ĝ = Ẑps , α, β)):

• Compute (c0, c1)← Share(α).

• Compute r =
[〈

Rec(α),
∑1

i=0 fi(ci, α)
〉]−1

Rec(α)β, and share it additively r = r0 + r1.

• Output k0 = (c0, r0), k1 = (c0, r1), k2 = (c1, r0), k3 = (c1, r1).

Evali(ki = (cj1 , rj2), x):

• Compute and output ⟨rj2 , fj1(cj1 , x)⟩.

Figure 1: 4-server MV-based DPF.

• Share, fi,Rec are computable in time polynomial in their input and output size.

We will first need the following result from [31].

Theorem 7 (Matching Vectors [31]). For every integers N, s and prime p, there is a collection

of vectors (ui, vi)i∈[N ] in Zh
q for h = O

(
log(q)22p

√
logN log logN

)
(called matching vectors), where

q = 2ps, such that

• For every i ∈ [N ], ⟨ui, vi⟩ = 0.

• For every i ̸= j, ⟨ui, vj⟩ ∈ {1, ps, ps + 1}.

We are now ready to prove Theorem 6.

Proof of Theorem 6. Let h and (ui, vi) be as in Theorem 7. Share(α) draws a random vector w
$← Zh

q

and outputs (w,w + uα). fi(w
′, x) outputs

((−1)⟨w′,vx⟩, (−1)⟨w′,vx⟩vx) mod ps.

Rec(α) outputs (1,−uα) mod ps. Efficiency and security are obvious. Correctness follows because
the expression〈

(1,−uα), ((−1)⟨w,vx⟩, (−1)⟨w,vx⟩vx) + ((−1)⟨w+uα,vx⟩, (−1)⟨w+uα,vx⟩vx)
〉

mod ps

equals (−1)⟨w,vx⟩ · (1− ⟨uα, vx⟩) ·
(
1 + (−1)⟨uα,vx⟩

)
mod ps which is in {−2, 2} if x = α and equals

0 if x ̸= α, because then ⟨uα, vx⟩ ∈ {1, ps, ps + 1}.

Using the above result, we can construct a 4-server IT DPF. Below is a construction for the
output group Zps . An extension to general finite Abelian group G can be done by the Chinese
Remainder Theorem, which will incur a multiplicative factor of log |Zq| = log q in privacy loss,
computational cost, and key length. However, some groups might have large key size, due to p
appearing as an exponent in the key size in Theorem 5.
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Proof of Theorem 5. The construction is given in Figure 1.
Security and efficiency are obvious. Correctness follows because

1∑
j1=0

1∑
j2=0

⟨rj2 , fj1(cj1 , x)⟩ =

〈
1∑

j2=0

rj2 ,
1∑

j1=0

fj1(cj1 , x)

〉

=

〈[〈
Rec(α),

1∑
i=0

fi(ci, α)

〉]−1

Rec(α)β,
1∑

j1=0

fj1(cj1 , x)

〉

= β

[〈
Rec(α),

1∑
i=0

fi(ci, α)

〉]−1〈
Rec(α),

1∑
i=0

fi(ci, x)

〉
,

which is either β or 0 depending on whether x = α or x ̸= α, respectively.

3.2 3-server statistically-secure MV-based DPF

To construct a 3-server statistically-secure DPF, we need the following result from [4].

Theorem 8 ([4, Theorem 3.5]). For every domain size N ≥ 1 there exist a randomized mapping

Share : [N ] → Zh
6 × Zh

6 × Zh
6 , h = O

(
26

√
logN log logN

)
, and deterministic mappings fi : Zh

6 × Zh
6 ×

[N ]→ Z2
2, i = 0, 1, 2, such that

1. For every α, x ∈ [N ],

Pr

[
(c0, c1, c2)← Share(α) :

2∑
i=0

fi(ci, c(i+1)mod 3, x)

{̸
= 0, x = α

= 0, x ̸= α

]
= 1.

2. For every α, α′ ∈ [N ] and i, j ∈ {0, 1, 2},

[(c0, c1, c2)← Share(α);Output (ci, cj)] ≡
[
(c0, c1, c2)← Share(α′);Output (ci, cj)

]
3. Share, fi are computable in time polynomial in their input and output size.

Below is the our main theorem for this section. Using the results of [38, 37], we also show how
to extend this theorem to bigger payloads.

Theorem 9. Fix an integer λ > 0. The construction in Figure 2 is a statistically
(
41 · 2

2−λ
2

)
-

secure 3-DPF, for point functions with output group G = Z2
2, domain size N , and key size |ki| =

O
(
λ · 26

√
logN log logN

)
, i ∈ {0, 1, 2}.

Next, we will need an additional result.

Definition 2. Let X be a random variable. Then the min-entropy of X is

H∞(X) = min
x

log
1

Pr[X = x]
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Notation: Let Share, fi be as in Theorem 8 with domain size N + 1.

Gen(1λ, f̂α,β = (N, Ĝ = Ẑ2
2, α, β)):

• For ℓ = 1, . . . , λ draw α∗
ℓ

$← {α,N + 1} and compute (cℓ0, c
ℓ
1, c

ℓ
2)← Share(α∗

ℓ ).

• For ℓ = 1, . . . , λ set

yℓ =

{
f0(c

ℓ
0, c

ℓ
1, α) + f1(c

ℓ
1, c

ℓ
2, α) + f2(c

ℓ
2, c

ℓ
0, α), α∗

ℓ = α

0, α∗
ℓ = N + 1

Denote by y ∈ Fλ
4 the vector of all yℓ values concatenated, where we naturally associate elements

of Z2
2 with these of F4.

• Choose r ∈ Fλ
4 at random under the constraint that ⟨r, y⟩ = β.

• Output k0 = ((cℓ0, c
ℓ
1)

λ
ℓ=1, r), k1 = ((cℓ1, c

ℓ
2)

λ
ℓ=1, r), k2 = ((cℓ2, c

ℓ
0)

λ
ℓ=1, r).

Evali(ki = ((cℓi , c
ℓ
(i+1)mod 3)

λ
ℓ=1, r), x):

• For ℓ = 1, . . . , λ set
yℓi := f(cℓi , c

ℓ
(i+1)mod 3, x),

and denote by yi ∈ Fλ
4 the vector of all yℓi values concatenated.

• Compute and output ⟨r, yi⟩.

Figure 2: 3-server statistically secure MV-based DPF.
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Lemma 1 (Leftover Hash Lemma). Let F be a finite field. If X is a random variable over Fn with

H∞(X) ≥ R and Y
$← Fn is drawn independently, then it holds that d

(
(Y, ⟨Y,X⟩), U(n+1) log |F|

)
≤

2
log |F|−R

2 .

Proof of Theorem 9.
Efficiency: Follows by construction and Theorem 8.

Correctness: In fact, the Gen algorithm may not be defined if y = 0, as there might not be r such
that ⟨r, y⟩ = β. In that case we can just let Gen reveal α and β for a negligible privacy loss. When
this does not happen, we need to show that

∑3
i=1 Evali(ki, x) = ⟨r,

∑3
i=1 yi⟩ = fα,β(x). Indeed,

when x ̸= α we have that
∑3

i=1 yi = 0 because every (cℓ0, c
ℓ
1, c

ℓ
2) was produced by computing

either Share(α) or Share(N + 1). When x = α we have that
∑3

i=1 y
ℓ
i = yℓ, which implies that

⟨r,
∑3

i=1 yi⟩ = ⟨r, y⟩ = β.

Security: Denote by Dα,β the distribution of k0 as outputted by Gen on input λ and f̂α,β. We will
show that for α1 ̸= α2 and β1, β2 the distributions D1 = Dα1,β1 and D2 = Dα2,β2 have statistical
distance negligible in λ. The claim for k1 and k2 follows without loss of generality. It holds by part
2 of Theorem 8 that

d(D1, D2) =
1

2

∑
c′

∑
r′

∣∣∣∣PrD1

[k0 = c′, r = r′]− Pr
D2

[k0 = c′, r = r′]

∣∣∣∣
=

1

2

∑
c′

Pr
D1

[k0 = c′]
∑
r′

∣∣∣∣PrD1

[r = r′|k0 = c′]− Pr
D2

[r = r′|k0 = c′]

∣∣∣∣
≤ 1

2
max
c′

∑
r′

∣∣∣∣PrD1

[r = r′|k0 = c′]− Pr
D2

[r = r′|k0 = c′]

∣∣∣∣
≤ max

c′
d(D1|k0=c′ , D2|k0=c′).

Therefore, it is sufficient to upper bound the distance between the distributions D1 and D2 condi-
tioned on k0 = c′.

Let y be the vector depending on c′ in the distribution Di conditioned on k0 = c′, which is a
distribution over the set {(c′, r′) : r′ ∈ Fλ

4}. Then, by part 1 of Theorem 8, in this distribution,
every yℓ attains two possible values with equal probability, either some nonzero value (depending
on c′ and α) if α∗

ℓ = α or zero if α∗
ℓ = N + 1. Therefore, H∞(y) = λ. By applying Lemma 1

we deduce that when r̂
$← Fλ

4 , the joint distribution (r̂, ⟨r̂, y⟩) is ϵ := 2
2−λ
2 -close to U2(λ+1). In

particular,
∣∣Pr[⟨r̂, y⟩ = βi]− 1

4

∣∣ ≤ ϵ.
Conditioned on k0 = c′, the distribution of r is exactly r̂|⟨r̂,y⟩=βi

. Hence, for a value w :=

10



Pr[⟨r̂, y⟩ = βi]− 1
4 , −ϵ ≤ w ≤ ϵ, we arrive at

d(r̂|⟨r̂,y⟩=βi
, U2λ) = sup

E⊆{(r′,βi):r′∈Fλ
4}

∣∣∣∣∣Pr[(r̂, ⟨r̂, y⟩) ∈ E]
1
4 + w

− |E|
4λ

∣∣∣∣∣
≤ 4 sup

E⊆Fλ+1
4

∣∣∣∣Pr[(r̂, ⟨r̂, y⟩) ∈ E]

1 + 4w
− |E|

4λ+1

∣∣∣∣
≤ 4 sup

E⊆Fλ+1
4

∣∣∣∣Pr[(r̂, ⟨r̂, y⟩) ∈ E]− |E|
4λ+1

∣∣∣∣+ 16|w|+O(|w|2)

= 4d((r̂, ⟨r̂, y⟩), U2(λ+1)) + 16ϵ+O(ϵ2)

= 20ϵ+O(ϵ2),

which concludes the proof, because if d(r̂|⟨r̂,y⟩=βi
, U2λ) ≤ 20ϵ+O(ϵ2) in both distributions, then also

d(D1|k0=c′ , D2|k0=c′) ≤ 40ϵ+O(ϵ2) ≤ 41ϵ by the triangle inequality, and by choosing λ ≥ 10.

The construction from Theorem 9 can be generalized to any prime characteristic, due to the
results of [38, 37], from which we get the following.

Theorem 10 ([38, 37]). Let p and p1 < p2 be primes such that either

• p1, p2 ̸= 2 and p ∈ {p1, p2};

• 2 ∈ {p1, p2} and p = 2.

Then, for q = p1p2, there exists a randomized mapping Share : [N ] → Zh
q × Zh

q × Zh
q , h =

O
(
log(q)22p2

√
logN log logN

)
, and deterministic mappings fi : Zh

2p2
× Zh

q × [N ] → Zℓ
p, i = 0, 1, 2,

for some constant ℓ = O(q2), such that

1. For every α, x ∈ [N ],

Pr

[
(c0, c1, c2)← Share(α) :

2∑
i=0

fi(ci, c(i+1)mod 3, x)

{̸
= 0, x = α

= 0, x ̸= α

]
= 1.

2. For every α, α′ ∈ [N ] and i, j ∈ {0, 1, 2}, the distributions of (ci, cj), produced by either
(c0, c1, c2)← Share(α) or (c0, c1, c2)← Share(α′), are identical.

3. Share, f are computable in time polynomial in their input and output length.

Utilizing Theorem 10 in a similar fashion to how Theorem 8 is used in the proof of Theorem
9, we deduce the following. Note that we require the group size p to be rather small, due to p2
appearing in the exponent in the expression for h.

Theorem 11. Fix an integer λ > 0. There exists a statistically 2−Ω(λ)-secure 3-DPF, for point
functions with output group G = Zp, where p is a prime, domain size N , and key size |ki| =
O
(
λ log(p) · 2k(p)

√
logN log logN

)
, i ∈ {0, 1, 2}, where k(2) = 6, k(3) = 10, and k(p) = 2p if p ≥ 5.

In fact, by using the Chinese Remainder Theorem, it is possible to support an output group Zm

with modulus m which is at most polynomial in the key size (compare to the exponential modulus
attainable in Theorem 5). Indeed, this is due to the bound on the ℓ’th prime as pℓ = Θ(ℓ(log ℓ +
log log ℓ)) and by picking the modulus to be the primorial function m =

∏ℓ
i=1 pi = e(1+o(1))ℓ log ℓ.
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4 Distributed Key Generation

In the standard model for DPF, a client accepts a point (α, β) as input and generates appropriate
DPF keys. However, in certain applications of DPF, such as distributed computation of RAM
programs or MPC with preprocessing for mixed-mode computations, one needs to accommodate
an input (α, β) that is secret-shared among parties that jointly act as client to generate DPF keys,
which can then be either locally evaluated or provided to external servers.

We discuss two different settings for distributed key generation: either two clients sharing an
input and then jointly generating keys for m ≥ 3 servers, or all m parties together secret-sharing
the input with threshold t = 1 and then generating the keys. In either setting it is natural to
consider both semi-honest and malicious adversaries.

The point α can be shared in the input in different ways, e.g. secret-sharing each bit separately,
or sharing α as an integer value modulo a N ′ ≥ N for domain size N . Generic MPC protocols
can be used to switch between these representations with security against malicious adversaries
and in time and communication that is linear in the size of the input (for a constant number of
parties). Since the input size is negligible in the key length and in the overall communication and
computation for distributed key generation we ignore this cost in the rest of the section.

DPF schemes that are based on a family of Matching Vectors such as the schemes in Figures 1,
2 or the scheme in [4] that is based on Frankl’s MV family [28] have Gen algorithms that use the
following template. Associate the points in the input domain with subsets of a given size w out
of a universe of k items. Each point x in the input domain is therefore associated with a binary
vector dx of length k and Hamming weight w, and it must hold that

(
k
w

)
≥ N . This vector is then

mapped to a vector dx 7→ vx by evaluating all monomials of degree 3
√
w or less on the k entries of

dx, yielding a vector of length h =
(

k
≤3

√
w

)
. The vector vx determines a second binary vector ux in

which each coordinate is a product of a fixed subset of the coordinates of vx. On input point α the
Gen algorithm returns as output a 1-private linear secret sharing of uα. By adapting the discussion
in Appendix C of [2] we have that:

Proposition 1. Let fα,β : [N ]→ Z2 be a point function and let Share and h = O
(
26

√
logN log logN

)
be as in Theorem 8. Choose w to be the smallest integer such that

(
w2

w

)
≥ N , and set k = w2.

Then, there exists a Boolean circuit that computes Share with O(
(

w2

3
√
w

)
· 3
√
w · w2) = Õ(h) gates

and depth O(log h).

A circuit to compute the mapping Share can be readily transformed into a circuit that computes
Gen for the IT-DPF schemes that we presented. In the 3-server quasi-additive DPF from [4], Gen
is identical to Share. In the 3-server statistically secure DPF scheme from Section 3.2, Share is
repeated λ times for a statistical security parameter λ and each key is of twice the size of the key
from [4] due to CNF sharing of each coordinate in the vector. Therefore, the circuit for Gen is 2λ
times the size of the circuit for Share. Finally, in the 4-server scheme of Section 3.1 the circuit size
is identical to the circuit size of the 3-server quasi-additive DPF from [4].

The next theorem describes the asymptotic features of using general MPC protocols to securely
and distributively generate the keys in the presence of an adversary that corrupts at most one of
the parties.

Theorem 12. Let fα,β : [N ]→ Z2 be a point function and h = O
(
26

√
logN log logN

)
. If α and β are

secret-shared between m ≥ 2 parties, for constant m, and the adversary controls at most one party

12



then there exist protocols for distributed key generation for the protocols in Figure 1 and Figure 2
that have the following features:

• If m ≥ 3 then the protocol has information-theoretic security against a malicious adversary
using only secure point-to-point channels.

• If m = 2 then the protocol has information-theoretic security against a malicious adversary
in the OT-hybrid model.

• The communication and computation costs of the protocol are Õ(h).

• The round complexity is O(log h); alternatively, the protocols can have constant round com-
plexity if we settle for computational security, while making only a black-box use of a pseu-
dorandom generator.

Proof. General MPC protocols for m ≥ 3 parties communicating only by point-to-point channels
that are information-theoretically secure against a semi-honest adversary that controls at most one
party have first been proposed by [6]. Protocols in the same setting that are secure against a
malicious adversary were given in [39]. Two-party protocols in the OT-hybrid model, i.e. that are
information-theoretically secure in the OT-hybrid model were given in [30, 34, 33].

All of the above protocols have communication and computation cost Õ(|C|) if the computed
function can be realized by a circuit C with |C| gates and their round complexity scales linearly with
the circuit depth. Combining these results with the result of Proposition 1 on the size and depth of
the circuit to compute key generation gives the information-theoretic variant of the protocol. For
the computational case, we can use constant-round protocols based on garbled circuits that make
a black-box use of a PRG [1, 22, 35].

5 Open Questions

We leave open the question of extending our results to general output groups. In particular:

1. Is there a perfectly secure 3-server DPF with key size No(1)?

2. Can our results be extended to general Abelian output groups? For the case of Zp with an
s-bit prime p, we do not know how to construct a DPF with key size poly(s) ·No(1), even if
we allow an arbitrary constant number of servers and settle for statistical security.

We briefly explain the relevant barriers. For the first question, it is not clear how to construct a
share conversion that improves upon the one in Theorem 8 by satisfying

∑2
i=0 f(ci, c(i+1)mod 3, x) =

1 whenever x = α, instead of just being nonzero. For the second question, the obstacle to obtaining
a DPF over Zp for a large prime p is that this necessitates the underlying share conversion to
operate over characteristic p. For existing share conversion schemes, this requires matching vectors
whose length grows super-polynomially with the bit-length of p.
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