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Abstract. In Private Set Intersection protocols (PSIs), a non-empty result always reveals something
about the private input sets of the parties. Moreover, in various variants of PSI, not all parties necessarily
receive or are interested in the result. Nevertheless, to date, the literature has assumed that those parties
who do not receive or are not interested in the result still contribute their private input sets to the PSI
for free, although doing so would cost them their privacy. In this work, for the first time, we propose
a multi-party PSI, called “Anesidora”, that rewards parties who contribute their private input sets to
the protocol. Anesidora is efficient; it mainly relies on symmetric key primitives and its computation
and communication complexities are linear with the number of parties and set cardinality. It remains
secure even if the majority of parties are corrupted by active colluding adversaries.

1 Introduction

Secure Multi-Party Computation (MPC) allows multiple mutually distrustful parties to jointly compute
a certain functionality on their private inputs without revealing anything beyond the result. Private Set
Intersection (PSI) is a subclass of MPC that aims to efficiently achieve the same security property as MPC
does. PSI has numerous applications. For instance, it has been used in Vertical Federated Learning (VFL)
[35], COVID-19 contact tracing schemes [20], remote diagnostics [11], and finding leaked credentials [43].

There exist two facts about PSIs: (i) a non-empty result always reveals something about the parties’
private input sets (i.e., the set elements that are in the intersection), and (ii) various variants of PSIs do not
output the result to all parties, even in those PSIs that do, not all of the parties are necessarily interested
in it. Given these facts, one may ask a natural question:

How can we incentivise the parties that do not receive the result or
are not interested in it to participate in a PSI?

To date, the literature has not answered the above question. The literature has assumed that all parties
will participate in a PSI for free and bear the privacy cost (in addition to computation and computation
overheads imposed by the PSI). In this work, we answer the above question for the first time. We present a
multi-party PSI, called “Anesidora”, that allows a buyer who initiates the PSI computation (and is interested
in the result) to pay other parties proportionate to the number of elements it learns about other parties’
private inputs.! Anesidora is efficient and mainly relies on symmetric key primitives. Its computation and
communication complexities are linear with the number of parties and set cardinality. Anesidora remains
secure even if the majority of parties are corrupt by active adversaries which may collude with each other.

We develop Anesidora in a modular fashion. Specifically, we propose the formal notion of “PSI with
Fair Compensation” (PSZ”) and devise the first construction, called “Justitia”, that realises the notion.?
PSI”C ensures that either all parties get the result or if the protocol aborts in an unfair manner (where only
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dishonest parties learn the result), then honest parties will receive financial compensation, i.e., adversaries are
penalised. Next, we enhance PSZ”° to the notion of “PSI with Fair Compensation and Reward” (PSZ”°%)
and develop Anesidora that realises PSZ7“®. The latter notion ensures that honest parties (a) are rewarded
regardless of whether all parties are honest, or a set of them aborts in an unfair manner and (b) are
compensated in the case of an unfair abort. We formally prove the two PSIs using the simulation-based
model. To devise efficient PSIs, we have developed a primitive, called “unforgeable polynomial” that might
be of independent interest.

A PSI, like Anesidora, that supports more than two parties and rewards set contributors can create
opportunities for much richer analytics and incentivise parties to participate. It can be used (1) by an
advertiser who wants to conduct advertisements targeted at certain customers by first finding their common
shopping patterns distributed across different e-commerce companies’ databases [27], (2) by a malware
detection service that allows a party to send a query to a collection of malware databases held by independent
antivirus companies to find out whether all of them consider a certain application as malware [42], or (3) by
a bank, like “WeBank”, that uses VFL and PSI to gather information about certain customers from various
partners (e.g., national electronic invoice and other financial institutions) to improve its risk management of
loans [13]. In all these cases, the set contributors will be rewarded by such a PSI.

We hope that our work initiates future research on developing reward mechanisms for participants of
generic MPC, as well. Such reward mechanisms have the potential to increase MPC’s real-world adoption.

Our Contributions Summary. In this work, we: (1) devise Anesidora, the first PSI that lets participants
receive a reward for contributing their set elements to the intersection, (2) develop Justitia, the first PSI
that lets either all parties receive the result or if the protocol aborts in an unfair manner, honest parties
receive compensation, and (3) propose formal definitions of the above constructions.

2 Related Work

Since their introduction in [21], various PSIs have been designed. PSIs can be divided into traditional and
delegated ones.

In traditional PSls, data owners interactively compute the result using their local data. Very recently,
Raghuraman and Rindal [41] proposed two two-party PSIs, one secure against semi-honest/passive and the
other against malicious/active adversaries. To date, these two protocols are the fastest two-party PSIs. They
mainly rely on Oblivious Key-Value Stores (OKVS) data structure and Vector Oblivious Linear Evaluation
(VOLE). The protocols’ computation cost is O(c), where c is a set’s cardinality. They also impose O(clog ¢+
k) and O(c - k) communication costs in the semi-honest and malicious security models respectively, where !
is a set element’s bit-size, and & is a security parameter. Also, researchers designed PSIs that allow multiple
(i.e., more than two) parties to efficiently compute the intersection. The multi-party PSIs in [26,34] are
secure against passive adversaries while those in [7,23,45,34,38] were designed to remain secure against
active ones. However, Abadi et al. [3] showed that the PSIs in [23] are susceptible to several attacks. To date,
the protocols in [34] and [38] are the most efficient multi-party PSIs designed to be secure against passive
and active adversaries respectively. These protocols are secure even if the majority of parties are corrupt.
The former relies on inexpensive symmetric key primitives such as Programmable Pseudorandom Function
(OPPRF) and Cuckoo Hashing, while the latter mainly uses OPPRF and OKVS.

The overall computation and communication complexities of the PSI in [34] are O(c - m* + ¢ - m) and
O(c - m?) respectively, as each client needs to interact with the rest (in the “Conditional Zero-Sharing”
phase), where m is the number of clients. Later, to achieve efficiency, Chandran et al. [12] proposed a multi-
party PSI that remains secure only if the minority of the parties is corrupt by a semi-honest adversary;
thus, it offers a weaker security guarantee than the one in [34] does. The PSI in [38] has a parameter ¢ that
determines how many parties can collude with each other and must be set before the protocol’s execution,
where ¢ € {2, m}. The protocol divides the parties into three groups, clients: A,,..A, _,_,, leader: A, _,,
and servers: A,,_,,,..A,,. Each client needs to send a set of messages to every server and the leader which



jointly compute the final result. Hence, this protocol’s overall computation and communication complexities
are O(c-k(m+t* —t(m+1))) and O(c- m - k) respectively.

Dong et al. proposed a “fair” two-party PSIs [17] that ensure either both parties receive the result or
neither does, even if a malicious party aborts prematurely during the protocol’s execution. The protocol relies
on homomorphic encryption, zero-knowledge proofs, and polynomial representation of sets. The protocol’s
computation and communication complexities are O(c?) and O(c) respectively. Since then, various fair two-
party PSIs have been proposed, e.g., in [14,16,15]. To date, the fair PSI in [15] is the most efficient one.
It mainly relies on a combination of ElGamal encryption, verifiable encryption, and zero-knowledge proofs,
which often impose a significant overhead. The protocol’s computation and communication cost is O(c). So
far, there exists no fair multi-party PSI in the literature. Our Justitia is the first fair multi-party PSI.

Delegated PSIs use cloud computing for computation and/or storage, while preserving the privacy of the
computation inputs and outputs from the cloud. They can be divided further into protocols that support
one-off and repeated delegation of PSI computation. The former like [28,30,46] cannot reuse their outsourced
encrypted data and require clients to re-encode their data locally for each computation. The most efficient
such protocol is [28], which has been designed for the two-party setting and its computation and commu-
nication complexity is O(c). In contrast, those protocols that support repeated PSI delegation let clients
outsource the storage of their encrypted data to the cloud only once, and then execute an unlimited number
of computations on the outsourced data. To date, the protocol in [1] is the most efficient PSI that supports re-
peated delegation in the semi-honest model. It relies on the polynomial representation of sets, pseudorandom
function, and hash table. Its overall communication and computation complexities are O(h-d?) and O(h - d)
respectively, where h is the total number of bins in the hash table, d is a bin’s capacity (often d = 100),
and h -d is linear with c. Recently, a multi-party PSI that supports repeated delegation and efficient updates
has been proposed in [2]. It allows a party to efficiently update its outsourced set securely. It is also in the
semi-honest model and uses a pseudorandom function, hash table, and Bloom filter. The protocol imposes
O(h-d?*-m) and O(h-d-m) computation and communication costs respectively, during the PSI computation.
It also imposes O(d?) computation and communication overheads, during the update phase.

3 Notations and Preliminaries

3.1 Notations

Table 1 summarises the main notations used in this paper.

3.2 Security Model

In this paper, we use the simulation-based paradigm of secure computation [25] to define and prove the
proposed protocols. Since both types of (static) active and passive adversaries are involved in our protocols,
we will provide formal definitions for both types. In this work, we consider a static adversary, we assume
there is an authenticated private (off-chain) channel between the clients and we consider a standard public
blockchain, e.g., Ethereum.

Two-party Computation. A two-party protocol I' problem is captured by specifying a random process
that maps pairs of inputs to pairs of outputs, one for each party. Such process is referred to as a functionality
denoted by f : {0,1}* x{0,1}* — {0,1}* x{0,1}*, where f := (fi, f). For every input pair (z,y), the output
pair is a random variable (f,(z,y), fo(x,y)), such that the party with input = wishes to obtain f,(x,y) while
the party with input y wishes to receive f,(z,y). When f is deterministic, then f, = f,. In the setting where
f is asymmetric and only one party (say the first one) receives the result, f is defined as f := (f,(z,y),L1).

Security in the Presence of Passive Adversaries. In the passive adversarial model, the party corrupted
by such an adversary correctly follows the protocol specification. Nonetheless, the adversary obtains the



Table 1: Notation Table.

Setting| Symbol Description Setting| Symbol Description
CL Set of all clients, {A1,..., A,,, D} SCro Prisoner’s Contract
D Dealer client SCec Colluder’s Contract
Am Buyer client 5 5 ‘E SCre Traitor’s Contract
m Total number of clients (excluding D) Rl é Server’s cost for computing a task
p Large prime number 5 3 = r:i:, Auditor’s cost for resolving disputes
H Hash function 00 8 d Deposit a server pays to get the job
|SA| Intersection size w Amount a server receives for completing the task
[y Smallest set’s size (pk, sk) SCyys’s auditor’s public-private key pair
Smaz Largest set’s size SCius JUS’s smart contract
| Divisible w,w', p Random poly. of degree d
\ Set subtraction .68 Random poly. of degree d + 1
c Set’s cardinality v(©) Blinded poly. sent by each C to SCyus
h Total number of bins in a hash table = b Blinded poly. encoding the intersection
d A bin’s capacity g X Poly. sent to SCyys to identify misbehaving parties
A Security parameter ~ L List of identified misbehaving parties
OLE Oblivious Linear Evaluation g = A portion of a party’s deposit into SCyus
E oLET Advanced OLE Z Y transferred to honest clients if it misbehaves
& Com Commitment algorithm of commitment ,Ej "]‘nkit M@Stc}' key OfAPRF
8 Ver Verification algorithm of commitment QD . Initiation predicate
MT.genTree Tree construction algorithm of Merkle tree < Delivery predicate
MT.prove Proof generation algorithm of Merkle tree @Y= UnFair-Abort predicate
MT.verify Verification algorithm of Merkle tree QF’A Fair-Abort predicate
CT Coin tossing protocol SCue ANE’s smart contract
VOPR Verifiable Oblivious Poly. Randomization d’ Extractor’s deposit
ZSPA Zero-sum Pseudorandom Values Agreement i’ Each client’s deposit into SCus
ZSPA-A ZSPA with an External Auditor = i Reward a client earns for an intersection element
PSITC Multi-party PSI with Fair Compensation \E/ 7 Extractor’s cost for extracting an intersection element
PSTZCR |Multi-party PSI with Fair Compensation and Reward @ f Shorthand for [(m — 1)
Jus Protocol that realises PST” ¢ 3 . Price a buyer pays for an intersection element
ANE Protocol that realises PSZ ™ —% v b =m-I+27F
PRF Pseudorandom function ] mk’ Another master key of PRF
PRP Pseudorandom permutation < ctmk Encryption of mk under pk
ged Greatest common divisor %)1 Delivery-with-Reward predicate
€ Negligible function Qg A UnFair-Abort-with-Reward predicate

internal state of the corrupted party, including the transcript of all the messages received, and tries to use
this to learn information that should remain private. Loosely speaking, a protocol is secure if whatever can
be computed by a party in the protocol can be computed using its input and output only. In the simulation-
based model, it is required that a party’s view in a protocol’s execution can be simulated given only its input
and output. This implies that the parties learn nothing from the protocol’s execution. More formally, party ¢’s
view (during the execution of I") on input pair (z,y) is denoted by View, (z,y) and equals (w,r,m!,...,m?),
where w € {z,y} is the input of i*" party, r; is the outcome of this party s internal random coin tosses, and
m represents the j'" message this party receives. The output of the i*" party during the execution of I" on
(x, y) is denoted by Output] (x,y) and can be generated from its own view of the execution. The joint output
of both parties is denoted by Output” (z,y) := (Output; (z,y), Output; (z,y)).

Definition 1. Let f be the deterministic functionality defined above. Protocol I' security computes f in the
presence of a static passive adversary if there exist polynomial-time algorithms (Sim,, Sim,) such that:

{Sim, (2, fi(z,9))}a
{Simy(z, fo(z,y))}..,

{View; (z,9)}..,
{V|eW§ (I, y)}TU

[lo

Security in the Presence of Active Adversaries. In this adversarial model, the corrupted party may
arbitrarily deviate from the protocol specification, to learn the private inputs of the other parties or to
influence the outcome of the computation. In this case, the adversary may not use the input provided.
Therefore, beyond the possibility that a corrupted party may learn more than it should, correctness is
also required. This means that a corrupted party must not be able to cause the output to be incorrectly
distributed. Moreover, we require independence of inputs meaning that a corrupted party cannot make its
input depend on the other party’s input. To capture the threats, the security of a protocol is analyzed by
comparing what an adversary can do in the real protocol to what it can do in an ideal scenario that is secure
by definition. This is formalized by considering an ideal computation involving an incorruptible Trusted



Third Party (TTP) to whom the parties send their inputs and receive the output of the ideal functionality.
Below, we describe the executions in the ideal and real models.

First, we describe the execution in the ideal model. Let P, and P, be the parties participating in the
protocol, i € {0, 1} be the index of the corrupted party, and A be a non-uniform probabilistic polynomial-
time adversary. Also, let z be an auxiliary input given to A while x and y be the input of party P, and P,
respectively. The honest party, P;, sends its received input to TTP. The corrupted party P, may either abort
(by replacing the input with a special abort message A,), send its received input or send some other input
of the same length to TTP. This decision is made by the adversary and may depend on the input value of
P; and z. If TTP receives A;, then it sends A; to the honest party and the ideal execution terminates. Upon
obtaining an input pair (x,y), TTP computes f,(z,y) and f,(x,y). It first sends f;(x,y) to P, which replies
with “continue” or A,. In the former case, TTP sends f;(z,y) to P, and in the latter it sends A, to P;.
The honest party always outputs the message that it obtained from TTP. A malicious party may output an
arbitrary function of its initial inputs and the message it has obtained from TTP. The ideal execution of f
on inputs (z,y) and z is denoted by Ideal’, _, .(x,y) and is defined as the output pair of the honest party and
A from the above ideal execution. In the real model, the real two-party protocol I" is executed without the
involvement of TTP. In this setting, A sends all messages on behalf of the corrupted party and may follow
an arbitrary strategy. The honest party follows the instructions of I'. The real execution of I" is denoted by
Realf‘(z),i(@y), it is defined as the joint output of the parties engaging in the real execution of I' (on the
inputs), in the presence of A.

Next, we define security. At a high level, the definition states that a secure protocol in the real model
emulates the ideal model. This is formulated by stating that adversaries in the ideal model can simulate
executions of the protocol in the real model.

Definition 2. Let f be the two-party functionality defined above and I" be a two-party protocol that computes
f. Protocol I' securely computes f with abort in the presence of static active adversaries if for every non-
uniform probabilistic polynomial time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary (or simulator) Sim for the ideal model, such that for every i € {0,1}, it holds
that:

C
{ldeals,, ., (,9)}..,.- = {Reall, . (w,9)}. , -

3.3 Smart Contracts

Cryptocurrencies, such as Bitcoin [37] and Ethereum [44], beyond offering a decentralised currency, support
computations on transactions. In this setting, often a certain computation logic is encoded in a computer
program, called a “smart contract”. To date, Ethereum is the most predominant cryptocurrency framework
that enables users to define arbitrary smart contracts. In this framework, contract code is stored on the
blockchain and executed by all parties (i.e., miners) maintaining the cryptocurrency, when the program
inputs are provided by transactions. The program execution’s correctness is guaranteed by the security
of the underlying blockchain components. To prevent a denial-of-service attack, the framework requires a
transaction creator to pay a fee, called “gas”, depending on the complexity of the contract running on it.

3.4 Counter Collusion Smart Contracts

In order to let a party, e.g., a client, efficiently delegate a computation to a couple of potentially colluding
third parties, e.g., servers, Dong et al. [18] proposed two main smart contracts; namely, “Prisoner’s Contract”
(S8Cp¢) and “Traitor’s Contract” (SCq). The Prisoner’s contract is signed by the client and the servers. This
contract tries to incentivize correct computation by using the following idea. It requires each server to pay
a deposit before the computation is delegated. It is equipped with an external auditor that is invoked to
detect a misbehaving server only when the servers provide non-equal results.

If a server behaves honestly, then it can withdraw its deposit. Nevertheless, if a cheating server is detected
by the auditor, then (a portion) of its deposit is transferred to the client. If one of the servers is honest and



the other one cheats, then the honest server receives a reward taken from the cheating server’s deposit.
However, the dilemma, created by SCp. between the two servers, can be addressed if they can make an
enforceable promise, say via a “Colluder’s Contract” (SCcc), in which one party, called “ringleader”, would
pay its counterparty a bribe if both follow the collusion and provide an incorrect computation to SCpc. To
counter SC¢, Dong et al. proposed SCy¢, which incentivises a colluding server to betray the other server and
report the collusion without being penalised by SCp¢. In this work, we slightly adjust and use these contracts.
We have stated the related parameters of these tree contracts in Table 1. We refer readers to Appendix C
for the full description of the parameters and contracts.

3.5 Pseudorandom Function and Permutation

Informally, a pseudorandom function is a deterministic function that takes a key of length A and an input; and
outputs a value indistinguishable from that of a truly random function. In this paper, we use pseudorandom
functions: PRF : {0,1}* x {0,1}* — F,, where |p| = X is the security parameter. In practice, a pseudorandom
function can be obtained from an efficient block cipher [29].

The definition of a pseudorandom permutation, PRP : {0,1}* x {0,1}* — F,, is very similar to that
of a pseudorandom function, with a difference; namely, it is required the keyed function PRP(k,.) to be
indistinguishable from a uniform permutation, instead of a uniform function. In cryptographic schemes that
involve PRP, sometimes honest parties may require to compute the inverse of pseudorandom permutation,
i.e., PRP7!(k,.), as well. In this case, it would require that PRP(k,.) be indistinguishable from a uniform
permutation even if the distinguisher is additionally given oracle access to the inverse of the permutation.

3.6 Commitment Scheme

A commitment scheme involves a sender and a receiver. It also involves two phases; namely, commit and
open. In the commit phase, the sender commits to a message: x as Com(z,r) = com, that involves a secret
value: r & {0,1}*. At the end of the commit phase, the commitment com is sent to the receiver. In the open
phase, the sender sends the opening & := (z,r) to the receiver who verifies its correctness: Ver(com, &) <1
and accepts if the output is 1. A commitment scheme must satisfy two properties: (a) hiding: it is infeasible
for an adversary (i.e., the receiver) to learn any information about the committed message x, until the
commitment com is opened, and (b) binding: it is infeasible for an adversary (i.e., the sender) to open a
commitment com to different values &' := (2/,7') than that was used in the commit phase, i.e., infeasible
to find &', s.t. Ver(com, &) = Ver(com,i’) = 1, where & # &’. There exist efficient commitment schemes
both in (a) the standard model, e.g., Pedersen scheme [40], and (b) the random oracle model using the
well-known hash-based scheme such that committing is : H(z||r) = com and Ver(com, &) requires checking:
H(z||r) = com, where H: {0,1}* — {0,1}* is a collision-resistant hash function, i.e., the probability to find
2 and 2’ such that H(z) = H(z') is negligible in the security parameter A.

3.7 Hash Tables

A hash table is an array of bins each of which can hold a set of elements. It is accompanied by a hash function.
To insert an element, we first compute the element’s hash, and then store the element in the bin whose index
is the element’s hash. In this paper, we set the table’s parameters appropriately to ensure the number of
elements in each bin does not exceed a predefined capacity. Given the maximum number of elements ¢ and
the bin’s maximum size d, we can determine the number of bins, h, by analysing hash tables under the balls
into the bins model [8]. In Appendix A, we explain how the hash table parameters are set.

3.8 Merkle Tree

A Merkle tree is a data structure that supports a compact commitment of a set of values/blocks. As a
result, it includes two parties, prover P and verifier V. The Merkle tree scheme includes three algorithms
(MT.genTree, MT.prove, MT.verify), defined as follows:



e The algorithm that constructs a Merkle tree, MT.genTree, is run by V. It takes blocks, u := u,, ..., u,,
as input. Then, it groups the blocks in pairs. Next, a collision-resistant hash function, H(.), is used to
hash each pair. After that, the hash values are grouped in pairs and each pair is further hashed, and
this process is repeated until only a single hash value, called “root”, remains. This yields a tree with the
leaves corresponding to the input blocks and the root corresponding to the last remaining hash value. V
sends the root to P.

e The proving algorithm, MT.prove, is run by P. It takes a block index, 7, and a tree as inputs. It outputs a
vector proof, of log,(n) elements. The proof asserts the membership of i-th block in the tree, and consists
of all the sibling nodes on a path from the i-th block to the root of the Merkle tree (including -th block).
The proof is given to V.

e The verification algorithm, MT.verify, is run by V. It takes as an input i-th block, a proof, and the tree’s
root. It checks if the i-th block corresponds to the root. If the verification passes, it outputs 1; otherwise,
it outputs 0.

The Merkle tree-based scheme has two properties: correctness and security. Informally, the correctness
requires that if both parties run the algorithms correctly, then a proof is always accepted by V. The security
requires that a computationally bounded malicious P cannot convince V into accepting an incorrect proof,
e.g., proof for a non-member block. The security relies on the assumption that it is computationally infeasible
to find the hash function’s collision. Usually, for the sake of simplicity, it is assumed that the number of
blocks, n, is a power of 2. The height of the tree, constructed on m blocks, is log,(n).

3.9 Polynomial Representation of Sets

The idea of using a polynomial to represent a set’s elements was proposed by Freedman et al. in [21]. Since
then, the idea has been widely used, e.g., in [4,5,24,33]. In this representation, set elements S = {s;,..., 84}
d

are defined over F, and set S is represented as a polynomial of form: p(xz) = [[(x — s,), where p(z) € F,[X]

and F,[X] is a polynomial ring. Often a polynomial, p(x), of degree d is represented in the “coefficient form”
d

as follows: p(z) = ap+a,-x+...4+a,-z*. The form [](z—s,) is a special case of the coefficient form. As shown
i=1

in [10,33], for two sets S and S® represented by polynomials p, and pz respectively, their product, which
is polynomial p, - pgs, represents the set union, while their greatest common divisor, ged(p4, Ps), represents
the set intersection. For two polynomials p, and py of degree d, and two random polynomials «, and 5 of
degree d, it is proven in [10,33] that: @ = v, -ps+~5 - Ps = - gcd(p4, Ps), where p is a uniformly random
polynomial, and polynomial 8 contains only information about the elements in S N S®) and contains no
information about other elements in S or S,

Given a polynomial 6 that encodes sets intersection, one can find the set elements in the intersection
via one of the following approaches. First, via polynomial evaluation: the party who already has one of the
original input sets, say p,, evaluates @ at every element s, of p, and considers s; in the intersection if
pa(s;) = 0. Second, via polynomial root extraction: the party who does not have one of the original input
sets, extracts the roots of @, which contain the roots of (i) random polynomial g and (ii) the polynomial
that represents the intersection, i.e., gcd(pa,ps). In this approach, to distinguish errors (i.e., roots of )
from the intersection, PSIs in [1,33] use the “hash-based padding technique”. In this technique, every element
u, in the set universe U, becomes s, = w,||H(u;), where H is a cryptographic hash function with a sufficiently
large output size. Given a field’s arbitrary element, s € F,, and H’s output size |H(.)|, we can parse s into
x, and x,, such that s = z,||z, and |z,| = |H(.)|. In a PSI that uses polynomial representation and this

padding technique, after we extract each root of 8, say s, we parse it into (z,,z,) and check z, . H(z,). If
the equation holds, then we consider s as an element of the intersection.

3.10 Horner’s Method

Horner’s method [19] allows for efficiently evaluating polynomials at a given point, e.g., x,. Specifically, given
a polynomial of the form: 7(x) = a,+a,-x+a,-2*+...4a, -2" and a point: z,, one can efficiently evaluate the



polynomial at x, iteratively, in the following fashion: 7(x,) = aq + xo(a; + To(as + ... + To (@1 + T - a,,)...))).
2

Evaluating a polynomial of degree n naively requires n additions and (”7;") multiplications. However,

using Horner’s method the evaluation requires only n additions and n multiplications. We use this method

throughout the paper.

3.11 Oblivious Linear Function Evaluation

Oblivious Linear function Evaluation (OLE) is a two-party protocol that involves a sender and receiver. In
OLE, the sender has two inputs a,b € F, and the receiver has a single input, ¢ € F,. The protocol allows
the receiver to learn only s = a-c+ b € F,, while the sender learns nothing. Ghosh et al. [22] proposed
an efficient OLE that has O(1) overhead and involves mainly symmetric key operations. Later, in [23] an
enhanced OLE, called OLE* was proposed. The latter ensures that the receiver cannot learn anything about
the sender’s inputs, even if it sets its input to 0. In this paper, we use OLET. We refer readers to Appendix
B, for its construction.

3.12 Coin-Tossing Protocol

A Coin-Tossing protocol, CT, allows two mutually distrustful parties, say A and B, to jointly generate a single
random bit. Formally, CT computes the functionality fe(in,,ing) — (out,,outs), which takes in, and ing
as inputs of A and B respectively and outputs out, to A and out; to B, where out,, = outy. A basic security
requirement of a CT is that the resulting bit is (computationally) indistinguishable from a truly random bit.
Blum proposed a simple CT in [9] that works as follows. Party A picks a random bit in, < {0,1}, commits
to it and sends the commitment to B which sends its choice of random input, in, < {0,1}, to A. Then, A
sends the opening of the commitment (including in,) to B, which checks whether the commitment matches
its opening. If so, each party computes the final random bit as in, ® ing.

There have also been fair coin-tossing protocols, e.g., in [36], that ensure either both parties learn the
result or nobody does. These protocols can be generalised to multi-party coin-tossing protocols to generate
a random string (rather than a single bit), e.g., see [6,31]. The overall computation and communication
complexities of (fair) multi-party coin-tossing protocols are often linear with the number of participants. In
this paper, any secure multi-party CT that generates a random string can be used. For the sake of simplicity,
we let a multi-party fi; take m inputs and output a single value, i.e., fu(in,,...,in,,) — out.

4 Definition of Multi-party PSI with Fair Compensation

In this section, we present the notion of multi-party PSI with Fair Compensation (PSZ”¢) which allows
either all clients to get the result or the honest parties to be financially compensated if the protocol aborts
in an unfair manner, where only dishonest parties learn the result.

In a PST*”¢, three types of parties are involved; namely, (1) a set of clients {A,, ..., A4,,} potentially
malicious (i.e., active adversaries) and all but one may collude with each other, (2) a non-colluding dealer, D,
potentially semi-honest (i.e., a passive adversary) and has an input set, and (3) an auditor Aud potentially
semi-honest, where all parties except Aud have input set. For simplicity, we assume that given an address
one can determine whether it belongs to Aud.

The basic functionality that any multi-party PSI computes can be defined as f"s'(S,,...,S,.;1) —
(Sn, ..., Sn), where S, = S, N S,,....;N S,..1. To formally define a PSZ"°, we equip the above PSI func-

m—+1
tionality with four predicates, @ := (Q™", Q°, QV"*, Q" *), which ensure that certain financial conditions
are met. We borrow three of these predicates (i.e., @™, Q" Q" *) from the “fair and robust multi-party
computation” initially proposed in [32]; nevertheless, we will (i) introduce an additional predicate Q** and
(ii) provide more formal accurate definitions of these predicates.

Predicate Q™" specifies under which condition a protocol that realises PSZ”¢ should start executing, i.e.,
when all set owners have enough deposit. Predicate Q"' determines in which situation parties receive their



output, i.e., when honest parties receive their deposit back. Predicate QU"* specifies under which condition
the simulator can force parties to abort if the adversary learns the output, i.e., when an honest party receives
its deposit back plus a predefined amount of compensation. Predicate Q¥ specifies under which condition
the simulator can force parties to abort if the adversary receives no output, i.e., when honest parties receive
their deposits back. We observed that the latter predicate should have been defined in the generic framework
in [32] too; as the framework should have also captured the cases where an adversary may abort without
learning any output after the onset of the protocol. Intuitively, by requiring any protocol that realises PSZ”°
to implement a wrapped version of fF5' that includes @, we will ensure that an honest set owner only aborts
in an unfair manner if QU returns 1, it only aborts in a fair manner if Q** returns 1, and outputs a valid
value if QP returns 1. Now, we formally define each of these predicates.

Definition 3 (Q™"*: Initiation predicate). Let G be a stable ledger, adr,. be smart contract sc’s address,
Adr be a set of m+1 distinct addresses, and & be a fixzed amount of coins. Then, predicate Q™" (G, adr,., m+
1, Adr, &) returns 1 if every address in Adr has at least & coins in sc; otherwise, it returns 0.

Definition 4 (QP<': Delivery predicate). Let pram := (G, adr,., &) be the parameters defined above, and
adr; € Adr be the address of an honest party. Then, predicate Q°*(pram,adr;) returns 1 if adr; has sent &
amount to sc and received & amount from it; thus, its balance in sc is 0. Otherwise, it returns 0.

Definition 5 (QUF*: UnFair-Abort predicate). Let pram = (G, adr,., &) be the parameters defined
above, and Adr’ C Adr be a set containing honest parties’ addresses, m' = |Adr’|, and adr; € Adr'. Let also
G be a compensation function that takes as input three parameters (de}os, adr;,m'), where déjus 1s the amount
of coins that all m+1 parties deposit. It returns the amount of compensation each honest party must receive,
i.e., G(deps,ard;,m') — &,. Then, predicate Q""" is defined as Q" *(pram,G,deps,m’,adr;) — (a,b),
where a = 1 if adr; is an honest party’s address and adr; has sent & amount to sc and received & + &, from
it, and b =1 if adr; is Aud’s address and adr; received &, from sc. Otherwise, a = b = 0.

Definition 6 (QF*: Fair-Abort predicate). Let pram := (G, adr,., &) be the parameters defined above,
and Adr’ C Adr be a set containing honest parties’ addresses, m' = |Adr'|, adr, € Adr', and adr; be
Aud’s address. Let G be the compensation function, defined above and let G(deps,ard;,m’') — &, be the
compensation that the auditor must receive. Then, predicate Q™" (pram,G7dé'ps,m’,adri,adrj) returns 1,
if adr; (s.t. adr; # adr;) has sent & amount to sc and received & from it, and adr; received Z; from sc.
Otherwise, it returns 0.

Next, we present a formal definition of PSZ”¢.

Definition 7 (PSZ7°). Let f™' be the multi-party PSI functionality defined above. We say protocol I’
realises f with Q-fairness in the presence of m — 1 static active-adversary clients (i.e., A;s) or a static
passive dealer D or passive auditor Aud, if for every non-uniform probabilistic polynomial time adversary A

for the real model, there exists a non-uniform probabilistic polynomial-time adversary (or simulator) Sim for
the ideal model, such that for every I € {A,, ..., A,., D, Aud}, it holds that:

PSI c
{ldealg/i\r}n((fz)yj’Q)(SM EAAS] Sm+1)}sl ,,,,, Sp41:% = {Reali(z)yj(sl7 ety S’IIL+1)}SI,...,Sm+1,Z

where z is an auziliary input given to A and W(f**',Q) is a functionality that wraps f"' with predicates

Q — (let’ QDel, QUF—A, QF—A)'

5 Other Subroutines Used in Justitia

In this section, we present three subroutines and a primitive that we developed and are used in the instan-
tiation of PST”C, i.e., Justitia.



5.1 Verifiable Oblivious Polynomial Randomisation (VOPR)

In the VOPR, two parties are involved, (i) a sender which is potentially a passive adversary and (ii) a receiver
that is potentially an active adversary. The protocol allows the receiver with input polynomial 3 (of degree
e’) and the sender with input random polynomials v (of degree e) and a (of degree e + €’) to compute:
0 =1 - B+ «, such that (a) the receiver learns only 8 and nothing about the sender’s input even if it sets
B =0, (b) the sender learns nothing, and (c) the receiver’s misbehaviour is detected in the protocol. Thus,
the functionality that VOPR computes is defined as f"*((¢, @), 8) — (L,v - B + «). We will use VOPR in
Justitia for two main reasons: (a) to let a party re-randomise its counterparty’s polynomial (representing its
set) and (b) to impose a MAC-like structure to the randomised polynomial; such a structure will allow a
verifier to detect if VOPR’s output has been modified.

Now, we outline how we design VOPR without using any (expensive) zero-knowledge proofs.® In the

setup phase, both parties represent their input polynomials in the regular coefficient form; therefore, the
e ete!

sender’s polynomials are defined as ¥ = > g, - 2" and & = > a; - 27 and the receiver’s polynomial is
i=0 j=0

defined as 3 = > b, - «*. However, the sender computes each coefficient a; (of polynomial «) as follows,
i=0

’

-
o

o

a, = >, a,, where t + k = j and each a,, is a random value. For instance, if ¢ = 4 and ¢ = 3, then
t,k=0
Q3 = Qo5 + A3 + Q1 5 + Gy . Shortly, we explain why polynomial a is constructed this way.

In the computation phase, to compute polynomial 8, the two parties interactively multiply and add the
related coefficients in a secure way using OLE™ (presented in Section 3.11). Specifically, for every j (where
0 < j < ¢') the sender sends g, and a, ; to an instance of OLE*, while the receiver sends b; to the same instance,
which returns ¢, ; = g, - b; + a, ; to the receiver. This process is repeated for every ¢, where 0 < ¢ < e. Then,
the receiver uses ¢, ; values to construct the resulting polynomial, 6.

The reason that the sender imposes the above structure to (the coefficients of) a in the setup, is to let
the parties securely compute @ via OLE*. Specifically, by imposing this structure (1) the sender can blind
each product g, - b, with random value a, ; which is a component of a’s coefficient and (2) the receiver can
construct a result polynomial of the form 8 =¥ - 8+ «.

Now, we outline how the verification works. To check the result’s correctness, the sender picks and sends
a random value z to the receiver which computes 0(z) and B3(z) and sends these two values to the sender.
The sender computes ¥(z) and a(z) and then checks if equation 8(z) = 1(z) - B(2) + a(z) holds. It accepts
the result if the check passes. Figure 1 describes VOPR in detail.

Theorem 1. Let f"* be the functionality defined above. If the enhanced OLE (i.e., OLE" ) is secure against
malicious (or active) adversaries, then the Verifiable Oblivious Polynomial Randomisation (VOPR), presented
in Figure 1, securely computes f™ in the presence of (i) a semi-honest sender and honest receiver or (ii) a
malicious receiver and honest sender.

Proof. Before proving Theorem 1, we present Lemma 1 and Theorem 2 that will be used in the proof of
Theorem 1. Informally, Lemma 1 states that the evaluation of a random polynomial at a fixed value results
in a uniformly random value.

Lemma 1. Let x; be an element of a finite field F,, picked uniformly at random and p(x) be a random
polynomial of constant degree d and defined over F,[X]. Then, the evaluation of u(x) at x, is distributed
uniformly at random over the non-zero elements of the field, i.e., Priu(z,) = y] = ﬁ, where y is arbitrary
elements of F;.

d

Proof. Let p(x) = ay + Y a;a’, where the coefficients are distributed uniformly at random over the field.
j=1

We know that if x, is a root of p(x), then because the polynomial can have at most d roots, we have

3 Previously, Ghosh et al. [23] designed a protocol called Oblivious Polynomial Addition (OPA) to meet similar
security requirements that we laid out above. But, as shown in [3], OPA is susceptible to several serious attacks.
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o Input.

e Public Parameters: upper bound on input polynomials’ degree: e and ¢’.
e+e/

e Sender Input: random polynomials: 9 = > g, -2’ and @ = > a; - 27, where
i=0 j=0
k=e’
t=e
gi & F,. Each a; has the form: a; = Y a¢, such that t + k = j and a,, & Fp.
t,k=0

e Receiver Input: polynomial 3 = 3,-8. = > b;-x*, where 3, is a random polynomial
=0
of degree 1 and B3, is an arbitrary polynomial of degree e’ — 1.
e Qutput. The receiver gets 8 =1 - 8+ a.

1. Computation:
(a) Sender and receiver together for every j, 0 < j < ¢/, invoke e+ 1 instances of OLE*.
In particular, V5,0 < j < ¢’: sender sends g; and a; ; while the receiver sends b; to
OLE" that returns: ¢; ; = g; - b; + a,; to the receiver (Vi,0 < i < e).
(b) The receiver sums component-wise values ¢; ; that results in polynomial:

i=e
P

J=e€
0=v -B+a= Zci,j-xi”

i,j=0

2. Verification:
(a) Sender: picks a random value z and sends it to the receiver.
(b) Receiver: sends 0. = 0(z) and 8. = B(z) to the sender.
(c) Sender: computes 1. = ¥ (z) and a. = a(z) and checks if equation 0, = 9-- 0. + .
holds. If the equation holds, it concludes that the computation was performed
correctly. Otherwise, it aborts.

Fig. 1: Verifiable Oblivious Polynomial Randomization (VOPR)

Prip(z;) = 0] = %. Next, we focus on the case where z; is not a root of the polynomial (thus y # 0).
For any choice of x;,a,,...,a,, there exists exactly one value of a, that makes p(x;) =y, i.e., p(z,) =y iff

d
ay =y — Y. a;zl. As a, is picked uniformly at random, the probability that it equals a certain value that
j=1
makes p(x;) =y is p%l. Thus, Priu(z;) =y] = p%l, Vy € . O
Informally, Theorem 2 states that the product of two arbitrary polynomials (in coefficient form) is a
polynomial whose roots are the union of the two original polynomials. Below, we formally state it. The

theorem has been taken from [3].

Theorem 2. Let p and q be two arbitrary non-constant polynomials of degree d and d' respectively, such
that p,q € F,[X] and they are in coefficient form. Then, the product of the two polynomials is a polynomial
whose roots include precisely the two polynomials’ roots.

We refer readers to Appendix D for the proof of Theorem 2. Next, we prove the main theorem, i.e.,
Theorem 1, by considering the case where each party is corrupt, in turn.

Case 1: Corrupt sender. In the real execution, the sender’s view is defined as follows:

View™ (4, @), 8) = {#, @, 7, B(2), 6(2), View?™", 1}

. . . . +
where rg is the outcome of internal random coins of the sender and View%" refers to the sender’s real-model

view during the execution of OLE*. The simulator Sim%", which receives 4 and a, works as follows.
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1. generates an empty view. It appends to the view polynomials (¢, &) and coins 7% chosen uniformly at
random.

2. computes polynomial 3 = 3, - 3,, where 3, is a random polynomial of degree 1 and 3, is an arbitrary
polynomial of degree ¢/ — 1. Next, it constructs polynomial 6 as follows: 8 = v - 3 + a.

3. picks value z & F,. Then, it evaluates polynomials 3 and @ at point z. This results in values 3, and 0,
respectively. It appends these two values to the view.

4. extracts the sender-side simulation of OLE* from OLE*’s simulator. Let Sim®*

S
the latter simulation is guaranteed to exist, as OLE™ has been proven secure (in [23]). It appends Sim
and L to its view.

" be this simulation. Note,

oet
S

Now, we are ready to show that the two views are computationally indistinguishable. The sender’s inputs
are identical in both models, so they have identical distributions. Since the real-model semi-honest adversary
samples its randomness according to the protocol’s description, the random coins in both models have
identical distributions. Next, we explain why values (3(z) in the real model and 3. in the ideal model are
(computationally) indistinguishable. In the real model, 3(z) is the evaluation of polynomial 8 = 3, - 3, at
random point z, where 3, is a random polynomial. We know that 3(z) = B,(z) - B.(z), for any (non-zero)
z. Moreover, by Lemma 1, we know that 3,(z) is a uniformly random value. Therefore, 3(z) = 3,(2) - B.(z)
is a uniformly random value as well. In the ideal world, polynomial 3 has the same structure as 3 has (i.e.,
B = B, - B, where 3, is a random polynomial). That means 3. is a uniformly random value too. Thus,
B(z) and B. are computationally indistinguishable. Next, we turn our attention to values 6(z) in the real
model and 6, in the ideal model. We know that 8(2) is a function of 3,(2), as polynomial 6 has been defined
as @ = v - (8, - B.) + a. Similarly, 0, is a function of 3,. As we have already discussed, B(z) and 3. are
computationally indistinguishable, so are their functions 6(z) and 6,.. Moreover, as OLE* has been proven
secure, View™ " and Sim®™" are computationally indistinguishable. It is also clear that L is identical in both
models. We conclude that the two views are computationally indistinguishable.

Case 2: Corrupt receiver. Let Sim's™" be the simulator, in this case, which uses a subroutine adversary,
Ap. Simy™ works as follows.

1. simulates OLET and receives Ap’s input coefficients b, for all j, 0 < j < €/, as we are in fy+-hybrid
model.

2. reconstructs polynomial 3, given the above coefficients.

3. simulates the honest sender’s inputs as follows. It picks two random polynomials: ¢ = > g, - «* and

1=0
k—e!
t

)

ete’
o = Y a, -2, such that g, & F, and every a, has the form: a, = a,,, where t + k = j and
=0 0

t

E

$
a,, T,

4. sends to OLE™’s functionality values g; and a, ; and receives ¢, ; from this functionality (for all i, j).
5. sends all ¢; ; to TTP and receives polynomial 6.
6. picks a random value z from F,. Then, it computes ¥, = 1(z) and a. = a(z).
7. sends z and all ¢, ; to Ay which sends back 6, and S, to the simulator.
8. sends 1, and «, to Aj.
9. checks if the following relation hold:
B.=B(z) A 6.=6() A 0(z)=d.-B+a (1)
If Relation 1 does not hold, it aborts (i.e., sends abort signal A to the sender) and still proceeds to the

next step.
10. outputs whatever Ay outputs.

We first focus on the adversary’s output. Both values of z in the real and ideal models have been picked
uniformly at random from IF,; therefore, they have identical distributions. In the real model, values v, and
a, are the result of the evaluations of two random polynomials at (random) point z. In the ideal model,
values 1. and «, are also the result of the evaluations of two random polynomials (i.e., ¥ and «) at point z.
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By Lemma 1, we know that the evaluation of a random polynomial at an arbitrary value yields a uniformly
random value in F,. Therefore, the distribution of pair (¢.,«.) in the real model is identical to that of
pair (¢.,«.) in the ideal model. Moreover, the final result (i.e., values ¢, ;) in the real model has the same
distribution as the final result (i.e., values ¢, ;) in the ideal model, as they are the outputs of the ideal calls
to fye+, as we are in the f, .+-hybrid model.

Next, we turn our attention to the sender’s output. We will show that the output distributions of the
honest sender in the ideal and real models are statistically close. Our focus will be on the probability that
it aborts in each model, as it does not receive any other output. In the ideal model, Simy™ is given the
honestly generated result polynomial 8 (computed by TTP) and the adversary’s input polynomial 8. Sim%™
aborts with a probability of 1 if Relation 1 does not hold. However, in the real model, the honest sender
(in addition to its inputs) is given only . and 6. and is not given polynomials 3 and 6; it wants to check
if the following equation holds, 8, = v, - 8. + «.. Note, polynomial 8 = v - 8 + a (resulted from ¢, )
is well-structured, as it satisfies the following three conditions, regardless of the adversary’s input 8 to

OLE*, (i) deg(0) = Max (deg(,@') + deg(tﬁ),deg(a)), as F,[X] is an integral domain and (¢, &) are random

polynomials, (ii) the roots of the product polynomial ¥ = 1) - B contains exactly both polynomials’ roots,
by Theorem 2, and (iii) the roots of v + « is the intersection of the roots of v and «, as shown in [33].
Furthermore, polynomial 0 reveals no information (about 1 and a except their degrees) to the adversary
and the pair (¢, ) is given to the adversary after it sends the pair (6., 8.) to the sender. There are exactly
four cases where pair (6., 5.) can be constructed by the real-model adversary. Below, we state each case and

the probability that the adversary is detected in that case during the verification, i.e., 6, a8 Y- B, + a,.

1. 6, = 6(2) A B. = B(z). This is a trivial non-interesting case, as the adversary has behaved honestly, so

it can always pass the verification.

0. # 6(z) A B. = B(2). In this case, the adversary is detected with a probability of 1.

0. =0(2) A B. # B(z). In this case, the adversary is also detected with a probability of 1.

4. 0, # 0(z) A B. # B(z). In this case, the adversary is detected with an overwhelming probability, i.e.,
1

1- 5.

w N

As we illustrated above, in the real model, the lowest probability that the honest sender would abort in
case of adversarial behaviour is 1 — 22% Thus, the honest sender’s output distributions in the ideal and real
models are statistically close, i.e.;, 1 vs 1 — 22%

We conclude that the distribution of the joint outputs of the honest sender and adversary in the real and
ideal models are computationally indistinguishable. |

5.2 Zero-sum Pseudorandom Values Agreement Protocol (ZSPA)

The ZSPA allows m parties (the majority of which is potentially malicious) to efficiently agree on (a set of
vectors, where each vector has) m pseudorandom values such that their sum equals zero. At a high level,
the parties first sign a smart contract and then run a coin-tossing protocol CT to agree on a key: k. Next,
one of the parties generates m — 1 pseudorandom values z, (where 1 < j < m — 1) using key k and PRF.

m—1
It sets the last value as the additive inverse of the sum of the values generated, i.e. z,, = — > z;. Then, it
=1
constructs a Merkel tree on top of the pseudorandom values and stores only the tree’s root ; and the key’s
hash value ¢ in the smart contract. Then, each party (using the key) locally checks if the values (on the
contract) have been constructed correctly; if so, then it sends a signed “approved” message to the contract.
Hence, the functionality that ZSPA computes is defined as f=* (L, ..., 1) — ((k,g,q), ..., (k, g,q)), where g is
—_——

the Markle tree’s root built on the pseudorandom values z, ;, g is the hash value of the key used to generate
the pseudorandom values, and m > 2. Figure 2 presents ZSPA in detail.

Briefly, ZSPA will be used in Justitia to allow clients {A,,..., A,,} to provably agree on a set of pseudo-
random polynomials whose sum is zero. Each of these polynomials will be used by a client to blind/encrypt
the messages it sends to the smart contract, to protect the privacy of the plaintext message (from Aud, D,
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and the public). To compute the sum of the plaintext messages, one can easily sum the blinded messages,
which removes the blinding polynomials.

e Parties. A set of clients {A,,...; A, }.
e Input. m: the total number of participants, adr: a deployed smart contract’s address,
and b: the total number of vectors. Let b = b — 1.

e Output. k: a secret key that generates b vectors [2o,1, ..., Zo,m]; -5 [Z4/ 15 -++» 267 .m] Of PSEU-
dorandom values, h: hash of the key, g: a Merkle tree’s root, and a vector of signed
messages.

1. Coin-tossing. CT(in,...,in.,) — k.
All participants run a coin-tossing protocol to agree on PRF’s key, k.
2. Encoding. Encode(k,m) — (g,q).
One of the parties takes the following steps:
(a) for every i (where 0 < i < V'), generates m pseudorandom values as follows.

m—1
Vi, 1 <j<m—1:z,;=PRE(k,illj), Zim=— 2z,
Jj=1

(b) constructs a Merkel tree on top of all pseudorandom values,
MT.genTree(20,1, ., 2/ .m) —> g-
(c) sends the Merkel tree’s root: g, and the key’s hash: ¢ = H(k) to adr.
3. Verification. Verify(k, g,q,m) — (a,s).

Each party checks if, all z; ; values, the root g, and key’s hash ¢ have been correctly
generated, by retaking step 2. If the checks pass, it sets a = 1, sets s to a singed
“approved” message, and sends s to adr. Otherwise, it aborts by returning a = 0 and
s=1.

Fig. 2: Zero-sum Pseudorandom Values Agreement (ZSPA)

Theorem 3. Let f*™ be the functionality defined above. If CT is secure against a malicious adversary and the
correctness of PRF, H, and Merkle tree holds, then ZSPA, in Figure 2, securely computes f*™* in the presence
of m — 1 malicious adversaries.

Proof. For the sake of simplicity, we will assume the sender, which generates the result, sends the result
directly to the rest of the parties, i.e., receivers, instead of sending it to a smart contract. We first consider
the case in which the sender is corrupt.

Case 1: Corrupt sender. Let Sim%™ be the simulator using a subroutine adversary, Ag. Sim%™ works as
follows.

. simulates CT and receives the output value k from f,, as we are in f-hybrid model.

. sends k to TTP and receives back from it m pairs, where each pair is of the form (g, q).

. sends k to Ag and receives back from it m pairs where each pair is of the form (¢’, ¢).

. checks whether the following equations hold (for each pair): g = ¢ A ¢ = ¢. If the two equations do
not hold, then it aborts (i.e., sends abort signal A to the receiver) and proceeds to the next step.

5. outputs whatever Ay outputs.

=W N

We first focus on the adversary’s output. In the real model, the only messages that the adversary receives
are those messages it receives as the result of the ideal call to f;. These messages have identical distribution
to the distribution of the messages in the ideal model, as the CT is secure. Now, we move on to the receiver’s

14



output. We will show that the output distributions of the honest receiver in the ideal and real models
are computationally indistinguishable. In the real model, each element of pair (g,p) is the output of a
deterministic function on the output of f.,. We know the output of f; in the real and ideal models have an
identical distribution, and so do the evaluations of deterministic functions (i.e., Merkle tree, H, and PRF) on
them, as long as these three functions’ correctness holds. Therefore, each pair (g, ¢) in the real model has an
identical distribution to pair (g,¢) in the ideal model. For the same reasons, the honest receiver in the real
model aborts with the same probability as Sim%™* does in the ideal model. We conclude that the distributions
of the joint outputs of the adversary and honest receiver in the real and ideal models are (computationally)
indistinguishable.

Case 2: Corrupt receiver. Let Sim%™" be the simulator that uses subroutine adversary Ag. Sim’s™ works
as follows.

1. simulates CT and receives the output value k from f.
2. sends k to TTP and receives back m pairs of the form (g,q) from TTP.
3. sends (k,g,q) to Ar and outputs whatever Ay outputs.

In the real model, the adversary receives two sets of messages, the first set includes the transcripts
(including k) it receives when it makes an ideal call to f. and the second set includes pair (g,q). As we
already discussed above (because we are in the f-hybrid model) the distributions of the messages it receives
from f in the real and ideal models are identical. Moreover, the distribution of f.’s output (i.e., k and k) in
both models is identical; therefore, the honest sender’s output distribution in both models is identical. As we
already discussed, the evaluations of deterministic functions (i.e., Merkle tree, H, and PRF) on f’s outputs
have an identical distribution. Therefore, each pair (g, ¢) in the real model has an identical distribution to
the pair (g,q) in the ideal model. Hence, the distribution of the joint outputs of the adversary and honest
receiver in the real and ideal models is indistinguishable. a

In addition to the security guarantee (i.e., computation’s correctness against malicious sender or receiver)
stated by Theorem 3, ZSPA offers (a) privacy against the public, and (b) non-refutability. Informally, privacy
here means that given the state of the contract (i.e., g and ¢), an external party cannot learn any information
about any of the pseudorandom values, z;; while non-refutability means that if a party sends “approved”
then in future cannot deny the knowledge of the values whose representation is stored in the contract.

Theorem 4. If H is preimage resistance, PRF is secure, the signature scheme used in the smart contract is
secure (i.e., existentially unforgeable under chosen message attacks), and the blockchain is secure (i.e., offers
liveness property and the hash power of the adversary is lower than those of honest miners) then ZSPA offers
(i) privacy against the public and (ii) non-refutability.

Proof. First, we focus on privacy. Since key k, for PRF, has been picked uniformly at random and H is preimage
resistance, the probability that given g the adversary can find k is negligible in the security parameter, i.e.,
€(A). Furthermore, because PRF is secure (i.e., its outputs are indistinguishable from random values) and H is
preimage resistance, given the Merkle tree’s root g, the probability that the adversary can find a leaf node,
which is the output of PRF, is €(\) too. o

5.3 ZSPA’s Extension: ZSPA with an External Auditor (ZSPA-A)

In this section, we present an extension of ZSPA, called ZSPA-A which lets a (trusted) third-party auditor,
Aud, help identify misbehaving clients in the ZSPA and generate a vector of random polynomials. Informally,
ZSPA-A requires that misbehaving parties are always detected, except with a negligible probability. Aud of
this protocol will be invoked by Justitia when Justitia’s smart contract detects that a combination of the
messages sent by the clients is not well-formed. Later, in Justitia’s proof, we will show that even a semi-
honest Aud who observes all messages that clients send to Justitia’s smart contracts, cannot learn anything
about their set elements. We present ZSPA-A in Figure 3.
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e Parties. A set of clients {A4, ..., A,.} and an external auditor, Aud.

e Input. m: the total number of participants (excluding the auditor), ¢: a random poly-
nomial of degree 1, b: the total number of vectors, and adr: a deployed smart contract’s
address. Let b’ = b — 1.

e Output of each A;. k: a secret key that generates b vectors
(20,15 s Z0,m], <1 [Z67 15 s 27 ] Of pseudorandom values, h: hash of the key, g: a
Merkle tree’s root, and a vector of signed messages.

e Output of Aud. L: a list of misbehaving parties’ indices, and 7Z: a vector of random
polynomials.

1. ZSPA invocation. ZSPA(L,..., 1) — ((k,g,q)7 ey (Ky g, q))

All parties in {Ai,..., A} call the same instance of ZSPA, which results in
(k.9,9), - (K, 9,9). .
2. Auditor computation. Audit(k,q,¢,b,9) = (L, ).

Aud takes the below steps. Note, each k; € k is given by A;. An honest party’s input,

k;, equals k, where 1 < 57 < m.

(a) runs the checks in the verification phase (i.e., Phase 3) of ZSPA for every j, i.e.,
Verify(k;, g,q,m) — (aj, s).

(b) appends j to L, if any checks fails, i.e., if a; = 0. In this case, it skips the next two
steps for the current j.

(c) For every i (where 0 < i < ¥'), it recomputes m pseudorandom values: Vj,1 < j <

m—1

m—1: 2z, ; =PRF(k,i||j), zim=— 2, 2i;-
i=1
(d) generates polynomial p’ as follows: pu'’ = ¢ - €9 — 79 where £ is a random

. b, .
polynomial of degree b’ — 1 and 7% = Y 2, ; - x*. By the end of this step, a vector
i=0
7. containing at most m polynomials is generated.
(e) returns list L and 7.

Fig.3: ZSPA with an external auditor (ZSPA-A)

Theorem 5. If ZSPA is secure, H is second-preimage resistant, and the correctness of PRF, H, and Merkle
tree holds, then ZSPA-A securely computes f*** in the presence of m — 1 malicious adversaries.

Proof. First, we consider the case where a sender, who (may collude with m — 2 senders and) generates pairs
(g,q), is corrupt.

Case 1: Corrupt sender. Let Sim%™* be the simulator using a subroutine adversary, As. Below, we explain

ZSPA-A

how Sim%™* works.

1.

simulates CT and receives the output value k from f.

2. sends k to TTP and receives back from it m pairs, where each pair is of the form (g, q).
3.
4. constructs an empty vector L. Sim%™" checks whether the following equations hold for each j-th pair:

sends k to Ag and receives back from it m pairs where each pair is of the form (¢’, ¢’).

ZSPA-A
g=9¢ AN q= (. If these two equations do not hold, it sends an abort message A to other receiver
clients, appends the index of the pair (i.e., j) to L, and proceeds to the next step for the valid pairs. In
the case where there are no valid pairs, it moves on to step 9.
picks a random polynomial ¢ of degree 1. Moreover, for every j ¢ L, Sim%™* picks a random polynomial
€9 of degree b’ — 1, where 1 < j < m.
computes m pseudorandom values for every ¢, j', where 0 < ¢ < b and j' ¢ L as follows.

m—1
Vi’ 1<j <m-—1:z,; =PRF(k,i|]j’) and =z, =— Zz”

j’=1
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b/

7. generates polynomial @, for every j ¢ L, as follows: p@ = ¢ - €9 — 79 where 79 = > 2z, , - o',
=0

8. sends the above ¢, €9, and p% to all parties (i.e., As and the receivers), for every j ¢ L.

9. outputs whatever Ay outputs.

Now, we focus on the adversary’s output. In the real model, the messages that the adversary receives
include those messages it receives as the result of the ideal call to f and (¢, €9, u), where j ¢ L and
1 < j < m. Those messages yielded from the ideal calls have identical distribution to the distribution of the
messages in the ideal model, as CT is secure. The distribution of each p”> depends on the distribution of its
components; namely, ¢, €Y, and 77. As we are in the f,-hybrid model, the distributions of 7 in the real
model and 7% in the ideal model are identical, as they were derived from the output of f. Furthermore, in
the real model, each polynomial ¢ and £ has been picked uniformly at random and they are independent
of the clients’ and the adversary’s inputs. The same arguments hold for ({,£9, ) in the ideal model.
Therefore, (¢,£€9, n%) in the real model and (¢, &9, u’) in the ideal model have identical distributions.

Next, we turn our attention to the receiver’s output. We will show that the output distributions of an
honest receiver and the auditor in the ideal and real models are computationally indistinguishable. In the
real model, each element of the pair (g, p) is the output of a deterministic function on the output of f,,. We
know the outputs of f. in the real and ideal models have an identical distribution, and so do the evaluations
of deterministic functions (namely Merkle tree, H, and PRF) on them. Therefore, each pair (g,¢) in the real
model has an identical distribution to the pair (g,¢) in the ideal model. For the same reasons, the honest
receiver in the real model aborts with the same probability as Sim%™* does in the ideal model. The same
argument holds for the arbiter’s output, as it performs the same checks that an honest receiver does. Thus,
the distribution of the joint outputs of the adversary, honest receiver, and honest in the real and ideal models
is computationally indistinguishable.

Case 2: Corrupt receiver. Let Sim%™* be the simulator that uses subroutine adversary Aj. Below, we

explain how Sim%™* works.

1. simulates ZSPA and receives the m output pairs of the form (k, g, q) from f=.

2. sends (k, g,q) to Ar and receives m keys, k', where 1 < j < m.

3. generates an empty vector L. Next, for every j, Sim3™* computes ¢ as H(k}) = ¢;. It generates g, as
follows.
(a) for every ¢ (where 0 < i < V'), generates m pseudorandom values as below.

m—1
Vi1 <j' <m—1:z2, =PRE(K,,illj'), z..=-) 2,
j=1

(b) constructs a Merkel tree on top of all pseudorandom values, MT.genTree(2o1, .., 24/ .m) — g,

4. checks if the following equations hold for each j-th pair: (k =k}) A (g=g)) A (¢=4}).
5. If these equations do not hold for j-th value, it appends j to L and proceeds to the next step for the
valid value. In the case where there is no valid value, it moves on to step 9.
6. picks a random polynomial ¢ of degree 1. Also, for every j ¢ L, it picks a random polynomial &9 of
degree V' — 1, where 1 < j < m.
b/
7. generates polynomial pu@, for every j ¢ L, as follows: @ = ¢ - €9 — 79 where 79 = 3" 2z, ;- %, and
=0
values z; ; were generated in step 3a.
. sends the above ¢, €9, and pu® to Ay, for every j ¢ L and 1 < j < m.

9. outputs whatever A, outputs.

oo

In the real model, the adversary receives two sets of messages, the first set includes the transcripts
(including k, g, ¢) it receives when it makes an ideal call to f*™ and the second set includes pairs (¢, €9, u),
for every j ¢ L and 1 < j < m. Since we are in the f**-hybrid model and (based on our assumption) there is
at least one honest party participated in ZSPA (i.e., there are at most m — 1 malicious participants of ZSPA),
the distribution of the messages it receives from f*" in the real and ideal models is identical. Furthermore,
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as we discussed in Case 1, (¢, €9, u9) in the real model and (¢, &9, u®) in the ideal model have identical
distribution. The honest sender’s output distribution in both models is identical, as the distribution of f,’s
output (i.e., k) in both models is identical.

Now we show that the probability that the auditor aborts in the ideal and real models are statistically
close. In the ideal model, Sim%™* is given the ideal functionality’s output that includes key k. Therefore, it
can check whether the key that A, sends to it equals k, i.e., k = k’. Thus, it aborts with the probability 1.
However, in the real model, an honest auditor is not given the output of CT (say key k) and it can only check
whether the key is consistent with the hash value ¢ and the Merkle tree’s root g stored on the blockchain.
This means the adversary can distinguish the two models if in the real model it sends a key k, such that
k # k and still passes the checks. Specifically, it sends the invalid key k that can generate valid pair (9,9),
as follows: H(k) = ¢ and MT.genTree(z, ,,..., 2, ) — g, Where each 2/, is derived from £ using the same
technique described in step 3 above. Nevertheless, this means that the adversary breaks the second preimage
resistance property of H; however, H is the second-preimage resistance and the probability that the adversary
succeeds in finding the second preimage is negligible in the security parameter, i.e., €¢(A) where A is the hash
function’s security parameter. Therefore, in the real model, the auditor aborts if an invalid key is provided
with a probability 1—e(\) which is statically close to the probability that Sim%™* aborts in the same situation
in the ideal model, i.e., 1 — ¢(A) vs 1. Hence, the distribution of the joint outputs of the adversary, honest
sender, and honest auditor in the real and ideal models is indistinguishable. O

5.4 Unforgeable Polynomials

In this section, we introduce the notion of “unforgeable polynomials”. Informally, an unforgeable polynomial
has a secret factor. To ensure that an unforgeable polynomial has not been tampered with, a verifier can
check whether the polynomial is divisible by the secret factor.

To turn an arbitrary polynomial 7 of degree d into an unforgeable polynomial €, one can (i) pick three
secret random polynomials (¢, w,-y) and (ii) compute 8 = - w -7+~ mod p, where deg(¢) = 1, deg(w) = d,
and deg(v) = 2d + 1.

To verify whether 6 has been tampered with, a verifier (given 6,-, and ¢) can check if 8 — ~ is divisible
by ¢. Informally, the security of an unforgeable polynomial states that an adversary (who does not know the
three secret random polynomials) cannot tamper with an unforgeable polynomial without being detected,
except with a negligible probability, in the security parameter. Below, we formally state it.

Theorem 6 (Unforgeable Polynomial). Let polynomials ¢, w, and ~ be three secret uniformly random

polynomials (i.e., ¢,w,y & F,[z]), GCD(¢,y) = 1, polynomial m be an arbitrary polynomial, deg(¢) =
1,deg(w) = d,deg(y) = 2d+1, deg(w) = d, and p be a A-bit prime number. Also, let polynomial @ be defined
as 0 = ¢ -w-m+ vy mod p. Given (0,7), the probability that an adversary (which does not know ¢,w, and
~) can forge 8 to an arbitrary polynomial § such that & # 0, deg(d) = const(X), and ¢ divides § — v is
negligible in the security parameter A, i.e.,

Pri¢| (6 -] <e()

Proof. Let 7 = d — v and { = a - x + b. Since = is a random polynomial of degree 2d + 1 and unknown
to the adversary, given (0, ), the adversary cannot learn anything about the factor ¢; as from its point of
view every polynomial of degree 1 in F,[X] is equally likely to be . Moreover, polynomial 7 has at most
Maaz(deg(8),2d + 1) irreducible non-constant factors. For ¢ to divide 7, one of the factors of 7 must be

equal to ¢. We also know that ¢ has been picked uniformly at random (i.e., a,b & F,) and by definition
GCD(¢,v) = 1. Thus, the probability that ¢ divides 7 is negligible in the security parameter, A. Specifically,

Maz(deg(8),2d +1)
PT[C | (6 _’7)] < 222

=€(N)
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An interesting feature of an unforgeable polynomial is that the verifier can perform the check without
needing to know the original polynomial 7r. Another appealing feature of the unforgeable polynomial is that it
supports linear combination and accordingly batch verification. Specifically, to turn n arbitrary polynomials
[, ..., ,] into unforgeable polynomials, one can construct 6, = ¢ - w, - w;, + =, mod p, where Vi, 1 <i <n.

To check whether all polynomials [0, ...,0,] are intact, a verifier can (i) compute their sum x = > 8,

=1

and (ii) check whether x — > =, is divisible by ¢. Informally, the security of an unforgeable polynomial states
i=1

that an adversary (who does not know the three secret random polynomials for each 6,) cannot tamper with

any subset of the unforgeable polynomials without being detected, except with a negligible probability. We

formally state it, below.

Theorem 7 (Unforgeable Polynomials’ Linear Combination) Let polynomial ¢ be a secret polyno-
mial picked uniformly at random; also, let & = |w,,...,w,] and ¥ = [’yh. - Ya] be two vectors of secret
uniformly random polynomials (i.e., ¢, w;,~; & F,[z]), GCD(,~v:) = 1, ® = [m,,...,m,] be a vector of
arbitrary polynomials, deg(¢) = 1,deg(w;) = d,deg(v;) = 2d + 1, deg(w,) = d, p be a A-bit prime number,
and 1 < i < n. Moreover, let polynomial 8, be defined as 8, = { - w, - w; + -y, mod p, and g = [6,,...,0,].
Given (3, ), the probability that an adversary (which does not know ¢, &, and ) can forge t polynomz—

als, without loss of generality, say 6,, ...,0, € g to arbitrary polynomials 6., ..., 8, such that Z d, # Z 0,

deg(8,) = const(N), and ¢ divides (Z d, + Z 6, — Z v,) is negligible in the security parameter A, i.e.,

j=t+1 j=1

Pri¢ | Z5+Z‘9*Z% ] <e(X

j=t+4+1

Proof. This proof is a generalisation of that of Theorem 6. Let 7, = §; —~, and { = a-r+ b. Since every
v, is a random polynomial of degree 2d + 1 and unknown to the adversary, given (0 7), the adversary
cannot learn anything about the factor ¢. Each polynomial 7; has at most Max (deg(6 ) 2d + 1) irreducible

non-constant factors. We know that ¢ has been picked uniformly at random (i.e., a,b < F,), by definition
GCD(¢,~;) =1, and ¢ does divide every 8. Therefore, the probability that ¢ divides Z 0, + Z 0, — Z Y,

=1 j=t+1 j=1

equals the probability that ¢ equals to one of the factors of every ;, that is neghglble in the security
parameter. Concretely,

H Maaz(deg(8;),2d + 1)

Pri¢ | 26 Y0 Z% < oo =€(N)

j=t+1

O
It is not hard to see that, Theorem 7 is a generalisation of Theorem 6. Briefly, in Justitia, we will use

unforgeable polynomials (and their linear combinations) to allow a smart contract to efficiently check whether
the polynomials that the clients send to it are intact, i.e., they are VOPR’s outputs.

6 Justitia: A Concrete Construction of PSZ”¢

6.1 Main Challenges to Overcome

We need to address several key challenges, to design an efficient scheme that realises PSZ”¢. Below, we
outline these challenges.
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Keeping Overall Complexities Low. In general, in multi-party PSIs, each client needs to send messages
to the rest of the clients and/or engage in secure computation with them, e.g., in [26,34], which would result
in communication and/or computation quadratic with the number of clients. To address this challenge, we
(a) allow one of the clients as a dealer to interact with the rest of the clients,* and (b) we use a smart contract,
which acts as a bulletin board to which most messages are sent and also performs lightweight computation
on the clients’” messages. The combination of these approaches will keep the overall communication and
computation linear with the number of clients (and sets’ cardinality).

Securely Randomising Input Polynomials. In multi-party PSIs that rely on the polynomial represen-
tation, it is essential that an input polynomial of a client be randomised by another client [3]. To do that
securely and efficiently, we require the dealer and each client together to engage in an instance of VOPR, which
we developed in Section 5.

Preserving the Privacy of Outgoing Messages. Although the use of regular public smart contracts
(e.g., Ethereum) will help keep overall complexity low, it introduces another challenge; namely, if clients do
not protect the privacy of the messages they send to the smart contracts, then other clients (e.g., dealer) and
non-participants of PSI (i.e., the public) can learn the clients’ set elements and/or the intersection. Because
standard smart contracts do not automatically preserve messages’ privacy. To efficiently protect the privacy
of each client’s messages (sent to the contracts) from the dealer, we require the clients (except the dealer) to
engage in ZSPA-A which lets each of them generate a pseudorandom polynomial with which it can blind its
message. To protect the privacy of the intersection from the public, we require all clients to run a coin-tossing
protocol to agree on a blinding polynomial, with which the final result that encodes the intersection on the
smart contract will be blinded.

Ensuring the Correctness of Subroutine Protocols’ Outputs. In general, any MPC that must remain
secure against an active adversary is equipped with a verification mechanism that ensures an adversary is
detected if it deviates from the protocol and affects messages’ integrity, during the protocol’s execution.
This is the case for the subroutine protocols that we use, i.e., VOPR and ZSPA-A. Nevertheless, this type of
verification itself is not always sufficient. Because in certain cases, the output of an MPC protocol may be fed
as input to another MPC and we need to ensure that the actual/intact output of the first MPC is fed to the
second one. This is the case in our PSI’s subroutines as well. To address this challenge, we use unforgeable
polynomials; specifically, the output of VOPR is an unforgeable polynomial (that encodes the actual output);
if the adversary tampers with the VOPR’s output and uses it later, then a verifier can detect it. We will have
the same integrity guarantee for the output of ZSPA-A for free. Because (i) VOPR is called before ZSPA-A, and
(ii) if clients use intact outputs of ZSPA-A, then the final result (i.e., the sum of all clients’ messages) will not
contain any output of ZSPA-A, as they would cancel out each other. Thus, by checking the correctness of the
final result, one can ensure the correctness of the outputs of VOPR and ZSPA-A; in one go.

6.2 Description of Justitia (JUS)

An overview. At a high level, Justitia (JUS) works as follows. First, each client encodes its set elements into
a polynomial. All clients sign a smart contract and deposit a predefined amount of coins into it. Next, one of
the clients as a dealer, D, randomises the rest of the clients’ polynomials and imposes a certain structure to
their polynomials. The clients also randomise D’s polynomials. The randomised polynomials reveal nothing
about the clients’ original polynomials representing their set elements. Then, all clients send their randomised
polynomials to the smart contract. The contract combines all polynomials and checks whether the resulting
polynomial still has the structure imposed by D. If the contract concludes that the resulting polynomial does
not have the structure, then it invokes an auditor, Aud, to identify misbehaving clients and penalise them.

4 This approach has similarity with the non-secure PSls in [23].
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Nevertheless, if the resulting polynomial has the structure, then the contract outputs an encoded polynomial
and refunds the clients’ deposits. In this case, all clients can use the resulting polynomial (output by the
contract) to locally find the intersection. Figure 4 outlines the interaction between parties.
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Fig. 4: Outline of the interactions between parties in Justitia

One of the novelties of JUS is a lightweight verification mechanism which allows a smart contract to
efficiently verify the correctness of the clients’ messages without being able to learn/reveal the clients’ set
elements. To achieve this, D randomises each client’s polynomials and constructs unforgeable polynomials on
the randomised polynomials (in one go). If any client modifies an unforgeable polynomial that it receives and
sends the modified polynomial to the smart contract, then the smart contract would detect it, by checking
whether the sum of all clients’ (unforgeable) polynomials is divisible by a certain polynomial of degree 1. The
verification is lightweight because: (i) it does not use any public key cryptography (often computationally
expensive), (ii) it needs to perform only polynomial division, and (iii) it can perform batch verification, i.e.,
it sums all clients randomised polynomials and then checks the result’s correctness.

Now, we describe JUS in more detail. First, all clients sign and deploy a smart contract, SCys. Each
of them put a certain amount of deposit into it. Then, they together run CT to agree on a key, mk, that
will be used to generate a set of blinding polynomials to hide the final result from the public. Next, each
client locally maps its set elements to a hash table and represents the content of each hash table’s bin as a
polynomial, 7. After that, for each bin, the following steps are taken. All clients, except D, engage in ZSPA-A
to agree on a set of pseudorandom blinding factors such that their sum is zero.

Then, D randomises and constructs an unforgeable polynomial on each client’s polynomial, 7r. To do that,
D and every other client engage in VOPR that returns to the client a polynomial. D and every other client
invoke VOPR again to randomise D’s polynomial. VOPR returns to the client another unforgeable polynomial.
Note that the output of VOPR reveals nothing about any client’s original polynomial 7r, as this polynomial
has been blinded/encrypted with another secret random polynomial by D, during the execution of VOPR.
Each client sums the two polynomials, blinds the result (using the output of ZSPA-A), and sends it to SCjys.

After all of the clients send their input polynomials to SCyys, D sends to SCyys a switching polynomial
that will allow SCys to obliviously switch the secret blinding polynomials used by D (during the execution
of VOPR) to blind each client’s original polynomial 7 to another blinding polynomial that all clients can
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generate themselves, by using key mk. The switching polynomial is constructed in a way that does not affect
the verification of unforgeable polynomials.

Next, D sends to SCyys a secret polynomial, ¢, that will allow SCys to check unforgeable polynomials’
correctness. Then, SCjys sums all clients’ polynomials and checks if ¢ can divide the sum. SCyys accepts
the clients’ inputs if the polynomial divides the sum; otherwise, it invokes Aud to identify misbehaving
parties. In this case, all honest parties’ deposit is refunded to them and the deposit of misbehaving parties
is distributed among the honest ones as well. If all clients behave honestly, then each client can locally find
the intersection. To do that, it uses mk to locally remove the blinding polynomial from the sum (that the
contract generated), then evaluates the unblinded polynomial at each of its set elements and considers an
element in the intersection when the evaluation equals zero.

Detailed Description of JUS. Below, we elaborate on how JUS exactly works (see Table 1 for description
of the main notations used).

1. All clients in CL = {A,, ..., A,., D} sign a smart contract: SCys and deploy it to a blockchain. All clients
get the deployed contract’s address. Also, all clients engage in CT to agree on a secret master key, mk.
2. Each client in C'L builds a hash table, HT, and inserts the set elements into it, i.e., Vi : H(s,) = indz, then
8; = HT,,4.. It pads every bin with random dummy elements to d elements (if needed). Then, for every
d

bin, it constructs a polynomial whose roots are the bin’s content: @ = [](x — s}), where s/ is either s,
i=1
or a random value.
3. Every client C in CL \ D, for every bin, agree on b = 3d + 3 vectors of pseudorandom blinding factors:
such that the sum of each vector elements is zero, i.e., > z;;, = 0, where 0 < < b — 1. To do that,
j=1
they participate in step 1 of ZSPA-A. By the end of this step, for each bin, they agree on a secret key k
(that will be used to generate the zero-sum values) as well as two values stored in SCyys, i.e., ¢: the key’s
hash value and g: a Merkle tree’s root. After time t,, D ensures that all other clients have agreed on the
vectors (i.e., all provided “approved” to the contract). If the check fails, it halts.
4. Each client in C'L deposits §j + ch amount to SCyys. After time ¢,, every client ensures that in total
(j + ch) - (m+ 1) amount has been deposited. Otherwise, it halts and the clients’ deposit is refunded.

z

1,59

5. D picks a random polynomial ¢ < F,[X] of degree 1, for each bin. It, for each client C, allocates to
each bin two random polynomials: w®:©), pP© & F,[X] of degree d, and two random polynomials:
P P« F [X] of degree 3d+ 1. Also, each client C, for each bin, picks two random polynomials:
W@ p@D) E R I1X] of degree d.

6. D randomises other clients’ polynomials. To do so, for every bin, it invokes an instance of VOPR (presented
in Fig. 1) with each client C; where D sends ¢ - w® < and v® 9, while client C sends w@? - (9 to
VOPR. Each client C, for every bin, receives a blind polynomial of the following form:

0(C) = ¢ WP . WD) (@) PO

from VOPR. If any party aborts, the deposit would be refunded to all parties.

7. Each client C' randomises D’s polynomial. To do that, each client C|, for each bin, invokes an instance of
VOPR with D, where each client C' sends p©?), while D sends ¢ - p® - (P) and §*© to VOPR. Every
client C, for each bin, receives a blind polynomial of the following form:

ggc) = pPD . pl@D) gD 4§

from VOPR. If any party aborts, the deposit would be refunded to all parties.
8. Each client C, for every bin, masks the sum of polynomials 8(%) and 6{<’ using the blinding factors: z, .,
generated in step 3. Specifically, it computes the following blind polynomial (for every bin):

v(© = eiC;) + géc) + 7
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10.

11.

12.

13.

3d+2

where 7 = Z Zio - x'. Next, it sends all @ to SCyys. If any party aborts, the deposit would be

refunded to all partles

. D ensures all clients sent their inputs to SCjyg. If the check fails, it halts and the deposit would be

refunded to all parties. It allocates a fresh pseudorandom polynomial 4’ of degree 3d, to each bin. To
do so, it uses mk to derive a key for each bin: k,,,, = PRF(mk, indx) and then uses the derived key to
generate 3d + 1 pseudorandom coefficients ¢, ;4. = PRF(k;,4.,4) Where 0 < j < 3d. Also, for each bin, it
allocates a fresh random polynomial: w’® of degree d.

D, for every bin, computes a polynomial of the form:

Am

v®P = WP ) Z (PO 4 FPO) 4 ¢y

c=4,

It sends to SCjys polynomials v® and ¢, for each bin.
SC jys takes the following steps:
(a) for every bin, sums all related polynomials provided by all clients in P:

Am
d=v" + Z (@
C=A1
Am Am
=¢- (w/(m S 4 Z (WP . @D (@) D). Z (pP . p@P)) 4 7/)

Cc=A; C=Ay

(b) checks whether, for every bin, ¢ divides ¢. If the check passes, it sets Flag = True. Otherwise, it
sets Flag = False.

If the above check passes (i.e., Flag = True), then the following steps are taken:

(a) SCiys sends back each party’s deposit, i.e., § + ch amount.

(b) each client (given ¢ and mk) finds the elements in the intersection as follows.
i. derives a bin’s pseudorandom polynomial, 4/, from mk.
ii. removes the blinding polynomial from each bin’s polynomial:

$=¢—C
iii. evaluates each bin’s unblinded polynomial at every element s, belonging to that bin and considers
the element in the intersection if the evaluation is zero: i.e., ¢'(s,) = 0.

If the check does not pass (i.e., Flag = False), then the following steps are taken.

(a) Aud asks every client C' to send to it the PRF’s key (generated in step 3), for every bin. It inserts
the keys to KTt generates a list L initially empty. Then, for every bin, Aud takes step 2 of ZSPA-A,
., invokes Audit( % ,q,¢,3d+3,9) — (L, 7). Every time it invokes Audit, it appends the elements
of returned L to L. Aud for each bin sends I to SCyys. It also sends to SCyys the list L of all
misbehaving clients detected so far.
(b) to help identify further misbehaving clients, D takes the following steps, for each bin of client C
whose ID is not in L.
i. computes polynomial x(P-¢) as follows.

X(D-,C) — C . n(D,C) _ (,-),<D,C) + 5(D,C))

where ‘P is a fresh random polynomial of degree 3d + 1.
ii. sends polynomial x®< to SC yys.
Note, if L contains all clients’ IDs, then D does not need to take the above steps 13(b)i and 13(b)ii.
(¢) SCyys, takes the following steps to check if the client misbehaved, for each bin of client C' whose ID
is not in L.
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i. computes polynomial ¢“ as follows:

L€ = X(DYC‘) + v + IJ’(C)

=¢- (PO 4 w® D WD) (@) 4 (PO [HED) (D) | e(©))
where pu(© € 7 generated and sent to SCyys by Aud in step 13a.
ii. checks if ¢ divides ¢‘@. If the check fails, it appends the client’s ID to a list L’.
If L contains all clients’ IDs, then SCjys does not take the above two steps.

(d) SCjys refunds the honest parties’ deposit. Also, it retrieves the total amount of ch from the deposit
of dishonest clients (i.e., those clients whose IDs are in L or L’) and sends it to Aud. It also splits
the remaining deposit of the misbehaving parties among the honest ones. Thus, each honest client
receives §j + ch+ % amount in total, where m’ is the total number of misbehaving parties.
One may be tempted to replace Justitia with a scheme in which all clients send their encrypted sets to

a server (potentially semi-honest and plays Aud’s role) which computes the result in a privacy-preserving

manner. We highlight that the main difference is that in this (hypothetical) scheme the server is always

involved; whereas, in our protocol, Aud remains offline as long as the clients behave honestly and it is
invoked only when the contract detects misbehaviours.
Next, we present a theorem that formally states the security of JUS.

Theorem 8. Let polynomials ¢, w, and ~ be three secret uniformly random polynomials. If 0 = - w - 7 +
~ mod p is an unforgeable polynomial (w.r.t. Theorem 6), ZSPA-A, VOPR, PRF, and smart contracts are secure,
then JUS securely realises f*9 with Q-fairness (w.r.t. Definition 7) in the presence of m — 1 active-adversary
clients (i.e., A;s) or a passive dealer client, passive auditor, or passive public.

6.3 Proof of JUS
In this section, we prove Theorem 8, i.e., the security of JUS.

Proof. We prove Theorem 8 by considering the case where each party is corrupt, at a time.

Case 1: Corrupt m — 1 clients in {A,,..., A, }. Let P’ be a set of at most m — 1 corrupt clients, where
P c {A,,...,A,}. Let set P be defined as follows: P = {A,,..., A} \ P’. Also, let Sim’® be the simulator,
which uses a subroutine adversary, A. Below, we explain how Sim’® (which receives the input sets of honest

dealer D and honest client(s) in P) works.

constructs and deploys a smart contract. It sends the contract’s address to A.

simulates CT and receives the output value, mk, from its functionality, f.

simulates ZSPA-A for each bin and receives the output value, (k, g, q), from its functionality, f=**.

deposits in the contract the total amount of (j + ch) - (m — |P’| 4+ 1) coins on behalf of D and honest

client(s) in P. It sends to A the amount deposited in the contract.

5. checks if A has deposited (§ + ch) - |P'| amount. If the check fails, it instructs the ledger to refund the
coins that every party deposited and sends message abort, to TTP (and accordingly to all parties); it
outputs whatever A outputs and then halts.

6. picks a random polynomial ¢ of degree 1, for each bin. Also, Sim’®, for each client C € {A,,...,A,.}
allocates to each bin two random polynomials: (w®<), p®-) of degree d and two random polynomials:
(49§ of degree 3d 4+ 1. Moreover, Sim’*® for every honest client C’ € P, for each bin, picks two
random polynomials: (w(©" ), p©" ) of degree d.

7. simulates VOPR using inputs ¢ -w® < and v+ for each bin. Accordingly, it receives the inputs of clients
C" € P ie., w®" P . x@") from its functionality f"*, for each bin.

8. extracts the roots of polynomial w(©"? . (°") for each bin and appends those roots that are in the sets
universe to a new set S,

9. simulates VOPR again using inputs ¢ - p9 - ™ and 6P, for each bin.

Ll
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10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

sends to TTP the input sets of all parties; namely, (i) client D’s input set: S, (ii) honest clients’ input
sets: S for all C’ in P, and (iii) A’s input sets: S, for all C” in P’. For each bin, it receives the
intersection set, S, from TTP.

I1Snl
represents the intersection set for each bin as a polynomial, 7, as follows: m = [[ (z—s,), where s, € S-.

i=1

constructs polynomials 8(°" = ¢ - w P . @D . 4 4P:C) ) = (. p:CN . pe"D) . g 4§D and
R 3d+2 v
v© =0 + 6" + 7" for each bin and each honest client C’ € P, where 7(9) = > z, . -2’ and
i=0

each z; . is derived from k.
sends to A polynomial (°” for each bin and each client C".
receives v©”) from A, for each bin and each client C” € P’. It ensures that the output for every C” has
been provided. Otherwise, it halts.
if there is any abort within steps 7-14, then it sends abort, to TTP and instructs the ledger to refund
the coins that every party deposited. It outputs whatever A outputs and then halts.

A

constructs polynomial v® = ¢ - w'"” -7 — i (YO 4 §P) + ¢ -4 for each bin, where w'"” is a
c=4,

fresh random polynomial of degree d and 4’ is a pseudorandom polynomial derived from mk.

sends to A polynomials v and ¢ for each bin.

given each (") computes polynomial ¢’ as follows ¢ = > v© — S (4@ 4§ for

vc' ep’ vc' ep’

every bin. Then, Sim’* checks whether ¢ divides ¢/, for every bin. If the check passes, it sets Flag = True.

Otherwise, it sets Flag = False.

if Flag = True:

(a) instructs the ledger to send back each party’s deposit, i.e., y—!—ch amount. It sends a message deliver
to TTP.

(b) outputs whatever A outputs and then halts.

if Flag = False: N

(a) receives |P'| keys of the PRF from A, i.e., k' = [k, ..., k[, ], for every bin.

(b) checks whether the following equation holds: &’ = k, for every k/ € %'. Note that k is the output of
=™+ generated in step 3. It constructs an empty list L' and appends to it the indices (e.g., j) of the
keys that do not pass the above check.

(c) simulates ZSPA-A and receives from f*"* the output that contains a vector of random polynomials,
7', for each valid key.

(d) sends to A, the list L’ and vector 7', for every bin.

(e) for each bin of client C whose index (or ID) is not in L’ computes polynomial x®-< as follows:
xP = -nP — (4P 4 §P9) where P is a fresh random polynomial of degree 3d + 1.
Note, C includes both honest and corrupt clients, except those clients whose index is in L’. Sim’®
sends every polynomial x® to A.

(f) given each v°) (by A in step 14), computes polynomial (ﬁ’(c”) as follows: (;5’(0”) =p©@"
¢ for every bin. Then, Sim’® checks whether ¢ divides ¢’ ©"for every bin. It appends the
index of those clients that did not pass the above check to a new list, L”. Note that L' N L" = L.

(g) if L' or L" is not empty, then it instructs the ledger: (i) to refund the coins of those parties whose
index is not in L' and L”, (ii) to retrieve ch amount from the adversary (i.e., one of the parties

whose index is in one of the lists) and send the ch amount to the auditor, and (iii) to compensate
m/-(jji+ch)—ch
m—m/’

_V(D'C”) —

each honest party (whose index is not in the two lists) amount, where m’ = |L'| + |L"|.
Then, it sends message abort, to TTP.

(h) outputs whatever A outputs and halts.

Next, we show that the real and ideal models are computationally indistinguishable. We first focus on

the adversary’s output. In the real and ideal models, the adversary sees the transcripts of ideal calls to f., as
well as this functionality outputs, i.e., mk. Due to the security of CT (as we are in the f,-hybrid world), the
transcripts of f in both models have identical distribution, so have the random output of f, i.e., mk. The
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same holds for (the transcripts and) outputs (i.e., (k,g,q)) of f=™* that the adversary observes in the two
models. Also, the deposit amount is identical in both models. Thus, in the case where abort, is disseminated
at this point; the adversary’s output distribution in both models is identical.

The adversary also observes (the transcripts and) outputs of ideal calls to f"* in both models, i.e.,
output (9§C”) =¢(- WP L @Dy e’ 7<D,C”>’0§c/'> =¢- p(D,C”) . p<C”,D> @™ 4 5<D,c/’>) for each
corrupted client C”. However, due to the security of VOPR, the A’s view, regarding VOPR, in both models
have identical distribution. In the real model, the adversary observes the polynomial v(® that each honest
client C stores in the smart contract. Nevertheless, this is a blinded polynomial comprising of two uniformly
random blinding polynomials (i.e., v* and §®*?’) unknown to the adversary. In the ideal model, A is
given polynomial v©" for each honest client C’. This polynomial has also been blinded via two uniformly
random polynomials (i.e., v and §*:°") unknown to A. Thus, v‘©) in the real model and v‘© in the
ideal model have identical distributions. As a result, in the case where abort, is disseminated at this point;
the adversary’s output distribution in both models is identical.

Furthermore, in the real world, the adversary observes polynomials ¢ and v that D stores in the
smart contract. Nevertheless, ¢ is a uniformly random polynomial, also polynomial v® has been blinded;
its blinding factors are the additive inverse of the sum of the random polynomials v**< and §°*°) unknown
to the adversary, for every client C' € {4,,...,A,.} and D. In the ideal model, A is given ¢ and v®’, where
the former is a random polynomial and the latter is a blinded polynomial that has been blinded with the
additive inverse of the sum of random polynomials 4(?-< and §®*“’ unknown to it, for all client C'. Therefore,
(¢, ™) in the real model and (¢, ™) in the ideal model component-wise have identical distribution.

Also, the sum of less than m + 1 blinded polynomials vV, ..., v“m) p®P) in the real model has identical
distribution to the sum of less than m + 1 blinded polynomials vV, .. v p®) in the ideal model,
as such a combination would still be blinded by a set of random blinding polynomials unknown to the
adversary. Now we discuss why the two polynomials £ —~ in the real model and 2 — 4/ in the ideal model
are indistinguishable. Note that we divide and then subtract polynomials ¢ because the adversary already
knows (and must know) polynomials (¢,~’). In the real model, polynomial % — ' has the following form:

Am Am
?_7/ — WP . 4 Z (WP (@) (@) (P, Z (PP p P = pged(m®, wAD | wAm) (2)
¢ c=4, c=4,
In Equation 2, every element of [w'®, ..., w® 9 p 9] is a uniformly random polynomial for every client
C e {A,,...,A,.} (including corrupt ones) and client D; because it has been picked by (in this case honest)
client D. Thus, as shown in Section 3.9, % — ' has the form p - ged(w®, 7wV . w@m)) where p is a
uniformly random polynomial and ged(w®, w0 .. 7w(4m)) represents the intersection of the input sets.
In the ideal model, A can construct polynomial ¢ using its (well-formed) inputs v“”? and polynomials
v©" that the simulator has sent to it, for all ¢/ € P and all C” € P’. Thus, in the ideal model, polynomial
% — ~' has the following form:

(5 Wy s E o )

C vc'ep vclep
17 " " " 1"
+( E : (WP (€D (@) 4 () E : (pPC) . p© ,D>)) (3)
vc!' ep’ vc!' ep’

= - ged(m, w®, w")
In Equation 3, every element of the vector (WP WP p1.C) (0.6 i a uniformly random poly-

nomial for all C’ € P and all C” € P’, as they have been picked by Sim’*. Therefore, % — ' equals
- ged(m, ™ w©), such that p is a uniformly random polynomial and ged(mw, 7w, w©")) represents the
intersection of the input sets. We know that ged(w®, w40 .. wAm)) = ged(mw, ™, 7€), as 7 includes
the intersection of all clients’ sets. Also, p has identical distribution in the two models, because they are
uniformly random polynomials. Thus, % — 4’ in the real model and % — 4’ in the ideal model are indistin-
guishable.

Now we focus on the case where Flag = False. In the real model, the adversary observes the output of
Audit(.) which is a list of indices L and a vector of random polynomials 77 picked by an honest auditor. In
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the ideal model, A is given a list L’ of indices and a vector of random polynomials 1’ picked by the simulator.
Thus, the pair (L, if) in the real model has identical distribution to the pair (L', ') in the ideal model.
Moreover, in the real model, the adversary observes each polynomial x®¢ = ¢ - — (4P 4 §P)
that D stores in the contract, for each bin and each client C' whose index is not in L. This is a blinded
polynomial with blinding factor n‘®< which itself is a uniformly random polynomial picked by D. In the
ideal model, A is given a polynomial of the form x*< = ¢ -0 — (42 4 §P) for each bin and each
client C' whose index is not in L’. This is also a blinded polynomial whose blinding factor is n®:¢> which
itself is a random polynomial picked by the simulator. Therefore, x©*¢ in the real model has identical
distribution to x®*® in the ideal model. In the real model, the adversary observes polynomial ¢(©) =
¢ (MP +wPD . W@ . gl 4 g0 p(@D) . ) 4 €A which is a blinded polynomial whose blinding
factor is the sum of the above random polynomials, i.e., n®< + £© . In the ideal model, A already has
polynomials x® @, v© and pu©, where u@ € @’; this lets A compute ¢ = x®P + p©@ 4 p©@ =
¢- (NP +w® . @@ D) g pPC . p(e D) e 4 L) where £(©) is a random blinding polynomial used in
w9, Nevertheless, (< itself is a blinded polynomial whose blinding factor is the sum of random polynomials,
ie., NP9 + £, Hence, the distribution of polynomial ¢/ in the real model and ¢'“’ in the ideal model

are identical. Moreover, the integer 4 + ch + % has identical distribution in both models.

Next, we show that the honest party aborts with the same probability in the real and ideal models. Due
to the security of CT, an honest party (during the execution of CT) aborts with the same probability in both
models; in this case, the adversary learns nothing about the parties’ input set and the sets’ intersection as
the parties have not sent out any encoded input set yet. The same holds for the probability that honest
parties abort during the execution of ZSPA-A. In this case, an aborting adversary also learns nothing about
the parties’ input set and the sets’ intersection. Since all parties’ deposit is public, an honest party can
look up and detect if not all parties have deposited a sufficient amount with the same probability in both
models. If parties halt because of insufficient deposit, no one learns about the parties’ input set and the sets’
intersection because the inputs (representation) have not been sent out at this point.

Due to the security of VOPR, honest parties abort with the same probability in both models. In the case
of an abort during VOPR execution, the adversary would learn nothing (i) about its counter party’ input set
due to the security of VOPR, and (ii) about the rest of the honest parties’ input sets and the intersection
as the other parties’ input sets are still blinded by random blinding factors known only to D. In the real
model, D can check if all parties provided their encoded inputs, by reading from the smart contract. The
simulator also can do the same check to ensure A has provided the encoded inputs of all corrupt parties.
Therefore, in both models, an honest party with the same probability would detect the violation of such
a requirement, i.e., providing all encoded inputs. Even in this case, if an adversary aborts (by not proving
its encoded inputs), then it learns nothing about the honest parties’ input sets and the intersection for the
reason explained above.

In the real model, the smart contract sums every client C’s polynomial v(©) with each other and with D’s
polynomial ™ which removes the blinding factors that D initially inserted (during the execution of VOPR),
and then checks whether the result is divisible by ¢. Due to (a) Theorem 7 (i.e., unforgeable polynomials’
linear combination), (b) the fact that the smart contract is given the random polynomial ¢ in plaintext, (c)
no party (except honest client D) knew anything about ¢ before they send their input to the contract, and
(d) the security of the contract (i.e., the adversary cannot influence the correctness of the above verification
performed by the contract), the contract can detect if a set of outputs of VOPR has been tampered with,
with a probability at least 1 — e(A). In the ideal model, Sim’* also can remove the blinding factors and it
knows the random polynomial ¢, unlike the adversary who does not know ¢ when it sends the outputs of
VOPR to Sim’®. So, Sim’}® can detect when A modifies a set of the outputs of VOPR that were sent to Sim’*
with a probability at least 1 — ¢(\), due to Theorem 7. Hence, the smart contract in the real model and the
simulator in the ideal model would abort with a similar probability.

Moreover, due to the security of ZSPA-A, the probability that an invalid key k,; € :k: is added to the list L
in the real world is similar to the probability that Sim’*® detects an invalid key &k € k’ in the ideal world. In
the real model, when Flag = False, the smart contract can identify each ill-structured output of VOPR (i.e.,

(@) with a probability of at least 1 — e(A) by checking whether ¢ divides ¢“’, due to (a) Theorem 6 (i.e.,
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unforgeable polynomial), (b) the fact that the smart contract is given ¢ in plaintext, (c) no party (except
honest client D) knew anything about ¢ before they send their input to the contract, and (d) the security
of the contract. In the ideal model, when Flag = False, given each v, Sim’® can remove its blinding
factors from ") which results in ¢’ ") and then check if ¢ divides ¢/ ") The simulator can also detect
an ill-structured v“") with a probability of at least 1 — ¢()), due to Theorem 6, the fact that the simulator
is given ¢ in plaintext, and the adversary is not given any knowledge about ¢ before it sends to the simulator
the outputs of VOPR. Hence, the smart contract in the real model and Sim’* in the ideal model would detect
an ill-structured input of an adversary with the same probability.

Now, we analyse the output of the predicates (Q™*, Q"', QUF*, Q¥ *) in the real and ideal models. In
the real model, all clients proceed to prepare their input set only if the predefined amount of coins has been
deposited by the parties; otherwise, they will be refunded and the protocol halts. In the ideal model also the
simulator proceeds to prepare its inputs only if a sufficient amount of deposit has been put in the contract;
otherwise, it would send message abort, to TTP. Thus, in both models, the parties proceed to prepare their
inputs only if @™*(.) — 1. In the real model, if there is an abort after the parties ensure there is enough
deposit and before client D provides its encoded input to the contract, then all parties would be able to
retrieve their deposit in full; in this case, the aborting adversary would not be able to learn anything about
honest parties input sets, because the parties’ input sets are still blinded by random blinding polynomials
known only to client D. In the ideal model, if there is any abort during steps 7-14, then the simulator sends
abort, to TTP and instructs the ledger to refund the coins that every party deposited. Also, in the case of an
abort (within the above two points of time), the auditor is not involved. Thus, in both models, in the case
of an abort within the above points of time, we would have Q"*(.) — 1. In the real model, if Flag = True,
then all parties would be able to learn the intersection and the smart contract refunds all parties, i.e., sends
each party ¢ + ch amount which is the amount each party initially deposited.

In the ideal model, when Flag = True, then Sim’® can extract the intersection (by summing the output
of VOPR provided by all parties and removing the blinding polynomials) and sends back each party’s deposit,
ie., 4+ ch amount. Hence, in both models in the case of Flag = True, when all of the parties receive the
result, we would have Q"°'(.) — 1. In the real model, when Flag = False, only the adversary which might

corrupt m’ clients would be able to learn the result; in this case, the contract sends (i) ch amount to the
m/-(§i+ch)—ch

m—m/

auditor, and (ii) amount as a compensation, to each honest party, in addition to each party’s
deposit § + ch. In the ideal model, when Flag = False, Sim’® sends abort; to TTP and instructs the ledger
to distribute the same amount among the auditor (e.g., with address adr;) and every honest party (e.g., with
address adr;) as the contract does in the real model. Thus, in both models when Flag = False, we would
have Q" (., .,.,.,adr;) = (a=1,.) and Q" *(,,.,.,.,adr;) = (.,b=1).

We conclude that the distributions of the joint outputs of the honest client C' € P, client D, Aud, and
the adversary in the real and ideal models are computationally indistinguishable.

Case 2: Corrupt dealer D. In the real execution, the dealer’s view is defined as follows:
View s ($©,(S%,...,8™)) =
{S®, adr..,m - (i + ch),ro, View], k, g, ¢, View ™ v p@m) 5.}

D

where View? and Views™ refer to the dealer’s real-model view during the execution of CT and VOPR respec-

tively. Also, rp is the outcome of internal random coins of client D and adr,. is the address of contract SC yys.

The simulator Sim%°, which receives all parties’ input sets, works as follows.

1. receives from the subroutine adversary polynomials ¢, (4“1, 8“0 ... (y@m) §Am)) (/A0 p/A0)
(w'@Am) p'am)) - where deg(v'?) = deg(6'”’) = 3d + 1,deg(w' @) = deg(p'®) = d, and deg(¢) = 1,
where C € {A,,...,A,.}.

2. generates an empty view. It appends to the view, the input set S . It constructs and deploys a smart
contract. Let adr,. be the contract’s address. It appends adr,. to the view.

3. appends to the view integer m - (§ + ch) and coins 7}, chosen uniformly at random.
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4. extracts the simulation of CT from CT’s simulator for client D. Let Sim% be the simulation. It appends
Sim% to the view.

5. picks a random key, &', and derives pseudorandom values z; ; from the key (the same way is done in
Figure 2). It constructs a Merkle tree on top of all values 2] . Let ¢’ be the root of the resulting tree. It
appends £/, ¢, and ¢ = H(k") to the view.

6. invokes VOPR’s functionality twice and extracts the simulation of VOPR from VOPR’s simulator for client
D. Let SimS™ be the simulation. It appends Sim's™ to the view.

7. given the parties’ input sets, computes a polynomial 7v that represents the intersection of the sets.

. picks m random polynomials 71 ... 7m) of degree 3d + 1 such that their sum is 0.

9. picks m pairs of random polynomials (w“, p)) ... (w@m) pt4m)) where each polynomial is of degree
d. Then, Sim}%® for each client C € {4, ..., A,,} computes polynomial @) = ¢ -7« (W@ - W' + p& .
PO + 8O 4 4O 4 @)

10. appends vV .. v“m) and the intersection of the sets S/, to the view.

0]

Next, we will show that the two views are computationally indistinguishable. D’s input S® is identi-
cal in both models; therefore, they have identical distributions. Also, the contract’s address has the same
distribution in both views, and so has the integer m - (§ + ch) Since the real-model semi-honest adversary
samples its randomness according to the protocol’s description, the random coins in both models (i.e., 75
and 7)) have identical distributions. Moreover, due to the security of CT, View?, and Sim? have identical
distributions. Keys k and &’ have identical distributions, as both have been picked uniformly at random from
the same domain. In the real model, each element of the pair (g,p) is the output of a deterministic function
on a random value k. We know that k in the real model has identical distribution to k' in the ideal model,
so do the evaluations of deterministic functions (i.e., Merkle tree, H, and PRF) on them. Therefore, each pair
(g,q) in the real model component-wise has an identical distribution to each pair (¢’,¢’) in the ideal model.
Furthermore, due to the security of the VOPR, Views™ and Sim'S™ have identical distributions.

In the real model, each »‘® has been blinded by a pseudorandom polynomial (i.e., derived from PRF’s
output) unknown to client D. In the ideal model, however, each v has been blinded by a random polynomial
unknown to client D. Due to the security of PRF, its outputs are computationally indistinguishable from
truly random values. Therefore, ¥(© in the real model and v© in the ideal model are computationally
indistinguishable. Now we focus on the sum of all ¥(© in the real model and the sum of all ©‘©) in the
ideal model, as adding them together would remove the above blinding polynomials that are unknown to
client D. Specifically, in the real model, after client D sums all ® and removes the blinding factors and

R S s G R L)
¢ that it initially imposed, it would get a polynomial of the form ¢ = <=2 C:AZ =

Am Am
S (WP @D @) 4P 3 (pP9) . pl@ D)) where w(@P) and p©P) are random polynomials
Cc=A; Cc=A;
unknown to client D. In the ideal model, after summing all ¥‘©> and removing the random polynomials

T L@ T (40450
that it already knows, it would get a polynomial of the following form: ¢’ = <=2t CZCAI =
T- Af (W@ - w©@) £ (p/© . p(©).

c=A4q

As shown in Section 3.9, polynomial ¢ has the form weged(w® wav L gAm)) where p is a uniformly
random polynomial and ged(w™®, w40 . 74m)) represents the intersection of the input sets. Moreover, it
is evident that (;AS’ has the form p -7, where p is a random polynomial and 7 represents the intersection. We
know that both ged(w®, w40, . wm)) and 7 represent the same intersection, also g in the real model

and p in the ideal model have identical distribution as they are uniformly random polynomials. Thus, two
polynomials ¢ and ¢’ are indistinguishable. Also, the output S, is identical in both views. We conclude that
the two views are computationally indistinguishable.

Case 3: Corrupt auditor. In this case, by using the proof that we have already provided for Case 1 (i.e.,
m — 1 client A;s are corrupt), we can easily construct a simulator that generates a view computationally
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distinguishable from the real-model semi-honest auditor. The reason is that, in the worst-case scenario
where m — 1 malicious client A;s reveal their input sets and randomness to the auditor, the auditor’s view
would be similar to the view of these corrupt clients, which we have shown to be indistinguishable. The
only extra messages the auditor generates, that a corrupt client A; would not see in plaintext, are random
blinding polynomials (£“1), ..., £“m)) generated during the execution of Audit(.) of ZSPA-A; however, these
polynomials are picked uniformly at random and independent of the parties’ input sets. Thus, if the smart
contract detects misbehaviour and invokes the auditor, even if m — 1 corrupt client A; reveals their input
sets, then the auditor cannot learn anything about honest parties’ input sets.

Case 4: Corrupt public. In the real model, the view of the public (i.e., non-participants of the protocol)
is defined as below:

Pub

View™ (L, B (S S<Am>)) -

{L,adr..,(m+1)-(jj+ch), k,g,q, v, ..., vAm @)}

Now, we describe how the simulator Sim7}}, works.

1. generates an empty view and appends to it an empty symbol, L. It constructs and deploys a smart
contract. It appends the contract’s address, adr., and integer (m + 1) - (§ + ch) to the view.

2. picks a random key, k', and derives pseudorandom values z/ ; from the key, in the same way, done in
Figure 2. It constructs a Merkle tree on top of the z] ; values. Let g’ be the root of the resulting tree. It
appends k', ¢’, and ¢’ = H(k") to the view.

3. for each client C € {4,,..., A,,} and client D generates a random polynomial of degree 3d + 1 (for each
bin), i.e., v . pAm) p@),

Next, we will show that the two views are computationally indistinguishable. In both views, | is identical.
Also, the contract’s addresses (i.e., adr,.) has the same distribution in both views, and so has the integer
(m+1)- (4 + ch). Keys k and k" have identical distributions as well, because both of them have been picked
uniformly at random from the same domain. In the real model, each element of pair (g,p) is the output of a
deterministic function on the random key k. We know that k in the real model has identical distribution to
k' in the ideal model, and so do the evaluations of deterministic functions on them. Hence, each pair (g, q)
in the real model component-wise has an identical distribution to each pair (¢’,¢’) in the ideal model. In
the real model, each polynomial ©(® is a blinded polynomial comprising of two uniformly random blinding
polynomials (i.e., v and *9) unknown to the adversary. In the ideal model, each polynomial v
is a random polynomial; thus, polynomials v, ... v in the real model have identical distribution to
polynomials vV ... v“m) in the ideal model. Similarly, polynomial ® has been blinded in the real model;
its blinding factors are the additive inverse of the sum of the random polynomials v*< and §”*°) unknown
to the adversary. In the ideal model, polynomial v® is a uniformly random polynomial; thus, v‘® in the
real model and v® in the ideal model have identical distributions. Moreover, in the real model even though
the sum ¢ of polynomials v™“v ... v@m @™ would remove some of the blinding random polynomials, it
is still a blinded polynomial with a pseudorandom blinding factor 4’ (derived from the output of PRF),
unknown to the adversary. In the ideal model, the sum of polynomials 4V ... v“m) p®P) jg also a random
polynomial. Thus, the sum of the above polynomials in the real model is computationally indistinguishable
from the sum of those polynomials in the ideal model. We conclude that the two views are computationally
indistinguishable. |

7 Definition of Multi-party PSI with Fair Compensation and Reward
In this section, we upgrade PSZT” to “multi-party PSI with Fair Compensation and Reward” (PSZ™°%),

which (in addition to offering the features of PSZ”¢) allows honest clients who contribute their set to receive
a reward by a buyer who initiates the PSI computation and is interested in the result.
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In PSZ7®, there are (1) a set of clients {4,,..., A,,} a subset of which is potentially active adversaries
and may collude with each other, (2) a non-colluding dealer, D, potentially semi-honest, and (3) an auditor
Aud potentially semi-honest, where all clients (except Aud) have input set. Furthermore, in PST”°" there
are two “extractor” clients, say A, and A,, where (A,, A,) € {A,,...,A,.}. These extractor clients volunteer
to extract the (encoded) elements of the intersection and send them to a public bulletin board, i.e., a smart
contract. In return, they will be paid. We assume these two extractors act rationally only when they want
to carry out the paid task of extracting the intersection and reporting it to the smart contract, so they can
maximise their profit.®> For simplicity, we let client A4,, be the buyer, i.e., the party which initiates the PSI
computation and is interested in the result.

The formal definition of PSZ”® is built upon the definition of PSZ*¢ (presented in Section 4); neverthe-
less, in PSZ7°", we ensure that honest non-buyer clients receive a reward for participating in the protocol
and revealing a portion of their inputs deduced from the result. We: (i) upgrade the predicate Q"' to QR
to ensure that when honest clients receive the result, then an honest non-buyer client receives its deposit
back plus a reward and a buyer client receives its deposit back minus the paid reward, and (ii) upgrade the
predicate QU™ to Q1" * to ensure when an adversary aborts in an unfair manner (i.e., aborts but learns the
result) then an honest party receives its deposit back plus a predefined amount of compensation plus a re-
ward. The other two predicates (i.e., @™ and @Q"*) remain unchanged. Given the above changes, we denote
the four predicates as Q := (Q™"*, QR', QUF*, Q™ *). Below, we present the formal definition of predicates

QR and QE.

Definition 8 (QR°': Delivery-with-Reward predicate). Let G be a stable ledger, adr,, be smart contract
sc’s address, adr, € Adr be the address of an honest party, & be a fixred amount of coins, and pram =
(G,adr,., ). Let R be a reward function that takes as input the computation result: res, a party’s address:
adr;, a reward a party should receive for each unit of revealed information: [, and input size: inSize. Then
R is defined as follows, if adr; belongs to a non-buyer, then it returns the total amount that adr, should be
rewarded and if adr; belongs to a buyer client, then it returns the reward’s leftover that the buyer can collect,
i.e., R(res,adr,, I, inSize) — réw,. Then, the delivery with reward predicate QL (pram, adr;,res, I, mnSize)
returns 1 if adr; has sent & amount to sc and received at least & + réw,; amount from it. Else, it returns 0.

Definition 9 (QpF*: UnFair-Abort-with-Reward predicate). Let pram := (G, adrm &) be the param-
eters defined above, and Adr’ C Adr be a set containing honest parties’ addresses, m’ = |Adr’|, and adr; €
Adr'. Let also G be a compensation function that takes as input three parameters (deps adr;,m'), where deps
is the amount of coins that all m + 1 parties deposit, adr; is an honest party’s address, and m' = |Adr'|;
it returns the amount of compensation each honest party must receive, i.e., G(de“ps, ard;,m') — &,. Let R
be the reward function defined above, i.e. R(res,adri,f7 inSize) — réw,, and let pram = (res,z', inSize).
Then, predicate QU™ is defined as QU”(pram,pr&m,G7R, de})&m’,adri) — (a,b), where a = 1 if adr, is
an honest party’s address which has sent & amount to sc and received & + &, + réw; from it, and b = 1 if
adr; is an auditor’s address which received &; from sc. Otherwise, a =b = 0.

FCR

Next, we present the formal definition of multi-party PSI with Fair Compensation and Reward, PS

Definition 10 (PSZ”%). Let " be the multi-party PSI functionality defined in Section 4. We say protocol
I realises f"" with Q-fairness-and-reward in the presence of m—3 static active-adversary clients A, s and two
rational clients A;s or a static passive dealer D or passive auditor Aud, if for every non-uniform probabilistic
polynomial time adversary A for the real model, there exists a mon-uniform probabilistic polynomial-time
adversary (or simulator) Sim for the ideal model, such that for every I € {A,, ..., A,., D, Aud}, it holds that:

PSI 5
{ldealéli\r}n((fz)yj’Q)(SM'“7Sm+1)}sl ..... ,m+1,z — {Real_A(Z) I(S ~~-7Sm+1)}sl ..... Sm+1’2

where z is an auziliary input given to A and W(f™',Q) is a functionality that wraps f"" with predicates

Q (let Del UFA, QF A)

5 Thus, similar to any A; in PSZ”C, these extractors might be corrupted by an active adversary during the PSI
computation.
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8 Anesidora: A Concrete Construction of PSZ7¢*

8.1 Main Challenges to Overcome

Rewarding Clients Proportionate to the Intersection Cardinality. In PSIs, the main private infor-
mation about the clients which is revealed to a result recipient is the private set elements that the clients
have in common. Thus, honest clients must receive a reward proportionate to the intersection cardinality,
from a buyer. To receive the reward, the clients need to reach a consensus on the intersection cardinality.
The naive way to do that is to let every client find the intersection and declare it to the smart contract.
Under the assumption that the majority of clients are honest, then the smart contract can reward the honest
result recipient (from the buyer’s deposit). Nevertheless, the honest majority assumption is strong in the
context of multi-party PSI. Moreover, this approach requires all clients to extract the intersection, which
would increase the overall costs. Some clients may not even be interested in or available to do so. This task
could also be conducted by a single entity, such as the dealer; but this approach would introduce a single
point of failure and all clients have to depend on this entity. To address these challenges, we allow any two
clients to become extractors. Each of them finds and sends to the contract the (encrypted) elements in the
intersection. It is paid by the contract if the contract concludes that it is honest. This allows us to avoid (i)
the honest majority assumption, (ii) requiring all clients to find the intersection, and (iii) relying on a single
trusted/semi-honest party to complete the task.

Dealing with Extractors’ Collusion. Using two extractors itself introduces another challenge; namely,
they may collude with each other (and with the buyer) to provide a consistent but incorrect result, e.g.,
both may declare that only s; is in the intersection while the actual intersection contains 100 set elements,
including s, . This behaviour will not be detected by a verifier unless the verifier always conducts the delegated
task itself too, which would defeat the purpose of delegation. To efficiently address this issue, we use the
counter-collusion smart contracts (outlined in Section 3.4) which creates distrust between the two extractors
and incentivises them to act honestly.

8.2 Description of Anesidora (ANE)

An Overview. To construct ANE, we mainly use JUS, deterministic encryption, “double-layered” commit-
ments, the hash-based padding technique (from Section 3.9), and the counter-collusion smart contracts. At
a high level, ANE works as follows. First, all clients run step 1 of JUS to agree on a set of parameters and
JUS’s smart contract. They deploy another smart contract, say SCye. They also agree on a secret key, mk’.
Next, the buyer places a certain deposit into SCypyg. This deposit will be distributed among honest clients as
a reward. The extractors and D deploy one of the counter-collusion smart contracts, i.e., SCpc. These three
parties deposit a certain amount on this contract. Each honest extractor will receive a portion of D’s deposit
for carrying out its task honestly and each dishonest extractor will lose a portion of its deposit for acting
maliciously. Then, each client encrypts its set elements (under mk’ using deterministic encryption) and then
represents the encrypted elements as a polynomial. The reason each client encrypts its set elements is to
ensure that the privacy of the plaintext elements in the intersection will be preserved from the public.

Next, the extractors commit to the encryption of their set elements and publish the commitments. All
clients (including D) take the rest of the steps in JUS using their input polynomials. This results in a blinded
polynomial, whose correctness is checked by JUS’s smart contact.

If JUS’s smart contact approves the result’s correctness, then all parties receive the money that they
deposited in JUS’s contract. In this case, each extractor finds the set elements in the intersection. Each
extractor proves to SCyyg that the encryptions of the elements in the intersection are among the commitments
that the extractor previously published. If SCyyr accepts both extractors’ proofs, then it pays each client
(except the buyer) a reward, where the reward is taken from the buyer’s deposit. The extractors receive their
deposits back and are paid for carrying out the task honestly. Nevertheless, if SCpye does not accept one of
the extractors’ proofs (or one extractor betrays the other), then it invokes the auditor in the counter-collusion
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contracts to identify the misbehaving extractor. Then, SCyye pays each honest client (except the buyer) a
reward, taken from the misbehaving extractor. SCyyg also refunds the buyer’s deposit.

If JUS’s smart contact does not approve the result’s correctness and Aud identified misbehaving clients,

then honest clients will receive (1) their deposit back from JUS’s contract, and (2) compensation and reward,
taken from misbehaving clients. Moreover, the buyer and extractors receive their deposit back from SCyg.
Figure 5 outlines the interaction between parties.

4 )

(2)
(4)

ct,, - .
com, ; &, & ,(g q,) © oM, .
@)
com.; , h, , 3, & —(e q:) ®) \\
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Fig.5: Outline of the interactions between parties in Anesidora

Detailed Description of ANE. Next, we describe the protocol in more detail (Table 1 summarises the main
notations used).

1.

LN

=

All clients in CL = {A,, ..., A,,, D} together run step 1 of JUS (in Section 6.2) to deploy JUS’s contract
SC s and agree on a master key, mk.

All clients in CL deploy a new smart contract, SCyyg. The address of SCyye is given to all clients.

The buyer, client A,,, before time ¢, deposits S,,;, - ¥ amount to SCyyg.

All clients after time t, > ¢, ensure that the buyer has deposited S,,,, - ¥ amount on SCyyg. Otherwise,
they abort.

D signs SCy with the extractors. SCpyg transfers S,,;, - # amount (from the buyer deposit) to SCp. for
each extractor. This is the maximum amount to be paid to an honest extractor for honestly declaring
the elements of the intersection. Each extractor deposits d = d + S,.;,, - f amount in SCp. at time ;.
At time ¢, all clients ensure that the extractors deposited enough coins; otherwise, they withdraw their
deposit and abort.

D encrypts mk under the public key of the dispute resolver (in SCp¢); let ct,,,, be the resulting ciphertext.
It also generates a commitment of mk as follows: 2 = PRF(mk,0), com,,, = Com(mk,z’). It stores ct,,
and com,,;, in SCyg.

All clients in C'L engage in CT to agree on another key, mk’.

Each client in C'L maps the elements of its set S : {s;, ..., s.} to random values by encrypting them as:
Vi,1 < i < c¢: e, = PRP(mk’,s;). Then, it encodes its encrypted set element as €, = e,;||H(e;). After
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10.

11.

12.

13.

that, it constructs a hash table HT and inserts the encoded elements into the table. Vi : H(é;) = j, then
€, — HT,. It pads every bin with random dummy elements to d elements (if needed). Then, for every
d

bin, it builds a polynomial whose roots are the bin’s content: w> = [[(x — €}), where ¢/ is either €, or
i=1
a dummy value.

. Every extractor in {4,, 4,}:

(a) for each j-th bin, commits to the bin’s elements: com, ; = Com(e’, ¢;), where ¢, is a fresh randomness
used for the commitment and e/ is either €;, or a dummy value of the bin.
(b) constructs a Merkel tree on top of all committed values: MT.genTree(com, 4, ...,com,.,,) = g.
(c) stores the Merkel tree’s root g on SCyyg.
All clients in C'L run steps 3-11 of JUS, where each client now deposits (in the SCyyg) ¢’ amount where
J > S U+ ch. Recall, at the end of step 11 of JUS for each j-th bin (i) a random polynomial ¢ has
been registered in SCays, (ii) a polynomial ¢ (blinded by a random polynomial 4’) has been extracted
by SC s, and (iii) SCyys has checked this polynomial’s correctness. If the latter check:
e passes (i.e., Flag = True): all parties run step 12 of JUS (with a minor difference, see Section 8.3).
In this case, each party receives 3’ amount it deposited in SCys. They proceed to step 11 below.
e fails (i.e., Flag = False): all parties run step 13 of JUS. In this case, (as in JUS) Aud is paid ch
amount, and each honest party receives back its deposit, i.e., §’ amount. Also, from the misbehaving

parties’ deposit % amount is sent to each honest client, to reward and compensate the client

S . -] and % — S .. [ amounts respectively, where m’ is the total number of misbehaving
parties. Moreover, SCyyg returns to the bqyer its deposit (i.e., S,.;, - U amount paid to SCyye), and

returns to each extractor its deposit, i.e., d amount paid to SCpc. Then, the protocol halts.

Every extractor client:

(a) finds the elements in the intersection. To do so, it first encodes each of its set elements to get é,, as
explained in step 8. Then, it determines to which bin the encrypted value belongs, i.e., j = H(e;).
Next, it evaluates the resulting polynomial (for that bin) at the encrypted element. It considers the
element in the intersection if the evaluation is zero, i.e., ¢(&;) — €(&;) - ¥'(€;) = 0. If the extractor is
a traitor, by this point it should have signed SCy¢ with D and provided all the inputs (e.g., correct
result) to SCrc.

(b) proves that every element in the intersection is among the elements it has committed to. Specifically,
for each element in the intersection, say é;, it sends to SCyyg:

e commitment com, ; (generated in step 9a, for €;) and its opening &' := (€;, ;).
e proof h,; that asserts com, ; is a leaf node of a Merkel tree with root g.

(c) sends the opening of commitment com,,,, i.e., pair & := (mk, z’), to SCyye. This is done only once
for all elements in the intersection.

Contract SCyyg:

(a) verifies the opening of the commitment for mk, i.e., Ver(com,,,, &) = 1. If the verification passes,
it generates the index of the bin to which e; belongs, i.e., 7 = H(é;). It uses mk to derive the
pseudorandom polynomial 4 for j-th bin.

(b) checks whether (i) the opening of commitment is valid, (ii) the Merkle tree proof is valid, and (iii)
the encrypted element is the resulting polynomial’s root. Specifically, it ensures that the following
relation holds:

<Ver(comi,j,ﬁ’) = 1) A (MT.verify(hi,g) = 1) A (d)(éi) —<¢(@)-+'(e) = >

The parties are paid as follows.
e if all proofs of both extractors are valid, both extractors provided identical elements of the intersec-
tions (for each bin), and there is no traitor, then SCpyg:
(a) takes |S,|-m I amount from the buyer’s deposit (in SCyye) and distributes it among all clients,
except the buyer.
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(b) calls SCpe which returns the extractors’ deposit (i.e., d’ amount each) and pays each extractor
|S| - # amount, for doing their job correctly.
(c) checks if |S,| < S,.in. If the check passes, then it returns (S,.;, — |S|) - ¥ amount to the buyer.

e if both extractors failed to deliver any result, then SCyyg:

(a) refunds the buyer, by sending S,,,, - ¥ amount (deposited in SCpyg) back to the buyer.
(b) retrieves each extractor’s deposit (i.e., d amount) from the SCpe and distributes it among the
rest of the clients (except the buyer and extractors).

e Otherwise (e.g., if some proofs are invalid, if an extractor’s result is inconsistent with the other
extractor’s result, or there is a traitor), SCyyg invokes (steps 8.c and 9 of) SC, and its auditor to
identify the misbehaving extractor, with the help of ct,,, after decrypting it. Then, SCyyg asks SCpc
to pay the auditor the total amount of ch taken from the deposit of the extractor(s) who provided
incorrect result to SCyyg. Moreover,

(a) if both extractors cheated:

i. if there is no traitor, then SCpye refunds the buyer, by sending S,,.,, - ¥ amount (deposited in
SCuye) back to the buyer. It also distributes 2 - d' — ch amount (taken from the extractors’
deposit in SCp¢) among the rest of clients (except the buyer and extractors).

ii. if there is a traitor, then:

A. if the traitor delivered a correct result in SCrc, SCuyr retrieves d" — d amount from the
other dishonest extractor’s deposit (in SCp¢) and distributes it among the rest of the clients
(except the buyer and dishonest extractor). Also, it asks SCpe to send |S,| -7 +d' +d — ch
amount to the traitor (via SCrc). SCT( refunds the traitor’s deposit, i.e., ch amount. It
refunds the buyer, by sending S,,;,, - ¥ — |S,| - ¥ amount (deposited in SCANE) back to it.

B. if the traitor delivered an incorrect result in SCy¢, SCpyr pays the buyer and rest of clients
in the same way it does in step 13(a)i. SCy refunds the traitor, i.e., ch amount.

(b) if one of the extractors cheated:

i. if there is no traitor, then SCyyg calls SCpe that (a) returns the honest extractor’s deposit
(i.e., d amount), (b) pays this extractor |S,| - # amount, for doing its job honestly, and (c)
pays this extractor d — ch amount taken from the dishonest extractor’s deposit. SCyye pays
the buyer and the rest of the clients in the same way it does in step 13(a)iiA.

ii. if there is a traitor

A. if the traitor delivered a correct result in SCr. (but it cheated in SCyyg), then SCyyg calls
SCye that (a) returns the other honest extractor’s deposit (i.e., d’ amount), (b) pays the
honest extractor |S,|-# amount taken from the buyer’s deposit, for doing its job honestly,
(¢) pays the honest extractor d—ch amount taken from the traitor’s deposit, (d) pays to the
traitor |S,| - # amount taken from the buyer’s deposit (via the SCy), and (e) refunds the
traitor d —d amount taken from its own deposit. SCy¢ refunds the traitor’s deposit (i.e., ch
amount). SCyye takes |S,|-m- [ amount from the buyer’s deposit (in SCyye) and distributes
it among all clients, except the buyer. If |S,| < S,.;.., then SCyyg returns (S,.,, — |SA|) - ¥
amount (deposited in SCyye) back to the buyer.

B. if the traitor delivered an incorrect result in SCr¢ (and it cheated in SCyyg), then SC g pays
the honest extractor in the same way it does in step 13(b)iiA. SCy¢ refunds the traitor’s
deposit, i.e., ch amount. Also, SCayg pays the buyer and the rest of the clients in the same
way it does in step 13(a)iiA.

Theorem 9. If PRP, PRF, the commitment scheme, smart contracts, the Merkle tree scheme, JUS and the
counter-collusion contracts are secure and the public key encryption is semantically secure, then ANE realises
75 with Q-fairness-and-reward (w.r.t. Definition 10) in the presence of m — 3 static active-adversary clients
A;s and two rational clients A;s or a static passive dealer D or passive auditor Aud, or passive public which
sees the intersection cardinality.

Before we prove Theorem 9 in Section 8.4, we present several remarks on the ANE.
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8.3 Further Discussion on Anesidora

There is a simpler but costlier approach to finding the intersection without involving the extractors; that
is the smart contract finds the (encoded) elements of the intersection and distributes the parties’ deposit
according to the number of elements it finds. This approach is simpler, as we do not need the involvement
of (i) the extractors and (ii) the three counter collusion contracts. Nevertheless, it is costlier, because the
contract itself needs to factorise the unblinded resulting polynomial and find the roots, which would cost it
O(d?) for each bin, where d is the size of each bin. Our proposed approach however moves such a computation
off-chain, leading to a lower monetary computation cost.

The reason each client uses the hash-based padding to encode each encrypted element e, as €, = e,||H(e;)
is to allow the auditor in the counter collusion contracts to find the error-free intersection, without having
to access to one of the original (encrypted) sets.

Compared to JUS, there is a minor difference in finding the result in ANE. Specifically, because in ANE
each set element s, is encoded as (i) e, = PRP(mk’, s;) and then (ii) & = e;||H(e;) by a client, then when the
client wants to find the intersection it needs to first regenerate €, as above and then treat it as a set element
to check if ¢’'(e;) = 0, in step 12(b)iii of JUS.

In ANE, each extractor uses double-layered commitments (i.e., it first commits to the encryption of each
element and then constructs a Merkle tree on top of all commitments) for efficiency and privacy purposes.
Constructing a Merkle tree on top of the commitments allows the extractor to store only a single value in
SCyye would impose a much lower storage cost compared to the case where it would store all commitments
in SCpye. Also, committing to the elements’ encryption allows it to hide from other clients the encryption
of those elements that are not in the intersection. Recall that encrypting each element is not sufficient to
protect one client’s elements from the rest of the clients, as they all know the decryption key.

To increase their reward, malicious clients may be tempted to insert “garbage” elements into their sets
with the hope that those garbage elements appear in the result and accordingly they receive a higher reward.
However, they would not succeed as long as there exists a semi-honest client (e.g., dealer D) which uses actual
set elements. In this case, by the set intersection definition, those garbage elements will not appear in the
intersection.

In ANE, for the sake of simplicity, we let each party receive a fixed reward, i.e., Z, for every element it
contributes to the intersection. However, it is possible to make the process more flexible/generic. For instance,
we could define a Reward Function RF that takes [, an (encoded) set element e, in the intersection, its
distribution/value val,,, and output a reward rew,, that each party should receive for contributing that

element to the intersection, i.e., RF(Z, e, val,.) = rew,..

8.4 Proof of ANE
In this section, we prove Theorem 9, i.e., the security of ANE.

Proof. We prove the theorem by considering the case where each party is corrupt, at a time.

Case 1: Corrupt extractors {4,,A4,} and m — 3 clients in {A;,..., A,.}. Let set G include extractors
{A,, A,} and a set of at most m — 3 corrupt clients in {A;, ..., A,,}. Let set G be a set of honest clients
in {4;,...,A,.}. Also, let Sim"® be the simulator. We let the simulator interact with (i) active adversary
A’ that may corrupt m — 3 clients in {A4;,..., A, }, and (ii) two rational adversaries A" := (A;,A,) that
corrupt extractors (A,, A,) component-wise. In the simulation, before the point where the extractors are
invoked to provide proofs and results, the simulator directly deals with active adversary A’. However, when
the extractors are involved (to generate proofs and extract the result) we require the simulator to interact
with each rational adversary A, and A,. We allow these two subroutine adversaries (A’, A”) to internally
interact with each other. Now, we explain how Sim**, which receives the input sets of honest dealer D and
honest client(s) in G, works.

1. constructs and deploys two smart contracts (for JUS and ANE). It sends the contracts’ addresses to A’.
It also simulates CT and receives the output value, mk, from its functionality, f.
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deposits S,,;,, - ¥ amount to SCuyg if buyer A,, is honest, i.e., A,, € G. Otherwise, Sim‘:“3 checks if A’ has
deposited S,,;, - ¥ amount in SCpyg. If the check fails, it instructs the ledger to refund the coins that every
party deposited and sends message abort, to TTP (and accordingly to all parties); it outputs whatever
A’ outputs and then halts.

. constructs and deploys a (Prisoner’s) contract and transfers @ = S,,,, - ¥ amount for each extractor.

Sim*" ensures that each extractor deposited d =d+ Sin f coins in this contract; otherwise, it instructs
the ledger to refund the coins that every party deposited and sends message abort, to TTP; it outputs
whatever A’ outputs and then halts.

encrypts mk under the public key of the dispute resolver; let ct,,, be the resulting ciphertext. It also

generates a commitment of mk as follows: com,,, = Com(mk,PRF(mk,0)). It stores ct,,, and com,,, in

SC e

simulates CT again and receives the output value mk’ from fs.

receives from A’ a Merkle tree’s root ¢’ for each extractor.

simulates the steps of 3-11 in JUS. For completeness, we include the steps that the simulator takes in

this proof. Specifically, Sim"":

(a) simulates ZSPA-A for each bin and receives the output value (k, g, q) from f="*,

(b) deposits in the contract the amount of ¢’ = S,,,,, - ¥ + ch for client D and each honest client in G. Tt
sends to A’ the amount deposited in the contract.

(c) checks if A’ has deposited 3’ - |G| amount (in addition to d’ amount deposited in step 3 above). If the
check fails, it instructs the ledger to refund the coins that every party deposited and sends message
abort, to TTP (and accordingly to all parties); it outputs whatever A’ outputs and then halts.

(d) picks a random polynomial ¢ of degree 1, for each bin. Sim%, for each client C € {A,,...,A,.}
allocates to each bin two degree d random polynomials: (w® <, p®®9) and two degree 3d + 1
random polynomials: (y*-€), §:9)). Also, Sim"® for each honest client €’ € G, for each bin, picks
two degree d random polynomials: (w(©?), p(©"P)),

(e) simulates VOPR using inputs ¢-w® <) and 49 for each bin. It receives the inputs of clients C” € G,
ie., w@" D . 7@ from its functionality f'*, for each bin.

(f) extracts the roots of polynomial w“"-? . (¢} for each bin and appends those roots that are in the
sets universe to a new set S,

(g) simulates again VOPR using inputs ¢ - pt2< - w® and §©9, for each bin.

(h) sends to TTP the input sets of all parties; specifically, (i) client D’s input set: S, (ii) honest clients’
input sets: $" for all ¢’ in G, and (iii) A”’s input sets: S, for all C”" in G. For each bin, it
receives the intersection set, S, from TTP.

(i) represents the intersection set for each bin as a polynomial, 7, as follows. First, it encrypts each

element s, of S, as e, = PRP(mk’,s,). Second, it encodes each encrypted element as €, = e,||H(e,).
15n1 d-|5n|

Third, it constructs w as w# = [[ (z —s;)- [ (z — u;), where u, is a dummy value.
i=1 =1

(j) constructs polynomials (¢ = ¢-w®" . D). 4 @D ) = (. p®:D. (" D) .qr 4 §P:CN and
R 3d42
v© =0 + 0" + 7 for each bin and each honest client C’ € G, such that 7@ = 3 2, .-z

=0
and each value z, . is derived from key k generated in step 7a. It sends to A’ polynomial v“" for
each bin and each honest client C’ € G.
(k) receives v©") from A’, for each bin and each corrupt client C” € G. It checks whether the output
for every C” has been provided. Otherwise, it halts.
(1) if there is any abort within steps 7e—7k, then it sends abort, to TTP and instructs the ledger to
refund the coins that every party deposited. It outputs whatever A’ outputs and then halts.
Am
(m) constructs polynomial v® = ¢ -w'” 7w — 3 (4P 4 §P) + ¢ -~ for each bin on behalf of
c=4,

?) is a fresh random polynomial of degree d and 4’ is a pseudorandom polynomial

client D, where w’
derived from mk.
(n) sends to A’ polynomials v® and ¢ for each bin.
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(0) computes polynomial ¢’ as ¢’ = Y. v @~ S (4@ §PC) for every bin. Next, it checks if

ve''ea ve''ea

¢ divides @', for every bin. If the check passes, it sets Flag = True. Otherwise, it sets Flag = False.
(p) if Flag = True, then instructs the ledger to send back each party’s deposit, i.e., ' amount. It sends
a message deliver to TTP. It proceeds to step 8 below.
(q) if Flag = False:

i.

ii.

1.
iv.
V.

vi.

vii.

viii.

receives |G| keys of the PRF from A’ i.e., = [k}, ..., kg ], for every bin.

checks if £ = k, for every k! € k. Recall, k was generated in step 3. It constructs an empty list
L' and appends to it the indices (e.g., j) of the keys that do not pass the above check.

receives from f*"* the output containing a vector of random polynomials, ', for each valid key.
sends to A’, L’ and ', for every bin.

for each bin of client C' whose index is not in L’ computes polynomial x®¢) as x*< = ¢ -
NP — (429 4 §P9) where NP is a fresh random polynomial of degree 3d + 1. Note that
C includes both honest and corrupt clients, except those clients whose index is in L’. Sim“® sends
every polynomial x 29 to A’

given each v©" (by A’ in step 7k), computes polynomial ¢>’(C“) as follows: ¢)/(c“) = p@ —
~ P §P-C for every bin. Sim"® checks if ¢ divides @'“", for every bin. It appends the
index of those clients that did not pass the above check to a new list, L”.

if L' or L” is not empty, then instructs the ledger: (a) to refund §j’ amount to each client whose
index is not in L’ and L”, (b) to retrieve ch amount from the adversary (i.e., one of the parties
whose index is in one of the lists) and send the ch amount to Aud, and (c) to reward and

m’-ij’ —ch
m—m/

compensate each honest party (whose index is not in the two lists)
m’ = |L'| + |L”|. Then, it sends message abort; to TTP.
outputs whatever A’ outputs and halts.

amount, where

8. for each I € {1,2}, receives from A; (1) a set B of encoded encrypted elements, e.g., €, in the
intersection, (2) each €,’s commitment com, ;, (3) each com, ;’s opening %', (4) a proof h, that each
com, ; is a leaf node of a Merkle tree with root g’ (given to simulator in step 6 above), and (5) the
opening & of commitment com,,,.

9. encrypts each element s, of S, as e; = PRP(mk', s;). Then, it encodes each encrypted element as €, =

e

i

H(e;). Let set S’ include all encoded encrypted elements in the intersection.

10. sings a SCy¢ with A;, if A; decides to be a traitor extractor. In this case, A;, provides the intersection

to SCyc. Sim*® checks this intersection’s validity. Shortly (in step 16b), we will explain how Sim

ANE

4 acts

based on the outcome of this check.
11. checks if each set B equals set S’.

12. checks if com,

matches the opening ' and the opening corresponds to a unique element in S’.

i,J

13. verifies each commitment’s proof, h,. Specifically, given the proof and root g, it ensures the commitment
com, ; is a leaf node of a Merkle tree with a root node ¢'. It also checks whether the opening & matches

coM, ...

14. if all the checks in steps 11-13 pass, then instructs the ledger (i) to take |Sn| - m - [ amount from the
buyer’s deposit and distributes it among all clients, except the buyer, (ii) to return the extractors deposit
(i.e., d’ amount each) and pay each extractor |S,|-# amount, and (iii) to return (S,.;, — |Sn|) - ¥ amount
to the buyer.

15. if neither extractor sends the extractor’s set intersection (E*1), E42)) in step 8, then instructs the ledger
(i) to refund the buyer, by sending S.,,.;, - ¥ amount back to the buyer and (ii) to retrieve each extractor’s
deposit (i.e., d amount) from SCp. and distribute it among the rest of the clients (except the buyer and
extractors).

16. if the checks in step 14 fail or in step 15 both A4, and A, send the extractors’ set intersection but they
are inconsistent with each other, then it tags the extractor whose proof or set intersection was invalid as

ANE

a misbehaving extractor. Sim“® instructs the ledger to pay the auditor (of SCp.) the total amount of ch

coins taken from the misbehaving extractor(s) deposit. Furthermore, Sim%® takes the following steps.
(a) if both extractors cheated and there is no traitor, then instructs the ledger (i) to refund the buyer

Spnin + U amount, and (ii) to take 2d" — ch amount from the misbehaving extractors’ deposit and
distribute it to the rest of the clients except the buyer and extractors.
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(b) if both extractors cheated, there is a traitor, and the traitor delivered a correct result (in step 10),
then instructs the ledger (i) to take d’ — d amount from the other misbehaving extractor’s deposit
and distribute it among the rest of the clients (except the buyer and dishonest extractor), (ii) to
distribute |S.| - # + d’ + d — ch amount to the traitor, (iii) to refund the traitor ch amount, and (iv)
to refund the buyer S,,.., - ¥ — |S,| - ¥ amount.

(c) if both extractors cheated, there is a traitor, and the traitor delivered an incorrect result (in step
10), then instructs the ledger to distribute coins the same way it does in step 16a.

(d) if one of the extractors cheated and there is no traitor, then instructs the ledger (i) to return the
honest extractor’s deposit (i.e., d’ amount), (ii) to pay the honest extractor |S.| - # amount, (iii) to
pay this extractor d—ch amount taken from the dishonest extractor’s deposit, and (iv) to pay the
buyer and the rest of the clients the same way it does in step 16b.

(e) if one of the extractors cheated, there is a traitor, and the traitor delivered a correct result (in step
10), then instructs the ledger (i) to return the other honest extractor’s deposit (i.e., d’ amount), (ii)
to pay the honest extractor |S,| - # amount, taken from the buyer’s deposit, (iii) to pay the honest
extractor d — ch amount, taken from the traitor’s deposit, (iv) to pay to the traitor |S,| -7 amount,
taken from the buyer’s deposit, (v) to refund the traitor d' — d amount, (vi) to refund the traitor ch
amount, (vii) to take |S.|-m - I amount from the buyer’s deposit and distribute it among all clients,
except the buyer, and (viii) to return (S,.;, — |Sn|) - ¥ amount back to the buyer.

() if one of the extractors cheated, there is a traitor, and the traitor delivered an incorrect result (in step

10), then instructs the ledger () to pay the honest extractor the same way it does in step 13(b)iiA,
(i) to refund the traitor ch amount, and (iii) to pay the buyer and the rest of the clients in the same
way it does in step 16b.

(g) outputs whatever A outputs and then halts.

Next, we show that the real and ideal models are computationally indistinguishable. We first focus on
the adversary’s output. The addresses of the smart contracts have identical distribution in both models. In
the real and ideal models, the adversary sees the transcripts of ideal calls to f.; as well as the functionality
outputs (mk, mk’). Due to the security of CT (as we are in the f,-hybrid world), the transcripts of f. in
both models have identical distribution, so have the random outputs of f, i.e., (mk, mk’). Also, the deposit
amounts S,,;, - ¥ and @ have identical distributions in both models. Due to the semantical security of the
public key encryption, the ciphertext ct,,, in the real model is computationally indistinguishable from the
ciphertext ct,,, in the ideal model. Due to the hiding property of the commitment scheme, commitment
com,,, in the real model is computationally indistinguishable from commitment com,,, in the ideal model.
Moreover, due to the security of JUS, all transcripts and outputs produced in the ideal model, in step 7 above,
have identical distribution to the corresponding transcripts and outputs produced in JUS in the real model.
The address of SCr has the same distribution in both models. The amounts each party receives in the real
and ideal models are the same, except when both extractors produce an identical and incorrect result (i.e.,
intersection) in the real model, as we will shortly discuss, this would not occur under the assumption that
the extractors are rational and due to the security of the counter collusion smart contracts.

Now, we show that an honest party aborts with the same probability in the real and ideal models. As
before, for the sake of completeness, we include the JUS in the following discussion as well. Due to the
security of CT, an honest party, during CT invocation, aborts with the same probability in both models; in
this case, the adversary learns nothing about the parties’ input set and the sets’ intersection as the parties
have not sent out any encoded input set yet. In both models, an honest party can read the smart contract
and check if sufficient amounts of coins have been deposited. Thus, it would halt with the same probability
in both models. If the parties halt because of insufficient amounts of deposit, no one could learn about (i) the
parties’ input set and (ii) the sets’ intersection because the inputs (representation) have not been dispatched
at this point. Due to the security of ZSPA-A, an honest party during ZSPA-A execution aborts with the same
probability in both models. In this case, an aborting adversary also learns nothing about the parties’ input
set and the sets’ intersection.

Due to the security of VOPR, honest parties abort with the same probability in both models. In the case
where a party aborts during the execution of VOPR, the adversary would learn nothing (i) about its counter
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party’s input set, and (ii) about the rest of the honest parties’ input sets and the intersection as the other
parties’ input sets remain blinded by random blinding factors known only to client D. In the real model,
client D can check if all parties provided their encoded inputs via reading the state of the smart contract.
The simulator can perform the same check to ensure A’ has provided the encoded inputs of all corrupt
parties. So, in both models, an honest party with the same probability detects if not all encoded inputs have
been provided. In this case, if an adversary aborts and does not provide its encoded inputs (i.e., polynomials
V(C”>), then it learns nothing about the honest parties’ input sets and the intersection, for the same reason
explained above.

In the real model, the contract sums every client C’s polynomial v(®) with each other and with client
D’s polynomial v that ultimately removes the blinding factors that D initially inserted (during the VOPR
execution), and then checks if the result is divisible by ¢. Due to (a) Theorem 7, (b) the fact that the smart
contract is given the random polynomial ¢ in plaintext, (¢) no party (except honest D) knew polynomial ¢
before they send their input to the contract, and (d) the security of the contract (i.e., the adversary cannot
influence the correctness of the smart contract’s verifications), the contract can detect if a set of outputs of
VOPR were tampered with, with a probability at least 1 — €(A). In the ideal model, Sim%* (in step 7o) can
remove the blinding factors and it knows the random polynomial ¢. So, Sim“® can detect when A’ tampers
with a set of the outputs of VOPR (sent to Sim%*) with a probability at least 1 — ¢(\), due to Theorem 7.
Therefore, the smart contract in the real model and the simulator in the ideal model would abort with a
similar probability.

Due to the security of ZSPA-A, the probability that in the real Epodel an invalid k,; € ¥ is appended to
L is similar to the probability that Sim"* detects an invalid k/ € k' in the ideal model. In the real model,
when Flag = False, the smart contract can identify each ill-structured output of VOPR (i.e., v(9)) with a
probability of at least 1 — () by checking whether ¢ divides ¢/©’, due to (a) Theorem 6 (i.e., unforgeable
polynomial), (b) the fact that the smart contract is given ¢ in plaintext, (¢) no party (except honest client D)
knew anything about ¢ before they send their input to the contract, and (d) the security of the contract. In
the ideal model, when Flag = False, given each 1“7, Sim"® can remove its blinding factors from v°" which
results in ¢'") and then can check if ¢ divides ¢’ in step 7(q)vi. Sim"® can detect an ill-structured (")
with a probability of at least 1 — ¢(\), due to Theorem 6, the fact that the simulator is given ¢ in plaintext,
and the adversary is not given any knowledge about ¢ before it sends to the simulator the outputs of VOPR.
Therefore, the smart contract in the real model and Sim%* in the ideal model can detect an ill-structured
input of an adversary with the same probability. The smart contract in the real model and Sim%* in the ideal
model can detect and abort with the same probability if the adversary provides an invalid opening to each
commitment com, ; and com,,,, due to the binding property of the commitment scheme. Also, the smart
contract in the real model and Sim%*® in the ideal model, can abort with the same probability if a Merkle tree
proof is invalid, due to the security of the Merkle tree, i.e., due to the collision resistance of Merkle tree’s

hash function.

Note that in the ideal model, Sim"® can detect and abort with a probability of 1, if A; does not send to
the simulator all encoded encrypted elements of the intersection, i.e., when E # S’. Because the simulator
already knows all elements in the intersection (and the encryption key). Thus, it can detect with a probability
of 1 if both the intersection sets that the extractors provide are identical but incorrect. In the real world, if
the extractors collude with each other and provide identical but incorrect intersections, then an honest client
(or the smart contract) cannot detect it. Thus, the adversary can distinguish the two models, based on the
probability of aborting. However, under the assumption that the smart contracts (of Dong et al. [18]) are
secure (i.e., are counter-collusion), and the extractors are rational, such an event (i.e., providing identical
but incorrect result without one extractor betraying the other) would not occur in either model, as the
real model and (A,,A,) rational adversaries follow the strategy that leads to a higher payoff. Specifically,
as shown in [18], providing incorrect but identical results is not the preferred strategy of the extractors;
instead, the betrayal of one extractor by the other is the most profitable strategy in the case of (enforceable)
collusion between the two extractors. This also implies that the amounts that the extractors would receive
in both models are identical.
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Now, we analyse the output of the predicates Q := (Q™*, QR*", QU™*, Q") in the real and ideal models.
In the real model, all clients proceed to prepare their input set only if the predefined amount of coins have
been deposited by the parties; otherwise (if in steps 2,4,5 of ANE and step 4 of JUS there is not enough
deposit), they will be refunded and the protocol halts. In the ideal model, the simulator proceeds to prepare
its inputs only if enough deposit has been placed in the contract. Otherwise, it would send message abort, to
TTP, during steps 2-7c. Thus, in both models, the parties proceed to prepare their inputs only if Q™*(.) — 1.
In the real model, if there is an abort after the parties ensure there is enough deposit and before client D
provides its encoded input to the contract, then all parties can retrieve their deposit in full. In this case, the
aborting adversary cannot learn anything about honest parties’ input sets, as the parties’ input sets have
been blinded by random blinding polynomials known only to client D. In the ideal model, if there is any
abort during steps 7e—7k, then the simulator sends abort, to TTP and instructs the ledger to refund every
party’s deposit. In the case of an abort, within the above two steps, the auditor is not involved, and paid.
Therefore, in both models, in the case of an abort within the above steps, we would have Q"*(.) — 1.

In the real model, if Flag = True, then all parties can locally extract the intersection, regardless of the
extractors’ behaviour. In this case, each honest party receives 4’ amount that it initially deposited in SCys.
Moreover, each honest party receives at least | S| -l amount as a reward, for contributing to the result. In this
case, the honest buyer always collects the leftover of its deposit. Specifically, if both extractors act honestly,
and the intersection cardinality is smaller than |S,,;,|, then the buyer collects its deposit leftover, after
paying all honest parties. If any extractor misbehaves, then the honest buyer fully recovers its deposit (and
the misbehaving extractor pays the rest). Even in the case that an extractor misbehaves and then becomes a
traitor to correct its past misbehaviour, the buyer collects its deposit leftover if the intersection cardinality
is smaller than |S,.;,|. In the ideal model, when Flag = True, then Sim"® can extract the intersection by
summing the output of VOPR provided by all parties and removing the blinding polynomials. In this case, it
sends back each party’s deposit placed in SCyys, i.e., §' amount. Also, in this case, each honest party receives
at least |S,| -l amount as a reward and the honest buyer always collects the leftover of its deposit. Thus, in
both models in the case of Flag = True, we would have QRr°'(.) — 1.

In the real model, when Flag = False, only the adversary can learn the result. In this case, the contract

sends (i) ch amount to Aud, and (i) mminh amount, as compensation and reward, to each honest party, in
addition to each party’s initial deposit. In the ideal model, when Flag = False, Slm“'E sends abort; to TTP
and instructs the ledger to distribute the same amount the contract distributes among the auditor (e.g., with
address adr;) and every honest party (e.g., with address adr;) in the real model. Thus, in both models when
Flag = False, we would have QY"*(.,.,.,.,adr;) = (a=1,.) and Q7 *(.,.,.,.,adr;) = (.,b=1).

We conclude that the distribution of the joint outputs of the honest client C' € G, client D, Aud, and the
adversary in the real and ideal models are computationally indistinguishable.

Case 2: Corrupt dealer D. In the real execution, the dealer’s view is defined as follows:

View'® (Sw), (S™ ..., S“’")) =

D . 31 s JUS N\ /i CT = — N /
{8 adr,., Sy - 0,2 - d',rp, Viewy', View, (comy ;, €1, qyy Iy )eeny (COMy, 7480y Gasy Ias), g, &= (MK, 27), Sh }

where View? and Viewy™ refer to D’s real-model view during the execution of CT and VOPR respectively. Also,

7p is the outcome of internal random coins of D, adr.. is the address of contract, SCag, (j; ---,j") € {1, ..., h},
z' = PRF(mk,0), sz = |S,|, and h; is a Merkle tree proof asserting that com, ; is a leaf node of a Merkle tree
with root node g. The simulator SlmMIE which receives all parties’ input sets, works as follows.

1. generates an empty view. It appends to the view, the input set S®. It constructs and deploys a smart

contract. It appends the contract’s address, adr.., to the view.

appends to the view integer S,,., - ¥, and 2-d’. Also, it appends uniformly random coins 77, to the view.

3. extracts the simulation of JUS from JUS’s simulator for client D. Let Sim%® be the snnulatlon that also
includes a random key mk. It appends Sim%® to the view.

4. extracts the simulation of CT from CT’s simulator, yielding the simulation Sim? that includes its output
mk’. It appends Sim% to the view.

o
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5. encrypts each element s, ; in the intersection set S, as e, ; = PRP(mk’, s; ;) and then encodes the result
as €,; = e, ,;||H(e; ;). It commits to each encoded value as com, ; = Com(€, ;, ¢ ;), where j is the index of
the bin to which e, ; belongs and g, ; is a random value.

6. It constructs (com; ,,...,com/ ,) where each com]  is a value picked uniformly at random from the
commitment scheme output range. For every j-th bin, it sets each com’i,‘j to unique com, ; if value com, ;
for j-th bin has been generated in step 5. Otherwise, the original values of comfﬁ,d, remains unchanged.

7. constructs a Merkle tree on top of the values (com/, ,, ...,com/ , ) generated in step 6. Let g be the resulting
tree’s root.

8. for each element s, ; in the intersection, it constructs (com!, ., € ;,q: ;, h:;), where com/, ; is the commit-
ment of €, ;, com], , € com, (€, ¢; ;) is the commitment’s opening generated in step 5, and h, ; is a Merkle
tree proof asserting that com/, | is a leaf of a Merkle tree with root g. It appends all (com, _, € ;,q: ;, b ;)
along with ¢ to the view.

9. generates a commitment to mk as com,,, = Com(mk, z’) where z/ = PRF(mk,0). It appends (mk,z’)

along with S, to the view.

Now, we will discuss why the two views are computationally indistinguishable. D’s input S‘® is identical
in both models, so they have identical distributions. The contract’s address has the same distribution in
both models. The same holds for the integers S,,,, - ¥ and 2 - d'. Also, because the real-model semi-honest
adversary samples its randomness according to the protocol’s description, the random coins in both models
(i.e., rp and 7),) have identical distribution. Due to the security of JUS, View}s and Sim}° have identical
distribution, so do View$ and Sim? due to the security of CT. The intersection elements in both models
have identical distributions and the encryption scheme is schematically secure. Therefore, each intersection
element’s representation (i.e., €; in the real model and ¢, ; in the deal model) are computationally indistin-
guishable. Each ¢; in the real model and g; ; in the ideal model have identical distributions as they have been
picked uniformly at random. Each commitment com, ; in the real model is computationally indistinguishable
from commitment com/, ; in the ideal model.

In the real model, each Merkle tree proof h; contains two leaf nodes (along with intermediary nodes that
are the hash values of a subset of leaf nodes) that are themselves the commitment values. Also, for each
h;, only one of the leaf node’s openings (that contains an element in the intersection) is seen by D. The
same holds in the ideal model, with the difference that for each Merkle tree proof h, ; the leaf node whose
opening is not provided is a random value, instead of an actual commitment. However, due to the hiding
property of the commitment scheme, in the real and ideal models, these two leaf nodes (whose openings
are not provided) and accordingly the two proofs are computationally indistinguishable. In both models,
values mk and z’ are random values, so they have identical distributions. Furthermore, the intersection S,
is identical in both models. Thus, we conclude that the two views are computationally indistinguishable.

Case 3: Corrupt auditor. In this case, the real-model view of the auditor is defined as

Aud

View"™ (J_, SO (5D, s<m>)) _

{Viewijid? a’drsca Smin ° ij? 2 : d"? (Coml,]‘a éla q17 h’l)"'7 (Comsz,j/a észv qua hsz)7 ga 'i‘ = (mk7 Z/)}

Due to the security of JUS, Aud’s view View?: , during the execution of JUS can be easily simulated. As

we have shown in Case 2, for the remaining transcript, its real-model view can be simulated too. However,
there is a difference between Case 3 and Case 2; namely, in the former case, Aud does not have the PRP’s
key mk’ used to encrypt each set element. However, due to the security of PRP, it cannot distinguish each
encrypted encoded element from a uniformly random element and cannot distinguish PRP(mk’,.) from a
uniform permutation. Therefore, each value €; in the real model has identical distribution to each value e, ;
(as defined in Case 2) in the ideal model, as both are the outputs of PRP.

Case 4: Corrupt public. In the real model, the view of the public (i.e., non-participants of the protocol)
is defined as below:
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View'™ (l,swn (S(“1>,...,S<Am>)) _

{View™ . adr,., S - 0,2 -d', (com,;, &, q, hy)..., (com,. ;1 e...q... h..), g, & = (mk,2')}

Due to the security of JUS, the public’s view Viewy:, during JUS’s execution can be simulated in the

same way which is done in Case 4, in Section 6.3. The rest of the public’s view overlaps with Aud’s view in
Case 3, excluding View?® ,. Therefore, we can use the argument provided in Case 3 to show that the rest of
the public’s view can be simulated. We conclude that the public’s real and ideal views are computationally

indistinguishable. O

9 Evaluation

In this section, we analyse the asymptotic costs of ANE. We also compare its costs and features with the fastest
two and multiple parties PSIs in [2,34,38,41]) and with the fair PSIs in [15,17]. Tables 2 and 3 summarise
the result of the cost analysis and the comparison respectively.

Table 2: Asymptotic costs of different parties in ANE. In the table, h is the total number of bins, d is a bin’s capacity
(i.e., d = 100), m is the total number of clients (excluding D), | S| is a set cardinality, and £ is OLE’s security parameter.

Party Computation Cost Communication Cost
. 2 _
Client As, ..., A, o(h-d(m+d)+|5|(d—2ﬂ)) O(h-dz-g)
2 —
Dealer D O(h-m(d®+d)+151(552)) | O(h-d*-€-m)
Auditor Aud o(h m- d) o(h : d)
2
Extractor Ay, Ay o(h-d(m+d)+\3\(%)) o(|sm| -1og2\5\)
Smart contract SCug & SCius O(|Sn|(d +1logy |S]) + h-m - d) =
Overal Complexity O(h 2. m) O(h 42 E. m)

Table 3: Comparison of the asymptotic complexities and features of state-of-the-art PSIs. In the table, ¢ is a parameter
that determines the maximum number of colluding parties, « is a security parameter, and c is a set cardinality.

Schemes Asymptotic Cost Features
Computation Communication|Fairness| Rewarding| Sym-key based |Multi-party|Active Adversary
2] O(h - d? - m) O(h -d-m) X X v v x
[15] O(c) O(c) v X X
[17] 0(c?) O(c) v X X X v
[34] O(c-m? +c-m) O(c-m?) X X v v X
[38] O(c-k(m+t* —t(m+1)))| O(c-m- k) X X v v v
[41] O(c) O(c- k) X X v X v
Ours: ANE O(h - d? - m) O(h-d?> - €-m)| v v v v
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9.1 Computation Cost

In step 1, each client’s cost is O(m) and mainly involves an invocation of CT. In steps 2-5, the clients’
cost is negligible as it involves deploying smart contracts and reading from the deployed contracts. Step 6
involves only D whose cost in this step is constant, as it involves invoking a public key encryption, PRF, and
commitment only once. In step 7, the clients’ cost is O(m), as they need to invoke an instance of CT. In
step 8, each client invokes PRP and H linear with its set’s cardinality. In the same step, it also constructs h
polynomials, where the construction of each polynomial involves d modular multiplications and additions.
Thus, its complexity in this step is O(h - d). It has been shown in [2] that O(h - d) = O(c) and d = 100
for all set sizes. In step 9, each extractor invokes the commitment scheme linear with the number of its set
cardinality |S| and constructs a Merkle tree on top of the commitments. Therefore, its complexity is O(|S]).

In step 10, each client A, ..., A,,: (i) invokes an instance of ZSPA-A which involves O(h - m) invocation
of CT, 3h - m(d + 1) invocation of PRF, 3h - m(d + 1) addition, and O(h - m - d) invocation of H (in step 3 of
subroutine JUS), (ii) invokes 2h instances of VOPR, where each VOPR invocation involves 2d(1 4+ d) invocations
of OLET, multiplications, and additions (in steps 6 and 7 of JUS), and (iii) performs h(3d+2) modular addition
(in step 8 of JUS). The dealer D: (a) invokes 2h - m instances of VOPR (in steps 6 and 7 of JUS), (b) invokes
PRF h(3d+ 1) times (in step 9 of JUS), and (c¢) performs h(d? 4+ 1) multiplications and 3k - m - d additions (in
step 10 of JUS). In the same step, the subroutine smart contract SCys performs h-m(3d + 1) additions and
h polynomial divisions, where each division includes dividing a polynomial of degree 3d + 1 by a polynomial
of degree 1 (in step 11 of JUS). Moreover, if Flag = True, then each client invokes PRF h(3d + 1) times, and
performs h(3d+ 1) additions, and performs polynomial evaluations linear with its set cardinality, where each
evaluation involves O(d) additions and O(@) multiplications (in step 12 of JUS). If Flag = False, then
(a) Aud invokes PRF 3h - m(d + 1) times and invokes H O(h - m - d) times, and (b) D performs O(h - m - d)
multiplications and additions (in step 13 of JUS).

In step 11, each extractor invokes H linear with its set cardinality |S|; it also performs polynomial eval-
uations linear with |S|. In step 12a, SCyyg invokes the commitment’s verification algorithm Ver once, H at
most |S,| times, and PRF |S,[(3d + 1) times. In step 12b, SCaye invokes Ver at most |S,| times, and calls
H O(]S,| - log, |:S|) times. In the same step, it performs polynomial evaluation |S,| times. Thus, its overall
complexity is O(|S,|(d + log, |S])).

9.2 Communication Cost

In steps 1 and 7, the communication cost of the clients is dominated by the cost of CT which is O(m). In
steps 26, the clients’ cost is negligible, as it involves sending a few transactions to the smart contracts, e.g.,
SCius, SCaye, and SCpc. Step 9 involves only extractors whose cost is O(h) as each of them only sends to
SCuxe a single value for each bin. In step 10, the clients’ cost is dominated by VOPR’s cost; specifically, each
pair of client and D invokes VOPR O(d?) times for each bin; therefore, the cost of each client (excluding D) is
O(h-d?-€) while the cost of D is O(h-d?-&-m), where £ is the subroutine OLE’s security parameter. Step 11
involves only the extractors, where each extractor’s cost is dominated by the size of the Merkle tree’s proof
it sends to SCpyg, i.e., O(|SA| - log, |S|), where |S| is the extractor’s set cardinality. In step 13, Aud sends h
polynomials of degree 3d+ 1 to SCys; thus, its complexity is O(h-d). The rest of the steps impose negligible
communication costs.

9.3 Comparison
Below we show that ANE offers various features that the state-of-the-art PSIs do not offer simultaneously

while keeping its overall overheads similar to the efficient PSIs.

Computation Complexity. The computation complexity of ANE is similar to that of PSI in [2], but is
better than the multiparty PSI’s complexity in [34] as the latter’s complexity is quadratic with the number
of parties. Also, ANE’s complexity is better than the complexity of the PSI in [38] that is quadratic with
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parameter t, i.e., the total number of parties that may collude. Similar to the two-party PSIs in [15,41], ANE’s
complexity is linear with ¢. The two-party PSI in [17] imposes a higher computation overhead than ANE
does, as its complexity is quadratic with sets’ cardinality. Hence, the complexity of ANE is: (i) linear with the
set cardinality, similar to the above schemes except the one in [17] and (ii) linear with the total number of
parties, similar to the above multi-party schemes, except the one in [34]. Hence, the computation complexity
of ANE is linear with the set cardinality and the number of parties, similar to the above schemes except for
the ones in [34,17] whose complexities are quadratic with the set cardinality or the number of parties.

Communication Complexity. ANE’s communication complexity is slightly higher than the complexity of
the PSI in [2], by a factor of d - £&. However, it is better than the PSI’s complexity in [34] as the latter has
a complexity quadratic with the number of parties. ANE’s complexity is slightly higher than the one in [38],
by a factor of d. Similar to the two-party PSIs in [15,41,17], ANE’s complexity is linear with ¢. Therefore,
the communication complexity of ANE is linear with the set cardinality and number of parties, similar to the
above schemes except the one in [34] whose complexity is quadratic with the number of parties.

Features. ANE is the only scheme that offers all the five features, i.e., supports fairness, rewards participants,
is based on symmetric key primitives, supports multi-party, and is secure against active adversaries. After
ANE is the scheme in [38] which offers three of the above features. The rest of the schemes support only two
of the above features.

10 Conclusion and Future Direction

Private Set Intersection (PSI) is a crucial protocol with numerous real-world applications. In this work,
we proposed, Justitia, the first multi-party fair PSI that ensures that either all parties get the result or if
the protocol aborts in an unfair manner, then honest parties will receive financial compensation. We then
upgraded it to Anesidora, the first PSI ensuring that honest parties who contribute their private sets receive
a reward proportionate to the number of elements they reveal. Since an MPC that rewards participants for
contributing their private inputs would help increase its real-world adoption, an interesting open question is:

How can we generalise the idea of rewarding participants to MPC?
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A Hash Tables

We set the table’s parameters appropriately to ensure the number of elements in each bin does not exceed
a predefined capacity. Given the maximum number of elements ¢ and the bin’s maximum size d, we can
determine the number of bins by analysing hash tables under the balls into bins model [8].

Theorem 10. (Upper Tail in Chernoff Bounds) Let X, be a random variable defined as X, Z
where PrlY, = 1] =p,, Pr[Y, =0] =1 —p,, and all Y, are independent. Let the expectation be p = E[X]
h

> pi, then PriX, >d=(140) ] < ((H;)m) Vo >0

i=1

In this model, the expectation is 1 = ¥, where c is the number of balls and h is the number of bins. The
above inequality provides the probablhty that bin ¢ gets more than (1 + o) - u balls. Since there are h bins,
the probability that at least one of them is overloaded is bounded by the union bound:

o

L) ’

Thus, for a hash table of length h = O(c), there is always an almost constant expected number of
elements, d, mapped to the same bin with a high probability [39], e.g., 1 — 274°.

B Enhanced OLE’s Ideal Functionality and Protocol

The PSIs proposed in [23] use an enhanced version of the OLE. The enhanced OLE ensures that the receiver
cannot learn anything about the sender’s inputs, in the case where it sets its input to 0, i.e., ¢ = 0. The
enhanced OLE’s protocol (denoted by OLE*) is presented in Figure 6.

47



1. Receiver (input ¢ € F): Pick a random value, r < F, and send (inputs, (¢™*, 7)) to
the first Fo.

2. Sender (input a, b € F): Pick a random value, u <~ F, and send (inputR,u) to the
first Fous, to learn t = ¢! - u + r. Send (inputS, (t + a,b — u)) to the second Fo.

3. Receiver: Send (inputR, ¢) to the second Fue and obtain k = (t+a)-c+ (b—u) =
a-c+b+r-c. Output s=k—1r-c.

Fig. 6: Enhanced Oblivious Linear function Evaluation (OLET) [23].

C Counter Collusion Contracts

In this section, we present Prisoner’s Contract (SCp¢), Colluder’s Contract (SCc), Traitor’s Contract (SCq)
originally proposed by Dong et al. [18]. As we previously stated, we have slightly adjusted the contracts. We
will highlight the adjustments in blue. For the sake of completeness, below we restate the parameters used
in these contracts and their relation.

e b: the bribe paid by the ringleader of the collusion to the other server in the collusion agreement, in SCcc.
¢: a server’s cost for computing the task.

ch the fee paid to invoke an auditor for recomputing a task and resolving disputes.

d: the deposit a server needs to pay to be eligible for getting the job.

t: the deposit the colluding parties need to pay in the collusion agreement, in SCcc.

w: the amount that a server receives for completing the task.

w > ¢ the server would not accept underpaid jobs.

ch > 2u: If it does not hold, then there would be no need to use the servers and the auditor would do
the computation.

e (pk,sk): an asymmetric-key encryption’s public-private key pair belonging to the auditor.

The following relations need to hold when setting the contracts in order for the desirable equilibria to hold:
(i) d > &+ ch, (ii) b < ¢, and (iii) £ < @ — ¢+ 2d — ch — b.

C.1 Prisoner’s Contract (SCyc)

SCpc has been designed for outsourcing a certain computation. It is signed by a client who delegates the
computation and two other parties (or servers) who perform the computation. This contract tries to incen-
tivize correct computation by using the following idea. It requires each server to pay a deposit before the
computation is delegated. If a server behaves honestly, then it can withdraw its deposit. However, if a server
cheats (and is detected), its deposit is transferred to the client. When one of the servers is honest and the
other one cheats, the honest server receives a reward. This reward is taken from the deposit of the cheating
server. Hence, the goal of SCy is to create a Prisoner’s dilemma between the two servers in the following
sense. Although the servers may collude with each other (to cut costs and provide identical but incorrect
computation results) which leads to a higher payoff than both behaving honestly, there is an even higher
payoff if one of the servers manages to persuade the other server to collude and provide an incorrect result
while itself provides a correct result. In this setting, each server knows that collusion is not stable as its
counterparty will always try to deviate from the collusion to increase its payoff. If a server tries to convince
its counterparty (without a credible and enforceable promise), then the latter party will consider it as a trap;
consequently, collusion will not occur. Below, we restate the contract.

1. The contract is signed by three parties; namely, client D and two other parties E, and F,. A third-party
auditor will resolve any dispute between D and the servers. The address of another contract, called SC g,
is hardcoded in this contract.

2. The servers agree to run computation f on input x, both of which have been provided by D.
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3. The parties agree on three deadlines (T}, 75, T;), where T,,, > T;.
4. D agrees to pay W to each server for the correct and on-time computation. Therefore, D deposits 2 - W
amount in the contract. This deposit is transferred from SC,yg to this contract.
5. BEach server deposits d’ = d + X amount in the contract.
6. The servers must pay the deposit before T;. If a server fails to meet the deadline, then the contract would
refund the parties’ deposit (if any) and terminates.
7. The servers must deliver the computation’s result before T5.
8. The following steps are taken when (i) both servers provided the computation’s result or (ii) deadline T,
elapsed.
(a) if both servers failed to deliver the computation’s result, then the contract transfers their deposits
to SCyg.
(b) if both servers delivered the result, and the results are equal, then (after verifying the results) this
contract must pay the agreed amount w and refund the deposit d’ to each server.
(c) otherwise, D raises a dispute with the auditor.

9. When a dispute is raised, the auditor (which is independent of Aud in JUS) re-generates the computation’s
result, by using algorithm resComp(.) described shortly in Appendix C.1. Let y,,y,, and y, be the result
computed by the auditor, E,, and F, respectively. The auditor uses the following role to identify the
cheating party.

e if F, failed to deliver the result (i.e., y; is null), then it has cheated.
e if a result y, has been delivered before the deadline and y,; # v,, then E; has cheated.
The auditor sends its verdict to SCpe.
10. Given the auditor’s decision, the dispute is settled according to the following rules.

e if none of the servers cheated, then this contract transfers to each server (i) w amount for performing
the computation and (ii) its deposit, i.e., d’ amount. The client also pays the auditor ¢ch amount.

e if both servers cheated, then this contract (i) pays the auditor the total amount of ch, taken from
the servers’ deposit, and (ii) transfers to SCyye the rest of the deposit, i.e., 2 - d' — ch amount.

e if one of the servers cheated, then this contract (i) pays the auditor the total amount of ch, taken
from the misbehaving server’s deposit, (ii) transfers the honest server’s deposit (i.e., d amount) back
to this server, (iii) transfers to the honest server @ + d — ch amount (which covers its computation
cost and the reward), and (iv) transfers to SCyyg the rest of the misbehaving server’s deposit, i.e., X
amount. The cheating server receives nothing.

11. After deadline Ty, if D has neither paid nor raised a dispute, then this contract pays @ to each server
which delivered a result before deadline T, and refunds each server its deposit, i.e., d amount. Any
deposit left after that will be transferred to SCpyg.-

Now, we explain why we have made the above changes to the original SCy. of Dong et al. [18]. In the
original SCpc (a) the client does not deposit any amount in this contract; instead, it directly sends its coins to
a server (and auditor) according to the auditor’s decision, (b) the computation correctness is determined only
within this contract (with the involvement of the auditor if required), and (c) the auditor simply re-generates
the computation’s result given the computation’s plaintext inputs. Nevertheless, in ANE, (1) all clients need
to deposit a certain amount in SCyye and only the contracts must transfer the parties’ deposit, (2) SCuye
also needs to verify a part of the computation’s correctness without the involvement of the auditor and
accordingly distribute the parties deposit based on the verification’s outcome, and (3) the auditor must be
able to re-generate the computation’s result without being able to learn the computation’s plaintext input,
i.e., elements of the set. Therefore, we have included the address of SCyyg in SCp( to let the parties’ deposit
move between the two contracts (if necessary) and allowed SCy to distribute the parties’ deposit; thus, the
requirements in points (1) and (2) are met. To meet the requirement in point (3) above, we have included
a new algorithm, called resComp(.), in SCpc. Shortly, we will provide more detail about this algorithm.
Moreover, to make this contract compatible with ANE, we increased the amount of each server’s deposit by
X . Nevertheless, this adjustment does not change the logic behind SCp’s design and its analysis.
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Auditor’s Result-Computation Algorithm. In this work, we use SCp: to delegate the computation
of intersection cardinality to two extractor clients, a.k.a. servers in the original SCp.. In this setting, the
contract’s auditor is invoked when an inconsistency is detected in step 13 of ANE. For the auditor to recompute
the intersection cardinality, we have designed resComp(.) algorithm. The auditor uses this algorithm for every
bin’s index indz, where 1 < indx < h and h is the hash table’s length. We present this algorithm in Figure
7. The auditor collects the inputs of this algorithm as follows: (a) reads random polynomial ¢, and blinded
polynomial ¢ from contract SCyys, (b) reads the ciphertext if secret key mk from SCpyg, and (c) fetches
public parameters (desy, h) from the hash table’s public description.

Note that in the original SCp. of Dong et al. [18], the auditor is assumed to be fully trusted. However, in
this work, we have relaxed such an assumption. We have designed ANE and resComp(.) in such a way that
even a semi-honest auditor cannot learn anything about the actual elements of the sets, as they have been
encrypted under a key unknown to the auditor.

resComp (¢, @, sk, Ctmr,indz, dess) — R

— Input. ¢: arandom polynomial of degree 1, ¢: a blinded polynomial of the form ¢-(e+~")
where € and + are arbitrary and pseudorandom polynomials respectively, deg(¢) —1 =
deg(v'), sk: the auditor’s secret key, ct,.i: ciphertext of mk which is a key of PRF, indx:
an input of PRF, and desy: a description of hash function H.

— Output. R: a set containing valid roots of unblinded ¢.

1. decrypts the ciphertext ct,,, under key sk. Let mk be the result.
2. unblinds polynomial ¢, as follows:

(a) re-generates pseudorandom polynomial v using key mk. Specifically, it uses mk to
derive a key: k = PRF(mk, indz). Then, it uses the derived key to generate 3d + 1
pseudorandom coefficients, i.e., Vj,0 < j < deg(¢) — 1 : g; = PRF(k,j). Next, it

de -1
uses these coefficients to construct polynomial 4', i.e., v’ = g% g; -z’
i=0

(b) removes the blinding factor from ¢. Specifically, it computes polynomial ¢’ of the
following form ¢’ = ¢ — ¢ - v'.

3. extracts roots of polynomial ¢'.
4. finds valid roots, by (i) parsing each root € as (e, e») with the assistance of dess and

(ii) checking if e, = H(e;). It considers a root valid, if this equation holds.

5. returns set R containing all valid roots.

Fig. 7: Auditor’s result computation, resComp(.), algorithm

C.2 Colluder’s Contract (SCc)

Recall that SCpc aimed at creating a dilemma between the two servers. However, this dilemma can be
addressed if they can make an enforceable promise. This enforceable promise can be another smart contract,
called Colluder’s Contract (SCc:). This contract imposes additional rules that ultimately would affect the
parties’ payoffs and would make collusion the most profitable strategy for the colluding parties. In SC, the
party who initiates the collusion would pay its counterparty a certain amount (or bribe) if both follow the
collusion and provide an incorrect result of the computation to SCp.. Note, SC. requires both servers to
send a fixed amount of deposit when signing the contract. The party who deviates from collusion will be
punished by losing the deposit. Below, we restate SCcc.
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. The contract is signed between the server who initiates the collusion, called ringleader (LDR) and the

other server called follower (FLR).

. The two agree on providing to SCpc a different result res’ than a correct computation of f on z would

yield, i.e., res’ # f(x). Parameter res’ is recorded in this contract.

. LDR and FLR deposit # + b and ¥ amounts in this contract respectively.
. The above deposit must be paid before the result delivery deadline in SCp¢, i.e., before deadline T,. If

this condition is not met, the parties’ deposit in this contract is refunded and this contract is terminated.

. When SCy is finalised (i.e., all the results have been provided), the following steps are taken.

(a) both follow the COHUSIOD if both LDR and FLR provided res’ to SCpc, then # and # + b amounts are
delivered to LDR and FLR respectively. Therefore, FLR receives its deposit plus the bribe b.

(b) only FLR deviates from the collusion: if LDR and FLR provide res’ and res” # res’ to SCp respec-
tively, then 2 - + b amount is transferred to LDR while nothing is sent to FLR.

(¢) only LDR deviates from the collusion: if LDR and FLR provide res” # res’ and res’ to SCpc respec-
tively, then 2 - £ + b amount is sent to FLR while nothing is transferred to LDR.

(d) both deviate from the collusion: if LDR and FLR deviate and provide any result other than res’ to
SChe, then 2 -t + b amount is sent to LDR and ¢ amount is sent to FLR.

We highlight that the amount of bribe a rational LDR is willing to pay is less than its computation cost

(i.e., b < ¢); otherwise, such collusion would not bring a higher payoff. We refer readers to [18] for further
dlSCqulOn.

C.3 Traitor’s Contract (SCrc)

SCre incentivises a colluding server (who has had signed SCc) to betray its counterparty and report the
collusion without being penalised by SCp.. The Traitor’s contract promises that the reporting server will not
be punished by SCp which makes it safe for the reporting server to follow the collusion strategy (of SCcc),
and get away from the punishment imposed by SCy.. Below, we restate SCc.

1.

[\

This contract is signed among D and the traitor server (TRA) who reports the collusion. This contract
is signed only if the parties have already signed SCpc.

. D signs this contract only with the first server who reports the collusion.
. The traitor TRA must also provide to this contract the result of the computation, i.e., f(x). The result

provided in this contract could be different than the one provided in SCyc, e.g., when TRA has to follow
SCq and provide an incorrect result to SCp.

. D needs to pay W + d + d — ch amount to this contract. This amount equals the maximum amount

TRA could lose in SCp¢ plus the reward. This deposit will be transferred via SCyyg to this contract. TRA
must deposit in this contract ch amount to cover the cost of resolving a potential dispute.

. This contract should be signed before the deadline T, for the delivery of the computation result in SCpc.

If it is not signed on time, then this contract would be terminated and any deposit paid will be refunded.

. It is required that the TRA provide the computation result to this contract before the above deadline

T,.

. If this contract is fully signed, then during the execution of SCy., D always raises a dispute, i.e., takes

step 8c in SCpe.

. After SCyc is finalised (with the involvement of the auditor), the following steps are taken to pay the

parties involved.

(a) if none of the servers cheated in SCp. (according to the auditor), then amount @ + d’ + d — ch is
refunded to SCyyg and TRA’s deposit (i.e., ¢h amount) is transferred to D. Nothing is paid to TRA.

(b) if in SCp, the other server did not cheat and TRA cheated; however, TRA provided a correct result
in this contract, then d" + d — ch amount is transferred to SC . Also, TRA gets its deposit back
(i.e., ch amount) plus @ amounts for providing a correct result to this contract.

(c) ifin SCP( , both servers cheated; however, TRA delivered a correct computation result to this contract,
then TRA gets its deposit back (i.e., ch amount), it also receives w + d' 4 d — ch amount.
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(d) otherwise, w + d + d — ch and ch amounts are transferred to SCuz and TRA respectively.
9. If TRA provided a result to this contract, and deadline T; (in SCp¢) has passed, then all deposits, if any
left, will be transferred to TRA.

TRA must take the following three steps to report collusion: (i) it waits until SC is signed by the other
server, (ii) it reports the collusion to D before signing SCc, and (iii) it signs SC¢c only after it signed SCqc
with D. Note, the original analysis of SCy. does not require SCy¢ to remain secret. Therefore, in our smart
PSI, parties TRA and D can sign this contract and then store its address in SCyye. Alternatively, to keep
this contract confidential, D can deploy a template SCy. to the blockchain and store the commitment of
the contract’s address (instead of the plaintext address) in SCpye. When a traitor (TRA) wants to report
collusion, it signs the deployed SCy. with D which provides the commitment opening to TRA. In this case,
at the time when the deposit is distributed, either D or TRA provides the opening of the commitment to
SCuye which checks whether it matches the commitment. If the check passes, then it distributes the deposit
as before.

D Proof of Theorem 2

Below, we restate the proof of Theorem 2, taken from [3].

Proof. Let P = {py,....,p.} and Q = {qi,...,q} be the roots of polynomials p and q respectively. By the
Polynomial Remainder Theorem, polynomials p and q can be written as p(xz) = g(x) - [[(z — p;) and

i=1
q(z) = g'(x) - [[(x — ¢,) respectively, where g(x) has degree d — ¢t and g'(x) has degree d’ — t'. Let the
i=1
product of the two polynomials be r(z) = p(x) - q(x). For every p, € P, it holds that r(p,) = 0. Because
(a) there exists no non-constant polynomial in F,[X] that has a multiplicative inverse (so it could cancel
out factor (z — p,) of p(z)) and (b) p, is a root of p(z). The same argument can be used to show for every
¢; € @, it holds that r(g;) = 0. Thus, r(x) preserves roots of both p and q. Moreover, r does not have any
other roots (than P and Q). In particular, if r(a) = 0, then p(a) - g(«) = 0. Since there is no non-trivial
divisors of zero in F,[X] (as it is an integral domain), it must hold that either p(a) = 0 or q(«) = 0. Hence,
a€Porac@. O
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