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Abstract. Generating supersingular elliptic curves of unknown endo-
morphism ring has been a problem vexing isogeny-based cryptographers
for several years. A recent development has proposed a trusted setup
protocol to generate such a curve, where each participant generates and
proves knowledge of an isogeny. Thus, the construction of efficient proofs
of knowledge of isogeny has developed new interest.

Historically, the isogeny community has assumed that obtaining isogeny
proofs of knowledge from generic proof systems, such as zkSNARKs,
was not a practical approach. We contribute the first concrete result
in this area by applying Aurora (EUROCRYPT’19), Ligero (CCS’17)
and Limbo (CCS’21) to an isogeny path relation, and comparing their
performance to a state-of-the-art, tailor-made protocol for the same re-
lation. In doing so, we show that modern generic proof systems are com-
petitive when applied to isogeny assumptions, and provide an order of
magnitude (10-30x) improvement to proof and verification times, with
similar proof sizes. In addition, these proofs provide a stronger notion
of soundness, and statistical zero-knowledge; a property that has only
recently been achieved in isogeny PoKs. Independently, this technique
shows promise as a component in the design of future isogeny-based or
other post-quantum protocols.

Keywords: Isogeny, Zero-knowledge, zZkSNARK, Interactive Oracle Proof,
MPC-in-the-Head

1 Introduction

Isogeny-based cryptography was first introduced with the CGL hash function [CLGO09]
by Charles, Goren and Lauter, where the core hardness assumption is that, given
two isogenous elliptic curves, it is hard to recover an isogeny between them.
Several other isogeny-based protocols were proposed, including SIDH |JD11],
which relaxes the assumption by giving additional torsion point information;
CSIDH based on group actions |[CLM™18,|Onu21|; SQI-Sign |[DKL™20|; and
pSIDH. [Ler21|. Even though there was a recent cryptanalysis breakthrough
on SIDH |CD22,[Rob22|, other cryptosystems (not based on SIDH) remain un-
affected, such as [CLM™ 18, DKL"20}|[Ler21|. Additionally, a variety of advanced
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schemes and protocols based on isogenies, such as oblivious transfer and exotic
signatures, have been proposed in the literature [BKV19, BKP20,LGd21,BD21|
BDK™22].

In every isogeny-based cryptosystem, isogeny walks start from a public curve.
In the literature, the candidate is usually one of the j-invariants 0 or 1728 with a
known endomorphism ring. In isogeny-based constructions, sampling an isogeny
without knowing its endomorphism ring [BBD™22/[MMP22|, is a notorious bot-
tleneck, and is essential in some constructions and applications |[CLG09,LGd21]
BD21,AEK ™ 22,Ste22|. From a cryptanalytical perspective, having a public curve
with an unknown endomorphism ring significantly reduces the information an at-
tacker/analyst may have. A recent proposal [BCC™22| suggests a trusted setup
ceremony to resolve this problem. In the ceremony, every party computes an
isogeny path from the previous curve to another, produces a proof that the
isogeny was generated honestly, and disposes of the path. They then publish
their new curve and associated proof publicly, which all parties verify. Once ev-
ery participant has completed their round, the ceremony outputs the final curve.
As long as at least one party behaves honestly, recovering the final curve’s en-
domorphism ring is difficult, even if the rest of the participants collude.

However, generating a zero-knowledge proof of an isogeny path is not a trivial
task in general. In the realm of group actions, it is not difficult to achieve and the
proofs for more sophisticated relations can be made [BKV19, BKP20, BDK™ 22|
ABCP22|. However, out of realm of the group actions, the task has been known
to be difficult to achieve either soundness (for the exact relation) or (statistical)
zero-knowledge, with some protocols requiring ad-hoc security assumptions. The
state-of-the-art line of work is given in [DFJP14,|GKPV21,DDGZ21,[BCCT22],
yet there is still room for improvement. Suppose 300 participants run the cer-
emony single-threaded on a normal machine, the protocol will take roughly an
hour to complete for A = 128, and 13 hours for A = 256.

Historically, it was assumed that tailor-made proof systems for isogeny rela-
tions performed better than generic ones. However, the developments of generic
proof systems, such as szNARKEEL which allow a prover to prove or argue
the knowledge of any NP relation, have advanced the field significantly in re-
cent years. zkSNARKSs enable a prover to produce a publicly-verifiable proof in
a zero-knowledge and non-interactive manner. Moreover, the proof size is suc-
cinct, sublinear in the size of the witness, and the verification time is much
shorter than producing the proof. The area of zero-knowledge proof systems
has been very active |[IKOS09, BCCT16,[AHIV17, KKW18, BCR™ 19, BFH" 20,
dOT21]| (see |Tha20L|Ish20| for surveys). These generic proof systems work well
with symmetric primitives and have applications in post-quantum cryptosys-
tems |ZCDT20,GMNO18ldDOS19,BdK ™ 21F JR22,FMRV 22|, and privacy-preserving
blockchain protocols such as [BCGT14].

Applying generic proof systems to isogeny-based cryptography remains un-
common. Though there exists a verifiable delay function from isogenies using
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a SNARGEL it is not in zero-knowledge, and the result remains theoretical in
nature, with unclear practicality. In particular, due to the complexity of com-
puting isogenies, size and the structure of the operating field, using generic
proof systems in isogeny-based cryptography appears challenging and impracti-
cal. Generic proof systems have been applied to protocols utilising fields of bit
length at most 256-bits, whereas many isogeny-based protocols utilise field ex-
tensions of a field of upwards of 512-bits. Due to these factors, it was previously
assumed these proof systems did not scale well with isogeny-based protocols.
In the isogeny community, the plausibility of the following question was largely
disputed:

Can generic proof systems serve as a practical tool in isogeny-based
cryptography?

1.1 Contribution

We affirm the question above. That is, generic proof systems are remarkably
efficient for isogeny-based cryptography. Specifically, our contributions are:

— We propose a non-interactive protocol to prove knowledge of an isogeny
path using a generic zkSNARK proof system for R1CS (rank-1 constraint
systems). We achieve this by re-writing the isogeny path relation into a
compact R1CS representation and then applying existing (plausibly) post-
quantum proof systems |[BCRT19,dOT21,|AHIV17|. The PoK inherits the
properties of soundness and statistical zero-knowledge from the underlying
proof systems, and supports supersingular isogeny graphs operating over any
cryptographically sized prime of the form p = 223 f + 1, with isogeny paths
of arbitrary length.

— We provide an alternative set of parameters of the form p = 293°f + 1
with equivalent security to those from SIKE to aid in our testing. These
parameters are designed to better support the requirements of the underlying
proof systems.

— Our protocol is implemented as a proof of concept, and we report bench-
mark results for a variety of parameters. Using our R1CS instances from
above, the generic proof systems yield competitive results. In particular,
Aurora [BCR™19| is 10-35 times faster than the state-of-the-art |[BCCT22]
while maintaining a similar proof size.

1.2 Related Work

The motivation behind this work is to construct an efficient isogeny proof of
knowledge. One such application of which is a multi-party setup protocol to gen-
erate a supersingular curve of unknown endomorphism ring, introduced in [BCC™22].
We give a brief history of prior works on proving isogeny knowledge, which differs
from our approach.
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Prior to this work, isogeny proofs of knowledge have existed in different forms,
notably [DJP11,DDGZ21|. These are X-protocols, tailored to the specific nature
of isogeny computation, and follow a direction to the original DJP identification
protocol. These protocols can be viewed as revealing different edges on the SIDH
square (Fig. (1) in order to prove knowledge of the isogeny ¢ : Ey — F; of degree
5. To generate the square, the prover computes an isogeny 9 : Ey — Ej of
degree (7. The prover then determines the isogenies ¢’ and v’ by their kernels,
such that ker ¢’ = v (ker ¢) and ker ¢’ = ¢(ker ).

E()#El

lw lw’ (1)
o

FEy —— Ej3

Fig. 1. The SIDH square

In the original De Feo-Jao-Plut identification protocol, in each iteration of
the X-protocol, the prover generates a new SIDH square in the manner described
above (with a fresh choice of 1). The prover reveals the curves Eo, E3. The verifier
then sends a binary challenge b. If b = 0, the prover sends the vertical isogenies
to the verifier, who checks if they are indeed isogenies of correct degree, domain,
and codomain. Likewise, if b = 1, the prover sends the horizontal isogeny ¢’, and
the prover verifies the isogeny is of correct degree and domain/codomain.

However, this protocol suffered from various issues. Aside from an ad-hoc se-
curity assumption, it did not achieve statistical zero-knowledge (since the side ¢’
is strongly correlated to the side ¢), and possessed issues with its proof of sound-
ness (see [DDGZ21,|GPV21|). De Feo et al. ’s protocol increases the challenge
space to 3, and proposed a solution to soundness by including a commitment to
03 -torsion bases of Es and E3, such that the latter is the image of the former
under ¢’.

The latest work, SECUER PoK [BCC™22|, resolves the problem of statistical
zero-knowledge (and forgoing the need for additional assumptions) by extending
the degree of ¢ and 1 by composing isogenies and gluing SIDH squares together
such that the walk 1 causes uniform mixing in a particular lift of the supersin-
gular isogeny grap}ﬂ causing the distribution of (E7, ¢’) to be statistically close
to uniform.

However, there are still some problems with these approaches. The increased
challenge space of [BCC'22,[DDGZ21| yields a knowledge error of % per round,
which increases the number of repetitions required to achieve a sufficient sound-
ness level. Furthermore, SECUER PoK relies on a relaxed assumption to sound-
ness, namely that the extractor may not obtain the original isogeny ¢, but an
isogeny ¢’ = [(4] o ¢ for some i < ep.

® The supersingular isogeny graph with level d Borel structure, where d = | ker ¢|



We forgo these approaches (and their soundness issues) by viewing the isogeny,
¢, as a walk on the supersingular ¢ 4-isogeny graph and then proving the knowl-
edge of the walk with a generic proof system. Provided the prover can efficiently
compute the intermediate j-invariants on the walk, which is done in practice
using Vélu’s formulae, this provides the same functionality as the proof systems
above.

2 Preliminaries

2.1 Notations

A function f : N — R is negligible if for every polynomial p there is an N such
that for all n > N it holds that f(n) < ﬁ. Given a relation R, we say that
L(R) is the set of all elements x such that there exists a w where (z,w) € R.

2.2 Isogeny Graphs

This section recalls a few essential properties of supersingular elliptic curves
relevant for our work. We refer to [Was08,/Sil09] for a more extensive exposition.

Elliptic Curves An elliptic curve is a projective non-singular curve of genus
1. We say a curve is defined over a field K if its coefficients are. The K-rational
points, E(K), form a group under an additive operator. Elliptic curves over a
field may be uniquely identified (up to isomorphism) by a single field element,
called the j-invariant. The j-invariant is efficiently computable given a curve’s
coefficients.

Isogenies An isogeny is a morphism of elliptic curves preserving both geometric
structure (as a rational map) and group structure (as a group homomorphism).
The degree of a (separable) isogeny is the size of its kernel as a group homomor-
phism. We say an isogeny is an ¢-isogeny if it has degree ¢, and that two elliptic
curves are f-isogenous if there exists an f-isogeny between them. We shall assume
all isogenies discussed in this work are separable (but need not necessarily be
cyclic).

Supersingular ¢-Isogeny Graph We denote the supersingular /-isogeny graph
over Fp» as G¢(p), whose vertices are the supersingular elliptic curves over the
field (up to isomorphism), with an edge between two vertices if they are ¢-
isogenous. It is a well known fact that for ¢ # p, G¢(p) is a Ramanujan graph
|Piz90], an optimal expander graph.



Modular Polynomial The modular polynomial @,(X,Y), is a symmetric poly-
nomial of degree /41 whose roots over [Fj» correspond to every pair of /-isogenous
J-invariants of elliptic curves over Fj2. This allows us to efficiently determine if
two elliptic curves are f-isogenous over a given field. For £ = 2, we have the
modular polynomial

Do(X,Y) = X + Y3 —162000(X? + Y?) + 1488XY (X +Y) — X?Y?
+ 8748000000(X + Y) 4+ 40773375XY — 157464000000000. (2)

So, two j-invariants ji,jo are adjacent in Gy(p) if and only if ®4(j1,j2) = 0
mod p.

2.3 Proof Systems

Zero-knowledge succinct Non-interactive Arguments of Knowledge
In the (explicitly programmable) random oracle model, a zero-knowledge non-
interactive succinct argumenﬁ of knowledge (zkSNARK) for a relation R =
{(z,w)} is a tuple (P,V) where P,V are probabilistic polynomial time (PPT)
algorithms with access to a random oracle p which satisfy the following proper-
ties:

— COMPLETENESS: For every (z,w) € R, A € N,
Pr[VP(z,m) =1 |7+ PP(z,w)] =1

— SOUNDNESS: Given negligible soundness s, for every PPT P, ¢ L(R), and
reN: }
Pr[VP(x,m) =1 | 7+ PP(z)] < s(z, \).
— PROOF OF KNOWLEDGE: Given negligible knowledge error «, there exists a
PPT extractor E such that, for every xz, PPT P, A € N,

Pr[(z,w) € R | w + EF(2,1%)] = Pr[V*(z,7) = 1 | 7 < P?] < K(z, \).

Where the extractor £ may program the responses to random oracle queries
of ]5, and either get a response of the next query or output m, at which
point P goes to the start of its computation with the same randomness and
auxiliary input.

— ZERO KNOWLEDGE: A non-interactive protocol (P, V) is statistical zero-
knowledge (with negligible function z) in the explicitly programmable ran-
dom oracle model (EPRO)ﬂ if there exists a PPT simulator S, such that for
every (z,w) € R and unbounded distinguisher D:

Pr[DM(7) = 1| (7, p) + SP(x)] = Pr[DP(n) =1 | 7 + PP(z,w)] < 2(z, \),

5 Typically, a non-interactive random-oracle proof system is a proof (NIZKPoK) only
if the definition of soundness holds given a computationally unbounded prover, and
is otherwise called an argument. We may use the terms interchangeably to refer to
both.

” We include the definition of zero-knowledge in the EPRO model, which is required
in the application of the BCS transform—the Fiat-Shamir analogue for IOPs.



where the EPRO, p[u], outputs p(x) if = is in the domain of u, otherwise
it outputs p(x). The distributions are taken over the uniformly at random
instantiation of p and the randomness of P, V.

— SUCCINCTNESS: A proof system (P,V) for a relation R is succinct, if, for
any (z,w) € R and corresponding proof m « P?(x,w), m grows polyloga-
rithmically in w. In particular, |7| = poly(\, |z|, log(|w|)).

Interactive Oracle Proofs An interactive oracle protocol between two PPT
algorithms A and B over k rounds is a protocol where at the ith round, A sends
an i-th message m; to B, who responds with a random access oracle f; which
may be queried in consequent rounds. After k£ rounds, A either accepts or rejects
(see [BCS16| for details).

An Interactive Oracle Proof (P,V) for a relation R with round complexity
k and soundess s satifies the following properties:

— COMPLETENESS: For every (z,w) € R, (P(z,w),V(x)) is a k(x)-round in-
teractive protocol with accepting probability 1.

— SOUNDNESS: For every x ¢ L(R) and every P, (P,V(z)), is a k(x)-round
interactive oracle protocol with accepting probability at most s(x).

Interactive Oracle Proofs (IOPs), introduced by Ben-Sasson et al [BCS16],
are a generalisation of both Interactive Proofs (IPs) and Probabilistically Check-
able Proofs (PCPs). One may note that IOPs directly generalise PCPs to multi-
ple rounds. The motivation behind the construction of IOPs is that of efficiency,
by minimising redundancy that might be present in a traditional 1 round PCP
construction. Analogously to IPs and PCPs, an IOP may also satisfy the proper-
ties of zero-knowledge, proof of knowledge, and succinctness, as well as a trans-
formation which performs similarly to the Fiat-Shamir transform [FS87]. Thus,
zkSNARKSs can be obtained from IOPs. Intuitively, succinct proofs are achiev-
able when the prover sends random access oracles (instantiated via Merkle trees
with a CRH function), rather than full length messages.

Theorem 1 (BCS Transform). There exists a transform T that inputs an
IOP (P, V) and outputs a non-interactive argument of knowledge (P*,V*) that
preserves proof of knowledge and succinctness. Moreover, when the underlying
IOP is statistically zero-knowledge, the resulting protocol is statistically zero-
knowledge under the EPRO modelﬁ

Proof. See |BCS16, Sec. 6]

In this work, we consider IOPs that satisfy all of these properties and are
also transparent. That is, secure in the absence of the common reference string
(CRS) model, in which protocols require trusted setup.

8 In particular, the extractor in the transformation T is straight-line, and does not
apply the forking lemma.



2.4 Rank-1 Constraint Systems

We recall the definition of rank-1 constraint systems (R1CS), which some zk-
SNARK:s (e.g., Aurora) take as an input. R1CS is parameterized by n, m € N and
a prime power ¢, and consists of instance-witness pairs ((A, B,C,v),w) where

A B,C e IE‘ZLX("H) and v,w are vectors over [F, such that
AzoBz=Cxz

for z := (1,v,w) € F)™!, where o denotes coordinate-wise (Hadamard) product.
Conceptually, A, B,C encode constraints on variables v, w; where v contains
(public) auxiliary input, and w contains both secret input and intermediate
variables in a computation.

R1CS typically encodes arithmetic circuit satisfiability. However, we work
with modular polynomials and show how to an isogeny path relation directly
into a R1CS together with some optimisations in Sec. [3.4]

2.5 MPC-in-the-Head

The MPC-in-the-Head (MPCitH) paradigm was introduced in the seminal work
of Ishai et al. [[IIKOS07] Suppose the prover wishes to convince a verifier of an
NP relation R in zero-knowledge, where x is the instance and w is the witness.
The prover simulates a semi-honest MPC protocol with n parties locally (in its
head) and commits to the transcript. The verifier asks the prover to decommit
a subset of the transcript and check whether the messages are consistent and
that the reconstructed output is 1, meaning that the relation R holds. If there
are no failures during the verification, the verifier accepts the proof. Intuitively,
completeness holds trivially, (statistical) zero-knowledge holds if the decommit-
ted transcript is not enough to reveal the full transcript (e.g., revealing n — 1
transcripts reveals nothing about the full transcript when using additive secret
sharing). Regarding soundness, the prover may cheat if the faulty transcript is
not challenged by the verifier. Nevertheless, it is possible to boost the soundness
by repeating the protocol many times. Using the Fiat-Shamir transform [FS87|
it is possible to convert an interactive protocol to a non-interactive one.

Limbo Limbo [dOT21| is the state-of-the-art non-interactive zero-knowledge
proof of knowledge for arithmetic circuit satisfiability protocol based on the
MPCitH paradigm. Despite not satisfying the asymptotic definition of succinct-
ness, Limbo has proven to have good concrete efficiency for small to medium
sized circuits (i.e. circuits with less than 500000 multiplication gates). Thus we
include it in our consideration. For the detailed description, we refer the reader
to the paper.

2.6 Reed-Solomon IOPs

The other line of protocols [BCRT19/AHIV17,BFH™ 20| we consider in this work
is called Reed-Solomon IOPs. In contrast to the MPCitH-based approach above,
these protocol achieve the property of succinctness.



At a high level, in RS-IOPs, the witness w corresponds to the input plus
all the intermediate variables in the computation. The prover transforms the
witness w into various vectors, depending on the proof system, which are then
encoded with a RS code. The verifier engages in various sub-protocols with the
prover to check conditions on the RS encoded values to convince itself that the
encoded values form valid RS codewords and satisfies the constraints given in
the relation.

Reed-Solomon Codes Given an ordered subset L = {{1,...,{;} of a field F,
and o € (0,1], we denote RS[L,a] C F¥ to be the set of evaluations over L
of all polynomials of degree less than ak. That is, a codeword ¢ is in RS[L, a]
if and only if there exists a polynomial p of degree less than ak such that the

c=(p(t1), s p(Lx))-

Aurora Aurora is a transparent zkSNARK for the R1CS relation secure in the
EPRO. At a high level, Aurora’s underlying IOP reduces to proving the following
two subproblems:

— ROWCHECK: Given vectors a, b, c € Fy", test whether aob = ¢

— LINCHECK: Given vectors z € FJ", y € Fi™!, and matrix M € F;nx(nﬂ);

test whether z = My.

Given IOPs for these problems, one may construct an IOP for R1CS. Given
an R1CS instance ((¢,n,m, A, B,C,v),w), the prover sends four oracles to the
verifier: the satisfying assignment for z, ya := Az, yg := Bz, and y¢ := C=z.
The prover then engages in parallel execution of the following:

— An IOP for ROWCHECK to verify that y4 oyp = y..
— An IOP for LINCHECK to verify that y4 = Az, yp = Bz, and yo = C=z.

Finally, the verifier checks that z is consistent with the auxiliary input v.

However, such a protocol would be neither succinct, nor zero-knowledge.
In order for the protocol to achieve sublinear communication complexity, the
subprotocols for LINCHECK and ROWCHECK both utilise Reed-Solomon encoded
variants. In this case, foregoing zero-knowledge, the subroutines for LINCHECK
and ROWCHECK encode the vectors ya,yn,yc as the coeflicients of a unique
polynomial that matches them over some H; C Fy where |H;| = m, and likewise
for z, as the coeflicients of a polynomial that matches 2 over some Hy C F,
where |H3| = n+ 1. In addition, some extra work is done to check the degree of
the polynomials is consistent with the input via a low-degree test. Aurora utilises
the FRI protocol [BBHR1§| to achieve this efficiently.

Zero knowledge is achieved by encoding a vectors Az, Bz, Cz not as unique
polynomial of degree |H;| — 1 matching the entries of Az, Bz, Cz on Hy, but as a
random polynomial of degree | H; |+m conditioned on matching Az, Bz, C'z on Hy
(the same process applies to z with domain Hs). The polynomial is represented
as evaluations over a domain L disjoint from H; and Hs such that m queries



cannot leak any information about v. In order to guarantee these subsets are
disjoint, over a prime field, the subsets Hy, H, are chosen to be multiplicative
subgroups of the field (of order a power of two such that H; C Hs or Hy C Hy),
and the evaluation domain L is a multiplicative coset of a subgroup of H; U Hs.

Ligero Ligero |[AHIV17] is another transparent zkSNARK based on a RS-IOP
for boolean or arithmetic circuit satisfiability (technically, an IPCP, as it only
comprises of a single round). Given an arithmetic circuit C of N gates, a Ligero
prover represents the satisfying assignment of the s (= N) wires of C into a
slightly redundant matrix representation of size O(y/s) x O(y/s), and encodes
each row of this matrix using an (interleaved) RS code. The verifier challenges
the prover to reveal linear combinations of the entries of the codeword matrix,
which is checked against A randomly selected columns of the matrix which are
consequently revealed by the prover.

Aside from the underlying proof relation, the key distinction between Aurora
and Ligero is informed by two design decisions: Ligero encodes its oracles with
O(V'N) RS codewords of length O(v/N), rather than by a single RS codeword of
length O(N). In addition, it uses a direct (single-round) low-degree test rather
than the FRI IOP.

3 Construction

3.1 Hardness assumptions and relations

Recent attacks have rendered the SIDH assumption broken [CD22| |Rob22].
The key insight is that the Castryck-Decru and Robert attacks require the im-
age of the torsion points Pj, @1, however, the following, more general isogeny
path-finding problem below, historically used to cryptanalyse SIDH, remains
unaffected.

Problem 1 (IsoPATH). Given supersingular elliptic curves Ey, Fy defined over
F,z, find an isogeny ¢ : Ey — Ej such that deg¢ = ¢* for a fixed prime ¢ and
keZ.

We define the following relation based on the hardness of ISOPATH:
7-\J'é’“—ISQPATH = {((EOa El)a ¢) : ¢ : EO — By is an iSOgGHY7 deg(b = Ekv ke Z}

The isogeny witness ¢ is typically represented by fixing a basis of the £*-torsion
group, and giving a kernel generator, a point on Ey of order ¢*. Instead, we
choose to represent our witness isogeny ¢ in the relation above by using the
modular polynomial. Recall, two elliptic curves E, E’ are f-isogenous if and only
if &,(j(E),j(E")) = 0. Then an isogeny ¢ : Ey — Ej of degree ¥ can equivalently
be represented as a sequence of intermediate j-invariants jq, jo, ..., jx—1 such that

¢£(j(EO)7j1) =0
Dy(ji, jir1) =0 forallie {1,...k—2}
@é(jk—laj(El)) == 0

10



Hence, more precisely, the relation we prove is as follows:

~ - Pe(§(Eo), j1) = 0,Pr(jr—1,5(E1)) =0
Rek-noppony = {((EO’El)’ Uidieqr...k-13) (i, jiv1) =0 Vie {1,...k—2} }

When generating isogeny path instances, we want the length k to be small
enough to be efficient, but large enough to prevent meet-in-the-middle and colli-
sion search claw-finding type attacks [Gal99yACC™19fvW99|, whose classical and
quantum heuristic run times are O(¢¥/2) and O(¢*/3) respectively. One might
therefore take k =~ 2\ as reasonable security trade-off.

3.2 High-Level Overview

The reader might wonder, what in particular does our isogeny representation
achieve? What makes this relation so amenable to generic proof systems is its
low-depth, highly regular decision circuit. That is, an arithmetic circuit C' where
C(z,w) = 1if and only if (z,w) € Rer_mobpowy- 10 this case, C' may simply be
a sequence of parallel evaluations of the modular polynomial on each pair of
adjacent j-invariants. This allows us encode the relation in a highly compact
(but equivalent) intermediate representation, to be fed into the proof system.
The general roadmap to utilising the generic proof systems is as follows:

1. Encode the relation Rx_yoppory and pair (z,w) into an equivalent R1CS,
denoted by Ry yonpory a0d (2/,w') respectively.

2. Use a generic zkSNARK for R1CS (resp. arithmetic circuits) to argue the
knowledge of a witness w’ such that (z',w’) € Ry y1o0pory-

3. The prover’s knowledge of w’ will imply the knowledge of w such that

(S(}, ’LU) € Rek-MopPory-

Since we have to perform field arithmetic over a quadratic extension field we
can either work over the base field (where each F,2-multiplication will dictate a
series of underlying F,, multiplications), or adapt the proof system implementa-
tion to be suitable for quadratic extensions. The security of the proof systems
in question are independent of field choice, but the efficiency of Reed Solom
based protocols is subject to a requirement. Namely, being capable of perform-
ing efficient FFT and IFFT operations. Broadly speaking, working over a field
K, we require that K* contains a subgroup of order 2™ for an integer m such
that ¢ < 2™, where ¢ = max{m,n} for n variables and m constraints in a given
R1CS. When working with isogenies, we typically choose primes of the form
pr =293%f —1, or pp = 223 f + 1. It is clear that IFp,, would satisfy the condition
above, provided m < a, but F),, would not, since [F) | =p; — 1= 2(203b f —1).
The first solution is to simply instantiate the proof system only over the base field
with py primes, however this admits several problems. Firstly, I, » operations are
slightly more efficient. Since —1 is a non quadratic residue, F), > = F(i) which
allows for more efficient multiplication, inversion and squarings. Secondly, we
want our protocol to be compatible with common choices of parameters, which
typically use p; primes for efficiency reasons. Thus, we instantiate the proof sys-
tem over the extension field, whose multiplicative order is p?—1 = (p—1)(p+1).
This satisfies either choice of prime.
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3.3 From Isogeny Relation to R1CS Instance

In order to apply our proof systems, we transform the modular polynomial rela-
tion into an R1CS with n variables and m constraints. Concretely, we consider
an R1CS consisting of the statement A, B, C € ]FZ;X("H) and a witness z € FZ;rl
such that

AzoBz=Cx.

In this formulation, A, B, C are public matrices which correspond to an instantia-
tion of the language dependent on p, £, k. The vector z consists of 1, the auxiliary
input: j-invariants of the starting and ending curve, and the secret input: the
Jj-invariant sequence (as well as intermediate variables dependent on the inputs).
Each row of A, B, C will encode a linear constraint on the variables. One of these
rows must encode the isogeny modular polynomial ®4(j;, j;+1) = 0, which shows
that two adjacent j-invariants are isogenous. For representation compactness,
we arrange the modular polynomial in the following form:

—1488XY (X +YV — 148871 XY) = X3 + Y3 — 162000(X? + Y?)+
8748000000(X + Y') + 40773375XY — 157464000000000 (3)

3.4 Optimization for R1CS over [

We then encode matrices A, B, C' such that a row evaluates the equation above
and performs intermediate variable consistency checks. Note that we can do far
better than the naive approach, where each row of the matrices correspond to
a single multiplication or addition of variables in z, and the entries of z contain
every intermediate variable obtained. In loose terms, in R1CS, each row can
encode: linear expression X linear erpression = linear expression.

Suppose the isogeny path in question is of length k. If &k = 1, ¢ = 2 then by
Eq. (2), we obtain:

z=0(1jdo jr 42 42 38 3% join )"

with the matrices:

0100000 O 01 00000 O 00010000
0010000 O 00 100000 00001000
A= 0001000 O B = 01 00000 O C = 00 0O0O0O100

— 10000100 O ’ — |00 10000 0 |>» - 00 0O0O0O01O0

0100000 O 00 100000 00 0O0O0O0O01

0000000764 06404000071 60010162021163
where

co = —157464000000000 ¢ = 8748000000 co = —162000

c3 = 40773375 cq = 1488,

where the ¢;’s are derived from Eq. . The first 5 rows provide consistency
checks on each variable, including square, cube, and multiplication. The last
row checks the evaluation of the polynomial Eq. . Now we can to extend
this to a path of length £ > 1, for each j-invariant j;, we will introduce an
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additional 4 variables (including input): j;, j2, j2, ji_1j;. We note that the
squarings and cubings for each j-invariant need only be checked once. Hence, we
obtain n := 4k + 3 variables.

For each j-invariant in the sequence (including jg) there will be 2 constraints
for squaring and cubing consistency checks. For each adjacent pair j;_1, j;, there
will be 2 constraints: one checking consistency of the variable j;_1j;, and one the
evaluation of the modular polynomial. This gives us m := 4k + 2 constraints.

3.5 Optimization for Lifting to F, X [F,,

This subsection presents several techniques to reduce the overhead to lift arith-
metic over a quadratic field to a vector space of the prime field. We consider a
quadratic field F,2 = F,[a] where o? = d for some non-square d € F,,.

The motivation is that, generally, the j-invariant of an elliptic curve is taken
over IF,,» while some proof systems only support arithmetic over a prime field.
Indeed, arithmetic compuations over F,[a] can be viewed as arithmetic com-
putations over an F,-vector space natively. That is, for x1,22,91,y2 € Fp, to
represent 1 + zocr € Fpla], by mapping z1 + z2a to (21, z2) the addition is
(21 4+ y1, 22 + y2) and the multiplication is (x1y1 + 22yad, 1y2 + 22y1). Naively,
this results in 4 (variable) Fp,-multiplications for one (variable) [F,,2-multiplication
(i.e. z1@2, Y1Y2, T1Y2, T2y1 ). In fact, with a few well-known tricks, this can be done
more efficiently:

Arithmetic. We start with multiplications.

— U1 =I1Y1

- U2 = Y242

— ug = (x1 + x2)(y1 + y2), then
— T1Yy1 + Tay2d = uq + uod

= (z1y2 + T2y1) = uz — u1 — ug

By using the trick, there are only 3 (variable) F,-multiplications now. The
saving depends on the proof system to be used. In many proof systems, it is much
more expensive to verifiy a (variable) multiplication relation than a (variable)
linear relation.

Let z + yo € Fpla], there is a trick for variable squaring:

—u; =y
— ug = (. + y)(z + yd), then
— (22 4+ %% =us — (d+ 1wy
2xy = 2u,

Application to R1CS Matrices. Now we can apply the abovementioned tech-
niques to our R1CS matrices. Recall that in Sec. [3.4] we have a witness vector z
over I, x F;z. To lift it into F,,, we firstly naturally embed it into F,, x F % We
explain how to build a submatrices and introduce intermediate variables for each
constraint as follows. As an abuse of notation, given an element x := a + ba €
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F,[a], we refer to a as Re(x) and b as Im(z) respectively.

Squaring. For the squaring relation, it is fairly simple. Take the subvector
(1,Re(z), Im(z), Re(z?),Im(x?)) for instance, the corresponding submatrices for
this constraint are respectively

02000] [00100] [0o000 1
01100/°(01d00|" (0001 271 (d+1)]"

which represents 2Re(x)Im(z) = Im(2?) and (Re(z) + Im(z))(Re(z) + dIm(x)) =
Re(2?) +271(d + 1)Im(z?), resp.

Multiplication. For the multiplication relation, we need an additional variable
u over IF,,. We take the subvector (1, Re(z), Im(x), Re(y), Im(y), u, Re(zy), Im(zy))
for instance. The corresponding submatrices for this constraint are respectively

00100000 00001000 00000 1 00
01000000|,|00010000|,]|00000 —d 10|,
01100000 00011000 000001—-d11

which represents Im(x)lm(y) = u, Re(xz)Re(y) = Re(zy) — ud, and (Re(z) +
Im(x))(Re(y) + Im(y)) = Im(zy) + Re(z)Re(y) + u, respectively.

Constraint Eq. (3). We can apply our multiplication technique above to the
constraint Eq. . Recall that the final constraint from the modular polynomial
is (—2y)(car + cay — xy) = 23 + y3 + c2(2? + %) + c1(z + y) + ezzy + co.
The insight is every coefficient ¢; is over F), so Re(-) has the linear proposition
Re(caz + c4y — xy) = c4Re(z) + c4Re(y) — Re(zy) and so does the imaginary
part Im(-). Therefore, we can use three constraints for the real part and the
imaginary part of 23 + y3 + ca(2? + 4?) + c1(x + y) + 32y + co in terms of
Re(X),Im(X),Re(Y),Im(Y) where X = —ay and Y = ¢4z + ¢4y — xy as the
method described above.
Concretely, for a subvector

2/ = (1 Re(z) Im(z) Re(y) Im(y) Re(z?) Im(z?) Re(y?) Im(y?)
Re(x?) Im(2) Re(y?) Im(y*) Re(zy) Im(zy) v)
the corresponding submatrices for this constraint are respectively

0000000000000 O =10 00cs 0400000000 0 =10
0000000000000-1 0 0],]|0cs4 0cs OO0O0O00000—-1 O Of,
0000000000000~-1-10 0cscacc400000000-1-10

0000O0O0O0OO0OO0O0O000O00O0 1
606100106206201010630 —d N

60616101010262626211116303(1—d)
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which respectively represents

where

X =—-xy
Y =cqx +cyy — xy
Z =241+ ca(x? +y?) + ci(z +y) + czxy + co.

In summary, for any isogeny path over any quadratic field > of length k, we can
transform it into an R1CS relation with 11k +4 variables and 11k + 3 constraints
over [F,.

3.6 Parameter choice

In order to offer a wider degree of flexibility, we apply our R1CS relation over
both F,, and F,> arithmetic, which allows for the support of:

— isogeny-based protocols (working over F,2) with primes of the form p =
243% f + 1 with proof system operating over F,,

— and isogeny-based protocols with primes of the form p = 223 f +-1 operating
over [Fp.

Once an isogeny path has been obtained, it is straightforward to obtain either
RI1CS instance given the methods described in Sec. and Sec. We leave
the manner in which the isogeny paths are computed open to a more detailed
implementation. One such approach would be to use optimized SIDH imple-
mentations |[CLN16,/ACCT17|, with some modifications needed to support po
primes. Note that since po =1 mod 4, the curves of j-invariant 0, 1728 are not
supersingular. In this setting, one can find a starting curve by using a root of the
Hilbert class polynomial mod p [Bro08, Sec 3.2]. The public parameters p, ¢, k
are sufficient for a verifier to efficiently construct the R1CS matrices A, B,C
offline, which minimises the communication and storage cost.

In evaluating performance for comparison with [BCC*22|, we have included
the standard SIKE parameters, but also include primes of comparable parame-
ters of the py form in order to compare performance of over different base fields,
which should offer equivalent security at the cost of slightly reduced performance
of isogeny path computation. These primes are the smallest primes py = 223 f+1
such that for a corresponding SIKE prime p; = 2% 3% f/ — 1 we have that a > o/,
b > b and f' > f. Due to the flexibility of the underlying proof systems, the
protocol can operate over arbitrary choices of k, and primes of this form. We
have fixed the path length k& to the corresponding lengths of a SIKE 2-isogeny
path, but this could be increased as desired.
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Remark 1. The choice of benchmarking this protocol with parameters obtained
from the now defunct SIKE may seem somewhat arbitrary. We do so to compare
our results to [BCCT22|, whose implementation is limited to SIKE primes. A
pragmatic course of action might be to determine concrete parameters that are
practical and secure in the setting of isogeny commitments and hashing.

R1CS Param.

P k Variantﬁ Security Level
P gy 20 M
A PO T T .
B e, W5 2R
R I T

Table 1. Our parameter sets for the evaluation of isogeny PoK in R1CS representation.

4 Implementation and Evaluation

In evaluating the performance of our isogeny proof of knowledge, we considered
protocols which support finite fields of prime Characteristi(ﬂ that are statistical
zero-knowledge, plausibly post-quantum and transparent (see Tab. .

Virgo and Orion [ZXZS19,/XZS22] do satisfy these properties. However, we
excluded them from our testing as their implementation does not easily support
generic fields, but we hope to include them in future testing. Theoretically, Virgo
performs well for low-depth, uniform circuits such as our own.

The state-of-the-art is given by Ligero++; a protocol that combines aspects
of Virgo and Ligero, trading-off marginally higher verification times for faster
prover times than Aurora, with comparable proof sizes. However, it does not
have any open source implementations. Brakedown, Shockwave |[GLS™21|; and
the recent LaBRADOR [BS22| are candidates of interest. However, they do not
yet offer zero-knowledge. There are no clear obstructions to them achieving zero-
knowledge, and provide promising results, so are worth considering in future lines
of work.

Implementation As a proof of concept, we evaluate the performance of our
isogeny proof of knowledge via:

9 Subject to FFT performance conditions.
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Prover time  |Verifier time Proof size
Limbo [dOT21| O(N) O(N) O(N)
Ligero |[AHIV17]  |O(Nlog N) (N) O(V'N)
Aurora [BCRT19] |O(Nlog N) O(N) O(log® N)
Virgo |ZXZS19| O(N + nlogn)|O(Dlog N +log®n)|O(D log N +log?n)
Ligero++ [BFHT20]|O(Nlog N)  |O(N) O(log® N)
Orion [XZS22] O(N) O(log® N) O(log® N)

Table 2. Asymptotic cost various transparent, post-quantum, zero-knowledge generic
proof systems, applied to an arithmetic circuit of N gates, n inputs, and depth D over
a fixed field.

— Aurora and Ligero through a fork of 1ibioﬂ modified to support larger
prime fields and quadratic field extensions. Ligero’s original implementation
is closed source, but an adaptation is included in libiop. While originally
designed for arithmetic circuit satisifiability, 1ibiop’s implementation sup-
ports R1CS instead, at claimed no extra cost.

— Limbo, through an implementation obtained via private correspondence
(the publicly available implementation is only available for binary fields).
Limbo is interfaced with our R1CS instances directly, with an arithmetic
circuit that evaluates Az o Bz — Cz and then checking that the resulting
vector equals to zero.

Aurora and Ligero are directly tested with R1CS instances of size given in Tab.
We separate the results for the standard SIKE parameters for direct comparison
with SECUER PoK, and include a second table of results (Tab. |4)) for the smooth
primes which operate over F,,. Limbo is directly interfaced to prove the given
R1CS instance in a manner described in Sec.

We also include results from the SECUER PoK |BCCT22|, through the
reference implementatiorﬂ The SECUER PoK is a direct proof of knowledge
for a relaxed notion of the relation Ror_1soparus SO provides comparison as a
tailored protocol to our results from applying generic proof systems.

Results The experiments are run on a Intel® Core™ 19-9900 CPU @ 3.10GHz.
The benchmarks include only single-threaded results as the 1ibiop package does
not properly implement multi-threading and did not provide accurate results.
Nevertheless, Aurora and Ligero should reflect similar optimizations to that
of [BCCT22| from a well supported multi-threaded implementation, as the pro-
tocols are well suited to parallelisation. In particular, the protocols run parallel
compositions of the proof in order to achieve necessary soundness level.

We see that Aurora, the best overall performer, provides a 10-35 times im-
provement to proof and verification times compared to SECUER PoK, with 0-30%

10 Original source code available at https://github.com/scipr-lab/libiop. Our fork
can be found at https://github.com/levanin/libiop-other-primes.
' Source code available at https://github.com/trusted-isogenies/SECUER-pok
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Our Work

Parameter Aurora  Ligero Limbo || Secuer PoK

P 934ms 587ms 354ms 12,369ms

p434 |4 99ms 847ms 273ms 1,399ms
S 194kB 1,849kB  2,598kB 191kB
P 1,138ms  686ms 479ms 19,296ms

p503 vV 114ms 959ms 380ms 2,173ms
S 219kB  2,127kB  3,456kB 216kB
P 3,175ms  2,488ms 989ms 60,915ms

p610 \%4 472ms 2614ms 818ms 6,646ms
S 517kB  4,084kB  7,607kB 404kB
P 3,882ms 1,951ms  2,131ms 141,043ms

p751 1% 824ms 6407ms 1,793ms 15,931ms
S 828kB  6,394kB  15,104kB 663kB

Table 3. Table of results comparing several generic proof systems operating over F 2
for the R1CS instantiation of Ror_pp, and the isogeny SECEUR PoK in [BCC™22].
Soundness/zero-knowledge security level is set according to Tab. |ljand P, V, S cor-
respond to proof time, verification time, and proof size respectively. Results displayed
are for single-threaded performance.

Parameter Aurora Ligero Limbo

P 1,216ms 427ms 330ms

p4éi+ \% 98ms 493ms 264ms
S 166kB 1,733kB  3,496kB

P 1,440ms 537ms 438ms

p509+ \% 120ms 603ms 342ms
S 182kB 1,967kB  4,657kB

P 2287ms 1,130ms 922ms

p619+ V.  239ms 849ms 746ms
S 338kB  2,414kB  10,327kB
P 3,030ms 1,044ms  1,938ms
p761+ V  431ms 1,951ms  1,594ms
S 551kB  4,004kB  20,588kB

Table 4. Table of results comparing generic proof systems operating over [F,, for the
projected R1CS instantiation of Rox_pp operating over fields with characteristic of
the form 2°3° f 4 1. Soundness,/ zero-knowledge security levels set according to Tab.
Results displayed are for single threaded performance.
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increase in proof length. If we consider smooth primes which allow for operation
over Fp,, Aurora allows for similar improvements to proof and verification times
but with smaller proofs than SECUER PoK when compared with parameters of
similar bit length. Limbo, as expected, performs well for smaller parameters at
the cost of much longer proof lengths. Conversely, Ligero is better suited to
larger parameters than Limbo but still suffers from long proofs. These results
should serve as evidence to support the choice of Aurora as a platform for this
application.

5 Conclusion

In conclusion, we show that generic proof systems are competitive when applied
to isogeny-based relations, by giving a proof of concept for an isogeny proof
of knowledge using a compact R1CS instance, whose security is based on the
underlying proof systems. Our best experimental result shows a 10-35 times
improvement for prover and verifier time compared to the state-of-the-art tailor-
made isogeny protocol, SECUER PoK.

A remark on signatures. Several post-quantum signature schemes have been
proposed by applying MPCitH proof systems to PRFs, such as |[dDOS19|ZCD ™20,
Bd20,BAK™21|. The approach follows one of two processes, given a uniform se-
cret key k:

1. The public key is y such that f(k) = y for a one-way function f. A signature
corresponds to a non-interactive proof that “I know a k such that f(k) =y”
where the message m is incorporated into the randomness of the challenges.

2. The public key is PRF;(0%), and a signature is then an evaluation of PRF},(m)
attached with a proof that “T know a k such that I can compute both PRF}(m)
and PRFy(0*)”.

Given a secure PRF, the latter approach is somewhat agnostic to the proof
system in question. However, in the former case, it is unclear that proofs ob-
tained from the BCS transform applied to IOPs can yield a secure signature
scheme analogous to Fiat-Shamir applied to X-protocols. Some works [FKMV12]
GKK™22] indicate the non-malleability or simulation extractability is an impor-
tant notion in the security of this construction. Simulation extractability provides
that a malicious prover cannot forge a valid proof without knowledge of the wit-
ness, even after seeing polynomially many valid proofs. In particular, a related
but weaker notion, simulation soundness, seems to yield a direct reduction to
EUF-CMA. To this date, the security of the BCS transform with messages incor-
porated into the verifier’s randomness lacks sufficient analysis, and it is unclear
as to what property is necessary and sufficient in order to construct signatures
by (1). If this is achieved, it is straightforward to convert the isogeny proof of
knowledge into a signature scheme based on the hardness isogeny path-finding,
where the one-way function is essentially the CGL hash function.

19



Acknowledgements

This work is a result of a collaboration at the University of Auckland, and
is supported by the Ministry for Business, Innovation and Employment of New
Zealand; the Cyber Security Research Flanders with reference number VR20192203;
the Defense Advanced Research Projects Agency (DARPA); and the Space and
Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. FA8750-
19-C-0502.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of any
of the funders. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation
therein.

We would like to acknowledge and thank Steven Galbraith for sharing his
valuable supervision and insight on the project; as well as Cyprien Delpech de
Saint Guilhem and Titouan Tanguy for their support with the Limbo implemen-
tation.

References

ABCP22. Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. Csi-
shark: Csi-fish with sharing-friendly keys. Cryptology ePrint Archive, Paper
2022/1189, 2022. https://eprint.iacr.org/2022/1189.

ACCT17. R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Jalali, D. Jao, B. Koziel, B. LaMacchia, and et al. Longa, P.
Supersingular isogeny key encapsulation (SIKE). Submission to
the NIST Post-Quantum Standardization Project, 2017. https:
//csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/
documents/round-4/submissions/SIKE-spec.pdf.

ACC™'19. Gora Adj, Daniel Cervantes-Véazquez, Jestis-Javier Chi-Dominguez, Alfred
Menezes, and Francisco Rodriguez-Henriquez. On the cost of computing
isogenies between supersingular elliptic curves. In Carlos Cid and Michael J.
Jacobson Jr:, editors, SAC 2018, volume 11349 of LNCS, pages 322—-343.
Springer, Heidelberg, August 2019.

AEK™T22. Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler, and
Doreen Riepel. Password-authenticated key exchange from group actions.
Cryptology ePrint Archive, Paper 2022/770, 2022. https://eprint.iacr.
org/2022/770.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 2087-2104. ACM Press, Oc-
tober / November 2017.

BBD*%22. Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa,
Steven D. Galbraith, Sabrina Kunzweiler, Simon-Philipp Merz, Christophe
Petit, Benjamin Smith, Katherine E. Stange, Yan Bo Ti, Christelle Vincent,
José Felipe Voloch, Charlotte Weitkdmper, and Lukas Zobernig. Failing to

20


https://eprint.iacr.org/2022/1189
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://eprint.iacr.org/2022/770
https://eprint.iacr.org/2022/770

BBHR18.

BCCT16.

BCCt22.

BCGt14.

BCR™19.

BCS16.

Bd20.

BD21.

BdK*21.

BDK™122.

BFH™20.

hash into supersingular isogeny graphs. Cryptology ePrint Archive, Report
2022/518, 2022. https://eprint.iacr.org/2022/518,

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Daniel Marx, and Donald Sannella, editors,
ICALP 2018, volume 107 of LIPIcs, pages 14:1-14:17. Schloss Dagstuhl,
July 2018.

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In Marc Fischlin and Jean-Sébastien Coron, ed-
itors, FUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327-357.
Springer, Heidelberg, May 2016.

Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris
Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Pa-
tranabis, and Benjamin Wesolowski. Supersingular curves you can trust.
Cryptology ePrint Archive, Paper 2022/1469, 2022. https://eprint.iacr.
org/2022/1469.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, lan
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459-474. IEEE Computer Society Press, May 2014.

Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, FURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103—128. Springer,
Heidelberg, May 2019.

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive or-
acle proofs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part II, volume 9986 of LNCS, pages 31-60. Springer, Heidelberg, Octo-
ber / November 2016.

Ward Beullens and Cyprien de Saint Guilhem. LegRoast: Efficient post-
quantum signatures from the Legendre PRF. In Jintai Ding and Jean-
Pierre Tillich, editors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, pages 130—-150. Springer, Heidelberg, 2020.
Jeffrey Burdges and Luca De Feo. Delay encryption. In Anne Canteaut and
Frangois-Xavier Standaert, editors, FUROCRYPT 2021, Part I, volume
12696 of LNCS, pages 302-326. Springer, Heidelberg, October 2021.
Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela
Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and fast sig-
natures from AES. In Juan Garay, editor, PKC 2021, Part I, volume 12710
of LNCS, pages 266-297. Springer, Heidelberg, May 2021.

Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Fed-
erico Pintore. Group signatures and more from isogenies and lattices:
Generic, simple, and efficient. In Orr Dunkelman and Stefan Dziembowski,
editors, FUROCRYPT 2022, Part I, volume 13276 of LNCS, pages 95—126.
Springer, Heidelberg, May / June 2022.

Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan
Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang. Ligero++: A
new optimized sublinear IOP. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 2025-2038. ACM
Press, November 2020.

21


https://eprint.iacr.org/2022/518
https://eprint.iacr.org/2022/1469
https://eprint.iacr.org/2022/1469

BKP20.

BKV19.

Bro08.
BS22.

CD22.

CLG09.

CLM*18.

CLN16.

DDGZ21.

dDOS19.

DFJP14.

DJP11.

DKL™'20.

dOT21.

Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and
Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices.
In Shiho Moriai and Huaxiong Wang, editors, ASTACRYPT 2020, Part II,
volume 12492 of LNCS, pages 464-492. Springer, Heidelberg, December
2020.

Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh:
Efficient isogeny based signatures through class group computations. In
Steven D. Galbraith and Shiho Moriai, editors, ASTACRYPT 2019, Part I,
volume 11921 of LNCS, pages 227-247. Springer, Heidelberg, December
2019.

Reinier Broker. Constructing elliptic curves of prescribed order. 2008.
Ward Beullens and Gregor Seiler. Labrador: Compact proofs for rlcs from
module-sis. Cryptology ePrint Archive, Paper 2022/1341, 2022. https:
//eprint.iacr.org/2022/1341.

Wouter Castryck and Thomas Decru. An efficient key recovery attack on
sidh (preliminary version). Cryptology ePrint Archive, Paper 2022/975,
2022. https://eprint.iacr.org/2022/975.

Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic
hash functions from expander graphs. Journal of Cryptology, 22(1):93-113,
January 2009.

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: An efficient post-quantum commutative group action. In
Thomas Peyrin and Steven Galbraith, editors, ASTACRYPT 2018, Part 111,
volume 11274 of LNCS, pages 395-427. Springer, Heidelberg, December
2018.

Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 572—
601. Springer, Heidelberg, August 2016.

Luca De Feo, Samuel Dobson, Steven D. Galbraith, and Lukas Zobernig.
SIDH proof of knowledge. Cryptology ePrint Archive, Report 2021/1023,
2021. https://eprint.iacr.org/2021/1023.

Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and
Nigel P. Smart. BBQ: Using AES in picnic signatures. In Kenneth G.
Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS,
pages 669-692. Springer, Heidelberg, August 2019.

Luca De Feo, David Jao, and Jérome Plit. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. Journal of Math-
ematical Cryptology, 8(3):209-247, 2014.

Luca De Feo, David Jao, and Jérome Plat. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. Cryptology
ePrint Archive, Report 2011/506, 2011. https://eprint.iacr.org/2011/
506.

Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Ben-
jamin Wesolowski. SQISign: Compact post-quantum signatures from
quaternions and isogenies. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 64-93. Springer,
Heidelberg, December 2020.

Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy.
Limbo: Efficient zero-knowledge MPCitH-based arguments. In Giovanni

22


https://eprint.iacr.org/2022/1341
https://eprint.iacr.org/2022/1341
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2021/1023
https://eprint.iacr.org/2011/506
https://eprint.iacr.org/2011/506

FJR22.

FKMV12.

FMRV22.

FS87.

Gal99.

GKK™*22.

GKPV21.

GLS*21.

GMNO18.

GPV21.

IKOS07.

IKOS09.

Ish20.

Vigna and Elaine Shi, editors, ACM CCS 2021, pages 3022-3036. ACM
Press, November 2021.

Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding
in the head: Shorter signatures from zero-knowledge proofs. Cryptology
ePrint Archive, Report 2022/188, 2022. https://eprint.iacr.org/2022/
188.

Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele
Venturi. On the non-malleability of the Fiat-Shamir transform. In Steven D.
Galbraith and Mridul Nandi, editors, INDOCRYPT 2012, volume 7668 of
LNCS, pages 60-79. Springer, Heidelberg, December 2012.

Thibauld Feneuil, Jules Maire, Matthieu Rivain, and Damien Vergnaud.
Zero-knowledge protocols for the subset sum problem from MPC-in-the-
head with rejection. Cryptology ePrint Archive, Report 2022/223, 2022.
https://eprint.iacr.org/2022/223.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186-194. Springer, Heidelberg,
August 1987.

Steven D. Galbraith. Constructing isogenies between elliptic curves over
finite fields. LMS Journal of Computation and Mathematics, 2:118-138,
1999.

Chaya Ganesh, Hamidreza Khoshakhlagh, Markulf Kohlweiss, Anca Ni-
tulescu, and Michatl Zajac. What Makes Fiat—Shamir zkSNARKs (Up-
datable SRS) Simulation Extractable? In Clemente Galdi and Stanislaw
Jarecki, editors, Security and Cryptography for Networks, pages 735-760,
Cham, 2022. Springer International Publishing.

Wissam Ghantous, Shuichi Katsumata, Federico Pintore, and Mattia
Veroni. Collisions in supersingular isogeny graphs and the sidh-based iden-
tification protocol. Cryptology ePrint Archive, Paper 2021/1051, 2021.
https://eprint.iacr.org/2021/1051.

Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and
Riad S. Wahby. Brakedown: Linear-time and post-quantum SNARKSs
for R1ICS. Cryptology ePrint Archive, Report 2021/1043, 2021. https:
//eprint.iacr.org/2021/1043.

Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orru.
Lattice-based zk-SNARKSs from square span programs. In David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 556-573. ACM Press, October 2018.

Wissam Ghantous, Federico Pintore, and Mattia Veroni. Collisions in super-
singular isogeny graphs and the SIDH-based identification protocol. Cryp-
tology ePrint Archive, Report 2021/1051, 2021. https://eprint.iacr.
org/2021/1051,

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, 39th ACM STOC, pages 21-30. ACM Press, June 2007.
Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge proofs from secure multiparty computation. SIAM Journal on
Computing, 39(3):1121-1152, 2009.

Yuval Ishai. Zero-knowledge proofs from information-theoretic proof sys-
tems. Zkproofs Blog, 2020.

23


https://eprint.iacr.org/2022/188
https://eprint.iacr.org/2022/188
https://eprint.iacr.org/2022/223
https://eprint.iacr.org/2021/1051
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2021/1051
https://eprint.iacr.org/2021/1051

JD11.

KKW18.

Ler21.

LGd21.

MMP22.

Onu2l.

Piz90.

Rob22.

Sil09.

Ste22.

Tha20.

vW99.

Was08.

X7S22.

ZCD™T20.

ZX7S19.

David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-
Quantum Cryptography - 4th International Workshop, PQCrypto 2011,
pages 19-34. Springer, Heidelberg, November / December 2011.

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 525-537. ACM Press, October 2018.
Antonin Leroux. A new isogeny representation and applications to cryp-
tography. Cryptology ePrint Archive, Report 2021/1600, 2021. https:
//eprint.iacr.org/2021/1600.

Yi-Fu Lai, Steven D. Galbraith, and Cyprien de Saint Guilhem. Compact,
efficient and UC-secure isogeny-based oblivious transfer. In Anne Canteaut
and Frangois-Xavier Standaert, editors, FEUROCRYPT 2021, Part I, vol-
ume 12696 of LNCS, pages 213—-241. Springer, Heidelberg, October 2021.
Marzio Mula, Nadir Murru, and Federico Pintore. Random sampling of
supersingular elliptic curves. Cryptology ePrint Archive, Report 2022/528,
2022. https://eprint.iacr.org/2022/528.

Hiroshi Onuki. On oriented supersingular elliptic curves. Finite Fields and
Their Applications, 69:101777, 2021.

Arnold K. Pizer. Ramanujan graphs and Hecke operators. Bulletin of the
American Mathematical Society, 23(1):127-137, 1990.

Damien Robert. Breaking sidh in polynomial time. Cryptology ePrint
Archive, Paper 2022/1038, 2022. https://eprint.iacr.org/2022/1038.
Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of
Graduate Texts in Mathematics. Springer New York, New York, NY, 2009.
Bruno Sterner. Commitment Schemes from Supersingular Elliptic Curve
Isogeny Graphs. Mathematical Cryptology, 1(2):40-51, March 2022.

Justin Thaler. Proofs, arguments, and zero-knowledge, 2020.

Paul C. van Oorschot and Michael J. Wiener. Parallel collision search
with cryptanalytic applications. Journal of Cryptology, 12(1):1-28, January
1999.

Lawrence C Washington. FElliptic curves: number theory and cryptography.
Chapman and Hall/CRC, 2008.

Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge
proof with linear prover time. Cryptology ePrint Archive, Paper 2022/1010,
2022. https://eprint.iacr.org/2022/1010.

Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Clau-
dio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Sla-
manig, Jonathan Katz, Xiao Wang, Vladmir Kolesnikov, and Daniel
Kales. Picnic. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions,

Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transpar-
ent polynomial delegation and its applications to zero knowledge proof.
Cryptology ePrint Archive, Report 2019/1482, 2019. https://eprint.
iacr.org/2019/1482.

24


https://eprint.iacr.org/2021/1600
https://eprint.iacr.org/2021/1600
https://eprint.iacr.org/2022/528
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2022/1010
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2019/1482
https://eprint.iacr.org/2019/1482

	Efficient Isogeny Proofs Using Generic Techniques
	Introduction
	Contribution
	Related Work

	Preliminaries
	Notations
	Isogeny Graphs
	Elliptic Curves
	Isogenies
	Modular Polynomial

	Proof Systems
	Zero-knowledge succinct Non-interactive Arguments of Knowledge
	Interactive Oracle Proofs

	Rank-1 Constraint Systems
	MPC-in-the-Head
	Limbo

	Reed-Solomon IOPs
	Reed-Solomon Codes
	Aurora
	Ligero


	Construction
	Hardness assumptions and relations
	High-Level Overview
	From Isogeny Relation to R1CS Instance
	Optimization for R1CS over Fp2
	Optimization for Lifting to Fp Fp 
	Parameter choice

	Implementation and Evaluation
	Conclusion
	A remark on signatures.



