
Server-Supported Decryption for Mobile Devices

Johanna Maria Kirss1,2, Peeter Laud1, Nikita Snetkov1,3, and Jelizaveta
Vakarjuk1,3

1 Cybernetica AS, Estonia
{johanna.kirss,peeter.laud,nikita.snetkov,jelizaveta.vakarjuk}@cyber.ee

2 University of Tartu, Estonia
3 Tallinn University of Technology, Estonia

Abstract. We propose a threshold encryption scheme with two-party
decryption, where one of the keyshares may be stored and used in a
device that is able to provide only weak security for it. We state the
security properties the scheme needs to have to support such use-cases,
and construct a scheme with these properties. Our construction is based
on the ElGamal cryptosystem, with additional zero-knowledge proofs
that can provide IND-CCA security, and resistance to offline guessing
attacks.

Keywords: Threshold encryption schemes · Offline guessing attacks.

1 Introduction

Considering recent legistlative initiatives [14], we may be soon storing many ver-
ifiable credentials about our sensitive attributes in our smartphones, supported
by electronic wallet applications, streamlining the procurement and presenta-
tion of these credentials. By themselves, smartphones cannot provide sufficient
confidentiality for these credentials. Rather, we expect to store them in some
encrypted form, decrypted only while they are in use. The decryption keys are
stored inside a Secure Element [22], a tamper-resistant piece of hardware con-
tained in the phone. Hence we have to trust the producers of Secure Elements,
and abstain from the use of e-Wallets (with credentials containing sensitive in-
formation) on phones without Secure Elements. This is not a desirable situation.
We would like to replace trusted hardware with something that has weaker trust
requirements, e.g. threshold cryptography.

Common constructions of primitives of threshold cryptography and their
security definitions are difficult to map to a setting where some keyshares are
stored and operations performed on platforms with weak security protections.
We have proposed a server-supported signature scheme [7], where the signing key
was shared between a phone and a server, and the keyshare in the phone was
protected only by symmetrically encrypting it with a key with very low entropy
(derived from a PIN that the user can remember). The security of our scheme
was based on the infeasibility of offline guessing attacks by someone who has
obtained the encrypted keyshare of the phone, and by the ability of the server to

recognize online guessing attacks. The latter property allows the server to count
wrong guesses, and a clone detection mechanism [19] allows to reset the counter.

In this paper, we propose an encryption scheme with similar properties, i.e.
it has distributed decryption, where offline guesses by someone masquerading
as the phone are impossible, and wrong guesses made online are detected by
the server. We want the phone to initiate the decryption, and the server to
learn nothing about the decrypted plaintext. We give a formalization of these
properties. Combined with the clone detection mechanism, our scheme could be
used as an alternative to Secure Elements, at least when the requirement for
online connectivity during decryption is acceptable.

Related work. Our encryption scheme is motivated by a set of requirements that
have previously not been tried to address together. They have been considered in
the context of server-supported signature schemes [7], where we attempt to avoid
offline guessing attacks [2] and detect online guessing attacks [12]. This is also
the case for scheme [8], where the server supports the functionality of a secure
construction. It is in contrast to the schemes where a server is employed to reduce
the client’s workload in performing computationally expensive operations [1, 4].
It is also in contrast to key-insulated encryption [13], where a mostly offline server
is used to reduce the impact of repeatedly breaking a weakly secure device.

Our scheme builds upon threshold encryption schemes. Threshold cryptogra-
phy has a long history, starting from [11], where a method for threshold creation
of RSA signatures was proposed. IND-CCA secure encryption schemes with
threshold decryption [21] were proposed shortly after IND-CCA secure asym-
metric encryption schemes [10]. At present, threshold cryptography is a mature
field, discussed in textbooks [5] and subject to standardization activities [6].

2 Desired properties of distributed decryption

In this paper, we consider asymmetric key encapsulation [18] schemes, where the
decapsulation functionality is distributed between two parties — the client, and
the server. The roles of these parties are not identical, and the desired security
properties for each of them are different.

An encapsulation scheme with client-server decryption consists of the follow-
ing sets, algorithms, and protocols, parameterized with the security parameter
λ and other public parameters (e.g. the definition of the used cyclic groups):

– Sets of shared secrets SS, ciphertexts CT, public keys PK, client’s private
keys SKC, and server’s private keys SKS.

– Key-generation protocol ⟨KGC|KGS⟩, run by both parties. It returns (sk1, pk) ∈
SKC × PK to the client, and (sk2, pk) ∈ SKS × PK to the server.

– Encapsulation algorithm Enc. It takes as input a public key pk ∈ PK, and
returns a shared secret k ∈ SS and a ciphertext c ∈ CT.

– Decapsulation protocol ⟨DCC|DCS⟩, run by the client and the server. Client’s
inputs are c ∈ CT, sk1 ∈ SKC, and pk ∈ PK. Server’s inputs are c ∈ CT,

Experiment IND-CCA-SA

⟨(sk1, pk), (sk2, state)⟩ ←$ ⟨KGC|A()⟩
(k0, c)←$ Enc(pk)
k1 ←$ SS, b←$ {0, 1}
O1(·)← Dec(·, sk1, sk2, pk)
O2(·)← DCC(·, sk1, pk)

b∗ ←$AEXCLc[O1],EXCLc[O2](state, c, kb)

return b = b∗

Experiment IND-CCA-CA

⟨(sk1, state), (sk2, pk)⟩ ←$ ⟨A()|KGS⟩
(k0, c)←$ Enc(pk)
k1 ←$ SS, b←$ {0, 1}
O1(·)← Dec(·, sk1, sk2, pk)
O2(·)← DCS(·, sk2, pk)

b∗ ←$AEXCLc[O1],EXCLc[O2](state, c, kb)

return b = b∗

Fig. 1. Security against chosen-ciphertext attacks

sk2 ∈ SKS and pk ∈ PK. The protocol returns either k ∈ SS or the failure
notice ⊥ to the client. It returns success / failure notice ⊤ / ⊥ to the server.

We also define the decapsulation algorithm Dec, that on inputs c, sk1, sk2, pk
invokes ⟨DCC(c, sk1, pk)|DCS(sk2, pk)⟩ and returns client’s output.

In the following, we write x1, . . . , xn ←$ X to denote that values x1, . . . , xn

are uniformly, independently sampled from a set X. We also write x ←$ X(. . .)
to denote that x is returned by a stochastic computation X. Given an oracle O(·)
and a value c, we let EXCLc[O] denote an oracle that on input c∗ returns ⊥ if
c∗ = c, and O(c∗) otherwise. A protocol party executed as an oracle gives the
adversary the messages this party produces.

Definition 1 (Correctness). A encapsulation scheme is correct, if

Pr

[
k′ = k ∧ r = ⊤

∣∣∣∣ ⟨(sk1, pk), (sk2, pk)⟩ ←$ ⟨KGC|KGS⟩, (k, c)← Enc(pk),
⟨k′, r⟩ ← ⟨DCC(c, sk1, pk)|DCS(c, sk2, pk)⟩

]
≈ 1 .

The confidentiality properties of the encapsulation scheme are defined in the
usual manner. The definitions refer to the experiments in Fig. 1 that follow
general definitions of IND-CCA for threshold encryption schemes.

Definition 2 (IND-CCA against server / client). The encapsulation scheme
provides indistinguishability against the chosen-ciphertext attacks by the server
[resp. client], if the experiment IND-CCA-SA [resp. IND-CCA-CA] is successful
with probability at most negligibly larger than 1/2 for all efficient adversaries A.

The impossibility of offline guessing and detectability of online guessing is
defined below, using the experiment defined in Fig. 2. Here shuffle returns a list
that is a random permutation of its arguments. The list SK 1 corresponds to the
list of candidate private keys that an intruder may obtain after extracting the
weakly encrypted (e.g. the encryption key has been derived from a PIN) private
key from the smartphone, and trying to decrypt it with all possible values of the
key. We see that the adversary may start sessions of the server, and may even
submit it the challenge ciphertext, but no more than T sessions may finish with
⊥ (or not finish at all).

Experiment OG-CCA-CA
T,L

⟨(sk(1)1 , pk), (sk2, pk)⟩ ←$ ⟨KGC|KGS⟩

sk
(2)
1 , . . . , sk

(L)
1 ←$ SKC, SK 1 ←$ shuffle(sk

(1)
1 , . . . , sk

(L)
1)

(k0, c)←$ Enc(pk), k1 ←$ SS, b←$ {0, 1}, t← 0

O2(·)←
{
t← t+ 1; r ← DCS(·, sk2, pk); if(r = ⊤) then t← t− 1

}
b∗ ←$AEXCLc[Dec(·,sk(1)1 ,sk2,pk)],O2(·)(pk, c, kb,SK 1)

return (b = b∗) and t ≤ T

Fig. 2. Security against offline and online guessing

Definition 3 (No guessing by client). The encapsulation scheme provides
offline guessing security against chosen-ciphertext attacks by the client, if the
experiment OG-CCA-CA

T,L is successful with probability at most negligibly larger
than 1/2 + T/L for all efficient adversaries A, and numbers T, L.

Finally, we ask for the integrity of shared secrets, i.e. the client would not
accept a secret k′ different from the one output by the encapsulation algorithm.

Definition 4 (Integrity for client). The encapsulation scheme provides key
integrity for the client, if for all efficient adversaries A,

Pr

[
k′ ∈ {k,⊥}

∣∣∣∣ ⟨(sk1, pk), state⟩ ← ⟨KGC|A()⟩, (k, c)← Enc(pk),⟨k′, ⟩ ← ⟨DCC(c, sk1, pk)|A(state)⟩

]
≈ 1 .

3 Building blocks

Let G be a cyclic group of size p, with generator g. The discrete logarithm
problem is to find n ∈ Zp, such that gn = h, for a value h←$ G. The decisional
Diffie-Hellman (DDH) problem is to distinguish tuples of the form (g, gx, gy, gxy)
(called Diffie-Hellman tuples) from tuples of the form (g, gx, gy, gz) for x, y, z ←$

Zp. A problem is hard if all efficient algorithms have at most negligible advantage
(over a trivial algorithm) of solving it.

Our schemes build on top of the ElGamal KEM, the IND-CPA security of
which is equivalent to the hardness of DDH in the used group G. In this KEM,
private key is a random sk ∈ Zp, while public key is pk = gsk. The encapsulation
algorithm generates r ←$ Zp, and outputs the shared secret ss ← pkr and
ciphertext c = gr. The decapsulation algorithm computes ss = csk. In hashed
ElGamal, the shared secret is H ′(pkr) for some hash function H ′ that we model
as a random oracle. Note that an input to a random oracle can be anything
encodable as a bitstring.

A DDH proof π = (α, α′, γ)←$ DHPH [r | u,vg,h|ctx] [9] is a non-interactive [16]
zero-knowledge (NIZK) proof that logg u = logh v, given in context ctx , where
r ∈ Zp is the discrete logarithm and H is a hash function, modeled as a random

oracle. It is given by s←$ Zp, α← gs, α′ ← hs, β ← H(g, h, u, v, α, α′, ctx) ∈ Zp,

and γ ← s + r · β. The checking procedure ChPH [π | u,vg,h|ctx] recomputes β, and

checks that gγ = α · uβ and hγ = α′ · vβ .
In our schemes, similarly to [21], DDH proofs are often used to give simulat-

able proofs of knowledge of exponent π′ ←$ KnEH,H̃ [r | ug |ctx]. These prove that
someone knows the value r = logg u. Additionally, they allow the simulator to
raise a value (an element of G) of its choice to the power of r; the simulator
has to choose that value at the time the adversary computes the proof. The
construction makes use of two hash functions, both modeled as random oracles,
where H returns elements of Zp and H̃ returns elements of G. It is given by

first computing h ← H̃(g, u, ctx) and v ← hr. The proof is π′ = (π, v), where

π ← DHPH [r | u,vg,h|ctx]. The checking procedure ChEH,H̃ [π′ | ug |ctx] recomputes v
and checks the DDH proof. During simulation, if the simulator wants to obtain
zr, it will generate t ←$ Zp, and program H̃ to return z1/t when the adversary
queries it with g, u, ctx . Then zr = vt.

4 The encryption scheme

Secret-sharing the private key will straightforwardly thresholdize the ElGamal
KEM [15]. IND-CCAmay be achieved by adding the non-interactive zero-knowledge
proof of knowledge (NIZKPoK) of r to the ciphertext. For non-threshold sys-
tems, this may be a designated-verifier (DV) NIZKPoK [10], aimed towards the
receiver. For general case, Schnorr’s proofs for discrete logarithm [20], made non-
interactive through the Fiat-Shamir transform [16] using a random oracle (i.e.
Schnorr signatures, using r as the signing key), are typically used to show the
knowledge of r, but it is unknown how to combine them with ElGamal KEM
in a way that allows IND-CCA to be derived only from the hardness of the
DDH problem [3]. The TDH2 (threshold) cryptosystem [21] overcomes this by
changing how the random oracle is used by the Fiat-Shamir transform, mak-
ing certain additional computations possible in the simulation. The scheme NPS
that we present here is quite similar to TDH2. Interestingly, only small changes
are needed to make it secure against guessing attacks (Def. 3).

Let G be a cyclic group of size p, with generator g, with hard DDH problem.
Let H1, H2, H3 be hash functions outputting elements of Zp, and H̃1, H̃2 be
hash functions outputting elements of G, all modeled as random oracles. We put
NPS.SS = NPS.PK = G, NPS.SKC = Zp, and NPS.SKS = Zp × G2. The set
NPS.CT is given together with the algorithm NPS.Enc and protocol NPS.DC in
Fig. 3. In the key-generation protocol, the client generates sk1 ←$ Zp, and the
server generates sk2 ←$ Zp. They compute pki ← gski , fairly exchange the values
pki with each other (using some trapdoor commitment scheme [17]), and define
pk← pk1 ·pk2. The server stores pk1, pk2 together with the private exponent sk2.

We see that the ciphertext is simply an ElGamal ciphertext, together with a
simulatable proof of knowledge of the exponent r. When decrypting, the client
first verifies this proof. If an assertion fails, then ⊥ is immediately returned. As

NPS.Enc(pk)

r ←$ Zp

u← gr

π ←$ KnEH1,H̃1 [r | ug]

return pkr, (u, π)

NPS.DCC((u, π), sk1, pk)

assert ChEH1,H̃1 [π | ug]

pk1 ← gsk1 , pk2 ← pk/pk1

π′ ←$ KnEH2,H̃2 [sk1 |
pk1
g |u]

−→ P2 : u, π, π′

P2 −→: w, π′′

assert ChPH3 [π′′ | u,wg,pk2
|π′]

return usk1 · w

NPS.DCS((u, π), sk2, pk1, pk2, pk)

P1 −→: u, π, π′

assert ChEH1,H̃1 [π | ug]

assert ChEH2,H̃2 [π′ | pk1g |u]

w ← usk2

π′′ ←$ DHPH3 [sk2 |
u,w
g,pk2
|π′]

−→ P1 : w, π′′

return ⊤

Fig. 3. Encryption and decryption for the scheme NPS

next, the client asks the server to apply its private key share sk2 to the ciphertext
u. This request includes a Schnorr proof of knowing the private key sk1, where
the challenge depends on the ciphertext; hence this proof cannot be reused.
The request also contains the value h′′ that allows the simulator to perform an
exponentiation with sk1. The server verifies the Schnorr proofs of knowing both
r and sk1, and then computes w ← usk2 . The value w is returned together with
a Schnorr proof that it has been correctly computed — that logu w = logg pk2.
The client verifies this proof, applies its private key share sk1 to u, and combines
the result with the plaintext share w obtained from the server. It is clear that
the scheme satisfies Def. 1 and Def. 4 due to the NIZK proofs.

Theorem 1. In ROM, if the DDH problem is hard in group G, then NPS pro-
vides IND-CCA against the server and the client.

Proof. To show IND-CCA against the server, let A be an adversary that has
non-negligible advantage in experiment IND-CCA-SA with the scheme NPS. We
construct an algorithm S that solves the DDH problem in G. The algorithm S
(called “simulator”) internally calls A, realizing the oracles it accesses, including
the random oracle. It receives (h1, h2, h3) ∈ G3 as an input, and outputs whether
they are a DH tuple. In the experiment, the values hi play the following roles:
pk = h1, u = h2, kb = h3. We see that if (g, h1, h2, h3) are [resp. are not] a DH
tuple, then (pk, u, kb) are distributed identically to the case b = 0 [resp. b = 1].

The internal state of S contains the tables Ti, T̃j storing the current states of

random oracles Hi, H̃j . For tables Ti, a table row contains the argument made

to the oracle, and the given response. For T̃j , a table row additionally contains

the exponent generated while responding a H̃j-query.
We now describe how S behaves in different interactions with A. For key

generation, receive pk2 (committed and opened) from A, while sending it a
commitment later opened to pk1 ← h1/pk2. For responding a random oracle
query (either directly from A, or from simulating the responses to other queries)
Hi(x), look up the row (x, v) from Ti, generating v ←$ Zp and adding the row to

the table, if it is not there. Then respond with v. Do the same for H̃2-query (put

⊥ as the exponent). Also do the same for query H̃j(x), but if the row (x, v, t)

is not yet in T̃j then generate t←$ Zp, define v = pk1/t, add (x, v, t) to T̃1, and
return v.

Simulator S has to prepare a challenge ciphertext c = (u, h′, α, α′, γ) for A.
We have defined u; the rest is constructed by faking the NIZK proofs: S generates
s ←$ Zp, defines g′ ← gs, h′ ← hs

2, generates β, γ ←$ Zp, computes α ← uβ/gγ

and α′ ← (h′)β/(g′)γ , and adds ((g′, u, h′, α, α′), β) to T1 and ((u, α), g′,⊥) to
T̃1. This computation may fail if the added rows are already present in the tables,
but this happens with only negligible probability because all arguments contain
fresh randomness.

A query from A to the Dec-oracle with argument c∗ = (u∗, h′∗, α∗, α′∗, γ∗) is
handled by S as follows. First check the proofs, similarly to NPS.DCC. Return
⊥, if they fail. Otherwise look up the row ((u∗, α∗), g′, t) in T̃1 and return (h′∗)t.
This row has to exist, because the proof-checks look it up. The value t may be
missing, but in this case c∗ had to be the challenge ciphertext.

A query from A to the DCC-oracle with the same argument c∗ is handled by
S as follows. Check the proofs; return ⊥ if they fail. Prepare the query to the
server, faking the proof of knowledge π′ of sk1. Whenever A invokes DCC for the
second round, S ignores this query: the server is not expected to get any answer
from the client’s second round.

Throughout this construction, all values that A sees are distributed identi-
cally to the experiment IND-CCA-SA for NPS. In particular, the responses from
the random oracles are uniform and mutually independent. Finally, A gives its
guess b∗, which S outputs. The advantage of S is equal to the advantage of A.

The proof of IND-CCA against client is similar. When the A generates the
simulatable proof of knowledge of sk1 (as in DCC) and invokes H̃2(g, pk1, u) for
that purpose, S chooses u as the value it wants to raise to power sk1. If A then
invokes the oracle DCS, the simulator S can reply with w ← pkr/usk1 . ⊓⊔

Theorem 2. In ROM, if the DDH problem is hard in group G, then NPS pro-
vides CCA against offline guessing attacks by the client.

Proof. Similarly to the proof of Thm. 1, we assume the existence of an adversary
A that has advantage at least 1/2 + T/L + ν for a non-negligible ν in the
experiment OG-CCA-CA

T,L with the scheme NPS, and construct the algorithm
S that solves the DDH problem in G. It again gets (h1, h2, h3) as the input, and
again uses them as pk = h1, u = h2, kb = h3.

The internal state of S consists of the same tables as in the proof of Thm. 1.
For some h ∈ G, we additionally define T2|h as the subset of rows of T2 of the
form ((h, α1, c), v) (i.e. the first component to the argument of H2 was h). The
simulator S also maintains a set of integers K, initialized to {1, . . . , L}.

Simulator S has to prepare the arguments to A. The challenge ciphertext c =
(u, h′, α, α′, γ) is prepared identically to the proof of Thm. 1. The list of potential

private key shares of the client is defined by generating sk
(1)
1 , . . . , sk

(L)
1 ←$ Zp

and putting SK 1 = [sk
(1)
1 , . . . , sk

(L)
1]. Note that the inputs to A are distributed

identically to the experiment OG-CCA-CA
T,L for NPS. Also note that at this

point, S has not selected the “right” private key share. Define also pk
(i)
1 ← gsk

(i)
1

for i ∈ {1, . . . , L}.
A query from A to either one of the hash functions or to the Dec-oracle is

handled identically to the proof of Thm. 1. Again, all responses to these queries
are distributed identically to the actual experiment OG-CCA-CA

T,L.
The t-th query (ct, α1,t, γ1,t) to the DCS-oracle is handled by S as follows.

First, verify the proofs in ct = (ut, h
′
t, αt, α

′
t, γt), corresponding to the assertions

in NPS.DCS. Return ⊥, if these verifications fail.
The simulator continues with the response for DCS-oracle as follows. It finds

the index i ∈ {1, . . . , L}, such that the row ((pk
(i)
1 , α1,t, γ1,t), β1,t) is in the table

T2 for some β1,t, and gγ1,t = α1,t · (pk(i)1)β1,t . If there is no such row, then let
i = ⊥. The probability of having more than one such row in T2 is negligible.

Indeed, if i and i′ would both be such indices, then (pk
(i)
1)β1,t = (pk

(i′)
1)β

′
1,t . The

values β1,t and β′
1,t are random, and generated independently from pk

(i)
1 and

pk
(i′)
1 , hence this equality can hold only with negligible probability.
If i ̸∈ K, then S returns ⊥ to A. If i ∈ K, then S has to decide whether the

“right” private key is sk
(i)
1 . For this purpose, S tosses a biased coin, with the

result “heads” having the probability 1/|K|. If the result is “heads”, then this

means that the “right” private key was indeed sk
(i)
1 . In this case, S gives up the

simulation, outputting ⊥. Otherwise, S sets K← K\{i} and returns ⊥ to A.
Again, we have that as long as A has not managed to find the “right” private

key, all values in the simulation are distributed identically to the experiment
OG-CCA-CA

T,L for NPS. The probability of finding the “right” private key is
upper-bounded by T/L, hence S still has at least the non-negligible advantage
ν in solving the DDH problem in G. ⊓⊔

5 Fit for our main use-case

In our main use-case, the client is a smartphone, receiving and storing encrypted
messages (e.g. credentials), and decrypting them for short uses. The smartphone
communicates with the helper server over mobile internet, through a secure
channel. An attacker in this system may have the following goals: (A) learn the
plaintext corresponding to a ciphertext, or (B) make the phone accept wrong
plaintext. Against this attacker we deploy NPS, including the clone detection.
The latter may be continuous.

We consider the following attacks that an attacker may perform: (1) convince
the phone to start decryption protocol with a particular ciphertext; (2) learn
phone’s encrypted memory; (3) learn phone’s unencrypted memory; (4) learn
server’s keyshare; (5) take passive control over server; (6) take active control
over server; (7) masquerade as phone to the server; (8) masquerade as server to
the phone.

Let the boolean variable x indicate whether the clone detection is done con-
tinuously. Let yi (i ∈ {1, . . . , 8}) be a boolean variable indicating whether adver-
sary has successfully performed the attack (i); note that y3 ⇒ y2, y6 ⇒ y5, and

y5 ⇒ y4. Let the boolean variables zX for X ∈ {A,B} indicate that the adver-
sary achieves his goal X. Let also z̃X denote that the goal is achieved only for a
short time (until the continuously running clone detection mechanism discovers
something); obviously zX ⇒ z̃X. The following implications hold:

[y2 ∧ y4] ∨ [((y2 ∧ y8) ∨ y3) ∧ y7 ∧ ¬x]⇒ zA ((y2 ∧ y8) ∨ y3) ∧ y7 ⇒ z̃A

Also, if some zX or z̃X is true, then this must follow from some of the implications.
We see that zB never holds, because Def. 4 forbids it. Server’s keyshare and
phone’s encrypted keyshare are sufficient for decryption. So is the knowledge of
phone’s unencrypted keyshare, if the attacker can masquerade the phone and the
clone detection does not stop the attack. Interestingly, y2∧y8 ⇒ y3, because the
information sent in phone’s first message may enable the offline guessing attack
against the PIN. We consider all these vulnerabilities acceptable.

We see that our scheme adds significant overhead to “plain” IND-CPA se-
cure ElGamal. We also see that the overheads are wholly acceptable for our
main intended use-case. We have implemented NPS encryption and decryption
in Python on top of the PyCryptodome cryptographic library, using the elliptic
curve group P-256 as G; the running times are 6 ms for Enc, 135 ms for DCC,
and 107 ms for DCS running on a laptop with an Intel® Core™ i5-10210U CPU
and 16GB RAM. The size of a key encapsulation is 6 kilobytes, the messages
sent from the client to the server and back: 6.7KB and 5.5KB, respectively.
Acknowledgement. This research has been funded by the European Regional
Development Fund through EXCITE, the Estonian Centre of Excellence in ICT.

References

1. Asokan, N., Tsudik, G., Waidner, M.: Server-supported signatures. J. Comput.
Secur. 5(1), 91–108 (1997), https://doi.org/10.3233/JCS-1997-5105

2. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
Proceedings of the 12th ACM Conference on Computer and Communications Se-
curity. p. 16–25. CCS ’05, Association for Computing Machinery, New York, NY,
USA (2005), https://doi.org/10.1145/1102120.1102125

3. Bernhard, D., Fischlin, M., Warinschi, B.: On the hardness of proving cca-security
of signed elgamal. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
Public-Key Cryptography – PKC 2016. pp. 47–69. Springer Berlin Heidelberg,
Berlin, Heidelberg (2016)

4. Bicakci, K., Baykal, N.: Server assisted signatures revisited. In: Okamoto, T. (ed.)
Topics in Cryptology – CT-RSA 2004. pp. 143–156. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004)

5. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography (Jan 2020), a
book in preparation, v0.5

6. Brañdao, L.T.A.N., Mouha, N., Vassilev, A.: Threshold Schemes for Cryptographic
Primitives. Tech. Rep. NISTIR 8214, National Institute of Standards and Technol-
ogy (NIST) (Mar 2019)

7. Buldas, A., Kalu, A., Laud, P., Oruaas, M.: Server-supported rsa signatures for
mobile devices. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) Computer Se-
curity – ESORICS 2017. pp. 315–333. Springer International Publishing, Cham
(2017)

8. Buldas, A., Laanoja, R., Truu, A.: A server-assisted hash-based signature scheme.
In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) Secure IT Systems. pp.
3–17. Springer International Publishing, Cham (2017)

9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
Advances in Cryptology — CRYPTO’ 92. pp. 89–105. Springer Berlin Heidelberg,
Berlin, Heidelberg (1993)

10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) Advances in Cryptology
— CRYPTO ’98. pp. 13–25. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

11. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function se-
curely. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing. p. 522–533. STOC ’94, Association for Computing Machinery, New
York, NY, USA (1994), https://doi.org/10.1145/195058.195405

12. Ding, Y., Horster, P.: Undetectable on-line password guessing attacks. ACM
SIGOPS Oper. Syst. Rev. 29(4), 77–86 (1995), https://doi.org/10.1145/

219282.219298

13. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) Advances in Cryptology — EUROCRYPT 2002. pp. 65–82.
Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

14. Proposal for a Regulation of the European Parliament and of the Council amend-
ing Regulation (EU) No 910/2014 as regards establishing a framework for a
European Digital Identity (SEC(2021) 228 final) - (SWD(2021) 124 final) -
(SWD(2021) 125 final) (2021), https://digital-strategy.ec.europa.eu/en/

library/trusted-and-secure-european-e-id-regulation

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology. pp. 10–18.
Springer Berlin Heidelberg, Berlin, Heidelberg (1985)

16. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 186–194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

17. Fischlin, M.: Trapdoor commitment schemes and their applications. Ph.D.
thesis, Goethe University Frankfurt, Frankfurt am Main, Germany (2001),
http://zaurak.tm.informatik.uni-frankfurt.de/diss/data/src/00000229/

00000229.pdf.gz

18. ISO 18033-2: Encryption algorithms — Part 2:Asymmetric ciphers. Standard, In-
ternational Organization for Standardization (2006)

19. Sarr, A.P.: Cryptanalysis and improvement of smart-id’s clone detection mecha-
nism. Cryptology ePrint Archive, Paper 2019/1412 (2019), https://eprint.iacr.
org/2019/1412, https://eprint.iacr.org/2019/1412

20. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Bras-
sard, G. (ed.) Advances in Cryptology — CRYPTO’ 89 Proceedings. pp. 239–252.
Springer New York, New York, NY (1990)

21. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ci-
phertext attack. J. Cryptol. 15(2), 75–96 (2002), https://doi.org/10.1007/

s00145-001-0020-9

22. Vauclair, M.: Secure element. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Ency-
clopedia of Cryptography and Security, pp. 1115–1116. Springer US, Boston, MA
(2011), https://doi.org/10.1007/978-1-4419-5906-5_303

