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Abstract. State-of-the-art sensors for measuring FPGA voltage fluctuations are time-
to-digital converters (TDCs). They allow detecting voltage fluctuations in the order
of a few nanoseconds. The key building component of a TDC is a delay line, typically
implemented as a chain of fast carry propagation multiplexers. In FPGAs, the fast
carry chains are constrained to dedicated logic and routing, and need to be routed
strictly vertically. In this work, we present an alternative approach to designing
on-chip voltage sensors, in which the FPGA routing resources replace the carry
logic. We present three variants of what we name a routing delay sensor (RDS): one
vertically constrained, one horizontally constrained, and one free of any constraints.
We perform a thorough experimental evaluation on both the Sakura-X side-channel
evaluation board and the Alveo U200 datacenter card, to evaluate the performance of
the RDS sensors in the context of a remote power side-channel analysis attack. The
results show that our best RDS implementation in most cases outperforms the TDC.
On average, for breaking the full 128-bit key of an AES-128 cryptographic core, an
adversary requires 35% fewer side-channel traces when using the RDS than when
using the TDC. Besides making the attack more effective, given the absence of the
placement and routing constraint, the RDS sensor is also easier to deploy.
Keywords: FPGA · Multitenancy · Power Analysis Attack · On-chip sensors

1 Introduction
Traditionally, cloud computing platforms are based on central processing units (CPUs).
In recent years, however, they have evolved to include a variety of more specialized
computing hardware, e.g., graphics processing units (GPUs), Google’s tensor processing
units (TPUs), and, in particular, field-programmable gate arrays (FPGAs). Today, a
number of commercial cloud service providers, such as Amazon AWS, Alibaba, Microsoft
Azure, etc., provide their customers with the possibility of remotely accessing cloud FPGAs,
to develop and test their hardware accelerators [AWS19,Azu,Hua,Ali].

With FPGAs in the cloud, FPGA-specific virtualization methods are being developed,
with the goal of enabling efficient and secure use of FPGA resources. Such methods
typically incorporate multitenancy, i.e., the possibility of multiple users sharing the FPGA
fabric temporally and spatially. However, cloud FPGA multitenancy is not yet broadly
deployed, as the associated security risks are still being investigated. A particular topic
of interest is the threat of electrical-level attacks, in which an adversary either injects a
disturbance in the shared power delivery network (PDN), with the intention of causing
denial-of-service [GOT17] or erroneous computation of the victim [KGT18], or measures
the power side-channel leakage to extract a secret (e.g., a cryptographic key) [RPD+18].

On-chip sensors suitable for remote power-analysis attacks can be classified in two
groups: time-to-digital converters (TDCs) and frequency counters. The working principle
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is the same: instead of measuring the voltage directly, they sense the variations of the
logic delay caused by the voltage fluctuations, which carry the side-channel information.
The primary component in TDCs is a tapped delay line. In frequency counters, that is a
ring oscillator (RO).

Ring-oscillator based sensors have a small footprint and are easy to be deployed, whereas
TDCs occupy more logic resources and require careful and strict placement constraints.
Yet, ROs suffer from low sensitivity, making them suitable for capturing slow-changing
signals only. In comparison, TDCs can sense nanosecond-scale voltage variations and,
as confirmed by previous studies, they are better suited for remote power side-channel
attacks [ZS18,UJS+21,MLS+20,MDL+22]. Finally, attacks based on ring oscillators are
easier to detect and prevent in cloud environments [KGT19,GCRS20].

In this paper, we present a novel FPGA on-chip voltage sensor design, fundamentally
different from both TDCs and ROs. To pick up voltage variations, our sensor uses the
type of FPGA resources that is the most abundant and least constrained: FPGA wires
and routing multiplexers, i.e., FPGA routing resources. The routing-delay sensor (RDS)
can be implemented in various ways: with or without a tapped delay line, with or without
placement constraints. Furthermore, it can be made even more effective than TDC in the
context of remote power side-channel attacks.

We begin by designing and implementing two RDS variants working on the principle of
a tapped delay line; both use the routing resources only, but one is constrained vertically
(VRDS), whereas the other is constrained horizontally (HRDS). Then, we remove the
routing and placement constraints to obtain the third variant, which we name simply RDS.
As we will demonstrate, the third design is the most performing of the three.

We perform extensive experiments to evaluate the success of a remote power side-
channel attack against an AES-128 cryptographic core. To this end, three experimental
platforms are used: Alveo U200 (AMD UltraScale+), Sakura-X side-channel evaluation
board (AMD Kintex-7) and Digilent Basys 3 (AMD Artix-7). Experiments are repeated
multiple times, the placement of the sensor and the AES is varied, as well as the secret key
and the environment temperature conditions. We compare the three RDS variants to the
TDC implementation commonly used in literature [ZSZF13,GCRS20,MTH+21,GNGT21]
and the recently published voltage-fluctuation sensor VITI [UJS+21] (openly available).

Our results show that the final, third variant of our RDS sensor, is more effective not
only than VRDS and HRDS, but also VITI and even TDC. When attacking an AES-128
on Sakura-X, the attack with the RDS sensor requires, on average, 35% fewer power
side-channel traces to break the entire secret key with the TDC, with this number going
as high as 80% in the extreme case. In our experiments, RDS outperforms TDC on an
Alveo U200 datacenter card as well.

The remainder of the paper is organized as follows. In Section 2, we first describe the
threat model of a remote power side-channel analysis attack on cloud FPGAs. Then, we
explain the design and operation of time-to-digital converters for on-chip voltage sensing.
Section 3 covers related work. In Section 4, we present the designs of our routing delay
sensors and explain how to calibrate them. Section 5 describes the experimental evaluation
approach and the corresponding hardware and software setups. Section 6 presents and
discusses the results. Finally, Section 7 concludes the paper.

For reproducibility of the experiments and the results in this work, we make the sensor
designs and the associated software openly available [SGS23].

2 Background
We start this background section by describing the threat model of the remote electrical-
level attacks on shared FPGAs. Then, we explain the design and principle of operation of
time-to-digital converters for on-chip voltage measurements.
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2.1 Threat Model
This work follows the common threat model of remote electrical-level attack on multi-tenant
FPGAs [GOT17,GCRS20,RPD+18,MS19], in which an FPGA in a datacenter or the cloud
is spatially shared by multiple users. The FPGA tenants are given physically separate
FPGA regions to deploy their circuits. Furthermore, the assigned regions are logically
isolated. To access the external interfaces, such as PCI Express, or the off-chip memory,
the tenants use dedicated FPGA logic called shell, deployed by the datacenter or the
cloud service provider. The tenants are free to implement almost any FPGA circuit (the
exception being circuits containing combinational loops [AWS19]) and set placement and
routing constraints for their designs. Finally, the FPGA tenant applications share the
on-chip power delivery network.

The adversary, in the assigned FPGA region, implements one or more on-chip voltage-
fluctuation sensors, together with the control logic and the on-chip buffers, for saving the
measurements. The adversary has the possibility of offloading the sensor traces for the
off-chip analysis. The victim, on the other side, is performing encryption using a secret key
and sending the ciphertexts over a public channel that can be observed by the adversary.

2.2 Time-to-Digital Converters
The suitability of FPGA time-to-digital converters for sensing on-chip voltage variations
and natural transients in FPGAs was first investigated by Zick et al. [ZSZF13] almost a
decade ago. However, it was only after the first works on remote denial-of-service attacks
on multi-tenant FPGAs that these on-chip sensors regained the attention of researchers,
primarily in the context of power side-channel attacks.

In Fig. 1, we illustrate the typical implementation of a TDC sensor. We can identify
three parts: (1) a tapped delay line, commonly implemented using fast carry propagation
logic and dedicated routing, (2) an output register (with every carry output driving one
flip-flop), and (3) some circuitry (e.g., look-up tables, phase-locked loops, or IDELAY
adjustable input delay elements) for tuning the phase shift between the sampling clock of
the output register and the clock propagating through the delay line. These two clocks
have the same frequency.

Careful tuning of the phase shift and the length of the tapped delay line is critical for
correct sensor calibration, i.e., ensuring that only one clock transition is captured in the
output register per sampling clock period. Additionally, the delay line must be properly
formed by chaining the carry output of one FPGA slice to the carry input of the next
one, where all the occupied slices are constrained to one vertical column of the FPGA;
and, every carry output must drive precisely the corresponding flip-flop (FF) residing in
the same slice. These strict placement constraints are necessary for ensuring the optimal
sensitivity of this TDC sensor.

In the absence of any on-chip activity, the sensor output usually is constant (modulo
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background noise) and determined by three parameters: the clock frequency, the initial
delay (i.e., the phase shift), and the length of the delay line N . For a given clock frequency,
the initial delay and the parameter N are chosen so that the output register captures a single
clock transition in every clock cycle. In other words, the output register should always be
filled with a sequence of ones followed by the sequence of zeros—with a possibly imperfect
transition—where the location of the flip-flop (FF) with the transition corresponds to
the depth of propagation of the clock signal through the delay line. The value in the
output register can be converted to the numerical value of one sensor sample using a
thermometer code [GOT17] or by taking the Hamming weight of the bits in the output
register [GCRS20, GNGT21], as we do in this work. Once the on-chip voltage starts
fluctuating due to the activity of the victim circuit, the delay of the elements in the sensor
change, and consequently, so does the sensor output. We consider the sensor well calibrated
(i.e., the initial delay and the length of the delay line are well chosen) if, for the entire
duration of the measurement, the Hamming weight of the output register lies in the range
0 < HW(O) = HW(O0, O1, ..., ON−1) < N and only one clock edge is captured.

Let us define di as the time the delayed clock signal takes to propagate from the input
of the tapped delay line PIN to the input Di of the flip-flop FFi. For the TDC illustrated
n Fig. 1, di is, therefore, the following time difference:

di = t(Di)− t(PIN ). (1)

The sensitivity of the TDC sensor, i.e., the minimum signal change that can be detected,
can be expressed as

S = min(di − di−1), 0 < i < N. (2)

Because the TDC has a tapped delay line, we can rewrite the expression for di as the sum
of the propagation delay through the first segment, last segment, and all the intermediate
segments of the delay line:

di = t(P0)− t(PIN )︸ ︷︷ ︸
first segment

+ t(Di)− t(Pi)︸ ︷︷ ︸
last segment

+
∑

1≤k≤i

t(Pk)− t(Pk−1)︸ ︷︷ ︸
intermediate segments

, (3)

where Pi is at the output of the delay element i in Fig. 1. Combining the expressions in
Equations (1), (2), and (3), the sensitivity can be reformulated as:

S = min

 t(Di)− t(Pi)︸ ︷︷ ︸
routing resources

+ t(Pi)− t(Pi−1)︸ ︷︷ ︸
delay element

− (t(Di−1)− t(Pi−1))︸ ︷︷ ︸
routing resources

 . (4)

Therefore, the sensitivity of the TDC improves if, first, the input signal takes a very short
time to pass through a delay element; and, second, if the delays through routing resources
(t(Di)− t(Pi), for 0 ≤ i < N) are all approximately equal. These two requirements have a
direct impact on the way TDCs are often implemented on FPGAs: the former is satisfied
by using fast carry propagation logic, while the latter is achieved by ensuring that each
carry output drives only the corresponding flip-flops in the same slice. Routing outside
of the slice boundaries is, in general, avoided. The exception is when it is necessary to
connect the carry output of one slice to the carry input of another. Even then, dedicated
carry-specific routing resources are used to minimize the penalty, and consequently, the
tapped delay line has to be placed in a single FPGA column.

Another property of a tapped delay line is the monotonic increase of the propagation
delay:

d0 < d1 < · · · < dN−1. (5)
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In practice, carry propagation logic in FPGAs is often implemented in the look-ahead
fashion, and the delays from the carry input to the carry outputs of the same slice may
not be strictly monotonically increasing [GCRS20]. Given that we apply Hamming weight
instead of the thermometer code on the output register value, the mentioned lack of
monotonicity is of no practical concern.

3 Related Work
In literature, the TDCs and the RO-based sensors have been used in the context of power
side-channel attacks [ZS18, RPD+18, GCRS20, GDTLM19] and crosstalk side-channel
attacks [GRE18,PRP+19]. They have been shown to be effective as covert communication
receivers, where the sender is the FPGA, CPU, or even GPU sharing the common power
delivery network [GRS20]. The TDC sensors have been used in a correlation power analysis
attack on Amazon AWS F1 instances [GCRS20] and to recover the inputs to a neural
network deployed on the same cloud FPGA instances [MTH+21]. On-chip sensors were
shown effective in capturing the side-channel leakage across integrated circuits sharing the
same board [SGMT18b] and against a CPU within the same system-on-chip [GDTLM19].
As ring oscillators are less effective for side-channel attacks [MLS+20] and ring-oscillator
structures are relatively easy to detect [LMG+20,KGT19], we focus on the TDC-based
sensors in this work.

Zick et al. [ZSZF13] were the first to introduce a phase shift (e.g., with a phase-locked
loop) between the clock propagating through the delay line and the clock sampling the
output register. This design choice allowed for reducing the length of the observable (i.e.,
tapped) part of the delay line and helped fit the TDC inside an FPGA column. In the
early TDC designs of Zick et al. [ZSZF13] and Gnad et al. [GOT17], transparent latches
were used to capture the sensor samples. In later works, latches were replaced by flip
flops [GKT+20,GCRS20,MTH+21].

Various implementations of clock phase shifting have been proposed. To reduce jitter,
Gnad et al. replaced the phase-locked loop with a chain of look-up tables (LUTs), latches,
and fine carry elements [GNGT21]. They implemented a self-calibrated sensor (i.e., with
the calibration in hardware): while monitoring the sensor output, the number of coarse
delay elements (LUTs, latches) or fine delay elements (carry) is tuned as long as the desired
calibration is not achieved. Udugama et al. followed this example and implemented another
variant of a voltage-fluctuation sensor calibrated in hardware. For tuning the initial delay,
Udugama et al. chose the adjustable input delay FPGA elements (IDELAY). In our work,
we perform phase shifting using the coarse and fine delay elements, similarly to Gnad et
al. [GNGT21]; however, we control the calibration from the software because it allows us
to have much better control and flexibility, which is desirable when experimenting.

Recently, Udugama et al. proposed VITI [UJS+21], a delay-line-based sensor built with
the goals of minimizing the use of logic resources and escaping from the strict placement
constraints of the carry chains in TDCs. In VITI, the delay line is implemented using
LUTs as delay elements. Additionally, LUTs are freely placed, and the connections between
them are freely routed. By saving the resources and by using the LUTs instead of the
carry-propagation logic, the resolution and the sensitivity of the sensor were sacrificed.
Yet, the authors have shown that an adversary armed with VITI can, sometimes partially
and sometimes fully, break the secret key of an AES-128 hardware module. Our proposed
routing delay sensors are very different because they primarily use the FPGA routing
resources to sense the on-chip voltage variations. The third variant of our sensor is free
of any placement and routing constraints, similar to VITI, making it simple to deploy
and difficult to detect. And this last variant, on average, has better sensitivity than
the TDC and allows breaking the secret key faster. In this work, we implement one
TDC [GNGT21] and one VITI [UJS+21] and use them as references for comparison with
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our implementations of routing delay sensors.

4 Routing Delay Sensors
As described in Sections 2 and 3, the principle of operation of the FPGA on-chip voltage
sensors is measuring and quantifying the change of the propagation delay of the carry
logic (in TDCs) or LUTs (in ring oscillators and VITI). Even though it is not explicitly
mentioned in the literature on remote power-side channel attacks, the routing multiplexers
in the FPGA interconnect are affected by the on-chip voltage fluctuations and they too
contribute, though to a lesser extent, to the delay variations captured by the sensors.
Ahmed et al. explored techniques for optimizing FPGA logic circuitry for variable voltage
supplies [ASB20]. As part of the study, the authors compared the impact of the power
supply voltage on the propagation delay of LUT-dominated and routing-dominated signal
paths, to find that (1) both were affected and (2) the LUT-dominated paths were affected
more. Motivated by their findings, we ask ourselves the following research question: if the
delay line is built using FPGA routing resources only, how effective would such a sensor be
in the remote power SCA attack setting? To answer this question, we start by designing
the following two variants of a routing delay sensor:

• VRDS, with the placement and the routing constrained vertically, as in TDCs, and

• HRDS, with the placement and the routing constrained horizontally, completely
opposite of the TDCs.

In the remainder of this section, we present our VRDS and HRDS implementations and
explain their operation. Then, we introduce a third and improved design. Finally, we
discuss the calibration procedure and the challenges of portability and detectability of the
routing delay sensors.

4.1 VRDS and HRDS
In Fig. 2, in the same style as in Fig. 1 for TDCs, we illustrate the design of our routing
delay sensor, in which the delay line is implemented with FPGA routing resources (RR)
only. We use the label RR to model the global interconnect; the local interconnect is
modeled with the direct connection between Pi and Di, for 0 ≤ i < N . It is worth noting
that all the expressions in Equations (1), (2), (3), and (4) hold here as well.

When placing and routing, we aim for a modular design and as uniform RR delay as
possible across the entire delay line. Fig. 3a shows the placement of two subsequent FFs in
the output register and the routing of the delay line for the VRDS. The delay element
labeled RR in Fig. 2 is realized with a vertical wire segment of length one (the full line),
whereas the segment between Pi and Di is routed locally (dashed line). The placement of
the output register is constrained to a single FPGA column. This placement and routing
pattern is then repeated for the entire length of the sensor. Reusing the same connectivity
pattern helps improve the sensitivity of the sensor, as the first and the third of the three
terms in Eq. (4) become equal, thus canceling each other out.

The implementation of the HRDS is similar, except for using horizontal wires and
constraining the FFs to a single FPGA row (Fig. 3b). However, there is one important
difference between the HRDS and the VRDS. FPGA columns have a uniform architecture,
whereas FPGA rows do not (e.g., in one FPGA row, there are CLBs, DSP blocks, RAM
memories, etc.). As a consequence, in the case of the HRDS, the RR blocks in Fig. 2 no
longer have a constant delay because the wires connecting two immediately neighboring
CLBs are shorter than the wires between two CLBs that are separated by a column of
DSP or memory blocks.
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4.2 RDS
As the global interconnect wires are longer than the dedicated connections in the carry
propagation chains, we expect both VRDS and HRDS to have lower sensitivity than the
TDC and, hence, to be less effective for remote power side-channel attacks. When it
comes to VITI, it is harder to predict how it compares to VRDS and HRDS without
experimenting, as the sensitivity of VITI is considerably lower than the sensitivity of the
TDC, because of the LUTs in the tapped delay line.

Is it even possible to build an RDS sensor with better sensitivity than TDC? The
answer is yes. To explain how, let us again recall the expression for the sensitivity in
Eq. (4). The first and the last term are unavoidable, as the connections to the inputs of
the FFs in the output register have to exist. Ideally, the first and the third term could
cancel each other out, if the exact same last-mile routing path is taken; this is the case in
our realization of the VRDS and the HRDS. The middle term in Eq. (4), labeled as delay
element, is more challenging to optimize. In TDCs, the carry propagation logic is fast,
hence the high sensitivity of TDCs. In VITI, VRDS, and HRDS sensors, the middle term
has a more significant impact on the sensitivity.

It is hard to imagine that the middle term in Eq. (4) can be better optimized than it is
already with the dedicated carry propagation logic and routing. Therefore, we turn to the
alternative expression for sensitivity in Eq. (2) and formulate a new sensor design goal.

Goal: All the paths between PIN and Di should be routed so that the delays di, where
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Table 1: Characteristics of the TDC, VITI, and our three variants of the RDS sensor.
Sensor TDC [ZSZF13] VITI [UJS+21] VRDS HRDS RDS

Main component Carry chain LUT Routing resources (wires, multiplexers)
Tapped delay line Yes Yes Yes Yes No
Placement
and routing

Vertically
constrained

Unconstrained Vertically
constrained

Horizontally
constrained

Unconstrained

Sensitivity High Low Low Low High

0 ≤ i < N , are as similar as possible:

d0 ∼ d1 ∼ d2 ∼ · · · ∼ dN−2 ∼ dN−1.

Ideally, the difference between any pair (di, dj), where 0 ≤ i, j < N , should be lower than
the sensitivity of a TDC. In practice, the more (di, dj) pairs that satisfy the above goal,
the more effective we expect the sensor to be, compared to the TDC, in an attack scenario.

The ideal sensor we formulate above, however, would not be usable in practice because
the observable time window

W = max |di − dj |, 0 ≤ i, j < N (6)

would be significantly reduced compared to any delay-line-based sensor, where W =
dN−1 − d0. Such a sensor would not only be challenging to calibrate, but it would also be
prone to becoming easily decalibrated, to the extent that even the calibration at run time
may not be the solution. With this in mind, we rephrase our sensor design goal as follows.

Goal: Many of the paths between PIN and Di should be routed so that the delays di,
where 0 ≤ i < N , are as similar as possible. At the same time, the observable time window
(W in Eq. (6)) should not be too narrow.

The approach we take to achieve the above goal is threefold: first, not having a tapped
delay line at all; second, letting the FPGA router build the connections between PIN and
Di, 0 ≤ i < N ; and, third, letting the FPGA placer decide on the locations of the FFs in
the output register, in the interest of helping the router find suitable paths. In Fig. 4, we
illustrate the resulting RDS design. Finally, it is worth noting that using Hamming weight
to convert the binary value in the output register to the integer value of the sensor sample
applies perfectly well also to the RDS sensor free of the tapped delay line.

In Table 1, we summarize the main characteristics of the TDC, VITI, and our three
variants of the RDS sensor.
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4.3 Calibration
The goal of the calibration is to ensure that an edge of the clock signal is within the
observable delay line when its state is captured in the output register. One can choose
either the rising or the falling edge and adjust the calibration accordingly; we opted
for the rising edge. As the calibration is a lengthy process of trial and error, it is
convenient to automate it. We implement a reconfigurable initial delay line approach
proposed in literature [GNGT21]: implementing delay line elements as multiplexers allows
a reconfigurable clock entry point in the initial delay line, thus changing the clock delay.
Selecting a subset of the available coarse delay elements (in our implementation, LUTs)
and fine delay elements (carry propagation logic) allows fine clock delay tuning required
for voltage-drop sensors [GNGT21]. We control the calibration from software for better
control and higher flexibility.

For the sensors with a tapped delay line (TDC, VITI, VRDS, and HRDS), the calibration
procedure is straightforward: increasing (respectively, decreasing) the initial clock delay—
an action that moves the rising edge closer to (respectively, further from) the beginning of
the delay line (the point PIN in Figs. 1 and 2)—until the rising edge is close to the middle
of the observable delay line [SGMT18a]. Considering the Hamming weight of the output
register, the rising edge being close to the middle of the observable line translates to the
sensor sample being equal to approximately N/2.

Given that the RDS does not have a tapped delay line but a tree of routing resources,
it requires a somewhat different calibration approach. We can no longer tell where the
edge precisely lands, but we can observe and influence the Hamming weight of the output
register. We aim to calibrate the sensor so that the power side-channel trace (i.e., the time
sequence of sensor samples for a given measurement duration) has a high variance. In other
words, the more bits in the output register that toggle when a voltage drop happens, the
better. Our RDS calibration approach is illustrated in Fig. 5 and described in Algorithm 1.

The algorithm has two parts that together ensure that many bits of the output register
capture the changes in the propagation delay of the rising edge of the clock signal. In the
first part (lines 2–13), we incrementally increase the initial delay by including more coarse
elements (IDC) until the falling edge of the clock exits the observable delay line and all
the output bits become ‘1’: HW (O) = N . The effects of increasing the initial delay are
illustrated in steps 1, 2, and 3 in Fig. 5. We stop including more coarse elements (line 10
of the algorithm) when all the samples in Ntraces measured traces reach the maximum
value, N . In the second part of the algorithm (lines 14–28), we gradually increase the
number of coarse and the fine (IDF ) elements, to bring the rising edge carefully into the
observable delay line. For every (IDC, IDF ) pair, we record Ntraces traces and compute
the maximum value of all the sensor samples. When that maximum value crosses the
predefined threshold δ (delta < N), as shown in step 4 of Fig. 5, the calibration is finished.
Alternatively, we choose another (IDC, IDF ) pair and repeat the procedure.

The user-controlled threshold δ (0 ≤ δ < N) determines the number of output FFs that
capture ‘0’ instead of ‘1’. If δ is high, a few bits in the output register satisfy this condition:
for them, the clock edge has passed to the left of the capture window (shown in the right
half of Fig. 5). For the other bits, those equal to ‘1’, the clock edge is to the right of the
capture window. It is these bits that, when the on-chip voltage drops due to the victim
activity and, consequently, the clock edge moves to the left of the capture window, may
change from ‘1’ to ‘0’. If it happens, this change will be reflected in the lower Hamming
weight of the output register (i.e., the lower value of the sensor sample s in Algorithm 1).

If δ is low, for many bits in the output register the clock edge will be to the left of the
capture window. These bits are unlikely to change their value, as lowering the on-chip
voltage moves the edge further away from the capture window. Therefore, low δ results
in fewer bits potentially toggling and, hence, less side channel leakage getting captured.
Therefore, we set δ to a value close to N , so that for as many output FFs as possible, the
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clock edge is likely to enter the capture window during trace recording. If the calibration
fails, then the width of the observable window N needs to be increased, by adding more
FFs in the sensor output register.

The described calibration algorithm is not limited to RDS; it can be used for VRDS,
HRDS, and even TDC. For these three sensors, we expect the observable window to be
wider than for RDS. Consequently, for the same supply voltage variations, fewer bits in
their output registers should toggle. From the calibration perspective, fewer bits toggling
means that a wider range of δ values should result in equally correct calibration.

Algorithm 1 Calibration algorithm
Input: LIDC , maximum number of coarse elements
Input: LIDF , maximum number of fine elements
Input: n, number of samples per trace
Input: N , observable delay line length (maximum sensor value)
Input: δ, calibration parameter
Input: Ntraces, number of traces recorded at each calibration step
Output: IDC, IDF , number of coarse and fine elements, respectively

1: procedure Calibrate(LIDC , LIDF , n, N, δ)
2: for IDCcnt from 1 to LIDC do
3: smin ← N
4: IDC ← IDCcnt; IDF ← 1
5: send_calibration(IDC, IDF )
6: for trace from 1 to Ntraces do
7: (s1, s2, ..., sn)← record_trace()
8: smin ← min(smin, min(s1, s2, ..., sn))
9: end for

10: if smin = N then
11: break
12: end if
13: end for
14: for IDCcnt from IDC to LIDC do
15: for IDFcnt from 1 to LIDF do
16: smax ← N
17: IDC ← IDCcnt; IDF ← IDFcnt

18: send_calibration(IDC, IDF )
19: for trace from 1 to Ntraces do
20: (s1, s2, ..., sn)← record_trace()
21: smax ← max(smax, max(s1, s2, ..., sn))
22: end for
23: if smax = δ then
24: return IDC, IDF
25: end if
26: end for
27: end for
28: return failure
29: end procedure
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Figure 5: Calibration steps for the RDS sensor.

4.4 Portability and Detectability
Let us now discuss the challenges of portability and detectability of TDC and routing
delay sensors.

As described in Section 2.2, TDC sensors employ carry chain logic and require strict
placement constraints, ensuring that the carry chain is correctly and vertically formed and
that each carry output drives the corresponding flip-flop residing in the same FPGA slice.
These constraints ensure the tapped delay line is fine-grained, as uniform as possible, and
that only dedicated connections are used. Depending on the FPGA device on which the
sensor is to be deployed, the constraints may need to be adjusted to account for a different
sensor location and type of carry logic available (e.g., CARRY4 or CARRY8). As described
in Sections 4.1 and 4.2, unlike TDC, neither VRDS, HRDS, nor RDS, require carry-chain
logic to sense voltage variations. In the case of HRDS and VRDS, the sensor location, the
placement of the flip-flops, and additionally, the resources to route the clock signal through
the tapped delay line need constraining. The sensor location aside, in RDS, neither the
placement of the flip-flops nor the choice of routing resources needs to be specified by the
adversary, which makes RDS easier to deploy and port across FPGA devices.

For the purpose of calibration, both TDC and the routing delay sensors require means to
adjust the clock phase. We provide it using LUTs and carry-chain logic (the latter requiring
placement constraints). However, if the ease of implementation and portability are of
importance, then other approaches, such as a phase-locked loop (PLL) or an adjustable
input-delay element [UJS+21], can be used instead. These alternative approaches are
equally suitable for TDC as for the routing delay sensors.

Given the high interest in fault and power analysis attacks on cloud FPGAs, researchers
have proposed bitstream checking tools [LMG+20,KGT19]. Their principle of operation
is to, first, reverse engineer the bitstream into a design netlist and, second, search for
potentially malicious patterns. A simple example of a malicious pattern is a combinational
loop; some cloud FPGA providers are able to detect it during synthesis and flag it as a
design error. This check effectively prevents LUT-based ring oscillators (either as sensors
or power wasters) from being deployed on the cloud.

In the case of TDC sensors, bitstream checkers could look for a number of potential
issues, starting with timing violations [KGT19], because the clock propagating through the
tapped delay line has to violate timing by construction. RDS sensors, similarly to TDC
sensors, introduce timing violations in the output register. These timing violations can be
bypassed, equally efficiently for TDC and RDS, by using programmable clock-generating
circuits (i.e., PLLs or mixed-mode clock managers). It suffices to set a sufficiently low
clock frequency at compile time, not to violate the timing constraints, and then change it
to the desired value during runtime.

A clock-to-data path [KGT19], inherent to both TDC and RDS, is another flag-raising
netlist structure. Yet, if needed, it can be easily avoided; for example, by adding a T
flip-flop on the clock path and using its output instead of the clock to drive the delay line.
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Precisely constrained carry chains, when detected, can indicate the presence of a sensor.
While the carry chains are the basic building blocks of TDCs, RDS can be entirely free of
them and, therefore, pass the check.

Finally, connecting the clock signal to the flip-flops of the RDS sensor output register
creates a relatively high fan-out signal, yet another feature checked by bitstream scanning
tools in literature [LMG+20]. However, these tools look for orders of magnitude higher
fan-out, common to power-wasting circuits. The fan-out of 128 (or less) in RDS is not
uncommon in FPGA designs (e.g., for enable and reset signals of registers) and, as such,
calls for no alarm [LMG+20].

5 Experimental Evaluation
This section presents the experimental evaluation methodology. We first describe the
architecture of the system used to record power traces. Then, we provide a detailed
description of the experiments and, finally, explain the attack metrics used to evaluate and
compare the effectiveness of the sensors in the remote power side-channel attack setting.

5.1 System Architecture and Floorplan
Our experimental setup consists of three different FPGA boards, allowing us to evaluate
the RDS sensor across various FPGA families. For most experiments, we use the side-
channel evaluation board Sakura-X [Lab21], equipped with a AMD Kintex-7 FPGA
(xc7k160tfbg676-1). Additionally, we perform experiments on AMD Alveo U200 datacenter
accelerator card, having an AMD Virtex UltraScale+ FPGA (xcu200-fsgd2104-2-e). Finally,
to evaluate the RDS sensor at various external temperatures, we use a smaller Digilent
Basys 3 device with a lower-end AMD Artix-7 FPGA (xc7a35t). We use Vivado 18.03
for the Sakura-X and Basys 3 boards, and Vivado 2022.1 for the Alveo U200 design. For
compilation, we use the default Vivado synthesis and implementation strategies.

Fig. 6 shows a block diagram of the system architecture used in all three FPGA boards.
Despite the FPGA-specific implementation differences, the system architecture of all
three setups has the same main components: The shell, responsible for the communication
between the FPGA tenants (the adversary or the victim) and the host machine. The victim
is an AES-128 hardware module [AU19]; it has an associated controller, for transferring
plaintexts and ciphertexts, and for initiating encryption. The adversary, physically isolated
from the victim, has a voltage-fluctuation sensor calibrated by a controller module, and a
FIFO buffer where sensor samples are stored before they are offloaded to the host machine.
To facilitate easy trace collection, we use the encryption initiation signal as a trigger for
storing the sensor traces. For temperature-related experiments, we include the system
monitor (XADC) to the shell to monitor the on-chip temperature.

Fig. 7 shows the floorplan of the system on the three FPGAs. In all implementations, the
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Figure 6: System architecture.
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Figure 7: Floorplan of all three boards used in the experimental evaluation.

attacker and victim reside in separate regions (Pblocks). The AES and the sensor are placed
close to one another, simulating the worst-case scenario for the victim. Because of different
FPGA/host communication constraints, the shell and the controller implementation differ
for each FPGA. On Sakura-X, the shell occupies the smallest area, as the communication
happens through a serial connection and an additional control FPGA [Lab21], which
reduces the noise of the communication process. On Basys 3, communication is achieved
via UART. On Alveo U200, the automatically inserted shell occupies the largest share of
the FPGA: it is static and prevents using a custom, smaller shell. Users are constrained to
use the AXI-4 shell interface, making the design and implementation of the controllers
more complex.

The clock frequencies of the sensor and the AES are set to 200 MHz and 20 MHz,
respectively. The exception are the experiments where the FPGA is subjected to variable
external temperatures, where we increased the AES frequency to 50 MHz, to reduce the
trace size and speed up the acquisition of a large number of traces.

5.2 Experimental Setup
In our experiments, we aim to break the secret key of an open-source AES-128 cryp-
tographic module implementation [AU19], using correlation power analysis (CPA). We
record NT RACES power side-channel traces per experiment (the exact value of NT RACES

depends on the experimental platform). For each trace acquisition, we send the key K and
the plaintext PT to the AES core and record all the sensor samples captured during the
AES encryption. We use the current ciphertext as the next plaintext, to avoid plaintext
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Table 2: Key and plaintext values used in the experimental evaluation.
Key Key value Plaintexts

K1 0x7d266aecb153b4d5d6b171a58136605b

PT0 = 0
PTi+1 = CTi

K2 0xe3fb107fa4aaeb7130f411d4c88dbf6c
K3 0xa89e2fd6926dc2478402b717631d08ce
K4 0xa3a03d60c06457dc65d8afd5815f629c
K5 0xe1055ac2abadea4fc7fc6be1310448d9

repetition. For simplicity, as seen in Fig. 6, we use the start encryption signal to trigger the
collection of a sensor trace. In real attacks, this signal is absent, and the attacker resorts to
trace alignment and automatic triggering techniques described in previous work [SGMT18a].
We repeat the experiments with five different keys to draw more substantial results. The
keys and the plaintexts used in the experimental evaluation are listed in Table 2.

5.3 Attack Metric
Correlation power analysis was introduced by Brier et al. [BCO04]. In this statistical
attack, the attacker correlates the measured power side-channel traces with a precomputed
power model using Pearson’s correlation coefficient. When there are more than a million
power traces to analyze, the CPA attack becomes computationally expensive and can take
hours or days to complete. In this work, we use the open-source code [HHR15,TNP+14]
to run the CPA attack on a GPU and save on the computation time (the attack on ∼ 2
million traces can be completed in a matter of hours).

Most side-channel attacks take a divide-and-conquer approach and independently attack
individual bytes (sub-keys) of the 128-bit AES key. However, evaluating the security of the
sub-keys does not necessarily illuminate the security of the entire key. In particular, when
an attacker fails to break all the key bytes, the remaining effort for a full key recovery
through trial and error is not quantified. For this reason, we opt for the key rank estimation
metric, which uses the correlation computed with the CPA to estimate the remaining effort
for an attacker. For example, if an attacker has no side-channel information, then the
key rank equals to the entire key space, i.e., 2128 in the case of AES-128. Alternatively,
when the entire key is broken, the key rank drops to zero. While there are several ways of
computing the key rank, in this paper, we use the histogram-convolution-based algorithm
of Glowacz et al. [CVR+15] where the key rank is upper and lower bounded.

6 Results and Discussion
In this section, we present the results of the experiments. We start by comparing the
power side-channel traces measured with the TDC and the RDS. Then, we compare the
RDS sensor with the TDC [GNGT21] by performing a power side-channel attack and a
statistical analysis of the characteristics of the sensor traces. After evaluating the impact
of the size of the RDS output register on the success of the attack, we examine how RDS
behaves under different temperature conditions. Finally, we compare the RDS with the
TDC across a range of different placements for the sensor and the AES.

Table 3 lists the FPGA resource utilization of our implementations of the TDC, VITI,
and RDS sensors. As described in Section 4.3 and similarly to previous work [GNGT21],
we use the coarse (LUTs, latches) and fine (carry) elements for calibration. With 32 LUTs
and latches, and 24 fast carry elements for fine phase shift tuning, every sensor in Table 3
can be calibrated. Because of the high sensitivity of the TDC and the RDS, we set the
output register size to 128 bits (N = 128). Unlike the TDC, VITI has a short observable
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Table 3: Resource utilization of TDC, VITI, and RDS.

Sensor Initial delay (calibration) Other resources
LUT CARRY Latch LUT CARRY FF

TDC 32 0 32 0 32 128
VITI 32 0 32 4 0 4

VRDS 32 0 32 0 0 32
HRDS 32 0 32 0 0 16
RDS 32 24 32 0 0 128
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Figure 8: One side-channel trace recorded with the RDS (left) and the TDC (right) sensor.

delay line and uses only 4 LUTs and FFs [UJS+21]. For VRDS and HRDS, we set the
output register size, N , to 32 and 16, respectively.

We constrain the RDS register to a Pblock having ≈ 2× more flip-flops than required
and let Vivado complete the placement and routing (P&R). We conjecture that if the
assigned Pblock is not overly resource-limited, the P&R will not be a hard task and, hence,
Vivado will place the flip-flops and route the signals in a close to optimal way.

6.1 RDS Sensors Versus TDC and VITI
As a first step in the experimental analysis, in Fig. 8 we visualize the waveforms of the RDS
and the TDC traces recorded during the encryption of a single plaintext on Sakura-X. The
traces are placed side by side for easier comparison. In both of them, the AES rounds are
clearly visible. The traces have 128 samples, covering the entire duration of one AES-128
encryption. Because of two independent calibrations, the vertical offsets of the traces differ.
What is more important to notice is that the peak-to-peak amplitude of the RDS trace
is higher (37) than the peak-to-peak amplitude of the TDC trace (8). The higher RDS
trace variation suggests that an attacker with the RDS may be able to break the secret
key faster. To evaluate this hypothesis, we run additional experiments.

We record 100k traces (corresponding to the encryption of 100k plaintexts) for each
of the five keys in Table 2, as described in Section 5.2. We run the experiments for the
TDC, VITI, and the three variants of our RDS sensors. Fig. 9 visualizes the results of the
statistical analysis of the sensor samples recorded for the key K1. On the left, we compare
the number of output bits with nonzero variance. For VITI, VRDS, and HRDS, there are
only one or two bits that toggle. In the case of TDC, there are 11 bits. Finally, the RDS
has the highest number of bits toggling: 47. This result explains the waveforms in Fig. 8,
as the higher peak-to-peak value is in direct relation with the number of bits toggling.

The right part of Fig. 9 depicts the variance of the output bits of the RDS and the
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Figure 9: Number of bits toggling during trace acquisition for every sensor (left), and the
variance of the bits for RDS and TDC sensors (right).
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Figure 10: Signal-to-noise ratio for the RDS (left) and TDC (right), computed on the
least-significant byte of the output of the ninth AES round.

TDC. As expected, the TDC has a cluster of bits with nonzero variance, where the rising
clock edge lands in the delay line. This figure also highlights the difference between the
RDS and the TDC: replacing the delay line with free routing in the RDS results in a
higher number of bits toggling. Additionally, the toggling bits are not necessarily clustered
closely together.

Let us now compare the signal-to-noise ratio (SNR) for the RDS and TDC. The SNR
is a side-channel evaluation metric defined as the ratio between the useful signal, i.e., the
variance of the data-dependent power consumption, and noise. It can be obtained from
the power side-channel traces without performing an attack and is most commonly used to
identify trace samples with significant leakage (i.e., samples that are commonly linked to the
secret key). To compute the SNR, we follow the procedure outlined by Papagiannopoulos
et al. [PGA+22]. Fig. 10 shows the results corresponding to the least-significant byte of
the output of the ninth AES round, for the keys in Table 2. For both sensors, we can
observe two peaks: in sample 102 (the beginning of the last AES round) and in sample
112 (the end of the last round, i.e., the moment when the ciphertext is saved in the state
register). RDS is clearly superior to TDC, as the SNR approximately doubles in these two
points of interest. Across all the experiments and every byte of the intermediate value,
SNR in sample 112 for RDS is consistently higher than for TDC, by a factor of 1.57× on
average, with a maximum of 2.87×.

To compare the sensors in the power side-channel attack scenario, we attack the traces
using CPA and the key rank estimation metric, and repeat the experiment five times (each
time with a different key). Fig. 11 shows the attack results. As outlined in Section 5.3,
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Figure 11: Key rank estimation for TDC, VITI, and our three RDS variants.

the key rank is estimated as a range. The dashed and dotted lines represent the lower
and the upper bounds of this range, averaged over all the experiments. The shaded areas
indicate the entire range of the key rank (min, max), observed across all the runs. The
results demonstrate that the RDS and the TDC, as predicted, are superior. The coarse
delay lines of VITI, HRDS, and VRDS result in lower sensor sensitivity, making it difficult
for the sensor to capture small voltage fluctuations. HRDS and VITI give very similar
results, suggesting that both the horizontal wires and the LUTs have a similar response to
voltage fluctuations. VRDS, however, is superior. This result is not surprising, as vertical
routing uses shorter wires than horizontal, thanks to the absence of heterogeneous blocks
(DSPs, memory) within an FPGA column.

Finally, and most interestingly, Fig. 11 shows that, on average, the RDS sensor
outperforms the TDC. As the RDS sensor has more output bits with nonzero variance
and the RDS trace has higher peak-to-peak amplitude, an attack with the RDS requires
fewer traces to recover the full key.

6.2 Impact of The RDS Size on The Attack Success
The number of FFs in the output register of the TDC does not impact its performance—
provided that the sensor is correctly calibrated. This is not the case for the RDS. The left
side of Fig. 13 shows the number of bits with nonzero variance for RDS with 128, 96, 64,
and 32 FFs in the output register. The right side shows the variance of each bit in the
output register, computed across 100k traces (corresponding to 100k AES-128 encryptions
on Sakura-X, with the key K1). We see that reducing the output register size results in
fewer bits that toggle.

Fig. 12 shows the results of the key rank analysis. In general, increasing the number of
bits in the output register leads to fewer number of traces needed to break the full AES
key. However, for 96 and 128 bits in the output register, there is no notable difference.
These results correlate well with the per-bit variance shown in Fig. 13 and the intuition
that the more bits with the nonzero variance, the more effective the attack.

6.3 RDS Versus TDC on The Alveo U200 Datacenter Card
To evaluate the RDS sensor on a cloud-scale FPGA, we deploy our system on the AMD
Alveo U200 datacenter accelerator card (as explained in Section 5.1). Cloud-scale FPGAs
are large in size, which makes it more difficult to sense switching activities on the shared
PDN [GCRS20]. Therefore, we record 1.8 million traces, and repeat the trace collection
for each of the keys in Table 2. Furthermore, we repeat all the experiments five times.
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Figure 12: Comparison of RDS sensors with the number of bits used.
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with 128, 96, 63, and 32 bits in the output register. Right, the variance per bit.

The results are summarized in Fig. 14. Similarly to Fig. 11, the average of the lower
and the upper bounds of the key rank are shown with dashed lines. The shaded areas
correspond to the minimum and the maximum key rank values observed across all the
attacks. Again, we see that the RDS outperforms the TDC, even more clearly than in the
experiments discussed in Section 6.1. Therefore, a remote adversary equipped with the
RDS instead of the TDC can steal a secret with fewer measurements.

6.4 Varying the Placement
To further evaluate and compare the RDS and the TDC, we record the power side-channel
traces for a number of different sensor and AES placements. Fig. 15 provides a conceptual
overview of the Sakura-X floorplan, with the sensor and AES positions marked in green
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Figure 14: Key rank estimation for the TDC and RDS sensors on the Alveo U200 board.

and blue, respectively. The FPGA has ten clock regions, out of which the shell, which is
always kept at a constant location, occupies the bottom two. In the remaining eight clock
regions, we define eight sensor locations (in regions 2, 3, 6, and 7) and four AES locations
(in regions 1, 4, 5, and 8). In all experiments, AES and the sensors are in separate regions,
in line with the threat model. For a pair of sensor-AES placements, we record 100k traces,
once for the key K1 and once for the key K4 in Table 2.

In the first set of experiments, we fix the AES to the location labeled as M1 and vary
the sensor placement. In total, we collect the data from 32 experiments (eight sensor
locations, two secret keys, and two sensors). Then, we compute the key rank metric and
record the number of traces required for breaking all the bytes of the secret key (i.e., the
number of traces for which the log(key rank) first time drops to zero). To compare the
effectiveness of the RDS with the TDC, we normalize the results and visualize them in
Fig. 16 (left part). We see that, in most cases, the RDS outperforms or performs equally
well as the TDC. On average, the number of traces that the RDS requires to break the
key is 60% of the number of traces that the TDC requires (in other words, the attack
with the RDS needs 40% fewer traces than the attack with the TDC, to break the entire
secret key). Finally, we observe that the number of traces when the log(key rank) drops to
zero can vary across the experiments (irrespective of the chosen key). The same can be
observed in Figs. 11 and 14: When the key rank drops to zero and the slope of the curve
significantly reduces, likely due to the low SNR of many bits of the secret key, the range of
the obtained results widens. Figs. 11 and 14 also show that the extent of this variability,
for both TDC and RDS, reduces for the bits of the secret key which are less impacted by
noise and, consequently, broken earlier.

In the second set of experiments, we fix the location of the sensors at M2 and vary
the placement of the AES. The results are shown on the right side of Fig. 16. Again, in
most cases, the RDS requires fewer or an equal number of traces to break the key. In this
experiment, the average ratio is 0.76 (i.e., the RDS needs 24% fewer traces than the TDC
to break the key, on average). If we take all the experiments into account, then we can say
that an attack with the RDS requires 35% fewer traces than the attack with the TDC, for
all the bytes of the secret key to be recovered.

Table 4 lists the obtained results: the first two rows contain data per sensor and
location (averaged across the corresponding experiments with two different keys). The
third row aggregates the results per region, both sensors considered. Looking at the last
row of data, we can note the correlation between the number of traces to break the key
and the locations of the sensor and the AES with respect to one another: When the AES
is in the first region, and the sensors change places, the attack is fastest with sensors in the
second, third, then sixth, and finally the seventh region; with respect to the AES, regions
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Figure 16: Ratio between the number of traces needed to break the key with the RDS and
the TDC sensor when varying the placement of the sensor (left) or the AES (right). In
dark blue are the results where an attack with RDS is at least as efficient as with TDC.
The dashed red line corresponds to the geometric mean.

Table 4: Number of traces required to break the full AES 128-bit key, for different sensor
placements (AES placed at M1) and different AES placements (sensor placed at M2). The
last row shows the average number of traces to break the key per FPGA region, both RDS
and TDC sensors considered.

Traces to break key (×103)

Sensor Sensor placement AES placement
M2 R2 L3 M3 M6 R6 L7 M7 M1 M4 M5 M8

RDS 16 18 17 29 46 31 56 59 16 29 91 41
TDC 23 48 71 41 73 39 76 76 23 30 95 77
Average 26.3 39.5 47.3 66.8 19.5 29.5 93.0 59.0
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two and three are close by, while six and seven are further away. When the sensors are in
the second region, and the AES changes place, the attack is fastest when AES is in the
first, then fourth, then eighth, and finally the fifth region; with respect to the sensors, the
first and the fourth region are close by, while the fifth and the eighth regions are further
away.

6.5 Temperature Impact
The results in the previous sections have demonstrated the effectiveness of the RDS
sensor at room temperature. Here, we evaluate how the environment temperature and
its variations during the trace acquisition affect the attack success. For these sets of
experiments, we use a cost-efficient Digilent Basys 3 board and the design floorplan in
Fig. 7. To measure the on-chip temperature, the temperature sensor (XADC) is used, as
described in Section 5.1.

To evaluate the transient temperature effects on the RDS sensor, we record 70k traces
using key K1 while keeping the calibration constant throughout the trace acquisition. First,
we record the baseline results at a stable room temperature. Then, we turn to the following
three temperature-varying scenarios: one temperature increase and two temperature drops.
In all the experiments, we first record 9k traces at room temperature and only then start
warming up or cooling the device.

Fig. 17 shows how the transient temperature changes impact the success of the attack.
We can observe that the slight temperature drop of ∼17°C (green line) does not significantly
impact the attack success when compared to the baseline. By contrast, cooling the FPGA by
∼47°C for 15k traces (yellow line) increases the attack effort to break the entire key by the
additional 10k–15k traces. Finally, heating the FPGA by ∼37°C (red line) has an even more
pronounced impact on the success of the attack. Even though the key is not fully broken,
the key space after 70k traces is greatly reduced. These results are not surprising; similar
observations have been reported for the delay-line-based sensors [UJS+21]. Importantly,
despite the significant temperature changes, the RDS sensor remained calibrated, and the
clock edge did not drift away from the observable time window.

In the final set of experiments, we evaluate the impact of different stable environment
temperatures on the RDS sensor traces. To this end, we record the traces with the FPGA in
a thermal chamber. We set the chamber temperatures to 40, 45, 50, 55, and 60°C. At each
temperature, we acquire 70k traces using K1 while keeping the calibration constant and
repeat the trace acquisition ten times. Fig. 18 shows the average upper and lower bounds
of the key rank estimation metric. We see that, at higher environmental temperatures,
the attack effort increases. However, the RDS remained calibrated under all the tested
conditions and always resulted in a successful CPA attack.
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Figure 17: Key rank estimation for the RDS at different transient temperatures.



22 RDS: FPGA Routing Delay Sensors for Effective Remote Power Analysis Attacks

0 10 20 30 40 50 60 70
Number of traces (×103)

0

32

64

96

128
lo

g 2
(k

ey
 ra

nk
)

40°C 45°C 50°C 55°C 60°C Avg, lower Avg, upper

Figure 18: Key rank estimation for the RDS at different, but stable, environment tempera-
tures.

7 Conclusions
This work presents a novel FPGA-based voltage sensor design, fundamentally different from
TDC and RO sensors. Our new routing delay sensor leverages routing resources for sensing
voltage variations. We present three variants of the new sensor: one vertically constrained
(VRDS), one horizontally constrained (HRDS), and one free of any placement or routing
constraints (RDS). We evaluate the performance of the RDS sensor using the correlation
power analysis attack and the key rank estimation metric, in an attack against an AES-128
hardware cryptographic module. The results, computed for a number of different sensor
and AES placements on the Sakura-X board, show that the RDS outperforms the TDC:
on average, an attack with the RDS requires 35% fewer traces to break the secret key.
The observation that the RDS is superior is confirmed with extensive experiments on the
cloud-scale FPGA (the Alveo U200 datacenter card). Finally, we show that the RDS is
not significantly impacted by the changes in environmental temperature. Future work will
investigate the avenues for further improvements of the RDS sensor performance.
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