
Complete Knowledge:
Preventing Encumbrance of Cryptographic Secrets

Mahimna Kelkar∗
Cornell Tech

mahimna@cs.cornell.edu

Kushal Babel∗
Cornell Tech

babel@cs.cornell.edu

Philip Daian∗
Cornell Tech

phil@cs.cornell.edu

James Austgen
Cornell Tech

james@cs.cornell.edu

Vitalik Buterin
Ethereum Foundation
vitalik@ethereum.org

Ari Juels
Cornell Tech

juels@cornell.edu

Abstract—Most cryptographic protocols model a player’s
knowledge of secrets in a simple way. Informally, the player
knows a secret in the sense that she can directly furnish it as a
(private) input to a protocol, e.g., to digitally sign a message.

The growing availability of Trusted Execution Environments
(TEEs) and secure multiparty computation, however, undermines
this model of knowledge. Such tools can encumber a secret sk and
permit a chosen player to access sk conditionally, without actually
knowing sk. By permitting selective access to sk by an adversary,
encumbrance of secrets can enable vote-selling in cryptographic
voting schemes, illegal sale of credentials for online services, and
erosion of deniability in anonymous messaging systems.

Unfortunately, existing proof-of-knowledge protocols fail to
demonstrate that a secret is unencumbered. We therefore in-
troduce and formalize a new notion called complete knowledge
(CK). A proof (or argument) of CK shows that a prover does not
just know a secret, but also has fully unencumbered knowledge,
i.e., unrestricted ability to use the secret.

We introduce two practical CK schemes that use special-
purpose hardware, specifically TEEs and off-the-shelf mining
ASICs. We prove the security of these schemes and explore
their practical deployment with a complete, end-to-end prototype
that supports both. We show how CK can address encumbrance
attacks identified in previous work. Finally, we introduce two
new applications enabled by CK that involve proving ownership
of blockchain assets.

I. INTRODUCTION

Most cryptographic protocols are designed under a simple
model of knowledge. If a player P knows a secret value sk,
then she can explicitly furnish it as a (private) protocol input.
In a digital signature scheme, for example, P inputs a private
key sk to a locally executed algorithm to sign a message.

This basic, intuitive model of knowledge, however, can
break down when sk is not controlled by a single player,
but an interactive functionality. For example, sk might be
stored exclusively in a trusted execution environment (TEE)
such as Intel SGX [47], [48], AMD SEV [9], or AWS Nitro
Enclaves [8]. The TEE could then encumber P’s access to sk,
by only allowing selective use. For instance, in the previous
digital signatures example, a TEE could generate (and store)
a private signing key sk for a user Alice, but only allow Alice
to sign messages approved by an adversary.

∗The first three authors contributed equally to this work.

Such encumbrances can also be realized by multi-party
computation (MPC) [36], [66] over sk among a committee
that restricts its use. Encumbrance of secrets can undermine
security in many cryptographic protocols, as we will show.

It may seem counterintuitive that a user / prover might
want to encumber her own secret sk. Encumbrance of secrets,
it turns out, can paradoxically benefit a user. For example,
as highlighted in [30], [54], voters that choose to encumber
secret keys used in a voting scheme can sell their votes to
an adversary trying to subvert an election. Here, Alice might
encumber her voting key sk so that she can only sign a ballot
with candidate Bob, the choice of adversary Mallory. Alice
can then sell Mallory an enforceable promise that if she votes,
she will vote only for Bob. Remarkably, even techniques that
specifically aim to prevent such vote-selling—e.g., so-called
coercion-resistant voting schemes [27], [28], [41]—fail in the
presence of such key encumbrance.

In this paper, we introduce and explore a new notion
of knowledge called complete knowledge (CK). Complete
knowledge embodies a strong notion of possession meant
to rule out encumbrance of e.g., the secret key. Complete
knowledge by a prover P of a secret sk means, informally,
that it has unencumbered access to sk and thus can use it for
any desired purpose, e.g., can sign any message of her choice.

CK can be leveraged in our voting example, by requiring
Alice to prove that she has complete knowledge of her secret
key sk before allowing her to vote. Here, CK would imply that
Alice can always cast any desired vote and therefore, cannot
sell Mallory an enforceable promise to vote only for Bob.

Our goals in this work are to formalize CK, implement it
end-to-end, and shed light on its various applications.

The problem with proofs of knowledge. To understand CK,
we build on the classical formalism of proofs of knowledge
(PoKs). PoKs are interactive protocols in which a prover
demonstrates knowledge of some kind to a verifier. PoKs play
an important role in many cryptographic constructions and
have found widespread applications in e-voting [25], [26],
[28], [46], encryption [55], [56], group signatures [13], and
private cryptocurrency transactions [20], [59].

1

mailto:mahimna@cs.cornell.edu
mailto:babel@cs.cornell.edu
mailto:phil@cs.cornell.edu
mailto:jra265@cornell.edu
mailto:vitalik@ethereum.org
mailto:juels@cornell.edu

More formally, a PoK involves two players: a prover P and
a verifier V . The goal is for P to convince an honest V that
it knows a valid witness sk for some (public) statement x. In
practice, PoKs are often zero-knowledge [33], meaning that
the protocol hides any information about sk from V . (A PoK
need not be zero-knowledge, though, and this is true of some
CK schemes we propose.)

As observed above, however, P could have access to the
secret sk intermediated by an interactive protocol with another
entity or device (e.g., a TEE or an MPC committee). In this
case, classical PoK formalism breaks down, because it lacks
a notion of encumbered knowledge.

In our voting example above, for instance, Alice has a secret
key sk encumbered in a TEE that only allows her to cast a vote
for Bob in an election. This same TEE, however, might allow
unencumbered use of sk for completely different purposes,
e.g., signing to authorize cryptocurrency transactions. In these
contexts, Alice along with the TEE can successfully prove
knowledge of sk. Yet neither Alice nor any other entity truly
knows sk, in the sense of being able to use it for any desired
purpose. In fact, the TEE can allow Alice to take any action
using sk except for the one to vote against Bob. This allows a
powerful collusion between Alice and the bribing adversary
Mallory; Mallory can bribe Alice without risk since she
provably cannot vote against Bob, while Alice is willing to
accept the bribe since Mallory learns no information about
the key and at the same time Alice is guaranteed to be able
to utilize her key for all other functionalities.

This situation underscores a mismatch between the exist-
ing formalism for proofs of knowledge and knowledge in a
critical, real-world sense. In this paper, we show the potential
practical impact of this mismatch, describing coercive attacks
that exploit encumbrance of secret keys in voting schemes,
deniable messaging, and blockchain systems.

We show how to remedy the resulting problems by intro-
ducing the notion of CK.

Proofs of complete knowledge (PoCKs). In this work,
we introduce and formalize proofs of complete knowledge
(PoCKs). (Our definitions also cover arguments of complete
knowledge (ACKs), for which P is polynomial time. We often
informally use the term PoCK to denote both.)

The core idea in our formalization is intuitively as follows:
A PoCK scheme ensures complete knowledge if it is the case
that when an honest V accepts a proof by P , P can learn her
own witness sk fully during the proof execution.

Specifically, in a PoCK, P must be able to eavesdrop on
an unencrypted channel carrying sk. To ensure this “self-
eavesdropping” capability, P is given access to a special
resource R required for successful execution of the proof.
R will typically be a local piece of hardware within the

trust domain of P . R may paradoxically itself be a TEE
that stores sk—as a way of preventing encumbrance using
another TEE. Alternatively, R could be a resource, such as
an ASIC, with special computational capabilities. Informally,
an eavesdropper E must be present on the channel between

Prover
P

E
Verifier
V

Resource
R

Eavesdropping
Channel sk

PoCK

Fig. 1: Proof of complete knowledge (PoCK) setting. A PoCK is
a proof of knowledge, but has two additional requirements: (1) P
can only execute the proof successfully by accessing a special local
resource R; and (2) P must have access to the witness sk as it is
transmitted to R over a plaintext eavesdropping channel E . Green
lines / boxes in the figure indicate entities local to / within the trust
domain of P , while blue lines / boxes indicate those outside.

P and R. Abstractly, the eavesdropper E can be visualized as
the physical manifestation of a straight-line extractor [35] from
PoK literature, in the sense that it will allow for extraction in
practice rather than just as a proof construct (see Section IV
for details).

In the case of R being a TEE, E can be constructed
by simply requiring P to submit sk in plaintext to R, or
alternatively by having a function within the TEE application
that reveals sk. Even if P uses a TEE or MPC committee
in an attempt to encumber sk—thus hiding sk from herself—
exposure on E means that P can still recover sk. Thus a PoCK
ensures that sk is unencumbered.

Let’s return to our voting example now. Intuitively, if a
PoCK is used here, then Mallory will no longer have any
guarantee on Alice’s vote since Alice can use E to fully recover
sk without being detected by Mallory.

The setting for a PoCK is shown in Figure 1.

Realizing CK. We consider two practical schemes for real-
izing PoCKs. These schemes enable any proof of knowledge
protocol to be converted into a PoCK protocol.

Our first scheme is a conceptually straightforward one that
generalizes an idea proposed by Gunn et al. [38] for preventing
TEE-based attacks on deniability in messaging protocols. This
scheme paradoxically realizes the resource R as a TEE that
prevents encumbrance by, e.g., another TEE. The idea is that
P generates sk inside or inputs sk to a special TEE application
that outputs sk to the user on demand, thus realizing an
eavesdropping channel E . To prove complete knowledge of
sk, P has the special TEE application generate an attestation
proving that sk is output to P . We prove the security of this
CK scheme in the Universal Composability (UC) framework
under the assumption that it is not practical to run a TEE
instance inside another TEE instance.

TEEs have important drawbacks, though. Notably, one
widely available, fully-featured hardware TEE is Intel SGX,

2

in which a number of serious vulnerabilities have been dis-
covered, e.g., [18], [62], [63].1

For these reasons, we explore a second PoCK realization
that involves proof of work (PoW) [32], [39], using an ASIC
as the special resource R.

An ASIC (Application-Specific Integrated Circuit) is
special-purpose hardware for a specific computation. ASICs
are widely used for cryptocurrency mining [60], specifically
hashing (e.g., double SHA-256 for Bitcoin) and thus widely
available as an off-the-shelf component for our PoCK scheme.
ASICs also have an important feature for our purposes: they
accept only unencrypted inputs.2

Our ASIC-based PoCK requires P to solve a specially
crafted PoW puzzle within a certain time period. Successfully
solving this puzzle will reveal sk to P with high probability.
Complete description of our scheme along with the security
analysis can be found in Section VI.

Interestingly, our approach to CK not only contributes to
the theory of zero-knowledge proofs, but draws on techniques
from the literature on this theory, specifically the straight-line,
non-programming extractor construction of Fischlin [35].

To show the practicality of our CK schemes, we implement
an end-to-end CK system SMACK (Section VII) in which the
verifier is a smart contract on the Ethereum blockchain. This
implementation both shows how minimal a CK verifier can be
and supports the blockchain applications we discuss in Sec-
tion II. The ASIC-based implementation (Section VII-C) uses
an off-the-shelf mining ASIC. In order to make CK widely
accessible, we also implemented our TEE-based scheme as a
mobile app (Section B-A) using the mobile phone’s TEE.

Contributions. In brief, our contributions are:
• Complete Knowledge: We introduce a new notion of

knowledge for cryptographic protocols, called complete
knowledge (CK), that addresses theoretical and practical
limitations of classical proofs of knowledge arising from
encumbrance of secrets.

• CK applications: We revisit known attacks on existing
protocols that lack CK and offer a unified treatment and
discussion of countermeasures through the lens of CK
(Section II). We also introduce two new applications of
CK that help prove ownership of blockchain assets.

• Formalization: We formalize CK as a strengthening of
standard proofs / arguments of knowledge (Section III
and IV).

• Practical CK schemes: We present two practical schemes
to convert proofs of knowledge to proofs of complete
knowledge (PoCKs), using a TEE (Section V) or off-the-
shelf mining ASICs (Section VI). Our schemes work for

1While a break of SGX or other TEEs may seem to help achieve CK
by exposing secret sk, it can in fact undermine CK proofs by enabling the
generation of fake attestations / proofs. At the same time, a TEE break does
not necessarily prevent encumbrance of secrets, as the adversary that has
broken a TEE may be distinct from one who is using the TEE to encumber
secrets. Also, there are alternative ways to encumber secrets, e.g., MPC.

2Even if an ASIC supported encrypted connection, without a built-in
enclave, it would still be eavesdroppable.

a very broad class of Σ-protocols, a common type of ZK
proof of knowledge in practice. We implement both our
CK schemes in a full, end-to-end system in which verifi-
cation is performed in a smart contract (Section VII).

II. MOTIVATION: ATTACKS AND APPLICATIONS

To motivate our exploration of CK, we now briefly review
three key-encumbrance attacks from existing literature and
explain how CK can serve as a countermeasure. The result
is a new, unified treatment of these attacks that identifies their
common root cause as a lack of CK for private credentials.
We also describe two new applications enabled by CK; both
relate to blockchains.

A. Attacks and CK-Based Countermeasures

Authentication protocols that lack CK are vulnerable to
various attacks in which credentials, such as secret keys or
passwords, are made available fully or conditionally to an
adversary. Three concrete examples are described below.

Deniable Messaging: Deniability in messaging protocols
is the (desirable) property that participants cannot prove
the authenticity of a transcript of their communications to
an outsider, rendering their communications inadmissible as
evidence against them. Several widely deployed messaging
protocols, e.g., Signal [1], [29] (which is based on OTR [17]),
advertise such deniability as a key feature. These protocols
accomplish deniability by exposing key material to two com-
municating parties, Alice and Bob, that allows either of them
to forge a transcript unilaterally. E.g., Alice can do so using
her long-term private key A and an ephemeral private key a.

Gunn et al. [38] show how a TEE can erode the deniable
authentication [17], [31] that underpins deniable messaging
protocols. The use of a TEE enables a simple attack on
deniability by either communicating party in isolation. It
suffices for Alice, for example, to generate her ephemeral
private key a in a special TEE application that does not permit
her to forge messages from Bob. Through this technique, Alice
can show a judge that she lacks the ability to forge making it
so that Bob loses deniability for the messages he sends.

Gunn et al. describe some countermeasures involving use
of TEEs, the simplest involving use of a small TEE program
that attests that a user’s private keys are present in unprotected
memory, i.e., outside the enclave, and thus made available to
the user for transcript forgery.

Our work, by introducing CK, formalizes and extends ideas
which allow the countermeasure from [38] to work.

Electronic Voting: Electronic voting is becoming im-
portant in decentralized systems such as permissionless
blockchains [42], [46]. Those systems make use of user-
generated keys. They are vulnerable to attacks—like those
initially described in [30] and subsequently in [54]—in which
a voter encumbers her private key used for voting in a TEE
upon generation. The voter then offers a briber or coercer
exclusive and verifiable access to her key either permanently
or for certain elections. Access is verifiable because the TEE

3

can present a proof of encumbrance to the adversary. Note that
the key can be encumbered for specific well defined tasks and
does not for example, compromise the voter’s cryptocurrency
if the same key also controls her cryptocurrency.3

CK offers a countermeasure to such attacks. If a voter is
required to prove CK for her private key sk, then she cannot
encumber it.4

Similarly, CK offers a path to shoring up security in minimal
anti-collusion infrastructure (MACI), a scheme proposed by
Buterin [22] that is designed to provide bribery-resistance in
voting and other applications in a way loosely analogous to
coercion-resistance [14], [28], [41], [45].5 Recent strides have
been made toward MACI deployment on Ethereum [40]. As
explicitly noted in [22], MACI is vulnerable to TEE-based
encumbrance of keys. Use of CK, however, can restore the
scheme’s bribery-resistance properties.

B. New Applications Enabled by CK

We introduce two new applications enabled by the use of
CK, i.e., through inclusion of PoCKs. These protocols show
how CK can enable users to prove facts about asset ownership
that they could not easily prove without the use of CK.
Specifically, these applications cannot be securely realized
with standard PoKs.

Key-coupling: In some systems, it is valuable to be able
to ascertain that two different private keys, sk1 and sk2 (with
respective public keys pk1 and pk2), are known simultaneously
by the same user. This is possible with a CK witness consisting
of two private keys. That is, the prover furnishes a CK proof
of knowledge of sk1 ‖ sk2, i.e., a concatenation of the two
private keys. We refer to such proof as key-coupling.

We emphasize that key-coupling is not possible using, e.g., a
conventional PoK of sk1 ‖ sk2. Two distinct holders of sk1 and
sk2 could jointly generate such a proof using secure function
evaluation and avoid mutual key disclosure.

Key-coupling has a number of applications, particularly in
blockchain systems. They include:

1) KYC dilligence: Cryptocurrency users often transfer con-
trol of their own coins from one key to another, e.g., from
hot to cold wallets or vice versa. Users often must undergo

3Because a TEE can be taken offline, encumbrance in a TEE alone only
ensures a briber that either the briber will be able to cast a vote or no one
will. While limited, this property is still valuable to the adversary. Networks
of TEEs, e.g., [6], [30] can in fact further help ensure liveness.

4Coercion-resistant voting protocols [14], [28], [41], [45] are another
approach that aims to prevent adversarial interference. Such schemes involve
either: (1) An authority that sends keys to voters over an untappable channel,
along with the ability of users to present fake versions of these keys to
adversaries or (2) The ability for the voter to re-vote. Unfortunately, a TEE
can break coercion-resistance in either approach. CK cannot fully remedy the
problem for approach (1), as the TEE can still identify true keys to adversaries.
But CK can at least prevent an adversary from gaining exclusive access to
voting keys and can restore the coercion-resistance for approach (2).

5The basic idea is to allow users to switch their registered keys secretly,
thereby preventing an adversary from knowing whether a key presented by a
user is valid or not. The scheme allows for a race condition between valid
users and adversaries with whom keys are shared. It thus does not strictly
meet formal definitions of coercion-resistance, e.g., JCJ [41], although use of
deposits acts as a practical disincentive to key sharing.

know-your-customer (KYC) to transact with exchanges. It can
be helpful for a user who has undergone KYC diligence with
respect to the address associated with pk1 to be able to transfer
assets to an address associated with pk2 without having to
undergo diligence again. By proving simultaneous knowledge
of sk1 and sk2, the user provides strong evidence that assets
transferred between pk1 and pk2 belong to the same user—
or at least fall under the control of a single entity. The same
approach can be used by the owner of the address associated
with pk2 to prove that she doesn’t owe tax on funds sent from
pk1, as the funds didn’t change hands.

2) Privacy-preserving credential linkage: Suppose that a
user who controls private keys associated with pk1 and pk2

has a public credential attached to pk2 (e.g., proof of KYC
diligence, as above). The user can construct a CK proof of
knowledge of sk1 plus possession of some public key / address
(pk2) with an associated KYC credential. She can do this
without revealing pk2.

3) Enforcing NFT royalty payments: Non-fungible tokens
(NFTs) are blockchain objects that often represent ownership
of digital artistic works. Some NFT platforms enforce royalty
payments to artists (e.g., 5% of sale price) upon resale of an
NFT. However, those platforms also support direct, royalty-
free transfer between addresses so as to support transfer
between addresses belonging to a single user. As there is no
way (prior to our work) to determine single-owner possession
of two distinct addresses, users can exploit this royalty-free
transfer feature to bypass royalty payments. Controversially,
for example, a popular marketplace called Sudoswap facili-
tates royalty-free NFT sales [34]. Key-coupling can, however,
enforce true single-owner possession of addresses in royalty-
free transfers, thereby closing the loophole that deprives NFT
creators of ongoing royalty payments.

It is worth noting though that the ability of key-coupling to
distinguish between within-owner and between-owner trans-
fers might not be future-proof: User wallets could eventually
support key changes, whether for key rotation or social recov-
ery [19], [21]. This feature could be abused to transfer control
between two distinct users while maintaining an appearance of
consistent ownership by a single user. Still, the friction against
cheating created by key-coupling might still be sufficient to
protect, e.g., small-royalty NFT transfers.

CK addresses and Atomic NFTs: Blockchains enable new
mechanisms for joint ownership of indivisible digital assets.
Such ownership regimes are referred to as fractionalization.
Fractionalization is a particularly popular approach to dis-
tributing ownership of expensive NFTs among a collection or
syndicate of users.

Fractionalization, however, introduces problems such as
price volatility and attractiveness to scammers [61]. As NFTs
are essentially financial instruments—and usable not just for
digital art, but for real-world assets such as real estate—
preventing of fractionalization can also help with know-your-
customer (KYC) / anti-money-laundering (AML) compliance,
as it ensures that on-chain ownership representation is accu-

4

rate [64]. Finally, certain types of NFTs, e.g., soulbound tokens
(SBTs) [65] are intended by design for exclusive ownership;
fractionalization would undermine their utility.

Fractionalization may be prevented on chain, i.e., on the
blockchain itself, by allowing ownership only from a user ad-
dress and not a smart contract. But there exists no mechanism
(prior to our work) to prevent off-chain fractionalization of
NFTs by means of secret sharing or TEEs.

CK offers a novel way to prevent fractionalization of any
kind through a concept we call CK addresses. A CK address
is one whose secret key is guaranteeed to be unencumbered
through the use of a PoCK protocol. Through CK addresses,
we can create what we refer to as Atomic NFTs—NFTs
managed by a smart contract in a way that only permits
ownership by CK addresses. This ensures that at all times
only one entity controls the NFT.

III. PRELIMINARIES AND BACKGROUND

We start by introducing some basic formalism. We introduce
some notation and background in this section, including the
basic formalism for interactive proof systems [37], [51].

A. Interactive Proof Systems

Computational model for interactive proofs. We adopt the
standard Interactive Turing Machine (ITM) model [37] for pro-
tocol execution. An interactive proof system is a pair (P,V)
of ITMs that communicate with each other in rounds. P and
V may be given auxiliary inputs z1 and z2 respectively, along
with a common input x. V outputs a single-bit at the end of the
execution. We use 〈P(x, z1),V(x, z2)〉 to denote the random
variable for V’s output and VIEWV(P(x, z1),V(x, z2)) to
denote the random variable for V’s view of the execution.

Interactive proofs of knowledge. Consider a language L ∈
NP with witness relation RL, i.e., x ∈ L iff. (x,w) ∈ RL
for a witness w. Informally, the goal of a proof of knowledge
system is to have the verifier output 1 iff x ∈ L and the
prover “knows” some witness w for x. We say that (P,V)
is an interactive proof of knowledge system (for RL) if it is
complete and a proof of knowledge.

1) Completeness means that the honest prover P can always
convince the honest verifier V when (x,w) ∈ RL. Concretely,
for all (x,w) ∈ RL, we have Pr[〈P(x,w),V(x)〉 = 1] >
1− negl(λ) where λ is the security parameter.

2) A proof of knowledge is a protocol in which, if a
(malicious) prover P∗ convinces V that x ∈ L (i.e., V outputs
1), then the prover “knows” a witness w for x. This is
formalized by requiring the existence of an extractor E that can
extract the witness given the description of P∗. More formally,
we require that for all P∗ and x, Pr[w ← EP∗(x) : (x,w) ∈
RL]+negl(λ) > Pr[〈P∗(x),V(x)〉 = 1]. If this property holds
only for a computationally bounded (PPT) adversarial prover,
(P,V) is called an interactive argument of knowledge system.

3) We say a proof of knowledge is zero-knowledge if,
informally, the verifier learns nothing from a proof execution.
Specifically, for any PPT verifier V ′, there exists a PPT

machine S (called the simulator) such that for all (x,w) ∈ RL,
it holds that VIEWV′(〈P(x,w),V ′(x)〉) ≈ S(x), where ≈
means computational indistinguishability.

For a more detailed introduction, we refer the reader to [51].
As stated before, in a PoK system, there is no guarantee that
the prover actually has unencumbered access to the witness.

Σ-protocols. A popular form of zero-knowledge proofs of
knowledge (ZKPoK) used in practice are Σ-protocols. They
are a key building block in our ASIC-based construction.

A Σ-protocol is a three-move, interactive ZKPoK with the
following structure:

1) P sends a message a (often called a commitment) to V .
2) V sends a challenge c←$ {0, 1}` to P .
3) P sends a response s to V .

For a given x, V decides whether to accept P’s proof based
on the proof transcript, which consists of the triple (a, c, s).

Σ-protocols have a property called special soundness,
whereby an extractor can efficiently compute a witness w from
a pair of accepting transcripts (a, c, s) and (a, c′, s′) where
c 6= c′. (They also have a property called special honest-
verifier zero-knowledge, which means that a simulator given
x and c can generate a transcript (a, c, s) distributed like that
in a real execution without access to the witness.)

An additional property of many Σ-protocols is quasi-
soundness, which means that no efficient prover can produce
any two transcripts of the form (a, c, s), (a, c, s′), where
s 6= s′, i.e., two different responses for the same commitment-
challenge pair. Our construction applies only to quasi-sound
Σ-protocols.6 We assume such Σ-protocols throughout.

The extractor E for a proof-of-knowledge protocol may in
general rewind the prover P . In a Σ-protocol, the special-
soundness property gives rise to a simple extractor construc-
tion. After the first move in the protocol, i.e., the commitment
a by P , E issues a challenge c, and obtains response s. E then
rewinds P to the point just after the first move and issues a
second challenge c′, recovering a second response s′. The two
transcripts allow extraction of w.

The best-known Σ-protocol—and a practical choice for
proving knowledge of a discrete-log-based public key in
ASIC-ZKPoCK—is the Schnorr protocol [58], which proves
knowledge of a discrete log. Here, x = gw (where g is a
published generator of some suitable group G), and the goal
is to prove knowledge of the exponent w.

Straight-line extraction. The need to rewind the prover
P results in loose security reductions for various signature
schemes, e.g., [53] and is incompatible with the Universal
Composability (UC) framework, an approach to proving secure
composition of protocols [23]. These issues with rewinding
motivated the exploration of straight-line extractors (a.k.a.
online extractors), which do not require rewinding.

6Given the ability to generate two transcripts (a, c, s) and (a, c, s′) for
s 6= s′, for instance, which is permissible in strongly-sound Σ-protocols [43],
a prover can cheat in our protocol.

5

Online extractors may observe calls to a hash function H
by P , where H is modeled as a random oracle (RO), i.e.,
returns responses that are distributed uniformly at random.
Of particular interest in our setting are non-programming
extractors, which involve a strong model that assumes that the
extractor cannot program the RO, i.e., determine its responses
during extraction.

Fischlin [35] proposed a non-interactive zero-knowledge
proof of knowledge scheme with a straight-line extractor
whose techniques we adapt to our ASIC construction. In this
construction the extractor has access to RO queries. The key
idea is that P uses Σ-protocol transcripts as inputs to the RO in
a proof of work (PoW). The scheme is parameterized in such a
way that solving the PoW requires with high probability that P
feeds a pair of valid Σ-protocol transcripts (a, c, s), (a, c′, s′)
with c 6= c′ to the RO. By observing these transcripts as RO
inputs, an extractor E can extract the witness w.

To provide more detail, Fischlin’s scheme builds on a Σ-
protocol involving a prover / verifier pair (PΣ,VΣ). Parameters
include challenge domain cardinality k, proof-of-work diffi-
culty b, global proof-of-work target S, and number of rounds
of execution n. Specifically, H : {0, 1}∗ → {0, 1}b, and a
valid PoW solution is such that H(z) = 0b for an input z that
includes a valid Σ-transcript (a, c, s). To specify the protocol
concisely:

• Prover P: On input (x,w), P does the following:
– Runs the first step of n independent executions of PΣ

to obtain n commitments ~com = (a1, a2, . . . , an). Let
qi = ([x, i]; ~com).

– For each given ai, P completes an execution of PΣ on
challenges cj ∈ [0, k−1]. Each execution of PΣ yields
a corresponding response sj . P sets πi = (ai, cj , sj)
for H((ai, cj , sj) ‖ qi) = 0b if one exists; otherwise
it sets πi = (ai, cj , sj) for the minimal result, i.e., j
for argminj H((ai, cj , sj) ‖ qi).

– Sends ~com, x, ~π = {πi}ni=1 to the verifier.
• Verifier V: On input (x, ~π), V checks: (1) For all i ∈ [1, n]

that VΣ accepts πi; and (2)
∑n
i=1H(πi ‖ qi) < S.

This construction ensures straight-line extraction as follows.
In order to compute PoW results that V will accept, P must
with high probability hash at least two Σ transcripts of the
form (ai, cj , sj) for some ai. That means that the random
oracle H will be called on a pair of inputs that include distinct
pairs (ai, cj , sj) and (ai, c

′
j , s
′
j). From quasi-soundness, it

follows that w can be extracted.
As will be seen later, while our ASIC ACK protocol draws

on the technique of combining a Σ-protocol with a PoW,
our setting differs considerably. In straight-line extractors,
extraction is a theoretical capability used to prove knowledge
of w. In our ASIC ACK, extraction is a practical capability
used to show that P can access w. Additionally, in our ASIC
ACK, rather than using a cryptographic resource in the form
of an RO, P uses a computational resource in the form of
an ASIC. The result is a protocol that differs somewhat from
Fischlin’s in terms of the form of oracle queries involved and

the resulting security analysis.

Trusted Execution Environments (TEEs). A TEE runs ap-
plications with strong confidentiality and integrity protections.
Some TEE platforms can issue a type of statement, known
as an attestation, to untampered execution of a particular
application, along with application outputs.

One popular TEE with attestation capabilities is Intel
Software Guard eXtensions (SGX) [10], [47], [48]. Trust in
the hardware—and in Intel, which authenticates attestation
keys—means that only an SGX platform can generate a valid
attestation, i.e., attestations are existentially unforgeable. We
make use of formalism for SGX-like TEEs in the universal
composability (UC) framework from [50]. TEEs are nearly
universal today in mobile devices as well, but without built-in
attestation capabilities. Google and Apple, however, generate
attestations for devices in their ecosystems [11], [12].

We make use of both SGX (Section V) and mobile-device
TEEs (Appendix B-A) in different CK variants.

IV. PROOFS OF COMPLETE KNOWLEDGE

As we have explained, the standard proof-of-knowledge
property does not guarantee that the prover actually has
unencumbered access to the witness. This is because in order
to recover the witness, the (knowledge) extractor gets oracle
access to the entire prover, including parts that may be
controlled by separate entities or even the adversary. The issue
is that the prover is modeled as a single machine P even
if in reality it is not owned by a single entity. For instance,
if the witness w is secret-shared between two independent
parties, P will correspond not to the individual machines, but
to the combined system with both parties, and the extractor
is given access to this system. Here, even though the system
as a whole knows the witness and the extractor is able to
recover it, intuitively, it is clear the neither party alone really
has unencumbered access to the witness.

In this section, we now formalize proofs of complete knowl-
edge (PoCKs), which ensure that a single party has full access
to the witness.

A. Building Intuition

The basic idea behind PoCKs is to design protocols where
the knowledge extractor E is actually runnable in practice,
rather than simply a proof construct. We therefore begin
with a careful analysis of what can make an extractor fail
if practically run, and then use these insights to guide our
PoCK formalism. As a first point, since we want E to be able
to run in practice, it is obvious that E should not need to
rewind P , i.e., it must be straight-line. We will further restrict
our attention to straight-line (i.e., non-rewinding) extractors
that are also non-programmable (i.e., unable to program e.g.,
the random oracle; this is important since real hash functions
used to instantiate the random oracle cannot be programmed).
This style of knowledge extractor has been used previously in
e.g., [35], [43], [49].

Recall that for standard PoK extraction in the random oracle
model, the extractor E is given two quantities: (1) A transcript

6

of the interaction between the prover and the verifier; and (2)
A list of queries (and corresponding responses) made by the
prover to the random oracle. What does it mean exactly for E
to be given these inputs in practice? Unfortunately, we find that
both of these inputs are problematic to assume in practice (due
to encumbrance by MPC or a TEE) which makes designing
protocols for our setting particularly challenging.

At an initial glance, the first input seems obtainable—any
entity present on the communication channel between the
prover and the verifier can observe this transcript (even if the
prover is composed of multiple entities and only one com-
municates with the verifier). This however implicitly assumes
that at some point, the communication is not encrypted and
can therefore be observed by E . Such an assumption fails if V
is also run inside a TEE, in which case, a prover TEE holding
the witness w would be able to convince V without w being
known in plaintext to any non-TEE entity. This observation has
a surprising consequence: the trivial PoK of simply sending
w to V cannot be a PoCK unless it can be enforced that V is
not run in a TEE (see Remark 2).

The second input—the list of random oracle queries—is also
challenging to enforce in light of TEE or MPC encumbrance.
This is because a hash function, which will typically be used
to instantiate the random oracle, can be computed easily in
trusted hardware or MPC. In turn, providing the oracle queries
to E in practice would effectively translate to breaking the
trusted hardware or unravelling the MPC protocol to figure
out the hash function inputs. Intuitively, the gap here arises
from the fact the physical instantiation of the random oracle
may not comply with the way the extractor functions in theory
for the proof of knowledge to go through.

Key technique. To surmount these challenges, we must
ensure that the extractor always obtains the inputs required
for knowledge extraction in practice. To do so, we consider a
physical resource oracle functionality R such that the prover’s
interaction with R leaks a witness to E . We seek to deploy R
so that no prover can perform a successful CK proof without
R; in a sense, the resource abstraction separates out the part
of the protocol responsible for the proof of knowledge.

Concretely, we model E as a man-in-the-middle entity for
R that can snoop on the queries made to R. E will use these
queries to extract the witness, thereby giving it (and whoever
can see its output) complete knowledge of the witness (see
Remark 1). To emphasize its physical presence and its non-
rewinding nature, we refer to E as the eavesdropping extractor,
or simply the eavesdropper.

Looking ahead, in our protocols,R models special hardware
available to P—either a global SGX functionality that attests
to seeing the witness, or an untrusted ASIC whose computa-
tional speed is superior to that of a trusted environment that
can potentially conceal the witness from E . In a sense, the
SGX instance represents a physical manifestation of a trusted
third party that furnishes the witness w directly to E ; the ASIC
similarly may be thought of as a physical manifestation of an
RO accessible by E .

Here, E can be thought of as the machine where R
physically resides; as an example, for the SGX resource, E
represents the host machine of the SGX which may simply
be one of the entities within P or even a different external
machine. A crucial point here is that by design, we use a
resource R such that there is no practical resource R′ which
provides an identical functionality and allows for encrypted
queries to be made directly to R′: this enables E to view the
plaintext queries made to the resource.

Remark 1 (Complete knowledge for some entity). Notice that
PoCK only guarantees that the eavesdropper E can extract w.
If for some reason, the prover does not have access to the
output of E in practice, then it may not be able to recover w.

As a consequence, PoCK protocols can only guarantee that
some entity (specifically E and anyone who can see its output)
has complete knowledge of w. For instance, if R is connected
to a different outsourced machineM instead of P , then E will
correspond to M and be able to recover the witness while P
might not. We note that this subtlety is not accounted for in
standard PoK formalism since E does not represent a physical
entity.

This property, however, is sufficient to deter the collusion
and bribery attacks which motivate our work. For instance, a
user will not willingly accept a bribe for her vote if it reveals
her key (which also holds her money) to another entity.

B. Formal PoCK Security

We now formally define proofs-of-complete knowledge. We
use λ throughout to denote the security parameter.

Basic setting. Similar to standard PoK formalism, we con-
sider a prover P and a verifier V which are modeled as ITMs.
Specific to our setting, we model a resource oracle R that can
be queried by P . We will often work in a timed setting where
P must complete its proof within some time T (λ). To correctly
model the concrete computational speed of a resource R, we
associate with it a function tR(·) that defines the time taken
by the resource to compute responses to its queries. Note that
this time can be concretely faster than P .

Resource formalism. Abstractly, a resource R is a random-
ized and stateful functionality FR. R is initialized with an
internal state stinitial←$R.Setup(1λ). Upon input inp from P ,
R computes FR(st, inp) → (st′, out) where st is the current
state of R, st′ is the state after the computation, and out is
the output returned to prover. We also model the time taken
by R as the randomized function tR(st, inp). Note that tR(·)
may be smaller than if the computation was done by P itself.
We use the tuple (R.Setup,FR, tR) to represent R.

PoCK formalism. Formally, a T -timed PoCK (when T is
unspecified, there are no additional timing constraints) for a
language L ∈ NP with witness relation RL, and a class R of
resources is a tuple (Setup,P,V) where:

• Setup(1λ)→ pp is the setup algorithm that generates the
public parameters.

7

• (P,V) is an interactive proof system where P is given
(pp, x, w) and V is given (pp, x). V outputs a single bit
indicating whether the prover has complete knowledge of
a valid witness for x. For non-interactive proofs, P will
output a proof π which will be given to V to verify. For
T -timed protocols, P will be required to run in time T .

We can also consider the standard relaxation of arguments
(instead of proofs) of knowledge for which only PPT provers
are considered. Our concrete protocols similarly allow for
Arguments of Complete Knowledge (ACK).

Now, for PoCK security, we define in the subsequent para-
graphs, two properties—completeness, and forced-revelation
(or CK-soundness)—that are required to hold for all resource
oracles R ∈ R.

Completeness. The first PoCK property of completeness mir-
rors the analogous property for PoKs. Recall that completeness
states that an honest prover who holds the witness can con-
vince the verifier to output the success bit. The only difference
now for PoCK completeness is that the prover is endowed with
a resource oracle R. Formally, PoCK completeness states that
for all R ∈ R, all public parameters pp and (x,w) ∈ RL:

Pr[〈PR(pp, x, w),V(pp, x)〉 = 1] > 1− negl(λ).

Furthermore, PR runs in time at most T (λ) except with
negligible probability.

Forced revelation. The second PoCK property of forced
revelation is similar in spirit to the knowledge-soundness
property of standard PoKs. Abstractly, if a prover is able to
convince an honest verifier, then the eavesdropper will be able
to output a valid witness. Let outE denote the output of E .
A party able to view the output of the eavesdropper obtains
the full witness. We also call this property CK-soundness.
Formally, for all pp, inputs x, provers A, and resources R ∈ R
such that AR runs in time T (λ),

Pr[〈AR(pp, x),V(pp, x)〉 = 1]

< Pr[x ∈ L ∧ (x,w = outE) ∈ RL] + negl(λ).

Forced revelation directly implies a couple of nice prop-
erties. First, it implies the usual soundness notion since no
prover can convince V of an x /∈ L (except with negligible
probability). More importantly, it also implies that if the prover
does not make use of R, making it so that E cannot eavesdrop,
then it cannot convince V except with negligible probability
even if it has the witness. Intuitively, this property is necessary
because otherwise it would imply the ability to prove CK
through e.g., a 2PC protocol where the witness is encumbered.
As illustrated in the remark that follows, forced revelation also
has surprising ramifications, which underscore the nuances of
working in our PoCK setting.

Remark 2 (Trivial PoK and PoCK protocols). Forced revela-
tion implies an interesting separation between trivial protocols
for PoK and PoCK. Recall that a trivial PoK protocol is for P
to simply provide the witness to V . Of course, such a protocol
does not offer any privacy (e.g., zero-knowledge) properties.

Notice however, that this would not be a PoCK protocol (since
E does not come into play). This may seem surprising but is
in fact an important consequence of the PoCK setting.

Abstractly, if the verifier receives the witness through an
encrypted channel (e.g., through TLS), then it would also be
possible for two parties constituting the prover and holding
only shares of w to directly compute the required encryption
of w for the channel. In such a case, the trivial PoK protocol
could be simulated by two prover parties, neither of which has
complete knowledge of w. Importantly, this is also possible if
V is run inside a TEE since there is no point at which w is
revealed in plaintext. Consequently, simply sending w will not
be a PoCK protocol.

Intuitively, if we can guarantee that V is not run inside
a TEE, then it will be possible to eavesdrop on the witness,
making the trivial protocol a PoCK. One way this can be done
is by having V itself be a TEE instance with the assumption
that it is not practical to run a TEE inside another TEE.

This unearths a dependence of PoCKs on how the commu-
nication to V is defined, which is not seen for standard PoKs.

C. Zero-Knowledge PoCK

Most applications require that the witness held by the prover
is not leaked to the verifier. A strong property typically con-
sidered in the PoK realm is that of zero-knowledge [37]. Infor-
mally, zero-knowledge ensures that no additional information
is leaked to the verifier. We will add a similar requirement
to PoCKs to formalize “Zero-Knowledge Proofs of Complete
Knowledge” or ZKPoCKs.

Zero-Knowledge property for PoCKs. We now adapt the
standard zero-knowledge definition to our setting. Formally,
we define the zero-knowledge property as follows: For any
PPT verifier V ′, there exists a PPT machine S (called the
simulator) such that for all R ∈ R, (x,w) ∈ RL and auxiliary
input z ∈ {0, 1}∗, it holds that:

VIEWV′(PR(pp, x, w),V ′(pp, x, z)) ≈ S(pp, x, z).

D. Eavesdropper Undetectability

Our current PoCK formalism models E as a concrete man-
in-the-middle entity which eavesdrops on queries made to the
resource R. We implicitly assume that the E is always run; in
other words, we do not model a scenario where the witness
was not extracted even though it could have been. While
this distinction is not important in the standard cryptographic
context, and therefore not part of our core PoCK formalism,
as we will see, it uncovers subtleties in the context of side
channels and incentive compatibility. The purpose of this
section is to bring to light these subtleties and extend our
formalism to accommodate for them.

Side channel on the usage of E . To differentiate between
whether E was used to recover the witness or not, we consider
a side channel that provides a remove adversary A with this
information. Consequently, A can now take actions based on
whether the witness was extracted; notably, as we show later,
this gives A additional advantages in our vote bribery scenario.

8

It is important to emphasize here that the witness can
always be extracted, (thereby satisfying CK-soundness); the
difference is in whether it actually was. We also note that this
detection ability is a highly unconventional power given to the
adversary; while A cannot itself recover the witness, it is still
made aware of whether P did. This is non-standard in the
context of existing literature—when R (and E) is not in the
domain of A (because otherwise A could extract the witness
itself), we note that there is likely no practical side channel
that reveals to A whether P chose to extract.

Still, to ensure that PoCK protocols can be correctly
deployed in applications where side channels need to
be accounted for, we introduce an explicit assumption—
eavesdropper undetectability—as the property that an adver-
sary cannot detect whether E was run or not. We show how
this property is critical for incentive-compatibility in our vote
bribery example. This also serves to highlight the non-triviality
of our CK setting.

Formal description. To define eavesdopper undectability, we
relax our earlier modeling assumption that E exists as a man-
in-the-middle entity for R and can snoop on any queries made
to it. Instead, we will give the prover the ability to make
queries to R without the usage of E ; we use R \ E to denote
this oracle. The honest prover P will still make use of E .

We can now define eavesdopper undectability as the follow-
ing property: For pp, inputs x, and R ∈ R, for all (possibly
malicious) provers P ′ and verifiers V ′, there exists P̂ such that
the following ensembles are indistinguishable:

VIEWV′
(
P ′R\E(pp, x),V ′(pp, x)

)
≈ VIEWV′

(
P̂R(pp, x),V ′(pp, x)

)
.

Intuitively, this means that no V ′ can distinguish whether it is
interacting with a prover which uses E or one which does not.

In the example that follows, we briefly describe how a side
channel which informs A of whether E was run breaks security
in our vote bribery scenario. Eavesdropper undetectability
is required here to prevent this attack. We leave further
exploration of this property to future work.

Incentive compatibility example. Suppose that a PoCK
protocol Π is used in a voting application to mitigate the
risk of key-encumbrance based bribery. As stated earleier, Π
ensures that the eavesdropper E can recover the secret key but
says nothing about whether the recovery is actually carried
out—our previous CK formalism implicitly assumes that E
will always output the recovered key.

Still, if there was some side channel through which a remote
adversary A could detect whether the key was extracted (by
E or P in general), then it could condition its bribe on this
extraction action not being taken. The consequence of such
a conditional bribe is that while P has the ability to learn
her key, she will be incentivized not to do so in order to
profit from the bribe. In particular, while P can always learn
her full key, making the protocol satisfy CK-soundness, A
will be able to detect such an action and refuse to pay P;

this incentivizes P to not learn her key even if she is able
to. The key will therefore remain encumbered. Eavesdropper
undetectability removes this side channel vulnerability.

V. SGX-BASED POCK PROTOCOL

We now describe SGX-PoCK, a simple but illustrative PoCK
protocol which uses an SGX TEE as its resource. Intuitively,
for this PoCK, the SGX models a physical manifestation of a
trusted third party to whom the prover will submit the witness.
We use SGX for concreteness but note that a similar PoCK can
be realized through any TEE which admits remote attestation,
including those in mobile devices, as discussed in Section B-A.

SGX resource. We model the SGX resource by using the
formalism for TEEs with attested execution from Pass et
al. [50]. Abstractly, SGX attestation is modeled using a global
functionality (i.e., one that allows for global setup) GSGX within
the GUC-framework [24]. GSGX models all valid SGX proces-
sors and is initialized with a master key pair (mpk,msk) with
signature scheme S = (S.kg,S.sign,S.ver); this intuitively
allows the modeling of anonymous attestation which prevents
identifying the SGX which signed an attestation.
GSGX permits SGX-equipped parties (denoted by the set

Reg) to install programs on their SGX and compute outputs.
When a party X provides input inp to an installed program
prog, GSGX computes its output out and a signature σ on
(id, prog, out) where id denotes UC-relevant session identifica-
tion information. The tuple (out, σ) is then sent to the querying
party X as the attested output. For completeness, we detail the
full GSGX functionality in Fig. 8 in Appendix A.

SGX-PoCK description. We describe the full SGX-PoCK
protocol in Fig. 2. Abstractly, the prover P first installs the pro-
gram progCK through GSGX. Now, given (x,w) in the relation
RL as input, P submits the tuple (“expose”, x, w) to GSGX and
gets back a signature σ on (id, progCK, (“exposed”, x)) which
it forwards to V . By checking the validity of the signature,
V can convince itself of complete knowledge of a witness
corresponding to x.

A. SGX-PoCK Properties

It is easy to see that an honest P given w can always con-
vince V; in other words, completeness holds for SGX-PoCK.
For CK-soundness, we require an assumption on the infeasi-
bility of specific types of resources, as we describe below:

Resource assumptions. To ensure that the witness exposed
to the SGX can be eavesdropped upon, intuitively we need
to assume that it is not practical to run progCK in an SGX
within another SGX. This is because otherwise, the outer
SGX could be in possession of the witness w which it could
expose to the inner SGX to obtain a CK proof without w ever
being accessible outside of a trusted enclave. Remark 3 briefly
examines how this assumption can be removed.

In the context of the GSGX formalism, this means that no
program prog installed by a party can install its own program
prog′; note that this is implicitly assumed within [50] since
only a fixed registration set Reg is considered for SGX devices.

9

SGX-PoCK Protocol

R = GSGX

PR((sid,mpk), x, w):
eid←R.install(sid, progCK)

(out, σ)← R.resume(eid, (“expose”, x, w))

Send (eid, σ) to V

V((sid,mpk), x):
Await (eid, σ) from P
m← ((sid, eid), progCK, (“exposed”, x))

Output b← S.vermpk(m,σ)

progCK

On input(“expose”, x,w):
Assert (x,w) ∈ RL
Return (“exposed”, x)

Fig. 2: SGX-PoCK Protocol Description.

CK-soundness proof. Now, assuming that there is no practi-
cal resource R′ that models such a 2-layer SGX, it is straight-
forward to show that SGX-PoCK satisfies CK-soundness.

Consider a prover P ′ that is able to convince the honest
verifier V that it knows the witness to a statement x. This
can happen in only one of two ways: (1) P ′ submits (x,w)
to R = GSGX as one of its queries; (2) P ′ does not query
R with (x,w)—it either does not use R at all or queries it
with different values. In the first case, the witness w will be
sent in plaintext to R allowing, allowing E to easily output
it. The second case arises only with negl(λ) probability given
the SUF-CMA security of the signature scheme S used.

Remark 3 (SGX inside SGX). SGX-PoCK can in fact be
modified to work even when an SGX can be run inside another
SGX as long as this can be done only a finite number of
times. Specifically, if is practical to run k layers of SGX but
not k + 1 layers, then SGX-PoCK can be modified to use the
k-layer SGX as the resource R; P now obtains an attestation
from this R. By assumption, since a (k + 1)-layer SGX is
not practical, the witness submitted to R will be seen by E
allowing for extraction.

This also serves to future proof our protocol in case of
advances in TEE infrastructure.

Privacy properties. Observe that SGX-PoCK as described
is not zero-knowledge since the attestation can be forwarded.
Still, the SUF-CMA security of S directly implies non-trivial
privacy properties over the basic PoCK. In particular, given
many SGX-PoCK proofs (which are nothing but signatures
using the master key-pair), an adversary still cannot forge a
different SGX-PoCK proof for any other statement x.

Making SGX-PoCK satisfy zero-knowledge. Intuitively, to
make the protocol zero-knowledge, there must exist a simula-
tor S that can simulate the protocol transcript without access

to the witness. Further note that S should also not be able to
program the master secret key of the SGX (this is accounted
for since we model the SGX resource as a GUC functionality).

We now briefly describe how SGX-PoCK can be made zero-
knowledge. As is the case with other GUC protocols, S will
require a trapdoor in other to simulate transcripts. Towards
this, intuitively, we introduce a trapdoor τ which allows the
generation of arbitrary SGX attestations for our protocol.

Specifically, V first chooses a trapdoor τ and submits it to
GSGX which returns an attestation σc on c = owf(τ) where
owf is a one-way function. V sends the (c, σc) to P who then
submits (c, x, w) to GSGX. Before providing an attestation that
the witness w was seen, GSGX ensures that the correct c was
input. Finally, the V can check the correctness of the attestation
to complete the proof. Note that this protocol also requires V
to possess an SGX device.

This construction will now be zero-knowledge since the
simulator S can use the trapdoor τ to forge attestations
simulate the interaction between P and V .

VI. ASIC-BASED POCK CONSTRUCTION

In this section, we explore the design of a (ZK)PoCK using
a cryptocurrency-mining ASIC as the prover resource R—
a protocol we call ASIC-ZKPoCK. Our construction is quite
general. It can transform a broad class of Σ-protocols [57]—a
common class of three-move, honest-verifier, zero-knowledge
proof of knowledge (ZKPoK)—into a ZKPoCK through the
use of an ASIC. The only requirement is that the Σ-protocol
be quasi-sound.

Intuition. ASIC-ZKPoCK makes use of the performance gap
between computation in secure environments (e.g., SGX) or
secure multi-party computation (MPC) and computation using
fast ASIC hardware. By running as a time-constrained proto-
col, ASIC-ZKPoCK ensures that it is only feasible to compute
a correct, timely proof using a mining ASIC.

As required, mining ASIC hardware has an eavesdropping
channel E . (Mining ASICs, as we explain below, don’t support
encryption, so eavesdropping is straightforward.) This channel
E allows the prover to extract the witness during the proof
generation process, ensuring complete knowledge.

In short, a mining ASIC may be viewed as a computing
resourceR that is special in that it is fast—faster than a CPU—
and has an eavesdropping channel E on inputs. A mining ASIC
thus fits our basic CK framework shown in Fig. 1.

Why ASIC-based (ZK)PoCKs? There are two reasons,
security and performance related respectively, for exploring
ASIC-based PoCKs over TEE-based PoCKs. First, many TEE-
based machines operate in the cloud. As noted in Section I,
TEE vulnerabilities could expose the private keys to cloud op-
erators or remote adversaries with access to the cloud. Second,
in the case of blockchain applications, TEE attestations can be
expensive to verify. For example, EPID [3] attestations—an
attestation type generated by Intel SGX without special pro-
visioning and with optional privacy protection—is expensive
to verify in the Ethereum Virtual Machine (EVM).

10

In the remainder of this section, we start with a brief
background on cryptocurrency-mining ASICs (Section VI-A).
We then present the detailed ASIC-ZKPoCK protocol (Sec-
tion VI-B) and analyze its security (Section VI-C).

A. Background: Cryptocurrency-Mining ASICs and PoWs

Certain cryptocurrencies—predominantly Bitcoin today—
use proof of work (PoW) [39] for the safety of their underlying
consensus mechanism for block generation. PoW involves
solving puzzles by means of repeated cryptographic hashing.
(We give these puzzles’ exact format below.) The process of
using PoW to generate blocks is known as mining.

A mining ASIC is designed for fast PoW puzzle solving. It
can compute hashes far faster than a CPU—typically by more
than a factor of 1,000,000—and thus achieves a performance
gap with respect to any SGX-protected application for hashing.

Mining ASICs today take only unencrypted inputs, meaning
that their inputs are exposed to users.7

To provide some notation that we use in what follows, a
PoW puzzle is based on a particular hash functionH (typically
modeled as a random oracle) with `-bit outputs, where ` is
the security parameter. A puzzle instance has a difficulty d
corresponding to the probability of correctly solving it with a
single hash computation.8 A puzzle instance may also include
ancillary data B. For PoW cryptocurrencies, B consists of
header data from the block the miner is attempting to mine.
Solving a puzzle with ancillary data B and difficulty d ∈
[1,∞) involves finding a nonce ν such that H(B ‖ ν) < 2`/d.
The probability of solving the puzzle for any random nonce is
an independent and identically distributed Bernoulli random
variable with success probability 1/d (for d | 2`)

The idea behind ASIC-ZKPoCK is to require the prover
P to use an ASIC to find a solution π to a proof-of-work
puzzle like those in Bitcoin mining. The puzzle solution π is
required to include a proof of knowledge of the witness w.
Specifically, P specifies PoK commitment a and π includes
the challenge c and response s for a transcript (a, c, s) of
a Σ-protocol involving w. A Σ-protocol is zero-knowledge,
meaning that the transcript—and thus the puzzle solution π—
does not expose w.

However, the process of computing π involves P sending
multiple Σ-protocol transcripts to the ASIC. Given the special
soundness (and quasi-soundness) of the Σ-protocols we use,
a prover accessing E can with high probability extract w.

It is possible in principle to perform mining for an ASIC-
ZKPoCK in an SGX enclave (in a CPU), but not realistically
in practice, as ASICs are far more performant than CPUs. As
we explain below, a top-of-the-line ASIC may be expected to
outperform a (single-server) SGX application by a factor of
more than 1,000,000.

7Even if such ASICs were ultimately to support encryption, they also do not
support enclaves, so we may presume any value input to an ASIC will still be
exposed to the user. While one could imagine reasons to support encryption
in mining ASICs, there’s no compelling reason to support enclaves.

8We refer to d generically in our protocol description as a difficulty
parameter, without reference to the specific notion of “difficulty” in Bitcoin.

B. ASIC-Based PoCK: Protocol construction
Formally, in ASIC-ZKPoCK, P and V execute a Σ-protocol.
P embeds a valid proof transcript (a, c, s) for the Σ-protocol
in a PoW puzzle whose solution π constitutes a full ASIC-
ZKPoCK proof. The key idea in our construction is to require
P to try out multiple puzzles, each with a different challenge
c (and thus response s), in order to find a solution. We
accomplish this by carefully choosing parameters such that
with high (but still constant) probability, a single randomly
chosen c will not lead to a puzzle with a valid solution. As
a result, P must input different transcripts to the ASIC (or
in other words, create different puzzles for the ASIC), among
which, by quasi-soundness, is a pair (a, c, s), (a, c′, s′) with
c 6= c′ and s 6= s′. From this pair, given the special soundness
property of the Σ-protocol, E can extract w.

At the same time, however, π itself—the solution revealed to
the verifier—contains only one proof transcript. Thus V does
not learn w ensuring that the protocol remains zero-knowledge.

As P must complete the proof in a limited period, it can
succeed only with a powerful resource. Given the right choice
of security parameter, this means that P must employ an ASIC.
We will consider the set R of resources that work to be all
PoW ASICs with hash rate at least some threshold Qasic.

Preliminaries. ASIC-ZKPoCK involves a random PoCK chal-
lenge r from V . Let π = (B, ν) denote a puzzle solution
computed by P in response to a PoCK challenge r. The puzzle
solution π consists of a block header B and nonce ν corre-
sponding to a valid proof of work. Let Σmapr(π) → (c, s)
denote a function, dependent on r (as specified below), that
maps π to a pair (c, s).

We define two verification functions:
• PoKAccept(x, (a, c, s)) → {true, false} checks the cor-

rectness of the Σ-protocol transcript (a, c, s) with respect
to public PoK value x.

• puzAccept[d, β](π) → {true, false} checks the block /
nonce pair (B, ν) represents a correct puzzle solution
with difficulty d, i.e., H(B, ν) < 2`/d. puzAccept also
checks that nonce ν is of correct size, namely ν < β, for
a parameter β discussed below.

A PoW protocol gives a probabilistic estimate of the work
done by a prover. For PoW schemes like ours with multi-
ple puzzle solutions, it is possible to generalize away from
verifying individual puzzle solutions to verifying a collection
of puzzle solutions jointly. We therefore consider a variant
of puzAccept, namely puzAccept[d, β](π1...π

n)), that checks
puzzle solutions (π1, π2, ...πn) across n rounds of our ASIC-
ZKPoCK protocol. We consider two concrete versions in our
analysis later in this section: (1) puzAcceptindiv[d](π1...πn)) =
n⋂
i=1

puzAccept[d, β](πi) checks that each individual solution

satisfies the difficulty level; (2) puzAcceptagg[d](π1...πn))
more accurately reflects aggregate work across all solutions
by checking whether

∑n
i=1H(Bi, νi) < n2`/d.

Efficient puzzle-solving vs. transcript extraction. As ex-
plained above, we must design our ASIC-ZKPoCK protocol so

11

that it forces P to try different values of c while computing a
puzzle solution π. Changing c, however, carries the overhead
of computing a new a new corresponding block header B and
feeding B to the ASIC. To ensure a tight bound on the proving
time, we don’t want P to have to change c too frequently.
Both the variants also check that that nonce ν is of correct
size, namely ν < β, for a parameter β discussed below.

Our approach to resolving this tension is to: (1) map a given
block header B to a distinct pair (c, s), so that changing B
changes (c, s) but (2) allow P to explore a range of different
nonce values ν for a given B.

We construct a mapping Σmapr(π) → (c, s) as follows.
Recall that π = (B, ν). The function Σmapr partitions B →
B[1] ‖ B[2]. It computes c = H(B[1] ‖ r) from B[1]. We
can view H(· ‖ r) here as a hash function selected at random
by V by means of the PoW challenge r in order to prevent
PoW precomputation.

Because s depends on c (and a), Σmapr is constructed such
that P can specify s = B[2], i.e., encode s in a portion of
B distinct from that for c. Given the collision-resistance of
H, changing B[1] of course changes c. Changing B[2] also
changes B[1]: Given a fixed a, a given challenge c has only one
corresponding correct response s, due to the quasi-soundness
property discussed in Section III. In short, P cannot feasibly
construct distinct blocks B that map to the same pair (c, s).

At the same time, we allow P to explore the space of
possible nonces ν. To ensure that P is forced to try multiple
puzzles (and thus multiple (c, s)), the nonce space should not
be too large. Therefore, we impose in puzAccept the restriction
ν < β for a protocol parameter β.

In summary, P can feed a block header B to an ASIC to
solve a puzzle corresponding to some challenge c. Provided
that the security parameter β is small enough—i.e., the space
of valid ν is small—the probability of P finding a puzzle
solution π = (B, ν) for any single value of c is low. Therefore,
P must w.h.p. try multiple values of c to find a puzzle solution.
Consequently, P is likely to use a pair of triples (a, c, s) 6=
(a, c′, s′) from which w can be extracted.

ASIC-ZKPoCK protocol. ASIC-ZKPoCK is presented in Fig. 3.
Two points are worth highlighting. First, we reiterate that
the protocol is interactive; V supplies a PoW challenge r as
described above. Second, the protocol is timed; P’s response
is only accepted by V if it is returned within time τ . The goal,
again, is to ensure that computation has taken place in a (fast)
ASIC, rather than a (relatively slow) CPU.

C. Security Analysis

We now analyze the security properties satisfied by ASIC-
ZKPoCK. In particular, we show that it satisfies the PoCK prop-
erties of completeness and forced revelation. For simplicity of
illustration, we analyse the security of our scheme by instan-
tiating puzAccept[d, β](π1, ..., πn) with puzAcceptindiv. Note
that utilizing the alternative puzAcceptagg only improves the
security of our scheme. We further demonstrate the practicality
of ASIC-ZKPoCK by choosing concretely viable parameters.

ASIC-ZKPoCK Protocol

P V

ai

// Generate challenge
ri←$ {0, 1}poly(`)

ri t← time

πi

t′ ← time

// Verify Σ transcript
(ci, si)← Σmapri(πi)

PoKAccept
(
x, (ai, ci, si)

) ?
= true

// Check response time

t− t′
?

≤ τ

. . . for rounds i ∈ [1, n]

// Check solutions
puzAccept[d, β]

(
π1, ..., πn

) ?
= true

Fig. 3: ASIC-ZKPoCK protocol. The protocol executes over n rounds.
V runs PoKAccept in each round to check that P has specified a valid
Σ transcript (ai, ci, si) and also checks that P has run within time
bound τ . After n rounds, V runs puzAccept to check that the joint
set of PoW puzzle solutions π1, ..., πn is correct and represents a
quantity of work exceeding a lower bound specified by d.

B Block header
ν PoW puzzle nonce
π PoW solution
r PoCK challenge

(a, c, s) Σ-protocol transcript

d PoW puzzle difficulty
τ Prover time bound
β Bound on nonce ν size
` Security parameter
n Number of rounds

Fig. 4: Protocol notation (left) and parameters (right)

We begin with a simple lemma that bounds the probability
of failure to compute a valid puzzle solution.

Lemma 1. Let pQfail denote the probability of P with hash rate
Q failing to compute a puzzle solution. Define k = τQ/d.
Intuitively, k reflects the adversary’s computational resource
over the lifetime of a challenge relative to puzzle difficulty, i.e.,
higher k means more adversarial advantage. Then:

e−k
(

1− k

d

)
≤ pQfail ≤ e−k. (1)

Proof. In time τ , P can compute Qτ = kd hash evaluations.
Recall that the probability of finding a solution for a single
evaluation is 1/d. Therefore, pQfail can be given by (1−1/d)kd.
The bounds follow from simple exponential inequalities.

1) Completeness

The completeness error of ASIC-ZKPoCK depends on the hash-
rate of the honest prover as shown below. It is easy to see
that as the hashrate Q increases, the completeness error drops
exponentially.

12

Observation 1. For a prover P with hash-rate Q, ASIC-
ZKPoCK satisfies completeness with error ε ≤ ne−Qτ/d.

Proof. By the union bound, it holds that ε ≤ npQfail. Therefore,
by Lemma 1, we can conclude ε ≤ ne−Qτ/d.

2) Forced Revelation

In general, for ASIC-ZKPoCK to function correctly, it should
be infeasible for an adversary to execute the protocol in an
enclave (thus on a CPU). Unfortunately, mining puzzles are
embarrassingly parallel, which means that in principle, an
adversary can use a network of multiple TEE-enabled hosts to
solve them. We must therefore characterize security in terms
of the size of the network.

Furthermore, even assuming that an ASIC is used, in order
for E to extract the witness, we also need to show that at least
two distinct challenges c and c′ are used in the computation.

Consequently, to show forced-revelation, we need to bound,
for both strategies, the probability that the adversary wins.

Observation 2. Define u = d/β, where β is the security
parameter for the range of the nonce. The probability ponechalsucc

of an adversary (irrespective of hash-rate) computing a valid
puzzle solution π using a single challenge c in n rounds is:

ponechalsucc <
(

1−
(

1− 1

d

)β)n
≤
(

1−
(

1− 1

du

)
e−1/u

)n
. (2)

A secure parameter setting for a single round of ASIC-
ZKPoCK will therefore require large enough u—and thus β
such that β � d—so that ponechalsucc is small.

An adversary can alternatively seek to boost its mining
rate while preventing disclosure of w by using a network
of m distinct enclave-enabled CPUs for large m. While the
adversary can also concurrently use a mining ASIC for one
value of c, as noted above, a secure parameter setting for ASIC-
ZKPoCK will involve an exponentially small ponechalsucc (and this
is independent of the hash-rate), so we may safely disregard
the impact of this strategy. See Remark 4 for additional details.

Let Qcpu denote the fastest hash rate achievable in an
enclave and consider an adversary that uses a network of
m distinct enclave-enabled CPUs. The following observation
characterizes the adversarial prover’s success.

Observation 3. Let Qadv = mQcpu and padv
succ be the prob-

ability of an adversarial prover adv succeeding in mining a
solution π successfully in all the n rounds. From Lemma 1:

padv
succ =

(
1−
(

1− 1

d

)kadvd)n
≤
(

1−e−kadv

(
1− kadv

d

))n
, (3)

where kadv = τQadv/d.

Thus, to ensure that an adversary cannot successfully com-
pute π in a network of m enclaves, we need to ensure that
kadv = (τmQcpu)/d is small and n is sufficiently large.

Remark 4 (Network of machines with single-challenge
ASICs.). A sophisticated strategy that the adversary might

attempt in order to bypass our protocol and encumber the key
in a TEE is to utilize an outsourced network of machines, each
equipped with an ASIC, in such a way that each ASIC is given
only one challenge to solve. This ensures that no machine
gets access to two challenges that would enable extraction of
the witness. This strategy is highly impractical however since
the adversary will be required to make strong non-collusion
assumptions on the outsourced network. In particular, if any
two machines belong to the same entity or collude, they can
reconstruct the witness which the adversary needs to avoid.

3) Zero-knowledge

Similar to [35], the prover only submits one Σ-protocol
transcript for each commitment, and thus maintains the zero-
knowledge property similarly.

D. Practical Security Parameters for ASIC-ZKPoCK

As Observations 1 and 3 show, achieving both completeness
and forced revelation introduces a tension in the tuning of d
and τ . For completeness, ASIC-ZKPoCK requires moderately
large k. To ensure forced extraction, however—specifically, to
rule out use of CPUs by an adversary—requires small kadv.

To understand this tension, it is helpful to consider the ratio
N = Qasic/Qcpu, i.e., the speed advantage conferred by an
ASIC over a CPU. Given an adversary with a network of m
CPUs, the ratio k/kadv = (τQasic/d)/(τnQcpu/d) = N/m.
Therefore, a secure parameterization requires m � N , i.e.,
that an adversary cannot feasibly come close to approaching
ASIC speeds with a network of CPUs.

We now show that such parameterization is possible in
practical settings.

Estimating Qasic and Qcpu. A top-of-the-line mining ASIC
for Bitcoin, the Antminer S19 Pro Hydro, released in 2022, has
a rated performance of 154 TH/s [15], i.e., about Qasic ≈ 247

H/s. Each hash in this case is a “Bitcoin” hash: a double
invocation of SHA-256 on two 64-byte input blocks, as
required for Bitcoin mining. The set R of satisfying resources
for our formalism will therefore consist of all ASICs with a
hash rate of at least Qasic.

Even under optimistic assumptions (including use of native
hardware support for SHA), an SGX application9 on a state-
of-the-art 4.60 GHz Intel processor can execute at most about
72 MH/s, i.e, Qcpu ≈ 226 H/s (where hashes here are “Bitcoin”
hashes) [52].

Example practical parameterization. Given Qasic ≈ 247

H/s and Qcpu ≈ 226 H/s, we might for instance aim to
set kasic = 35, to ensure a prover verification (completness)
failure probability < 10−15 for a single round of execution.
By Observation 1, this probability could be achieved, for
instance, by setting d = Qasic/7 ≈ 2× 1013 and τ = 5s.

With this parameterization, kadv = mQcpu/d ≈
m/300, 000. Consequently, by Observation 3, an adversary
with a network of 10,000 CPUs would result in padv

succ < 0.033

9Note that secure use of SGX requires disablement of hyperthreading.

13

109 1011 1013 1015 1017 1019

Difficulty(d)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

2e13

Probability of Success With = 5 Sec Rounds

ASIC - n = 1
ADV - n = 1
ASIC - n = 5
ADV - n = 5
ASIC - n = 10
ADV - n = 10

Fig. 5: ASIC-ZKPoCK allows for practical parameters to achieve over-
whelming probability of completeness by an ASIC (hashrate 154 TH/s)
and negligible probability of success by an adversary with 10,000 state-
of-the-art CPUs (hashrate 72 MH/s). n denotes number of rounds.
The black line represents a parameterization of d = 213, for which
adversarial success probability is negligible but that of ASIC is close
to 1.

in a single round of execution of ASIC-ZKPoCK. Executing for
n = 10 rounds then results in padv

succ ≈ 10−15. Note that, the
range of nonce (security parameter β) can be set appropriately
to minimize ponechalsucc . For example, by Observation 2, a nonce
of length 4 bytes (β = 232) would give ponechalsucc ≈ 10−37.
Figure 5 shows the completeness probability of the ASIC and
the success probability padv

succ of an adversary with 10,000 CPUs
as a function of the difficulty and number of rounds (each
round is set to 5 secs).

With a total execution time of 50s, it is possible to achieve
an overwhelming probability of completeness as well as an
overwhelming probability of failure for an adversary trying to
bypass forced revelation with a network of 10,000 CPUs.

Concrete implementation parameters. As we will explain
in more detail in Section VII, we implement the ASIC-ZKPoCK
prover using an outmoded Antminer S9 ASIC and the verifier
using an Ethereum Smart Contract. While this ASIC has a
smaller hashrate compared to the latest hardware in the market,
and the Ethereum network inherently has a coarse granularity
for measuring time, we can still achieve reasonable error
probabilities for completeness and forced revelation. Below
is one such example parameterization for our implementation:
Qasic = 13TH/sec ∼ 243.5

τ = 12 sec (Ethereum inter block time)
k = 12 so that completeness error for one round is < e−12

d = τ∗Q
k = Q = 13× 1012.

β = 240 (Set nonce size to 5 bytes). Notice that the nonce
range is exhausted by our ASIC in 240/Q = 0.08 seconds, so
we queue up new work to the ASIC (with a new challenge)
every 0.08 seconds.

Forced revelation error: ponechalsucc < 1 −
(
1− 1

d

)β ≤ 8.2%.
We can set the number of rounds n to 5 so that the forced
revelation error ≈ 3.5×10−6. Note that by Observation 3, the

Smart Contract LOC Operation Gas cost
ASIC-ZKPoCK Register new job 366,485

Verification Contract 140 Initiate challenge 70,209
Verify proof 7,620,401

CK Registry 130 Record a new proof 54,260

Fig. 6: Gas costs of various calls and Lines of Code in SMACK’s smart
contracts. At the time of writing, 100,000 gas costs approximately
USD 1.3.

probability padv
succ of an adversary with 10,000 CPUs each with

hashrate Qcpu ≈ 226H/s succeeding is < 4× 10−7.

Remark 5 (Usage of sequential functions). Our usage of
hash-based PoW mining comes with some unfortunate conse-
quences: since evaluation is embarrassingly parallel, we need
to rely on assumptions on the parallel processing capabilities
(e.g., number of machines) available to the adversary.

A natural question towards removing this constraint is
whether we can leverage sequential computation (e.g., through
VDFs) instead of parallelizable hash computations. This turns
out to be somewhat tricky however since intermediate values
may first be computed in a TEE following which the rest of
the computation can be done in faster untrusted hardware. We
leave the exploration of this direction to future work.

VII. SMACK: AN END-TO-END CK IMPLEMENTATION

To demonstrate CK proofs in a practical setting, we proto-
type SMACK (SMArt-contract enabled CK)—a complete, end-
to-end CK system on Ethereum.

SMACK offers a good proof of concept of CK practicality
for two reasons. First, smart contracts are highly resource
constrained, with limited, expensive computational power,
coarse-grained, approximate measurement of time, and no
ability to maintain secret state. Making CK proofs work
in this austere environment strongly evidences their general
practicality. Second, deployment of SMACK in Ethereum has
the benefit of supporting a wide variety of blockchain-based
services, e.g., voting, Atomic NFTs, enforced NFT royalties,
etc., as described in Section II.

We report the gas costs and lines of code (LOC) for these
contracts in Figure 6.

SMACK allows for any desired CK method to be used. To
demonstrate the practicality of the CK approaches explored
here, we implement two CK variants in SMACK: ASIC-ZKPoCK
and a TEE-based CK proof system for Android devices that
we call lightweight CK and describe in Appendix B-A.

We first describe the global architecture of our system
in Section VII-A We then describe CK Registry component
of SMACK (in Section VII-B). Finally, we describe the details
of our ASIC-ZKPoCK implementation in Section VII-C, which
is the more technically challenging and intricate of the two
currently supported CK methods in SMACK.

A. Global Architecture

SMACK consists of different verification contracts, one for
each type of CK proof method that is supported. For a given

14

public PoK value x, the prover supplies a proof (potentially
interactively) according to a certain CK method to the corre-
sponding verification contract. The verification contract stores
a boolean mapping from x, indicating whether the proof has
been successfully verified. This mapping is leveraged by the
CK Registry to provide a uniform and well managed interface
to application developers.

B. CK Registry

In Ethereum, public keys are associated with addresses.
SMACK supports CK for the private keys associated with
Ethereum addresses.

CK proofs have an important property: Once one has been
generated for a given witness / address, it remains indefinitely
valid. That is because once a private key sk has been exposed
to E , the fact of exposure remains true for all time.

SMACK therefore includes a smart contract, called the CK
Registry, that maintains a permanent record of addresses for
which valid CK proofs have been provided.

The CK Registry (deployed at 0x25B270...eE3966) includes
a function that maps Ethereum addresses to the type(s) of CK
proofs, if any, that have been verified successfully. When a
user wishes to submit a proof of complete knowledge for their
Ethereum address, it sends the proof to a verification contract
(such as the one we describe in Section VII-C) that the CK
Registry trusts and then asks the CK Registry to record the
event. Applications can then cheaply query the CK Registry
to see whether a CK address is verified rather than handling
proofs themselves.

The CK Registry is designed to allow the addition of more
CK verification contracts in the future, possibly incorporating
new classes of CK proofs as they are designed, and likewise to
remove existing CK verification contracts (in case the param-
eters are deemed insecure in the future). As a demonstration
of our work, we have used the CK Registry and verification
contracts to successfully mint Atomic NFTs for CK addresses.
The Atomic NFT contract is deployed at 0xed7B4C...Ba62FF.

C. ASIC-ZKPoCK implementation

We use an off-the-shelf Bitcoin miner, the Bitmain Antminer
S9, with a hashrate of 13TH/s. Note that while this hardware
is not energy-efficient enough to mine Bitcoin competitively
at this point, it is sufficient to achieve low error bounds in
our scheme. It demonstrates that outmoded hardware can be
repurposed successfully for ASIC-ZKPoCK. (It cost us only
200 USD.) We implement the verifier as an Ethereum smart
contract, which is deployed at the address 0xAC86fD...B39f4b.
All the source code and scripts can be found at https://github.
com/CK-anon/SMACK.

System Architecture. Figure 7 shows our system architec-
ture. The prover communicates with the ASIC miner using
an open source pool mining software which implements the
standard Stratum V2 protocol [4] used for allocating work to
the miner, and fetching the PoW solution. The miner does
some sanity checks on the input block data (e.g. the block
height should be increasing, fields should be the right size

ASIC Miner

Modified Mining Pool Software

PoW
puzzle

PoW
Solution

ASIC CK
Verifier Smart

Contract

Ethereum Mainnet

Derive input r
from blockchain
randomness

CK Prover CK Verifier

Submit PoCK

Embed (a,c,s) in the PoW puzzle

Register public key
pk and -protocol
commitments a

4.

3.

5.

6. 7.
8.

1.

2.

Verify Time
Threshold, PoW
puzzle and -
protocol transcript

9.

Derive -protocol challenges c
using r

Compute -protocol responses s

Fig. 7: ASIC-ZKPoCK system architecture. The encircled numbers
correspond to steps in a protocol execution. Our CK Prover consists
of a (modified) pool mining software and an ASIC miner. Our
CK Verifier is implemented as a Smart Contract, deployed on the
Ethereum mainnet.

etc.). Therefore, our prover makes use of a private Bitcoin
network to generate valid PoW puzzles for the miner. This
also allows us to configure the difficulty of the PoW puzzles.
We use Schnorr’s protocol [58] for our underlying PoK Σ-
protocol. While our verification smart contract is used for
verifying complete knowledge of the private keys of Ethereum
addresses, it can be used for any general PoK value x. To gen-
erate the verfier’s random challenge r, our smart contract uses
randomness from the Ethereum proof-of-stake network [5].10

For pool mining, the Merkle root in the block header is
expanded into a special coinbase transaction along with the
adjacent Merkle branches. We place s (32 bytes in our case)
inside this coinbase transaction which is allowed to carry
arbitrary data.

Setting the Nonce range β. For exploring the PoW puzzle
solutions, the Bitcoin pool mining protocol allows the miners
to try different values for the nonce and extranonce fields.
The nonce field in Bitcoin header is fixed to 4 bytes and
has proven to be too small for the mining market. Therefore,
extranonce was introduced whose size can be set by the pool
software. Thus, for our case where the range is β(> 232),
we set extranonce to blog2[β]/8 − 4c bytes. Note that B in
the proof transcript π denotes the portion of the Bitcoin block
header that excludes the extranonce field, i.e. we treat that
field as part of the space of possible nonces.

VIII. CONCLUSION

We have shown a fundamental limitation in traditional
proofs of knowledge (PoKs), the fact that they do not actually
prove direct knowledge by a prover when the prover may inter-
act with other entities. This gap in the PoK model introduces
a range of coercive attacks, many explored in disparate earlier
works. We have formalized complete knowledge as a stronger
version of proofs of knowledge. The result is a property,
as we have shown, that can help in the design of protocols

10This randomness is biasable to small extent but is not material.

15

https://etherscan.io/address/0x25B2709091010489030A85Ab69bc2FD129eE3966
https://etherscan.io/address/0xed7B4C5597f3574355AE6E404f7d3930A1Ba62FF
https://etherscan.io/address/0xac86fd0d5293f8e5c412b569fcb10f8d5db39f4b
https://github.com/CK-anon/SMACK
https://github.com/CK-anon/SMACK

resistant to coercive attacks. We have shown that there are
practical protocols—using TEEs and ASICs—for proofs of
complete knowledge. We hope that our work will stimulate
the development of new PoCK / ACK constructions and their
use in important practical protocols such as e-voting, deniable
authentication, lease-resistant credentials, and more.

An interesting open problem is exploring functionalities
stronger than CK for enforcing coercion-resistant voting [14],
[28], [41]. For example, CK alone, while helpful, does not
ensure coercion-resistant voting given adversarial use of a
TEE. Placing all voter functionality in a TEE application
could help ensure coercion-resistance in this setting, but at the
cost of an application-specific realization and bloated trusted-
computing base. An important research question is whether
there are functionalities that at the same time are general-
purpose and achieve broader coercion-resistance than CK.

Acknowledgments. We thank Ian Miers and Rafael Pass for
numerous insightful discussions during the early stages of this
work.

REFERENCES

[1] Signal website. signal.org, 2020.
[2] Discussion: Play integrity api. https://forum.xda-developers.com/t/

discussion-play-integrity-api.4479337/, 2022.
[3] Intel Enhanced Privacy ID (EPID) Security Technology. https:

//www.intel.com/content/www/us/en/developer/articles/technical/intel-
enhanced-privacy-id-epid-security-technology.html, 2022.

[4] Ethereum consensus notes. https://en.bitcoin.it/wiki/Stratum mining
protocol, [Accessed December 2022].

[5] Ethereum consensus notes. https://eth2book.info/bellatrix/part2/
building blocks/randomness/, [Accessed December 2022].

[6] Oasis Labs website. https://www.oasislabs.com/, [Accessed June 2022].
[7] Android Developers: Verifying hardware-backed key pairs with key

attestation. https://developer.android.com/training/articles/security-key-
attestation#root certificate, Referenced Nov. 2022.

[8] Amazon Web Services. Aws nitro enclaves website. https://aws.amazon.
com/ec2/nitro/nitro-enclaves/, Referenced Nov. 2022.

[9] AMD. AMD SEV-SNP: Strengthening VM isolation with integrity
protection and more. White Paper, Jan. 2020.

[10] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innova-
tive technology for CPU based attestation and sealing. In HASP, page 7,
2013.

[11] Android Open Source Project. Android Open Source Project: Key and id
attestation. https://source.android.com/docs/security/features/keystore/
attestation, Referenced Nov. 2022.

[12] Apple Inc. Apple developer website: Establishing your app’s integrity.
https://developer.apple.com/documentation/devicecheck/establishing
your app s integrity, Referenced Nov. 2022.

[13] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A
practical and provably secure coalition-resistant group signature scheme.
In CRYPTO, pages 255–270, 2000.

[14] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections.
In STOC, pages 544–553, 1994.

[15] Bitmain. Specifications of T19/S19 liquid-cooling miner.
https://support.bitmain.com/hc/en-us/articles/4418373232153-
Specifications-of-T19-S19-Liquid-Cooling-Miner, 11 Feb. 2022.

[16] Remco Bloemen, Leonid Logvinov, and Jacob Evans. EIP 712. https:
//eips.ethereum.org/EIPS/eip-712, 2017.

[17] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record commu-
nication, or, why not to use PGP. In WPES, pages 77–84, 2004.

[18] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel
Gruss, and Michael Schwarz. ÆPIC leak: Architecturally leaking
uninitialized data from the microarchitecture. In USENIX Security, pages
3917–3934, 2022.

[19] John Brainard, Ari Juels, Ronald L Rivest, Michael Szydlo, and Moti
Yung. Fourth-factor authentication: somebody you know. In CCS, pages
168–178, 2006.

[20] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE S&P, pages 315–334, 2018.

[21] V. Buterin. Why we need wide adoption of social recovery wallets. vi-
talik.ca blog post at https://vitalik.ca/general/2021/01/11/recovery.html,
11 Jan 2021.

[22] V. Buterin. Minimal anti-collusion infrastructure (MACI). Ethereum
Research blog post at https://ethresear.ch/t/minimal-anti-collusion-
infrastructure/5413, 2 May 2019.

[23] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, pages 136–145, 2001.

[24] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Uni-
versally composable security with global setup. In TCC, pages 61–85,
2007.

[25] David Chaum, Peter YA Ryan, and Steve Schneider. A practical voter-
verifiable election scheme. In ESORICS, pages 118–139, 2005.

[26] David L Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[27] Jeremy Clark and Urs Hengartner. Selections: Internet voting with over-
the-shoulder coercion-resistance. In FC, pages 47–61, 2011.

[28] Michael R Clarkson, Stephen Chong, and Andrew C Myers. Civitas:
Toward a secure voting system. In IEEE S&P, pages 354–368, 2008.

[29] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the Signal messaging
protocol. In EuroS&P, pages 451–466, 2017.

[30] Philip Daian, Tyler Kell, Ian Miers, and Ari Juels. On-chain vote buying
and the rise of dark daos. https://hackingdistributed.com/2018/07/02/on-
chain-vote-buying/, 2018.

[31] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable
authentication and key exchange. In CCS, pages 400–409, 2006.

[32] Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. In CRYPTO, pages 139–147, 1992.

[33] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of
identity. Journal of cryptology, 1(2):77–94, 1988.

[34] O. Fernau. Royalty-free sudoswap is finding favor with NFT traders.
The Defiant, 13 Aug. 2022.

[35] Marc Fischlin. Communication-efficient non-interactive proofs of
knowledge with online extractors. In CRYPTO, pages 152–168, 2005.

[36] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game. In STOC, pages 218–229, 1987.

[37] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. In STOC, pages 291–304, 1985.

[38] Lachlan J Gunn, Ricardo Vieitez Parra, and N Asokan. Circumventing
cryptographic deniability with remote attestation. PETS, 2019(3):350–
369, 2019.

[39] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding
protocols. In Secure information networks, pages 258–272, 1999.

[40] K. Wei Jie. Release announcement: MACI 1.0. Medium
Post at https://medium.com/privacy-scaling-explorations/release-
announcement-maci-1-0-c032bddd2157, 12 Oct. 2021.

[41] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant
electronic elections. In WPES, pages 61–70, 2005.

[42] Aggelos Kiayias and Philip Lazos. SoK: Blockchain governance. arXiv
preprint 2201.07188, 2022.

[43] Yashvanth Kondi and abhi shelat. Improved straight-line extraction in
the random oracle model with applications to signature aggregation. In
ASIACRYPT, 2022.

[44] Brad Linder. Some apps may stop working on rooted Android phones
due to SafetyNet update, 11 Mar. 2020.

[45] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso.
VoteAgain: A scalable coercion-resistant voting system. In USENIX
Security, pages 1553–1570, 2020.

[46] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart
contract for boardroom voting with maximum voter privacy. In FC,
pages 357–375, 2017.

[47] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon
Johnson, Rebekah Leslie-Hurd, and Carlos Rozas. Intel® software guard
extensions (Intel® SGX) support for dynamic memory management
inside an enclave. In HASP, pages 1–9. 2016.

16

signal.org
https://forum.xda-developers.com/t/discussion-play-integrity-api.4479337/
https://forum.xda-developers.com/t/discussion-play-integrity-api.4479337/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-epid-security-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-epid-security-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-epid-security-technology.html
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://eth2book.info/bellatrix/part2/building_blocks/randomness/
https://eth2book.info/bellatrix/part2/building_blocks/randomness/
https://www.oasislabs.com/
https://developer.android.com/training/articles/security-key-attestation#root_certificate
https://developer.android.com/training/articles/security-key-attestation#root_certificate
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://source.android.com/docs/security/features/keystore/attestation
https://source.android.com/docs/security/features/keystore/attestation
https://developer.apple.com/documentation/devicecheck/establishing_your_app_s_integrity
https://developer.apple.com/documentation/devicecheck/establishing_your_app_s_integrity
https://support.bitmain.com/hc/en-us/articles/4418373232153-Specifications-of-T19-S19-Liquid-Cooling-Miner
https://support.bitmain.com/hc/en-us/articles/4418373232153-Specifications-of-T19-S19-Liquid-Cooling-Miner
https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712
https://vitalik.ca/general/2021/01/11/recovery.html
https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413
https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413
https://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
https://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
https://medium.com/privacy-scaling-explorations/release-announcement-maci-1-0-c032bddd2157
https://medium.com/privacy-scaling-explorations/release-announcement-maci-1-0-c032bddd2157

[48] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Innova-
tive instructions and software model for isolated execution. In HASP,
page 10, 2013.

[49] Rafael Pass. On deniability in the common reference string and random
oracle model. In CRYPTO, pages 316–337, 2003.

[50] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for
attested execution secure processors. In EUROCRYPT, pages 260–289,
2017.

[51] Rafael Nat Josef Pass. A precise computational approach to knowledge.
PhD thesis, Massachusetts Institute of Technology, 2006.

[52] Hoai Luan Pham, Thi Hong Tran, Tri Dung Phan, Vu Trung Duong Le,
Duc Khai Lam, and Yasuhiko Nakashima. Double SHA-256 hardware
architecture with compact message expander for bitcoin mining. IEEE
Access, 8:139634–139646, 2020.

[53] David Pointcheval and Jacques Stern. Security arguments for digital
signatures and blind signatures. Journal of cryptology, 13(3):361–396,
2000.

[54] Ivan Puddu, Daniele Lain, Moritz Schneider, Elizaveta Tretiakova, Sinisa
Matetic, and Srdjan Capkun. TEEvil: Identity lease via trusted execution
environments. arXiv preprint 1903.00449, 2019.

[55] Charles Rackoff and Daniel R Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. In CRYPTO, pages
433–444, 1991.

[56] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In FOCS, pages 543–553, 1999.

[57] C. P. Schnorr. Efficient signature generation by smart cards. J. Cryptol.,
4(3):161–174, jan 1991.

[58] Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In CRYPTO, pages 239–252, 1989.

[59] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. RingCT
2.0: A compact accumulator-based (linkable ring signature) protocol for
blockchain cryptocurrency monero. In ESORICS, pages 456–474, 2017.

[60] Michael Bedford Taylor. The evolution of bitcoin hardware. Computer,
50(9):58–66, 2017.

[61] Langston Thomas. Fractional NFTs: The good, the bad, and the weird.
NFT Now, 26 Apr. 2022.

[62] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
Intel SGX kingdom with transient out-of-order execution. In USENIX
Security, pages 991–1008, 2018.

[63] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom.
SGAxe: How SGX fails in practice, 2020. https://sgaxe.com/files/
SGAxe.pdf.

[64] Joseph Weinberg. NFTs and compliance: Why we need to be having
this conversation. Cointelegraph, 21 Jan. 2022.

[65] E Glen Weyl, Puja Ohlhaver, and Vitalik Buterin. Decentralized society:
Finding web3’s soul. Available at SSRN 4105763, 2022.

[66] Andrew C Yao. Protocols for secure computations. In FOCS, pages
160–164, 1982.

APPENDIX A
GSGX FUNCTIONALITY

We detail the full GSGX functionality in Fig. 8.

APPENDIX B
DEFERRED DETAILS ON SMACK

A. Lightweight CK

A PoCK system will be most useful if it is widely accessi-
ble. Any requirement for expensive specialist hardware—such
as an SGX-enabled machine or, worse still, a Bitcoin-mining
ASIC—could place CK beyond the reach of most users. While
users could in principle outsource CK-proof execution, this
would require them to entrust their private keys to third-party
services, which could create new risks of key compromise.

Increasingly many users, however, do in fact own devices
with trusted hardware: their mobile phones. Almost all newly

GSGX[S,Reg]

On initialization: (mpk,msk)←$ S.kg(1λ), I ← ∅.

On receive getpk∗() from some party M:
Send mpk to M.

On receive install∗(idx, prog) from some M∈ Reg:
If M is honest, assert idx = sid.
Generate nonce eid ∈ {0, 1}λ.
Store I[eid,M] = (idx, prog, 0) and send eid to P .

On receive resume∗(eid, inp) from some M∈ Reg:
Let (idx, prog,mem) = I[eid,M], abort if not found.
Compute (out,mem′) = prog(inp,mem).
Update I[eid,M] = (idx, prog,mem′).
Let σ = S.signmsk((idx, eid), prog, out).
Send (out, σ) to M.

Fig. 8: GSGX global functionality from [50]. Starred operations are
re-entrant activation points.

manufactured mobile phones come with TEEs: recent Android
devices often ship with Trusty TEE, while iOS devices have
Apple’s Secure Enclave.

To show how these devices can be used to implement CK
proofs, we prototype a protocol design that we call lightweight
CK. The term “lightweight” here reflects two features of
our design: (1) It uses common consumer hardware, but (2)
embodies a weaker security model than CK variants using
SGX or ASIC. As such, lightweight CK is most suitable as a
defense-in-depth layer or for applications where the impact
of compromise is not high—e.g., Atomic NFTs (see Sec-
tion II-B).

Android implementation and workflow. We design a sim-
ple lightweight CK tool for Android devices that uses the
hardware key attestation API [11] to produce lightweight CK
proofs for Ethereum addresses. This API provides a hardware-
backed assurance of boot integrity and, by extension, an
application’s integrity. (Apple’s iOS analog is its App Attest
Service [12], which can support a CK tool like the one we’ve
implemented for Android.)

Our application itself is simple from a user’s standpoint: the
user enters a private key sk—exported from a crypto wallet—
into a text field11 and taps a button to generate a TEE key. The
application copies the necessary CK proof, described below,
to the Android clipboard for the user to paste into a dApp that
creates a transaction to a CK verifier smart contract.

The app creates an attestation challenge for the freshly
generated TEE key through the key attestation API, and the
TEE signs a new certificate containing the challenge. The
attestation challenge contains the signature of a static message

11Great care will be required in guiding users, as malicious software could
dupe unsophisticated users into revealing their private keys. This can be
mitigated if common wallets natively implement lightweight CK.

17

https://sgaxe.com/files/SGAxe.pdf
https://sgaxe.com/files/SGAxe.pdf

(“Android CK Verification”), including an Ethereum message
prefix [16] signed by the user’s private key. While not strictly
needed for a CK proof, the signature serves as a hedge against
device compromise. Even if a compromised Android device
could generate a seemingly valid integrity verdict, it cannot
do so for an arbitrary pk—cooperation from the holder of the
corresponding sk would be required.

The API then returns a certificate chain from the new TEE
key containing the challenge to the TEE itself to the device
manufacturer’s certificate authority and, finally, to a root of
trust—the Google Hardware Attestation Root Certificate [7].
Within the new TEE key’s certificate is an attestation to the
integrity of the operating system running on the device as well
as a hash of the signing certificates of the application that made
the request.

The certificate chain includes all the necessary information
to create a CK proof, so submitting a lightweight CK proof
to the Android CK Verifier smart contract involves creating a
transaction that includes the intended prover address and the
complete certificate chain to some root of trust. To ensure the
authenticity of a lightweight proof, the contract first checks
that the newly created certificate describes an adequately
protected Android operating system: a verified boot from a
trusted state and a key attestation for an app that matches the
package name and signing key of our app. It also checks the
attestation challenge embedded within the certificate to verify
that sk signed the message. Next, it validates the certificate
chain to a root certificate that the verifier trusts by verifying
the signatures of each certificate, each one signed by the next
in the chain. If everything passes validation, a record of the
proof is created in the contract for use by the CK Registry.
The cost of verification is approximately 1.5 million gas per
certificate.

Signed messages cannot protect against a compromised
device producing valid verdicts for others’ keys, so we rely
on per-device limits to mitigate the effect of a compromised
device. Until mobile devices support on-device attestations,
integrity measurements of the operating system are the closest
way of verifying that the application ran as intended and a
complete private key was entered into the device.

Limitations. Key attestation appears not to be foolproof. For
example, there have been reports of a broken TEE keystore
implementation in the ASUS ROG 3, compromising system
integrity and still allowing a “strong” hardware-based integrity
check to pass irrespective of bootloader status [2]. Google it-
self recommends a defense-in-depth approach, with attestation
services as only one of several signals of abuse. To mitigate the
problems caused by an entire class of devices containing faulty
TEEs, the Android CK Verifier contract allows individual CA
certificates to be revoked or trusted.

Privacy. Publishing a complete TEE certificate chain to a
public blockchain comes with its own privacy issues. Each
TEE certificate must be signed by a device manufacturer’s
public key for the certificate chain to be complete, which
means that device manufacturers could easily associate the

Ethereum address of a lightweight CK participant with the
mobile device used to create the TEE certificate chain. This
is because the Ethereum address being verified is contained
within the TEE-signed certificate, and device manufacturers
can associate a TEE’s public key with its corresponding device
both during manufacturing and whenever the device requires
an updated certificate chain. As a point of reference, the first
intermediate certificate of our sample device expires on a
monthly basis, so at least once a month, the device must
contact its manufacturer for a fresh intermediate certificate.

In order to prevent this type of privacy leak, rather than
submitting the certificate chain directly to a smart contract, the
certificate chain could instead be submitted to an application
running within an off-device attesting TEE, such as Intel
SGX. The attesting TEE application verifies the most sensitive
part of the chain—including the mobile device TEE’s public
key—and the integrity state of the mobile device embedded
inside the leaf certificate. The smart contract would then only
need to verify the application’s attestation to establish whether
the lightweight CK attempt was successful, thereby keeping
the end of the certificate chain from being disclosed. Then,
collusion between both the mobile device manufacturer and the
organization hosting the off-device TEE, as well as a feasible
attack on the off-device TEE itself, would be necessary to
deanonymize accounts. An attack on the TEE could reveal the
tail of the certificate chain which, when revealed to the device
manufacturer, could be mapped to a device.

In an alternative to the TEE-based privacy approach, the
prover’s CK proof could be a redacted certificate chain along
with a ZK proof (preferably a succinct such proof) of the
correctness of the redacted part of the chain.

Target applications. Google’s Play Integrity API is currently
the more commonly used method for developing assurance
of application integrity inside Android apps, and its “strong”
category of integrity verdicts include similar hardware-backed
key attestations from a TEE. Although its integrity verdicts can
range in strength from basic compatibility tests to hardware-
backed key attestation, it has seen wide use by consumer
services (e.g., Netflix), mobile games (e.g., Pokémon Go),
banking applications, etc. for application integrity [44].

Given the security limitations discussed above, lightweight
CK is most suitable as a defense-in-depth layer or where the
impact of compromise is limited. For example, if CK is com-
promised for an Atomic NFT, that NFT can be fractionalized:
an undesirable but not catastrophic outcome. The same is true
of key-coupling for royalty payments. In contrast, only strong
CK would meet the levels of security envisioned for soulbound
tokens [65], which are identity documents.

Through the CK Registry, individual applications can sup-
port the specific CK proof types that match their security
models.

18

	Introduction
	Motivation: Attacks and Applications
	Attacks and CK-Based Countermeasures
	New Applications Enabled by CK

	Preliminaries and Background
	Interactive Proof Systems

	Proofs of Complete Knowledge
	Building Intuition
	Formal PoCK Security
	Zero-Knowledge PoCK
	Eavesdropper Undetectability

	SGX-based PoCK Protocol
	SGX-PoCK Properties

	ASIC-Based PoCK Construction
	Background: Cryptocurrency-Mining ASICs and PoWs
	ASIC-Based PoCK: Protocol construction
	Security Analysis
	Completeness
	Forced Revelation
	Zero-knowledge

	Practical Security Parameters for ASIC-ZKPoCK

	SMACK: An End-to-End CK Implementation
	Global Architecture
	CK Registry
	ASIC-ZKPoCK implementation

	Conclusion
	References
	Appendix A: GSGX Functionality
	Appendix B: Deferred Details on SMACK
	Lightweight CK

