
Implementing and Benchmarking Word-Wise
Homomorphic Encryption Schemes on GPU

Hao Yang1, Shiyu Shen2,4, Wangchen Dai3, Lu Zhou1, Zhe Liu3,1 and Yunlei
Zhao2,4

1 College of Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing, China, crypto@d4rk.dev

2 School of Computer Science, Fudan University, Shanghai, China, shenshiyu21@m.fudan.edu.cn
3 Zhejiang Lab, Hangzhou, China, w.dai@my.cityu.edu.hk

4 State Key Laboratory of Cryptology, Beijing, China

Abstract. Homomorphic encryption (HE) is one of the most promising techniques
for privacy-preserving computations, especially for word-wise HE schemes that allow
batched computations over ciphertexts. However, the high computational overhead
hinders the deployment of HE in real-word applications. The GPUs are often used
to accelerate the execution in such scenarios, while the performance of different HE
schemes on the same GPU platform is still absent.
In this work, we implement three word-wise HE schemes BGV, BFV, and CKKS
on GPU, with both theoretical and engineering optimizations. We optimize the
hybrid key-switching technique, reducing the computational and memory overhead
of this procedure. We explore several kernel fusing strategies to reuse data, which
reduce the memory access and IO latency, and improve the overall performance. By
comparing with the state-of-the-art works, we demonstrate the effectiveness of our
implementation.
Meanwhile, we present a framework that finely integrates our implementation of the
three schemes, covering almost all scheme functions and homomorphic operations.
We optimize the management of pre-computation, RNS bases, and memory in the
framework, to provide efficient and low-latency data access and transfer. Based
on this framework, we provide a thorough benchmark of the three schemes, which
can serve as a reference for scheme selection and implementation in constructing
privacy-preserving applications.
Keywords: Homomorphic encryption · GPU acceleration · BGV · BFV · CKKS

1 Introduction
Homomorphic encryption (HE) is a class of cryptosystem that offers the ability to perform
computations over encrypted data without the knowledge of secret keys. This allows the
construction of non-interactive and secure computational models that do not require the
users to stay online during the entire evaluation process, which inherently have lower
communication overhead compared to alternatives based on techniques such as multi-
party computation. Currently, homomorphic encryption is considered as a promising
building block for privacy-preserving applications, such as secure neural network inference
[DGBL+16,BGBE19], private set union and intersection [CLR17], private decision tree
evaluation [LZS18], etc.

In 2009, Gentry proposed the concept of bootstrapping [Gen09b,Gen09a], bringing the
homomorphic encryption scheme from Somewhat Homomorphic Encryption (SHE), which
requires the circuit depth to be predetermined, to the Fully Homomorphic Encryption

mailto:crypto@d4rk.dev
mailto:shenshiyu21@m.fudan.edu.cn
mailto:w.dai@my.cityu.edu.hk

2 Implementing and Benchmarking Word-Wise HE Schemes on GPU

(FHE) era that supports an arbitrary number of operations. Most FHE schemes currently in
use are based on the (Ring-)Learning with Errors ((R-)LWE) problem [LPR13]. According
to the type of data and basic operations, these schemes can be classified as bit-wise FHE
and word-wise FHE. The first class, such as FHEW [DM15] and TFHE [CGGI20], encrypts
a few bits per ciphertext and performs logical operations. Although they feature fast
bootstrapping and support computation of both polynomial and non-polynomial functions,
the ciphertext-to-message size expansion ratio is huge as they encrypt a single or few bits
per ciphertext. Additionally, they suffer from limited message space and parallelism, which
leads to low amortized runtime on arithmetic operations such as addition and multiplication.
The second class contains BGV [BGV12], BFV [Bra12,FV12] and CKKS [CKKS17], where
BGV and BFV perform exact operations on finite fields and CKKS supports approximate
computations over real and complex numbers. Compared to bit-wise HE schemes, word-wise
HE schemes are more efficient as they support batch processing, where multiple plaintexts
can be packed into a ciphertext and evaluated in a single-instruction-multiple-data (SIMD)
manner.

Currently, many software HE libraries implement the RNS variants of these schemes
[GHS12,BEHZ17,HPS19,CHK+19,HK20], such as HElib [HEl23], PALISADE [PAL23],
SEAL [SEA23], HEEAN [hea23, ful22] and OpenFHE [ope23]. Despite the attention HE
attracts, its performance is still unable to meet the practical requirements. For example,
the low-latency privacy-preserving inference proposed by Brutzkus et al. [BGBE19] reduces
the execution time of a single prediction to 2.2 seconds, but it still takes more than 6 hours
to finish the entire computations on the MNIST dataset [LBBH98]. However, this dataset is
small and only provides 10 classes, which is far from satisfactory since current applications
require over 100 times more classes, such as ImageNet (1000 classes) [RDS+15].

Hardware acceleration with methods such as Graphics Processing Units (GPUs) or
Field Programmable Gate Arrays (FPGAs), which enables parallel execution, has often
been considered as a solution for alleviating the aforementioned problems. Currently,
GPU acceleration plays an important role in areas such as machine learning and has been
applied to accelerate homomorphic encryption schemes and privacy-preserving applications
in some prior researches [ABVMA18,BHM+20,JKA+21,ABPA+21,ABVL+21,SYL+22].
They concentrate on implementing one single scheme or some HE operations and achieve
speedups compared to software implementations. However, current research on accelerated
homomorphic encryption schemes is still lacking in the GPU domain. For one scheme,
many of the latest proposed techniques have not yet been introduced into this field. The
parameter sizes supported by the existing works are inadequate and some implemented
functions can be further optimized. Additionally, focusing on one scheme may be insufficient
for real-world applications, as in some cases floating-point numbers are taken as input and
approximate computation is required, while precision loss may not be tolerable in some
others. These facts lead to the demand for insight into the performance of each HE scheme
on the GPU under different parameter configurations. Nevertheless, it is insufficient to
provide the conclusion according to current researches due to various targeted platforms
and implementation approaches.

Our Contributions. The main goal of this work is to present latest implementations and
thorough benchmarks of the word-wise HE schemes on GPU, covering the RNS variants of
BGV [GHS12], BFV [BEHZ17,HPS19], and CKKS [HK20]. The contributions of our work
are summarized below.

• For all three schemes, we provide complete GPU implementations, covering almost all
of the scheme functions and homomorphic operations. We optimize the computational
and memory overhead of operations such as key switching. Additionally, by using
techniques including kernel fusing, we reduce the IO latency of each operation and
improve the overall performance.

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu and Yunlei Zhao 3

Table 1: Summary of supported features in related works [ABVMA18,ABPA+21,BHM+20,
JKA+21] and this work. The notations are given in Sec 2.1.

Supported features [ABVMA18] [ABPA+21] [BHM+20] [JKA+21] This work
Parameter |N | [11, 14] [12, 16] [13, 16] [16, 17] ≥ 11

Schemes
BGV X
BFV X X X
CKKS X X X

Scheme
functions

PreComp X
KeyGen X X

Enc X X
Dec X X X
Ecd X
Dcd X

Operations

HAdd X X X X
CAdd X X X
HMult X X X X
CMult X X X
HRot X X

• We develop a framework and integrate our GPU implementation of the three schemes.
This framework contains comprehensive pre-computation, RNS base management,
and memory pool mechanism to provide efficient data access and transfer. We explore
several reusing strategies to close the gap between the implementations of the three
schemes.

• Based on the developed framework, we provide benchmarks for all functions of the
three schemes under different parameter sets. This is the first work that completely
reports the performance of BGV on GPU, and our implementations of BFV and
CKKS both outperform the state-of-the-art works [ABVMA18,JKA+21] and support
larger parameter sizes.

Comparisons with Related Works. There have been several works on accelerating word-
wise HE schemes using GPUs, and the most related works are [ABVMA18,ABPA+21,
BHM+20,JKA+21,SYL+22]. The comparisons are summarized in Table 1. In detail, the
work [ABVMA18] presents a GPU implementation of the BEHZ-variant BFV, focusing
on KeyGen, Enc, Dec, HAdd and HMult with small and medium parameter sets N ∈
{211, · · · , 214}. The work [ABPA+21] provides both BEHZ- and HPS-variant with lager
parameter sets N ∈ {212, · · · , 216}, but only implements the Dec and HMult functions.
Both [BHM+20] and [JKA+21] study the acceleration of CKKS and implement HAdd,
HMult/CMult and Rescale, which report N ∈ {213, · · · , 216} and {216, 217} respectively,
while only [BHM+20] supports CAdd and only [JKA+21] supports HRot. The work [SYL+22]
proposes a framework that accommodates three schemes, BGV, BFV and CKKS, but only
provides HMult without Reline. To the best of our knowledge, there is no work so far
that contains the GPU implementation of all functions of BGV, BFV and CKKS.

Roadmap. The rest of this paper is organized as follows. In Section 2, we provide some
necessary preliminaries of homomorphic encryption schemes and the GPU programming
model. Section 3 includes the framework structure and implementation details. The
benchmarks and comparisons with other works are presented in Section 4. Finally, we
conclude this work in Section 5.

4 Implementing and Benchmarking Word-Wise HE Schemes on GPU

2 Preliminaries

2.1 Notation
Let Z and C be the group of integers and complex number, and Zq = Z ∩ [−q/2, q/2). For
an integer q and a 2-power integer N , we denote the quotient ring as R = Z[X]/(XN + 1)
and the corresponding residue ring modulo q as Rq = R/qR. We use bold lower-case letters
to represent ring elements (polynomials) such as a =

∑N−1
i=0 aiX

i, where ai denote the
i-th coefficient of a. With a “hat” symbol such as â, we indicate that this element is in the
frequency domain. The notation b·c, d·e, b·e, and [·]q refer to flooring, ceiling, rounding,
and modular reduction by q, respectively, which can be extended to ring elements by
performing coefficient-wisely. We use ∗ to denote the convolution of two sequences and �
to denote the point-wise multiplication. For a finite set S, we use a $←S and a ← X to
denote sampling from S uniformly or according to a distribution X on S, respectively.

Throughout this paper, we use KeyGen, Enc, Dec, Ecd, and Dcd to denote the key gen-
eration, encryption, decryption, encoding and decoding of a HE scheme, respectively. The
function PreComp denotes the pre-computation process. The function HAdd (HMult) refers
to the ciphertext-ciphertext homomorphic addition (multiplication with relinearization),
CAdd (CMult) refers to the ciphertext-plaintext homomorphic addition (multiplication),
and HRot refers to the rotation operation. The Rescale conducts the rescaling operation
on ciphertexts.

2.2 Basics of BGV, BFV and CKKS
In this work, we implement the RNS variants of the three schemes. Below we use BGV,
BFV, and CKKS to denote for simplicity. The three schemes share several algebraic
similarities but differ in some design rationales and constructions. In the following, we
denote t as the plaintext modulus in BGV and BFV, the moduli chain Q = ΠL

i=0qi as the
ciphertext mudulus, and P = Πk−1

i=0 pi as the special mudulus. During processing, we set
the ciphertext mudulus to Q′. For leveled schemes BGV and CKKS, Q′ := Q` = Π`

i=0qi
when the ciphertext is at level `, 0 ≤ ` ≤ L. For scale-invariant scheme BFV, Q′ := Q.
The RNS-decomposition number is dnum := d(L + 1)/ke. For each `, let α := k and
β := d(l + 1)/αe. Below we give the specifications of the implemented schemes.

• Key generation . This module consists of the generation of public-secret key pair
denoted as (pk, sk), and the key-switching keys ksksk′→sk.

– Public-secret key pair. Sample a
$←RQ, s ← X , e ← Xe, and compute b :=

[−a · s + t′e]Q, where t′ := t for BGV and t′ := 1 for others. Set the public key
as pk := (b,a) ∈ R2

Q and the secret key as sk := (1, s) ∈ R2.

– Key-switching key. Given two secret keys sk = (1, s) and sk′ = (1, s′), sample
a′j

$←RPQ and e′j ← Xe, and compute b′j = [−a′j ·s+ t′e′j +PBj ·s′]PQ. Set the
key-switching key from sk′ to sk as ksksk′→sk := {(b′j ,a′j)}0≤j<dnum ∈ R2×dnum

PQ ,
where Bj ∈ ZQL

and satisfies that Bj = 1 (mod qi) for jα ≤ i < (j + 1)α and
is zero otherwise.

• Encryption. Given a public key pk = (b,a) ∈ R2
Q, sample r ← X and e0, e1 ← Xe,

compute Encpk(0) := [r · (b,a) + t′(e0, e1)]Q. To encryption a plaintext m, set
m∗ = [µm]t in BGV, m∗ = bQ/tc[m]t in BFV, or m∗ = m in CKKS, where µ is
the correction factor and we set µ := 1. The resulting ciphertext is ct := Encpk(m) :=
[Encpk(0) + (m∗, 0)]Q.

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu and Yunlei Zhao 5

• Decryption. Given a ciphertext ct = (c0, c1) ∈ R2
Q′ and a secret key sk = (1, s),

compute m′ := [c0 + c1 · s]Q′ . The decryption result is [µ−1m′] in BGV and m′ in
CKKS. While in BFV, the result is bt/Q′ ·m′c.

• Addition. Given two ciphertexts ct1 = (c(1)
0 , c

(1)
1) and ct2 = (c(2)

0 , c
(2)
1) in R2

Q′ , and a
plaintext x ∈ R, the plaintext-ciphertext addition is CAdd(ct1,x) := (c(1)

0 +[x]Q′ , c(1)
1).

The sum of two ciphertext is defined as HAdd(ct1, ct2) := [(c(1)
0 + c

(2)
0 , c

(1)
1 + c

(2)
1)]Q′

for all three schemes. For BGV, ct1 and ct2 should be scaled when the correction
factors are mismatched before addition.

• Multiplication. Given two ciphertexts ct1 = (c(1)
0 , c

(1)
1), ct2 = (c(2)

0 , c
(2)
1) ∈ R2

Q′ , a
plaintext x ∈ R, and the relinearization key rlk = ksksk2→sk, the plaintext-ciphertext
multiplication is defined as CMult(ct1, a) := [([x]Q′ · c(1)

0 , [x]Q′ · c(1)
1)]Q′ , and the

product of two ciphertexts is described as HMult(ct1, ct2) := [(c0, c1)+bP−1·c2·rlke]Q′ .
Let ct′ := (c(1)

0 · c
(2)
0 , c

(1)
0 · c

(2)
1 + c

(1)
1 · c

(2)
0 , c

(1)
1 · c

(2)
1), the triple (c0, c1, c2) is defined

as [ct′]Q′ in BGV and CKKS, and [b tQ′ ct′e]Q′ in BFV.

• Rotation. Given a ciphertext ct = (c0, c1) ∈ R2
Q′ that encrypts a plaintext m(X),

a rotation index ς and a rotation key rtkς = kskρς (sk)→sk, output the encryption
of m(ρς(X)) by computing HRot(ct, ς) := [(ρς(c0), 0) + ρς(c1) · rtkς]Q′ , where the
automorphism ρς : R→ R is defined by X 7→ X5ς .

Batching. Batching is a technique that supports SIMD operations on ciphertexts by
encoding multiple plaintexts into separate slots. Due to the different plaintext space, these
three schemes require different mappings to the slots, i.e., Rt = R/tR in BGV and BFV
and R = Z[X]/(XN +1) in CKKS. As XN +1 =

∏N−1
i=0 (X− ζ2i+1) mod t and the Chinese

Remainder Theory (CRT) establishes a natural ring isomorphism from Rt = Zt/(XN+1) to
the product space Zt/(X−ζ)×Zt/(X−ζ3)×· · ·×Zt/(X−ζ2N−1) ∼= ZNt , we can perform N
integer additions/multiplications modulo t via a single polynomial addition/multiplication
in Rt. Formally, the decoding in BGV and BFV is given by BatchDcd : Rt → ZNt , p(X) 7→
(p(ζ), p(ζ3), . . . , p(ζ2N−1)) and the encoding BatchEcd is defined to be the inverse, which
can be computed efficiently through an N -point NWT/INWT over Zt. While in CKKS
the transformation is conducted through two steps: R[X]/(XN + 1) σ−→H π−→CN/2. First,
the canonical embedding σ : p(X) 7→ (p(ξj))j∈Z∗2N

maps p(X) ∈ R[X]/(XN + 1) to
H = {(zj)j∈Z∗2N

: z2N−j = z̄j} ⊆ CN . Then, define T as a subgroup of the multiplicative
group Z∗2N with order N/2, the subring H can be identified with CN/2 via the natural
projection π : (zj)j∈Z∗2N

7→ (zj)j∈T . Through this we have the encoding and decoding
functions in CKKS, i.e., CKKSEcd(z ∈ CN/2; ∆) : CN/2 → R, z 7→ m = b∆ · σ−1(π−1(z))eR
and CKKSDcd(m ∈ R; ∆) : R→ CN/2,m 7→ z = π ◦ σ(∆−1 ·m), respectively. Here, the σ
map is performed through FFT and σ−1 is the inverse.

RNS Representation. The residue number system (RNS) is often applied to handle the
computation of elements larger than machine word-size. With the RNS base {q0, q1, . . . , q`},
a polynomial f ∈ RQ`

can be represented as (f0, . . . ,f`) ∈ Π`
i=0Rqi

, and multi-precision
arithmetic can be replaced by a set of residues-wise arithmetic through the isomorphism
RQ`

→ Rq0 × Rq1 × · · · × Rq`
. The RNS-friendly feature of BGV and CKKS allows

double-CRT representation of ciphertexts most of the time, i.e., (f̂0, . . . , f̂`) ∈ Π`
i=0Rqi

in
frequency domain. For BFV that additional RNS base conversions are needed to solve the
compatibility of some operations, it is better to store ciphertexts in the RNS representation.

6 Implementing and Benchmarking Word-Wise HE Schemes on GPU

Modulus-Switching. We define the modulus-switching as switching the modulus (equiv-
alently, RNS base) of a ring element from one to another. Two methods are commonly
utilized for fast RNS base conversion from Q` = {q0, q1, . . . , q`} to R = {r0, r1, . . . , rl−1},
i.e., the BEHZ-type [BEHZ17] and the HPS-type [HPS19], which are illustrated as:

• BEHZ: ConvBEHZ
Q`→R(x) =

([∑`
i=0 [xi · q̃i]qi

· q∗i
]
rj

)l−1

j=0
.

• HPS: ConvHPS
Q`→R(x) =

([∑`
i=0 [xi · q̃i]qi

· q∗i − νQ`
]
rj

)l−1

j=0
, ν =

⌊∑`
i=0 [xi · q̃i]qi

/qi

⌉
.

Here, q∗i = Q`/qi and q̃i = [q∗−1
i]qi

. The method to extend and reduce the RNS base
are based on this technique, defined as ModUpQ`→Q`∪R([c]Q`

) := ([c]Q`
, ConvQ`→R([c]Q`

))
and ModDownQ`∪R→Q`

([c]Q`
, [c′]R) := ([c]Q`

− ConvR→Q`
([c′]R)) · [R−1]Q`

, R = Πl−1
j=0rj .

Here, the term δ := R · [[ct]R ·R−1]t should be added to ensure the correctness for BGV.
The Rescale operation scales down the modulus of a given ciphertext ct ∈ R2

Q`
from Q`

to Q`−1 by computing ModDownQ`→Q`−1(ct).

Key-Switching. We implement an optimized key-switching procedure with the HPS tech-
nique [HPS19]. Given a key-switching key ksksk′→sk and a ciphertext ct′ = (c′0, c′1) ∈ R2

Q′

under sk′ = (1, s′), this procedure splits c′1 into β digits with baseD′j = {qjα, . . . , q(j+1)α−1}
for j ∈ [0, β−1) and D′β−1 = {qα(β−1), . . . , q`}, then it raises the base of each digit to Q′∪P ,
and computes ct = (c0, c1) =

[
(c′0, 0) +

⌊
P−1 · [

∑β−1
j=0 c

′
1,j · ksksk′→sk,j]PQ′

⌉]
Q′
∈ R2

Q′ .
Through this process, the ciphertext ct′ is transformed into ct that encrypts an approx-
imately equivalent message using another key sk = (1, s), i.e., 〈ct, sk〉 = 〈ct′, sk′〉 + eks,
where eks is the noise.

2.3 Polynomial Multiplication
The Fourier transform (F) and its inverse (F−1) build a bridge between operations in time
and frequency domain. Namely, the convolution in one domain corresponds to the point-wise
multiplication in the other domain, which can be expressed as f ∗ g = F−1 (F(f)�F(g)),
where f and g are two digit sequences in time domain. Instead of complex elements,
the number-theoretic transform (NTT) performs on a finite field of integers. In this
work, we apply a more generic form, i.e., the Number-theoretic Weighted Transform
(NWT) [CF94]. Formally, let ω be the primitive N -th root of unity in Zq such that
ωN ≡ 1 mod q and ωk 6= 1 mod q for all integers 0 < k < N , and denote the weight vector
d := {di : di 6= 0, di ∈ Z, i = 0, . . . , N − 1} and d−1 =

{
d−1
i mod q

}
, the N -point forward

and backward NWT of a polynomial f =
∑N−1
i=0 fiX

i is formulated as:

f̂ := NWTd,N (f), f̂j =
N−1∑
i=0

fidiω
ij (mod q),

f := INWTd,N (f̂), fi = 1
N · di

N−1∑
j=0

f̂jω
−ij (mod q).

Indeed, it turns out that NWTd,N (f) = NTTN (f � d) and INWTd,N (f̂) = d−1 � INTTN (f̂)
(mod q). NTT can be viewed as a special case for d = {1, . . . , 1}, and when d = {ψi : i =
0, . . . , N − 1}, where ψ =

√
ω mod q, it is equivalent to the negacyclic convolution. Com-

bined with the Fast Fourier Transform (FFT) technique, we can reduce the computational
complexity from O(N2) to O(N logN).

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu and Yunlei Zhao 7

Global Memory

Texture Cache

Constant Cache

Shared Memory

Processor 1
Registers

Processor 2
Registers

Streaming Multiprocessor
Execution Queue

CPU (Host)
Memory

GPU (Device)
Memory

Task 0 Task 1

GPU

Constants

Control

Task 0
Task 1

Case 1: PCIe Case 2:
Unified Memory

Case 3:
Kernel fusingData Flow

Figure 1: The CPU-GPU computational model and the architecture of GPU. The data
communication pattern commonly includes three cases: (1) case 1: transfer data in each
task through PCIe; (2) case 2: use unified memory that eliminate host-device data transfer;
(3) case 3: fuse kernels and hold data in GPU to omit some transfers.

Since the multiplication of polynomials f =
∑N−1
i=0 fiX

i and g =
∑N−1
i=0 giX

i produces
another polynomial h =

∑N−1
i=0 hiX

i of which the coefficients are the negacylic convolution
of the sequences {fi : i = 0, . . . , n− 1} and {gi : i = 0, . . . , n− 1}, this technique gives us
an efficient way to compute polynomial multiplication. Throughout this paper, we perform
the multiplication of two polynomials by f · g = INWT(NWT(f)� NWT(g)) with d = {ψi}
and the FFT technique.

2.4 GPU Programming

We summarize the computational model and the architecture of GPU in Figure 1. The
GPU memory can be classified into two types. The first is the read-write memory, including
the global memory (GMEM), the shared memory (SMEM), and the register file (RF),
where the access speed is from slow to fast as listed. The second is the read-only memory,
including the constant memory and the texture memory, and both of them can be cached.
A CUDA kennel is run concurrently on GPU by many threads, which is the minimum
execution unit and can be grouped into a block. Every thread has its private RF, and
the SMEM is shared by all threads within a block. The GMEM and read-only memory
are accessible for all threads, which have the longest lifetime that encompass the entire
computational task. During execution, threads are bundled per 32 in a warp. A streaming
multiprocessor (SM) holds multiple blocks, and each warp scheduler (WS) in the SM
schedules the warps and executes one at a time.

In a heterogeneous platform that equipped with CPU and GPU, a common and
straightforward collaborative computing mechanism is that the CPU schedules the tasks
in the execution queue, launches the corresponding kernels to the GPU and transfers
essential data through PCIe, and then waits for the GPU to execute and return the results.
Another type of platform utilizes unified memory by combining the CPU and GPU memory
together to eliminate data transfers. However, the first method may introduce unnecessary
data transfers when the tasks are non-independent, while the performance of the second
method is barely satisfactory despite the prefetch technique is allowed. In this case, fusing
data-dependent kernels can reduce the IO latency caused by data transfer and memory
access to some extent. For better performance, over-fusing should be prevented, as the
SM occupancy will decrease if the resource consumption of a block is too high.

8 Implementing and Benchmarking Word-Wise HE Schemes on GPU

Add Sub BitReverseMultiply Divide HammingWeight CompareShift Reduce

Conv_BEHZ

ScaleAndRoundDivideAndRound

FastBConv_m FastBConv_sk FastFloor

Salsa20

Sampling

CBD

Ternary

KeyGen
Public Key Secret Key

Key-switch Key Galois Key

Enc/Dec

EncryptSymetric

Encrypt

EncryptAsymetric

Decrypt

Encode
BatchEcd BatchDcd

CKKSEcd CKKSDcd

Add Multiply

MultAdd MultMany

TensorProduct TensorSquare

Sub

Homomorphic Operation

HSubMany

HAdd

HSub

HAddMany CAdd

CSub

HMult HSquareHMultMany CMult

HExpAutomorphism

HNegate

Key-switching

Mod-switching

Reline

RescaleHRot Conjugate

HAddNegate

PRNG

RNS
Arithmetic

NWT INWT-1D INWT-2DNWT-1D NWT-2DFFTFFT IFFT

Uniform R

RNS Base Conversion

Conv_HPS

ModUp ModDown

Memory

Memory
Pool

Pre-compute

Constants

FFT
Table

NWT
Table

Context

Figure 2: Structure of our benchmarking framework. The implemented functions are
organized into three layers, i.e., a math/polynomial layer, an RNS arithmetic layer and a
scheme layer.

3 Implementation Details and Optimizations
In this section, we present the implementation details of this work. First, we develop a
framework for implementing and benchmarking the three HE schemes. The architecture
of the framework is summarized in Sec 3.1. Then, we describe the design of some
essential modules from the low-level operations to the high-level schemes, covering the
implementation and optimization of kernels, and methods to adapt the three schemes.

3.1 Framework Structure
We show the structure of the implemented framework in Figure 2 to give a concise overview.
In functionality, it consists of two main parts, one serving for pre-computation and the
other containing the optimized implementation of the three HE schemes that can be
divided into three layers: a math/polynomial layer, a RNS arithmetic layer and a scheme
layer.

The basic layer contains the low-level modular operations for both 64-bit and 128-bit
integers, a pseudo-random generator and polynomial arithmetics. For the integer operations,
we provide well-optimized implementation written in CUDA PTX assembly to minimize
the number of machine instructions and register usage after compiling. Based on this, we
implement polynomial arithmetic, such as NWT and FFT for fast and low-complexity
computation. At the middle layer, we implement the sampling and RNS arithmetic
modules, of which the operands are polynomials under RNS or double-CRT representation.
The sampling module consists of three approaches for sampling polynomial coefficients
from ternary, uniform and centered binomial distribution. The RNS module offers efficient
polynomial arithmetics, and we implement common algorithms of both BEHZ- and HPS-
type base conversion. The top layer offers high-level unified implementation of the BGV,
BFV and CKKS schemes. For all schemes, our framework supports the following features:
(1) both symmetric and asymmetric encryption; (2) homomorphic addition, subtraction
and multiplication of two or multiple plaintexts and ciphertexts; (3) in-place homomorphic
exponentiation, negation, and rotation of a single ciphertext.

3.2 Sampling
The source of the random bytes is obtained from the output of a extendable-output
function (XOF). We first generate a 64-byte random seed in the device through the system

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu and Yunlei Zhao 9

API, which is then expanded through the XOF to generate enough pseudo-random bytes
for sampling polynomial coefficients. We implement a Salsa20/ChaCha-based [B+08]
pseudorandom number generator (PRNG) for the instantiation of the XOF.

The sampling module contains three widely adopted sampling approaches, i.e., a
centered binomial distribution sampling, a uniform sampling from ternary distribution
R3 and a uniform sampling from Rqi

, i ∈ {0, . . . , L}. The first features generating error
polynomials that have negligible statistic difference with Gaussian distributions in an
efficient and constant-time way by computing

∑η−1
j=0 (aj − bj), which refers to the hamming

difference of two η-bit integers a and b. In our implementation, we set η = 21, which
indicates the standard deviation

√
η/2 ≈ 3.24. In the implementation of uniform sampling

from Rqi
, we first use the PRNG to generate 64 pseudo-random bytes, which are equivalent

to eight 64-bit numbers, and then employ the rejection sampling method with a pre-set
threshold to obtain elements that meet the requirements of polynomial coefficient size.
The ternary sampling that produces elements in {−1, 0, 1} uniformly is used in asymmetric
encryption. We implement it in a way similar to the uniform sampling from Rqi , with the
difference that it does not require rejection.

3.3 NWT

We exploit two approaches to implement NWT, aiming at achieving high parallelism and
minimizing the total IO latency in the hierarchical memory of GPU for various magnitudes
of input data. In detail, we implement a 1-dimension (I)NWT and 2-dimension (I)NWT
that responsible for processing polynomials of N < 212 and N ≥ 212, respectively, with
each coefficient fits in the machine word size. The batching mode is also enabled so that
multiple polynomials can be transformed simultaneously. For the butterfly operation, we
follow the CUDA PTX assembly implementation in [SYL+22], which apply the algorithm
proposed by David Harvey [Har14] and the Shoup algorithm [Sho01] for fast modular
reduction. We illustrate the implementation details below.

The first classical NWT-1D approach forms one kernel and is designed for polynomials
with small dimension. The main consideration is to exert the maximum parallelism in a
block and at the same time reduce the data access of the GMEM. For both NWT-1D and
INWT-1D kernels, we instantiate them with 1024 threads, which is the maximum number
of threads that a block can hold. Each thread loads 2 coefficients to the registers and
performs a radix-2 butterfly operation on the residues. Except for the first and last layers,
data transfer in each layer is performed only between the RF and the SMEM, which offers
relatively low data access latency. This method balances the parallelism and number of
launched kernels well, and calling it recursively to process polynomials with N ≥ 212 is
straightforward. However, recursive calling is not generic enough and require GMEM
access of the entire polynomials between two kernels. With the increase of N , it introduces
significant overhead of GMEM access and will lead to performance degradation.

Thus, in the hierarchical NWT-2D approach that we used for the cases N ≥ 212, we
follow the design rationale of [KJPA20,JKA+21,SYL+22] that divide the N -point NWT
process into two parts through choosing suitable N1 and N2, where N = N1N2. Let
ψ2N ≡ 1 mod q, the NWTd,N and INWTd,N with d = {ψi : i = 0, . . . , N − 1} can be
formulated as:

10 Implementing and Benchmarking Word-Wise HE Schemes on GPU

...
...

...

Level
...

...
...

...
...

Convert
Matrix

...

...

...

...

...

...

RNS base
converter

For HPS
technique

Moduli chain Moduli management

...

Auxiliary BEHZ HPSKey-switching

For BEHZ
technique

Figure 3: Design of the RNS base management module and base converter in our framework.
The auxiliary base and the base converter are initialized depending on the conversion type
of BEHZ or HPS.

x̂k1+N1k2 =
N2−1∑
n2=0

N1−1∑
n1=0

xn1N2+n2ψ
2(n1N2+n2)(k1+N1k2)+(n1N2+n2)
N (mod q)

=
N2−1∑
n2=0

(
ψ2n2k1+n2
N ·

(
N1−1∑
n1=0

xn1N2+n2ψ
2n1k1+n1
N1

))
ψ2n2k2
N2

xn1N2+n2 = 1
N1N2

N2−1∑
k2=0

N1−1∑
k1=0

x̂k1+N1k2ψ
−2(n1N2+n2)(k1+N1k2)−(n1N2+n2)
N (modq)

= 1
N1

N1−1∑
k1=0

(
ψ−2n2k1−n2
N · 1

N2

(
N2−1∑
k2=0

x̂k1+N1k2ψ
−2n2k2
N2

))
ψ−2n1k1−n1
N1

Through this process pattern, we implement two kernels that are responsible for the
computation of the two sub-procedures respectively. This approach significantly decreases
the number of total GMEM access and reduces IO latency, since we only need to access
GMEM between two kernels. In each block, we launch 256 threads and each thread loads 8
coefficients to the RF and performs a radix-8 butterfly operation. Different from previous
works, where both [KJPA20] and [JKA+21] only support |N | ∈ [14, 17], and [SYL+22]
supports |N | ∈ [11, 17] but fixes N2 = 211, our implementation can handle polynomials of
|N | ≤ 17 and is more flexible.

3.4 RNS Base Management
We implement an RNS base management module to provide direct access and conversion
of ciphertext moduli, of which the structure is shown in Figure 3. This module consists of
two parts. The first part provides access to the RNS bases at each level, including the
ciphertext base Q, the base P for key-switching, and the auxiliary base. The second part
is implemented to offer pre-computed values for base conversions used in operations such
as key-switching and division-and-rounding. The instantiation is according to the pre-set
base conversion technique, i.e., BEHZ [BEHZ17] or HPS [HPS19].

Modulus-switching. To switch the RNS base of an element x from baseQ` = {q0, q1, . . . , q`}
to R = {r0, r1, . . . , rl−1}, we implement both ConvBEHZ

Q`→R(x) and ConvHPS
Q`→R(x). Since the

computational flow has different dimensions for parallel execution, i.e., (`+ 1)-parallelism
or l-parallelism, implementing one kernel and setting the parallelism directly to one of
the values can lead to some computations being repeatedly executed. Based on this
consideration, we implement two kernels for the RNS base conversion. In the first kernel,
we compute [xi · q̃i]qi and utilize (` + 1) · N threads. In the second kernel, we launch

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu and Yunlei Zhao 11

base base base base base

base base base

... ...

...

&

&
base

...

...

(a) Optimized key-switching procedure.

RNS Base ModUp

INWT

NWT

Inner Product

INWT

Scale & NWTDivision-and-
Rounding

Add

Forward
NWT Table

Switch Key

Inverse
NWT Table

BFV BGV

ModDown

Add

ModDown

CKKS

Scale & NWT

ModDown &
Correction

Add

(b) Generic design of key-switching module.

Figure 4: The computational flow and generic design of the key-switching module for three
schemes. We use the symbol “&” to mark the fused operation in our implementation.

l ·N threads to compute the modular multiplication with q∗i and the accumulation. We
store the accumulated values in the RF and reduce the number of modular reductions
by lazy reduction. Each thread takes a polynomial coefficient and multiplies it with the
corresponding elements of the conversion matrix, which are pre-computed and provided by
the base converter. For HPS-type conversion, we fused the process of subtracting [νQ]R
into the second kernel. In this case, each thread also needs to compute ν as an index to
obtain the value of [νQ]R from the converter and subtract it from the result.

3.5 Key-Switching
The hybrid key-switching technique is first proposed for CKKS in [HK20] and then
introduced into BGV and BFV in [KPZ21]. It is the most practical method, which has
been demonstrated in the work [JKA+21] on accelerating CKKS with GPUs. In our
implementation, we first utilize two technique to obtain a more efficient key-switching
procedure. Then, we give a generic design compatible with the three schemes and methods
to optimize the memory usage.

Optimized Key-Switching Procedure. We first recall the original design in [HK20,
JKA+21]. Denote Dj = Πα−1

i=0 qjα+i, D∗ = Παβ−1
i=`+1qi, Q∗j = QL/Dj , and Q̃j = [Q∗−1

j]Dj .
Given the ciphertext ct′ = (c′0, c′1) ∈ R2

Q`
under sk′ = (1, s′), this procedure first raise

the modulus of c′1 to the nearest Πβ−1
j=0Dj by multiplying D∗, such that Πβ−2

j=0Dj < Q` ≤
Πβ−1
j=0Dj . Then, the polynomial is divided into β digits. Afterwards, it raises the modulus

of each digit to Qαβ−1P to multiply with the ksksk′→sk, and at last reduce the modulus
of the accumulation result to Q`. In our implementation, we eliminate the Modup of c′1,
i.e., we keep the base of c′1 in Q` and extend the base of each digit to Q`P. This saves
αβ − `− 1 (I)NWTs and point-wise multiplications of polynomials. Additionally, we apply
the HPS technique [HPS19] by setting Bj = Q̃jQ

∗
j in the generation of key-switching keys,

j ∈ [0, β), as illustrated in Sec 2.2. With this optimization, we do not need to perform the
scalar multiplication with Q̃j and the RNS decomposition is executed implicitly without
additional consumption.

12 Implementing and Benchmarking Word-Wise HE Schemes on GPU

Generic Design. The homomorphic multiplication and rotation over ciphertexts both
change the underlying secret key implicitly, but differ in the input formats. Meanwhile, the
ciphertexts of the three schemes are kept in different representations. This motivates us to
explore a generic design that is compatible with all HE operations of the three schemes. In
detail, the homomorphic multiplication yields a triple (c0, c1, c2) under secret key (1, s2),
and the automorphism ρς applied in rotation produces (ρς(c0), ρς(c1)) under (1, ρς(s)).
Thus, we unify the input of key-switching module to (g0, g1, g2), and instantiate it as
(c0, 0, c1) in normal switching case and (c0, c1, c2) in relinearization. Figure 4b shows
the details of our design. We adapt the entire procedure to three steps. First, for the
schemes BGV and CKKS that keep the ciphertexts in the double-CRT representation, we
transform them to the normal domain before ModUp by INWT. Then, we perform the same
computational sequences for all three schemes, i.e. digit-wise ModUp, NWT, inner product,
and INWT. At last, we apply three branches to handle different cases of the three schemes,
containing the ciphertexts representation, the multiplication of P−1, and the correction in
ModDown for BGV.

Kernel Fusing. Here, we apply three types of kernel fusing to optimize the data access
pattern. First, we adapt data copy in ModUp to fuse the Memcpy operations of base
conversion results and digits to reduce IO latency. The ModUp operation concatenates the
original digit with the RNS base conversion result of the digit. To simplify the computation,
we need to adjust the storing order of the residues to follow the order of the modulus
chain. Second, in the ModDown operation for BGV, we fuse the addition of the correction
term δ := P · [[ct′]P · P−1]t into the residue-wise subtraction of the base conversion results.
The main consideration is that they have the same parallelism and the modular addition
and subtraction here are performed on the same modulus qi. Third, we fuse the scaling
operation into the NWT in schemes BGV and CKKS, as the BFV applies a different method
to deal with this operation. In the fused kernels, most of the intermediate values between
two processes are held in registers to achieve minimum IO latency, reducing the overall
data access to the residues. Each block utilizes 256 threads to ensure sufficient SMEM
and register resource allocation.

3.6 Homomorphic Multiplication

The multiplication of two given ciphertexts ct1 = (c(1)
0 , c

(1)
1), ct2 = (c(2)

0 , c
(2)
1) ∈ RQ′

consists of two phases of tensor product and relinearization. Figure 5 gives the concise
design for the first phase, in which we obtain the triple ct′ = (d0,d1,d2) := (c(1)

0 ·c
(2)
0 , c

(1)
0 ·

c
(2)
1 + c

(1)
1 · c(2)

0 , c
(1)
1 · c(2)

1). For BGV and CKKS, since we keep the ciphertext under
double-CRT representation, there is no need for NWT/INWT transformation before
and after the tensor product compared to BFV of which the ciphertexts are under RNS
representation. The main reason for this is that BFV needs the scaling [b tQ′ ct′e]Q′ , which
the BEHZ- [BEHZ17] and HPS-variant [HPS19] adopt different methods to adapt.

In the tensor product kernel, we consider all possible circumstances, depending on
the size of the input ciphertexts. The default and more recommended case is that every
ciphertext contains two ring elements, since a large size leads to more consumption
for computation and memory. The common method to compute d̂1 is implemented by
d̂1 = [ĉ(1)

0 � ĉ
(2)
1]Q′ + [ĉ(1)

1 � ĉ
(2)
0]Q′ . In our implementation, we apply the Karatsuba

technique [KO62] by first computing d̂′1 = [(ĉ(1)
0 + ĉ

(1)
1)� (ĉ(2)

0 + ĉ
(2)
1)]Q′ , and then obtain

d̂1 through d̂1 = [d̂′1 − d̂0 − d̂2]Q′ . As the 128-bit product result is obtained through two
64-bit CUDA PTX instructions, the eliminated point-wise multiplication by Karatsuba
technique actually trades two 64-bit multiplication instructions by cheaper addition and
shift-right instructions per coefficient.

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu and Yunlei Zhao 13

Tensor Product

NWT

Sm_mrq

NWT

Tensor Product

INWT

FastFloor

Forward
NWT Table

Inverse
NWT Table

NWT

Sm_mrq

NWTForward
NWT Table

BFV-BEHZ CKKS

copy copy

BFV-HPS

NWT NWTForward
NWT Table

BGV

INWT

ScaleAndRound

Inverse
NWT Table

Figure 5: Homomorphic multiplication for three schemes. We apply four branches to make
the module compatible with BGV, CKKS, and two variants of BFV.

BFV variants. To solve the compatibility of division-and-rounding with RNS, both BEHZ-
and HPS-variant require an auxiliary base, denoting as Bsk ∪ m̃ and R respectively, as well
as the modulus-switching to the extended base and to the original base Q′ before and after
the tensor product. Since the most time-consuming parts are the NWT/INWT and the
tensor product, the overall difference in computational overhead between these two variants
is not significant. However, the memory consumption is different. The BEHZ-variant
requires three base converters, including Q′ → Bsk ∪ m̃, Q′ → Bsk, and Bsk → Q′, while
the HPS-variant needs Q′ → R and R → Q′. For base conversion Q → R, each converter
pre-computes {[q̃i]qi

, [q∗i]rj
} for BEHZ-variant and {[q̃i]qi

, [q∗i]rj
, [νQ′]rj

} for HPS-variant.
Additionally, the HPS-variant also needs pre-computation of [tRq̃i/qi]rj

and tRq̃i/qi.

4 Performance Evaluation and Comparison
In this section, we present the performance of the three HE schemes and the comparisons
with related works. We compile the implementations using g++ 12.2.0 and CUDA 11.8
on Arch Linux with kernel 5.15. All experiments are performed on an Intel(R) Core(TM)
i9-12900KS CPU with 16 cores and a single NVIDIA GeForce RTX 3090 Ti GPU with
10752 CUDA cores. The performance results are the median of 100 tests. All paramter
sets that we used to evaluate the performance of schemes achieve 128 bit security, except
in testing the key-switching procedure (in Table 2), for maintaining the same parameter
configuration with [JKA+21].

We compare our GPU implementation with the works [ABVMA18,JKA+21], which are
the state-of-the-art implementations of BFV and CKKS, respectively. The work [JKA+21]
open-sources some code of the lower-level operations of CKKS, and we run their code on
our GPU to compare the performance. For the performance of the high-level homomorphic
operations that are closed-source, we used the data provided in their papers. In [FWX+22],
the authors present a GPU implementation of CKKS using Tensor Core Units. We do not
compare our impelemtation with this work because they implement 32-bit arithmetic. The
claimed speedup over [JKA+21] comes largely from the data type, as [JKA+21] focuses on
64-bit arithmetic.

14 Implementing and Benchmarking Word-Wise HE Schemes on GPU

Table 2: Performance break down of the hybrid key-switching module of our CKKS
implementation and [JKA+21] on RTX 3090 Ti GPU. The functions ModUp, Product, and
ModDown denote the modulus-raising, inner product, and modulus-down, respectively.

Execution time (µs) Speedup
[JKA+21] Our work

|N | 16 16 16 16 16 16 16
|Q| 2260 2260 2260 2260 2260 2260 2260
|QP | 3160 3160 3160 3160 3160 3160 3160
` 44 44 42 39 36 33 30
k 15 15 15 15 15 15 15

dnum 3 3 3 3 3 3 3
ModUp 10771 1068 1042 967 912 837 787

Product 367 366 354 338 317 299 280
ModDown 385 384 375 355 338 316 292
Total ≥ 22142 2202 2146 2015 1905 1768 1651 > 1.3×

1This is obtained from our fixed version because multipling q̃i is missing in the released code.
2We estimated this result since the open source code and the paper do not provide it.

Performance of arithmetics. We report the performance of the key-switching module
and the comparison with [JKA+21] in Table 2. Because the authors do not open source
the complete implementation of key-switching, we compare the three steps of it. In their
implementation, the ModUp and Product perform on two ring elements and the ModDown
performs on one ring element. We follow this logic flow for fair comparison. Besides the
three steps, the method used in [JKA+21] requires RNS decomposition before ModUp, which
introduces no additional overhead in our implementation (see Figure 4a). Nevertheless,
we achieved a speedup with the same parameter configuration and moduli chain. As
the level of the ciphertext decreases, the execution time of [JKA+21] remains essentially
the same because the modulus that the digits raised to is unchanged. In this case, our
implementation demonstrates better performance since the total time gradually decreases
along with the drop of the modulus, which can speedup the key-switching procedure by
more than 1.3×.

Performance of BGV. We summarize the performance of our BGV implementation in
Table 3. Since there is little comparable work currently that provides a complete GPU
implementation of BGV, we only provide the performance of our implementation obtained
on our platform. In general, the most time-consuming modules are the homomorphic
operations that require key-switching, and the execution time of the scheme functions
is relatively small. We provide the performance of two cases with different dnum when
|N | > 12. Note that choosing a smaller dnum leads to a smaller multiplication depth for
leveled HE schemes at the same security level.

Performance of BFV. In Table 4, we list the performance of our BFV-BEHZ and BFV-
HPS implementation, and the comparison with [ABVMA18]. Because the authors do not
implement HRot, the time for generating rtk is not included in the total execution time of
the KeyGen provided in their paper. Compared to their work, we offer more functionality
as well as larger parameter sets, such as enabling the hybrid key-switching technique.

Similar to BGV, BFV has a plaintext modulus and performs over finit field. However,
in the asymmetric encryption Enc, since BFV does not need to deal with the correction
in ModDown, the computational overhead of this function is smaller compared to BGV in
which the correction is required. Moreover, according to our experimental results, the
HPS-variant performs better compared with the BEHZ-variant in the Dec and HMult

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu and Yunlei Zhao 15

Table 3: Performance of our BGV implementation on NVIDIA RTX 3090 Ti GPU.
Execution time (µs)

|N | 12 13 13 14 14 15 15 16 16
|Q| 70 105 142 259 260 500 550 820 980
|QP | 107 216 216 436 380 860 850 1,420 1,460
L 1 2 3 5 5 11 14 19 23
k 1 3 2 3 2 6 5 10 8

dnum 2 1 2 2 3 2 3 2 3
KeyGensk 25 30 30 35 36 91 100 300 316
KeyGenpk 38 46 46 54 53 144 159 453 477
KeyGenrlk 80 52 95 115 163 302 489 933 1,470
KeyGenrtk 76 51 89 110 159 310 467 895 1,374

Ecd 24 28 28 37 37 52 53 86 86
Dcd 32 37 38 43 43 67 67 100 101
Enc 185 226 241 309 305 755 853 2,024 2,218
Dec 22 24 26 29 29 71 85 225 267
HAdd 5 5 5 6 6 26 31 75 88
CAdd 32 51 67 96 96 242 302 407 487
HMult 150 143 168 194 218 451 566 1,369 1,713
CMult 34 53 69 99 99 254 317 443 530
HRot 150 142 165 192 216 419 530 1,276 1,603

functions.

Performance of CKKS. We provide our GPU implementation of CKKS and the com-
parison with [JKA+21] in Table 5. The CKKS scheme allows input types of rational
numbers and, unlike BGV and BFV, it does not require a plaintext modulus. This leads
to slower encoding and decoding of the inputs, where the (I)FFT needs to be computed.
Additionally, since CKKS does not need to raise the modulus of plaintexts to add with
ciphertexts in the CAdd function, the overall computational overhead difference of its
homomorphic addition is not significant. Keeping the ciphertexts in the double-CRT
representation makes CKKS has lower complexity in the implementation of operations
such as homomorphic multiplication, which shows an advantage in speed compared to
BFV.

5 Conclusion

In this work, we propose optimized GPU implementations of three word-wise HE schemes
BGV, BFV and CKKS, and evaluate the performance on the same platform. We reduce
the computational and memory overhead of operations and show methods to achieve
optimal performance under parameters of different magnitudes. We develop a framework
to integrate the implementation of the three schemes. This framework provides sound pre-
computation, RNS bases management, and memory management. We illustrate reusing
and kernel fusing approaches to tune the operations to be compatible with the three
schemes on GPU. Finally, we provide a thorough benchmark of the implemented schemes.
For the deployment of HE schemes in privacy-preserving applications, our experimental
results provide a reference for scheme selection and implementation.

16 Implementing and Benchmarking Word-Wise HE Schemes on GPU

Table 4: Performance of our BFV implementation and the comparison with [ABVMA18].
The performance of [ABVMA18] is obtained on an NVIDIA Tesla P100 GPU.

Execution time (µs)
[ABVMA18] Our work

|N | 14 12 13 13 14 14 15 15 16 16
|Q| 720 72 105 144 270 270 516 645 900 1,080
|QP | 109 216 218 417 368 798 880 1500 1,560
` 12 1 2 3 5 5 11 14 19 23
k 1 3 2 3 2 6 5 10 8

dnum 2 1 2 2 3 2 3 2 3
KeyGensk 30 28 28 35 35 93 99 276 294
KeyGenpk 174,508 43 42 42 51 51 142 151 411 436
KeyGenrlk 80 48 87 108 156 298 468 858 1,356
KeyGenrtk 75 49 88 110 158 309 468 893 1,377

Ecd 24 26 26 36 37 50 50 85 85
Dcd 31 36 37 42 44 67 66 101 99
Enc 3,296 90 102 102 144 141 413 461 1,308 1,400

DecBEHZ 252 48 48 48 58 58 112 131 362 430
DecHPS 39 40 40 51 48 96 110 308 366
HAdd 53 5 5 5 6 6 25 30 75 88
CAdd 6 7 7 12 12 37 45 111 129

HMultBEHZ 11,747 433 429 460 573 601 1,286 1,641 4,083 5,093
HMultHPS 175 185 196 325 325 949 1,295 3,398 4,697

CMult 77 80 79 88 88 164 183 493 589
HRot 103 82 111 138 169 359 488 1,125 1,466

Table 5: Performance of our CKKS implementation and the comparison with [JKA+21].
The performance of [JKA+21] is obtained on an NVIDIA Tesla V100 GPU.

Execution time (µs)
[JKA+21] Our work

|N | 16 12 13 13 14 14 15 15 16 16
|Q| 1,693 70 105 142 259 260 500 550 820 980
|QP | 2,364 107 216 216 436 380 860 850 1,420 1,460
` 32 1 2 3 5 5 11 14 19 23
k 11 1 3 2 3 2 6 5 10 8

dnum 3 2 1 2 2 3 2 3 2 3
KeyGensk 30 28 28 35 35 93 100 278 316
KeyGenpk 43 42 42 52 51 142 152 411 442
KeyGenrlk 81 48 87 110 157 298 468 859 1,355
KeyGenrtk 82 49 88 111 158 309 480 895 1,388

Ecd 97 113 115 138 138 205 209 375 393
Dcd 84 95 97 133 131 442 1,167 10,164 15,995
Enc 141 155 154 196 191 452 486 1373 1,469
Dec 5 5 5 6 6 22 29 75 88
HAdd 162 5 5 5 6 6 24 31 75 89
CAdd 3 3 3 4 4 13 16 38 45
HMult 2,960 139 125 149 178 203 382 484 1,119 1,445
CMult 135 5 5 5 7 7 26 32 75 89

Rescale 490 69 70 72 79 79 141 159 374 437
HRot 2,550 140 124 148 176 201 348 447 1,026 1,329

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu and Yunlei Zhao 17

References
[ABPA+21] Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj Veeravalli,

and Kurt Rohloff. Implementation and performance evaluation of rns variants
of the bfv homomorphic encryption scheme. IEEE Transactions on Emerging
Topics in Computing, 9(2):941–956, 2021.

[ABVL+21] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan Xiao, Matsumura
Kazuaki, and Aung Khin Mi Mi. Multi-gpu design and performance evaluation
of homomorphic encryption on gpu clusters. IEEE Transactions on Parallel
and Distributed Systems, 32(2):379–391, 2021.

[ABVMA18] Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun, and Khin Mi Mi
Aung. High-performance fv somewhat homomorphic encryption on gpus: An
implementation using cuda. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(2):70–95, 2018.

[B+08] Daniel J Bernstein et al. Chacha, a variant of salsa20. In Workshop record
of SASC, volume 8, pages 3–5. Lausanne, Switzerland, 2008.

[BEHZ17] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca.
A full rns variant of fv like somewhat homomorphic encryption schemes. In
Selected Areas in Cryptography - SAC 2016, Lecture Notes in Computer
Science, pages 423–442, 2017.

[BGBE19] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy
preserving inference. pages 812–821, 2019.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. In Innovations in Theoretical
Computer Science 2012, pages 309–325, 2012.

[BHM+20] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin
Mi Mi Aung. Privft: Private and fast text classification with homomorphic
encryption. IEEE Access, 8:226544–226556, 2020.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical gapsvp. In Advances in Cryptology - CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 868–886, 2012.

[CF94] Richard Crandall and Barry Fagin. Discrete weighted transforms and large-
integer arithmetic. Mathematics of computation, 62(205):305–324, 1994.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Tfhe: Fast fully homomorphic encryption over the torus. Journal of
Cryptology, 33(1):34–91, 2020.

[CHK+19] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A full rns variant of approximate homomorphic encryption. In Selected
Areas in Cryptography - SAC 2018, Lecture Notes in Computer Science,
pages 347–368, 2019.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Advances in Cryptology
- ASIACRYPT 2017, volume 10624 of Lecture Notes in Computer Science,
pages 409–437, 2017.

18 Implementing and Benchmarking Word-Wise HE Schemes on GPU

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection
from homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017, pages 1243–1255, 2017.

[DGBL+16] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, volume 48
of JMLR Workshop and Conference Proceedings, pages 201–210, 2016.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomor-
phic encryption in less than a second. In Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, pages 617–640, 2015.

[ful22] FullRNS-HEAAN. https://github.com/KyoohyungHan/FullRNS-HEAAN,
January 2022.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-
phic encryption. IACR Cryptol. ePrint Arch., page 144, 2012.

[FWX+22] Shengyu Fan, Zhiwei Wang, Weizhi Xu, Rui Hou, Dan Meng, and Mingzhe
Zhang. Tensorfhe: Achieving practical computation on encrypted data using
gpgpu. arXiv preprint arXiv:2212.14191, 2022.

[Gen09a] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stan-
ford University, 2009.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, 2009.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of
the aes circuit. In Advances in Cryptology - CRYPTO 2012, volume 7417 of
Lecture Notes in Computer Science, pages 850–867, 2012.

[Har14] David Harvey. Faster arithmetic for number-theoretic transforms. Journal
of Symbolic Computation, 60:113–119, 2014.

[hea23] HEAAN. https://github.com/snucrypto/HEAAN, January 2023.

[HEl23] HElib. https://github.com/homenc/HElib, January 2023.

[HK20] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate
homomorphic encryption. In Topics in Cryptology - CT-RSA 2020, Lecture
Notes in Computer Science, pages 364–390, 2020.

[HPS19] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved rns variant of
the bfv homomorphic encryption scheme. In Topics in Cryptology - CT-RSA
2019, volume 11405 of Lecture Notes in Computer Science, pages 83–105,
2019.

[JKA+21] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho
Lee. Over 100x faster bootstrapping in fully homomorphic encryption
through memory-centric optimization with gpus. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(4):114–148, 2021.

https://github.com/KyoohyungHan/FullRNS-HEAAN
https://github.com/snucrypto/HEAAN
https://github.com/homenc/HElib

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu and Yunlei Zhao 19

[KJPA20] Sangpyo Kim, Wonkyung Jung, Jaiyoung Park, and Jung Ho Ahn. Ac-
celerating number theoretic transformations for bootstrappable homomor-
phic encryption on gpus. In IEEE International Symposium on Workload
Characterization, IISWC 2020, pages 264–275, 2020.

[KO62] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-
digital numbers by automatic computers. In Doklady Akademii Nauk, volume
145, pages 293–294, 1962.

[KPZ21] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomorphic en-
cryption schemes for finite fields. In Advances in Cryptology - ASIACRYPT
2021, Lecture Notes in Computer Science, pages 608–639, 2021.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. Journal of the ACM, 60(6):1–35, 2013.

[LZS18] Wen-jie Lu, Jun-jie Zhou, and Jun Sakuma. Non-interactive and output
expressive private comparison from homomorphic encryption. In Proceedings
of the 2018 on Asia Conference on Computer and Communications Security,
AsiaCCS 2018, pages 67–74, 2018.

[ope23] OpenFHE. https://github.com/openfheorg/openfhe-development, Jan-
uary 2023.

[PAL23] PALISADE. https://gitlab.com/palisade, January 2023.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision, 115(3):211–252,
2015.

[SEA23] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, Jan-
uary 2023. Microsoft Research, Redmond, WA.

[Sho01] Victor Shoup. NTL: A library for doing number theory. https://libntl.
org, 2001.

[SYL+22] Shiyu Shen, Hao Yang, Yu Liu, Zhe Liu, and Yunlei Zhao. CARM:
CUDA-accelerated RNS multiplication in word-wise homomorphic encryption
schemes for internet of things. IEEE Transactions on Computers, 2022.

https://github.com/openfheorg/openfhe-development
https://gitlab.com/palisade
https://github.com/Microsoft/SEAL
https://libntl.org
https://libntl.org

	Introduction
	Preliminaries
	Notation
	Basics of BGV, BFV and CKKS
	Polynomial Multiplication
	GPU Programming

	Implementation Details and Optimizations
	Framework Structure
	Sampling
	NWT
	RNS Base Management
	Key-Switching
	Homomorphic Multiplication

	Performance Evaluation and Comparison
	Conclusion

