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Abstract—Many applications in finance and healthcare need
access to data from multiple organizations. While these orga-
nizations can benefit from computing on their joint datasets,
they often cannot share data with each other due to regula-
tory constraints and business competition. One way mutually
distrusting parties can collaborate without sharing their data
in the clear is to use secure multiparty computation (MPC).
However, MPC’s performance presents a serious obstacle for
adoption as it is difficult for users who lack expertise in
advanced cryptography to optimize. In this paper, we present
Silph, a framework that can automatically compile a program
written in a high-level language to an optimized, hybrid MPC
protocol that mixes multiple MPC primitives securely and
efficiently. Compared to prior works, our compilation speed
is improved by up to 30000×. On various database analytics
and machine learning workloads, the MPC protocols generated
by Silph match or outperform prior work by up to 3.6×.

1. Introduction

Advanced analytics and machine learning have become
the dominant approach to solving many problems. To pro-
duce accurate results, these techniques require access to
large amounts of high quality data. Unfortunately, obtaining
sufficient volumes of data is challenging in many areas, such
as healthcare and finance, because most high-value data is
owned by and split across multiple organizations. While
collaboration can enable organizations access to larger and
higher quality datasets than what is available to any one
organization, potential participants often own sensitive data
that cannot be shared due to privacy concerns, business
competition, and/or regulatory policies [30], [14].

Cryptographers have made significant progress towards a
cryptographic approach to this problem called secure multi-
party computation (MPC) [72], [7], [22], [34], [40], [41],
[44], [51], [71]. At a high level, MPC allows n parties
p1, . . . , pn with corresponding inputs x1, . . . , xn to learn the
output of a public function f(x1, . . . , xn) without revealing
each party’s xi to other parties. In fact, at the end of the
computation, each party only learns the final result of the
computation without uncovering any additional information
about other parties’ data or the intermediate results.

• ∗Equal contribution.

While promising in theory, MPC’s concrete performance
presents a serious obstacle for adoption as the techniques
have high computation and communication costs. Addi-
tionally, no single MPC primitive performs the best for
all workloads under all deployment settings. For example,
arithmetic secret sharing [26], [23] can efficiently evaluate
operations like matrix multiplication and convolutions, but
is inefficient for non-linear operations like ReLU, sigmoid,
and tanh. On the other hand, garbled circuits [72], [71] can
efficiently evaluate non-linear operations but are inefficient
for linear arithmetic operations. In many complex programs,
both types of operations are often present, thus single-
primitive protocols can be very inefficient.

In order to improve MPC performance, researchers have
designed a number of hand-tuned, workload-specific proto-
cols that combine multiple MPC primitives within a single
application [10], [50], [52], [36], [59], [32], [31], [47].
For example, recent MPC protocols for neural network
inference [36], [49], [43], [47] use a combination of ho-
momorphic encryption, secret sharing, and garbled circuits.
However, creating such protocols by hand is labor intensive
and slow, making it difficult for users to quickly deploy
MPC for their applications.

In response, MPC compilers aim to automate the process
of generating workload-specific MPC protocols from user-
provided programs that are written in a high-level language
like C [16], [13], [35]. These tools focus on automatically
mixing different MPC primitives in order to generate ef-
ficient hybrid MPC protocols. The optimization problem
(called hybrid protocol assignment) aims to automatically
assign code segments to MPC primitives and insert secure
conversions between different primitives, while minimizing
the predicted cost.

The fundamental challenge faced by such compilers
is how to efficiently, scalably, and accurately generate
workload-specific, hybrid protocols. Ultimately, each step in
the computation must be assigned a primitive. Finding an
optimal assignment might require fine-grained reasoning:
considering each step individually. However, this is slow
for large programs, so past compilers introduce many re-
strictions. Some tools use hardcoded heuristics and coarse-
grained reasoning based on syntactic structures [16], [13].
Others place limits on the number of MPC primitives used
within a single program [35].

In this paper, we present Silph, a new hybrid protocol



compiler for MPC that effectively Scales hybrid protocol
assignment using ILP and other effective Heuristic-based
tools. We exploit two insights in designing our techniques.
First, heavyweight optimization machinery for protocol as-
signment is justified because MPC computation and commu-
nication cost varies widely over primitives; inappropriately
selecting MPC primitives can cause orders of magnitude
slowdown for complex applications [13]. Our second insight
is that the protocol assignment problem can be expressed
as an optimization problem. Unlike in plaintext programs,
control flow in MPC programs is data-independent, making
it easy to formulate well-posed optimization problems over
data without making assumptions about program inputs.
These two insights lead us to a compilation approach that
uses heavyweight optimization tools to find accurate proto-
col assignments.

We begin by observing the protocol assignment opti-
mization problem is a perfect fit for mixed integer linear
programming (ILP) because it can model operation costs,
assignment decisions, and conversion constraints. Therefore,
formulating protocol assignment as an ILP problem and
solving it using an ILP solver is a natural solution. We
can derive the ILP constraints from a computation’s in-
termediate representation (IR) term graph, allowing us to
find a fine-grained protocol assignment for each step in
a computation. We first design two new ILP formulations
that have performance and accuracy tradeoffs. The first ILP
formulation restricts each IR term to be assigned to a single
MPC primitive. However, while this restrictive formulation
can be solved faster, it is not optimal when the cost models
have expensive conversion costs such that forcing a single
assignment with conversions is worse than assigning a term
to multiple primitives. Therefore, we design a second ILP
formulation that removes this assumption by altering the
first ILP’s constraints.

Unfortunately, we quickly run into a performance ob-
stacle by taking such a fine-grained approach to protocol
assignment because ILPs are not easily scalable to large
programs. Even worse, since our IR graph is equivalent
to a low-level circuit representation, which exacerbates the
scalability problem by greatly increasing the number of IR
terms.

Therefore, we devise two techniques to improve scal-
ability while maintaining assignment accuracy. First, we
reduce the maximum input problem size to the ILP solver
by partitioning a program’s IR graph into local partitions.
Unlike prior works, we find that a good partitioning does
not necessarily correspond to syntactic structure specified at
the input program level. Instead, we make the observation
that partitions should be loosely connected to each other
in order to minimize the cost of forced conversions across
partitions. However, using optimal protocol assignments on
local partitions may not yield a good global solution. Thus,
we introduce a partition mutation heuristic that uses terms
across partition boundaries to influence local assignments
to better fit in the global assignment. Our first technique
is as follows: we use graph partitioning to decompose the
program circuit, followed by a two-level ILP approach (at

the per-partition level and at the inter-partition level) to find
an efficient assignment.

Our second technique is to use modular optimization.
Since MPC programs are circuit representations of high-
level programs, they also exhibit repeating sub-circuits that
correspond to loops, functions, etc. While a repeating sub-
circuit cannot be securely executed more than once with
different inputs, its protocol assignment could still be reused
across multiple executions. Therefore, we design techniques
to reuse ILP protocol assignment work for such subgraph
patterns. We first add a new function abstraction at the IR
level to express high-level, user-provided modularity. We
then adapt graph partitioning and partition mutation to work
with functions. However, while it is possible to always reuse
the same assignment for a function across all function calls,
such a restriction may reduce the overall hybrid protocol’s
efficiency. Therefore, we design a new technique named call
site similarity (CSS) analysis to enable multiple protocol
assignments for the same function for calls within different
contexts.

Silph is implemented on top of CirC [55], an extensible
toolkit for circuit-based compilation. We evaluated Silph
across 9 different workloads, including database analytics
and machine learning. Our evaluation shows that our com-
pilation pipeline is efficient, scalable, and produces accurate
results. The compilation process is up to 30000× faster and
the generated hybrid protocols are up to 3.6× faster on
various database analytics and machine learning workloads.

2. Background

In this section we give background on multiparty com-
putation, the circuit representations that these protocols re-
quire, and the way that compilers target those representa-
tions.

2.1. Secure multiparty computation (MPC)

A multiparty computation (MPC) protocol allows a set
of mutually distrusting parties to collaboratively evaluate
a function of all parties’ private data. As one example,
consider the classic Millionaires’ Problem, where several
competitive capitalists want to determine who among them
is wealthiest without revealing their net worths. MPC solves
this and similar problems, allowing P parties to compute
a function f over their private inputs x1, . . . , xP , without
directly revealing xi to any other parties.1

In order to execute a multiparty computation, the func-
tion f must be expressed as a circuit, i.e., a directed acyclic
graph in which nodes (gates) have bounded fan-in and are
labeled with an operation, edges (wires) are labeled with a
value, and the graph has distinguished inputs and outputs;
we say that a circuit is satisfiable if, for a given assignment

1. As is standard, we assume that the result is revealed to all parties,
who thus learn whatever f(x1, . . . , xP ) leaks about xi. Dealing with this
by careful design of f is outside the scope of this work. Moreover, we use
the term MPC to refer generically to any P ≥ 2.
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Figure 1: Silph workflow. A program written in a high-level language like C is first lexed and parsed into a circuit-based
intermediate representation. Silph then applies IR optimizations and then passes the optimized IR to our hybrid protocol
assignment framework. This will generate a corresponding protocol assignment, which is lowered to a concrete MPC
execution that can be processed by our interpreter.

to its inputs and outputs, the out-edges of every node can
be labeled with values consistent with that node’s opera-
tion and input edges. There are two main MPC paradigms
for generic computations—arithmetic MPC [8], [23] and
boolean MPC [72], [71]—that correspond to different types
of circuits. In arithmetic MPC primitives, wires take values
from a finite field and node operations are addition and
multiplication over that field. In boolean MPC primitives,
wires take values from {0, 1} and node operations are AND
and XOR (in other words, arithmetic MPC over the field F2).

Hybrid MPC protocols [10], [50], [52], [36], [59], [32],
[31], [47] combine two or more protocols, which may
support different circuit types. At a high level, hybrid pro-
tocols work by running each MPC primitive in sequence,
with connections among the protocols’ circuits provided
by special conversion protocols that securely translate wire
values from one MPC primitive to another without revealing
intermediate information.

2.2. Compilation for MPC

To execute an arbitrary program as an MPC, one must
first encode that program as a circuit of the appropriate
type. This is a notoriously tricky problem [65], essentially
because MPC circuits have no notion of control flow or
mutation of state. Such transformations are difficult and
tedious to do by hand; this has inspired a long line of
work on automatic compilation to MPC circuits [48], [45],
[46], [73], [2], [58], [13], [35], [16], [74], [33], which we
discuss in Section 9. Typically, such a compiler parses a
source language (e.g., C) into an internal representation
(e.g., an abstract syntax tree). The compiler then transforms
that representation into a circuit-like representation (e.g.,
transforming state mutations, conditionals, and loops into
circuits implementing that functionality), and lowers that
circuit-like representation to a target representation (e.g., a
protocol-specific library that provides primitives like gates).

We now briefly discuss the popular target framework
Silph uses, called ABY, and give more information on
compilation for hybrid protocols.

2.2.1. The ABY target. ABY [26] is a framework for
constructing efficient hybrid MPC protocols for P = 2
parties built from three primitives: Arithmetic secret sharing,
Boolean secret sharing, and Yao’s garbled circuits. ABY
provides efficient conversions among these protocols; e.g.,
A2B converts from an Arithmetic to a Boolean sharing.

ABY exposes a gate-oriented API that is higher-level
than the gate representation in the underlying primitives.
While MPC primitives only support ADD/MUL or AND/XOR,
ABY also exposes slightly more complex operations GT
(greater than) and MUX, as well as explicit conversion gates
(e.g., A2Y,Y2A).

2.2.2. Compilation for hybrid protocols. Hybrid MPC
protocols give the compiler an extra degree of freedom,
namely, choosing which MPC primitive to use for each piece
of the input program. This freedom makes it possible for
the compiler to choose the most efficient MPC primitive for
each part of the computation (e.g., field arithmetic is more
efficiently expressed as an arithmetic circuit than a boolean
circuit). Because conversions from one protocol to another
incur overhead, however, protocol selection is a non-trivial
optimization problem. We discuss prior work on the protocol
selection problem in Section 9.

3. Overview

Silph is a compiler from high-level source languages
to hybrid MPC circuits (see Figure 1 for the workflow).
It is built on the CirC [55] toolkit for constructing cir-
cuit compilers, and inherits CirC’s (standard) compilation
pipeline: Silph lexes, parses, translates to a circuit-based
intermediate representation (IR), optimizes that IR, and then
lowers to a target representation—in Silph’s case, the MPC-
specific ABY backend. A key component in Silph is its
hybrid protocol assignment framework, which does fine-
grained assignment of each term in the IR to a concrete
MPC primitive in order to minimize overall circuit execution
time.

In the next sections, we first present Silph’s threat model
as background. Then, we walk through Silph’s basic pipeline



in more detail, and finally give a high-level overview of
Silph’s hybrid protocol assignment phase.

3.1. Threat model

Silph currently supports ABY [26] as a backend, and
ABY contains a set of MPC primitives that are secure in
the two-party, semihonest setting. Silph is not limited to
this threat model, though: it inherits the threat model of any
supported backend, so adding a new backend will yield a
new threat model.

It is important to ensure that the security of the overall
protocol is still maintained when converting from one MPC
primitive to another. In Silph, we assume that, for every pair
of MPC primitives πA and πB , there exists a conversion
protocol πA,B that can securely convert between the two
protocols. In practice, ABY supports three distinct MPC
primitives (A, B, and Y), as well as provably secure con-
version protocols among them. Silph isn’t limited to ABY’s
primitives, though; it is general enough to handle other
primitives as long as they also support secure conversion
protocols.

3.2. Silph’s compilation pipeline

We describe the frontend languages Silph supports, the
IR into which it translates source code, the optimizations it
performs on IR, and its strategy for lowering IR to ABY.

3.2.1. Supported frontend languages. Since Silph is built
on a compiler construction toolkit, adding support for a
new language simply requires building a frontend from that
language to Silph’s IR. Silph currently supports two lan-
guages: the ZoKrates [27] language, originally designed for
zero-knowledge proofs, and a subset of C. Silph’s C subset
includes booleans, signed and unsigned integers, structs,
stack arrays, and pointers to (statically known) variables
or arrays. It excludes while loops, recursion, goto, and the
sizeof operator, and it neither detects undefined behavior nor
tries to replicate particular implementation-defined behav-
ior. Silph also supports the complete ZoKrates languages:
variables, conditional expressions, statically bounded loops,
booleans, fixed-width integers, finite field elements, structs,
and field-element-indexed arrays.

3.2.2. Silph IR. Since Silph is built using the CirC compiler
construction framework, it inherits CirC’s intermediate rep-
resentation, which is based on the SMT-LIB standard [4] and
includes a rich set of operations over booleans, bit vectors,
floating point numbers, finite fields, and arrays. However,
CirC’s IR isn’t enough to support MPC. First, in an MPC
there are multiple parties, each of whom has its own private
inputs to the circuit that cannot be revealed to the other
parties. To support a notion of parties and secrecy, Silph’s
IR includes metadata with each input to the main function.

The second IR modification—adding function abstrac-
tions—is essential for compiling large programs. Unfortu-
nately, in an MPC circuit, there is no such thing as a function

call; all calls must be inlined by the time the computation
executes (§2.2). This inlining seriously inflates the size of
the circuit, slowing down both compilation and optimization.

To address the function inlining problem, Silph includes
function abstractions that compactly represents each func-
tion as a Computation, and each function call as a Call.
To accommodate the function abstractions, Silph does not
perform whole program optimization and instead optimizes
per function (as many compilers do). Silph’s backend ABY
interpreter—discussed in a few paragraphs, Section 3.2.4—
understands and interprets Computation and Call IR
nodes.

3.2.3. IR Optimizations. Silph uses CirC’s standard opti-
mization passes (e.g., tuple elimination) and makes a few
improvements to its constant folding (e.g., x AND x is
replaced by x). Silph also includes an if-then-else (ITE) re-
writing pass that eliminates unnecessary ITE terms produced
by the compiler when it compiles conditional statements.
Finally, we disable CirC’s scalarization passes (e.g., linear
scan) because they’re expensive, and because our ABY
interpreter supports non-scalars (§3.2.4).

3.2.4. Lowering to ABY using the ABY interpreter. After
optimizations, the hybrid protocol assignment component
(discussed next, §3.3) takes the IR graph as input and
outputs a share map, an assignment of each IR graph node to
a concrete share (i.e., A, B, or Y). Lowering from Silph’s
IR and the share map to ABY primitives is conceptually
simple: there’s a one-to-one mapping between almost every
IR operation and some ABY primitive. Despite this concep-
tual simplicity, lowering introduces mechanical complexity.
An early version of Silph used ABY’s API to build a C
file, and compiled that file to an executable using gcc—but
compiling the generated code was prohibitively compute and
memory intensive. A single ten-line input program could
yield a hundred thousand lines of generated code that took
around thirty minutes to compile.

To solve the ABY code generation problem, we created
an interpreter for ABY bytecode. Silph’s ABY interpreter
takes as inputs files containing the inputs to the computation,
the share map, and ABY bytecode (previously lowered from
IR). It processes that bytecode and returns the result of the
computation. Our ABY bytecode retains the IR’s function
abstraction, so when the interpreter reaches a Call term,
it loads the corresponding function definition’s bytecode (a
Computation term) and re-wires the Call’s arguments
and return value to point to the function definition. The
interpreter also recognizes array selects and stores with a
secret index, and expands them into ABY primitives. Finally,
the interpreter inserts conversions where appropriate (e.g., if
it encounters an addition between an input with share A and
an input with share B).

3.3. Hybrid protocol assignment

The input to the protocol assignment component (Fig-
ure 1) is an IR graph; the protocol assignment phase tries to



answer the question, “how should each node in the graph be
assigned to a concrete MPC primitive such that the overall
circuit execution time is minimized?” We formulate this
question as a mixed integer linear program (ILP), and use
an ILP solver [29] to answer it. The ILP solver searches for
a solution that minimizes the overall predicted execution
cost of the circuit, modeling execution cost as the sum of
each term’s operation cost plus conversion costs. The solver
returns a concrete assignment of MPC primitives to each
node in the program IR graph.

In the rest of this paper, we present Silph’s two ILP
formulations for hybrid protocol assignment (§4). While
ILP solvers are effective at finding protocol assignments,
the problems they’re attempting to solve are NP-complete.
Solving very large problems, or finding assignments for
very large circuits, is often intractable. To address this,
Section 5 presents our strategy for scaling ILP by reducing
the size of the input problem. Specifically, Silph automat-
ically partitions the IR graph, and then (naively) uses an
ILP solver to get protocol assignments for each partition.
Since optimal protocol assignments for the local partitions
don’t necessarily translate to a globally optimal assignment,
Silph uses a new partition mutation heuristic for exploring
different partition assignments that are more globally opti-
mal. Finally, in Section 6, we describe our call site similarity
heuristic which uses function abstractions to enable modular
optimizations and amortize parts of our hybrid protocol
assignment approach.

4. ILP-based Protocol Assignment

In this section, we present our core approach to the
protocol assignment problem. We express the optimization
problem as a mixed integer linear program (ILP), and find
protocol assignments using an ILP solver [29]. Compared to
prior works that use hard-coded heuristics for assigning the
correct primitives [13], [16], ILP allows Silph to generate ac-
curate, fine-grained protocol assignments. In this section, we
discuss two distinct ILP formulations for solving protocol
assignments that have performance and accuracy tradeoffs.
The next two sections (Sections 5 and 6) will present
techniques to efficiently scale the ILP solving process.

4.1. Problem setup

We first explain protocol assignment’s setup, as well as
assumptions that we make. Since Silph supports ABY in
the backend, each IR term can be assigned to three possible
primitives: Arithmetic, Boolean, and Yao. We assume that
the total cost of the program is a linear summation of the
individual terms, i.e., the predicted cost of a program is the
sum of each term’s operation cost and the conversion costs.

4.2. ILP formulations

Defining the optimization problem as an ILP gives us
a fine-grained protocol assignment solution that can mix

Y X Z
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A2B
Y X X Z

÷+

Primitive A Primitive B

Figure 2: Left is a suboptimal assignment produced by
the first ILP formulation; right is an optimal assignment
produced by the second ILP formulation.

an arbitrary number of MPC primitives. Prior works like
OPA [35] have explored formulating protocol assignment
as an ILP, but their goal was to formulate it so that it can
be relaxed it into a linear program. Unfortunately, in the
process of doing so, OPA also had to restrict to mixing
only two primitives at a time.

We first design a slightly simpler ILP formulation than
that of OPA since we do not utilize LP relaxation. Let (t, s)
denote a def-use IR term pair, i.e., s depends on t. Let
|t| denote t’s bit length. Let a, b denote MPC primitives.
We define two sets of boolean indicator variables. Let
T (t,a) ∈ {0, 1} indicate whether a term t is evaluated using
MPC primitive a. Let C(t,a,b) ∈ {0, 1} indicate whether
term t needs to be converted from a to b. Let qat indicate
the cost of executing term t using primitive a, and qa2b|t| as
the cost of converting from primitive a to b. The concrete
costs are experimentally identified, and we explain how to
do this in Section 7. Note that the conversion cost depends
on the size of the IR term, and larger sizes will have more
expensive conversion costs.

The ILP formulation is∑
T (t,a) · qat +

∑
C(t,a,b) · qa2b|t| subject to (1)

∀t,
∑
a

T (t,a) ≥ 1 (2)

∀a, b,∀ def-use pairs (t, s),

C(t,a,b) ≥ T (t,a) + T (s,b) − 1 (3)

The objective function in Equation (1) is the total cost of
a program parameterized by T (t,a) and C(t,a,b), which are
constrained by Equation (2) and Equation (3). Equation (2)
constrains T (t,a) so that t must be assigned to at least
one primitive. Equation (3) expresses the second constraint
on the conversion variables C(t,a,b), which correctly adds
a conversion cost if two connected terms are assigned to
different primitives. Combined with Equation (2), each term
t will only be assigned to a single MPC primitive since
Equation (3) forces conversions for any pairwise distinct
assignments (a, b) for (t, s), causing any term with multiple
assignments to be strictly more costly than this term being
only assigned to a single primitive.

The above ILP formulation is not optimal when a term is
assigned to a single primitive such that it triggers expensive
conversions to be inserted in the output. Take Figure 2
as an example. The term X is an input into both addition



and division terms. Let’s assume that we have two MPC
primitives, A and B. The cost of addition is 1 in A and
100 in B (addition prefers A). The cost of division is 200
in A and 2 in B (division prefers B). The conversion cost
from A to B is 80, and B to A is 90. Since the ILP we
presented forces X to be assigned to a single primitive, it
would assign X to primitive A, the addition gate to operate
in A, and division to operate in B, with a forced conversion
from A to B. The total cost of doing so is 83. However, the
optimal solution would be to duplicate X and represent it
in both A and B. This duplication removes conversions,
and the total cost is 3. Clearly, if conversions and non-
preferred operator costs are all very expensive, then these
forced conversions could greatly increase the overall cost
and result in a suboptimal assignment.

Therefore, we design a second ILP formulation that
improves upon the first formulation to allow a single term
to be assigned to multiple MPC primitives. In order to
formulate our design, we first make the observation that the
original boolean indicator variables T (t,a) and C(t,a,b) are
enough to express our new goals. Therefore, we can keep
the same objective function and only modify the constraints.

If a single term t needs to be expressed in multiple MPC
primitives, multiple T (t,a) variables can be assigned to 1 at
the same time. Our current constraint on T (t,a) is already
satisfactory because it is an inequality. The constraints on
the conversion boolean indicators C(t,a,b), however, need
to be changed in order to remove the restriction on single
term assignment. As discussed earlier, Equation (3) will set
a conversion boolean indicator C(t,a,b) variable to be true if
the term pair can be assigned to primitives a and b. However,
we need to modify it so that the least costly conversion is
used when the term pair has multiple assignments.

We illustrate this using a backend that supports three
different MPC primitives a, b, and c. For the def-use term
pair (t, s), we can define 6 conversion variables. For each
C(t,x,y), where x ∈ {a, b, c}, y ∈ {a, b, c}, and x ̸= y ,
the inequality needs to be modified to relax the constraint.
Let’s take C(t,a,b) as an example. The conversion from a
to b should be set to 0 if T (t,b) = 1 (i.e., t is set to b,
which is cheaper since there is no conversion needed). If
c2b is cheaper than a2b, and T (t,c) = 1, then C(t,a,b) should
also be set to 0. Otherwise, C(t,a,b) must be constrained
to 1 since no other conversion is available. Therefore, the
constraints should be modified to subtract the indicator
variables of primitives where the conversions are cheaper,
so that the conversion indicator variable can be assigned to
0. The new formulation is as follows:

∀t,∀a ̸= b,∀s that depends on t,

∀ci such that q(ci2b) < q(a2b)

C(t,a,b) ≥ T (t,a) + T (s,b) − 1−
∑
i

T (t,ci) (4)

Finally, we note that the performance of these two ILP
formulations could be quite different. Intuitively, the first
formulation is more constrained since only one MPC primi-
tive can be assigned to a term. This also means that the ILP
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Figure 3: ILP solving time for three benchmarks of various
input sizes: Biomatch: {256, 512, 1024, 2048, 4096, 8192,
16384}; DB Join: {10, 30, 50}; KMeans: {10, 100}.

is faster to execute, and we demonstrate the performance-
accuracy tradeoff in our microbenchmarks in the evaluation
section (Section 8.2.1).

5. Protocol Assignment with Partitioning

The previous section presents two ILP formulations for
protocol assignment. However, this approach scales poorly
with program size. To demonstrate this, we select three
benchmarks from our test suites: Biomatch, DB Join and
K-Means, and time the ILP-based assignment algorithm on
these benchmarks with varying input sizes. Figure 3 shows
the ILP solving time of these test cases and its relationship
with the number of terms in each of the program. Clearly,
ILP scales poorly. For example, increasing the input size of
K-Means from 10 to 100 increases term count by 10×, but
ILP solving time by up to 60× (depending on the source
program). In this section, we present a technique to improve
the scalability of ILP-based protocol assignment.

To improve the scalability of protocol assignment, we
must reduce the size of the ILP problems we generate.
Prior works like HyCC [13] use code partitioning. HyCC’s
code partitioning method is based on the syntactic structure
(functions, loops, and arithmetic/boolean operations) of the
input program. Within each partition, HyCC assigns a single
MPC primitive to all nodes. It uses an exhaustive search to
choose the best primitive for each partition. The partitioning
approach here is fast but coarse-grained; furthermore, it is
extremely sensitive to the syntactic structure of the input.

We take a different approach: our partitioning is based
on the IR graph structure. We use a two-level ILP: first a per-
partition ILP on (mutated) partitions, then a inter-partition
ILP over the partition assignments.

5.1. Graph partitioning

In this section, we discuss our approach to code parti-
tioning. There are two important metrics that are important



for producing a good partitioning. First, partitions may be
well connected within, but should be only loosely connected
to each other. Thus, graph cuts only cross a small number of
edges, reducing the number (and cost) of forced conversions
between partitions. Second, each partition should be small,
as we plan to optimize each partition independently using
our ILP solver. However, partitions cannot be too small: lest
inter-partition conversion costs come to dominate within-
partition costs.

Fortunately, these two metrics are common goals for
graph partitioning algorithms. While graph partitioning is
hard in the worst-case, we believe our graphs represent easy
instances for graph partitioning algorithms. Our graphs are
computation graphs; since most computations use far more
time than space, our graphs are thus “long and straight”. In
general, graphs like social networks are harder to partition
since they are better connected.

However, the above formulation can overestimate the
impact of outgoing edges from a single node. We illustrate
this with an example. Consider two situations in which a
partitioning cuts n edges. In situation A, the n edges all
have the same source. In situation B, the n edges all have
difference sources. Graph partitioning algorithms view these
two cuts as having equal cost. However, in a hybrid MPC
protocol the output of any single node can be converted
at most k − 1 times, where k is the number of distinct
primitives: 3 in Silph. Thus, situation A can induce at most
2 conversions, while situation B might induce n.

One way to solve this is to treat the IR graph as a
hypergraph instead, where there is a single outgoing hy-
peredge connecting a node to its neighbors. We can then
run a hypergraph partitioning algorithm, which weighs all
hyperedges equally.

We use the KaHIP [60], [37] and KaHyPar [61], [38]
libraries for graph and hypergraph partitioning respectively
inside Silph. These libraries expose two parameters: p (num-
ber of partitions) and ϵ (imbalance). The library searches
for a partitioning that minimizes the number of cut (hy-
per)edges, subject to the constraint that each partition’s size
is at most (1+ ϵ)⌈n

p ⌉, where there are n nodes in the graph.
Silph uses ϵ = 3 (KaHIP’s default) and sets p such that
the average partition size is 8000. Increasing the average
partition size slows down protocol assignment (since larger
partitions slow down ILP solving) but may improve the final
assignment.

5.2. Partition mutations and two-level ILP

Partitioning improves ILP solving time, but directly
using per-partition assignments in the final global assign-
ment is likely to increase MPC execution time. Intuitively,
individually optimizing each partition without regard for
neighboring partitions may induce expensive conversions
between partitions. Our graph partitioning algorithm will
alleviate some of these problems by identifying loosely
connected partitions that have less data flow. However, the
better assignments will also need to take into account the

Without
mutation

+ + + + ÷ ÷

With
mutation

+ + + + ÷ ÷
expand partition

A, preferred by + B, preferred by ÷

Figure 4: How mutations can help with protocol assignment

surrounding IR nodes in order to avoid overfitting to the
partition’s internal structure.

Therefore, we want to refine our partition-based opti-
mization to better approximate running ILP over the entire
graph. We design a new heuristic called partition mutations
that allows us to change the partitions to explore more
assignment options. Our idea is to mutate each partition by
expanding it slightly, and run the ILP solver independently
on the expanded partitions. We expand each partition by
including not only the partition’s nodes, but also the nodes
that are immediately connected to the partition’s edge nodes.
Figure 4 shows a simple example of how partition expansion
can help with certain scenarios. The two operators are +
(which prefers primitive A) and ÷ (which prefers primitive
B). The conversion cost between the two MPC primitives
is relatively high and needs to be amortized over many
operators. Thus, without mutations, the left partition will
be uniformly assigned to A. However, if we are able to
expand the left partition to include the division operators,
then we will find an alternative cheaper protocol assignment
that force the addition operators to use a less preferred
assignment. This can save an extra expensive conversion
cost.

Intuitively, there is a tradeoff in terms of how much
to expand the partitions. If a partition is not expanded
enough, then the ILP solver might not contain enough
information from the surrounding nodes in order to make
a good assignment for the nodes inside the partition. If a
partition is expanded too much, then the ILP will overfit
to the neighboring nodes and may not solve the local
partition assignment problem well. Finding the correct ex-
pansion depth, however, is difficult as the right parameter
will depend on the program’s circuit structure. Therefore,
we instead explore a range of expansion depths by setting
a maximum depth that is constrained by the ILP solving
time (called mutation level). Then, we will run ILP over
each expanded partition to get multiple assignments, and
finally execute a second, inter-partition ILP directly over
these assignments. Our inter-partition ILP follows our per-
partition ILP fairly closely, with the added constraint to
handle conversion across partition boundaries.

Note that since this is a heuristic, and there are scenarios
where partition expansion will not find the global optimum.
Fortunately, this heuristic will do no worse than using a per-
partition ILP assignment since we still use those assignments
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as options into the second round of ILP.

6. Function-based Protocol Assignment

The previous section presents techniques for partition-
ing an IR graph to reduce the maximum input size to
the ILP solver. In this section, we explore an alternative,
complementary technique to efficiently and accurately take
advantage of modular optimization.

So far, we have assumed that the protocol assignment
phase has access to a single, unified IR graph. However,
inlining all functions not only lead to excessively large IR
graphs, but also introduce longer protocol assignment times
where the ILP have to repeatedly solve for the same sub-
circuit structures. At the same time, not inlining functions
will instead give the protocol assignment framework a set
of IR graphs that are indexed by function names. Adapting
our partitioning and mutation techniques to graphs with
function representation is non-trivial: we need to reuse ILP
solving work to further scale to larger programs, but also
preserve assignment accuracy. In this section, we discuss
how to generate protocol assignments for MPC programs
with functions.
Example Figures 5a through 5c show our running example
for this section. The entry function is f and there are two
other functions, g and h. g is called three times within
function f , while h is called once within g.

6.1. Straw man

A naive protocol assignment approach is to indepen-
dently run protocol assignment for each function, ignoring

the cost of Call terms. The limitation is obvious: the cost
of converting between primitives across function boundaries
is not accounted for. There are two classes of ignored
conversion costs. First, the cost of computing a function’s
output into the forms needed by its dependencies. Second,
the cost of converting a function call’s actual arguments to
the form expected for its formal arguments.

Inlining all functions can account for these costs but
scales poorly with overall program size. Therefore, we want
to design techniques that allow us to take advantage of
modular optimization without ignoring the cost of function
calls.

We depart from the naive approach in three ways. First,
instead of running protocol assignment once for each func-
tion, we run it for each calling context that a function
occurs in. Second, we use partition mutations to account for
conversion costs across function boundaries (§6.2). Third,
we apply the result of protocol assignment for one calling
context to similar calling contexts (§6.3).

6.2. Partitioning and mutations with functions

The conversion costs around a function depend on both
its callers and callees. For any function f , the set of callees
is fixed, but there may be many callers and many calling
contexts for f . Thus, we first consider each calling context
separately during protocol assignment.

Let fd be a function called at depth d. Let f1, . . . , fd−1

be the sequence of parent functions for fd with call terms
t1, . . . , td−1. Thus, f1 is the entry function, and for i <
d, term ti in fi is a call of fi+1. We call the tuple
(t1, . . . , td−1, fd) a call stack. Each call stack uniquely
identifies a copy of fd in the inlined IR graph. For a
call stack (t1, . . . , td−1, fd) and distance parameter k, we
generate a mutation f ′ that contains all nodes at distances
≤ k from fd in the inlined IR graph. Note that f ′ certainly
contains nodes from fd−1 and nodes from the callees of fd.
However, it may also contain nodes from other functions,
such as callees of fd−1 whose call-site is close to that of
fd. With careful indexing, f ′

d is constructible in time and
space proportional to its number of nodes; the inlined IR
graph need not be fully materialized.

Each function mutation f ′
d may be further split. If its

size exceeds the partition size parameter (§9), then we use
graph partitioning to further decompose it, and we use the
aforementioned mutation generation algorithm to generate
mutations that reach across these sub-partition boundaries.

As before, Silph then performs ILP-based assignment
on all mutations. The resulting assignments are restricted
to the nodes that that mutation is uniquely responsible for
(all of fd, if the partition size was not exceeded). Then
(as before) we construct a inter-partition ILP to optimally
choose between the different assignments for each partition.
Example Figure 5 shows an example of function mutations.
The function g has three call stacks: (◦, g), (⋆, g), and
(⋄, g). Figure 5d shows the k = 0 mutation for stack (⋆, g).
Figure 5e shows the k = 1 mutation for the same stack; this



mutation contains a node of the callee h (in blue) and also
nodes of the caller f (in red). Figure 5f show the k = 2
mutation; all nodes of the inlined computation except x are
now included.

6.3. Call site similarity analysis

The above approach never materializes the inlined IR
graph in memory, but it ultimately runs ILP-based pro-
tocol assignment for the whole graph, piece by piece. In
particular, for a function f called in many contexts, ILP-
based assignment runs on mutations of f separately for all
calling contexts. This is expensive, and it is unneeded if
different calling contexts ultimately require the same kinds
of conversions to be performed. To reduce the number of
ILP invocations, we use call-site similarity analysis.

This analysis aims to cluster different call stacks for
the same function into groups that be analyzed together.
For each call stack for f , consider the actual parameters to
f and the immediate dependents of its output. Two stacks
are grouped if the operators of the actual parameters and
immediate dependents are equal. For the actual parameters,
the sequence of operators must be equal. Since the imme-
diate dependents have no order, it is the multisets of their
operators that must be equal.

For each group of similar call stacks, mutations and
assignments are computed only once, for an arbitrarily
selected call stack. The result is re-used for all call stacks in
the group when constructing the global protocol assignment.
Example Recall that in Figure 5 there are three call stacks
for g: (◦, g), (⋆, g), and (⋄, g). The output from each call to
g is used by the same node. For stacks (◦, g) and (⋆, g), the
input operators are a multiplication and a variable. Thus,
we only analyze mutations for one of these stacks. Since
the input operators for (⋄, g) are a multiplication and a
remainder, that stack is analyzed separately.

7. Implementation

We implement Silph using the CirC compiler toolkit [55]
and the ABY 2PC framework [26]. Our implementation is
≈10.3k lines of Rust and C++ code. The latest version of
Silph can be found at https://github.com/edwjchen/Silph.

Although there exists more advanced hybrid MPC
frameworks [57], [12], [2], (e.g., MOTION), we decided
to target ABY primarily because our baselines, HyCC and
OPA, both use ABY as their target backend. We believe
that Silph can support these other frameworks with minimal
development effort since they share a similar interface with
ABY.

7.1. Protocol Assignment

To evaluate our techniques, we implemented three dif-
ferent protocol assignment schemes.
Global ILP (G-ILP) In this configuration, Silph uses
ideas from Section 4. It inlines all function calls and then

performs a single ILP-based protocol assignment for the full
computation graph.
Two-level ILP (T-ILP) This configuration implements
Silph’s two-level ILP scheme from Section 5. Silph inlines
all functions, partitions the complete IR graph, and solves
a per-partition ILP. Silph then runs the partition mutation
heuristic and finally finds a global assignment using the
inter-partition ILP.
Call Site Similarity ILP (C-ILP) This configuration im-
plements our designs from both Section 5 and Section 6.
Functions are not inlined. Rather, we first partition the IR
graph on function boundaries and append each function with
the terms in the surrounding calling context. We then use
call site similarity analysis to group similar function call
stacks before running a per-function ILP and constructing a
global assignment.

7.2. Cost Model Generation

In Silph, the ILP solver uses a cost model to find the
most efficient protocol assignment for a given computation.
The cost model is a one-to-one mapping between an ABY
operation (e.g., Arithmetic addition or A2B conversion) and
its expected runtime. To generate a suitable cost model, we
measure the execution time of randomly generated circuits
produced from CostCO [28], an automatic MPC cost mod-
eling framework. The cost consists of both the setup and
online phases of an ABY operation. Each unique execution
environment requires a corresponding cost model; thus, we
generated two cost models, one for the LAN setting and one
for the WAN setting (as defined in §8.1).

One challenge we faced when generating our cost model
was incorporating the interactive latency of an operation
since each primitive can have a different number of com-
munication rounds for a given operation. For example, a
multiplication expressed in arithmetic secret sharing takes 1
communication round whereas Yao’s garbled circuits could
take a constant number of communication rounds. Further-
more, operations that are not data dependent can be batched
within the same communication round, thereby amortizing
the communication cost of the operation. To account for
the effects of latency, we heuristically model the cost of
an ABY operation as (operation cost without interaction)
+ k × (interactive latency of the operation), where k is
an approximation of the number of non-batched, interactive
operations. To estimate k, we used this simple heuristic: k =
the data dependent depth of interactive operations / the total
number of interactive operations. While this is a limitation
in our system, we find that our heuristics estimate the cost
model well in practice. We leave exploring and integrating
better cost models for future work.

8. Evaluation

This section presents our evaluation of Silph. First we
describe our evaluation setup, followed by detailed mi-
crobenchmarks evaluating the tradeoffs of our heuristic-
based techniques. Next, we present end-to-end comparisons

https://github.com/edwjchen/Silph


ILP 1 ILP 2
Benchmark Pred. RT ILP Time Pred. RT ILP Time

GCD 322.7 0.02 322.7 0.03
Histogram 10194.2 25.34 10130.6 129.77
Biomatch 3299.3 1.72 3299.3 27.63
K-Means 5338.2 28.48 5052.7 18.36

Gauss 532.4 1.52 527.7 0.54
DB Merge 661.0 0.38 659.5 1.7
DB Join 16445.4 23.87 16323.4 89.96

TABLE 1: ILP Performance using LAN cost model

against our two baselines, HyCC and OPA. We conclude our
evaluation with a conceptual and empirical comparison of
Silph against the relaxed LP protocol assignment approach
used in OPA.

8.1. Evaluation Setup

All benchmarks were compiled on AWS EC2 using a
single c6a.16xlarge instance (64 cores, 128 GB). The bench-
marks were then evaluated using two r5.xlarge instances (4
cores, 32 GB) in both LAN (both instances in us-east-2)
and WAN (one instance in us-east-2 and another in
us-west-2) environments. We did not limit the network
of our evaluation instances, and thus each r5.xlarge instance
had up to 10Gbps of upload and download bandwidth.

For our benchmarks, we used experiments that have
previously been used to evaluate other MPC protocols and
compilers. These benchmarks include common workloads
used in database analytics and machine learning. The bench-
marks are as follows. OPA introduced two new benchmarks:
Greatest common denominator and Histogram (bucketing a
list of points into a histogram). The remaining benchmarks
were used to evaluate HyCC: Gaussian elimination, Bio-
metric matching (minimum euclidean distance between a
point and a database of points), DB Merge, DB Join, K-
Means clustering, and convolutional neural networks from
MiniONN and CryptoNets.

To partition our IR graph, we used KaHIP and KaHyPar,
a graph and hypergraph partitioning library, respectively.
Each of these libraries had a configurable set of parameters
to tune the partitioning mode, speed, and quality. For KaHIP,
we used the KaFFPa algorithm with the fast variant to
prioritize partitioning time. For KaHyPar, we used the de-
fault direct partitioning mode, imbalance factor of 3,
and time-limit of 3600. Additionally, we used the cut
objective function and the cut_kKaHyPar_sea20.ini
preset file in order to minimize the number of inter-partition
edges.

8.2. Microbenchmarks

In order to isolate the effects of our techniques, we
conducted microbenchmarks for our two ILP formulations:
partitioning and mutation heuristics, and modular optimiza-
tion with call site similarity.

ILP 1 ILP 2
Benchmark Pred. RT ILP Time Pred. RT ILP Time

GCD 253.0 0.03 253.0 0.01
Histogram 566600.0 7.078 15708.0 4.99
Biomatch 156416.0 4.52 3328.0 0.38
K-Means 490200.0 1.61 4400.0 0.45

Gauss 16788.0 0.03 343.0 0.02
DB Merge 1897.0 0.24 1000.0 0.13
DB Join 898006.0 10.84 18035.0 5.3

TABLE 2: ILP Performance using synthetic cost model

8.2.1. ILP formulations. Our first microbenchmark com-
pares the solving time and accuracy of our two ILP formu-
lations: ILP1, where a term can be assigned to only one
MPC primitive (Equation (3)), and ILP2, where a term can
be assigned to multiple MPC primitives (Equation (4)). To
compare the assignment quality from each ILP formulation,
we use the ILP solver’s output, which represents the pre-
dicted runtime of the target computation.

Table 1 shows the results of evaluating both ILP formu-
lations on several benchmarks using our LAN cost model.
As hypothesized, our ILP2 formulation is able to find better
predicted runtimes in 5 out of 7 benchmarks because this
formulation can assign a single term multiple assignments,
thereby producing more fine-grain assignments. However,
ILP2 incurs a higher ILP solving time because the problem’s
search space is increased. For these benchmarks, we find the
benefits from improved predicted runtime performance are
insufficient to offset the higher ILP solving time cost. This
is because the conversion costs in our LAN cost model are
of the same magnitude as operation costs. Therefore, we use
ILP1 over ILP2 for our macrobenchmarks.

To demonstrate the possible improvements of using
ILP2, we conducted another microbenchmark using a syn-
thetic cost model with inflated conversion costs. This cost
model contains only two primitives, A and B. The costs of
linear operations (ADD, MUL, SUB) are set to 1 using A
and 300 using B; all other costs were set to the opposite, 300
using A and 1 using B. The conversion cost is set to 1000
in either direction. Table 2 shows the results of both ILP
formulations on the same benchmarks using this synthetic
model. On 6 of the benchmarks, ILP2 was able to achieve
1.8−111× speed-up in predicted runtime compared to ILP1.
In GCD, all operations used in this benchmark prefer Y .
Since no conversions are necessary, ILP1 outputs the same
predicted time as ILP2.

8.2.2. Partitioning and mutation. Next, we evaluate the
effects of graph and hypergraph partitioning, with and with-
out partition mutations, on protocol assignment accuracy and
efficiency. Our first goal is to discern the baseline protocol
assignment accuracy and efficiency tradeoffs between our
two proposed graph and hypergraph partitioners, KaHIP and
KaHyPar. Our second goal is to show that mutations can
improve the overall quality of protocol assignments.

We design our microbenchmark as follows. For each
application, we run both partitioners using a partition size
of 1000 and a varying mutation level of (0, 1, 2, 4). We then
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compare the accuracy (predicted runtime of T-ILP/ predicted
runtime of G-ILP) and efficiency (assignment time) of each
partitioner. Figure 6 shows the results of this experiment on a
subset of the benchmarks. The green and blue lines represent
the protocol assignment accuracy from using different graph
partitioning libraries. Each point on a line represents a
mutation level from 0 (leftmost) to 4 (rightmost). The red
dotted line represents the baseline predicted runtime of G-
ILP, which has a constant value of 1.

To compare the partition quality of each graph parti-
tioner, we first analyze the predicted runtimes with a muta-
tion level of 0. Our microbenchmark shows that KaHyPar
achieves close to the G-ILP baseline on all 5 benchmarks,
whereas the predicted runtime from KaHIP can be much
slower. Although KaHyPar gives better quality partitions,
which reduces extraneous conversion costs across inter-
partition boundaries, it takes approximately 2.5−30× longer
to partition on larger applications like DB Join and Min-
iONN. By introducing partition mutations, we are able
to greatly improve the predicted runtimes of T-ILP with
KaHIP. Using KaHip with 2 to 4 mutations, we achieve
close to the G-ILP predicted runtime baseline on DB Join
and CryptoNets, in much less time compared to KaHyPar.
Therefore, we decide to use KaHIP with a mutation level
of 2 in our macrobenchmarks.

8.2.3. Call site similarity. For our last microbenchmark, we
evaluate call site similarity by comparing C-ILP against a
naive per-function ILP baseline that restricts a function to a
single set of assignments with no mutations. Figure 7 shows

the execution runtimes on three representative applications.
C-ILP achieves slightly better results in both LAN and
WAN for Gauss and MiniONN, and a 2× runtime speedup
on CryptoNets. The reason for this performance gain is
attributed to better protocol assignments by exploring the
contexts outside of a function boundary. In CryptoNets, the
activation layer uses square as the activation function.
This function is represented by a single MUL operation.
Under the WAN cost model, the operation cost of MUL
is cheapest using Yao’s garbled circuits. Without CSS, the
ILP formulation cannot explore the contexts surrounding a
function and will assign this MUL operation to Yao. How-
ever, the input wires to MUL come from an ADD assigned to
Arithmetic from the parent function. Therefore, a conversion
from Y2A is forced for every call to square, incurring
a large slow-down during circuit execution. When CSS is
enabled, the context of the activation function is added to the
ILP formulation, thereby assigning MUL to be Arithmetic.

8.3. Macrobenchmarks

In this section, we compare the compilation and circuit
evaluation performance of Silph to that of HyCC. Similar
to Silph, HyCC’s implementation compiles C programs into
hybrid MPC protocols that target ABY. HyCC partitions
code based on syntactic structure (functions, loops, and
arithmetic/boolean operations), and compiles each partition
into Arithmetic (if possible), Boolean, and Yao. HyCC then
provides two ways to generate protocol assignments. The
first is a heuristics-based approach (HyCC-H) that will
greedily prioritize select MPC primitives and assign a par-
tition the highest priority primitive available. In Figures 9a
and 9b, we present the fastest HyCC-H directly using their
execution runtimes. The second is an exhaustive search
algorithm (HyCC-PSO i.e., protocol selection optimized)
that uses a cost model to minimize the total cost of as-
signments for each partition. Lastly, HyCC contains logical
minimization techniques to further optimize their boolean
circuits at a gate level.

The evaluation parameters for each system are as fol-
lows. For Silph, we set a partition size of 8000, a mutation
level of 2, and evaluated all three aforementioned selection
schemes from 7.1. Through empirical testing, we found
that for all test cases, setting a partition size of 8000 was
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Figure 8: Benchmark compile times results comparing
HyCC with Silph

sufficient in balancing partitioning time, ILP solving time,
and memory usages. From our microbenchmarks 8.2.2, we
discovered these mutation parameters were sufficient in
finding a predicted runtime close to that of G-ILP.

For HyCC, we set the circuit minimization time
to 600 seconds (default) and compiled with the
--all-variants flag in order to generate hybrid MPC
protocols. For Gaussian, specifically, the minimization time
was set to 9 instead of 600 because compilation of the
circuit did not finish when minimization time was ≥ 10.
Although HyCC has an additional --outline flag for
arithmetic decomposition (splitting groups of arithmetic
computations into separate, smaller functions) we found
that the implementation was limited.

However, we believe our benchmarks aforementioned
in 8.1 are representative of HyCC’s best efforts since
the benchmarks from HyCC were written with arithmetic
decomposition in mind. For example, in their MiniONN
benchmark, the nonlinear ReLU function is already decom-
posed into a separate function from the linear convolution
functions. We did not decompose the benchmarks from OPA
because most of the computation is nonlinear, which favors
the boolean circuit optimizations in HyCC.
Compilation and protocol assignment. Figure 8 shows the
total compilation times (including protocol assignment) of
all benchmarks for both Silph and HyCC. The first bar
represents the total compilation time for HyCC, and the
remaining bars represent the total compilation for Silph run-
ning G-ILP, T-ILP, and C-ILP in LAN and WAN settings.
In most cases, Silph is at least an order of magnitude faster

in compilation time, ranging from 12× faster in Histogram
using Silph’s G-ILP (LAN) to over 30000× faster in GCD
using Silph’s T-ILP (LAN). Notably, our T-ILP and C-ILP
techniques are always faster compared to HyCC; C-ILP is
consistently orders of magnitude faster.

The reason for HyCC’s slow compilation time in GCD
is due to their time-based, boolean gate-level minimization
pass. Although there is only a single small function in this
benchmark, this function is compiled to both a Boolean and
a Yao circuit, each circuit taking the full 600 seconds to
optimize. If we were to compare against HyCC’s compila-
tion time with no minimization time, CryptoNets would take
HyCC ≈12483 seconds to compile. This is because their
protocol assignment algorithm is an exhaustive search that
compares all possible share combinations of each function.
In this case, Silph is 65× faster in total compilation time
compared to HyCC.

There are a few notable outliers in Figure 8, specifically
in the MiniONN benchmark. When solving the G-ILP for-
mulation (LAN), Silph takes around 10 hours to find the pro-
tocol assignment because the ILP solver needs to solve for
≈1,400,000 terms. In the WAN setting, a segmentation fault
occurred in the ILP solver’s library after ≈5000 seconds of
solving. Additionally, HyCC-PSO was unable to finish for
MiniONN. With constant propagation, the MiniONN bench-
mark has 22 unique functions, each having 3 possible share
type assignments. Thus, HyCC-PSO has 322 combinations
to consider. After 24 hours, the exhaustive search algorithm
only evaluated 125,670 combinations.
Execution. Figures 9a and 9b show the average execution
time (across 10 runs) and standard deviation (black lines) of
all benchmarks in both LAN and WAN settings. Aside from
the MiniONN benchmark that either cannot compile (G-ILP)
or finish selecting (HYCC-PSO), KMeans for HyCC-PSO
also does not finish. This is because the HyCC circuit runs
out of memory when trying to execute.

Silph is faster on 8 / 9 LAN benchmarks and 6 / 9 WAN
benchmarks. Silph achieves a 3.6× speed up compared
to HyCC-PSO in Biometric matching (LAN) and a 1.8×
speed up compared to HyCC-H in DB Merge (WAN). We
attribute our performance gains to having better, more fine-
grain protocol assignments compared to HyCC. This is made
evident by closely examining the protocol assignments for
DB Merge. Although Table 3 shows that both systems found
A+Y assignment, HyCC assigned the Mean and Variance
functions in this benchmark to Y because the functions
ended with a division. On the other hand, Silph was able
to assign Arithmetic shares to a majority of Mean and
Variance, resulting in a 1.8× performance improvement for
Silph.

However, Silph is slightly slower than HyCC for GCD
(LAN/WAN), K-Means (WAN), and Histogram (WAN). By
analyzing the protocol assignments in Table 3, we see
that Silph finds the same protocol assignments as HyCC.
In particular, both systems find only Y assignments for
GCD. Therefore, the difference in performance is not due
to assignment quality, but rather differences in the underly-
ing circuit. We attribute HyCC performance gains to their
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Figure 9: Benchmark circuit execution times results comparing Hycc with Silph

Application HyCC PSO HyCC Heuristics
(fastest) Silph G-ILP Silph T-ILP Silph C-ILP

LAN WAN LAN WAN LAN WAN LAN WAN LAN WAN
Biomatch Y Y A+Y A+Y A+Y A+Y A+Y A+Y A+Y A+Y
K-Means Y Y A+Y A+Y A+B+Y A+Y A+B+Y A+Y A+B+Y A+Y
GCD Y Y Y Y Y Y Y Y Y Y
Histogram Y Y Y Y A+Y A+Y A+Y A+Y A+Y A+Y
DB Merge A+Y A+Y A+Y A+Y A+Y A+Y A+Y A+Y A+Y A+Y
DB Join Y Y A+Y A+Y A+Y A+Y A+Y A+Y A+Y A+Y
Gauss Y Y Y Y Y Y Y Y Y A+Y
MiniONN - - A+Y A+Y A+Y - A+Y A+Y A+Y A+Y
CryptoNets A A A A A A A A A A

TABLE 3: Protocol assignments between HyCC and Silph in LAN and WAN setting. Filled cells represent the selection
scheme with the fastest execution time (average across 10 runs).

boolean gate-level compilation pipeline and optimizations,
which Silph lacks.

Finally, our evaluation shows that C-ILP, even with
the fastest compile times from Figure 8, can still achieve
reasonable performance results compared to the other two
selection schemes in Silph. Aside for DB Join, C-ILP is able
to find a protocol assignment that results in near identical
circuit execution times compared to G-ILP and T-ILP.

8.4. Comparison to OPA

In this section, we present the conceptual and empirical
tradeoffs of the protocol assignment techniques used in
OPA to that used in Silph. We evaluate OPA by integrating
their LP relaxation into Silph’s compilation pipeline. Table

4 shows the protocol assignment solving time and circuit
execution results of OPA’s LP relaxation compared to our G-
ILP and C-ILP techniques. All experiments were evaluated
in the LAN setting.

For the protocol assignment process, OPA uses a global
relaxed LP approach that is restricted to at-most 2 primitives.
When solving for the optimal protocol assignment using
ABY (3 primitives), OPA executes their LP formulation for
every pair of unique primitives (AB, BY, AY) and selects
the assignment with the best predicted runtime. From Table
4, we see that OPA’s approach scales better compared to
G-ILP, improving protocol assignment solving time by up
to 300× (in K-Means). This is because their LP relaxation
and restriction to at-most 2 primitives greatly reduces the
search space that the LP solver needs to solve for.



LP Solving Circuit Execution
Benchmark G-ILP C-ILP OPATotal G-ILP C-ILP OPABest

Biomatch 1.896 0.094 0.283 0.254 0.250 0.263
K-Means 1195.223 0.452 4.570 1.905 1.686 1.956

GCD 0.019 0.018 0.014 0.249 0.251 0.253
Histogram 105.233 18.067 2.846 0.596 0.592 0.588
DB Merge 0.212 0.144 0.064 0.225 0.223 0.219

Db Join 82.297 0.475 1.109 0.414 0.512 0.453
Gauss 0.094 0.057 0.014 0.227 0.232 0.228

MiniONN 32633.4 4.413 5890.65 5.156 5.119 5.207
CryptoNets 642.483 7.499 216.703 0.780 0.773 0.795

TABLE 4: Comparison of the protocol assignment and cir-
cuit execution times using G-ILP, C-ILP, and LP relaxation
from OPA. OPATotal represents the total solving time for
all combinations of two primitives using ABY, (AB, AY,
BY). OPABest represents the best execution circuit time
from the 3 combinations.

On the other hand, Silph’s ILP formulation can sup-
port an arbitrary number of primitives. Therefore, Silph
would be able to find a more optimal protocol assignment
if a benchmark used more than 2 primitives. When one
considers function-based protocol assignment using C-ILP,
the relationship between Silph and OPA is more complex.
Although C-ILP is based on ILPs, it is faster than OPA’s
global LP, because each function ILP is quite small. Silph
can also employ its partition mutations heuristic to further
decompose large functions into smaller ILPs. The accuracy
of C-ILP’s protocol assignments (i.e., runtime performance)
is also comparable to OPA’s LP, differing by at most 0.1
seconds.

We leave the question of combining the LP-based ap-
proach of OPA with the multi-level approach of Silph to
future work.

9. Related work

MPC compilers. Silph is part of a line of works on compil-
ers for secure multiparty computation [48], [45], [46], [73],
[2], [58], [13], [35], [16], [74], [33]. Many (early) works in
this area focused on compiling a high-level program to an
individual MPC primitive, while more recent works focused
on generating workload-specific hybrid MPC protocols.

HyCC [13] compiles C programs to hybrid MPC proto-
cols. It partitions programs based on syntactic structure (i.e.,
functions, loops, arithmetic expressions). All computations
in a partition are evaluated using the same primitive. In
contrast, Silph lifts these restrictions by analyzing and op-
timizing based on the IR graph, thus making our generated
protocols less sensitive to the syntactic structure of the
input program. We also produce fine-grained assignments by
allowing each partition to be assigned to multiple primitives.

EzPC [16] compiles high-level programs to hybrid
two-party computations (2PC). It employs a specialized,
heuristics-based algorithm that partitions a program based
on arithmetic and boolean operations, and assigns a single
2PC primitive to each partition (similar to HyCC). In com-
parison, Silph can perform protocol assignment for any set

of MPC primitives based on a cost model instead of using
heuristics to determine assignments.

OPA [35] is another work that tackles the protocol
assignment problem from a theoretical angle. It models the
problem as an ILP, which is carefully constructed to achieve
a nice theoretical result: it is equivalent to its LP relaxation
when there are only two primitives. Silph’s first ILP formu-
lation simplifies OPA’s formulation at the expense of LP-
relaxation equivalence. OPA’s ILP has the same restriction
as Silph’s first ILP in that each computation unit is only
assigned to one primitive. Silph’s second ILP formulation
generalizes the optimization problem allows computation
units to be assigned to multiple primitives.

Viaduct [1] compiles programs with confidentiality and
integrity labels to secure distributed executions. Its goal—
combining different cryptographic primitives including
MPC, zero-knowledge proofs, and commitment schemes—
is orthogonal to ours and its scope is broader. It does not
consider cost-based hybrid protocol mixing for MPC.
Other cryptographic compilers. Further afield, there is
much work on compilers for other cryptographic primitives.
Compilers for fully homomorphic encryption (FHE) [20],
[67], [68], [66], [9], [3], [69], [25], [24], [17], [15], [21]
support computation over encrypted data, enabling privay-
preserving outsourcing. Compared to MPC, FHE requires
less interaction, at the expense of compute efficiency.
Compilers for zero-knowledge proofs (ZKPs) [64], [63],
[11], [70], [56], [19], [42], [53], [6], [27], [75], [18] sup-
port privacy-preserving proofs about secret data. ZKPs can
achieve public verifiability, but apply only when all secret
information is known by one party (the prover); this sub-
stantially alters the compilation problem. Recent works [62],
[5], [39], [54] blur the line between ZKPs and MPC using
techniques orthogonal to ours.

10. Conclusion

Silph is a scalable, efficient, and accurate hybrid protocol
compiler for MPC programs written in high-level languages.
Our evaluation shows that Silph greatly improves the overall
hybrid MPC compilation process and can deliver optimized,
fine-grained protocol assignments across various database
analytics and machine learning workloads.

11. Acknowledgements

We’d like to give many thanks to the anonymous S&P
reviewers and our shepherd for their timely and detailed
feedback. We’d also like to thank Bernardo Subercaseaux for
his helpful discussions and insights in formulating our inter-
partition ILP. This material is based upon work supported
by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE-1745016, and
funding from PNC, Samsung, and CyLab Seed funding. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.



References

[1] ACAY, C., RECTO, R., GANCHER, J., MYERS, A. C., AND SHI, E.
Viaduct: an extensible, optimizing compiler for secure distributed
programs. In PLDI (2021).

[2] ALY, A., CONG, K., COZZO, D., KELLER, M., ORSINI, E., RO-
TARU, D., SCHERER, O., SCHOLL, P., SMART, N., TANGUY, T.,
ET AL. SCALE-MAMBA. https://homes.esat.kuleuven.be/∼nsmart/
SCALE/.
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[13] BÜSCHER, N., DEMMLER, D., KATZENBEISSER, S., KRETZMER,
D., AND SCHNEIDER, T. Hycc: Compilation of hybrid protocols for
practical secure computation. In CCS (2018).

[14] California Consumer Privacy Act (CCPA) 2018. https://oag.ca.gov/
privacy/ccpa, 2018.

[15] CARPOV, S., DUBRULLE, P., AND SIRDEY, R. Armadillo: a compila-
tion chain for privacy preserving applications. In Proceedings of the
3rd International Workshop on Security in Cloud Computing (2015).

[16] CHANDRAN, N., GUPTA, D., RASTOGI, A., SHARMA, R., AND
TRIPATHI, S. Ezpc: programmable and efficient secure two-party
computation for machine learning. In Euro S&P (2019).

[17] CHIELLE, E., MAZONKA, O., GAMIL, H., TSOUTSOS, N. G., AND
MANIATAKOS, M. E3: A framework for compiling c++ programs
with encrypted operands. Cryptology ePrint Archive (2018).

[18] CHIN, C., WU, H., CHU, R., COGLIO, A., MCCARTHY, E., AND
SMITH, E. Leo: A programming language for formally verified, zero-
knowledge applications, 2021. https://ia.cr/2021/651.

[19] COSTELLO, C., FOURNET, C., HOWELL, J., KOHLWEISS, M.,
KREUTER, B., NAEHRIG, M., PARNO, B., AND ZAHUR, S. Gep-
petto: Versatile verifiable computation. In IEEE S&P (2015).

[20] COWAN, M., DANGWAL, D., ALAGHI, A., TRIPPEL, C., LEE, V. T.,
AND REAGEN, B. Porcupine: A synthesizing compiler for vectorized
homomorphic encryption. In PLDI (2021).

[21] CROCKETT, E., PEIKERT, C., AND SHARP, C. Alchemy: A language
and compiler for homomorphic encryption made easy. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security (2018).
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