
Post-Quantum Secure Deterministic Wallet:
Stateless, Hot/Cold Setting, and More Secure

Mingxing Hu

Shanghai Jiao Tong University, Shanghai, China
mxhu2018@sjtu.edu.cn

Abstract. Since the invention of Bitcoin, cryptocurrencies have gained
huge popularity. Crypto wallet, as the tool to store and manage the
cryptographic keys, is the primary entrance for the public to access
cryptocurrency funds. Deterministic wallet is an advanced wallet mecha-
nism that has been proposed to achieve some appealing virtues, such as
low-maintenance, easy backup and recovery, supporting functionalities
required by cryptocurrencies, and so on. However, the existing deter-
ministic wallet schemes especially in the quantum world still have a long
way to be practical. The first barrier is how to build a deterministic
wallet scheme without relying on the state, i.e., stateless. The stateful
deterministic wallet scheme must internally maintain and keep refreshing
synchronously a parameter named state which makes the implementa-
tion in practice become more complex. And once one of the states is
leaked, thereafter the security notion of unlinkability is cannot be guar-
anteed (referred to as the weak security notion of forward unlinkability).
The second barrier is how to derive the session secret keys from the
master secret key in one-way. There are security shortfalls in previous
works, they suffer a fatal vulnerability when a minor fault happens (say,
one derived key is compromised somehow), then the damage is not lim-
ited to the leaked derived key, instead, it spreads to the master key
and the whole system collapses. The third barrier is how to build a post-
quantum secure deterministic wallet scheme supporting hot/cold setting,
which is important since nearly all popular cryptocurrencies relied on the
hardness problems that can be broken by quantum adversaries, and the
hot/cold setting is a widely adopted method to effectively reduce the
exposure chance of secret keys and hence improving the security of the
system. The last barrier is how to build a deterministic wallet scheme
with standard security notion of unforgeability. It is motivated by pre-
vious works which are based on a weaker/nonstandard unforgeability
notion, in which the adversary is only allowed to query and forge the
signatures w.r.t. the public keys that were assigned by the challenger.

In this work, we present a new deterministic wallet scheme in quantum
world, which is stateless, supports hot/cold setting, satisfiies stronger
security notions, and is more efficient. In particular, we reformalize the
syntax and security models for deterministic wallets, capturing the func-
tionality and security requirements (including full unlinkability and stan-
dard unforgeability) imposed by the practice in cryptocurrency. Then
we propose a deterministic wallet construction and prove its security in

2 Mingxing Hu

the quantum random oracle model. Finally, we show our wallet scheme
is more practicable by analyzing an instantiation of our wallet scheme
based on the signature scheme Falcon.

Keywords: Deterministic wallets · Post-Quantum · Lattice-Based cryp-
tography · Blockchain · Cryptocurrency.

1 Introduction

Since the introduction of Bitcoin [33], cryptocurrencies has been undergoing a
tremendous development as they provide a revolutionary payment paradigm. In
most cryptocurrencies, balance updates are executed via transactions between
coin-addresses, and digital signature [34,38] is employed to enable users to own
and spend their coins. More specifically, each coin is assigned to a coin-address
which technically is represented by a public key of a digital signature scheme,
implying that the coin belongs to the owner of the public key. If a coin owner
wants to spend the coin on a public key pk, he needs to generate a transaction
tx and a signature σ such that (tx, σ) is a valid (message, signature) pair w.r.t.
pk, authenticating the spending of the coin by this transaction. In this setting,
the secret keys naturally became a highly attractive target for attacks since the
users control funds via secret keys. Therefore, key management plays a crucial
role in cryptocurrencies and it needs to work like a wallet for the coins.

Deterministic Wallet and Its Merits. Deterministic wallet [9] has been ac-
cepted as one of the most prominent solutions in the community for protecting
the keys’ security in cryptocurrency. At a high level, a deterministic wallet con-
sists of two entities (hot wallet, cold wallet) and a deterministic key derivation
mechanism. Deploying wallet systems in hot/cold setting is a widely adopted
approach [15,3,13,17,42,27], which effectively reduce the exposure chance of se-
cret keys and achieve better safety of the coins. More precisely, the hot wallet
is permanently connected to the network, while the cold wallet stores the secret
key and comes online only rarely (e.g., when a large amount of money has to be
transferred). After an initialization phase, there is a master key pair (mpk,msk),
where the master secret key msk is stored on the cold wallet, while the hot wallet
keeps the corresponding master public key mpk. The deterministic key deriva-
tion mechanism allows both cold and hot wallets to derive matching secret and
public session keys without interacting with each other. As the name of deter-
ministic wallet implies, the deterministic property means that all keys in a wallet
are deterministically generated from a “seed” so that when necessary (e.g., the
crash of the device hosting the wallet) the wallet owner can recover all the keys
from the seed. As Das et al. [15] formalized the concept of deterministic wallets,
it provides two security guarantees. The first security guarantee is wallet un-
forgeability which states that once coins are sent to the cold wallet must remain
secure even if the hot wallet is corrupted. The second one is wallet unlinkability,
which guarantees that transactions sending money to different public session
keys that were derived from the same master public key should be unlinkable.

Title Suppressed Due to Excessive Length 3

Limits on the Stateful Deterministic Wallets. Since the notion of the de-
terministic wallet has been formally formalized in the work [15], this work and
its following works [17,3] which includes the state-of-the-art work [3] all relied
on a parameter named state, i.e., their works are stateful. This parameter makes
the wallet system fall into problems. On efficiency, the stateful wallet systems
must internally maintain and keep refreshing synchronously the state between
the hold wallet and cold wallet, and must additionally set a mechanism to con-
firm if the intermediate state is leaked and the original state is erased securely,
which significantly increases the difficulty of implementation. More precisely, af-
ter the initialization phase of wallet systems, there is an initial state St0 and a
pair of master key pairs (mpk,msk), if there is a need for session keys deriva-
tion w.r.t. an identity such as ID1, the hot (resp., cold) wallet takes as input
the mpk (resp., msk), St0, and ID1, outputs a new state St1 and session key
pkID1

(resp., skID1
) by the key derivation algorithm PKDer(mpk, St0, ID1) (resp.,

SKDer(msk, St0, ID1)). If there is once more need for session keys derivation
w.r.t. an identity such as ID2, just takes as input the refreshed St1 and ID2

and repeatedly invoke the key derivation procedure again. For simplicity, we can
abstract the key derivation as below:

(pkIDi
, Sti)← PKDer(mpk, Sti−1, IDi), (skIDi

, Sti)← SKDer(msk, Sti−1, IDi)

More specifically, the new state Sti is computed by a random oracle function
H that is called by the above key derivation algorithms, that is (·, Sti) ←
H(Sti−1, IDi). Then recall that we mentioned the key derivation procedure is
deterministic, i.e., the algorithms (PKDer, SKDer) are deterministic. So we now
can observe the shortfalls exposing on the security of unlinkability, that is once
one of the above-used states leaked, assuming this leaked state is Sti, then the
adversary can use H to compute all the states {Sti, Sti+1, Sti+2, · · · } that pre-
pare to use in future, and hence the unlinkability will be broken by checking
if (pkIDi , Sti) = PKDer(mpk, Sti−1, IDi) holds when the adversary observes the
(pkIDi , Sti) are used in blockchain. Consequently, in this setting, the unlinka-
bility only holds in prior to any hot wallet corruption, which is referred as the
weak notion of unlinkability named forward unlinkability [15]. In summary, the
stateful deterministic wallet systems severely limit the efficiency and the security
notion of unlinkability is weak.

Security Shortfalls of Previous Works. Security is always the primary con-
cern on the wallet systems since there were examples such as [23,26,18,42] pointed
out that the previous works [36,40,37,14] suffers a realistic attack named privilege
escalation attack [18], and presented the patched schemes. But no existing works
analyze the deterministic wallets [15,3] and show the patched schemes. The priv-
ilege escalation attack is that once an attacker obtains a session secret key and
the master public key somehow, he could reveal the master secret key and com-
promise the wallet completely and steal all the related coins. We are inspired
by this attack and found the deterministic wallet schemes [15,3] also suffer the
vulnerability. For instance, in the work [15], the derived key sk′ = msk · ρID
where ρID is a randomness and ρID is invertible. Recall that the adversary

4 Mingxing Hu

knows all the states since their unforgeability model allows the adversary to
obtain the initial state St0, therefore, the adversary can compute the target
ρID by (ρIDi , Sti) ← H(Sti−1, IDi), then the master secret key is revealed by
msk = sk′ · ρ−1ID . This attack is also worked in the work [3] except the difference
is that the session secret key derivation in [15] is multiplicative rerandomization
(derivation), i.e., sk′ = msk · ρID while in [3] is additive rerandomization, i.e.,
sk′ = msk+ ρID. Therefore, the fundamental cause of this attack is the process
of session secret key derivation (rerandomization) is not one-way, i.e., invertible.
In summary, a one-way support key derivation mechanism is an urgent need for
deterministic wallet schemes. And we note that it is quite challenging since it not
only needs to support one-way derivation but also needs to be compatible with
the properties of deterministic wallet systems such as deterministic derivation
and in the meanwhile, there is no interaction between the hot and cold wallet.

Lacking Post-Quantum Secure Deterministic Wallet in Hot/Cold Set-
ting. As we described above, deploying wallet systems in hot/cold setting is
widely adopted in almost all the works [15,3,13,17,42,27] since it can effectively
reduce the risk of secret key exposure. The state-of-the-art work [3] presented
the first post-quantum secure deterministic wallet and defined in the hot/cold
setting, but fall short in building practical hot/cold deterministic wallet. This
problem originated from the key derivation mechanism. Their deterministic wal-
let system is based on a signature scheme with rerandomizable keys which can
be taken as a standard signature scheme augmented with two key rerandomiza-
tion algorithms (RandPK, RandSK). As the name suggests, the algorithm RandPK
(resp., RandSK) takes as input a pubic key pk (resp., secret key sk) and a ran-
domness ρ then outputs a randomized public key pk′ ← RandPK(pk, ρ) (resp.,
secret key sk′ ← RandSK(sk, ρ)). And these two algorithms are called by the
key derivation algorithms of wallet scheme, i.e., RandPK and RandSK are called
by PKDer (in hot wallet) and SKDer (in cold wallet), respectively. The point is
that these rerandomization algorithms (RandPK, RandSK) are required to com-
municate when deploying in wallet systems, however, it is contradicted with the
property of deterministic wallet that hot and cold wallets do not communicate
with each other except when they are being initialized.

Consider a scenario, in which the rerandomization algorithms (RandPK, RandSK)
have to synchronize after each invocation of RandPK or RandSK algorithm. Given
msk and ρ, the algorithm RandSK uses ρ together with a counter ctr in order to
deterministically generate a randomness ρ′. Then it computes the rerandomized
secret key sk′ = msk+ρ′ and outputs sk′ only after verifying that it has the cor-
rect distribution, otherwise, it increases the counter as ctr = ctr+1 and repeats
this process. The algorithm RandPK algorithm needs to receive the corresponding
ctr from RandSK in order to generate the correct rerandomized public key cor-
responding to sk′. Consequently, rigorously speaking, this post-quantum secure
deterministic wallet scheme supports the hot/cold setting with a probability.
We note that most cryptographic primitives used by cryptocurrencies today can
be broken by quantum adversaries. Most notably, the ECDSA signature scheme

Title Suppressed Due to Excessive Length 5

that is implemented by nearly all popular cryptocurrencies relies on the hardness
of computing discrete logarithms, and hence can be broken by Shor’s algorithm
[Sho94]. Therefore, in order to make deterministic wallets more practical, we
should not only design them in hot/cold setting but also in quantum world.

Weak/Non-Standard Security Notions of Prior Works. As we mentioned
above, since the notion of deterministic wallet has been formally formalized by
Das et al. [15], this work and its following works [17,3] which includes the state-
of-the-art work of Alkadri et al. [3], their security notion of unlinkability is weak
or nonstandard due to the relying on state. Not only that, their security notion
of unforgeability is also weak/nonstandard. More precisely, their unforgeability
models only allow the adversary to query the signing oracle and forge the signa-
ture with the randomness that is assigned by the challenger rather than adver-
sarially chosen randomness, since the used randomness throughout the entire un-
forgeability game is sampled by a specified underlying oracle that is controlled by
the challenger. In other words, the adversary can not query/forge the signatures
with respect to the desired session public key, i.e., the adversary can not know
the session public key that corresponds to the queried/forged message-signature
tuple in advance. But in practice, the adversary knows all the states in the sys-
tem since he can obtain the initial state when the hot wallet is compromised,
and hence the adversary can compute the randomness and session public key
corresponding to any identity, then the adversary can observe and forge signa-
tures with respect to any session public key on the blockchain. Below we explain
the details. Recall the definition of the unforgeability of deterministic wallet,
which guarantees that once funds are transferred to the cold wallet they remain
secure even if the hot wallet is compromised. Therefore the adversary obtains
the initial state St0 when the hot wallet is compromised. Then the adversary
can compute the session public key (pkIDi

, Sti) ← PKDer(mpk, Sti−1, IDi) with
respect to any identity IDi. More precisely, the PKDer algorithm first computes
the (ρIDi , Sti)← H(Sti−1, IDi) by a random oracle function H then obtains the
resulting pkIDi

by calling RandPK with input ρIDi
. Now the adversary can ob-

serve the activities with respect to this session public key pkIDi
, which includes

payments paid to pkIDi
and the coins on pkIDi

is spent by issuing a signature, in
the meantime, the adversary can judge the time was right for forging a signature.
Consequently, by the description and details as shown above, we can conclude
that this weak security notion of unforgeability is non-standard and can not fully
capture the practical requirements of deterministic wallets.

1.1 Our Contribution

In this work, our main contribution is to present a new deterministic wallet
scheme with merits: post-quantum security, stateless, supporting hot/cold set-
ting, satisfying stronger security notions, and more efficient. In particular, we
reformalize the syntax and security models for deterministic wallets and the
underlying signature scheme, capturing the functionality and security (wallet
unlinkability and wallet unforgeability) requirements that the cryptocurrency

6 Mingxing Hu

practice imposes on deterministic wallets. It is worth mentioning that the un-
derlying signature scheme is the first post-quantum secure signature scheme with
rerandomizable public keys (RKS), which is achieved by giving a generic con-
struction from a lattice-based hash-and-sign signature scheme. Then we propose
a deterministic wallet construction and prove its security in quantum random
oracle model. Finally, we show and evaluate our wallet scheme is more compact
and practicable by analyzing an instantiation of our wallet scheme based on Fal-
con [20] (signature scheme of NIST finalist). The merits of stateless, supporting
hot/cold setting, more secure, and more efficiency of our deterministic wallet
scheme will empower its applications in practice.

New Definitions: Natural, Stateless, Stronger. To fully capture the secu-
rity requirements of deterministic wallets in practice, we reformalize the syntax
and the security models of deterministic wallet scheme and the underlying RKS
signature scheme. On the syntax, our wallet scheme is stateless, i.e., do not need
to internally maintain and keep refreshing synchronously a state between the
hot and cold wallets. And we augment the formalization of deterministic wallet
from [15,3] that is

DW := (DW.KeyGen, DW.PKDer, DW.SKDer, DW.Sign, DW.Ver)

and the RKS signature scheme from [3] that is

RKS := (RKS.KeyGen, RKS.RandPK, RKS.RandSK, RKS.Sign, RKS.Ver)

with a randomness generation algorithm DW.RandGen and RKS.RandGen, respec-
tively. Under this setting, the key derivation algorithms (DW.PKDer, DW.SKDer)
only need to take as input a master public/secret key and a randomness such as
pkID ← DW.PKDer(mpk, ρID) rather than (pkID, Sti)← DW.PKDer(mpk, ID, Sti−1)
as prior works [15,3] which needs to take as input an identity ID and an original
state Sti−1. Therefore it can observe that our syntax is more natural. Moreover,
the deterministic wallet is stateless in our system model. More specifically, after
the initialization phase, there is a pair of master keys and a chaincode from key
generation algorithm, i.e., (mpk,msk, ch) ← DW.KeyGen, then directly use the
ch to derive session keys for each identity. Rather than doing as prior works,
it generates (mpk,msk, St0) ← DW.KeyGen, then the state St0 is refreshed as
St1 after deriving a pair of session keys, thereafter there must be a refreshing
operation on the current state Sti to Sti−1 when the key derivation mechanism
is called.

On the formalization of security models, we formalize the security notions of full
unlinkability and standard unforgeability for deterministic wallets. We first recall
the weak notion of forward unlinkability [15] (and also be adopted in [3,17]) in
which the unlinkability only holds in prior to any hot wallet corruption, the
unlinkability only holds in prior to any hot wallet corruption, it means only the
keys generated prior to a hot wallet breach (i.e., when the adversary learns the
state) cannot be linked to mpk. Therefore, in this setting, not only the initial
state St0 should be kept secret but also the intermediate state Sti should be

Title Suppressed Due to Excessive Length 7

used with care. Compared with that, in our full unlinkability model, only the
parameter of chaincode ch needs to be kept secret, then all the derived session
public keys remain secure. As for the standard unforgeability, it guarantees that
once funds are sent to the cold wallet must remain secure even if the hot wallet
is corrupted, and it is stronger when compared with the unforgeability notion
of prior works [15,3,17], since it allows the adversary to query the signing oracle
and forge the signature with adversarially chosen randomness.

A New Key Derivation Mechanism: Support One-Way Derivation and
Hot/Cold Setting. The key derivation mechanism is the most important part
of a wallet system, since the performances and properties of a wallet system
heavily depend on the key derivation mechanism. In this work, we present a
new key derivation mechanism that enable the deterministic wallet to derive
keys in one-way and support deploying in hot/cold setting. We achieve that
by arming with appropriate lattice techniques. The key ingredient is a lattice
basis delegation algorithm (BasisDel) [1]. The BasisDel is used in the scenario:
For a lattice L with basis B, to delegate a short basis as the key to a child,
the parents employ BasisDel with input (L,B) to create a new lattice L′ with
a random short basis B′. This delegation process is one-way, i.e., a child node
cannot use its secret key to recover the key of its parent or its siblings. We
explain the delegation technique at a high level: let L be a lattice in Zm and let
B = {b1, . . . ,bm} be a short basis of L. Let R be a public non-singular matrix
in Zm×m. Then we have the set B′ = {Rb1, . . . ,Rbm} is a basis of the lattice
L′ := LR−1. Moreover, we can use standard tools such as basis randomization
algorithm to randomize the basis without increasing the norm of B′ by much. The
end result is a random short basis B′ of L′. When instantiating in deterministic
wallet setting, we can consider setting the parent lattice L as mpk, B as msk,
L′ as derived session public key pk′, B′ as derived session secret key sk′, and set
R as the randomness ρ. Since the key derivation is one-way, our deterministic
wallet is immune to the privilege escalation attack.

We can observe the above delegation algorithm has natural symmetry property,
i.e., when the correct randomness R is generated both hot and cold wallet can
derive the matching session keys by R. This property is essential for deterministic
wallets since it requires that there is no interaction between the hold and cold
wallet in the process of session key derivation. The state-of-the-art work [3] can
not support the natural symmetry property, because the process of session key
derivation requires interaction between the hold and cold wallet, so it falls short
in building a practical hot/cold deterministic wallet. As we described above, the
hot wallet in order to generate the correct session public key pk′ corresponds
to the session public key sk′ in cold wallet, the hot wallet needs to receive the
counter ctr from cold wallet. The reason for that is the adopting of rejection
sampling [28] in secret key derivation algorithm, i.e., if the session secret key
sk′ = msk + ρ′ has the incorrect distribution then generate the randomness ρ′

repeatedly and send the corresponding ctr to hot wallet. In other words, the
generated randomness ρ′ is worked (the sk′ has the correct distribution) in a

8 Mingxing Hu

probability p that is p ≥ 1
M where M = O(1). By contrast, in our setting, as

shown by Agrawal et al. [1], once the randomness, i.e., the desired matrix R is
generated, it is worked in an overwhelming probability, namely, we can obtain
a valid pair of session keys (pk′, sk′) with overwhelming probability by simply
multiply R and (mpk,msk) that is (pk′ := mpk · R−1, sk′ := Rand(R ·msk))
where Rand() is a randomization operation by a standard tool. As lattice-based
assumptions are conjectured to be secure under quantum computer attacks, we
obtain the first post-quantum secure deterministic wallet supporting hot/cold
setting.

Practical Instantiation and Deployment over Blockchains. In this work,
we show our wallet scheme is more practicable by analyzing an instantiation
of our wallet scheme based on the signature scheme Falcon [20], and analyze
the deployment over blockchains. Falcon is a lattice-based signature scheme of
NIST finalist, which is so compact that has the smallest size of “pk + sig”,
i.e., the size on the sum of public key and signature is smallest among the
candidate algorithms for post-quantum (PQ) standardization [35]. Therefore,
Falcon is fitted neatly to instantiate wallet schemes, since on the blockchains, we
know that the transaction throughput of a transaction tx must usually consist of a
public key pk, a signature σ, and the raw transaction part raw, i.e., we can simply
write that as tx’s = raw’s + pk’s + σ’s. To better illustrate our performance,
we show a comparison with the state-of-the-art deterministic wallet of Alkadri
et al. [3]. Below we show the comparison results in Table 1 while the concrete
analysis is given in Section 6.

Table 1. Comparison with prior work

Scheme More
secure

Hot/Cold
setting

Security
level Sizes [B] Transaction

throughput
Cycle counts
[k-cycles]

[3] 7 7 95 bits pk: 14880 ≈17.5 KB Sign: 3089.9
sig: 2592 Ver: 814.3

Our ! ! 158 bits pk: 897 ≈1.66 KB Sign: 1368.5
sig: 666 Ver: 95.6

To show the comparison comprehensively, we add two items that are “More se-
cure” and “Hot/Cold setting” since both are indispensable for a practical wallet.
The “More secure” means this work achieves stateless, immune privilege esca-
lation attack, full unlinkability, and standard unforgeability. Note that the work
[3] is not “More secure” since none of these notions are achieved as we described
above, while our work achieved all of that. From the comparison results, we can
observe that our scheme has a more compact performance than the prior work [3]
since our works achieved more efficiency on the time-consuming and parameter
sizes even under a higher security level.

Title Suppressed Due to Excessive Length 9

1.2 Related Work

Research on Wallet Systems. Table 1 gives a comprehensive comparison
between our work and the state-of-the-art deterministic wallet [3]. Below we
would like to give further details on the comparison with the related work.

With the quick and explosive development of cryptocurrencies, the concept of
hot/cold wallets have gained more attention because it is an important tool and
primary entrance for its users to access cryptocurrency funds since it stores and
manages the cryptographic keys. At the same time, however, the community
has noticed the vulnerability on deterministic wallet schemes that once the mas-
ter public key and one session secret key are compromised, the master secret
key and the whole wallet will be compromised. Before the security model for
hot/cold wallets had been formalized by Das et al. [15], there are also works
aimed to present secure deterministic wallet schemes. For instance, Liu et al.
[26] proposed a “identity-based signature” like signature scheme whose inherent
properties such as session-key-insulated and master public key privacy-preserving
can be employed to eliminate the privilege escalation attack effectively. Then it
was transformed to lattice setting by [25], but was proved in random oracle,
rather than quantum random oracle. And recently, they transform the signature
scheme to a deterministic wallet scheme [27] but did not formalize the models for
deterministic wallet and not quantum secure. Until recently, Das et al. [15] first
formalized the security model for hot/cold wallets and gave the construction, but
it needs to rely on state, i.e., stateful, and its security notions are weaker than
ours, and not quantum secure. More recently, Erwig and Riahi [17] presented
a novel deterministic wallet which build from a new cryptographic primitive
named adaptor signatures, but it also adopt the approaches of Das et al. [15],
so it is also stateful and weaker security guarantees, and cannot against quan-
tum adversary. There are also researches [23,18,16,14,42] of hierarchical variants,
i.e., hierarchical deterministic wallets, however, to the best of our knowledge, no
hierarchical deterministic wallet in quantum world has been introduced so far.

Other Related Work. Lattice basis delegation technique is the key ingredient
among the lattice techniques that our wallet scheme armed. Below we explain
why we employ the lattice basis delegation technique by Agrawal et al. [1] rather
than other works [10,31]. As aforementioned, the security notion of unlinkability
requires that the master public key can not be revealed from session public keys.
However, the delegation algorithms from the works [10,31] directly concatenate
the master public key in plaintext, rather than randomized the master public key
as [1], when deriving session public keys, so the unlinkability is trivially broken.
Furthermore, the delegation algorithms of both works [10,31] do not satisfy the
“natural symmetry” property which is essential for deterministic wallets as we
mentioned above.

10 Mingxing Hu

2 Preliminaries

Notation. We denote vectors as lower-case bold letters (e.g. x), and matrices
by upper-case bold letters (e.g. A). We denote as e

$←− S the uniform sampling
of the variable e from the set S. We write [l] for a positive integer l to denote
the set {1, . . . , l}. We say that a function in n is negligible, written negl(n), if it
vanishes faster than the inverse of any polynomial in n. We say probability p(n)
is overwhelming if 1−p(n) is negligible. We denote the horizontal concatenation
of two matrices A and B as A | B. For a matrix A we denote some matrix norms:
‖A‖1 denotes the ℓ1-norm of A, ‖A‖ denotes the ℓ2-norm of the longest column
of A, ‖A‖∞ denotes the ℓ∞-norm of A, ‖A‖gs denotes the result of applying
Gram-Schmidt orthogonalization to the columns of A. Unless otherwise stated,
all our algorithms are probabilistic, we use y ← A(x) to denote that algorithm A
outputs y when running on input x, and write y ← A(x, ρ) to denote algorithm
A outputs y when running on input x and randomness ρ. Note that in this way,
algorithm A becomes a deterministic algorithm. We use the notation A(x) to
denote the set of all possible outputs of (probabilistic) algorithm A on input x.
We model hash functions as classical random oracles [7] or quantum random
oracles [8]. We denote the classical random oracle by the symbol H and the
quantum random oracle by the notation |H〉. In our proofs, we will also consider
reprogrammed random oracles. For a (quantum) random oracle H we write Hx→y

for the (quantum) random oracle that is reprogrammed on input x to y.

2.1 Quantum Random Oracle Model

In this section, we recall the quantum random oracle model and the existing
results that we will use. The quantum random oracle model (QROM) is intro-
duced by Boneh et al. [8] which is motivated by the observation that the random
oracle model (ROM) is not appropriate in the post-quantum setting. In the real
world, an adversary equipped with a quantum computer is able to implement the
hash function and evaluate it in superposition. In QROM, parties with quantum
computing power get access to the oracle |H〉 where |H〉 : |x, y〉 7→ |x, y ⊕ H(x)〉.
Below we describe a result for quantum random oracles that are required for
our proofs. As [3] mentioned, the one-way to hiding (O2H) lemma [39] is an
important tool for security proofs in the quantum random oracle model. It gives
bounds on the advantage of an adversary in distinguishing between different
random oracles when the adversary is allowed to query them in superposition.
Below we state the O2H lemma using the reformulation by Ambainis et al. [6].

Lemma 1 (One-way to hiding (O2H) [6]). Let G, H : X → Y be random
functions, let z be a random value, and let S ⊂ X be a random set such that ∀x /∈
S, G(x) = H(x). (G,H,S, z) may have arbitrary joint distribution. Furthermore,
let A|H⟩ be a quantum oracle algorithm which queries |H〉 at most q times. Let Ev
be an arbitrary classical event. Define an oracle algorithm B|H⟩ as follows: Pick
i

$←− [q]. Run A|H⟩(z) until just before its i-th round of queries to |H〉. Measure

Title Suppressed Due to Excessive Length 11

the query in the computational basis, and output the measurement outcome. It
holds that∣∣∣Pr[Ev : A|H⟩(z)]− Pr[Ev:A|G⟩(z)]

∣∣∣ ≤ 2q
√

Pr[x ∈ S : B|H⟩(z)⇒ x]

2.2 Signature Schemes

In this section, we introduce the syntax and relevant security notions for signa-
ture schemes.

Definition 1 (Signature Scheme). A signature scheme SIG is a triple of al-
gorithms SIG := (SIG.KeyGen, SIG.Sign, SIG.Ver). The probabilistic algorithm
of key generation SIG.KeyGen that outputs a key pair (pk, sk) of secret and public
keys. The probabilistic algorithm of signing SIG.Sign takes as input a secret key
sk and a message and returns a signature σ. The deterministic algorithm of ver-
ification SIG.Ver takes as input a public key pk, a signature σ, and a message µ.
It returns 1 if signature σ is valid and 0 otherwise. The correctness requires that,
let λ be the security parameter, for all key pairs (pk, sk)← SIG.KeyGen(1λ), all
µ ∈ {0, 1}∗, and all σ ← SIG.Sign(sk, µ), we have the following holds (over all
the randomness in the experiment).

Pr
[
SIG.Ver(pk, µ, SIG.Sign(sk, µ)) = 1

]
≥ 1− negl(λ)

We will use an augmented notion of signature schemes with rerandomizable
public keys from Alkadri et al. [3], which is a relaxed version of the notion of
signature schemes with rerandomizable keys from Fleischhacker et al. [19] since
it holds only for the generated public keys, but not in case of secret keys. In our
setting, this notion is augmented with an additional algorithm RKS.RandGen.
The notion is described as follows.

Definition 2 (Signature Scheme with Rerandomizable Public Keys). A
signature scheme with rerandomizable public keys RKS is a tuple of algorithms RKS
:= (RKS.KeyGen, RKS.RandGen, RKS.RandPK, RKS.RandSK, RKS.Sign, RKS.Ver)
where algorithms (RKS.KeyGen, RKS.Sign, RKS.Ver) satisfy the definition of a
standard signature scheme as defined above (cf. Definition of SIG). For random-
ness space R, the randomness generation algorithm RKS.RandGen takes as input
a parameter γ and outputs a randomness ρ ∈ R. The public key rerandomization
algorithm RKS.RandPK takes as input the public key pk and a randomness ρ ∈ R
and outputs a randomized public key pk′, while the secret key rerandomization
algorithm RKS.RandSK takes as input the secret key sk and a randomness ρ ∈ R
and outputs a randomized secret key sk′.

The RKS has a property that is rerandomizability of public keys, which ensures
the distributions of the output rerandomized public keys are identical. In our
setting, we adopt the relaxed version of that property, the distributions of the
output rerandomized public keys are statistically indistinguishable.

12 Mingxing Hu

Rerandomizability of public keys: For all public keys (pk, ·)← RKS.KeyGen(1λ)
and all ρ ∈ R, the distributions of pk′ and pk′′ are statistically indistinguishable,
where pk′′ from (pk′′, ·)← RKS.KeyGen(1λ) and pk′ ← RKS.RandPK(pk, ρ).

Correctness: For all λ ∈ N, (pk, sk) ← RKS.KeyGen(1λ), µ ∈ M, and all
σ ← RKS.Sign(sk, µ), it holds that

Pr
[
RKS.Ver(pk, µ, RKS.Sign(sk, µ)) = 1

]
≥ 1− negl(λ),

and for all ρ← RKS.RandGen(γ), for a pair of rerandomized keys pk′ ← RKS.RandPK
(pk, ρ) and sk′ ← RKS.RandSK(sk, ρ), it holds that

Pr
[
RKS.Ver(pk′, µ, RKS.Sign(sk′, µ)) = 1

]
≥ 1− negl(λ).

In this work we will use the standard security notion of existential unforgeability
under adaptive chosen-message attacks [22] (EUF-CMA). Below we formalize the
EUF-CMA security notion for a signature scheme SIG in Figure 1.

Game EUF-CMAASIG

1 : Q := ∅
2 : H := ∅

3 : (pk, sk)← SIG.KeyGen(1λ)

4 : (µ∗, σ∗)← A(H,Sign)SIG(pk)

5 : if (µ∗ ∈ Q) then
return 0

6 : return SIG.Ver(pkSIG, µ
∗, σ∗)

HSIG(µ
′)

1 : if µ′ ∈ H then
return HSIG(µ

′) ∈ H

2 : HSIG(µ
′)

$←− {0, 1}o(λ)

3 : H := H ∪
{
µ′,HSIG(µ

′)
}

4 : return H(µ′)

SignSIG(µ)

1 : Q := Q∪ {µ}
2 : σ ← SIG.Sign(sk, µ)

3 : return σ

Fig. 1. The security game EUF-CMA of signature schemes

Definition 3 (EUF-CMA Security). Let HSIG : {0, 1}∗ → {0, 1}o(λ) be a hash
function modeled as (quantum) random oracle. A signature scheme SIG is called
(t, qSign, qH, ε)-EUF-CMA in the (quantum) random oracle if for any adversary
A running in time at most t and making at most qSign signature queries and
at most qH (superposition) queries to HSIG, the game EUF-CMAASIG depicted in
Figure 1 outputs 1 with probability at most ε, i.e., Pr[EUF-CMAASIG = 1] ≤ ε.

Definition 4 (EUF-CMA-RK Security). Let HRKS : {0, 1}∗ → {0, 1}o(λ)
be a hash function modeled as (quantum) random oracle. Let R be the ran-
domness space. A signature scheme with rerandomizable (public) keys RKS is

Title Suppressed Due to Excessive Length 13

Game EUF-CMA-RKARKS

1 : Q := ∅
2 : H := ∅

3 : (pk, sk)← RKS.KeyGen(1λ)

4 : (µ∗, σ∗, ρ∗)← A(H,Sign)RKS(pk)

5 : if (µ∗ ∈ Q) or (ρ∗ /∈ R) then
return 0

6 : pk′ ← RKS.RandPK(pk, ρ∗)

7 : return RKS.Ver(pk′, µ∗, σ∗)

HRKS(µ
′)

(see Figure 1)

SignRKS(µ, ρ)

1 : Q := Q∪ {µ}
2 : if (ρ /∈ R) then return ⊥
3 : sk′ ← RKS.RandSK(sk, ρ)

4 : σ ← RKS.Sign(sk′, µ)

5 : return σ

Fig. 2. The security game EUF-CMA-RK of signature schemes with rerandomizable
(public) keys

called (t, qSign, qH, ε)-EUF-CMA-RK in the (quantum) random oracle if for any
adversary A running in time at most t and making at most qSign signature
queries and at most qH (quantum) random oracle queries to HRKS, the game
EUF-CMA-RKARKS depicted in Figure 1 outputs 1 with probability at most ε, i.e.,
Pr[EUF-CMA-RKARKS = 1] ≤ ε.

2.3 Lattices and Gaussian distributions

Let m ∈ Z be a positive integer and Λ ⊂ Rm be an m-dimensional full-rank
lattice formed by the set of all integral combinations of m linearly independent
basis vectors B = (b1, . . . ,bm) ⊂ Zm, i.e., Λ = L(B) =

{
Bc =

∑m
i=1 cibi :

c ∈ Zm
}

. For positive integers n, m, q, a matrix A ∈ Zn×m
q , and a vector

u ∈ Zm
q , the m-dimensional integer lattice Λ⊥q (A) is defined as Λ⊥q (A) = {e ∈

Zm : Ae = 0 (mod q)}. Λu
q (A) is defined as Λu

q (A) = {e ∈ Zm : Ae = u

(mod q)}. It holds that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥q (A) + t and hence
Λu

q (A) is a coset of Λ⊥q (A). The discrete Gaussian distribution DZn,s,c over Zn

with standard deviation s > 0 and center c ∈ Rn is defined as follows: For every
x ∈ Zn the probability of x is given by DZn,s,c(x) = ρs,c(x)/ρs,c(Zn), where
ρs,c(x) = exp(−π‖x− c‖/s2) and ρs,c(Zn) =

∑
x∈Zn ρs,c(x). For simplicity, ρs,0

and DZn,s,0 are abbreviated as ρs and DZn,s, respectively.

Properties of Gaussian Distributions: The following lemma from [21] cap-
tures some properties of Gaussian distributions. The property-1 gives a norm
bound on the Gaussian sampled preimage vector. The property-2 will be used
to make our RKS scheme satisfy the rerandomizability of public keys (see Section
5). The property-3, i.e., SampleGaussian algorithm is the basic algorithm which
is called by our several algorithms such as SampleR, SamplePre, and RandBasis.
The property-4, i.e., SamplePre algorithm will be mainly used in the signing
algorithm of our LHS scheme (see Section 2.5).

14 Mingxing Hu

Lemma 2 ([21]). Let q ≥ 2 and let A be a matrix in Zn×m
q with m > n. Let

B be a basis of Λ⊥q (A) and standard deviation s ≥ ‖B‖gs · ω(
√
logm). Then for

c ∈ Rm and u ∈ Zn
q :

1. Pre←D
Λ⊥

u (A),s

[
‖e‖ ≥ s ·

√
m

]
≤ negl(n).

2. For e ← DZm,s, the distribution of u = Ae ∈ Zn
q is within negligible statis-

tical distance of uniform over Zn
q .

3. There is a probabilistic algorithm SampleGaussian(A,B, s, c) that outputs e ∈
Λ⊥q (A) drawn from a distribution statistically close to DΛ,s,c.

4. There is a probabilistic algorithm SamplePre(A,B,u, s) that outputs e ∈
Λu

q (A) drawn from a distribution statistically close to DΛu
q (A),s,c.

Due to Λu
q (A) = Λ⊥q (A)+t for some t ∈ Λu

q (A), algorithm SamplePre(A,B,u, s)
works by calling SampleGaussian(A,B, s, t) and then subtracts t from the result.

The following lemma shows how to sample an essentially uniform matrix A ∈
Zn×m
q with an associated basis B of Λ⊥q (A) with low Gram-Schmidt norm. The

BasisGen algorithm will be used to sample the master public key mpk and master
secret key msk, i.e., master key pair (mpk,msk) in the key generation phase of
our wallet scheme.

Lemma 3 (Lattice Basis Generation Algorithm [5,31]). There is a fixed
constant C > 1 and a probabilistic polynomial-time algorithm BasisGen(1n, 1m, q)
that, for polynomial bounded m ≥ Cn log q, the algorithm outputs A ∈ Zn×m

q and
B ∈ Zm×m such that: B is a basis of Λ⊥q (A), the distribution of A is within
negligible statistical distance of uniform, and ‖B‖gs ≤ Ltg = O(

√
n log q).

2.4 Lattice Basis Delegation

We now review the lattice basis delegation algorithm BasisDel of Agrawal et al.
[1] which is the core procedure of the key derivation algorithm of our wallet
scheme. The BasisDel algorithm consists of three parts: a full-rank matrix R in
Zm×m where all the columns of R are low-norm, ToBasis algorithm from [30],
and RandBasis algorithm from [10]. The following algorithm from [1] shows how
to sample the desired R.

Lemma 4 (SampleR Algorithm [1]). Define sr := Ltg · ω(
√
logm). Let T

be the canonical basis of the lattice Zm. There is a probabilistic polynomial-time
algorithm SampleR(1m) which outputs a full-rank matrix R in Zm×m by invoking
SampleGaussian(Zm,T, sr,0).

The following algorithm shows that a full-rank set S of a lattice Λ can be con-
verted into a basis T for Λ with an equally low Gram-Schmidt norm.

Title Suppressed Due to Excessive Length 15

Lemma 5 (ToBasis Algorithm [30]). There is a deterministic polynomial-
time algorithm ToBasis(S,B) which takes as input a basis B and a full-rank set
(not necessarily a basis) S of lattice vectors in Λ = L(B), outputs a basis T of
Λ such that ‖ti‖gs ≤ ‖si‖gs for all i.

The following algorithm is used to randomize a lattice basis, which is useful
for our wallet scheme when securely delegating the control on asset to another
entity, because the resulting basis is still short, but is essentially statistically
independent of the original basis.

Lemma 6 (RandBasis Algorithm [10]). There is a probabilistic polynomial-
time algorithm RandBasis(B, s) which takes as input a basis B of Λ⊥q (A) and
a standard deviation s ≥ ‖B‖gs · ω(

√
logm), outputs a new basis B′ of Λ⊥q (A)

such that ‖B′‖gs ≤ s
√
m holds with overwhelming probability. Furthermore, the

distribution of B′ is statistically independent with the original basis B.

Next, we introduce the lattice basis delegation algorithm BasisDel which is com-
posed of the above-introduced matrix R and algorithms ToBasis and RandBasis.

Lattice Basis Delegation Algorithm: BasisDel(A,B,R, s)

Inputs: A matrix A in Zn×m
q , a basis B of Λ⊥q (A), a full-rank matrix R in

Zm×m, and a standard deviation s.

Outputs: Let A′ = AR−1. The algorithm outputs a basis B′ of Λ⊥q (A′).

The BasisDel algorithm runs as follows:

1. Let B =
[
b1 | · · · | bm

]
⊆ Zm. Compute S =

[
Rb1 | · · · | Rbm

]
⊆

Zm. Due to B is a basis of Λ⊥q (A), R is full-rank, and A′S = 0 (mod q),
therefore, S is a set of independent vectors in Λ⊥q (A

′).

2. Call ToBasis by taking as input the set S and an arbitrary basis of Λ⊥q (A′)
and then outputs a basis B̄ whose Gram-Schmidt norm is no more than that
of S.

3. Call RandBasis by taking as input B̄ and standard deviation s then outputs
the resulting basis B′ of Λ⊥q (A′).

Lemma 7 (BasisDel Algorithm [1]). There is a probabilistic polynomial-time
algorithm BasisDel(A,B,R, s) which takes as input a matrix A in Zn×m

q , a basis
B of Λ⊥q (A), a full-rank matrix R in Zm×m, and a standard deviation s >

‖B‖gs
√
nm log q·ω(log2 m). Let A′ = AR−1. The algorithm outputs a basis B′ of

Λ⊥q (A
′) such that ‖B′‖gs/‖B‖gs ≤ m3/2ω(log2 m). Furthermore, the distribution

of B′ is statistically close to the distribution RandBasis(T, s) where T is an
arbitrary basis of Λ⊥q (A′) satisfying ‖T‖gs ≤ s/ω(

√
logm).

16 Mingxing Hu

2.5 Lattice-Based Hash-and-Sign Signatures

In this section, we review a generic construction of lattice-based hash-and-sign
(LHS) signatures. The signature scheme LHS := (LHS.KeyGen, LHS.Sign, LHS.Ver)
is formally described in Figure 3. The key generation algorithm LHS.KeyGen gen-
erates an instance of a computationally hard lattice problem called short integer
solution (SIS) [2] or its special variants such as Ring-SIS [29] and Module-SIS
[24]. In essence, the LHS.KeyGen algorithm is a lattice basis (trapdoor) generation
algorithm BasisGen (cf. Lemma 3) which outputs A ∈ Zn×m

q and B ∈ Zm×m

such that B is a lattice basis of Λ⊥q (A), the distribution of A is within neg-
ligible statistical distance of uniform, and B has a low Gram-Schmidt norm.
The LHS.Sign algorithm mainly consists of two components, a hash function
H : {0, 1}∗ → Zn

q which is modeled as a random oracle, and a Gaussian preim-
age sampling algorithm SamplePre (cf. item 4 of Lemma 2). The SamplePre
algorithm is able to sample a low-norm preimage e ← SamplePre(B,H(µ, r))
such that Ae = H(µ, r), and the distribution on e is statistically close to dis-
tribution DΛu

q (A),s. A signature consists of two items (e, r): Gaussian sampled
preimage e and a random vector r. The verification algorithm LHS.Ver checks
if Ae = H(µ, r), r ∈ {0, 1}o(λ), and if e ∈ DΛu

q (A),s for a specified Gaussian
parameter (standard deviation) s, otherwise the other e′ is easy to find such
that Ae′ = H(µ, r) and hence the unforgeability is broken. For the correctness,
by the property of SamplePre (cf. Item 4 of Lemma 2), e ∈ DΛu

q (A),s and hence
Ae = u = H(µ, r) holds with overwhelming probability. Finally, the EUF-CMA
security of lattice-based hash-and-sign signatures in QROM was analyzed in
several works [8,20,11].

LHS.KeyGen(1λ)

1 : (A,B)← GenTrap(1λ)
2 : pk := A, sk := B

3 : return (pk, sk)

LHS.Sign(sk, µ)

1 : r
$←− {0, 1}o(λ)

2 : u = H(µ, r)

3 : e←SamplePre(B,u)

4 : return (e, r)

LHS.Ver(pk, µ, (e, r))

1: if e ∈ DΛu
q (A),s

∧ r ∈ {0, 1}o(λ)

∧ Ae = H(µ, r)

then return 1
2: return 0

Fig. 3. A formal description of a generic hash-and-sign signature scheme from lattice
assumptions.

3 The Definitions for Deterministic Wallets

In this section, we formalize the syntax and security models for deterministic
wallets. At a high level, a deterministic wallet consists of two entities (cold wallet
and hot wallet), and a key derivation mechanism. Specifically, upon initialization
of the scheme, the cold wallet generates a master key pair (mpk,msk) and a

Title Suppressed Due to Excessive Length 17

chaincode ch and forwards (mpk, ch) to the hot wallet. Then cold wallet and hot
wallet can use the key derivation algorithms SKDer and PKDer, respectively, to
derive an arbitrary number of session key pairs, without further interaction, from
the master key pair (mpk,msk) and an identity set. The correctness requires that
if the cold wallet and the hot wallet derive session key pairs on the same set of
identities ID0, . . . , IDN−1 ∈ {0, 1}∗ and in the same order, any signature created
under one of the signing keys from cold wallet should be correctly verified under
the corresponding verification key from hot wallet.

Definition 5. A deterministic wallet scheme is a tuple of algorithms DW :=
(DW.KeyGen, DW.RandGen, DW.PKDer, DW.SKDer, DW.Sign, DW.Ver), which are
defined as follows:

– DW.KeyGen: The master key generation algorithm takes as input a security
parameter λ and outputs a master key pair (mpk,msk) as well as a chaincode
ch.

– DW.RandGen: The randomness generation algorithm takes as input a chain-
code ch and an identity ID, then outputs a randomness ρID.

– DW.PKDer: The public key derivation algorithm takes as input a master public
key mpk and a randomness ρID, then outputs a session public key pkID.

– DW.SKDer: The secret key derivation algorithm takes as input a master secret
key msk and a randomness ρID, then outputs a session secret key skID.

– DW.Sign: The signing algorithm takes as input a session secret key skID for
some identity ID and a message µ and outputs a signature σ.

– DW.Ver: The verification algorithm takes as input a session public key pkID
for some ID, a message µ, and a signature σ and outputs 1 if σ is a valid
signature for µ under public key pkID. It outputs 0 otherwise.

Definition 6 (Correctness). For N ∈ N, any (mpk,msk, ch)← DW.KeyGen(1λ),
any ID := (ID1, . . . , IDN) ∈ {0, 1}∗, and any ρIDi ← DW.RandGen(ch, IDi), we
define the sequence (pki, ski) for 1 ≤ i ≤ N as

pki := DW.PKDer(mpk, ρIDi
), ski := DW.SKDer(msk, ρIDi

).

DW is correct if for all µ ∈ {0, 1}∗, it holds that

Pr
[
DW.Ver(pki, µ, DW.Sign(ski, µ)) = 1

]
≥ 1− negl(λ)

A deterministic wallet scheme DW should satisfy the following two security prop-
erties - wallet unlinkability and wallet unforgeability.

3.1 Wallet Unlinkability

As works [15,3] described, the unlinkability property guarantees that the dif-
ferent public session keys that were derived from the same master public key

18 Mingxing Hu

should be unlinkable. Formally, it requires that, given the master public key,
the distribution of session public keys is computationally indistinguishable from
session public keys that are generated from a fresh master public key and chain
code. The full unlinkability game for deterministic wallet DWUNL is presented
in Figure 4. Initially, the adversary A = (A1,A2) runs its subprocedure A1 on
input a master public key mpk generated by DW.KeyGen(1λ) and subsequently
interacts with oracles PK and SignDW that reflects A’s ability. The oracle PK takes
as input an identity ID and outputs the corresponding session public key pkID,
and stores pkID in an array Keys[ID], which captures that A has the ability to
observe transactions stored on the blockchain that transfer money to pkID. The
oracle SignDW takes as input a message µ and a randomness ρ, and outputs the
corresponding signature if ρ ∈ R. It captures that A has the ability to obtain
signatures with respect to a rerandomized public key that is assigned by himself.
After the query phase of A1, a challenge identity ID∗ is provided. Note that we
use the array Keys[ID] to store session public key pkID w.r.t. the key value ID.
If there is no record for ID∗, the game proceeds to the challenge phase, other-
wise return 0. Then the adversary A2 will be given a challenge public key pkbID∗

which is either real or random, namely, it depends on tuple (mpk,msk, ch) or
a tuple (m̂pk, m̂sk, ĉh) that was sampled freshly and independently with prior
one. A2’s goal is to distinguish these two scenarios.

Game DWUNL

1 : (mpk,msk, ch)← DW.KeyGen(1λ)

2 : ID∗ ← ASignDW,PK
1 (mpk)

3 : if (Keys[ID∗] ̸=⊥) then
return 0

4 : ρID∗ ← DW.RandGen(ch, ID∗)

5 : pk0
ID∗ ← DW.PKDer(mpk, ρID∗)

6 : sk0
ID∗ ← DW.SKDer(msk, ρID∗)

7 : (m̂pk, m̂sk, ĉh)← DW.KeyGen(1λ)

8 : ρ̂ID∗ ← DW.RandGen(ĉh, ID∗)

9 : pk1
ID∗ ← DW.PKDer(m̂pk, ρ̂ID∗)

10 : sk1
ID∗ ← DW.SKDer(m̂sk, ρ̂ID∗)

11 : b
$←− {0, 1}

12 : Keys[ID∗]← (pkb
ID∗ , skb

ID∗)

13 : b′ ← ASignDW,PK
2 (mpk, pkb

ID∗)

14 : return b′ = b

Oracle PK(ID)

1 : ρID ← DW.RandGen(ch, ID)

2 : pkID ← DW.PKDer(mpk, ρID)

3 : Keys[ID]← {pkID}
4 : return pkID

Oracle SignDW(µ, ρ)

1 : if (ρ /∈ R) then
return ⊥

2 : sk ← DW.SKDer(msk, ρ)

3 : σ ← DW.Sign(sk, µ)

4 : return σ

Fig. 4. Unlinkability game DWUNL for deterministic wallets.

Title Suppressed Due to Excessive Length 19

Definition 7. A deterministic wallet scheme DW is PQ-full-unlinkable if for any
quantum adversary A, the advantage in game DWUNL (cf. Figure 4) is negligible.

3.2 Wallet Unforgeability
At a high-level, the unforgeability guarantees that once funds are transferred to
the cold wallet they remain secure even if the hot wallet is compromised, and
the adversary can observe transfers of coins that are sent from the cold wallet.
The standard unforgeability game for deterministic wallet DWUF is presented
in Figure 5. Initially, the adversary A obtains a master public key mpk and the
chain code ch as input. A is allowed to access the oracles PK and SignDW which are
defined as same as in the game DWUNL, with the difference that PK now does
not need to keep track of all queried identities and SignDW now additionally keeps
track of all queried messages. Finally, A outputs a forgery tuple (µ∗, σ∗, ρ∗). We
say A wins the DWUF game if (µ∗, ρ∗) has not been queried to oracle SignDW,
and σ∗ is a valid signature for µ∗ w.r.t. pk∗. In addition, as prior works [15,3],
we also adopt the public key prefixing method to against the related key attacks
[32,15], i.e., a signature on a message µ is computed as Sign(sk, (hpk, µ)) where
hpk := F(pk) and F is a collision-resistant hash function.

Definition 8. A deterministic wallet scheme DW is PQ-unforgeable if for any
quantum adversary A, the advantage in game DWUF (cf. Figure 5) is negligible.

Game DWUF

1 : Q := ∅

2 : (mpk,msk, ch)← DW.KeyGen(1λ)

3 : (µ∗, σ∗, ρ∗)← ASignDW,PK(mpk, ch)

4 : if (µ∗, ρ∗) ∈ Q then
return 0

5 : pk∗ ← DW.KeyGen(mpk, ρ∗)

6 : if DW.Ver(pk∗, µ∗, σ∗) = 0 then
return 0

7 : return 1

Oracle PK(ID)

1 : ρID ← DW.RandGen(ch, ID)

2 : pkID ← DW.PKDer(mpk, ρID)

3 : return pkID

Oracle SignDW(µ, ρ)

1 : if (ρ /∈ R) then
return ⊥

2 : Q := Q∪ {µ, ρ}
3 : sk ← DW.SKDer(msk, ρ)

4 : σ ← DW.Sign(sk, µ)

5 : return σ

Fig. 5. Unforgeability game DWUF for deterministic wallets.

4 The Construction for Deterministic Wallets

In this section, we introduce our generic construction, and proofs of deterministic
wallets in a quantum world. We assume in the following a signature scheme with

20 Mingxing Hu

rerandomizable public keys RKS := (RKS.KeyGen, RKS.RandGen, RKS.RandPK,
RKS.RandSK, RKS.Sign, RKS.Ver). A generic construction of a deterministic
wallet scheme DW := (DW.KeyGen, DW.RandGen, DW.PKDer, DW.SKDer, DW.Sign,
DW.Ver) is depicted in Figure 6.

DW.KeyGen(1λ)

1 : (mpk,msk)← RKS.KeyGen(1λ)

2 : ch
$←− {0, 1}λ

3 : return (mpk,msk, ch)

DW.PKDer(mpk, ρ)

1 : pkID ← RKS.RandPK(mpk, ρ)

2 : return pkID

DW.Sign(sk, pk, µ)

1 : µ′ := (pk, µ)

2 : σ ← RKS.Sign(sk, µ′)

3 : return σ

DW.RandGen(ch, ID)

1 : γ ← H(ch, ID)

2 : ρ← RKS.RandGen(γ)

3 : return ρ

DW.SKDer(msk, ρ)

1 : skID ← RKS.RandSK(msk, ρ)

2 : return skID

DW.Ver(pk, µ, σ)

1 : µ′ := (pk, µ)

2 : return RKS.Ver(pk, µ′, σ)

Fig. 6. Construction of a deterministic wallet DW from a signature scheme with reran-
domizable keys RKS and a random oracle H.

4.1 Security Proofs

In this section we prove that the DW scheme achieves both unlinkability and
unforgeability against quantum adversaries.

Theorem 1. Let RKS be a signature scheme with rerandomizable public keys (cf.
Definition 2) and H be a random oracle. Then the deterministic wallet scheme
DW built from RKS and H (cf. Figure 6) is DWUNL secure according to Definition
7, i.e., against quantum adversaries which have access to |H〉.

Proof. Let A = (A1,A2) be an adversary which makes q queries to its oracles
|H〉. We prove the theorem via the following two games.

Game G0: This game behaves exactly as the game DWUNL (cf. Figure 4) in-
stantiated with DW (cf. Figure 6).

Game G1: This game is the same as G0, except that the randomness ρ, prior to
running A2 (Line 11 in Figure 4), is sampled at random, i.e., independent of the
random oracle. In this way, the only difference between two games G0 and G1

Title Suppressed Due to Excessive Length 21

lies in the random oracle, since the randomness ρ in both games is distributed
identical. From the point of view of A = (A1,A2), the random oracle in game
G1 is |HS→$〉, i.e., the random oracle that is reprogrammed the chain code in
S to random value. Hence, we can bound the advantage in distinguishing G0

and G1 by the advantage in distinguishing the random oracles |H〉 and |HS→$〉.
Applying the O2H Lemma (cf. Lemma 1) yields∣∣∣Pr [A|H⟩ ⇒ 1

]
− Pr

[
A|HS→$⟩ ⇒ 1

]∣∣∣ ≤ 2q
√
Pr

[
ch = ch′ ∈ S : B|H⟩ ⇒ ch′

]
where B is the adversary specified in Lemma 1, S is the set contains all chain
codes prior to running A2. In our setting, |S| = 1 since there is only one chain
code ch throughout the system. This yields

Pr
[
ch = ch′ ∈ S : B|H⟩ ⇒ ch′

]
≤ |S|

2λ
=

1

2λ
.

Combining the above equations yields that the advantage in distinguishing G0

and G1 is negligible in the security parameter λ.

It remains to bound the advantage of A in game G1, where the same argument
from the classical proof applies. In G1, the challenge public key pkbID∗ given to
A2 is independent of the random oracle (as the random oracle is not used in G1

anymore for deriving keys). Hence, it is irrelevant whether the adversary makes
any query (classical or quantum) to the random oracle. As RKS is a signature
scheme with rerandomizable public keys, the challenge public keys pk0ID∗ and
pk1ID∗ are identically distributed, which yields that the adversarial advantage is
0. Combining the above proves the theorem.

Theorem 2. The deterministic wallet scheme DW depicted in Figure 6 is DWUF
secure in the QROM if the signature scheme with rerandomizable public keys RKS
depicted in Figure 7 is EUF-CMA-RK secure in the QROM.

Proof. Let A be an adversary which makes qH queries to |H〉. And assume A
has non-negligible advantage ϵ in winning the game DWUFADW in G0. Then we
give a game hop G1 in which A loses the game if there is a collision of session
keys for different ID, but with a negligible probability. Finally, we construct an
algorithm B that runs A as subroutine in order to win the game EUF-CMA-RABRKS
(cf. Definition 4) against the RKS scheme.

Game G0: This game behaves exactly as the game DWUF (cf. Figure 5) instan-
tiated with DW (cf. Figure 6).

Game G1: This game behaves as G0 but aborts when there is a collision of keys
for different identities. As [3] mentioned, the bound from [15] is applicable. This
yields that the advantage of A in G1 is ϵ− negl(λ).

Bounding the advantage. We now show how to transform an adversary A
playing G1 into an adversary B playing EUF-CMA-RK (where, the underlying

22 Mingxing Hu

signature scheme is RKS). At the start, B receives a public key pk, samples a
chain code ch

$←− {0, 1}λ, and initializes an empty set Q := ∅. It invokes A on
input (mpk = pk, ch).

Simulation of Quantum Random Oracle |H〉. When A makes a query (ID, ch) to
|H〉, B simulates it using a 2qH-wise independent function which is indistinguish-
able for an adversary making qH queries [43].

Simulation of PK Oracle. When A queries its oracle PK on ID, B computes
pkID ← RKS.RandPK(pk, ρID), where ρID ← RKS.RandGen(γID) and γID ←
H(ch, ID). Finally, B sends pkID to A.

Simulation of SignDW Oracle. When A makes a query (µ, ρ) to its oracle SignDW,
B checks if ρ ∈ R, otherwise aborts. B computes pk ← DW.PKDer(mpk, ρ) then
sets µ′ = (µ, pk), and queries its own oracle SignRKS on (µ′, ρ) and obtains the
response σ. Then B adds the tuple (µ, ρ) to Q and sends σ to A. When A outputs
a forgery (µ∗, σ∗, ρ∗), B checks if (µ∗, ρ∗) ∈ Q, then B computes the pk∗ ←
DW.PKDer(mpk, ρ∗), and sets µ̂∗ = (µ∗, pk∗). Finally, B outputs (µ̂∗, σ∗, ρ∗).

We now show that the output of B is a valid forgery whenever the output of A is.
Since (µ∗, σ∗, ρ∗) is a valid forgery by A, we know that (µ∗, ρ∗) /∈ Q and hence
(µ̂∗, ρ∗) /∈ Qc whereQc is the set that was initialized by the challenger. Therefore,
validity of the forgery by A yields validity of the forgery by B. Assuming the
security of the underlying signature scheme RKS, we have that this advantage be
negligible. This yields that ϵ is negligible, resulting in a contradiction with the ϵ
is non-negligible as described in G0. This completes the proof.

5 Lattice-Based Signatures with Rerandomizable PK

In this section, we propose a lattice-based construction of a signature scheme
with honestly rerandomizable public keys RKS (cf. Definition 2) in Section 5.1,
and prove the security in Section 5.2.

5.1 Construction

In the following, we describe the signature scheme with rerandomizable public
keys RKS. The scheme extends the generic construction of lattice-based hash-
and-sign signatures LHS from Section 2.5. In addition, we define the following
functions and algorithms:

– GenR is an algorithm that on input (dim, s, bnd, rnd), then outputs a full-rank
matrix R = [r1 | · · · | rdim] ∈ DZdim×dim,s such that ‖R‖gs ≤ bnd by using a
randomness rnd. As [1] mentioned, GenR algorithm in practice can be built
from a “standard” random function h : {0, 1}∗ → {0, 1}t by using h as a coin
generator for the sampling process in SampleR algorithm (cf. Lemma 4).

– F : {0, 1}∗ → {0, 1}o(λ) is a collision-resistant hash function that is used to
hash the public key for preventing related key attacks [32].

Title Suppressed Due to Excessive Length 23

Let R := DZm×m,s be the randomness space. The matrix R ∈ R, output from
GenR, plays the key role in the keys randomization. Specifically, given a valid
LHS key pair (pk := A, sk := B), then we immediately obtain a randomized
and valid key pair (pk′ := AR−1, sk′ := RB) since AR−1RB = AB = 0
(mod q). By the basis randomization algorithm RandBasis that is called in the
BasisDel algorithm (cf. Lemma 7), the delegation cannot be inverted, i.e., the
master key cannot be revealed from the randomized key. To guarantee the norm
of the randomized secret key is sufficiently short, we generate the matrix R by
GenR(m, s,B/β, γ) for a predefined positive number B and where β we set as
the Gram-Schmidt norm bound of R i.e., ‖R‖gs ≤ β.

Below we describe our signature scheme with rerandomizable public keys. The
respective algorithms are formalized in Figure 7.

RKS.KeyGen(1λ)

1 : (pk, sk)← LHS.KeyGen(1λ)

2 : hpk ← F(pk)
3 : sk := (hpk, sk, pk)
4 : return (pk, sk)

RKS.RandGen(γ)

1 : R← GenR(m, s,B/β, γ)

2 : ρ := R ∈ R
3 : return ρ

RKS.Sign(sk, µ)

1 : µ′ := (hpk, µ)
2 : (e, r) = LHS.Sign(sk, µ′)

3 : return (e, r)

RKS.RandPK(pk, ρ)

1 : ρ := R ∈ R

2 : A′ = AR−1

3 : pk′ := A′

4 : return pk′

RKS.RandSK(sk, ρ)

1 : ρ := R ∈ R
2 : B′ ← BasisDel(A,B,R, s)

3 : sk′ := B′

4 : return sk′

RKS.Ver(pk, µ, (e, r))

1 : µ′ := (F(pk), µ)
2 : return LHS.Ver(pk, µ′, (e, r))

Fig. 7. Construction of lattice-based signature scheme with rerandomizable public
keys.

RKS.KeyGen: The key generation algorithm RKS.KeyGen takes as input a security
parameter and then invokes the algorithm LHS.KeyGen to obtain a key pair
(pk, sk) where pk := A ∈ Zn×m

q and sk := B ∈ Zm×m. Then, it computes
hpk := F(pk), and prepends (pk, hpk) to sk. Finally, it outputs (pk, sk).

RKS.RandGen: On input a randomness γ ∈ {0, 1}o(λ), the randomness generation
algorithm RKS.RandGen computes ρ := R ∈ R by GenR(m, s,B/β, γ). Finally,
it outputs ρ.

24 Mingxing Hu

RKS.RandPK: On input a public key pk = A and a randomness ρ := R ∈ R,
the public key randomization algorithm RKS.RandPK computes A′ = AR−1 and
sets pk′ = A′. Finally, it outputs pk′.

RKS.RandSK: On input a secret key sk = (A,B, hpk) and a randomness ρ := R ∈
R, the secret key randomization algorithm RKS.RandSK computes the sk′ = B′

by the basis delegation algorithm BasisDel(A,B,R, s). Finally, it outputs sk′.

RKS.Sign: On input a secret key sk = (A,B, hpk) and a message µ, the sign-
ing algorithm sets µ′ = (hpk, µ) and invokes the algorithm LHS.Sign(sk, µ′) to
obtain a signature (e, r). Finally, it outputs (e, r).

RKS.Ver: On input a public key pk, a message µ, and a signature (e, r), the
verification algorithm RKS.Ver sets µ′ = (F(pk), µ) and outputs the bit obtained
by running the algorithm LHS.Ver(vk, µ′, (e, r)).

The correctness of the RKS scheme directly follows from the correctness of the
LHS scheme.

5.2 Security Proof

In this section, we analyze the EUF-CMA-RK security of the scheme RKS in the
QROM. More precisely, we reduce its EUF-CMA-RK security to the EUF-CMA
security of the lattice-based hash-and-sign signature scheme LHS described in
Section 2.5. Note that rerandomizability of public keys (see Definition 2) follows
from the property of Gaussian distribution that is item 2 of Lemma 2.

Theorem 3. The signature scheme with rerandomizable public keys LHS de-
picted in Figure 7 is EUF-CMA-RK secure in the QROM if scheme LHS described
in Figure 3 is EUF-CMA secure in the QROM.

Proof. Let A be an adversary that is able to generate valid forgeries under RKS
scheme, i.e., A is able to win the unforgeability game of EUF-CMA-RKARKS (cf.
Definition 4). We construct an algorithm B (depicted in Figure 8) that runs A as
subroutine in order to win the game EUF-CMABLHS (cf. Definition 3) against the
LHS scheme. By the security model w.r.t. EUF-CMA-RK, A has quantum access
to a random oracle HRKS and classical access to signing oracle SignRKS. And by
the security model w.r.t. EUF-CMA, the reduction B has quantum access to the
random oracle HLHS and classical access to signing oracle SignLHS. B obtains as
input a public key pkLHS = A, then simulates to A as described in the following.

Setup. B first samples γ $←− {0, 1}λ and uses the public key pkLHS from the EUF-
CMA game as the public key pkRKS in its simulation of EUF-CMA-RK. In other
words, it runs A on input pkRKS = pkLHS and γ in EUF-CMA-RK.

Simulation of Random Oracle Queries. When A queries on random oracle HRKS,
B forwards the queries to HLHS and then forwards the response from HLHS as the
response of HRKS to A.

Title Suppressed Due to Excessive Length 25

Reduction B(pkLHS)

1 : pkRKS = pkLHS := A

2 : (µ, (e, r), ρ))← A(H,Sign)RKS(pkRKS)

3 : if µ ∈ Q then return 0

4 : pk′
RKS ← RKS.RandPK(pkRKS, ρ)

5 : µ′ := (F(pk′
LHS), µ), ρ := R

6 : if r ∈ {0, 1}λ ∧ e ̸= 0 ∧ R ̸= 0

∧ e ∈ DRm,s ∧ R ∈ R

∧ AR−1e = H(µ′, r) then

return (µ′, (R−1e, r))

7 : return 0

SignRKS(pkRKS, µ, ρ)

1 : Q := Q∪ {µ}
2 : if ρ := R /∈ R then return ⊥
3 : pk′

RKS ← RKS.RandPK(pkRKS,R)

4 : hpk ← F(pk′
RKS)

5 : µ′ := (hpk, µ)

6 : (e′, r)← SignLHS(µ
′)

7 : e = Re′

8 : return (e, r)

HRKS(·)

1 : return HLHS(·)

Fig. 8. Reduction from the EUF-CMA security of lattice-based hash-and-sign signature
scheme LHS (Figure 1) to EUF-CMA-RK security of signature scheme with honestly
rerandomizable public keys RKS (Figure 2).

Simulation of Signing Queries. When A queries signing oracle SignRKS on input
(pkRKS, µ, ρ), after set Q := Q ∪ {µ}, B first parses ρ := R and checks if R ∈ R
otherwise aborts. Then, B computes the randomized public key pk′RKS and hpk ←
F(pk′RKS), sets µ′ = (hpk, µ) and then obtain (e′, r) ← SignLHS(µ

′) by querying
its own challenge signing oracle. Finally, B sets e = Re′ and sends (e, r) to A.
Due to (e′, r) ← SignLHS(µ

′), therefore, it holds that Ae′ = H(µ′, r). We know
pk′RKS := A′ = AR−1, therefore, it holds that A′ ·Re′ = H(µ′, r).

In the real world and simulation, the item r of the signature tuple (e, r) is
randomly selected, so we focus on the difference of e between the real world
and simulation. Let (er, sr) and (es, ss) be the preimage e in real world and
simulation, respectively. In the real world, er is sampled by the Gaussian preim-
age sampling algorithm SamplePre with respect to the randomized trapdoor
sk′ := B′, i.e., er ← SamplePre(B′,u). In the simulation, es is firstly sampled
by SamplePre with respect to the original trapdoor sk := B and then multi-
ply R, i.e., es = Rē where ē ← SamplePre(B,u). By Lemma 7, it needs to set
sr > ‖B‖gs

√
nm log q ·ω(log2 m). By item 1 of Lemma 2, ‖er‖ ≤ sr

√
m. Then for

the norm bound of ‖es‖, by Lemma 2, it needs to set ss ≥ ‖B‖gs ·ω(
√
logm), and

by item 1 of Lemma 2, ‖ēr‖ ≤ ss
√
m, then by Lemma 4, the norm of each entry

ri of R is bounded as ‖r̄i‖ ≤ sr
√
m. Therefore, the norm bound on es = Rē is

sssrm, i.e., ‖es‖ ≤ sssrm. By Lemma 3 and 4, sr = O(
√
n log q) · ω(

√
logm).

Therefore, ‖es‖ ≤ ‖B‖gs
√
n log q · ω(log2 m) · m, i.e., the norm bound of es is

as same as er. Therefore, we can conclude that the simulated signatures are
correctly distributed.

Exploiting the Forgery. When A provides the forgery (µ, (e, r)), ρ), B parses
ρ = R, computes the randomized public key pk′RKS ← RKS.RandPK(pkRKS, ρ), and

26 Mingxing Hu

set µ′ = (F(pk′LHS), µ). B aborts if the forgery with respect to a queried message,
i.e., µ ∈ Q, or the randomness ρ is illegal, i.e., ρ /∈ R. B also aborts if the forgery
is not valid by checking as Line 7 of Figure 8. Otherwise B outputs (R−1e, r) as
the forgery under LHS.

We note that the environment of A is perfectly simulated, and whenever A wins
the game EUF-CMA-RKARKS, B wins the game EUF-CMABLHS.

6 Practical Instantiation and Deployment

In this section, we show a more compact instantiation of our work, then we an-
alyze the deployment over blockchains. Motivated by the general fact that the
transaction throughput is the most important measure for the wallet schemes
when considering deployment in the practical scenario of cryptocurrency system,
we consider employing the lattice-based signature Falcon [20] to instantiate our
work since Falcon taken compactness as its design rationale and core competi-
tiveness. For a simple transaction in most cryptocurrency networks that transfers
coins from one party to another, the transaction’s size is mainly dominated by
the size of “pk + sig”, i.e., the sum of the public key size and the signature
size of the employed signature scheme. Falcon is fitted neatly to resolve that
since it has the smallest size of “pk + sig” among the candidate algorithms for
post-quantum standardization [35].

6.1 Instantiation from Falcon

In this section, we show how to instantiate the signature scheme with rerandom-
izable public keys RKS with Falcon. The Falcon signature is also based on the
hash-and-sign paradigm as shown in Figure 3, and also employs lattice basis as
a trapdoor to Gaussian sample the preimages as signatures. And we note that
all the employed algorithms can be transformed to the Falcon setting. Below
we first describe the lattice-based hash-and-sign signature LHS that instantiates
from Falcon.

The LHS scheme that instantiates from Falcon is as same as ours (cf. Figure
3). The difference is that the trapdoor generation algorithm is instantiated by
a polynomial ring solving procedure. More precisely, the public key is set as
pk :=

[
1 | h

]
, secret key is sk :=

[
g −f
G −F

]
where f, g, F,G are polynomials over

Z[X]/(Xn + 1) and h ← g · f−1. Therefore, it requires setting the dimension
m = 2. For the Gaussian sampling algorithm SamplePre, as [31] mentioned1, the
Gaussian sampling algorithm can be transferred easily to the compact lattices
defined over polynomial rings which include Z[X]/(Xn + 1).
1 Even the algorithms that presented in [31] based on a new trapdoor whose quality is

measured by the maximal singular value rather than the Gram-Schmidt norm, but
the trapdoor can also be transformed to the classical lattice basis form (cf. Lemma
5.3 of [31])

Title Suppressed Due to Excessive Length 27

Then we describe how the RKS scheme can be instantiated with Falcon. As de-
scribed in Section 5.1, the GenR algorithm in practice can be built from standard
random function h : {0, 1}∗ → {0, 1}t by employing h as a coin generator in the
algorithm SampleR. Therefore, the point is how to instantiate the lattice basis
delegation algorithm BasisDel since SampleR is a sub-algorithm of BasisDel (cf.
Lemma 7). As given by Lemma 7, the BasisDel has three sub-algorithms: Sam-
pleR, ToBasis, and RandBasis. For simplicity, we describe that as below equation

BasisDel = SampleR + ToBasis + RandBasis

Recall the description given in Lemma 2, both SampleR and RandBasis algorithms
calling the SampleGaussian algorithm. And RandBasis algorithm additionally calls
the ToBasis algorithm. We have

RandBasis = SampleGaussian + ToBasis, SampleR = SampleGaussian

For the SampleGaussian algorithm, as aforementioned, it can be efficiently trans-
formed to the Falcon setting by the work [31]. For the ToBasis algorithm, the
point is that if the input set of vectors is full-rank. By the result in [1], we
can obtain a full-rank set of vectors by repeatedly calling the SampleGaussian
algorithm fewer than two times in expectation for prime q.

In our setting, the master key pair (pk := A, sk := B) only be used for reran-
domization while signatures are generated by using the delegated, i.e., the ran-
domized key pairs (pk′ := A′, sk′ := B′). In both settings of Falcon and ours,
we employ the lattice basis as the secret key. And we use the delegated lattice
basis as the signing key. Recall the process of rerandomization, the randomness
is mainly derived from the parameter R. Therefore, we next analyze if the norm
of R is reasonably set so that the resulting signature scheme satisfies the norm
bound in Falcon. In Falcon, the Gram-Schmidt norm bound on the basis is B.
Recall in our setting, the Gram-Schmidt norm bound on the original basis is
‖B‖gs ≤ β, and the bound on R is ‖R‖gs ≤ B/β since it was generated by
GenR(m, s,B/β, ρ). Then we have the Gram-Schmidt norm bound on the del-
egated basis B′ = BR−1 such that ‖B′‖gs ≤ B. Therefore, we can set the
parameters of our scheme as exactly the same as Falcon (Table 3.3 of [20]).

6.2 Deployment over Blockchains

In this section, we analyze the transaction throughput that can be achieved in
a cryptocurrency system when employing the signature scheme with rerandom-
izable public keys RKS instantiated from Falcon. We use the analytical methods
from [3] and show the comparison with that. To show the comparison fairly, we
state the bit security in quantitative form as [4] which assumes the compared
works under the same BKZ cost model [12].

On the blockchains, a transaction (tx) must usually consist of a public key pk
and the signature σ that was signed by the sender such that the validity of the
transaction can be verified. The raw transaction size (i.e., exclude the size of pk

28 Mingxing Hu

and σ) of a cryptocurrency system such as Bitcoin is roughly 100 Bytes(B) [41].
Therefore, the size of a valid transaction should be estimated below

tx’s size = 100 B + pk’s + σ’s

When instantiating our wallet scheme with Falcon, we can take the pk size =
897 B and signature size = 666 B (cf. Table 3.3 of [20]) for a post-quantum
security level of 158 bits (under BKZ cost model). Therefore, the size of a tx
would then result in 100 B + 897 B + 666 B ≈ 1.66 KB. Below we show
the comparison with prior work [3] in Table 2, in which we also compare the
performance on the signing and verify (on portable C reference and AVX2-
optimized implementations) that was given in [4].

Table 2. Comparison with prior work

Scheme Security Sizes [B] Transaction
throughput

Cycle counts [k-cycles]
C Reference AVX2

[3] 95 bits pk: 14880 ≈17.5 KB Sign: 3089.9 1759.0
sig: 2592 Ver: 814.3 678.5

Our 158 bits pk: 897 ≈1.66 KB Sign: 1368.5 1009.8
sig: 666 Ver: 95.6 81.0

The work [3] was instantiated from the lattice-based signature scheme qTESLA[4]
which was implemented with the CPU of 3.4GHz Intel Core i7-6700 (Skylake),
while our work from Falcon which was implemented with the CPU of 3.3GHz
Intel Core i7-6567U (Skylake). From the comparison result of Table 2, our scheme
has a more compact performance than the prior work [3] since our works achieved
more efficiency on the time-consuming and parameter sizes.

References
1. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension

and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) Advances in Cryp-
tology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6223, pp. 98–115. Springer, Heidelberg (2010), https://doi.org/10.1007/
978-3-642-14623-7_6

2. Ajtai, M.: Generating hard instances of lattice problems. In: STOC. pp. 99–108.
ACM (1996)

3. Alkeilani Alkadri, N., Das, P., Erwig, A., Faust, S., Krämer, J., Riahi, S., Struck,
P.: Deterministic wallets in a quantum world. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1017–1031
(2020)

4. Alkim, E., Barreto, P.S., Bindel, N., Krämer, J., Longa, P., Ricardini, J.E.: The
lattice-based digital signature scheme qtesla. In: International Conference on Ap-
plied Cryptography and Network Security. pp. 441–460. Springer (2020)

https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6

Title Suppressed Due to Excessive Length 29

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
Albers, S., Marion, J. (eds.) STACS 2009, February 26-28, 2009, Freiburg, Ger-
many, Proceedings. vol. 3, pp. 75–86. Germany (2009), https://doi.org/10.4230/
LIPIcs.STACS.2009.1832

6. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Advances in Cryptology - CRYPTO 2019. pp. 269–295.
Springer (2019)

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, November 3-5, 1993. pp. 62–73.
ACM, New York (1993), https://doi.org/10.1145/168588.168596

8. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7073, pp. 41–69.
Springer, Heidelberg (2011), https://doi.org/10.1007/978-3-642-25385-0_3

9. Buterin, V.: Deterministic Wallets, Their Advantages and their Un-
derstated Flaws (2013), https://bitcoinmagazine.com/articles/
deterministic-wallets-advantages-flaw-1385450276

10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010,
29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6110, pp. 523–552. Springer, Heidelberg
(2010), https://doi.org/10.1007/978-3-642-13190-5_27

11. Chailloux, A., Debris-Alazard, T.: Tight and optimal reductions for signatures
based on average trapdoor preimage sampleable functions and applications to code-
based signatures. In: IACR International Conference on Public-Key Cryptography.
pp. 453–479. Springer (2020)

12. Chen, Y., Nguyen, P.Q.: Bkz 2.0: Better lattice security estimates. In: ASI-
ACRYPT. pp. 1–20. Springer (2011)

13. Das, P., Erwig, A., Faust, S., Loss, J., Riahi, S.: The exact security of bip32 wallets.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 1020–1042 (2021)

14. Das, P., Erwig, A., Faust, S., Loss, J., Riahi, S.: The exact security of bip32 wallets.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 1020–1042 (2021)

15. Das, P., Faust, S., Loss, J.: A formal treatment of deterministic wallets. In: Pro-
ceedings of the 2019 ACM SIGSAC conference on computer and communications
security. pp. 651–668. ACM New York, NY (2019)

16. Di Luzio, A., Francati, D., Ateniese, G.: Arcula: A secure hierarchical deterministic
wallet for multi-asset blockchains. In: International Conference on Cryptology and
Network Security. pp. 323–343. Springer (2020)

17. Erwig, A., Riahi, S.: Deterministic wallets for adaptor signatures. In: European
Symposium on Research in Computer Security. pp. 487–506. Springer (2022)

18. Fan, C.I., Tseng, Y.F., Su, H.P., Hsu, R.H., Kikuchi, H.: Secure hierarchical bit-
coin wallet scheme against privilege escalation attacks. International Journal of
Information Security 19(3), 245–255 (2020)

https://doi.org/10.4230/LIPIcs.STACS.2009.1832
https://doi.org/10.4230/LIPIcs.STACS.2009.1832
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-25385-0_3
https://bitcoinmagazine.com/articles/deterministic-wallets-advantages-flaw-1385450276
https://bitcoinmagazine.com/articles/deterministic-wallets-advantages-flaw-1385450276
https://doi.org/10.1007/978-3-642-13190-5_27

30 Mingxing Hu

19. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Public-Key Cryptography–PKC 2016, pp. 301–330. Springer
(2016)

20. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based
compact signatures over ntru. Submission to the NISTs post-quantum cryptogra-
phy standardization process 36(5) (2018)

21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008. pp. 197–206. ACM, New York (2008), https://doi.org/10.
1145/1374376.1374407

22. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on computing 17(2), 281–308
(1988)

23. Gutoski, G., Stebila, D.: Hierarchical deterministic bitcoin wallets that tolerate
key leakage. In: International Conference on Financial Cryptography and Data
Security. pp. 497–504. Springer (2015)

24. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3), 565–599 (2015)

25. Liu, W., Liu, Z., Nguyen, K., Yang, G., Yu, Y.: A lattice-based key-insulated and
privacy-preserving signature scheme with publicly derived public key. In: European
Symposium on Research in Computer Security. pp. 357–377. Springer (2020)

26. Liu, Z., Yang, G., Wong, D.S., Nguyen, K., Wang, H.: Key-insulated and privacy-
preserving signature scheme with publicly derived public key. In: 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). pp. 215–230. IEEE (2019)

27. Liu, Z., Yang, G., Wong, D.S., Nguyen, K., Wang, H., Ke, X., Liu, Y.: Secure
deterministic wallet and stealth address: Key-insulated and privacy-preserving sig-
nature scheme with publicly derived public key. IEEE Transactions on Dependable
and Secure Computing 19(5), 2934 (2022)

28. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: IAdvances in CryptologyASIACRYPT 2009. pp. 598–616.
Springer (2009)

29. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. In: FOCS. pp. 356–365.
IEEE (2002)

30. Micciancio, D., Goldwasser, S.: Complexity of lattice problems: a cryptographic
perspective, vol. 671. Kluwer Academic Publishers, Boston (2002)

31. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Lec-
ture Notes in Computer Science, vol. 7237, pp. 700–718. Springer, Heidelberg
(2012), https://doi.org/10.1007/978-3-642-29011-4_41

32. Morita, H., Schuldt, J.C., Matsuda, T., Hanaoka, G., Iwata, T.: On the security of
the schnorr signature scheme and dsa against related-key attacks. In: ICISC 2015.
pp. 20–35. Springer (2015)

33. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009), http://
bitcoin.org/bitcoin.pdf

https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-29011-4_41
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Title Suppressed Due to Excessive Length 31

34. NIST: FIPS pub 186-4 - Digital Signature Standard (DSS) (2021), https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

35. NIST: Post-Quantum Cryptography (PQC) Standardization Pro-
cess: Announcing Four Candidates to be Standardized, Plus Fourth
Round Candidates (2022), https://csrc.nist.gov/News/2022/
pqc-candidates-to-be-standardized-and-round-4

36. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18
(2016)

37. Pieter, W.: Bip32: hierarchical deterministic wallets (2012), https://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki

38. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

39. Unruh, D.: Revocable quantum timed-release encryption. Journal of the ACM
(JACM) 62(6), 1–76 (2015)

40. Van Saberhagen, N.: Cryptonote v 2.0 (2013)
41. WIKI: Bitcoin wiki transaction format. In: Accessed: 2020-05-04. (2019), https:

//en.bitcoin.it/wiki/Transaction
42. Yin, X., Liu, Z., Yang, G., Chen, G., Zhu, H.: Secure hierarchical deterministic wal-

let supporting stealth address. In: European Symposium on Research in Computer
Security. Springer (2022)

43. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model pp. 758–775 (2012)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Transaction

	Post-Quantum Secure Deterministic Wallet: Stateless, Hot/Cold Setting, and More Secure
	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Quantum Random Oracle Model
	Signature Schemes
	Lattices and Gaussian distributions
	Lattice Basis Delegation
	Lattice-Based Hash-and-Sign Signatures

	The Definitions for Deterministic Wallets
	Wallet Unlinkability
	Wallet Unforgeability

	The Construction for Deterministic Wallets
	Security Proofs

	Lattice-Based Signatures with Rerandomizable PK
	Construction
	Security Proof

	Practical Instantiation and Deployment
	Instantiation from Falcon
	Deployment over Blockchains

